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Abstract

The recent isolation of graphene has triggered a steadily growing research interest due
to its fascinating structural and electronic properties. For achieving the important goal
of finding new applications, it is necessary to control and tune the electonic structure
of graphene. In order to reach this aim, several strategies building upon structural and
chemical modifications have already been assessed.

In this thesis, the novel idea of using collective electrostatic effects to controllably modify
graphene is investigated by means of standard density functional theory. As an initial step,
selected neighboring carbon atoms of graphene are substituted with pairs of boron and
nitrogen atoms, so that they form lines of dipoles embedded into the two-dimensional layer.
The consequences of the dipolar fields acting on the material in its vicinity are examined:
modifications of the electrostatic potential, energy shifts of the states and of the density
of states and changes in the band structure are observed. Furthermore, the possibility
of largely localizing the frontier states in the graphene region between two oppositely
oriented dipole lines close to each other is discussed. It is shown that the width of these
strips between the dipole lines plays a major role for the size of the energy shift. Also
the geometries of the boron-nitrogen-lines (e. g. in parallel orientation, or in zigzag- or
armchair-fashion) turn out to be relevant.

As a probably more realistic system, the ordered adsorption of organic molecules with
dipolar end groups on the otherwise unmodified graphene sheet is subsequently investigated.
Here, qualitatively the same effects can be found. They are, however, less pronounced
– a fact that is thoroughly explored and explained. Semiconducting and isolating two-
dimensional materials are expected to behave slightly differently than semimetals like
graphene, thus the adsorption of the same molecules on single layers of hexagonal boron
nitride is finally examined and compared to the other systems.
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Kurzfassung

Die Isolierung von Graphen hat ein stetig wachsendes Interesse an diesem Material ausge-
löst, was wohl an seinen faszinierenden strukturellen und elektronischen Eigenschaften
liegt. Das wichtigste Ziel dieser Forschung ist es, daraus neue Anwendungen zu entwickeln.
Bevor das aber möglich ist, muss man erst die elektronische Struktur von Graphen kontrol-
lieren können. Dazu gab es bereits verschiedene Vorschläge, wobei meist chemische oder
strukturelle Veränderungen des Materials untersucht wurden.

In dieser Arbeit wird eine neue Idee verfolgt: die Verwendung kollektiver elektrostatischer
Effekte, um Graphen gezielt zu modifizieren. Dies wird mittels Standard-Dichtefunktio-
naltheorieberechnungen untersucht. Zuerst werden Dipollinien direkt in die zweidimensio-
nale Graphenschicht eingebaut, und zwar durch Substitution ausgewählter benachbarter
Kohlenstoffatome in Graphen durch Paare von Bor- und Stickstoffatomen. Die so entstehen-
den Dipolfelder wirken sich auf das Graphen nahe der Dipollinien folgendermaßen aus: Das
elektrostatische Potential ändert sich, was die Energie der einzelnen Zustände verschiebt
und somit auch die Zustandsdichte sowie die Bandstruktur beeinflusst. Es ist außerdem
möglich, die Zustände nahe der Fermienergie mehr oder weniger gut in Bereichen zwischen
zwei entgegengesetzt ausgerichteten Dipollinien zu lokalisieren. Eine große Rolle für die
Stärke des Effekts spielt vor allem die Breite der Graphenstreifen zwischen den Dipollinien.
Außerdem wird noch untersucht, wie groß der Einfluss der Anordnung der Bor-Stickstoff-
Linien (also mit parallelen Dipolen oder in Zigzag- oder Armchairgeometrie) ist.

Es ist vermutlich deutlich realistischer, dipolare Linien durch die geordnete Adsorption
organischer Moleküle mit polaren Endgruppen auf reinem Graphen zu erzeugen. Das liefert
qualitativ die gleichen Effekte. Man stellt jedoch fest, dass deren Stärke deutlich geringer
ist, was im Rahmen dieser Arbeit ausführlich dokumentiert und erklärt wird. Man erwartet,
dass sich das Verhalten halbleitender und isolierender zweidimensionaler Materialien von
Semimetallen wie Graphen unterscheidet. Deshalb wird zum Schluss noch betrachtet, wie
sich die Adsorption derselben organischen Moleküle auf zweidimensionalem hexagonalem
Bornitrid auswirkt und die Ergebnisse werden mit Graphen verglichen.
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1. Introduction and Motivation

Graphene and graphene-based materials is arguably the topic that has attracted the biggest
research interest in recent years. Exploring the unique properties, selectively modifying
them, and finding novel applications in the form of revolutionary devices is the motivation
that fuels all this work. A vast number of different ways to tune graphene and its relatives
have been suggested and investigated [1], including lateral confinement, doping, the use of
different substrates and the application of external fields. In contrast, the use of collective
electrostatic effects from dipolar chemical groups presented in this thesis is a different and
highly exciting approach.

The heart of collective electrostatic effects is that there is a qualitative change in behavior
when going from a single dipole to higher-dimensional arrangements of dipoles (this will be
thoroughly explained in chapter 2.2). Especially a two-dimensional arrangement of dipoles
plays a huge role in surface science, as work function differences of different surfaces of
crystals can be explained by surface dipoles. [2] Furthermore, a specific modification of
surface-related properties is viable by means of the ordered adsorption of monolayers of
polar molecules. [3–5] The prospects of lines of dipoles to locally change the characteristics
of the surrounding matter have not been assessed so far.

Using these linear arrangements of polar constituents, it is possible to permanently create
potential differences between distinct parts of the graphene sheet, which leads to local
changes of the energy of the electronic states of the material. This can be useful both in
the context of seletively modifying the conduction properties with the long-term goal of
graphene-based integrated circuits and for device creation purposes [6]1. Still the aim of
this thesis lies in the investigation and documentation of the impact of one-dimensional
collective electrostatic effects on a two-dimensional material from the point of view of
fundamental research rather than application-driven innovation.

Quantum mechanical computer simulations using density functional theory are the perfect
tool to quickly and cost-effectively examine newly proposed systems like these. Apart from
the possibility to look at large numbers of different systems without having to invest too
much time and effort, one can also state general points using proof of principle models
in idealized situations. Furthermore, many different quantities are easily accessible at the
end of a numerical calculation without the need to perform diverse measuring procedures

1Although the system presented in Ref. [6] looks similar to some of the systems discussed throughout this
thesis, collective electrostatic effects do not play a role there. The device presented in this paper mainly
relies on different doping concentrations and uses hexagonal boron nitride for its isolating properties to
confine graphene states.

1



1. Introduction and Motivation

one after the other.

This thesis starts out with a very brief overview of the key points of density functional
theory, more in the style of a reminder than a thourough introduction (chapter 2.1). Then,
the electrostatic properties of dipoles are reviewed and the curious effects that appear when
they are arranged in certain orders are discussed (chapter 2.2). When a sea of electrons is
perturbed by extra local charges, the effects resulting from these charges will in general
be screened by the electrons. As these effects play a role in graphene modified by dipoles,
it should be incorporated in the electrostatic modelling of the situation. A very simple
theory that takes into account these processes is Thomas-Fermi theory, which will be shortly
presented in chapter 2.3. The astonishing structural electronical and structural properties
of graphene are then summarized in chapter 2.4.

The methodology used to perform the ab-initio calculations is presented in chapter 3, along
with the methods employed for the analysis of the achieved results.

As a first system, graphene with dipoles embedded directly into the plane is investigated
(chapter 4). This is done using pairs of boron and nitrogen atoms placed where usually
two neighboring carbon atoms would sit, so that the dipoles formed by these heteroatoms
are arranged in a line. The resulting effects on the potential and electronic states of the
material are then discussed in detail. Another, probably more realistic, approach is the
adsorption of self-assembled monolayers of molecules with polar end groups. A toy model
for these systems is investigated in chapter 5.

To see how well this approach works also for other two-dimensional materials and to see the
different kind of behavior of a semimetal and an isolator, the adsorption of polar molecules
on two-dimensional hexagonal boron nitride is finally studied (chapter 6).

2



2. Theoretical Foundations

2.1. Density Functional Theory

In solid state theory, calculating the electronic properties of a system is equivalent to solving
the Schrödinger equation [7]

H |ψ〉= E |ψ〉 , (2.1)

where |ψ〉 is the many-electron wavefunction of the eigenstate of the system and E is the
eigenenergy. H is the electronic part of the Hamiltonian [7], obtained by applying the
Born-Oppenheimer approximation, (expressed in SI units)

H = − ħh
2

2me

∑

i

∇2
i −

1
4πε0

∑

i

∑

A

ZAe2

|ri −RA|
+

1
2

e2

4πε0

∑

i

∑

j 6=i

1
|ri − r j|

, (2.2)

where the sum over A runs over all the ions and sums over i or j run over all the electrons.
The quantity ZA is the atomic number and RA the position of the ion with index A, ri is
the position of the electron with index i. The physical meaning of the three terms in
this Hamiltonian is the kinetic energy of the electrons, the interaction of the electrons
with the nuclei and the electron-electron interaction. [7] Especially the latter significantly
complicates the treatment of this equation.

Two fundamentally different approaches for solving this many-body problem exist: wave-
function based methods (e. g. Hartree-Fock, configuration interaction, coupled cluster
theory) and density functional methods. [8] In the latter, the key quantity is not the wave-
function, but the electron density n(r). The Hohenberg-Kohn theorem [9] shows that the
two descriptions are equivalent. Furthermore, the ground state electron density can be
found by minimizing the energy functional E[n] with respect to n(r).

In practise, the interacting problem is mapped onto a non-interacting problem with the
same electron density. This leads to the Kohn-Sham equation, which mathematically looks
like the Schrödinger equation of non-interacting particles and can be solved. [10] The
electron-electron interactions are accounted for in the local potential which is derived
from the energy functional. The functional can be split up into different parts; however
for the exchange-correlation part the exact functional is not known and one has to use
approximations. In solid-state physics, the most commonly used approximatons are the
local density approximation (LDA) and the generalized gradient approximation (GGA). [8]
A commonly used GGA functional is the PBE functional proposed by John P. Perdew, Kieron

3



2. Theoretical Foundations

Burke and Matthias Ernzerhof in 1996. [11]

A detailed yet well accessible overview of DFT including practical aspects can be found in
Richard Martin’s book on electronic structure [7]. There is also a lot of further literature
on that topic (e. g. [8, 12–15]). Thus, discussing DFT in more detail in this thesis would be
futile.

2.2. Electrostatics

The fundamental relations presented in this chapter on electrostatics can be found in
most textbooks on electrostatics or electrodynamics, for example in part three of Nolting’s
Grundkurs Theoretische Physik [16], on which the following considerations are based.

2.2.1. Dipole Potential

The electrostatic potential φ of a charged point-like particle is given by

φ(r) =
1

4πε0

q
|r− r0|

, (2.3)

where q is the charge and r0 is the position of the particle.

Two oppositely charged particles form a dipole. The dipole potential is the sum of the
potentials of the point charges, i. e. for a positively (+q) charged particle at r+ and a
negatively (−q) charged particle at r− it is

φdip(r) =
q

4πε0

�

1
|r− r+|

− 1
|r− r−|

�

. (2.4)

The key quantity for describing a dipole is its dipole moment p = q(r+ − r−), which for a
continuous charge distribution ρ(r) becomes

p(r) =

∫

d3r′ ρ(r′) (r′ − r). (2.5)

Note that in chemistry, sometimes the opposite sign convention for dipole moments is used.

Using the multipole expansion, the dipole potential can be approximated as

φdip(r)≈
1

4πε0

p · (r− r0)
|r− r0|3

. (2.6)

The dipole is now treated as point-like, sitting at r0 =
1
2(r+− r−). This approximation holds

for large distances from the point dipole, i. e. when |r− r0| � |r+ − r−|. Figure 2.1 shows

4
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Figure 2.1.: Top: Electron potential energy Epot for a dipole with a dipole moment of
p = 1e�A in x-direction, where |r+ − r−| = 1.42�A. The calculation was once
done using the exact equation (2.4) (blue line) and once using the point dipole
approximation (2.6) (green line). Bottom: Relative error, i. e. the absolute
error divided by the exact result. Especially in the region between the dipoles,
the error is huge because the point dipole potential goes to infinity at x = 0
while the potential of the two separate point charges goes to zero. The vertical
red lines mark the x-positions where the relative error drops below 10−1 and
10−2.

how well it is doing in different distances from the dipole.

For a single dipole located at the origin and pointing in the x-direction, the potential along
the x-axis goes like

φdip(x)≈
1

4πε0

p
x2

. (2.7)

2.2.2. Lines of dipoles

First, the case where an infinite number of point dipoles is arranged in a line, with the
dipole moments all pointing in the same direction perpendicular to the line (see figure 2.2),
is considered. The distance between two neighboring dipoles is b. This is equivalent
to imposing periodic boundary conditions in the direction along the line, with a “lattice
constant” b.

5



2. Theoretical Foundations

. . .. . .

b y

x

Figure 2.2.: Geometry of an infinitely extended dipole line. The arrows represent the
individual dipole moments.

The potential due to this line of dipoles is a superposition of the potentials of the individual
dipoles, located at ri:

φline(r) =
1

4πε0

∑

i

p · (r− ri)
|r− ri|3

. (2.8)

For the dipoles pointing in the x-direction located on the y-axis, this leads to

φline(x , y, z) =
1

4πε0

∞
∑

i=−∞

px
(x2 + (y − i b)2 + z2)3/2

. (2.9)

Due to theφdip ∼ r−2 behavior of the dipole potential, the infinite sum only converges slowly
with respect to the number of included dipoles. However, in this present one-dimensional
case, the calculation is still feasible. A summation up to the limits of the machine precision
can be done in reasonable time.

For large distances from the dipole line (i. e. much larger than its lattice constant b), the
dipole line appears to be continuous with a dipole density µ = p/b. Then, the infinite sum
can be approximated by an integral

φline(x , y, z)≈ 1
4πε0

∞
∫

−∞

d y ′µx
(x2 + (y − y ′)2 + z2)3/2

=
1

4πε0

2µx
x2 + z2

. (2.10)

To examine the resulting electrostatic potential along the x-axis, we set z→ 0 and obtain

φline(x)≈
1

4πε0

2µ
x

. (2.11)

By comparing this result (2.11) to the result obtained for one single dipole (2.7), it can be
seen that the potential of a dipole line drops far more slowly than the potential of a single
dipole. This collective electrostatic effect not only changes the behavior quantitatively, but
also qualitatively. The two different types of behavior can also be seen in figure 2.3.

6
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Figure 2.3.: Electron potential energy per unit dipole moment Epot/p of a single point
dipole that is pointing in the x-direction and is located at the origin (solid blue
line). For different lattice constants b, the value of Epot/p of the infinite sum of
dipoles arranged along the y-axis is plotted (data points). The gray solid lines
behind the data points are calculated according to (2.11) (with µ chosen to
match the different values of b). This shows that for most of the plotted range,
the treatment of the point dipoles as a continuous line according to (2.10) is
already valid.
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2.2.3. Arrays of Dipoles

The next system to look at is a two-dimensional array of dipoles, i. e. dipoles arranged on a
rectangular grid. For dipoles with a dipole moment p pointing in the x-direction in a grid in
the yz-plane (with lattice constants b and c along the y and z-direction), the electrostatic
potential is

φarray(x , y, z) =
1

4πε0

∞
∑

i=−∞

∞
∑

j=−∞

px
(x2 + (y − i b)2 + (z − jc)2)3/2

. (2.12)

We can again examine this expression for long distances by taking the continuous limit
with a dipole density µ= p/bc

φarray(x , y, z)≈ 1
4πε0

∞
∫

−∞

dz′
∞
∫

−∞

d y ′µx
(x2 + (y − y ′)2 + (z − z′)2)3/2

=
1

4πε0
2πµ sgn x . (2.13)

That shows that for large x we get a constant potential (see figure 2.4). Furthermore, there
is a different vacuum potential on the left and right side of the dipole array, with a potential
difference

∆Evac = 2φ∞ =
1

4πε0

4πp
bc

. (2.14)

The space is divided into two regions by the dipole plane. Again, a collective electrostatic effect
changes the behavior qualitatively. This result plays a big role in surface science, because
work function modifications due to surface dipoles (or bond dipoles due to adsorption) can
be explained by the different vacuum potentials. [5]

For the infinite sums in (2.12), a direct summation is not feasible anymore. However, the
form of the potential outside the dipole layer can be expressed as a Fourier series [3]

φarray(x , y, z) = ±φ∞ +
1

4πε0

∞
∑

m=−∞

∞
∑

n=−∞

2πp
bc

ei2π(my
b +

nz
c )e−2π

r

(m
b )

2
+( n

c )
2|x |. (2.15)

This series converges much more quickly than the real space summation.
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Figure 2.4.: Comparison of the electron potential energy per unit dipole moment Epot/p
of a single dipole at x = 0 (green line), a dipole line at x = 0 with a lattice
constant b = 2�A (red line) and a dipole array at x = 0 with lattice constants
b = c = 2�A (blue line). The constant value for large x , i. e. the shift of the
vacuum potential, is marked as E∞pot.

2.2.4. Lattices of Dipoles

The next logical step is a three-dimensional lattice of dipoles1. Of course, this does not have
a direct relevance to surface science and the systems treated in this thesis and is merely
included for completeness.2 Now, there are three lattice constants: a, b and c (in the
directions x , y , z). The potential can be written as

φlattice(r
′) =

1
4πε0

∑

j

∑

i

p j(r′ − r j −Ri)

|r′ − r j −Ri|3
, (2.16)

where the sum over i runs over all the unit cells (with lattice vectors Ri) and the sum
over j runs over the individual point dipoles in the unit cell (with positions r j and dipole
moments p j).

For one particular dipole in the unit cell (i. e. one special value for j), which we will choose

1In this case, the unit cell should not have a net dipole moment because otherwise the total energy would
diverge. This problem only occurs due to the infinite extent of the crystal with periodic boundary
conditions. For finite crystals, and thus for every real system, a unit cell with a net dipole moment leads
to a macroscopic polarization of the sample (e. g. ferroelectricity).

2It also provides a way to assess the validity of the slab approach, which consists of performing 3D-periodic
calculations for 2D-periodic systems by introducing a large vacuum gap (see chapter 3.1). In this thesis,
this was checked using a more practical method, see figure 3.3.
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as located in the origin and pointing in the x-direction, we get

φlattice(x , y, z) = p
∑

i

x − Rx
i

((x − Rx
i )2 + (y − Ry

i )2 + (z − Rz
i )2)3/2

. (2.17)

Now we rewrite Rx
i = la, Ry

i = mb and Rz
i = nc (where l, m and n are integers) and

introduce relative coordinates x = ξa, y = ηb and z = ζc (where ξ, η and ζ are reals) to
obtain

φlattice(x , y, z) = p
∞
∑

l,m,n=−∞

a(ξ− l)
(a2(ξ− l)2 + b2(η−m)2 + c2(ζ− n)2)3/2

. (2.18)

Now we pull all the factors of a out and substitute l, m, n by −l, −m and −n (which does
not change anything because of the symmetric infinite sum) to get

φlattice(x , y, z) =
p
a2

∞
∑

l,m,n=−∞

ξ+ l

((ξ+ l)2 +
�

b
a

�2
(η+m)2 +

�

c
a

�2
(ζ+ n)2)3/2

︸ ︷︷ ︸

=:X

. (2.19)

The part of this summation that is named X is the same as the quantity X in equation (4)
in Ref. [17], which is shown to be equal to (equation (6) in [17])

X = 8π
∞
∑

l=1

l sin(2πlξ)
∞
∑

m,n=−∞
K0(2πl r̃mn(η,ζ)), (2.20)

with

r̃mn(η,ζ) =
�

b
a

�2

(η+m)2 +
� c

a

�2
(ζ+ n)2. (2.21)

K0 is the modified Bessel function of second kind. This method of doing lattice sums
is referred to as Lekner summation, which is rapidly converging. One problem with the
application of that method is that K0 diverges when its argument goes to zero, thus leading
to problems if y and z both become zero. In principle, one can choose very small values
for both variables; the limitation is the numerical stability of the calculation of the sum of
the Bessel functions.

2.2.5. Polar Groups and Depolarization

In molecules and solids, certain arrangements of atoms can lead to permanent dipole
moments. They can exist when the center of charge of the nuclei and the electrons do not
coincide. For molecules or unit cells to have a global net dipole moment, there can be no
mirror symmetry in the system. Of course, neither the charges involved nor the resulting
dipoles are point like, but with increasing distance this approximation becomes better and
better.

10



2.2. Electrostatics

In contrast to fixed point charges, matter that forms dipoles is in general polarizable. That
means that the dipole moment changes as a function of the local electric field acting at the
location of the dipole. The local electric field can be of different origin, most importantly
either by an external electric field or by the field of other dipoles in the vicinity. The latter
effect plays a role for collective electrostatics, as each dipole feels the potential of all the
other dipoles, which then leads to depolarization.

In the case of an infinitely extended dipole line, all the other dipoles create a field pointing
in the direction opposite to that dipole. In figure 2.5, the electron potential energy due to
the other dipoles is plotted together with the field. The negative end of the dipole would be
on the left side, the positive end on the right side; the resulting dipole moment would thus
point from left to right. Due to the presence of the other dipoles, the electron potential
energy on the right, positive side is lowered which leads to an attraction of the electrons to
the right side. This lowers the dipole strength.

Using the molecular polarizability α of the matter constituting the dipoles, the effective
dipole moment can be written (up to first order) as [18, 19]

p = p0 +αE‖, (2.22)

where p0 is the dipole moment in gas phase and E‖ is the depolarizing local electric field
parallel to the dipole orientation. The depolarization factor is given by p/p0.

For a two-dimensional array of dipoles, the dipole jump is, as shown in (2.14)

∆Evac =
p
ε0 bc

=
p0

εε0 bc
, (2.23)

where a relative permittivity ε was introduced. It describes the depolarization and is thus
given by [18]

ε =
p0

p
. (2.24)

This effective dielectric constant is not equal to the bulk dielectric constant of the material.

Whenever the gas phase value of the dipole moment is not of relevance, working just with
the effective dipole moment p is suitable.

11



2. Theoretical Foundations

6 4 2 0 2 4 6
x / Å

4

2

0

2

4

(E
po

t 
/ 

p
) 

/ 
(e

V
/e

Å
)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

(E
 /

 p
) 

/ 
(V

/Å
 /

e
Å

)
Figure 2.5.: Electron potential energy per unit dipole moment Epot/p (black line, left axis)

and the corresponding electric field E/p (green line, right axis) that dipoles
arranged in a line at y = ±b,±2b,±3b, . . . create at y = 0. The lattice constant
b = 2�A was used. For the full dipole line, a dipole would be sitting at x = 0,
y = 0. The validity of the point dipole approximation in this case is not obvious,
however the qualitative behavior should be correct.

12
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2.3. Screening

This section follows chapter 17 of the book by Ashcroft and Mermin [20] and chapter 11.7
of the book by Gross and Marx [21].

2.3.1. Introduction

The electrostatic potential caused by charged impurities (and as a special case also dipoles)
in a metal is screened by its electrons, a process that is mediated by the electron-electron
interactions.

The total potential φ includes the “external” potential φext and an induced potential φind

stemming from the rearrangement of the electrons. Then the “external” potential φext

acting on the electrons in a system is linearly related to the total potential φ according to

φext(r) =

∫

dr′ ε(r− r′)φ(r′). (2.25)

Here, the dielectric function ε(r− r′) was introduced. The electrons are treated as a free
electron gas. By means of the Fourier transform, this relation can be rewritten as

φ(k) =
1
ε(k)

φext(k), (2.26)

where the k-dependent functions are the Fourier transforms of the r-dependent functions.
Now the key quantity is the “dielectric constant” ε(k), which is k-dependent due to inho-
mogeneities of the fields involved.

2.3.2. Thomas-Fermi Screening Theory

The basic assumption of Thomas-Fermi theory is that the dispersion relation of electrons in
solids reads

E(k) =
ħh2

2m
k2 − eφ(r). (2.27)

Due to the very nature of quantum mechanics (namely the Heisenberg uncertainty principle),
this equation can only be understood as describing electrons in forms of wave packets. The
width of these wave packets in real space will be on the length scale of k−1

F , the inverse Fermi
wave vector. The total potential φ(r) should thus not vary too much on this length scale. A
slowly varying total potential is a central requirement for the applicability of Thomas-Fermi
screening.
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In general, the electron density n(r) is given by the expression

n(r) =

∫

d3k
4π3

f (E(k)), (2.28)

with the Fermi function
f (E) =

1

exp
�

E−µ
kB T

�

+ 1
. (2.29)

The role of the Fermi energy at finite temperature T is taken by the chemical potential µ. For
zero potential, φ→ 0, the electron density n(r) is compensated by a positive background
density n0, given by

n0(µ) =

∫

d3k
4π3

1

exp
�

1
kB T

�

ħh2k2

2m −µ
��

+ 1
. (2.30)

In presence of a potential φ, the dispersion relation E(k) that appears in (2.28) is given by
(2.27), which is technically equivalent to setting the chemical potential to µ→ µ+ eφ(r)
in (2.30). Now the induced charge density due to the potential φ is given by

ρind(r) = −e [n0(µ+ eφ(r))− n0(µ)] . (2.31)

The first of these two terms is the electron density, the second the background density.

This result, (2.31), is the foundation of nonlinear Thomas-Fermi theory. However, by
linearizing it one obtains

ρind(r) = −e2∂n0

∂µ
φ(r) =: χφ(r). (2.32)

The dielectric constant ε(k) is given by

ε(k) = 1− 1
ε0k2

χ = 1+
e2

ε0

∂n0

∂µ

1
k2
=: 1+

k2
0

k2
, (2.33)

where the Thomas-Fermi wave vector k0 was defined.

2.3.3. Thomas-Fermi Screening of a Dipole

For the potential of a point charge and its Fourier transform,

φext(r) =
1

4πε0

q
r

, φext(k) =
q
ε0k2

(2.34)
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using (2.26) and (2.33) the total potential becomes

φ(k) =
q

ε0(k2 + k2
0)

. (2.35)

By applying the inverse Fourier transform, the potential of a screened charge comes out as

φ(r) =
1

4πε0

q
r

exp(−k0r). (2.36)

Due to Thomas-Fermi screening, the potential of the point charge now has an additional
exponentially decaying factor.

For a dipole, the potential is given as3 (in analogy to (2.4)) [22]

φdip =
q

4πε0

�

e−k0|r−r+|

|r− r+|
− e−k0|r−r−|

|r− r−|

�

. (2.37)

Again, the point dipole limit can be taken, which leads to [22]

φdip ≈
1

4πε0

p(r− r0)
|r− r0|3

e−k0|r−r0|(1+ k0|r− r0|). (2.38)

2.4. Graphene

Systems of graphite with very few layers are referred to as graphene. In this thesis, only
single-layer graphene will be used and the term graphene always stands for single-layer
graphene. Starting from 10 layers, the properties of the material are very similar to the
bulk properties of graphite, and consequently systems of 10 or more layers are not called
graphene anymore. [23]

While the first theoretical description of graphene dates back to the 1950s [24], then still in
the context of explaining the electronic properties of graphite, the first isolation of graphene
has not been achieved until 2004 [25]. For this ground-breaking work, performed using
mechanical exfoliation from graphite, the Nobel prize 2010 in Physics was awarded to
Andre Geim and Konstantin Novoselov. The predicted and observed structural and electronic
properties are very unique and interesting, a fact that has led to a huge research interest in
this novel material.

This chapter gives a fundamental overview of the structure and key electronic properties of
graphene and graphene nanoribbons (sections 2.4.1, 2.4.2 and 2.4.3), following a review
article [26] but including also some demonstrational calculations performed by myself.
Then, from a more methodological point of view, the concept of supercells and Brillouin

3The assumption that the screening response to a dipole can be described as a superposition of the screening
response to two charges is not obvious, but can be found in literature [22].
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zone folding (section 2.4.4) and consequences of symmetries in graphene and their breaking
(section 2.4.5) are explained. Finally, an overview over different approaches to modify the
properties of graphene is given (section 2.4.6).

2.4.1. Structure

Graphene is a two-dimensional material with a hexagonal unit cell. The two lattice vectors
are4

a1 =
a
2

�

3p
3

�

and a2 =
a
2

�

3
−p3

�

. (2.39)

The carbon-carbon distance is a = 1.42�A. There are two carbon atoms in the unit cell (see
figure 2.6), at

�

0
0

�

and
�

a
0

�

. (2.40)

This structure leads to a honeycomb lattice. Upon periodic replication, the two atoms in
the unit cell give rise to two different sublattices. In unmodified graphene, the two atoms
are equivalent, which is referred to as sublattice symmetry.

The C-C bond distance, 1.42�A, is the experimental value. It is also possible to get the lattice
constant from DFT calculations, either by using geometry optimization algorithms or by
simply looking for the minimum of the total energy. An example of a calculation employing
the latter method is found in figure 2.7 (this calculation was performed in the course of this
thesis with VASP using the PBE functional as described in chapter 3.1). The bond distance
thus obtained is within 10−2�A of the experimental value, which can be considered a good
agreement.

4In VASP, the order of the two lattice vectors has to be reversed to ensure a positive direct product.

a1

a2

b1

b2

K′

K
MΓ

Figure 2.6.: Graphene unit cell (left) and first Brillouin zone (right).
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Figure 2.7.: Optimization of the graphene structure by hand: energy for different values
of the lattice constant a. The solid line is a parabola fit around the minimum
(taking into account the values between a = 1.39�A and a = 1.45�A), leading
to a fit function Etot(a) = 72.138(a− 1.429)2 − 18.379 (for Etot in eV, a in �A).
(The calculation was performed in the course of this thesis as described in
chapter 3.1, but with a plane wave energy cutoff of 273.911 eV and Gaussian
smearing SIGMA= 0.3eV.)
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In reciprocal space, the lattice vectors are given by

b1 =
b
3

�

1p
3

�

b2 =
b
3

�

1
−p3

�

,

with b = 2π/a. The first Brillouin zone is hexagonal as well, the high symmetry points are
the Γ , K and K′ and the M point (see figure 2.6):

Γ =
�

0
0

�

, K =
2π
3a

�

1
1/
p

3

�

, K′ =
2π
3a

�

1
−1/
p

3

�

, M =
1
2
(K+ K′) =

2π
3a

�

1
0

�

. (2.41)

This geometry is the root of several fascinating structural properties of graphene: Measure-
ments of the breaking strength [27] have revealed that it is the strongest material known to
mankind. Before the isolation of graphene, the existence of a flat two-dimensional infinitely
extended crystal at finite temperature was believed to be impossible. [28, 29] However, the
existence of isolated graphene sheets seems to disprove this statement. In an attempt to
reconcile these two points, height fluctuations in graphene were proposed to play a crucial
role in the thermodynamic stability of the material. [30, 31] Alternatively, graphene could
be the manifestation of a metastable structure that is obtained from a three-dimensional
(and thus stable) geometry. [32]

2.4.2. Electronic Structure

The most interesting feature in the band structure (see figure 2.8) is the Dirac cone at the
K point. That means that the π bands at this point disperse linearly around the Fermi
level, forming a cone in the three-dimensional energy landscape in k-space. The only point
where the occupied and unoccupied bands touch is the K (and by time-reversal symmetry5

also the K′) point. In other words, the Fermi surface consists of only six points in the first
Brillouin zone. Graphene is thus neither a metal (the density of states is zero at the Fermi
level) nor a semiconductor (there is no band gap): it is called a semimetal (or a gapless
semiconductor).

The linear dispersion can be described using massless Dirac fermions (using the relativistic
massless Dirac equation). The role of the spin in the Dirac equation is played by a pseudospin
that describes the sublattice structure of the π wavefunction (i. e. bonding or antibonding
π orbital; whether or not the pz orbitals at the different sublattice sites are in phase of out
of phase). The projection of the momentum operator along the pseudospin direction is
called the helicity of the eigenfunctions and basically identical to their chirality (this is true
only for massless particles). [34] One interesting consequence of the relativistic nature of
graphene electrons is the Klein paradox (see also Ref. [35]): Under certain conditions, there
is total transmission (i. e. no backscattering) through a potential barrier (Klein tunneling).

5Time-reversal symmetry implies that the states at k and −k have the same energy. [33]
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Figure 2.8.: Kohn-Sham band structure of pure graphene along the high symmetry direc-
tions (see Brillouin zone in figure 2.6). Red circles mark bands with mainly π
character, green squares mark bands with mainlyσ character. (Own calculation,
for methodology see chapter 3, plane wave energy cutoff: 273.911 eV.)

The lack of backscattering is due to the conservation of pseudospin (because pseudospin
flip processes are rare).

Another interesting effect happens when one tries to confine electrons in graphene: then
the electron-hole symmetry is broken and the so-called Zitterbewegung occurs. This is a
trembling motion of the charge carriers due to the interaction of the positive and negative
energy branches. [36]

Graphene has an extraordinarily high mobility and ballistic transport can be observed up to
very high length scales. An effective mass of the electrons in graphene (not to be confused
with the Dirac quasiparticles which are massless) can be given: while the definition typically
used in semiconductor physics (involving the second derivative of energy with respect
to k) does not hold because the dispersion around the Fermi energy is not parabolic, the
cyclotron mass is still a meaningful quantity. It is given by [37]

m∗ = ħh2k
�

∂E
∂k

�−1

. (2.42)

Let’s now turn to another key property of all solids, the density of states (DOS), see figure 2.9.
As mentioned above, the DOS goes to zero at the Fermi level. Close to the Dirac point, it
depends linearly on the energy. At about 2eV above and below the Fermi level, van Hove
singularities appear.
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Figure 2.9.: Density of states per unit cell of pure graphene. The Fermi and the vacuum
level are marked by vertial lines. The values above the vacuum energy are not
reliable. (Own calculation, for methodology see chapter 3, plane wave energy
cutoff: 273.911eV.)

2.4.3. Graphene Nanoribbons

Graphene strips of finite width are known as graphene nanoribbons (GNR). When cutting
the strip out of a graphene layer, in principle every direction is possible. However, often
two important directions are considered, namely the zigzag (ZZ) and the armchair (AC)
direction, see figure 2.10. Finite size effects lead to finite band gaps, which are bigger for
narrower strips.

For AC-GNR, the dependence of the band gap on the width of the ribbon is more complex:
The width is usually given by the number of dimer lines N (N = 9 in the AC-GNR in
figure 2.10). The behavior of the decrease of the band gap with increasing strip width
is qualitatively different for the three cases where N = 3p (i. e. it is a multiple of three),
N = 3p + 1 and N = 3p + 2, see figure 2.11. [38] Furthermore, typically in ZZ-GNR,
spin-polarization occurs, which leads to magnetic edge states near the Fermi level.

In simple tight binding calculations, the different GNR geometries have a far greater impact
on the electronic structure (to the point where metallic behavior is found). However, by
using more accurate calculations, it can be shown that this is not the case. [39, 40] Also in
experiment, finite band gaps are measured for all orientations. [41, 42]
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Figure 2.10.: Graphene nanoribbons with zigzag (left) and armchair (right) edges.

Figure 2.11.: “Dependence of the band gap on the ribbon width for bare (left panel) and
hydrogen-terminated (right panel) armchair CNRs [=AC-GNR].” [38] The
gray lines to visually accentuate the three different kinds of qualitative be-
havior were added by me. Adapted with permission from V. Barone, O. Hod,
and G. E. Scuseria. “Electronic Structure and Stability of Semiconducting
Graphene Nanoribbons”. Nano Letters 6, 2748 (2006) (figure 2). Copyright
2006 American Chemical Society.
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2.4.4. Supercells and Brillouin Zone Folding

When taking multiple unit cells along the direction of a unit cell vector, a supercell consisting
of several primitive unit cells is formed. The real space unit cell vector increases by an
integer factor f , the reciprocal unit cell vector now shrinks by a factor 1/ f . Naturally, the
size of the first Brillouin zone (BZ) reduces accordingly. The bands are back-folded from
the original BZ to the new BZ, thus increasing the number of bands there. Obviously this
also leads to more band crossings than before.

For example, if one multiplies the unit cell by two in each direction (i.e. one constructs a
2× 2 supercell), the BZ shrinks by a factor of two in each direction. The area of the new
BZ is one quarter of the area of the original BZ. However, the bands of the larger BZ are
folded back into the smaller BZ, multiplying the number of occupied bands by four. The
resulting band structure is a superposition of the original and the back-folded bands (see
figure 2.12).

Apart from going from one hexagonal unit cell to another, bigger hexagonal unit cell, it is
also possible to build a rectangular supercell (see figure 2.13). It contains four atoms and its
area is twice the area of the hexagonal primitive unit cell. For simplicity, the a1-direction is
called x-direction and the a2-direction is called y-direction. Now also the first Brillouin
zone is rectangular, with the high symmetry points X and Y. Due to Brillouin zone folding,
the K point of the hexagonal system is at 2/3 of the way from Γ to Y in the rectangular
system (see figure 2.14).
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Figure 2.12.: Left: Kohn-Sham band structure (line from Γ to K) of a 2× 2 graphene unit
cell (gray lines), on top the corresponding lines of a 1× 1 unit cell (Γ to K, M̃
to K and M̃ to K̃). (Own calculation, for methodology see chapter 3, plane
wave energy cutoff: 273.911 eV.) Right: 1× 1 and 2× 2 Brillouin zones. The
three lines (red, green, blue) in the smaller Brillouin zone are all equivalent
to the Γ -K line (by symmetry). If shifted by the reciprocal lattice vector b1,
(this is a reciprocal lattice vector of the 2× 2 unit cell, i. e. it corresponds
to the smaller BZ), the green line becomes equivalent to M̃-K and the blue
line becomes equivalent to M̃-K̃. This means that the lines M̃-K and M̃-K̃ get
back-folded onto Γ -K in the bigger unit cell (smaller BZ).

1 2

3 4

a1

a2

Γ X

Y

Figure 2.13.: Rectangular unit cell of graphene (left), containing four atoms. The corre-
sponding first Brillouin zone (right).
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K′

KK

K

Γ
X

Y

Figure 2.14.: First Brillouin zone of the primitive hexagonal graphene system (black line)
and of the rectangular system (red line). Inside the red rectangle, there
are two lines: a cyan line going from Γ to Y and a magenta line from Γ
to X. We now want to investigate which lines of the big hexagonal BZ are
back-folded onto these two lines. Two points (or lines) in k-space that are
connected with a reciprocal lattice vector (i. e. hb1 + kb2 with integers h, k)
are equivalent. We thus shift the cyan and magenta line from the rectangular
BZ along different reciprocal lattice vectors to get all the equivalent lines in
the BZ of the hexagonal system. These are the cyan and magenta lines outside
the red rectangle. They mark the paths through k-space that get back-folded
onto the original cyan and magenta line in the rectangular BZ. For instance,
going from Γ to Y is equivalent to going 3/4 of the way from Γ to K′ and 1/4
of the way from K to Γ and from M to K. The orange arrow (the vector −b1)
shows that the K point gets backfolded onto 2/3 of the way from Γ to Y.
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2.4. Graphene

2.4.5. Symmetries

This section explains the symmetries of graphene following a paper by Malterre et al. [43]
(first paragraph) and then describes own calculations that demonstrate the consequences
of symmetry breaking on the band structure.

Graphene belongs to the plane symmetry group p6mm (see figure 2.15). This means that
around the K point there is a 3-fold rotational axis with a mirror plane associated to it
(symmetry C3v). This symmetry leads to a degeneracy of the bands at the K point, i. e. there
is no band gap possible. A breaking of this symmetry, e. g. by asserting a difference between
the two lattice sites as it is found in hexagonal boron nitride (hBN), lowers the symmetry
at the K point to C3. Thus, the bands are not degenerate any more, a band gap can form.

An easy way of examining how a certain change of symmetry affects the band structure is by
a simple tight binding calculation (taking into account only nearest-neighbor hopping). The
asymmetry is then created by assigning different on-site energies to the different orbitals
(atomic sites). This was done using the freely available tight binding code PythTB6 [45].
A rectangular graphene unit cell was used, see figure 2.13. The hopping parameter t
describes nearest-neighbor hopping (equal irrespective of the sites involved in the hopping
process). The different sites can have different on-site energies εi. For the present study,
the magnitude of all the εi was given by δ = 0.1t. In figure 2.16 you can see the result for
three different symmetries regarding the εi: At first (figure 2.16a), all sites are equivalent,
the bands are degenerate at the K point and at X and Y. By introducing an asymmetry
between the A and B sublattices (figure 2.16b), a gap opens at the K point (as described
above). An asymmetry regarding the atoms at y = 0 in the rectangular unit cell and the
atoms at y = a2/2 leads to a splitting of the energies at X and Y (figure 2.16c).

6This code, written by the David Vanderbilt group at Rutgers University, is a Python program that allows the
calculation of band structures and Berry phases based on the tight binding approach. It can be downloaded
from the website http://www.physics.rutgers.edu/pythtb/index.html. Here, version 1.6.2
was used.

Figure 2.15.: Symmetry elements of the planar space group p6mm. Source: [44]
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Figure 2.16.: Tight binding calculation of graphene taking into account only the nearest
neighbors and an on-site energy δ = 0.1t. For the left band structure (a), all
the εi = 0. For the band structure in the middle (b), we have ε1 = δ, ε2 = −δ,
ε3 = δ, ε4 = −δ (see unit cell above the band structure), i.e. the A sublattice
has a positive on-site energy, the B sublattice has a negative on-site energy.
The right band structure (c) has ε1 = ε2 = δ and ε3 = ε4 = −δ. The K point
of the hexagonal Brillouin zone of graphene can be found by going 2/3 of
the way from Γ to Y.

26



2.4. Graphene

2.4.6. Modified Graphene

Since its discovery, many attempts have been made to influence and tune the properties of
graphene. Most of the literature found today consists of proposed ways of graphene modi-
fications backed by ab-initio calculations, although also some experimental investigations
exist.

One of the main goals is building integrated circuits out of graphene. This, however, is
difficult due to the lack of a band gap. [46] Therefore, many of the proposed modifications
of graphene discussed below aim at opening a band gap in graphene.

A means already discussed above is confinement of the electrons by construction of graphene
nanoribbons. This gives rise to magnetic edge states [47, 48] and can open a band gap [42,
49]. It has been proposed to functionalize the edges of GNRs using different chemical
groups [50–52], leading for example to increased half-metallicity [53], other magnetic
phenomena or tunable band gaps [52].

Applying stress to graphene leads to a distortion of the lattice, which changes electronic
properties like the band gap. [54, 55]

Chemical doping is widely used, for instance in semiconductors, to influence key electronic
properties of materials. Naturally, it can also be successfully applied to graphene. For
example, substitutional doping with Al, Si, P and S is expected to open a gap [56].

The adsorption of different molecules can also have doping effects (e. g. CrO3 [57] should
lead to a doping induced band gap opening and F4TCNQ [58] leads to p-type doping).
Also single atoms can adsorb on graphene: To name just a few examples, Bi, Sb and Au
were experimentally shown to lead to p-type doping [59] and 3d transition metal atoms
are expected to change the magnetic properties of graphene [60]. A substantial change of
the electronic structure of graphene can also be achieved by covalent functionalization of
graphene using aryl groups. [61]

Using different substrates supporting the graphene layer is another promising way to open a
band gap due to defect formation [62] or the formation of so-called moiré superlattices. [63]

Sheets of graphene mixed with hexagonal boron nitride (hBN), forming a material with
graphene and hBN domains, also appears interesting from a band-gap engineering point
of view. [64, 65] Also applications of this approach for devices have been proposed. [6]
A different way of combining graphene and other two-dimensional materials is van der
Waals heterostructure stacking [66], where layers of different materials are put onto each
other. [67] Due to the vast number of possible combinations, materials with many different
properties seem possible.

The application of an external electric field allows field-effect tuning especially in multilayer
graphene. [68, 69] Also field-effect doping is proposed to lead to potential applications of
graphene. [25, 70]

Of course, this short overview cannot summarize all the findings of the more than 30000
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2. Theoretical Foundations

published papers7 on graphene in the last ten years but should rather give an impres-
sion about the diversity of approaches for evolving the development of graphene-based
materials.

7according to Thomson Reuters Web of Science, September 16, 2014
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3. Methodology

This chapter explains how the calculations were done and analyzed.

Nearly all of the data analysis was performed using the Python packages SciPy [71] and
NumPy [72]. Nearly all of the plots were produced with the Matplotlib package [73].

3.1. Single Point Calculations

The quantum mechanical simulations were performed using density functional theory (DFT,
see chapter 2.1) with the Vienna Ab initio Simulation Package (VASP) [74–77] code in
the 5.3.3 version with extensions by Tomáš Bučko1. The Perdew-Burke-Ernzerhof (PBE)
functional [11, 78] was employed. The atomic potentials were treated using the projector
augmented wave (PAW) method [79], as implemented in VASP [80], using the “soft”
pseudopotentials unless noted otherwise (for details see table 3.1). If no different value
is indicated, a plane wave cutoff energy, which determines the size of the basis set, of
279.692 eV (= 20.557 Ry) was chosen in accordance with the value recommended by VASP.

For self-consistent calculations, a Γ -centered Monkhorst-Pack [81] k-point grid was used.
For a simple graphene unit cell, the convergence of the total energy with respect to the

1For some members of our group, these extensions are necessary to get correct results. To stay consistent
within our group, also here this modified version of VASP was used, although the modifications should
have no impact on the results presented here.

Table 3.1.: Titles (as found in the POTCAR files) of the used pseudopotentials for the differ-
ent atoms. The maximum recommended plane wave energy cutoff ENMAX is
given as well.

Element Title of used potential ENMAX/eV

H PAW_PBE H_s 15May2010 200.000
Be PAW_PBE Be 06Sep2000 247.543
B PAW_PBE B_s 22Jan2003 269.245
C PAW_PBE C_s 06Sep2000 273.911
N PAW_PBE N_s 07Sep2000 279.692
O PAW_PBE O_s 07Sep2000 282.853
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3. Methodology

number of k-points was tested (see chapter 3.4); a 21×21×1 grid was found to be sufficient.
For larger supercells, the number of k-points was scaled down accordingly.

For the occupation scheme, a smearing method (INCAR-tag ISMEAR) has to be chosen.
While the VASP manual [82] recommends the tetrahedron method with Blöchl corrections,
for supercells this leads to noise in the density of states due to the large number of band
crossings. Consequently, the Gaussian smearing method with a width of SIGMA= 0.01 eV
(for most of the calculations) was applied. This has the advantage that the resulting density
of states can easily be “resmeared” for visualization purposes by convolving it with another,
broader Gaussian function (with a width SIGMAresmearing). If a width of SIGMAdesired is
wanted, the following SIGMAresmearing has to be used (where SIGMA is the value used in the
INCAR file):

SIGMAresmearing =
q

SIGMA2
desired − SIGMA2. (3.1)

The standard deviationσ used in the usual definition of the Gaussian normal distributionN

N (x; x0,σ) =
1p

2πσ2
exp

�

−(x − x0)2

2σ2

�

(3.2)

is related to the VASP-SIGMA by
SIGMA=

p
2σ. (3.3)

In most DOS-plots shown in this thesis, the density of states was calculated with SIGMA=
0.01eV and then plotted after “resmearing” it with SIGMAdesired = 0.3eV.

As VASP is a three-dimensionally periodic code, stricty two-dimensionally periodic systems
cannot be simulated. However, this can be circumvented by introducing a large vacuum
region in the z-direction, with a sufficiently large lattice vector length in that direction so
that the periodic replicas do not interact any more2. In the present case, 20�A turned out to
be adequate (see figure 3.3). This procedure is called the slab approach.

If there is a dipole moment pointing towards the z-direction in such a slab, this leads
to a shift of the vacuum level (see chapter 2.2.3). This is not compatible with periodic
boundary conditions, so by default such a shift is compensated by a homogeneous electric
field across the whole unit cell. Obviously, this can cause artefacts. Thus, a better strategy
is to introduce a compensating dipole jump in the vacuum region. This has to be done
self-consistently until the dipole strength of the compensation dipole layer is converged3.

A set of typically used input files is shown in appendix A.

2While chemical interactions are only acting on a short range, the electrostatic fields of polar elements in
the layers still have effects on a longer range. Therefore the convergence of the considered quantities
with respect to the vacuum gap used has to be investigated. This will be done in chapter 3.4.

3Reaching convergence with dipole correction is always a bit tricky. In the present calculations (where
dipole corrections were required, which was only the case for molecules adsorbed on graphene), it turned
out to be necessary to use a vacuum gap of 40�A instead of 20�A to achieve convergence.
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3.2. Geometry Optimizations

Due to the use of the Born-Oppenheimer approximation, single point DFT calculations
work with fixed ion positions. However, it is possible to move the atoms around (according
to a geometry optimization algorithm) and perform single point calculations for each
configuration until a convergence criterion is met. Typically, this criterion will be that the
maximum force acting on the ions falls below a certain threshold; alternatively, the total
energy can be minimized.

While VASP comes with several ionic relaxation algorithms, the usage of Cartesian coor-
dinates is not always ideal: sometimes, large movements of parts of the geometry are
required, which can be more accurately described by internal coordinates (such as bond
lengths and angles). There is a tool called GADGET [83] built around VASP that allows
geometry optimizations in internal coordinates. Furthermore, certain constrictions (like
constant bond lengths, angles, lattice vectors, etc.) can be enforced. Usually, the geometry
was optimized with GADGET until the maximum gradient was below 0.01 eV/�A. A template
for a GADGET input file can be found in appendix A.3.

For molecules adsorbed on graphene, the positions of the carbon atoms in the graphene
sheet were held fixed while the atoms belonging to the molecule were allowed to move.4

Unfortunately, structure relaxations where the substrate molecules are allowed to move
are computationally not feasible with our present resources. As van der Waals interactions
typically play a significant role when it comes to adsorption, they have to be somehow
included in the calculation. The van der Waals method by Tkatchenko and Scheffler (vdW-
TS) [84] successfully and computationally inexpensively corrects the total energy after the
SCF cycle. It was, therefore, used (in the implementation included in VASP [85]) for the
ionic relaxations of molecules on graphene.5

To obtain reasonable starting guesses for the molecule geometries, they were pre-optimized
using the Gaussian code [86] with the PBEPBE functional and the 6-311G(d,p) basis set.
Again, a sample input file can be found in appendix A.4.

3.3. BN-substituted graphene

The system that a large portion of this thesis focuses on is a graphene sheet where selected
neigboring carbon atoms are replaced by pairs of boron and nitrogen atoms. Starting
from the rectangular unit cell of graphene (figure 2.13), a rectangular N × 1 supercell is
constructed. Then two neighboring carbon atoms are replaced by a pair of a boron and a
nitrogen atom. Each of the BN pairs forms a dipole, where the boron atom is the negative
and the nitrogen atom is the positive end6. By replacing another pair of carbon atoms by an

4This is done using Selective Dynamics in the POSCAR file.
5This is achieved using the IVDW=2 tag in the INCAR file.
6This is not true for BN bonds in general, but for BN in a graphene-like conjugated structure.
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Figure 3.1.: BN pair-substituted graphene: the green rectangle marks the the unit cell
(i. e. due to the periodic boundary conditions the BN pairs form an infinitely
extended line along the y-direction). The BN pairs form dipoles as indicated
by the red arrow. The size of the unit cell in x-direction is determined by
the number of C atoms between the two N atoms (14 in this particular sys-
tem, numbered atoms) and the number of C atoms between the two B atoms
(counted analogously, also 14 here).

oppositely oriented BN pair, a strip of graphene in-between these dipole lines is formed7.

An example for one of these systems can be found in figure 3.1. This system has two
oppositely oriented BN pairs per unit cell and a certain number of C atoms in between. The
number n of C atoms between the N atoms does not necessarily have to be the same as the
number b of C atoms between the B atoms. When describing a system, the short notation
“BN-nC-NB-bC” is used. The symmetric system arranged in figure 3.1 would then be called
BN-14C-NB-14C.

The unit cell of a BN-nC-NB-bC system is based on is a ( n+b
4 + 1)× 1 rectangular graphene

supercell.

For large system sizes, a full geometry optimization is not feasible. Therefore, a full
relaxation in the x y-plane was performed (with GADGET) for a BN-22C-NB-22C system.
Then, carbon atoms were added (or removed) in the middle between the BN pairs with a
C-C distance of 1.42�A until the desired number of C atoms was reached.8

All the dipoles of the individual BN pairs in the infinitely (due to the periodic boundary
conditions) extended line give rise to a collective electrostatic effect as described in chap-
ter 2.2.2. Of course, the dipoles are depolarizing each other, as discussed in chapter 2.2.5.
Therefore only the effective dipole moment will be considered here.

3.4. k-Point and Vacuum Gap Convergence

Choosing a sufficiently large number of k-points is crucial for the validity of band structure
results. For a two-dimensional material like graphene using the slab approach, the unit
cell is very large in z-direction with only vacuum. Any interaction in the z-direction is

7This has the advantage that the unit cell has no net dipole moment, which might lead to problems due to
the three-dimensionally periodic boundary conditions.

8The reason why even for smaller systems no separate relaxation was performed is that if you have a
BN-nC-BN-bC strip where n< 22 and b > 22, one cannot be consistent otherwise.
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Figure 3.2.: Total energy of graphene as a function of the number of k-points in b1 and
b2-direction (i. e. for a N × N × 1 k-point grid). (Plane wave energy cutoff:
273.911 eV.)

not wanted and therefore only one k-point should be used in the b3-direction. However,
in the b1 and b2-directions, tests have to be performed to ensure the convergence of the
calculation with respect to the k-point grid. This is done by calculating the total energy for
N × N × 1 k-point grids with different numbers of N and comparing these energies (see
figure 3.2).

It can be seen that the total energy is well converged at 20 k-points per direction already.
In order to include the K point in the calculation (which obviously is advisable because
most of the interesting physics of graphene happens there), the number of k-points per
direction has to be a multiple of three. Thus 21× 21× 1 k-points is a good choice.

For a nice sampling of the DOS, more k-points can be necessary. In principle, there are three
possibilities: doing the whole self-consistent calculation with more k-points (which usually
is computationally expensive), doing a self-consistent calculation first with the minimal
converged number of k-points and then a non self-consisting calculation with more k-points
or resmearing the DOS with a rather high σ (which is the least accurate method). For pure
graphene, as a compromise, the self-consistent calculation was performed with 42× 42× 1
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k-points (owing to the small system size this could be done reasonably fast) followed by
resmearing the DOS.

When using the slab approach, the size c of the unit cell in z-direction is a freely choosable
parameter. However, too small values of c lead to an interaction of the slab with its periodic
replicas, while too high values of c lead to unnecessarily long calculations. Figure 3.3
shows the electron potential energy at the core of the C atoms9 in a BN-pair substituted
graphene system. The x-dependence of Epot shows the typical shape stemming from the
dipole lines (which will be thoroughly discussed in chapter 4.2). However, what matters
here is that the data points for a vacuum gap of 20�A, 40�A and 80�A lie on top of each other,
which means that 20�A of vacuum are sufficient.

9This average Epot at the core of the ions is evaluated in VASP by integrating the local potential in a sphere
around the ion position. In chapter 3.5, this will be explained and examined further.
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Figure 3.3.: Electron potential energy at the core of the carbon atoms in a BN-14C-NB-14C
system relative to its mean value (for a discussion of this system and the shape
of the potential see chapter 4). The green points are the values for a vacuum
gap of 80�A, the blue points for 40�A and the red points for 20�A. The position
of the dipoles is marked with gray lines. The maximum difference of a core
potential is 5 meV between the 20�A and 80�A case.
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3.5. Avoiding Artefacts in the Local Potential

The electron potential energy Epot plays a crucial role in the DFT self-consistent loop and is
thus calculated in every simulation. VASP can then write out the local electron potential
energy on a real space grid in the file LOCPOT. The LVHAR-tag should be set to true in the
INCAR file to just write the ionic and Hartree contributions, but not the exchange-correlation
contributions10, of Epot.

During the calculation, fast Fourier transforms (FFT) are performed on grids. Obviously,
the grid spacing (i. e. the number of grid points per unit cell) has to be carefully chosen to
avoid errors. VASP offers the PREC tag to easily switch between different levels of accuracy.
While for most calculations the “normal” precision should be sufficient, the “accurate” value
should be chosen if one is interested in the local potential. Otherwise, wrap-around (i. e.
aliasing) errors are expected (see figure 3.4).

However, sometimes this is not sufficient and by looking at Epot one can see that there are
artefacts. While it is in principle possible to increase the number of FFT grid points to
absurdly high values, this is not economical. Moreover, the default maximum number of
grid points per dimension is 4096 – this value can be changed in the VASP source code, but
this is not recommended.

In the case of a supercell where there is a periodicity (at least as a good approximation)
with a smaller lattice constant asmall than the nominal lattice constant a, the number of FFT
grid points should be chosen to be an integer multiple of a/asmall to get a nicely looking
Epot (as shown in figure 3.4). Especially for optimized geometries, this sub-periodicity does
often not exist.

When one is not interested in the heavily oscillating Epot, but it is sufficient to get the
value of Epot (up to an arbitrary constant) at the position of each atom, there are two
additional possibilites that give nice results not suffering from aliasing problems. Firstly,
VASP offers values for the average electrostatic potential at each ion, i. e. Epot integrated
over a sphere around the ion and reports it in the OUTCAR file. Secondly, the initial state
approximation [87] can be used to calculate the 1s core levels of the individual atoms
(this corresponds to X-ray photoelectron spectroscopy (XPS) measurements) using the
ICORELEVEL tag in VASP. Then, for atoms of the same element the relative shift of the core
level can be attributed to chemical and electrostatic effects. A comparison of the different
methods is found in figure 3.5.

10These contributions cause the potential to look noisy and should thus not be plotted along with the other
contributions of the potential.

36



3.5. Avoiding Artefacts in the Local Potential

50 0 50 100
x/Å

11.60

11.55

11.50

11.45

11.40

11.35

11.30

(E
po

t
E v

ac
) 

/ 
e
V

Figure 3.4.: Electron potential energy of a BN-14C-NB-182C system (geometry not opti-
mized, all bond lengths set to 1.42�A) in the graphene plane, averaged along the
y-direction. The gray curve is Epot calculated by making use of the sublattice
periodicity (this is only possible for non-relaxed systems). The black curve
is Epot for the same system, but with PREC=Normal, showing strong aliasing
effects. Both curves are aligned at the vacuum level.
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Figure 3.5.: Electron potential energy for a BN-98C-NB-98C system (see chapter 4 for a
detailed description of these kinds of systems) calculated with normal (left)
and accurate (right) precision. The data found in the LOCPOT file was plane-
averaged in the yz-direction (blue line). The green line is the smooth average
electrostatic potential at each ion and the red dashed line is the C 1s core
level (in both plots). The tree different lines were aligned so that the value at
x = 0�A is identical and at 0 eV.
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3.6. Fitting the Local Potential

The local electron potential energy Epot of a BN-pair substituted graphene sheet, averaged
along the yz-plane to be only x-dependent, should have the form of the Epot of an infinite
line of dipoles. Consider a system that has a dipole line at x = 0 and one at x = x0, where
x0 is much lower than the lattice constant a (in x-direction). Then the system of two
dipole lines is reasonably well decoupled from the next periodic replica in x-direction.
The non-periodic model system for describing this situation consists, thus, of four dipole
lines, one at x = 0, one at x = x0, one at x = a and one at x = a+ x0. The latter two are
necessary because the right end of the unit cell does feel hardly anything from the first two
dipole lines, but is mainly influenced by their periodic replica. Had the unit cell boundary
been chosen so that the influence of the dipole lines on the unit cell boundary is negligible,
two dipole lines would have sufficed.

Now the smooth, yz-plane-averaged, Epot obtained from the quantum mechanical calcu-
lation (typically obtained by the XPS method explained in section 3.5) in the whole unit
cell can be fitted to an electrostatic model of four dipole lines. The position of each of the
four dipole lines was chosen to be the mean of the x-coordinates of the B and N atoms
constituting the dipole (from the quantum mechanical calculation). The model Epot is thus
given by (using the result from (2.9))

Emodel
pot (x) =

1
4πε0

∑

d

∞
∑

i=−∞

pd(x − xd)
(x − xd)2 + (−i b)2)3/2

+ V0. (3.4)

The sum over d is the sum of the four dipole lines, positioned at xd with a dipole moment
pd . In order to fit to the quantum mechanical values, a physically irrelevant constant
background V0 has to be added. The absolut values of the dipole moments should be equal,
so pd = fd p, where fd = ±1 is the correct sign for the dth dipole line. Then one obtains

Emodel
pot (x) = p

1
4πε0

∑

d

∞
∑

i=−∞

fd(x − xd)
(x − xd)2 + (−i b)2)3/2

+ V0. (3.5)

This model definition includes the two fitting parameters p and V0 that can be determined
using a least-squares fit of the data from the quantum mechanical calculation.

It turns out that an exponential ansatz is better suited for describing the potential. This was
chosen in accordance to the result obtained for Thomas-Fermi screening (see section 2.3)
although the central requirements11 are not fulfilled. While the Thomas-Fermi model for
screening is therefore a very crude approximation, the exponential ansatz it motivates is
successful for fitting the quantum-mechanical results. To include this additional screening,

11These are a parabolic density of states, a slowly varying total potential and a three-dimensional system.
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the model has to be changed, according to (2.38). One then obtains

Emodel,TF
pot (x) = p

1
4πε0

∑

d

∞
∑

i=−∞

fd(x − xd)
(x − xd)2 + (−i b)2)3/2

e−k0|x−xd |(1+ k0|x − xd |) + V0. (3.6)

Now the fitting parameters are p, V0 and the “Thomas-Fermi screening constant” k0.

A program to calculate the potential of a dipole line is found in appendix B.

3.7. Calculating the Shift of a PDOS

One of the main effects to be investigated in this thesis is the energy shift of the projected
density of states (PDOS) d(E) with respect to the DOS of pure graphene dG(E). Now, we
want to find a value for the energy shift ∆E so that

d(E +∆E) = dG(E). (3.7)

This equation will never hold perfectly because d(E) is not only a shifted graphene DOS,
but the result of an entirely different calculation (involving a chemically different system).
We take the values of the pure graphene DOS between −10eV and 5eV (there are 2143
points in that interval with the parameters chosen as in appendix A) as data to fit to. Then
we linearly interpolate between the values of d(E) to be able to evaluate d(E +∆E) for
any ∆E. Using a least squares fit, the quantity

χ2 =
∑

i

(dG(Ei)− d(Ei +∆E))2 (3.8)

is minimized12.

Figure 3.6 shows an example of how well the shifted PDOS then agrees with the DOS of
pure graphene.

12The least squares fit was performed using the function scipy.optimize.curve_fit, taken from the
Scipy Python library [71]. The energy shift ∆E was taken as the fit parameter.
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3.7. Calculating the Shift of a PDOS
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Figure 3.6.: Average PDOS of the C atoms between the BN and NB pairs in a BN-14C-NB-
182C system (green line, for a detailed description of this system see chapter 4)
compared to the DOS per atom of graphene (black line). The red line shows
the same data as the green line, but shifted in energy by∆E = 0.78 eV towards
higher energy, so that it lies on top of the pure graphene DOS. The value of the
shift has been determined by a least squares fit. It is thus possible to conclude
that the PDOS of the C atoms in the BN-substituted system is shifted by 0.78 eV
towards lower energies.
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3. Methodology

3.8. Bandstructure and Localization

Using the resulting charge density of a self-consistent DFT calculation, the Kohn-Sham (KS)
energies at certain, additional k-points typically in the first Brillouin zone are calculated
non-selfconsistenly13. When these KS energies are plotted along k-paths (often in high
symmetry directions), the typical band structure plots are obtained. While, strictly speaking,
this is not correct, because the KS energies are fundamentally different from what is usually
known as band structure, it is common to use them as an approximation (in zeroth order
of the electron-electron interaction [88]) to the real band structure.

Furthermore, VASP has no way of detecting which KS energies at which k-points belong
to the same band. According to the VASP definition, at every k-point the KS energies are
sorted and then the lowest is called band number one, the next band number two, etc.

It is possible to calculate the electron density (as a function of the position in the unit cell)
separately for each k-point and band14. This can also be interpreted as the local density of
states (LDOS) for this k-point and band. When this k-point resolved band-projected LDOS
is then integrated over different spatial regions, the localization of the state represented by
this point in the band structure can be examined.

3.9. Charge Rearrangements

It is important to calculate how the distribution of the electrons changes when a bond15

forms between the substrate (graphene sheet) and an adsorbed molecule. These charge
rearrangements give rise to a bond dipole in z-direction which, due to the periodicity of
the system, leads to a change of the vacuum energy (as for every two-dimensional array of
dipoles, see chapter 2.2.3).

The following discussion follows Ref. [89]. In order to calculate the charge rearrangements,
three calculations have to be performed: the whole system (substrate and molecule), the
substrate alone and the molecule alone (but in the same geometry and position that it
would have in the whole system). Then the charge rearrangements are

∆ρ(z) = ρ(z)− (ρgraphene(z) +ρmolecule(z)), (3.9)

13This is done by adding ten to the value of the ICHARG tag in the INCAR file – typically ICHARG=11 will be
used. The resulting CHGCAR file of a self-consistent run is needed as input.

14With the WAVECAR of a non-selfconsistent calculation of the band structure, calculate the partial charge
density PARCHG using LPARD=.TRUE., specify the numbers of the bands of interest with IBAND= <band-
numbers>, turn on separate evaluation for these bands using LSEPB=.TRUE., turn on separate evaluation
of k-points with LSEPK=.TRUE. and specify certain k-points with KPUSE= <k-point numbers> (or combine
just certain tags, as needed) in the INCAR file.

15Here, bond is to be understood in the general sense of binding behavior and adsorption. The presence of a
chemical bond is not implied.
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3.9. Charge Rearrangements

where the z-dependent x y-plane-integrated values for the charge densities of the whole
system (graphene and adsorbed molecule) ρ, of the graphene layer alone ρgraphene and the
molecule alone ρmolecule are used. For each value of z, the quantity Q(z) gives the amount
of charge transferred from the region below z to the region above z. It can be obtained by
the integral

Q(z) =

∫ z

−∞
dζ∆ρ(ζ). (3.10)

Negative values of Q(z) mean that electrons flow upwards while positive values mean that
electrons flow downwards. The corresponding electron potential energy Ebond due to the
bond dipole can be calculated by solving the Poisson equation

d2

dz2
Ebond(z) =

e
ε0
∆ρ. (3.11)

In practise and in the present (VASP) units we get

Ebond(z[�A])[eV] = −4π · 27.11652

A[�A2]
0.5291772108

∫ z

−∞
dζQ(ζ)[−e]. (3.12)

Furthermore, this bond dipole potential can be calculated using the electron potential
energy Φ for the different parts of the system:

Ebond(z) = Φ(z)− (Φgraphene(z) +Φmolecule(z)) + C . (3.13)

A physically irrelevant constant shift C is included to ensure the equality of the two values
of Epot obtained by (3.12) and (3.13), because the electron potential energies of the three
systems are ususally not aligned to a common level.

The three-dimensional charge rearrangements are calculated in analogy to (3.9) as

∆ρ(x , y, z) = ρ(x , y, z)− (ρgraphene(x , y, z) +ρmolecule(x , y, z)). (3.14)
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4. Graphene with BN Pairs

As a proof of principle for modifying graphene with collective electrostatic effects stemming
from dipole lines, graphene with substitutional pairs of boron and nitrogen atoms (BN pairs)
is examined. The geometry of these systems is introduced in chapter 3.3. The results of
a geometry optimization are presented in section 4.1. Then the consequences of the
introduction of dipole lines in the form of BN pairs are investigated. These comprise:

• change of the electron potential energy (section 4.2)

• shift of the energy of electronic states in graphene and its manifestation in the atom-
projected and local DOS as well as the localization of the occupied and unoccupied
states in different spatial regions (section 4.3)

• changes in the band structure and k-point- and band-resolved localization of the
states (section 4.4).

Finally, different ways of incorporating BN pairs in graphene are tested and the influence
on the properties are explained (section 4.5).

4.1. Geometry Optimization

The geometry used for BN-substituted graphene is explained in chapter 3.3.

When performing a structure relaxation (where the atoms can move in the x y-plane and
the lengths of the unit cell vectors in x- and y-direction are allowed to change), it turns
out that there is a slight distortion of the lattice due to the BN pairs. The bond between
the boron and the nitrogen atom is longer than the C-C bond in graphene, measuring
about 1.48�A (see figure 4.1). The surrounding C-C bond lengths have values different
from pure graphene, however far from the BN pairs they tend to a stable value (the pure
graphene value). This also justifies the approach to construct larger systems from smaller,
relaxed structures by adding extra carbon atoms with the pure graphene bond distance (as
explained in chapter 3.3).
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4. Graphene with BN Pairs
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Figure 4.1.: Bond lengths (lower plot) of the different bonds in a BN-14C-NB-14C system
(upper plot). In the lower plot, bonds that are pointing in the x-direction are
indicated using blue circles, bonds pointing at a 60 degree angle using green
squares. The atom positions are marked as vertical gray lines. In the upper plot,
C atoms are shown as black circles, B atoms as yellow squares and N atoms as
blue squares. Geometry as optimized by GADGET.
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4.2. Potential

4.2. Potential

The dipole lines formed by the BN pairs change the electrostatic potential in their vicinity.
This potential acts on the electrons, changing their local potential energy Epot as a function
of the location with respect to the dipole line. The central quantity is the shift of Epot due
to the presence of the dipole lines.

We will now consider the electron potential energy, averaged across the yz-plane, as a
function of x , which can be found in figure 4.2. It is strongly oscillating because very near
the ions, the electron potential energy is significantly lowered. However, the effects of the
dipole lines can clearly be seen. The potential distribution in the y-direction can be seen
from the two-dimensional plot in figure 4.2.

For a more quantitative and detailed analysis, the heavy oscillations are counterproductive.
Thus, the potential at the position of the individual atoms is probed by calculating the
energy of the C 1s state (as described in section 3.5). The resulting data can be seen in
figure 4.3. An atom not affected by the potential modification of the dipoles would be at
an energy zero in that plot. The system consists of two oppositely oriented dipole lines per
unit cell, with a narrow strip of graphene in-between. Now the electron potential energy
for the atoms in this strip is consistently shifted from zero, by e. g. at least 0.5 eV for a strip
width of 14 C atoms.

The data can be fitted by a model function for the electrostatic potential of a dipole line,
as explained in section 3.6. Without a Thomas-Fermi-like exponential ansatz to take into
account screening, the fit parameters are p = 0.26e�A and V0 = 0.01eV. With screening,
they are p = 0.31e�A, k0 = 0.15�A−1 and V0 = 0.01eV. Note that the dipole strength p is
the resulting dipole moment of a BN pair embedded in graphene feeling the field of all the
other BN pairs. It is, thus, an effective dipole moment. The curves resulting from the fits
are presented in figure 4.3.

The model without considering screening fails to represent the data, especially in-between
the two oppositely oriented dipole lines. As there are many data points far away from the
dipoles where the modification of Epot is nearly zero, this zero-level is well described by
both fits. However, the strip region is far better represented by the model that accounts
for Thomas-Fermi screening. In conclusion, a screening mechanism in addition to a linear
screening (which is already accounted for by the effective dipole moment) plays an impor-
tant role in graphene and can be well described using a model inspired by Thomas-Fermi
theory.

The fitted value of the Thomas-Fermi screening constant k0 allows an estimate for the
characteristic length scale on which the potential drops when going away from a dipole
line. This screening length is 1/k0 = 6.75�A. Therefore, for systems with a large strip width,
the effect will eventually vanish. The investigated systems, thus, have to have very narrow
strip widths, because the decrease of the potential modification does not follow a 1/r, but
rather an exponential behavior.
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4. Graphene with BN Pairs
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Figure 4.2.: Top: Electron potential energy averaged across the yz-plane of a BN-14C-NB-
182C system. Bottom: Electron potential energy in the x y-plane at 1.07�A
(because Epot is calculated on a finite grid by VASP, no “round” value could be
used here without manually modifying the grid) above the graphene plane
(in z-direction). The arrows mark the x-positions of the B, N, N and B atoms
(from left to right).
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4.2. Potential
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Figure 4.3.: Energy E1s of the C 1s core level states (i. e. a probe for the electron potential
energy) with respect to the C 1s core level electron potential energy E0

1s of a
C atom far from the dipole lines in a BN-14C-NB-182C system (blue circles).
The energies are plotted as a function of the x-coordinate of the atom they
belong to. The black line is the fit without Thomas-Fermi screening according
to the model function (3.5), the red line is the fit with Thomas-Fermi screening
according to (3.6). The position of the dipole lines in the unit cell are at
x = 0.74�A and at x = 17.70�A.
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4. Graphene with BN Pairs

When comparing the electron potential energy of the valence electrons, as shown in
figure 4.2, with the C 1s core level shifts (figure 4.3), it is obvious that both the valence
and the core states are equally affected by the modifications. This, together with the fact
that the electrostatic model (3.6) works so well, is already a strong hint that the observed
effect does indeed stem from the dipole potential and is not a chemical effect caused by
change of bonding due to the presence of heteroatoms in graphene. A further test also
strongly supports this fact: The shift of the electron potential energy is expected to depend
linearly on the dipole density (see the electrostatic model in chapter 2.2.2). The dipole
density can easily be decreased by enlarging the unit cell in y-direction, but still having
only one BN pair per unit cell. Then, when going along the dipole line, there is one BN pair
and then one or more carbon pairs, before after one lattice constant in y-direction the next
BN pair comes up. In figure 4.4, the dependence of the electron potential energy shift on
the dipole density is plotted. For a dipole density of one third of the full dipole density and
more, a nearly linear dependence is observed. This agreement with the electrostatic model
strongly supports the claim that the observed effect is of electrostatic nature. However, for
smaller dipole densities, the shift of Epot is nearly constant, because the distance from the
investigated C atoms to the next-nearest dipole is already so big that the local potential of
the nearest dipole dominates.
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4.2. Potential
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Figure 4.4.: Electron potential energy at the positions of the third (blue) and seventh
(green) C atom in a BN-14C-NB-14C system (atom numbers as in figure 4.1). By
enlarging the unit cell in y-direction, lower dipole densities are possible. This
dipole density, in units of the full dipole density, is plotted along the abscissa.
The electron potential energy of a C atom in pure graphene is indicated by the
red line.
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4. Graphene with BN Pairs

4.3. Energetic Shift of the DOS

In the previous section, the effect of lines of BN pairs on the electron potential energy in
graphene was investigated. A change in Epot changes the energy of all the electronic states
as a function of position. This can also be seen in the density of states as a shift of the
energy.

4.3.1. Shift of the Different Atom Types

The investigated systems have no net dipole moment in the unit cell (as discussed), so the
total DOS, at least for a symmetric system, will not show this energy shift1. However it
is possible to project the DOS onto certain atoms. By averaging over the projected DOS
(PDOS) of several atoms, for examples all C atoms in the strip between the dipoles, the
shift of the states in that spatial region can be described.

Figure 4.5 shows this averaged PDOS. In between the BN and NB pairs, the carbon states
are shifted towards lower energies with respect to unmodified graphene. The carbon atoms
in between the NB and BN pairs, on the other hand, have a shift to higher energies. Due to
the averaging process, the features are broadened. Furthermore, the PDOS does not go
to zero at the Fermi level (in contrast to pure graphene). The modifiers (i. e. the B and
N atoms) also contribute states around the Fermi level: For the N atoms, the PDOS around
the Fermi level is comparable to that of the adjacent C atoms. In comparison, the B atoms
contribute far more importantly to the DOS right below the Fermi level. There is no gap in
these systems, so a separation of electrons and holes in two different spatial regions is not
possible.

1Nevertheless, the total DOS will be distorted compared to the DOS of pure graphene.
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4.3. Energetic Shift of the DOS
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Figure 4.5.: Averaged PDOS per atom for a BN-14C-NB-14C system for the different atom
types (blue line). The carbon atoms in the strip between the BN and NB lines
are marked with C, the carbon atoms between the NB and BN lines as C’. To
compare, the DOS per atom of pure graphene is plotted as well (black line).
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4. Graphene with BN Pairs

4.3.2. Width Dependence

Since the screened dipole potential in graphene drops on a length scale of 6.75�A, the atoms
further away from the lines of BN pairs feel less change of Epot. Thus, the shift of the
averaged PDOS decreases with the strip width.

This behavior is illustrated by figure 4.6, which shows that even for a 38 atom strip the
shift is still > 0.2eV.

Naturally, due to the averaging process information is lost. Still, the PDOS of the individual
atoms can be investigated by itself. While the averaged PDOS is well suited to get a general
impression of the effects due to the dipole lines (on a larger length scale), additional insight
can be gained by separately examining the individual atoms.

In figure 4.7, the PDOS of the six carbon atoms closest to the line of BN pairs is plotted. The
first atom shows a PDOS very different from the pure graphene DOS because its chemical
environment is totally different – one of its bonds is with a nitrogen atom instead of a
carbon atom. From the second atom on the PDOS can be explained as a shifted DOS of
pure graphene. One thing that can be noticed is that the PDOS just below and at the Fermi
level is higher for odd-numbered atoms than for even-numbered atoms (where it even goes
to zero). While the partitioning scheme used for assigning a state to a certain atom is not
perfect and could thus give rise to this behavior as an artefact, a more physical explanation
is possible as well: The electron density per atom oscillates from higher values to lower
values, because the two lattice sites in graphene are not equivalent anymore (the electron
potential energy is different). Furthermore, disturbances in graphene have been shown to
have a rather long range impact on the charge density [90, 91].

Secondly, the dependence of the PDOS of an atom on the overall strip width (the number
of C atoms between BN and NB) has a very characteristic behavior: For the first six atoms
from the BN pairs, the PDOS curves for large strip widths coincide. However, for low strip
widths, there is an additional shift to lower energies. This stems from the influence of
the oppositely oriented, i. e. NB, dipole line: if it is near, the potential is lowered even
more because now two dipole lines shift the electron potential energy. If, however, it is
far enough to play no role in the local electrostatic potential, this additonal shift does not
happen.

54



4.3. Energetic Shift of the DOS
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Figure 4.6.: Width dependence of the energy shift of the averaged PDOS over the atoms
between the lines of BN and NB pairs in a BN-nC-NB-182C system. The strip
width is given as the number n of C atoms and in�A (measured from the middle
of the bond between the B and N atom). Only the absolute value of the shift,
calculated as explained in section 3.7, is plotted. Here it means a shift towards
lower energies.
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4. Graphene with BN Pairs
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Figure 4.7.: PDOS of the individual atoms in a BN-nC-NB-182C system. Different strip
widths n are used (see legend). The DOS/atom of pure graphene is plotted as
a black dashed line. The numbering of the atoms is according to figure 3.1.
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4.3. Energetic Shift of the DOS

4.3.3. Localization of States

The spatially resolved density of states is called local DOS (LDOS). It allows to look at the
distribution of the states as a function of both spatial position and energy.

The color-coded LDOS of one of the investigated systems can be found in figure 4.8a. In
the shown energy window around the Fermi level, the unoccupied states are found mostly
in the region between the BN and NB lines (where the electron potential energy is lowered
due to the dipoles). The occupied states are located on the other side of the dipoles, i. e.
between the NB and BN lines (increased Epot). The relative shift (in energy) of the LDOSes
in the two different strips is clearly visible. If one takes into account the BN pairs, it turns
out that occupied states nearest to the Fermi level are largely localized on the BN pairs (in
accordance to figure 4.5).

In figure 4.8c and d, the x-dependent LDOS is shown integrated over different energy
ranges around the Fermi level. From these plots, the relative height of the charge density
in the different spatial regions can be assessed. A certain degree of localization can be
observed, although for this system the charge density does not go to zero even in the
regions with low DOS. Therefore, the localization of charges in-between the dipole lines is
not totally successful.

Around the Fermi level, the border of the regions with high LDOS and regions with low
LDOS in the color-coded plot in figure 4.8 is shaped like the Epot(x) curves. Yet once more
this demonstrates the electrostatic nature of the energy shift of the carbon states.

When one integrates the LDOS over all spatial directions, the total DOS of the system is
obtained (figure 4.8b).

If one assumes that exciting electrons across the Fermi level does not change the electronic
structure, electron conduction would mainly be localized in the region with lowered Epot.
While calculating the electronic excitations of the system or doing transport calculations is
beyond the scope of this thesis, a feeling for what happens to electrons above EF can be
developed by other means: In the simplest picture, where shifting the Fermi level does not
change the electronic structure, the localization behavior described here would imply that
additional electrons inserted into the system would be nicely localized in the strip between
the BN and NB pairs. The following considerations will investigate what happens when the
calculation is done with an extra number of electrons.
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Figure 4.8.: (a) Local DOS, yz-plane integrated, depending on the x-position and the
energy (color-coded), of a BN-18C-NB-18C system (geometry individually
optimized with GADGET). (b) DOS of the total system as resulting from the left
plot when integrating along the x-axis. (c, d) LDOS averaged over different
energy ranges: (c) in the interval (−2,0)eV (blue), (−1,0)eV (green) and
(−0.5,0)eV (red), (d) in the interval (0,2)eV (blue), (0,1)eV (green) and
(0, 0.5)eV (red).
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4.3. Energetic Shift of the DOS

4.3.4. Excess Number of Electrons

It is possible to do VASP calculations with more or fewer electrons per unit cell than in the
neutral case2. Then, the program adds a homogeneous positively charged background in
the whole volume of the unit cell to compensate the charge imbalance. In the context of
this work it is then interesting to see where the excess charge goes. This can be calculated
by substracting the neutral charge density from the charge density of the system with an
elevated or reduced number of electrons.

Figure 4.9 shows that there is no nice localization of excess electrons in a certain spatial
region, but that they can rather be found everywhere in the graphene sheet throughout
the unit cell. In the region far from the dipoles, the excess charge density is located at the
carbon-carbon bonds parallel to the x-direction. In each of the pairs of atoms forming these
C-C bonds, the atom nearer to the dipole lines seems to get more of the extra electrons
than the atom further away (this can be best seen in the averaged excess electron density
in the lower plot in figure 4.9). This could be related to the observation that the PDOS of
the oddly numbered atoms in figure 4.7 is higher around the Fermi level than the PDOS of
the evenly numbered atoms. Closer to the dipole lines and especially in the graphene strip
in between the BN and NB pairs, the extra electron density forms lines along the zigzag
bonds of graphene. In conclusion, we see two different shapes of charge distribution, once
around parallel pairs of C-atoms and once in zigzag lines. It is worth noting that these two
characteristic shapes can also be found in isodensity plots of the charge density of graphene
states, as will be shown in figure 4.18.

The oscillations seen in the yz-plane averaged excess charge density in figure 4.9 are a
direct consequence of the localization of the surplus electrons on individual bonds. One
very interesting thing that can be seen from this averaged plot is that at some points, the
charge density of the system with more electrons is lower than the neutral system (the
excess charge density is negative). This could not happen if extra electrons would just fill
up some previously empty states without otherwise changing the system.

Note that the range of possible values of the number of excess electrons per unit cells is
limited for getting sensible results: Very large values (like one electron per unit cell) are not
realistic and change the Fermi level significantly. Furthermore, the compensating positive
charge is quite substantial in that case, creating additional artefacts. On the other hand,
too low values lead to numerical errors.

Overall, the spatial average is still 0.2 electrons per unit cell everywhere, so all in all the
localization is not successful. The following theoretical model tries to explain why.

2This can be done by manually setting NELECT in the INCAR file to a value higher or lower than the default
value, which is chosen so that there is charge neutrality. Non-integer values are possible.

59



4. Graphene with BN Pairs

y

20 10 0 10 20 30 40 50
x/Å

0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

n
(x

) 
/ 

(e
l.

/a
)

Figure 4.9.: Spatial distribution of the excess electron density for a BN-14C-NB-182C system
(in contrast to the other calculations, here a non-optimized pure graphene-like
geometry was used). In total, 0.2 electrons per unit cell have been added to
the number of electrons per unit cell of a neutral system. The upper plot shows
the two-dimensional graphene sheet, colored according to the value of the
excess electron density∆n. Blue means low values, red high values. The lower
plot shows (in blue) the yz-plane-averaged value of the excess charge density
as a function of x , in units of electrons per unit cell. The gray lines mark the
position of the carbon atoms, the red lines the position of the boron atoms and
the green lines the position of the nitrogen atoms.
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4.3. Energetic Shift of the DOS

4.3.5. Shifted PDOS Model

When dealing with the question how and whether localization of (excess) electrons and
holes is possible, there is a fundamental difference between semimetals and semiconductors.
To investigate this further, a very simple model is chosen. A linear chain of N = 20 atoms is
taken as a test system. Each of the atoms gets assigned a value for the electron potential
energy Epot (see figure 4.10). As demonstrated above, a shift in the electron potential
energy leads to a shift of the DOS projected onto this atom. Therefore, in this toy model,
the shape of the PDOS at each atom is chosen to be identical, but the PDOS curves of the
individual atoms are shifted in energy according to their value of Epot.

For the DOS shapes, two different models are investigated (see figure 4.11).

1. Graphene-like model:
The PDOS of each atom is3

PDOS(E) = |E|. (4.1)

2. Semiconductor model:
The PDOS of each atom consists of a step function:

PDOS(E) =

¨

0 |E|< 2.5

1 |E|> 2.5
. (4.2)

In figure 4.12, the resulting PDOSes after applying the Epot shift are shown for the unshifted
atoms, the maximally down-shifted atom and the maximally up-shifted atom. By summing
over the PDOSes of all the atoms, the total DOS is obtained, see figure 4.13. In the graphene-
like model, the DOS does not go to zero at the Fermi level because one of the shifted atoms
always provides states at EF . In the semiconductor model, there remains a gap, although it
becomes far narrower. The steps in the DOS come from the discrete values for the shifts.

Now a certain number of excess electrons Nextra is brought into the system. This causes the
Fermi level to shift (to higher energies for positive Nextra, to lower energies for negative
Nextra). The new Fermi level is the energy Ẽ that fulfills the equation

Ẽ
∫

EF

dE DOS(E) = Nextra. (4.3)

Here, the old Fermi level is EF and by DOS(E), the total DOS is meant.

Next the PDOSes of the individual atoms are filled up to that new Fermi level. Then, for
each atom the resulting added electron density is plotted (see figure 4.14). In other words,
in this plot it can be seen where the additional charge density goes.

3For this simple model, we do not worry about the units. For real graphene, the slope of the DOS would be
D0 = 0.09 (eV2 unit cell)−1, i.e. D(E) = D0|E|, see Ref. [92].
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4. Graphene with BN Pairs

Figure 4.10.: Shift of the electron potential energy Epot and thus the PDOS with respect to
EF for atoms at different positions along the chain. The region with a negative
shift is plotted in blue, the region with a positive shift in red. In this simple
model, no units are used.

Figure 4.11.: Left: PDOS for the graphene-like model. Right: PDOS for the semiconductor
model.
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4.3. Energetic Shift of the DOS

Figure 4.12.: PDOS of the unshifted atoms (black) and the atoms with the maximum
shift towards lower (blue) and higher (red) energies. This is shown for the
graphene-like model (left) and the semiconductor-like model (right).

Figure 4.13.: Total DOS for the graphene-like model (left) and the semiconductor model
(right).
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Figure 4.14.: Excess electron density ∆n per atom when the total excess electron density is
Nextra = +1 (red) and −1 (blue). The left plot is for the graphene-like model,
the right plot for the semiconductor-like model.

For a semimetal, both electrons (positive Nextra) and holes (negative Nextra) can be found
in spatial regions with elevated or reduced electron potential energy (irrespective of the
sign of the shift of Epot). This is because the upward-shifted and the downward-shifted
PDOSes both have high values at the old Fermi level (see figure 4.12). More mathematically
speaking, the integral from the old Fermi level to slightly higher or lower values does not
differ much between these two cases. So it is not possible to localize electrons and holes
in different spatial regions with this approach (this is in accordance with the quantum-
mechanical results in figure 4.9). However, hardly any excess charge goes to the unshifted
atoms, because here the PDOS around the old Fermi level is very low. So a localization
of excess charge in regions that have a shift (either positive or negative) seems possible
(although it does not seem to be that way in figure 4.9, probably because of changes of the
DOS beyond a simple electrostatic shift). In stark contrast, for semiconductors, electrons
only go to regions with lower potential energy and holes are only found in regions with
increased Epot. This is because the new valence band comes from down-shifted states and
the new conduction band

So, there a localization of electrons and holes in different spatial regions, and thus their
spatial separation, is achieveable.

The Python programs used to calculate the results in this section can be found in appendix C.

4.4. Energetic Shift of the Band Structure

The energetic shift of the states on different sides of the dipole lines also leads to changes
in the band structure.

Figure 4.15 shows the band structure in the high symmetry directions of the rectangular
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Figure 4.15.: Kohn-Sham band structure of a BN-14C-NB-14C system (black symbols) and
of pure graphene in an equivalent (8× 1 rectangular) unit cell (red symbols).
Open symbols mark bands with predominantly σ character, filled symbols
bands with π character. Due to Brillouin zone folding, the K point of the
hexagonal system is found at 2/3 of the way from Γ to Y (this is shown by
the gray vertical line).

unit cell of a BN-14C-NB-14C system. In the Y-direction, this is the direction along the
dipole lines, states are found around the Fermi level. However, the linear dispersion that is
characteristic for the Dirac cone is not present around the Fermi level anymore. The bands
are flattened and show a rather parabolic dispersion (like e. g. bilayer graphene [93]). At
around ±1 eV above the Fermi level, there is a band crossing with linear dispersion at the
K point, which is due to the intersection of two back-folded π bands. In the X-direction,
there is hardly any dispersion.

This band structure cannot be compared with the band structure of graphene in a hexagonal
unit cell, but rather with a pure graphene system in the same rectangular supercell (red
symbols in figure 4.15). Therefore, the graphene band structure used for comparison was
calculated using a 8× 1 rectangular supercell (this is equivalent to the BN-14C-NB-14C
system). While some of the bands in the BN-substituted system can clearly be identified
with one of the graphene bands, there are other bands whose origin is not so obvious.

From figure 4.15 it can also be seen that most of the bands of the BN-substituted system
have π character (filled symbols). This indicates that they originate from the bands involved
in the Dirac cone (in the energy range around the Fermi level). There is only one set of
σ bands (open symbols) close to the Fermi level.

For very wide strips, the band structure is expected to be very graphene like. Therefore, the
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4. Graphene with BN Pairs

band structure calculation was performed using different strip widths from BN-14C-NB-14C
to BN-30C-NB-30C (see figure 4.16). Indeed, for very broad strips, the bands around the
Fermi level lie closer to the Dirac cone than for narrow strips. That happens because there
are now many undisturbed carbon atoms in the system. When the strip width changes,
the shift of the individual bands with respect to the Fermi level changes, but whether the
energy shift grows or diminishes is different from band to band. The σ band close to the
Fermi level hardly shifts at all.

The next thing to investigate is where the individual states in the band structure are
localized. Chapter 3.8 explains how this can be done. The resulting band structures are
displayed in figure 4.17. There is a general trend that occupied states near the Fermi
level sit between the NB and BN pairs (this is the region with increased Epot) while the
unoccupied states are located between the BN and NB lines (lowered Epot). The σ band
closest to the Fermi level sits at the BN lines. This is why it also does not change much in
energy when the strip width is changed because the dipole itself shows the least sensibility
to how much carbon lies on the way to the next dipole line. Whether increasing the strip
width shifts the band to lower or higher energies is also not linked to localization.

The bands directly at the Fermi level change their localization when they go from occupied
to unoccupied. In many bands, the localization behavior in the region between Γ and K4

differs from the localization behavior between K and Y. This is because these are two
different regions in the original hexagonal unit cell (see figure 2.14).

In figure 4.18, isodensity plots of the LDOS for selected k-points and bands are shown.
The points labeled 1 and 2, very close to the Fermi level, show the localization of the
occupied and unoccupied states in different spatial regions. Another difference can be
seen: at point 1, the isodensity surface forms “tubes” along the zigzag lines of graphene.
In contrast, at point 2 one can identify individual isosurfaces sitting on the parallel bonds.
At point 3, where the two bands cross, the bands mix and localization is lost. At point 4,
a “tube” pattern similar to that at point 1 is observed (which probably means that they
originate from the same pure graphene state). However, the state at point 4 is located on
the opposite side of the dipole line, as expected for an occupied state. For points 2 and
5, the analogous argument is valid: they have a similar orbital shape, but are located in
different regions. The next highest band in energy contains points 6 and 7. Again, when
crossing the K point, the localization character of the band changes significantly. This band
crosses another band very close to the K point. On that band, there are the points 8 and
9. At point 8, a nice localization of the state is observed, while this breaks down when
going to smaller values of k, as can be seen at point 9. Similar observations can be made
for the occupied bands that cross at 1eV below the Fermi level (points 10 and 11). The
σ-Band that point 12 belongs to is mainly localized at the boron atom, in accordance with
the results from the calculations in figure 4.17.

4The K point of the hexagonal graphene system is found at 2/3 of the way from Γ to Y in the rectangular
system, as discussed in chapter 2.4.4.
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4.4. Energetic Shift of the Band Structure

Figure 4.16.: Top: Kohn-Sham band structure from Γ to Y of BN-nC-NB-nC systems for
different values of n (see legend). In comparison, the band structure of pure
graphene in a 8×1 rectangular unit cell (equivalent to the unit cell for n = 14)
is shown (red line). The Dirac cone in pure graphene is found at 2/3 of the
way from Γ to Y. With decreasing strip width, the bands around the Fermi
level become more and more flattened. Bottom: Zoomed in on the region
that is marked by a gray rectangle in the top plot.

67



4. Graphene with BN Pairs

Y X
3

2

1

0

1

2

3

(E
E

F
) 

/ 
e
V

Y X
3

2

1

0

1

2

3

(E
E

F
) 

/ 
e
V

Y X
3

2

1

0

1

2

3

(E
E

F
) 

/ 
e
V

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

e
le

c
tr

o
n

s
 /

 u
n

it
 c

e
ll

Figure 4.17.: Kohn-Sham band structure of a BN-14C-NB-14C system (geometry individ-
ually optimized with GADGET). The k-point resolved band-projected LDOS
(see chapter 3.8) is calculated for each point in the band structure and then
integrated over three different areas: between the BN and NB pairs (top),
between the NB and BN pairs (middle) and at the BN pairs (bottom). The
value of the integral is color-coded in the plot.
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Figure 4.18.: Isosurface of the band-projected k-resolved LDOS at different points in the
band structure (see plot at top) of a BN-14C-NB-14C system. The isovalue is
0.01el./unit cell.
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4. Graphene with BN Pairs

4.5. Other Geometries

In this section, different ways of substituting two neighboring C atoms to create BN pairs
are investigated. Apart from the systems with parallelly oriented dipoles discussed so far,
there are two general options. These are armchair-like (AC) and zigzag-like (ZZ), see
figure 4.19. For the present tests unoptimized structures with all the bond lengths equal to
1.42�A were used.

4.5.1. Zigzag

In the ZZ case, the dipole density is lowered to 50 % compared to the systems investigated
so far: the number of dipoles per unit cell is the same, but they point at a 60◦ angle
from the x-axis. The y-components of the dipoles compensate each other, so only the
x-component remains, which is the total dipole moment multiplied by cos60◦ = 0.5. Of
course, the depolarization behavior is expected to be different, so these 50% are just a
rough approximation.

The width dependence of the energy shift of the PDOS averaged over the C atoms between
the BN and NB pairs in ZZ BN-nC-NB-bC systems, with b = 196− n, is investigated in
figure 4.20. For rather narrow strip widths, the shift of the averaged PDOS does not follow
the same pattern as in the geometry with the BN pairs parallel to each other, because the
big differences in the chemical environment of the C atoms closest to the N atoms play a
dominating role there. For wider strips, the shift of the ZZ system turns out to be 67% of
the shift of the parallel-BN system. This is substantially more than the 50 % expected from
the naive dipole density picture, but due to the very different chemical environment of the
B and N atoms (bound to only one C atom as opposed to two) and presumably a different
depolarization behavior, this seeming mismatch can be explained.

From the PDOSes in figure 4.21, one can, once more, see that there is chemically a big
difference between the B and N atoms in these two systems. The C atoms between the BN
and NB lines are shifted to lower energies again, but less, as already discussed above. Due
to the large strip width between the NB and BN lines, there is hardly any deviation from
the pure graphene DOS there.

As the Epot shift is lower than for the geometries with parallel dipoles, no further investigation
of the ZZ structures have been performed.
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Figure 4.19.: Geometry of a ZZ BN-14C-NB-bC strip (top) and an AC BN-7C-NB-bC strip
(bottom). Different numbers of C atoms between the modifiers are possible.
The horizontal green lines indicate the boundaries of the unit cell in the
y-direction. Graphics produced with XCrysDen [94].
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Figure 4.20.: Left: Width dependence of the energy shift of the averaged PDOS over
the atoms between the lines of zigzag BN and NB pairs in a ZZ BN-nC-
NB-(196− n)C system in analogy to figure 4.6. The strip width is given as the
number n of C atoms. Only the absolute value of the shift, calculated as ex-
plained in section 3.7, is plotted, here it means a shift towards lower energies.
Right: Value of the PDOS shift for the zigzag systems investigated here (val-
ues from the plot on the left) divided by the values for the BN-nC-NB-182C
geometry (data values from figure 4.6, i. e. the system with parallel BN pairs).
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Figure 4.21.: Averaged PDOS per atom for a ZZ BN-14C-NB-182C system for the different
atom types (blue line). The carbon atoms in the strip between the BN and
NB lines are marked with C, the carbon atoms between the NB and BN lines
as C’. To compare, the DOS per atom of pure graphene (black line) and the
corresponding curves for a BN-14C-NB-182C system with parallel BN pairs
(green) is plotted as well. This plot is to be understood in analogy to figure 4.5.
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4.5. Other Geometries

4.5.2. Armchair

In the AC case, there are 2 dipoles per unit cell, but the unit cell is bigger in y-direction by
a factor of

p
3 compared to the systems with parallel BN pairs. This gives a dipole density

that is increased by 2/
p

3, but the dipoles point in a 30◦ angle, which reduces the dipole
moment in x-direction by cos 30◦ =

p
3/2, i. e. the dipole density is 100%.

As before, there is an energy shift of the states of the C atoms due to the dipole lines, which
leads to a PDOS shifted with respect to pure graphene. However, the width dependence of
the PDOS shift (figure 4.22) is far more difficult to interpret in this case. As figure 4.23
shows, AC BN-nC-NB-bC strips can behave differently depending on their width: for a
number of C atoms n = 3k and n = 3k + 2 (figure 4.23a and c), the behavior is similar.
However, for n = 3k+ 1 (figure 4.23b), the shape of the averaged PDOS of the C atoms
between the BN and NB pairs around EF is very different from the other cases. This is also
the reason why the energy shift of the PDOS (figure 4.22) seems to have a jump at these
strip widths. The observation of three distinct behaviors of the width dependence of a
quantity is also seen in armchair graphene nanoribbons (see 2.4.3) [38, 39].

In the band structure of AC strips (figure 4.24), one can see that, depending on the width,
they are semiconducting or semimetallic (at least in the DFT calculations used). The gap
in the n= 3k+ 1 case is very small (on the order of magnitude of 0.05eV), that’s why it
cannot be seen in the smeared PDOS plots (SIGMA= 0.3eV). However, this band gap is
too small to be of relevance for the scope of this work.
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Figure 4.22.: Width dependence of the energy shift of the averaged PDOS over the atoms
between the lines of armchair BN and NB pairs in an AC BN-nC-NB-(96− n)C
system in analogy to figure 4.6. The strip width is given as the number n
of C atoms as counted in figure 4.19. Only the absolute value of the shift,
calculated as explained in section 3.7, is plotted, here it means a shift towards
lower energies.
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Figure 4.23.: PDOS of the C atoms between the BN and NB pairs of AC BN-nC-NB-(96−n)C
systems with different values of n. The strip width is given as the number n of
C atoms (see legend) as counted in figure 4.19. For comparison, the DOS per
atom of pure graphene (G) is plotted as well. The shape of the PDOS depends
on the strip width, where widths (a) n = 3k, (b) 3k+1 and (c) 3k+2 behave
differently.
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Figure 4.24.: Kohn-Sham band structure of an AC BN-7C-NB-89C, i. e. n= 3k+ 1, system
(top) and of an AC BN-9C-NB-87C, i. e. n = 3k, system (bottom). In the
insets, the band structure from Γ to X is plotted on a bigger scale (with the
same energy scale). Note that, as the AC unit cell is rotated by 90◦ with
respect to the other rectangular unit cells examined so far, the K point from
the hexagonal Brillouin zone is now found in the X-direction.
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5. Graphene with Adsorbed
Molecules

While the graphene systems with in-plane dipoles by substitutional BN pairs show the
concept of collective electrostatic effects in two-dimensional materials quite nicely, it is
probably hard to build them in experiments. A far more realistic scenario is using organic
molecules with dipolar end groups to form dipole lines. The ordered arrangement of
the molecules can in principle be achieved using self-assembly with appropriate linker
groups. [95] As a proof of principle, here the consequences of letting molecules adsorbe
in ordered manner on graphene are investigated. However, the linker groups and the
assembly process are not simulated.

5.1. Investigated Systems

The common building block of all the molecules investigated here is diphenylacetylene
(see figure 5.1a), which is also the basis for the so-called “Tour wire” (TW) molecules [96]
which play a big role in molecular electronics. That is why in this work all the molecules
derived from it are abbreviated with TW.

The chemical structures of the molecules that will be investigated in this chapter are
displayed in figure 5.1. They are called the TW-CN, TW-Pyr Nout and TW-Pyr Nin molecules1.
These molecules were put onto a graphene layer and the adsorption geometry was relaxed
(as described in chapter 3.2). The adsorption height (averaged over all carbon atoms in
the backbone) of these three molecules can be found in table 5.1.

1A very short comparison of these molecules with other molecules is found in chapter 6.4.

Table 5.1.: Adsorption height of the individual molecules regularly adsorbed on a sheet of
graphene: maximum (hmax), minimum (hmin) and average (h̄).

Molecule hmax/�A hmin/�A h̄/�A

TW-CN 3.358 3.338 3.344
TW-Pyr Nout 3.403 3.352 3.374
TW-Pyr Nin 3.421 3.299 3.371
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(a) Diphenylacetylene (or TW alone).

NC CN

(b) Dicyano-substituted diphenylacetylene (or TW-CN).

N N

NN

(c) Pyrimidine-substituted Tour wire based molecule in meta-position (or TW-
Pyr Nout). [97]

N N

NN

(d) Pyrimidine-substituted Tour wire based molecule in ortho-position (or TW-
Pyr Nin). [97]

Figure 5.1.: Chemical structure of the molecules mentioned in this chapter.

The outcome of the geometry optimizations is very sensitive to the starting geometries
(concerning the lateral position, but not the adsorption height). That’s because the molecule
does not move sufficiently far from its initial position. This also means that all the locations
of the molecules on graphene are very similar in energy. It is thus very important to
mention the starting geometries for which the ionic relaxations of the molecules have
been performed. A mere translation of the molecule on the substrate only hardly affects
the electronic structure (see figure 5.2), but rotating it leads to some changes. For the
fundamental investigations performed in this thesis, we limit ourselves to just one of these
geometries.

The optimized geometries, as resulting from a calculation with the nearest high symmetry
position as starting position (which has the center of the molecule on top of a horizontal
C-C bond of graphene) for the TW-CN, TW-Pyr Nin and TW-Pyr Nout molecules are presented
in figure 5.3.
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Figure 5.2.: PDOS averaged over the colored region for four different adsorption geometries
(see the plots of the unit cells at the top) of TW-CN on graphene. The geometry
optimization for each of the four systems was started from a different high
symmetry position. The direction of the molecule is rotated by 90◦ when going
from the upper row to the lower row and the molecule is shifted when going
from left to right. The colors of the curves in the PDOS plot match the colors
of the rectangles in the geometries.
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A AB CC

A AB CC

A AB CC

Figure 5.3.: Optimized geometries of the TW-CN (top), TW-Pyr Nout (middle) and TW-
Pyr Nin (bottom) molecule adsorbed on graphene (one unit cell is shown). The
adsorption height is given in table 5.1. In each of the unit cells, three regions
are marked: one region below the dipolar end groups (region A), one region
in-between the dipolar end groups below the molecule (region B) and one
region where the graphene sheet is not covered by the molecule (region C).
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5.2. Electrostatic Potential

5.2. Electrostatic Potential

There is a dipole potential, much like for the BN pairs, that originates from the end groups of
the molecules. While the end groups act as dipoles, the fact that there is a mirror symmetry
through the center of the molecule means that the molecule has no net dipole moment.
However, the quadrupole moment tensor has entries different from zero. Figure 5.4 shows
the electrostatic potential in the molecule plane for three of the investigated molecules2.
The dipole of the endgroups of the TW-CN molecule points towards the x-direction, while
the dipole of the TW-Pyr Nout molecule has the dipoles at an angle to the x-axis.

In the direction perpendicular to the molecule plane, the dipole potential drops like 1/r3

(where r is the distance from the plane). Thus, in the graphene plane, which is at a distance
of 3 to 3.5�A in z-direction, the effect of the dipolar endgroups of the molecules has already
dropped quite significantly (see figure 5.5). The direction of the dipoles of the TW-Pyr Nin

molecule is reversed compared to the other two molecules. Furthermore, it can be seen
than the dipoles due to Pyrimidine rings in the TW-Pyr Nout case are weaker that in the
TW-Pyr Nin and the TW-CN cases.

While the dipole moment of the end groups is not easily accessible, the total quadrupole
moment of the molecules can be calculated with Gaussian (see table 5.2). Then, the
different strengths of the dipolar end groups are also observed in the quadrupole tensor:
When comparing Q x x (because this is the direction perpendicular to the dipole lines that
will eventually be formed by the molecules), the value is comparable for TW-CN and TW-
Pyr Nin (but oppositely oriented), but the absolute value for the TW-Pyr Nout molecule is
less than half the value of the other two molecules. Note that the quadrupole moments
are only an apt means of comparing the dipole moments of end groups when the distance
of the two dipoles is equal for all the molecules (i. e. they have the same size), but this is
approximatively the case as can be seen from figure 5.4.

2These calculations were performed using hard pseudopotentials: PAW_PBE C_h 06Feb2004, PAW_PBE
H_h 06Feb2004 and PAW_PBE N_h 06Feb2004 with a plane wave energy cutoff of 700eV.

Table 5.2.: Traceless quadrupole moment of three molecules as calculated by Gaussian
using PBEPBE/6-311G(d,p). The rows are the components of the quadrupole
moment Q in e�A2 while the columns represent the different molecules.

Q/e�A2 TW-CN TW-Pyr Nout TW-Pyr Nin

XX -11.92 -4.56 10.59
YY 7.83 3.43 -3.45
ZZ 4.08 1.14 -7.15
XY -0.26 0.02 0.06
XZ 0.01 -0.46 -1.44
YZ -0.18 -0.38 -1.10
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Figure 5.4.: Electron potential energy Epot relative to the vacuum electron potential energy
Evac (given by Epot at the point furthest away from the molecule in the unit cell).
The calculation is done with one single molecule in a 55× 43× 40�A unit cell
and a two-dimensional cut through the three-dimensional Epot is taken in the
molecule plane. The color range does not cover the full energy range of Epot.
Top: TW-CN, Middle: TW-Pyr Nout, Bottom: TW-Pyr Nin. For this calculation,
hard pseudopotentials and a higher energy cutoff were used (see footnote 2
on page 81).
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Figure 5.5.: Electron potential energy Epot relative to the vacuum electron potential energy
Evac (given by Epot at the point furthest away from the molecule in the unit
cell). The calculation is done with one single molecule in a 55× 43× 40�A unit
cell and a two-dimensional cut through the three-dimensional Epot is taken in
the would-be graphene plane, i. e. 3.33�A below the molecule. Note that the
color range is different than in figure 5.4, but here it covers the full energy
range of Epot. Top: TW-CN, Middle: TW-Pyr Nout, Bottom: TW-Pyr Nin. For this
calculation, hard pseudopotentials and a higher energy cutoff were used (see
footnote 2 on page 81).
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5. Graphene with Adsorbed Molecules

Next, the electron potential energy change in the graphene plane that is caused by an
adsorbed molecule will be investigated. This change can be calculated by substracting Epot

of a graphene sheet without any adsorbed molecule from Epot of the total system (graphene
and adsorbed molecule), both in the graphene plane. The result of this kind of analysis can
be found in figure 5.6. The presence of the graphene plane changes the potential in two
distinct ways.

First, the height of the potential difference below and outside the molecule is reduced by a
factor of about 4.89. This is to be interpreted as a relative permittivity ε = 4.89 in graphene
responsible for a linear screening of the potential. This value of ε is in the range found
by experiment. [98] It is not necessary to allow for an additional exponential screening
term (as inspired by Thomas-Fermi theory) here, presumably because the distance of the
out-of-plane dipoles is too large and the charges to be screened are not embedded in the
material anymore.

Secondly, there is a constant shift of about 0.004 eV. This is not really physically relevant,
because it depends on which vacuum level one chooses. There is a difference of the vacuum
levels due to the formation of a bond dipole due to the pushback effect. [89] The dipole
created by this pushback splits space in two halves, as expected (see chapter 2.2.3) for a
two-dimensional array of dipoles (due to the periodic boundary conditions used). In each
of these halves, there is a different vacuum energy (see figure 5.7). However, the formation
of the dipole only happens when both the graphene layer and the molecule are present.
Depending on which vacuum level is chosen for comparing the different systems, there is a
different constant shift between the two curves. More on the bond dipole can be found in
chapter 5.4.
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Figure 5.6.: Electron potential energy change Epot (with the vacuum energy as zero) caused
by the TW-CN molecule in the graphene plane (averaged in the y-direction).
Top left: in presence of the graphene sheet. Top right: without graphene sheet,
but in the plane where the graphene sheet would be. Bottom: The same data,
but the red curve without graphene sheet transformed according to the linear
function E′pot = (1/4.89)Epot−0.004 (in eV). The symbols mark the x-positions
of the atoms in the molecule.
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Figure 5.7.: Electron potential energy, x y-plane averaged, for a graphene sheet (at z = 0�A)
with an adsorbed TW-CN molecule (at a mean adsorption height of z = 3.344�A,
see table 5.1). Here, the size of the unit cell in z-direction is 40�A and the
dipole correction was used (see chapter 3.1). The two red vertical lines show
the position of the graphene sheet and the molecule. The right vacuum level is
set to zero. There is a vacuum level difference ∆Evac of 0.08eV between the
left and right region due to the two-dimensional array of bond dipoles.
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5.3. Energetic Shift of the DOS

As in the systems with substitutional BN pairs, the change of Epot is expected to lead to a
shift of the energy of the individual states and thus an energy shift of the PDOS of C atoms
with altered Epot.

Figures 5.8, 5.9 and 5.10 show the averaged PDOS in three regions of the graphene sheet
for a system with adsorbed TW-CN, TW-Pyr Nout and TW-Pyr Nin molecules. For TW-CN
and TW-Pyr Nout, the PDOS of the atoms below the molecule in-between the dipoles is
shifted towards lower energies. For TW-Pyr Nin, however, the energy shift is in the opposite
direction, as expected for a molecule with the dipoles pointing in the other direction. The
total effect, measured as the energy shift between the atoms in between the dipoles and
outside, is very small. The explanation is that the potential energy shift is not very high
because of the adsorption distance and screening effects (as discussed in chapter 5.2).

We find the largest energy shift (of the three cases investigated) for the TW-CN molecule.
For the TW-Pyr Nin molecule, the value of the energy shift is only slightly smaller, but going
in the opposite direction. The smallest energy shift is found for the TW-Pyr Nout molecule.

Furthermore, for all three molecules (figures 5.8, 5.9 and 5.10), especially around the Fermi
level the characteristic shape of the DOS of graphene is lost. It is more flattened out than
for pure graphene. In this aspect, this is similar to what was observed for graphene with
substitutional BN pairs. Still, the graphene sheet in the systems with adsorbed molecules
has a very low PDOS around the Fermi level. The PDOSes of all the three molecules are
even zero at the Fermi level. They have a band gap and are, thus, semiconducting.

When starting at the Fermi level and going to higher energies, the first substantial peak in
the DOS comes from the adsorbed molecules (in all three cases). Therefore, when bringing
extra electrons into the system, they would mainly go to the lowest unoccupied molecular
orbital (LUMO) of the molecule. For the BN pair substituted graphene sheets, the occupied
states nearest to EF were sitting on the modifiers (the BN pairs). Here, in contrast, the
unoccupied states nearest to EF sit on the modifiers (the molecules).
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Figure 5.8.: Density of states projected onto the C atoms in a graphene sheet where a
TW-CN molecule is adsorbed. The PDOSes are averaged over all the atoms in
the different regions shown in figure 5.3: region A in blue, B in green, C in red.
The PDOS averaged over all the atoms belonging to the molecule is plotted
in black. For comparison, the DOS/atom of pure graphene is plotted as well
(gray curve). Here, the PDOSes were “resmeared” with SIGMA= 0.2 eV.
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Figure 5.9.: Density of states projected onto the C atoms in a graphene sheet where a
TW-Pyr Nout molecule is adsorbed. The PDOSes are averaged over all the atoms
in the different regions shown in figure 5.3: region A in blue, B in green, C
in red. The PDOS averaged over all the atoms belonging to the molecule is
plotted in black. For comparison, the DOS/atom of pure graphene is plotted as
well (gray curve). Here, the PDOSes were “resmeared” with SIGMA= 0.2 eV.
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Figure 5.10.: Density of states projected onto the C atoms in a graphene sheet where a
TW-Pyr Nin molecule is adsorbed. The PDOSes are averaged over all the
atoms in the different regions shown in figure 5.3: region A in blue, B in
green, C in red. The PDOS averaged over all the atoms belonging to the
molecule is plotted in black. For comparison, the DOS/atom of pure graphene
is plotted as well (gray curve). Here, the PDOSes were “resmeared” with
SIGMA= 0.2 eV.
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5.4. Charge Rearrangements

Due to the adsorption of the molecule, the electron density both in the molecule and in the
graphene sheet changes. For preserving the mainly electrostatic nature of the effect, these
charge rearrangements should not be too big.

Chapter 3.9 describes how charge rearrangements are calculated. The results from this
calculation for the TW-CN molecule on graphene are shown in figure 5.11.

The total amount of transferred charges Q(z), figure 5.11a (ii), is negative for nearly the
whole unit cell. Hence, all in all, electrons are transferred from the graphene layer to
the molecule (see also 5.11b and 5.11c). However, compared to other typical systems
of monolayers adsorbed on various substrates, these charge rearrangements are fairly
small. [5, 89, 99] But as the electrostatic effects investigated in this work are also rather
small, it cannot be ruled out that these charge redistributions also influence the electronic
behavior of the examined systems.

The redistribution of charge gives rise to a bond dipole, which is pointing from the molecule
to the substrate. It leads to a potential energy shift of 0.08 eV (see figure 5.11a (iii)), which
corresponds to a bond dipole moment of 0.14e�A per unit cell. The bond dipole curve
can be calculated in two ways: by integrating Q(z) or by calculating the change of the
electron potential energy upon adsorption (see chapter 3.9). There is a very slight mismatch
between these two curves in figure 5.11a (iii) because the automatic dipole correction
overcompensates the dipole layer a little bit. However, the agreement is sufficiently good.

The charge redistribution is shown three-dimensionally in figures 5.11b and 5.11c. The
isosurfaces around the molecule are mainly colored in blue, which means that the charge
is transferred from the graphene sheet to the molecule (as already concluded from fig-
ure 5.11a (ii)). A lot of this transferred charge can be found at the nitrogen atoms in the
cyano groups.

In the graphene plane, further charge rearrangements can be seen. The region below
the nitrogen atoms in the dipolar endgroups loses electrons (see the large red areas in
figures 5.11b and 5.11c). In contrast, the carbon rings between two molecules in y-direction
show a large electron accumulation (see the large blue area in figure 5.11b). This could be
due to the dipole lines, as the electrons move to regions with lower potential energy. This
rearrangement of electrons counteracts the dipole potential, which leads to the screening
discussed in context of figure 5.6. The electron density of the carbon rings right below the
molecular backbone changes only slightly. Somehow the molecular backbone seems to
prevent electrons from accumulating there, and, therefore, the electron accumulation only
appears between the molecules and not below. The reason for this behavior is not clear.

91



5. Graphene with Adsorbed Molecules

4 2 0 2 4 6 8 10
z / Å

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

 /
 (

e
/Å

)

 (i)

4 2 0 2 4 6 8 10
z / Å

0.06

0.05

0.04

0.03

0.02

0.01

0.00

0.01

Q
 /

 (
-e

)

 (ii)

4 2 0 2 4 6 8 10
z / Å

0.00

0.02

0.04

0.06

0.08

E
bo

nd
 /

 e
V

 (iii)

4 2 0 2 4 6 8 10
z / Å

35

30

25

20

15

10

5

0

5

(E
po

t
E F

) 
/ 

e
V

 (iv)

(a) (i) Charge rearrangements ∆ρ(z). (ii) Total amount of flown charge Q(z). (iii) Resulting bond dipole
Ebond(z) calculated by integration of Q(z) (blue line) and directly from the VASP potential energies (green
line). (iv) Electrostatic potential of the total system, showing the position of the graphene sheet and the
molecule. The two vertical red lines mark the position of the graphene sheet (left) and the molecule
(right). Here, 40�A of vacuum and the dipole correction were used.

(b) Isosurface of ∆ρ at ±10−3 (−e/�A3), top view. Blue means electron accu-
mulation, red means reduction of the electron density.

(c) Isosurface of ∆ρ at ±10−3 (−e/�A3), side view.

Figure 5.11.: Charge rearrangements due to the adsorption of the TW-CN molecule on
graphene. Isosurface plots produced with XCrysDen [94].

92



6. Hexagonal Boron Nitride with
Adsorbed Molecules

Due to the large dielectric constant of graphene, the potential caused by the dipolar end
groups of adsorbed molecules is substantially reduced (see chapter 5.2). The isolating
material hexagonal boron nitride (hBN) is expected to have a lower ε than graphene. [100]
Therefore, the potential will not be screened as efficiently and the PDOS energy shift is
expected to be higher. Furthermore, splitting electrons and holes and localizing them in dif-
ferent spatial regions could be feasible in semiconductors and isolators (see chapter 4.3.5).

6.1. Hexagonal Boron Nitride

A monolayer of hexagonal boron nitride (hBN) has the same structure as graphene, but
with a broken sublattice symmetry: one of the sublattices is occupied by boron atoms,
the other by nitrogen atoms. As with graphene, only single layers will be considered1.
The bond distance is comparable to that of graphene, in the range of 1.4�A. [101, 102]
Lattice and ionic relaxations using GADGET lead to a value of 1.42�A. The breaking of the
sublattice symmetry causes the opening of a band gap (see chapter 2.4.5). In the flavor of
DFT used throughout this thesis, the band gap comes out as 4.6 eV (see DOS in figure 6.1).
As typical for Kohn-Sham theory, this value underestimates the real gap. [103] Values for
the excitonic band gap obtained by optical experiments [104] and for the fundamental gap
from GW calculations [105] are at around 6 eV.

The DOS plot in figure 6.1 also shows that the unoccupied levels are mainly provided by
the boron atoms while the occupied levels are sitting mostly on the nitrogen atoms. Again,
the DOS above the vacuum level (the right vertical line in figure 6.1) is wrong because
without special precautions VASP does not describe unbound states correctly.

1While in principle the relationship of hexagonal boron nitride to a monolayer of the material is similar to
the relationship of graphite to single-layer graphene, when we refer to hBN only one single planar sheet
of the material is meant in this thesis.
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Figure 6.1.: Density of states of a monolayer of hexagonal boron nitride (hBN). Black line:
total DOS, red line: PDOS of the B atom, blue line: PDOS of the N atom. The
band gap can nicely be seen (due to the smearing it looks smaller than the
values extracted from the raw data). The Fermi and vacuum levels are marked
by gray vertical lines (the position of the Fermi level inside the gap is arbitrary:
VASP puts it at the valence band edge). The fact that the individual PDOSes
do not always sum up to the total DOS is an artifact of the projection scheme
used by VASP (see the chapter on RWIGS in the VASP manual [82]).
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6.2. Preliminary Discussion: Be and O in hBN

In the spirit of embedding boron and nitrogen atoms in graphene sheets, similary beryllium
and oxygen atoms can be used as a dipolar pair of atoms in hBN. This system is very far
from realistic and just acts as a logical extension of the graphene with BN pairs systems to
sheets of hBN. Due to the loss of sublattice symmetry when going from graphene to hBN,
the choices for incorporating Be and O atoms into the planar material are very limited if
one requires the total unit cell to have no net dipole moment. The inclusion of Be and O
distorts the lattice quite considerably (see figure 6.2).

The resulting modification of the electron potential energy is shown in figure 6.3: The B and
the N atoms are equally affected by the dipoles, as expected from the simple electrostatic
picture. All in all, the resulting curves look very similar to the graphene with BN pairs case
(see figure 4.3). This similarity is very pronounced in the region with lowered potential,
however in the region with higher potential the characteristic drop of the electron potential
energy with increasing distance to the dipole lines is not present.

For a strip width of about 20�A, the resulting shift of Epot is approximately 1.5eV. This is
large compared to the graphene sheets with BN pairs.

These observations can be attributed to effects beyond the different reaction of hBN and
graphene to dipolar fields: Firstly, the placement of the heteroatoms is very different in the
two systems. Secondly, the massive lattice distortions change the electronic properties of
the hBN system. Thirdly, there is a net dipole moment in the y-direction (due to the lattice
distortion), which creates additional unwanted effects. Finally, there is no reason why the
dipole moment of a pair of Be and O in hBN is similar or even compareable to the dipole
moment of a pair of B and N in graphene. Due to this vast number of possible sources for
the differences in behavior, which cannot be separated, it is not sensible to continue to
examine the inequality of graphene and hBN by comparing BN pair substituted graphene
with this system.

A more promising way to compare graphene and hBN is by looking at the adsorption of
molecules.

Figure 6.2.: GADGET-optimized two-dimensional structure of a sheet of hBN (orange:
B atoms, blue: N atoms) with pairs of Be (gray) and O (red) atoms. The unit
cell is shown in green.
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Figure 6.3.: Electron potential energy at the core relative to the leftmost plotted atom for
the B atoms (top) and the N atoms (bottom) in hBN with substitutional Be and
O atoms (see figure 6.2).
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6.3. Adsorption Geometries

In contrast to the difficulties concerning comparability between graphene and hBN with
in-plane dipoles, comparing the two different planar materials with adsorbed molecules is
straightforward.

In analogy to the geometries used for the adsorbed molecules on graphene (see figure 5.3),
the same three molecules (TW-CN, TW-Pyr Nout and TW-Pyr Nin) are investigated on hBN
(see figure 6.4). Again, starting from high symmetry positions2, the atoms belonging to the
molecule were allowed to move during a geometry relaxation with GADGET, while the B and
N atoms in the hBN sheet were kept at their fixed positions (for more methodological details
see chapter 3.2). The adsorption heights (table 6.1) are very similar to the adsorption
heights on graphene (table 5.1).

2Although the symmetry is lowered compared to graphene because of the breaking of the sublattice symmetry.

Table 6.1.: Adsorption height of the individual molecules regularly adsorbed on a sheet of
hBN: maximum (hmax), minimum (hmin) and average (h̄).

Molecule hmax/�A hmin/�A h̄/�A

TW-CN 3.390 3.300 3.348
TW-Pyr Nout 3.403 3.324 3.355
TW-Pyr Nin 3.413 3.254 3.349
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A AB CC

A AB CC

A AB CC

Figure 6.4.: Optimized geometries of the TW-CN (top), TW-Pyr Nout (middle) and TW-
Pyr Nin (bottom) molecule adsorbed on hBN (one unit cell is shown). In the
substrate, bonds around boron atoms are colored in orange, nitrogen in blue.
The adsorption height is given in table 6.1. In each of the unit cells, three
regions are marked: one region below the dipolar end groups (region A), one
region in-between the dipolar end groups below the molecule (region B) and
one region where the hBN sheet is not covered by the molecule (region C).
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6.4. Electrostatic Potential

As for graphene, the electron potential energy change upon adsorption of a TW-CN mol-
ecule on hBN will be investigated (see figure 5.6 for the graphene counterpart). The
presence of the hBN sheet linearly screens the potential of the dipolar end groups of the
molecule (see figure 6.5). There is a reduction of Epot by a factor of 1.74, which can again
be attributed to a relative dielectric constant ε. The ratio of the this linear screening for
hBN and graphene is about 2.8. Outside the part of the hBN layer that is covered by the
molecule, the potential drops far less quickly than without the presence of the hBN. There
is presumably a polarization of the hBN sheet that counteracts this drop. This is a huge
contrast to the behavior of in-plane dipoles in graphene, where Thomas-Fermi like nonlinear
screening causes Epot to fall more quickly. The reason for this discrepancy remains unclear.

The constant shift, here in the range of −0.065eV, again depends on the choice of the
vacuum potential. Its value is physically irrelevant.

To find out more about the differences between the screening behavior of graphene and
hBN, the electron potential energy in the plane of the two-dimensional material is compared
for these two materials (see figure 6.7). Here, in addition to the TW-CN, TW-Pyr Nout and
TW-Pyr Nin molecules discussed so far, three other molecules are shown for comparison
(see figure 6.6). While they also look promising, they have not been further investigated
because this would have surpassed the scope of this thesis. It should be noted that the
adsorption geometry of these molecules was not optimized. This means that the adsorption
height was arbitrarily chosen (as 3�A, a value that is about 10% too low at least for TW-CN,
TW-Pyr Nout and TW-Pyr Nin) and also the x and y adsorption position was arbitrary3. To
get a feeling for the error that is caused by using this geometry, a comparison of the TW-CN
molecule here and in an optimized adsorption geometry (as discussed above) can be made:
While the shift on graphene is −0.20 eV here, in the relaxed geometry it is only −0.16 eV,
which is most likely mainly due to the larger adsorption distance. On hBN, the shift is
−0.56eV here and −0.50 eV in the relaxed geometry.

In general, the shift in Epot caused by the molecules is larger in hBN than in graphene. For
TW-CN, TW-NO2 and TW-NC, the factor is about 2.8. For TW-Pyr Nout and TW-Pyr Nout CN,
the factor is higher, for TW-Pyr Nin it is lower. This discrepancy probably stems from the
different size and number of rings of these molecules.

In general, the other molecules, i. e. TW-Pyr Nout CN, TW-NO2 and TW-NC, also look
promising as the effect in the potential caused by them is comparable to or surpassing the
TW-CN molecule. The molecules with pyrimidine rings as the only dipolar groups are less
suited. However, TW-Pyr Nin is the only molecule with reversed dipoles included here.

3 The center of the molecules were at x = 3.18�A for the TW-CN molecule, at x = 0.74�A for the TW-Pyr Nout
molecule, at x = 0.74�A for the TW-Pyr Nin molecule, at x = 2.60�A for the TW-NO2 molecule, at x = 3.13�A
for the TW-NC molecule, and at x = 0.71�A for the TW-Pyr Nout CN molecule. These positions are measured
from the x position of a boron atom in the hBN sheet. All the centers of the molecules were put at the
same y-positions as a boron atom in the hBN sheet.
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Figure 6.5.: Electron potential energy change Epot (with the vacuum energy as zero) caused
by the TW-CN molecule in the hBN plane (averaged in the y-direction). Top
left: in presence of the hBN sheet. Top right: without hBN sheet, but in
the plane where the hBN sheet would be. Bottom: The same data, but the
red curve without hBN sheet transformed according to the linear function
E′pot = (1/1.74)Epot − 0.065 (in eV). The symbols mark the x-positions of the
atoms in the molecule.
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6.4. Electrostatic Potential

CN NC

(a) Di-isocyano-substituted diphenylacetylene (or TW-NC).
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2
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(b) Dinitro-substituted diphenylacetylene (or TW-NO2).
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NN

(c) (Ortho)-dicyano-substituted dipyrimidine acetylene (or TW-Pyr Nout CN).

Figure 6.6.: Chemical structure of the three molecules discussed here in addition to the
figures presented in figure 5.1.
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Figure 6.7.: Electron potential energy at the core of the atoms in the two-dimensional
material at y = 0 (i. e. at the lower boundary of the unit cell) with different
molecules adsorbed. The data points for graphene are plotted in blue, hBN in
green. The rightmost plotted datapoint is aligned to zero potential. Here, no
additional geometry optimization of the molecules has been performed, but
the Gaussian geometries are used in an adsorption distance of h= 3�A.
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6.5. Energetic Shift of the DOS

6.5. Energetic Shift of the DOS

The characteristic energy shift of the site-projected density of states, averaged over different
regions, is again a nice way to assess the impact of the collective dipole potential on
the energy of the individual states. Figures 6.8, 6.9 and 6.10 show this quantity for the
TW-CN, TW-Pyr Nout and TW-Pyr Nin molecule. The shift of the PDOSes relative to each
other is clearly visible. It is considerably larger than for graphene sheets, as expected
from the electrostatic considerations. In the gap, there are states that are localized on the
molecules. These are the first states above the Fermi level, so excited or excess electrons
would occupy these states. This observation is similar to the one made for molecules
adsorbed on graphene, where extra electrons would also be found on the molecule.

The different directions of the shift between TW-Pyr Nout and TW-Pyr Nin is again present.
For the unoccupied states, there seems to be a problem when one compares pure hBN
to the site-projected PDOS: this happens for the same reason discussed in the caption of
figure 6.1, i. e. it is an artefact of the projection method.

In total, semiconducting or isolating ultra-thin materials like hBN seem to be better suited for
the electrostatic modification of their electronic structure, because a separation of electron
and hole states in different regions could be feasible with carefully chosen modifiers.
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Figure 6.8.: Density of states projected onto the C atoms in a hBN sheet where a TW-
CN molecule is adsorbed. The PDOSes are averaged over all the atoms in the
different regions shown in figure 6.4: region A in blue, B in green, C in red.
The PDOS averaged over all the atoms belonging to the molecule is plotted in
black, the DOS per atom of pure hBN is plotted in gray.
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Figure 6.9.: Density of states projected onto the C atoms in a hBN sheet where a TW-
Pyr Nout molecule is adsorbed. The PDOSes are averaged over all the atoms in
the different regions shown in figure 6.4: region A in blue, B in green, C in red.
The PDOS averaged over all the atoms belonging to the molecule is plotted in
black, the DOS per atom of pure hBN is plotted in gray.
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Figure 6.10.: Density of states projected onto the C atoms in a hBN sheet where a TW-
Pyr Nin molecule is adsorbed. The PDOSes are averaged over all the atoms
in the different regions shown in figure 6.4: region A in blue, B in green, C
in red. The PDOS averaged over all the atoms belonging to the molecule is
plotted in black, the DOS per atom of pure hBN is plotted in gray.
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6.6. Charge Rearrangements

6.6. Charge Rearrangements

As for graphene, the charge rearrangements upon adsorption of a molecule are investigated.
The methodological description of the calculation of this quantity is given in chapter 3.9.
The resulting curves are found in figure 6.11.

In general, the redistribution of the electron density due to the adsorption is smaller than
for the graphene sheet. The overall shape of the curves is very similar in the two cases,
which means that again electrons are transferred from the hBN layer to the molecule. While
charge transfer is expected for metallic (or semi-metallic) substrates, it is surprising to find it
for an isolating substrate like hBN. The region of strongest electron accumulation is around
the dipolar C-N bond in the molecule. Inside the plane of the substrate, there is a relocation
of charges probably due to the potential stemming from the dipolar endgroups. As for
TW-CN on graphene, the region below the molecule has only small charge redistributions.

All in all, the charge rearrangements lead to a bond dipole, which is weaker than for
graphene.
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(a) (i) Charge rearrangements ∆ρ(z). (ii) Total amount of flown charge Q(z). (iii) Resulting bond dipole
Ebond(z) calculated by integration of Q(z) (blue line) and directly from the VASP potential energies (green
line). (iv) Electrostatic potential of the total system, showing the position of the hBN sheet and the
molecule. The two vertical red lines mark the position of the hBN sheet (left) and the molecule (right).
Here, 40�A of vacuum and the dipole correction were used.

(b) Isosurface of ∆ρ at ±10−3 (−e/�A3), top view. Blue means electron accu-
mulation, red means reduction of the electron density.

(c) Isosurface of ∆ρ at ±10−3 (−e/�A3), side view.

Figure 6.11.: Charge rearrangements due to the adsorption of the TW-CN molecule on hBN.
Isosurface plots produced with XCrysDen [94].
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7. Conclusions and Outlook

The use of lines of dipoles turns out to be an interesting means of locally changing the
electronic structure of graphene. The modification of the electrostatic potential shifts the
energy of the carbon states, which in turn can be observed in the density of states of carbon
atoms. While a separation and localization of occupied and unoccupied states happens to a
certain extent, the formation of separated transport channels for electrons and holes is not
confirmed. Nevertheless, transport calculations with these systems would be the logical
next step for a further exploration of their properties.

The lateral extent of the observed effects is rather short-ranged, which limits possible test
cases to narrow strips of graphene between the dipolar lines. While the experimental
feasibility of linearly arranged dipolar substituents in graphene is doubtful to say the least,
using self-assembled monolayers could be the route to go for implementing these systems
in practise. There, the strength of the effect is, however, much weaker than for directly
embedded dipoles. Thus, finding molecules with strongly dipolar end groups and a low
adsorption distance would be beneficial for the overall effect. Of course, also the strip
width has to be kept low while maintaining a high dipole density along the line.

Apart from graphene, which is by far the most popular two-dimensional material, using
single layers of semiconducting or isolating materials is also an interesting option. In
hexagonal boron nitride, the example of such an isolator chosen for this work, the resulting
energy shift of the density of states is bigger than in graphene in all tested cases. This is
attributed to a significant lowering of the attenuation of the potential created by the dipolar
elements in hBN compared to graphene. However, the origin of this different behavior has
not been thouroughly investigated here, so that the apparent dependence on molecule size
was not fully explained. An in-depth investigation of these effects in conjuction with the
study of other, similar materials certainly appears to be rewarding when looking at the
outcome of the calculations performed in this thesis. Furthermore, these results suggest
that in these semiconductors a spatial separation of electron and hole states might be
achieved. Therefore a more detailed examination of these systems is certainly worthwile.
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A. Typical Input Files

A single point VASP calculation needs four input files: INCAR contains the necessary
parameters for the numerical algorithms and the general behavior of the program, POSCAR
defines the geometry of the system, POTCAR has the PAW potentials for the individual
atomic species and KPOINTS gives the k-point grid.

The POSCAR-file is very system specific and the POTCAR file is just built from the repository
of POTCAR files.

For geometry optimizations using GADGET, the additional INPDAT input file has to be
given.

Preoptimized molecule gas phase geometries were obtained using Gaussian, the corre-
sponding input file is geoopt.com.

A.1. INCAR

SYSTEM = ...
ENCUT = 279.692
NWRITE = 2
PREC = Normal
ISPIN = 1#no spin=1
ICHARG=1
ISTART=1

EDIFF = 1.E-04 (or 1.E-06)
EDIFFG = -1E-02
NELMIN = 1
NSW = 1
IBRION = -1
ISYM = 0

LORBIT = 11
EMIN = -20.
EMAX = 15.
NEDOS = 5001
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A. Typical Input Files

ISMEAR = 0
SIGMA = 0.01
LREAL = Auto
AMIN=0.01
VOSKOWN = 1
ALGO = Normal
LDIAG = .TRUE.
LPLANE = .TRUE.
NSIM = 4
NPAR = 4

LWAVE = .FALSE.
LCHARG = .TRUE.
LELF = .FALSE.
LVHAR = .TRUE.

IDIPOL = 0
LDIPOL = .FALSE.

The meaning of the individual tags can be found in the VASP manual [82]. In some
INCAR files, the following tags were used: for non-self-consistent calculations (for the
band structure or partial charge densities) ICHARG=11, to calculate energy- or band- and
k-resolved charge densities LPARD, EINT, LSEPB, IBAND, and LSEPK, to calculate the energy
of the core states of the atoms ICORELEVEL, for the dipole correction IDIPOL and LDIPOL,
if the dipole correction did not converge faster than the SCF cycle NELMIN, for calculations
with more or less electrons than in the electrically neutral unit cell NELECT, if the number
of calculated bands was not sufficient NBANDS.

A.2. KPOINTS

For self-consistent calculations, a KPOINTS file according to the following template was
used:

Automatic Mesh
0
Gamma
6 21 1
0 0 0

The number of k-points per direction was changed according to the unit cell or Brillouin
zone size.

For non-self-consistent calculations (ICHARG=11) of the band structure, a KPOINTS file
like the following was used:
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A.3. INPDAT

Automatic Mesh
50
Line-mode
Reciprocal

0.5 0.0 0.0
0.0 0.0 0.0

0.0 0.0 0.0
0.0 0.5 0.0

The number of k-points (50 in this example) and the paths through k-space (here from X
to Γ and from Γ to Y in a rectangular unit cell) were adjusted to the needs of the individual
calculations.

A.3. INPDAT

Input file, check inputer.py for all available tags!!!

HESSIAN=3
HUPDATE=1
CART=0
GCRITER=0.000194469

SCRITER=5.02
ECRITER=1e1
ASCALE=1.3
RELAX=0
OPTENGINE=0
NFREE=5
NSW = 1000

#BSCALE= 1.6
#FRAGCOORD= 2
#POTIM=100

Most importantly, the energy convergence criterion was found to be typically not necessary
and was thus set to 10eV for some of the calculations for a speedup in convergence. For
some geometry optimizations, additional constraints were set with the ICONST file as
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A. Typical Input Files

explained by Tomáš Bučko in the README.txt file of GADGET.

A.4. Gaussian Geometry Optimization

A template input file for a gas phase geometry optimization of a molecule (the initial
geometry can be created using programs like molden or MarvinSketch) in Gaussian looks
like this geoopt.com file:

%chk=geoopt.chk
%nproc=2
%mem=2gb
# PBEPBE/6-311G(d,p) pop=regular opt=(maxcycles=200) nosymm

System-Name

0 1
C 0.000000 0.000000 0.000000
...

The individual initial atomic positions have to be given in analogy to the carbon atom at
the origin in this file. The input file has to end with a blank line. For a detailed description
of the input file, refer to the Gaussian manual.
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B. Program to Calculate the Dipole
Line Potential

The potential of a line of dipoles located at the y-axis with the dipole moments pointing in
the x-direction can be calculated according to (2.9). The following file is a FORTRAN 90
program for doing this summation:

subroutine chaindippot(x,expo,b,y,z,pot,dpot)
implicit none
double precision, intent(in) :: x, expo, b, y, z
double precision, intent(out) :: pot, dpot
double precision :: potold, r
integer :: N, i

N=5000

pot = 0.0
do i=-N,N

potold=pot
r=sqrt(x**2+(y+i*b)**2+z**2)
r=x/r**3*exp(-expo*r)*(1+expo*r)
if(isnan(r)) cycle
pot=pot+r

end do
dpot=pot-potold
end subroutine chaindippot

The input parameters of this subroutine are the point of observation x, y, z, the Thomas-
Fermi screening constant expo and the lattice constant of the line b. For a calculation
without Thomas-Fermi screening, expo has to be set to zero. The output parameters are
the potential per dipole moment pot and an estimate of the error, dpot.

The number of summed terms is 2N , and for realistic values of b, N=5000 has turned out to
be sufficient. If, however, the estimated error dpot is too large, this value can be increased.
Should the current term r fall below the lowest possible floating point number, its value is
nan and it is not added to the potential.
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B. Program to Calculate the Dipole Line Potential

The resulting value pot has to be multiplied by the dipole moment of the individual dipoles
forming the line. If all lengths are given in �A and the dipole moment is given in e�A, the
electron potential energy in eV is Epot = 14.399640 · p · pot.

While this subroutine can be compiled with a FORTRAN compiler and then used in a
FORTRAN program, it is also possible to use f2py1 to be able to call this subroutine as a
function from Python programs. The corresponding command is
f2py -c --fcompiler=gfortran -m chaindippot chaindippot.f90.

1For a description see http://docs.scipy.org/doc/numpy-dev/f2py/.
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C. Shifted PDOS Model

The following listing shows the main part1 of the python script2 used for the calculation of
the shifted PDOS model that was introduced in chapter 4.3.5.

import numpy as np
from scipy.integrate import quad
from scipy.integrate import cumtrapz
from scipy.optimize import fsolve

# The following function decorators can make functions
# handle vectors as well
def make_vector_handleable(func):

def func_univ(ks,*args,**kwargs):
if hasattr(ks, ’__iter__’):

res=[]
for k in ks:

res.append(func(k,*args,**kwargs))
return np.array(res)

else:
return func(ks,*args,**kwargs)

return func_univ

# We define a function that represents the PDOS of
# each of the atoms.
@make_vector_handleable
def pdos_atom(E):

return 0.5*np.abs(E)

# We define a shift function that shifts the
# PDOS for an atom.
# For that we need the number of atoms N.
# The atoms are at positions 0,...,N-1.
# The maximum shift of the PDOS is max_shift.
N=20

1In particular, the plotting commands have been left out.
2Tested with Python 2.7.3 (default, Feb 27 2014, 19:58:35) and Python 3.2.3 (default, Feb 27 2014,

21:31:18) with numpy 1.6.1 and scipy 0.9.0.
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C. Shifted PDOS Model

max_shift=2

@make_vector_handleable
def shift_pdos(k):

if k<N/4:
return max_shift*(-1+4*k/float(N))

elif k<3*N/4:
return 0

else:
return max_shift*(1-4*(N-k-1)/float(N))

# coordinates of the atoms: 0, ..., N-1
atoms=range(N)

# Construct the total DOS from the PDOSes:
@make_vector_handleable
def total_dos(E):

dos=0
for at in atoms:

dos+=pdos_atom(E-shift_pdos(at))
return dos

#energies=np.linspace(-5-max_shift,5+max_shift,101)
#dos=total_dos(energies)

# We will now fill the system with extra electrons,
# i.e. use a higher number of electrons and shift the
# Fermi energy (from zero) to higher energies.

# We look at the integated DOS:
@make_vector_handleable
def total_dos_int(dE):

return quad(total_dos,0.0,dE)[0]

# Now we can find out how the Fermi energy E_F changes
# when we put in a certain number of extra electrons
# into the system:

dne = 1 # number of additional electrons
dEF = fsolve(lambda E: total_dos_int(E)-dne,0.5)

# We now choose a certain number of extra electrons
# N_extra, calculate the Fermi energy shift for this
# number and then fill the PDOSes up to that energy.
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@make_vector_handleable
def extra_electrondensity(N_extra,atoms):

startval=0.5*np.sign(N_extra)
dE_F = fsolve(lambda E: total_dos_int(E)-N_extra,

startval)
nelec_perat=[]
for at in atoms:

nelec=quad(lambda E: pdos_atom(E-shift_pdos(at)),
0.0,dE_F)[0]

nelec_perat.append(nelec)
return np.array(nelec_perat)

print(extra_electrondensity([-1,0,1],atoms))

For the semiconductor model, the only difference is

@make_vector_handleable
def pdos_atom(E):

if E<-2.5 or E>2.5:
return 1

else:
return 0
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