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ABSTRACT

The Markowitz mean-variance efficiency framework states probably the most popular and
widely known approach in modern portfolio optimization. It allows the specification of a
so-called risk aversion parameter which intends to govern the risk taken by investing into
the resulting portfolio. A major shortcoming of this approach is its assumption of the asset
returns being (jointly) normally distributed random variables. We avoid this assumption by
introducing a new method to a posteriori measure the performance of a portfolio. A priori,
this measure states a one dimensional random variable whose probability function only
depends on the unknown asset return distribution and the length of the investment horizon.
We then use well known methods from distributionally robust optimization to reformulate
the resulting portfolio optimization problem as a tractable conic program whose size does
not depend on the length of the investment horizon. Thereby, we only assume the first-
and second-order moments of the asset return distribution to be known. This approach
allows for an easy robustification against the ambiguity that arises from estimating these
two moments and also for a choice of a risk aversion parameter. For a certain choice of
this risk aversion parameter, a robustified approximation of the growth optimal portfolio
is attained. The empirical backtests show that the robust portfolios offer a more moderate
performance, i.e. the performances follow their mean-variance efficient counterparts but
are less extreme.

ZUSAMMENFASSUNG

Der Ansatz der effizienten Portfolios nach Markowitz gilt als Grundlage der modernen Port-
foliotherie. Dabei ist es möglich einen sogenannten Risikoaversionsparameter zu wählen.
Dieser soll das Risiko, dem man durch ein Investment in das resultierende Portfolio aus-
gesetzt ist, steuern. Ein großer Kritikpunkt an diesem Ansatz ist die Annahme, dass
die Renditen der betrachteten Vermögenswerte normalverteilte Zufallsvariablen sind. Um
dieses Problem zu umgehen führen wir ein neues Maß zur a posteriori Bewertung von
Portfoliorenditen ein. A priori stellt dieses Maß eine eindimensionale Zufallsvariable dar
dessen Verteilungsfunktion nur von der Verteilung der Renditen und der Länge des Betrach-
tungszeitraumes abhängt. Mit der Hilfe von bekannten Methoden der verteilungsrobusten
Optimierung können wir das Portfolio-Optimierungsproblem als ein konisches Programm
formulieren, dessen Größe nicht mehr von der Länge des Betrachtungszeitraumes abhängt.
Dabei nehmen wir lediglich an, dass die ersten beiden Momente der Rendite-Verteilung
bekannt sind. Dieser Ansatz erlaubt uns eine einfache Robustifizierung gegenüber den
Schätzfehlern dieser ersten beiden Momente und ebenso die Festlegung der Risikoaversion
durch einen Parameter. Für eine bestimmte Wahl dieses Risikoaversionsparameters erhal-
ten wir eine robustifizierte Approximation des sogenannten wachstumsoptimalen Portfolios.
Die empirischen Tests belegen, dass diese robusten Portfolios ein gemäßigteres Verhalten
aufweisen, das heißt dass die beobachteten Renditen zwar jenen der klassischen effizienten
Portfolios entsprechen, jedoch nicht so extrem sind.
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1 Introduction

In this thesis, we investigate the problem of choosing an optimal combination of vari-
ous risky assets to invest in. A very intuitive and popular approach was presented by
[Markowitz, 1952]. He introduced the notion of an efficient trade-off between the expected
return and the risk of a portfolio, which he quantified by the mean and the variance of the
portfolio returns. Beside its simplicity and intuitive approach, the main reason for the huge
popularity of the Markowitz model is that the so-called mean-variance efficient portfolios
can be easily computed as the optimal solution of a quadratic optimization problem. The
trade-off between return and risk can be specified by a risk aversion parameter. The most
risk averse portfolio in this framework is called minimum-variance portfolio and simply
minimizes the portfolio variance.

On the other hand, the Markowitz approach is burdened by some major disadvantages.
Since it is only considered for one rebalancing period, and its consecutive application will
lead to almost sure ruin in the long run (see [Roll, 1973]), its usage for long term investing
is not advisable. Also, the true mean and variance of the asset-returns are assumed to be
known. As these moments can only be estimated and the Markowitz approach does not
account for the implied ambiguity, this constitutes a likely source of errors.

Of course, since Markowitz first published his work, many other approaches have been
made to tackle these shortcomings. The so-called Kelly strategy, which maximizes the ex-
pected portfolio growth rate (“growth-optimal portfolios”, see [Luenberger, 1998]), is one
of these other approaches which gained wide popularity. It can be shown that, in the long
run, the growth-optimal portfolio accumulates more wealth than any other portfolio with
probability one. Like the mean-variance efficient portfolio, the Kelly strategy can be easily
computed by solving a single-period convex optimization problem.

A drawback of the Kelly strategy is that the time needed to assure that it outperforms
any other strategy can be impracticably long. Also, the Kelly strategy cannot be tailored
to a specific time horizon and ignores moment ambiguity.

In their recently drafted paper [Rujeerapaiboon et al., 2014] introduced the robust
growth-optimal portfolio that “offers similar performance guarantees as the classical growth-
optimal portfolio but for finite investment horizons and ambiguous return distribution”.
This behaviour is achieved by maximizing the worst-case value-at-risk at level ε of a
quadratic approximation of the portfolio growth rate, where the worst case is taken over all
distributions in a predefined ambiguity set. The robust growth-optimal portfolio can also
be efficiently computed as the solution of a second-order cone program (shortly SOCP)
whose size does not depend on the length of the investment horizon and allows for easy
robustification against moment ambiguity.
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We introduce a method to a posteriori evaluate the performance of a portfolio by
a quadratic polynomial function of the realized portfolio returns. By definition, this
quadratic polynomial has a positive curvature and a parametrized minimum at γ. This
evaluation states a random variable a priori which we aim to “minimize”. We then use the
idea and conceptional derivation presented in [Rujeerapaiboon et al., 2014] to reformulate
our portfolio optimization problem as a SOCP. As will be clear by the definition of γ, this
parameter will influence the risk aversion of the resulting portfolio. For certain choices of
γ, the robust growth-optimal portfolio or the Markowitz minimum-variance portfolio can
be obtained. We will also derive a technical lower bound γ∗ for the possible values of γ.
If γ is chosen as γ∗, the resulting portfolio marks the most risk averse robust portfolio in
the sense of minimal expected variance. We will see that this robust risk averse portfolio
is in some sense the distributionally robust counterpart to the classical minimum-variance
portfolio. Furthermore, as all of our robust portfolios are mean-variance efficient in the
classical sense, we interpret our approach as an distributionally robust extension to the
mean-variance efficiency framework. The parameter γ defines the exact position of a ro-
bust portfolio on the efficient frontier. This “robust efficient frontier”, i.e. the set of all
robust portfolios which arises from different choices of γ, will thereby only cover a small
fraction of the classical efficient frontier. Similar to the approach of Rujeerapaiboon et
al., we can further robustify our portfolio optimization against moment ambiguity. The
resulting problem will also be a SOCP. It will be clear from the problem formulation that
these portfolios are also mean-variance efficient in the classical sense. Therefore, the set
of all robust portfolios with moment ambiguity will lie on the efficient frontier and we will
see that it moved “towards” the minimum variance portfolio.

The remainder of this thesis is structured as follows. As our resulting portfolio op-
timization problem will be formulated as a second-order cone program, we give a brief
introduction of conic programming in Section 2. In Section 3, we will recap the classical
portfolio selection model of Markowitz and the Kelly growth-optimal strategy. Our method
of evaluating portfolios, inspired by the approach of Rujeerapaiboon et al., with the intro-
duction of the new risk-aversion parameter γ is presented in Section 4. The preliminaries
and the actual formulation of the resulting optimization problem as a second-order cone
program are introduced in Section 5. There, we also address the implication of particular
choices of γ. In Section 6 we present our methods of choice for estimating moments of
asset-returns and the corresponding uncertainty cones. From our empirical backtests in
Section 7 we see that the robust risk averse portfolios show more moderate performances
than the minimum-variance portfolio. This means that in scenarios where the minimum-
variance portfolio performed good, so did its robust counterpart, but not as good. Vice
versa, in scenarios where the minimum-variance portfolio performed bad, so did the robust
risk averse portfolio, but not as bad. We will also see that the robust portfolios outper-
formed the naive equally weighted portfolio when applied to the components of the Dow
Jones Industrial Average over the time period December 2005 to December 2010, which
covers the outbreak of the global financial crisis. We conclude in Section 8.
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1.1 Notation

The following abbreviations/notations are used:

(QC)LP. . .(Quadratically Constrained) Linear Program

(QC)QP. . .(Quadratically Constrained) Quadratic Program

SOCP. . .Second-order Cone Program

SDP. . .Semidefinite Program

I . . .The identity matrix in the appropriate dimension

1 . . .The vector of ones in the appropriate dimension

δst . . .The Kronecker-Delta, i.e. δst =

{
1 if s = t

0 else

Pn
0 . . .The set of all not degenerated probability distributions on Rn

X′ . . .The transpose of X ∈ Rm×n

Sn (Sn+) . . .The space of symmetric (symmetric positive semidefinite) matrices in Rn×n

Tr(X) . . .The trace of a matrix X = {xij}i,j=1,...,n ∈ Rn×n given by Tr(X) =
n∑
i=1

xii

〈X,Y〉 = Tr(XY) . . .The trace scalar product for any X,Y ∈ Sn

X � Y(X � Y) . . .Indicates that X−Y is positive semidefinite (positive definite)

λmin(X) . . .The smallest eigenvalue of a matrix X ∈ Rn×n

λmax(X) . . .The largest eigenvalue of a matrix X ∈ Rn×n

X1/2 . . .The “square root” of a matrix X ∈ Sn+, i.e. X1/2 ·X1/2 = X

13



2 Second-Order Cone Programming

Since we are going to reformulate the distributionally robust portfolio optimization problem
as a second-order cone program in Section 5.2, we want to recall some basic notions about
cone optimization in general and second-order cone programming in particular. We will
define (second-order) cones in Section 2.1, where we also state the general formulation of a
conic optimization problem. Second-order cone programs and their general formulation are
reviewed in Section 2.2. In Section 2.3 we will present some techniques on how to solve such
problems. These also represent the reasons for our interest in SOCPs, since they enable us
to numerically solve our portfolio optimization problem with little computational effort.
This short introduction is based mainly on [Lobo et al., 1998] and [Alizadeh and Goldfarb,
2002].

2.1 Cones in Rn

In order to solve SOCPs, we should of course remember the definition of a cone in the
n-dimensional space of real numbers denoted by Rn, where n is a natural number.

Definition 2.1 (Cone). A n-dimensional cone is a subset of Rn which is closed under
multiplication with a non-negative scalar, i.e.

C ⊆ Rn is a cone⇔ ∀x ∈ C ∀λ ∈ R+ : x · λ ∈ C .

A pointed cone is a cone which does not contain any line, or equivalently C ∩ (−C ) = {0},
where −C := {−x|x ∈ C}.

A pointed and convex cone C with non-empty interior int(C ) induces a partial order
on Rn with

x �C y ⇔ x− y ∈ C

x �C y ⇔ x− y ∈ int(C ),

where x, y ∈ Rn and int(C ) denotes the interior of C .
The above definition includes of course many different types of cones. One example in
the two-dimensional Euclidean space can be seen in Figure 1. Note that also the set Sn+ of
symmetric and positive semidefinite n×n-matrices is a cone. For our particular application
though, we can restrict our attention to so-called second-order cones.

Definition 2.2 (Second-order cone). The (n + 1)-dimensional second-order cone (also
called Lawrence or ice-cream cone) in Rn+1 is defined as

C n+1
2 :=

{
(x0, x1, . . . , xn) ∈ Rn+1 : x0 ≥ ‖(x1, x2, . . . , xn)‖2

}
,

where ‖ · ‖2 denotes the Euclidean vector norm, i.e. ‖(x1, x2, . . . , xn)‖2 =
√
x2

1 + . . .+ x2
n.

14



Figure 1: Cone in the two-dimensional Euclidean space

The reason for calling second-order cones “ice-cream cones” becomes clear if we visualize
it in three dimensions, which is plotted in Figure 2. Note that this cone is a pointed, convex
and closed cone.

Figure 2: The three dimensional second-order cone

For every cone, we can define its so-called dual cone.

Definition 2.3. Let C be a cone. Its dual cone C ∗ is defined as

C ∗ := {x ∈ Rn|∀y ∈ C : 〈x, y〉 ≥ 0},

where 〈·, ·〉 denotes an inner product on Rn. Here we use 〈x, y〉 = x1y1 + . . .+ xnyn.
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Figure 3: Cone and dual cone in the two-dimensional Euclidean space

The dual cone of our exemplary cone in the two-dimensional Euclidean space can be
seen in Figure 3. If a cone coincides with its dual, it is called a self-dual cone.

We can now formulate a conic optimization problem. Let A ∈ Rm×n, b ∈ Rm and
e ∈ Rn. For C a closed and convex cone in Rn, a conic optimization problem is given by

min
x
e′x

s.t. Ax = b and x ∈ C .
(1)

Note that for C = Rn
+ the conic optimization Problem (1) reduces to a linear optimization

problem.

2.2 General Second-Order Cone Program-Formulation

Similar to the conic optimization Problem (1), in a second-order cone program we min-
imize a linear objective function where the set of all feasible points is now given as the
intersection of an affine set and finitely many transformed second-order cones.

Let Ai ∈ R(ni−1)×n, F ∈ Rp×n, g ∈ Rp, bi ∈ Rn−1, ci ∈ Rn, di ∈ R and e ∈ Rn where
ni ∈ N for i = 1, . . . , N and n, p ∈ N. A second-order cone program is then given by

min
x
e′x

s.t. ‖Aix+ bi‖2 ≤ c′ix+ di, i = 1, . . . , N

Fx = g,

(2)

where ‖ · ‖2 again denotes the Euclidean norm.
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Note that the constraints ‖Aix+bi‖2 ≤ c′ix+di are called second-order cone constraints
since

‖Aix+ bi‖2 ≤ c′ix+ di ⇔
[
c′i
Ai

]
x+

[
di
bi

]
∈ C ni

2 .

As its objective is a convex function and the set of all feasible solutions is a convex set,
the second-order cone Problem (2) states a convex optimization problem.
Many common convex constraints can be represented as second-order cone constraints.
Therefore, a lot of basic optimization problems can be formulated as SOCPs. Some of the
most prominent examples are listed below, see [Alizadeh and Goldfarb, 2002] for a more
exhaustive overview.

• Linear Programs (LPs):
If Ai = 0 and bi = 0 (or equivalently ni = 1) for all i = 1, . . . , N , the second-order
cone Program (2) reduces to a linear program of the form

min
x
e′x

s.t. 0 ≤ c′ix+ di, i = 1, . . . , N

Fx = g.

• Quadratically Constrained Linear Programs (QCLPs):
For ci = 0, the i-th constraint of Program (2) reduces to ‖Aix + bi‖2 ≤ di. If
we assume di ≥ 0, this is equivalent to ‖Aix + bi‖2

2 ≤ d2
i . Therefore, if for all

i = 1, . . . , N the parameters ci are equal to zero, the second-order cone program
reduces to a quadratically constrained linear program given by

min
x
e′x

s.t. ‖Aix+ bi‖2
2 ≤ d2

i , i = 1, . . . , N

Fx = g.

• (Convex) Quadratic Programs (QPs):
For P0 ∈ Rn×n symmetric, q0,∈ Rn, ai ∈ Rn , bi ∈ R and r0 ∈ R, where i = 1, . . . , N ,
a convex quadratic program is given by

min
x
x′P0x+ 2q′0x+ r0

s.t. a′ix ≤ bi, i = 1, . . . , N.

If we assume P0 to be positive definite (i.e. P0 � 0), the above problem can be
reformulated as a second-order cone program of the form

min
t,x

t

s.t. ‖P1/2
0 x+ (P

1/2
0 )−1q0‖2 ≤ t

a′ix ≤ bi, i = 1, . . . , N,

17



since every solution that minimizes ‖P1/2
0 x+ (P

1/2
0 )−1q0‖2

2 = x′P0x+ 2q′0x+ q′0P
−1q0

also minimizes the objective of the original convex quadratic program. Note that
QPs can be reformulated as SOCPs in general and therefore also for P0 only positive
semidefinite. We neglect this case since the general reformulation would require
additional effort and is irrelevant for the introductory character of this section.

• (Convex) Quadratically Constrained Quadratic Programs (QCQPs):
A general convex quadratically constrained quadratic program is given by

min
x
x′P0x+ 2q′0x+ r0

s.t.x′Pix+ 2q′ix+ ri ≤ 0, i = 1, . . . , N,

where the matrices Pi ∈ Rn×n are symmetric and positive semidefinite and qi ∈ Rn,
ri ∈ R for i = 0, . . . , N .
In the special case where the matrices Pi are positive definite, the above QCQP can
be written as

min
t,x

t

s.t. ‖P1/2
0 x+ (P

1/2
0 )−1q0‖2 ≤ t

‖P1/2
i x+ (P

1/2
i )−1qi‖2 ≤ (q′iP

−1
i qi − ri)1/2, i = 1, . . . , N,

which states a SOCP with N + 1 constraints.
Note that the constraints ‖P1/2

i x + (P
1/2
i )−1q0‖2 ≤ (q′iP

−1
i qi − ri)1/2 are equivalent

to x′Pix + 2q′ix + q′iP
−1
i qi ≤ q′iP

−1
i qi − ri which coincides with the original QCQP

constraints.

In summary, many common optimization problems can be recast as second-order cone
programs. On the other side, SOCPs are a special case of semidefinite programs (SDPs).
For SDPs, the set of all feasible solutions is given by the cone of positive semidefinite
matrices. For further information about SDPs, we refer to [Laurent and Rendl, 2005].

• Semidefinite Programs (SDPs):
For Fi,C ∈ Sn with i = 1, . . . , n and e ∈ Rn a general semidefinite program is given
by

min
X

tr(C ·X)

s.t. (tr(F1 ·X), . . . , , tr(Fn ·X))′ = e,

X � 0.

The (Lagrangian-) dual of an optimization problem is obtained by using non-negative
multipliers to add the constraints to the objective function. The resulting function is
called Lagrangian and the multipliers are considered as the dual variables. We can then
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solve for the primal variable values (the original optimization variables) that minimize the
Lagrangian as a function of the dual variables. The dual problem is to maximize this
function with respect to the dual variables. One can show that the dual of the above SDP
is given by

max
x

e′x

s.t.
n∑
i=1

xiFi � C,

where x = (x1, . . . , xn)′ ∈ Rn is the optimization variable.

If we define p∗ to be the optimal value of the primal and d∗ to be the optimal values of
the dual problem, the so-called duality gap is given by p∗ − d∗. It can be shown that the
duality gap is non-negative, i.e. the value of the primal SDP is at least the value of the dual
SDP. The primal and the dual are called strictly feasible if there exists a feasible X � 0 for

the dual and a x ∈ Rn such that
n∑
i=1

xiFi ≺ C. In this case, the duality gap is equal to zero.

See [Vandenberghe and Boyd, 1996] for more details on the duality of semidefinite problems.

We can reformulate the Second-Order Cone Program (2) as the dual of an SDP. For
this purpose we observe that a second-order cone constraint is equivalent to a linear matrix
inequality, i.e. for u ∈ Rn and t ∈ R

‖u‖2 ≤ t⇔
[
tIn u
u′ t

]
� 0.

The above equivalence can be easily verified by using Sylvester’s criterion1. Therefore, if
t ≥ 0, for the above equivalence to hold it is sufficient that the determinant of the right
hand matrix is non-negative. This determinant is given by

det

([
tIn u
u′ t

])
= tn(t− 1

t
u′u),

and obviously tn(t− 1
t
u′u) ≥ 0⇔ t ≥ ‖u‖2.

This result can be used to reformulate a constraint ‖Ax+ b‖2 ≤ c′x+ d of a SOCP as[
(c′x+ d)I Ax+ b
(Ax+ b)′ (c′x+ d)

]
� 0. (3)

If we define

Fi :=


ci 0 . . . 0 A1i

0
. . . . . .

...
...

...
. . . . . . 0

...
0 . . . 0 ci Ani

A1i . . . . . . Ani ci

 and C :=

[
−dI −b
−b′ −d

]
,

1Sylvester’s criterion states that a quadratic matrix A ∈ Rn×n is positive semidefinite if and only if all
matrices determined by the upper left k × k corner of A (k = 1, . . . , n) have a non-negative determinant
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it follows that Equation (3) is equivalent to
n∑
i=1

xiFi � C. We conclude that in some sense,

SOCPs lie somewhere in-between LPs and SDPs, while they also comprise QPs.

2.3 Solving Second-Order Cone Programs

In this section, we will focus our attention on methods to solve SOCPs. We will therefore
only briefly review the theoretical background and give a quick overview on available soft-
ware packages that can handle second-order cone programs.

Similar to LPs, QPs, and SDPs, optimal solutions to SOCPs can be approximated with
any given accuracy in polynomial time by using interior point methods. Note that since
SOCPs can be recast as SDPs, it would be possible to solve them as SDPs. Nevertheless,
this is not advisable since the computational effort to solve SDPs is in general higher than
in the case where algorithms specifically designed to solve SOCPs are involved. Since
many empirical studies have shown that primal-dual interior-point algorithms often show
more appealing properties than primal only, we will now have a look at the dual of the
second-order cone Problem (2). To do so, we will first recall the formulation of the general
second-order cone Problem (2) which was given as

min
x
e′x

s.t. ‖Aix+ bi‖2 ≤ c′ix+ di, i = 1, . . . , N,
(4)

where we neglect the affine restriction for simplicity.

In order to obtain the (Lagrangian-) dual of the above problem we again solve for the
primal variable values that minimize the Lagrangian as a function of the dual variables.
The dual is then given by maximizing this function with respect to the dual variables. For
this purpose, we introduce new variables, and rewrite the second-order cone Problem (4)
as

min
x
e′x

s.t. ‖yi‖2 ≤ ti, i = 1, . . . , N

yi = Aix+ bi, ti = c′ix+ di, i = 1, . . . , N.

The Lagrangian L(x, y, t, w, z, µ) =: L is then given by

L = e′x+
N∑
i=1

wi(‖yi‖2 − ti) +
N∑
i=1

z′i(yi −Aix− bi) +
N∑
i=1

µi(ti − c′ix− di)

= (e−
N∑
i=1

(A′izi + µici))
′x+

N∑
i=1

(wi‖yi‖2 + z′iyi − witi + µiti − b′izi − diµi),
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which, as a function in x, is bounded from below if and only if e =
N∑
i=1

(A′izi − µici).

Similarly, we observe that as a function in ti, the above Lagrangian is bounded from below
if and only if wi = µi. We also note that

inf
yi

(wi‖yi‖2 + z′iyi) =

{
0 if ‖zi‖2 ≤ wi

−∞ else.

Hence, if we minimize the above Lagrangian with respect to the primal variables, the

optimal value is −
N∑
i=1

(b′izi + diwi). As mentioned earlier, this optimal value serves as the

objective function for the dual problem, which we aim to maximize. By considering the
restrictions we derived above, the SOCP-dual is thus given as

max
zi,wi

−
N∑
i=1

(b′izi + diwi)

s.t.
N∑
i=1

(A′izi + ciwi) = e, i = 1, . . . , N

‖zi‖2 ≤ wi, i = 1, . . . , N,

(5)

where zi ∈ Rni−1 and w ∈ RN are the dual optimization variables.

We observe that the above SOCP-dual (5) again states a convex second-order cone
program. Similar to SDPs, the duality gap for SOCPs is always non-negative. If both,
the primal and the dual SOCP, are strictly feasible, the duality gap is equal to zero. See
[Alizadeh and Goldfarb, 2002, §5] for more details on the duality theory of SOCPs.

Many interior-point methods which were initially developed for linear programming can
be extended to solve SOCPs. Likewise, the majority of interior-points methods which were
developed for semidefinite programming can be specialized for SOCPs.
Linear primal-dual interior-point methods were initially introduced by [Kojima et al., 1989]
and [Monteiro and Adler, 1989]. The basic idea of primal-dual interior-point methods for
SOCPs is to use the path-following paradigm. In every iteration, a so-called predictor
search direction is computed which aims to minimize the duality gap, which is nothing but
the difference between the primal and the dual objectives at the current iterate. The step
is then corrected in order to stay close to the so-called central path, an analytic curve in
the interior of the set of all feasible solutions which eventually converges to the optimal
solution, see [Alizadeh and Goldfarb, 2002, §7] for more details.

For infeasible primal-dual path-following algorithm the initial iterates do not have to
be feasible. These algorithms try to achieve feasibility and optimality of their iterates
simultaneously. See [Toh et al., 2006] for more details on these type of algorithms.
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There exist several solvers that can handle SOCPs. Some of them are listed in Table 1,
see for example NEOS2 (Network Enabled Optimization Server) for a more comprehensive
overview of the available software solutions.

Solver Description

MOSEK Commercial software package for solving large optimization problems.
SeDuMi MATLAB toolbox for solving optimization problems

over self-dual homogeneous cones
AMPL Algebraic modelling language with SOCP support
CPLEX Optimization software package developed by IBM
SDPT3 MATLAB implementation of infeasible path-following

algorithms for solving conic programming problems
PENSDP Stand-alone program for solving general optimization problems

Table 1: SOCP solvers

For our empirical backtests in Section 7.2 we used SDPT3 in combination with the
modelling package CVX3, a MATLAB-based modelling system for convex optimization
which would also support the SeDuMi solver.

2http://neos.mcs.anl.gov
3http://cvxr.com/cvx
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3 Portfolio Optimization

Here, we want to lay out the basic ideas and the most important results of the theory
of portfolio optimization. We consider an investor who has the choice of n ∈ N different
assets to invest his capital in. In our framework, it is assumed that the only information
available are the historic asset-returns observed in the past. Based on this information,
the aim is to derive a portfolio or an investment strategy that somehow “complies best”
with the interests of the investor or is optimal in some sense.
In Section 3.1, we will further explain our assumptions and the problem setting. This is
followed by a short review of the classical approach of Markowitz and the Kelly strategy
in Sections 3.2 and 3.3, respectively. Finally, in Section 3.4, we compare these two basic
approaches in a simple example.

3.1 Preliminaries

Let us consider n ≥ 2 different assets S1, S2, . . . , Sn. We denote the price process of asset
i ∈ {1, . . . , n} by P i, saying that P i

t is the actual price of asset i at time t. The (absolute)

return rit of asset i in the time period [t − 1, t] is given by rit :=
P i
t−P i

t−1

P i
t−1

. Let µi and σi

(i ∈ {1, . . . , n}) be the expected value and the standard deviation of the future return r̃i

of asset Si on a given time interval. We assume that r̃i ≥ −1, i.e. the worst case scenario
is a complete default of asset Si, which implies a total (100%) loss of our investment. As
in general, asset-returns cannot be assumed to be mutually independent, we denote by ρij
(i 6= j) the correlation coefficient of the returns of assets Si and Sj.

A vector of portfolio weights w ∈ Rn, where we assume that
∑n

i=1w
i = 1 holds,

describes the distribution of the capital invested in the assets, meaning a portion wi of
the initial capital is invested in asset Si, i = 1, . . . , n. We further assume wi ≥ 0, i.e. we
exclude portfolios with short sales. Obviously, a vector of portfolio weights fully describes
a portfolio over the assets {S1, . . . , Sn}. In addition, we denote by W ⊆ Rn the set of all
so-called admissible portfolios that comply with the above and maybe other possible linear
restrictions that arise due to regulatory or institutional reasons.
If we describe the expected value µ and the covariance matrix Σ of the asset-returns
r̃ = (r̃1, . . . , r̃n)′ by

µ :=

µ1
...
µn

 and Σ :=


σ2

1 ρ12σ1σ2 . . . ρ1nσ1σn
ρ21σ2σ1 σ2

2 . . . ρ2nσ2σn
...

...
. . .

...
ρn1σnσ1 ρn2σnσ2 . . . σ2

n

 ,
we can conveniently write the expected return and variance of a portfolio w hold unchanged
for the considered time interval as

µw := w′µ and σ2
w := w′Σw.
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As Σ states a covariance matrix, it is positive semidefinite, i.e. Σ � 0 holds. By
assumption Σ � 0 holds. Note that this is not very restrictive since it only means that
there are no redundant assets within {S1, . . . , Sn}.

Moving to a multi-period scenario, we now assume that for a given time horizon T ∈ N,
the portfolio weights wt ∈ Rn may be adjusted at predetermined dates t = 0, . . . , T − 1
and define by r̃it the return of asset Si in time period [t− 1, t].
We also assume the asset-returns r̃t := (r̃1

t , . . . , r̃
n
t )′ to follow a weak sense white noise

process defined as follows.

Definition 3.1 (Weak Sense White Noise Process). The random vectors (r̃t)
T
t=1 form a

weak sense white noise process if they are mutually uncorrelated and share the same mean
values EP(r̃t) = µ and second-order moments EP(r̃tr̃

′
t) = Σ + µµ′ ∀1 ≤ t ≤ T , where P

describes the (unknown) asset-return distribution.

We call random vectors, which are not only uncorrelated but independent and identi-
cally distributed, white noise processes in the strong sense.

Definition 3.2 (Strong Sense White Noise Process). The random vectors (r̃t)
T
t=1 form

a strong sense white noise process if they are mutually independent and identically dis-
tributed.

A family of vectors (wt)
T
t=1 (wt ∈W) describes an investment strategy, meaning portfo-

lio wt is held in period (t− 1, t]. A subset of the class of all possible investment strategies
is called fixed-mix strategies and the subset is described by the following definition.

Definition 3.3 (Fixed-Mix Strategy). A portfolio strategy (wt)
T
t=1 is called a fixed-mix

strategy if there is a w ∈W such that wt = w for all t = 1, . . . , T .

Thus, fixed-mix strategies keep the vector of portfolio weights constant over time.

To maintain tractability, we restrict our attention to fixed-mix strategies due to their
simplicity and attractive theoretical properties. As a fixed-mix strategy is defined by a
single w ∈W, we will describe both the investment strategy and the single portfolio by w.

So far, we have outlined the preliminaries of portfolio theory. We defined what an ad-
missible portfolio is and on what information and assumptions a portfolio-selection method
should be based. In the remainder of this section, we will recall two of the most funda-
mental approaches of portfolio theory, namely the so-called “mean-variance efficient” and
“growth-optimal” portfolios.
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3.2 Mean-Variance Efficient Portfolios

[Markowitz, 1952] introduced the so-called “Modern Portfolio Theory” in his famous 1952
article. The foundation of this theory is the basic assumption that investors are risk averse,
i.e. given two portfolios with the same expected return, an investor will choose the one
with the lesser risk. Markowitz identified risk by the variance of the portfolio-returns.
The aim is now to minimize the variance of a portfolio under the restriction that its
expected return is larger than or equal to a given threshold. Such variance minimizing
portfolios are called efficient portfolios.
In the following, we assume the set of all admissible portfolios W to be of the form W =
{w ∈ Rn : Aw = b,Cw ≥ d, w ≥ 0}, where A,C ∈ Rn×n and b, d ∈ Rn are given
parameters.

Definition 3.4 (Efficient Portfolios). A portfolio w ∈ W is called efficient if one of the
following holds:

a) @w ∈W with w′µ > w′µ and w′Σw ≤ w′Σw

b) @w ∈W with w′µ ≥ w′µ and w′Σw < w′Σw.

The above definition simply means that a portfolio is efficient if there exists no other
portfolio with

a) strictly higher expected return and smaller variance or

b) higher expected return and strictly smaller variance.

It can be shown that efficient portfolios can be determined by solving one of the fol-
lowing parametrised optimization problems (see Theorem 3.1), where R, S and δ are given
parameters.

• Minimize the variance subject to a lower return threshold R:

min w′Σw

s.t. µ′w ≥ R

w ∈W
(6)

• Maximize the return subject to an upper variance threshold S:

max µ′w

s.t. w′Σw ≤ S

w ∈W
(7)

• Maximize the return which is penalized by the variance multiplied with the so-called
risk aversion parameter δ:

max µ′w − δw′Σw
s.t. w ∈W

(8)
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Let Rmin (Rmax) describe the minimal (maximal) expected portfolio-return of all ad-
missible portfolios. Obviously, Rmin and Rmax correspond to the minimal and maximal
expected asset return. For all r ∈ [Rmin, Rmax] let σ2

r be the optimal value of the Opti-
mization Problem (6) where R = r is chosen. A commonly used visualization of efficient
portfolios is to plot the expected return threshold r against σ2

r .

Definition 3.5 (Efficient-Frontier). The two-dimensional set {(r, σ2
r) : r ∈ [Rmin, Rmax]}

is called efficient-frontier (or Pareto-frontier) to the corresponding portfolio optimization
problem.

Note that the efficient portfolios, and hence the efficient-frontier, do not depend on
the particular formulation (Problem (6), (7) or (8)) of our portfolio optimization problem.
This result is summarized in the following easy to verify theorem.

Theorem 3.1. Problems (6), (7) and (8) are equivalent.
This means that for all R ∈ [Rmin, Rmax] there exist parameters S > 0 and δ > 0 such
that an optimal solution w∗ of Problem (6) is an optimal solution of Problems (7) and (8),
where the corresponding parameters are R, S and δ, respectively.
Analogously, for all S > 0 (δ > 0) there exists a R ∈ [Rmin, Rmax] and a δ > 0 (S > 0) such
that an optimal solution w∗ of Problem (7) ((8)) is also an optimal solution of Problem
(6) and (8) ((7)), where the parameters are chosen accordingly.

Proof. See [Krokhmal et al., 2002, Appendix A].

The big advantages of the mean-variance efficient portfolios are their appealing theo-
retical derivation and the simplicity of the resulting optimization problem which has to be
solved. In fact, if we assume the covariance matrix Σ to be positive definite, i.e. Σ � 0,
and since the corresponding optimization problems state quadratic problems, there ex-
ists a unique solution and the so-called Karush-Kuhn-Tucker conditions are necessary and
sufficient (see among others [Luenberger and Ye, 2008]). As the mean-variance efficient
portfolio optimization problem is a quadratic program, a numerical solution can be found
with reasonable computational effort.

Of course, this theoretical and computational simplicity comes with the cost of many
assumptions which compromise the mean-variance efficient framework to some degree.
The following listing only displays some of these assumptions, where we mainly focus on
technical issues, see e.g. [Mandelbrot and Hudson, 2004] or [Elton and Gruber, 1997] for
more comprehensive accounts on the drawbacks of the mean-variance efficiency framework.

• Asset-return distribution:
By assuming that all of the risk is described by the variance of the asset-returns, one
implicitly assumes these returns are jointly normally distributed variables.

• Investment-horizon:
The notion of a particular investment-horizon is completely ignored in this frame-
work. The correlations are assumed to stay the same for whatever time horizon the
investor intends to hold his portfolio.
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• Asset-return moments:
It is assumed that the true first- and second-order moments are known and constant
over time.

• Availability of assets:
As we only restrict the optimal solution of the above optimization problem to linear
equalities and inequalities, we cannot assure the availability of the asset fraction
implied by the resulting portfolio.

Some of these assumptions and the overall conceptual derivation result in some undesirable
properties of the obtained efficient portfolios. For example, one can observe that often the
resulting portfolios are not very well diversified. Also, since we assume µ and Σ to be the
true moments of the asset-returns but in general have to rely on estimates, we somehow
“optimize” inevitable estimation errors.

We now want to state some basic attempts that account for some of these shortcomings.

1. Upper Investment Bounds:
This simple idea is targeted at the often bad diversification of the mean-variance
efficient portfolios. Some possible implementations are asset-wise upper bounds xi ≤
mi i ∈ {1, . . . , n} or group-wise upper bounds

∑
i∈G

xi ≤ mG, where mi and mG are

given constants.

2. Combining Estimates:
We determine k ∈ N different moment estimation µ̂i, Σ̂i with 1 ≤ i ≤ k from k
different data samples. The optimal portfolios wi (corresponding to µ̂i and Σ̂i) are
combined to an aggregated portfolio by a predetermined linear combination. See
[Michaud, 1998] for further information.

3. Robust Optimization:
The so-called uncertainty-sets {Ai}ni=1 and B for the true moments {µi}ni=1 and Σ
are determined. It is assumed that the true moments lie in these uncertainty-sets.
The optimization problem is then adapted to comply with all possible moments, i.e.

min
w∈W

max
Σ∈B

w′Σw

s.t. µ′w ≥ R ∀µ ∈ A1 × . . .× An

Obviously, this accounts for the moment ambiguity of the true asset-return distribu-
tion.

Whereas the above models are based on the mean-variance efficiency framework, other
approaches have been made to determine “optimal” portfolios. One of them is the growth-
optimal framework, which we will present in the following section.
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3.3 Growth-Optimal Portfolios

In contrast to the mean-variance efficiency framework, we now take the length T of the
investment horizon into account, where naturally T is chosen as a natural number, i.e.
T ∈ N. We recall that the portfolio weights wt may be adjusted at predetermined dates
t = 0, . . . , T − 1, where wt describes the portfolio held in time period (t− 1, t].
Let ṼT define the aggregate return generated by an investment strategy (wt)

T
t=1, hence

ṼT :=
T∏
t=1

[1 + w′tr̃t].

Therefore, ṼT describes the overall growth of our wealth over the considered investment
period. As the time horizon is split in several intervals, it is nearby to have a look at the
average growth over these periods.

Definition 3.6 (Growth Rate). We define the portfolio growth rate ϕ̃T over an investment
horizon of length T ∈ N as the natural logarithm of the geometric mean of the returns, i.e.

ϕ̃T = ln

 T

√√√√ T∏
t=1

[1 + w′tr̃t]

 =
1

T

T∑
t=1

ln(1 + w′tr̃t). (9)

Since ṼT describes the generated wealth of our investment strategy and by the above
definition ṼT = exp(T · ϕ̃T ) holds, the aim of maximizing terminal wealth is equivalent to
maximizing ϕ̃T per se.
As the growth rate ϕ̃T is a random variable, we can not just “maximize” it. Fortunately,
when considering a fixed-mix strategy and if the asset-returns follow a strong sense white
noise process, the asymptotic growth rate lim

T→∞
ϕ̃T turns out to be deterministic. This can

be shown by simply applying the strong law of large numbers to the right hand side of
Equation (9) as T tends to infinity.

Proposition 3.1 (Asymptotic Growth Rate). Let (wt)
T
t=1 be a fixed-mix strategy, hence

wt = w for some w ∈ W. If the asset-returns (r̃t)
T
t=1 follow a strong sense white noise

process, then the following limit equation almost surely holds (with probability 1)

lim
T→∞

ϕ̃T = E(ln(1 + w′r̃1)). (10)

As we were looking for an investment strategy with maximal portfolio growth rate, a
nearby candidate for such a portfolio is the one which maximizes the asymptotic growth
rate of the implied fixed-mix strategy. The resulting investment strategy is called “Kelly
strategy” and is simply obtained by maximizing the right hand side of equation (10).

Definition 3.7 (Growth-Optimal Portfolio). An admissible portfolio w∗ ∈ W is called
growth-optimal portfolio if

w∗ = argmaxw∈W E(ln(1 + w′r̃1)). (11)
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The main reason for which the Kelly strategy is of such interest from a theoretical point
of view is that it can be shown that, in the long run, it outperforms any other portfolio
strategy. This also includes investment strategies which are not of a fixed mix type. For
further informations about this result see [Cover and Thomas, 1991].

Theorem 3.2 (Asymptotic Optimality of the Kelly Strategy). We denote by ϕ̃∗T and ϕ̃T
the growth rates of the Kelly strategy and some arbitrary other causal portfolio strategy,
respectively. Then the following holds.

(r̃t)
T
t=1 is a strong sense white noise process⇒ P

[
lim sup
T→∞

(ϕ̃T − ϕ̃∗T ) ≤ 0

]
= 1.

Proof. See [Cover and Thomas, 1991, Theorem 15.3.1]

Theorem 3.2 states that as the length T of the investment horizon tends towards infin-
ity, the probability that the Kelly strategy accumulates more wealth (has a larger growth
rate) than any other portfolio strategy is equal to one.

Although this is a quite strong and appealing result, the Kelly strategy is burdened by
several major disadvantages. We give a short overview and refer to [MacLean et al., 2010]
for a more comprehensive insight in the advantages and disadvantages of the so-called
“Kelly Criterion”.

• The “Long Run”:
By Theorem 3.2, the dominance of the Kelly strategy holds only asymptotically.
Unfortunately, the time until the Kelly strategy has a larger growth rate than any
other strategy (with high confidence) may be very large and won’t be of any practical
interest.

• Ambiguity of the asset-return distribution.
In order to determine the Kelly strategy, the right hand side of Equation (10) has to
be maximized. This expectation value is taken with respect to the true asset-return
distribution. As in practice one is obliged to use an estimated distribution, this
estimation is a likely source for errors which will significantly affect the performance
of the resulting portfolio.

• The Asset-Return Process:
In order to guarantee the asymptotic dominance of the Kelly strategy, Theorem (10)
requires the asset-return process (r̃t)

T
t=1 to be a white noise process in the strong

sense. This is too strong of an assumption which generally can not be verified in
practice.

In their paper [Rujeerapaiboon et al., 2014] introduced robust growth-optimal portfo-
lios. These portfolios are obtained by maximizing a quadratic approximation of the growth
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rate, where the asset-return distribution is not assumed to be known but to lie in a prede-
fined ambiguity set of distributions. A big theoretical advantage of this approach is that
these portfolios are tailored to finite investment horizons but offer similar performance
guarantees as the classical growth-optimal portfolios.

As mentioned earlier, our approach is based on the conceptional ideas of these robust
growth-optimal portfolios. In Section 5.4 we will also see that in our framework, these
portfolios can be obtained by a certain choice of the risk-aversion parameter.

3.4 Comparison of Mean-Variance Efficient and Growth-Optimal
Portfolios

As we have laid out the theoretical backgrounds of the two major historical models of
portfolio optimization, i.e. the mean-variance efficient and the growth-optimal framework
(see Sections 3.2 and 3.3), the purpose of this section is to get a hold of the differences
between these two approaches. For this reason, we present a neat little example originally
published by [Hakansson, 1971].

Example 3.1. We assume that there are two assets S1 and S2 in which we can invest in.
Short sales are again excluded and all of the capital has to be invested, i.e. for the portfolio
weights w = (w1, w2)′ ∈ [0, 1]× [0, 1] the restriction w1 +w2 = 1 has to hold. Let the initial
(t = 0) prices of the assets be given as S1

0 = S2
0 = 1. We consider the time horizon T to

consist of only one time period [0, T ] and the random values S1
T and S2

T of the assets at
time T to have marginal distributions of the form

S1
T =

{
0 with probability 0.1

1.5 with probability 0.9
and S2

T =

{
1.15 with probability 0.9

2.65 with probability 0.1
.

The joint distribution of S1
T and S2

T is defined by

P(S1
T = 0, S2

T = 1.15) = 0.1, P(S1
T = 0, S2

T = 2.65) = 0

P(S1
T = 1.5, S2

T = 1.15) = 0.8 and P(S1
T = 1.5, S2

T = 2.65) = 0.1.

Therefore, the associated returns r1
T and r2

T are given by

r1
T =

{
−1 with probability 0.1

0.5 with probability 0.9
and r2

T =

{
0.15 with probability 0.9

1.65 with probability 0.1
,

with the obvious joint distribution.
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We now use this exact return-distribution to determine the growth-optimal portfolio.
As mentioned in Section 3.3, we obtain this portfolio by maximizing the expected logarithmic
return. In our simple example, since w2 = 1− w1, this means that we have to maximize

E[ln(1 + w′rT )] = E[ln(1 + w1r
1
T + w2r

2
T )]

= E[ln(1 + w1r
1
T + (1− w1)r2

T )]

= E[ln(1 + r2
T + (r1

T − r2
T )w1)]

= 0.1 ln(1.15− 1.15w1) + 0.8 ln(1.15 + 0.35w1) + 0.1 ln(2.65− 1.15w1).

This can be done by setting the derivative (with respect to w1) of the above expression equal
to zero and solving for the weight w1. This yields w1 ∈ {0.394, 1.923} with only w1 = 0.394
being feasible for our problem. The growth optimal portfolio is therefore given by

wGO = (0.394, 0.606)′.

The simplicity of this example allows us to determine the mean-variance efficient portfolios
by plotting the return expectation against the variance of each possible portfolio.
Subject to w1, which uniquely defines one possible portfolio, the expected portfolio-return
µp(w1) and the variance σ2

p(w1) are given by

µp(w1) = E[rP (w1)] = w10.35 + (1− w1)0.3 = 0.05w1 + 0.3

σ2
p(w1) = E[(rP (w1))2]− E2[rP (w1)]

= 0.36w2
1 − 0.36w1 + 0.2025.

Figure 4: Return-variance contour of Example 3.1
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Using Definition 3.4 of efficient portfolios, we identify the portfolios marked orange in
Figure 4 as the mean-variance efficient portfolios. This is obvious since for every “black”
portfolio there exists another (“orange”) portfolio with the same variance but a higher
mean. We immediately recognize that the growth-optimal portfolio (marked with wGO) is
not a mean-variance efficient portfolio, so in general the two notions of growth-optimality
and mean-variance efficiency lead to different portfolios.

Figure 5: Expected growth rates of Example 3.1

Likewise, we can plot the expected growth rate of every portfolio. In Figure 5 this is
visualized by plotting weight w1 against the expected growth rate we derived earlier.

The plot visualizes the defining characteristic of the growth-optimal portfolio, i.e. max-
imizing the expected growth rate. We can also observe that portfolio (0, 1), although having
the worst properties in the sense of mean-variance (highest variance, lowest mean), has a
higher expected growth rate than most of the mean-variance efficient portfolios.

We conclude that the two notions of mean-variance efficiency and growth-optimality are
indeed different approaches to the portfolio optimization problem and will lead to different
results. Note that one has to keep in mind that the Markowitz-approach is tailored to a
single investment period, while the Kelly-strategy is asymptotically optimal. Nevertheless,
as mentioned earlier, the mean-variance efficient portfolios are very popular and often used
sequentially for consecutive investment periods.
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4 Portfolio Evaluation

There are many ways to a posteriori evaluate the performance of a portfolio or an in-
vestment strategy (see Section 7.1). We will introduce our method of “quadratic return
penalization” in Section 4.1. It is designed to provide analytic properties which are needed
in order to reformulate the resulting portfolio optimization problem as a tractable SOCP.
It allows for an intuitive interpretation and the introduction of a risk-aversion parameter
γ, similar to the classical approach of Markowitz. This a posteriori evaluation implies a
random variable a priori, which represents our objective in terms of portfolio optimization.
As the distribution of this random variable is directly linked to the unknown asset-return
distribution, we have to account for this ambiguity, which is done in Section 4.2.

4.1 Quadratic Return Penalization

When selecting portfolio weights, one has to specify desirable properties of the portfolio.
Following the classical approach, these properties would be high return and low variance.
Given a portfolio by its weight-vector w ∈W, we need to quantify its performance accord-
ing to those properties. For this purpose, we define a function of the realized portfolio-
returns, which, by definition, penalizes small portfolio-returns with high values and high
portfolio-returns with small values. Our choice to do so is a quadratic polynomial function
fγ(x) = (x − γ)2 with positive curvature and a minimum at γ ∈ R, where γ needs to be
chosen sufficiently large such that all realized portfolio-returns are smaller than γ.

Figure 6: Penalization function fγ(x) for different γ
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Note that for a smaller choice of γ, we would penalize high portfolio returns by a high
value of fγ(x) too. In the following, we will call the smallest γ that fulfils the above re-
quirement γ∗, so one needs to choose γ ≥ γ∗.

Our definition implies that the penalization function is strictly convex. In particular,
this holds on the range [−1, γ∗], in which lie all realized portfolio returns, according to the
definition of γ∗.

This definition also enables us to adjust the curvature of fγ(x) on [−1, γ∗] by our choice
of γ. For very large γ, the penalization function fγ(x) becomes almost linear on [−1, γ∗],
whereas for small γ (close to γ∗) we have a distinct curvature of fγ(x) on the relevant
interval (see Figure 6 for an exemplary visualization). We observe that an almost linear
curvature (big γ) favours portfolios with a high expected return since the relative (with
respect to the mean) penalization of a deviation does not depend on the actual location of
the mean. On the other side, a distinct curvature (small γ) focuses more on the variance.
This is due to the fact that an increase in the mean does not provide as much gain (or
rather loss since we aim to minimize the penalization) as it did before. This simple inter-
pretation of curvature is visualized in Example 1. We conclude that γ can be interpreted
as a risk-aversion parameter, see Section 5.4.2 for further details on the choice of γ.

We can now measure the a posteriori performance of a given portfolio w over a specific
time horizon T by the mean of the penalized portfolio-returns

νγT (w) :=
1

T

T∑
t=1

fγ(w
′rt) =

1

T

T∑
t=1

(w′rt − γ)2. (12)

We hence favour portfolios with small values of νγT .

Example 4.1. We want to back our interpretation of γ as a risk-aversion parameter by
the following simple example. We assume two portfolios named (and visualized) red and
blue. The considered investment horizon consists of two periods, so T = 2. For each of
the portfolios we observed the following portfolio returns in the periods (0, 1] and (1, 2]:
rblue1 = −0.2, rblue2 = −0.6 and rred1 = −0.45, rred2 = −0.38. This returns are marked by the
large coloured points in Figure 7.
We observe that the mean of the blue returns µ̂blue = −0.4 is bigger than the mean of the
red returns µ̂red = −0.415 and that obviously the blue variance is bigger than the red.
Since

ν1(blue) =
1

2

(
(rblue1 − 1)2 + (rblue2 − 1)2)

)
<

1

2

(
(rred1 − 1)2 + (rred2 − 1)2)

)
= ν1(red)

and

ν0.1(blue) =
1

2

(
(rblue1 − 0.1)2 + (rblue2 − 0.1)2)

)
>

1

2

(
(rred1 − 1)2 + (rred2 − 1)2)

)
= ν0.1(red)
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our evaluation method with γ = 1 would prefer portfolio blue, whereas for γ = 0.1 we
favour portfolio red. Hence, what we have seen is that with γ small, the smaller variance
of portfolio red makes it more attractive than portfolio blue, despite the fact that it has a
smaller mean return. Vice versa, we see that for γ big, the blue portfolio with its bigger
mean return was chosen.

Figure 7: Penalization function with exemplary returns

As the asset-returns rt are unknown at time t = 0, νγT (w) is a random variable. We denote
the fact that we do not know the future returns by writing r̃t and consequently

ν̃γT (w) :=
1

T

T∑
t=1

fγ(w
′r̃t) =

1

T

T∑
t=1

(w′r̃t − γ)2. (13)

By the above definition, we prefer portfolios which tend to have small realizations of ν̃γT (w),
so our task will be the derivation of a portfolio w∗ that has a good performance (small
values of ν̃γT (w)) with a high level of confidence.

Let P be the (unknown) probability distribution of the asset-returns r̃t. Our approach
is to choose w∗ such that it minimizes the (1 − ε)-quantile of ν̃γT (w). Since ν̃γT (w) is a
random variable only dependent on {r̃1, . . . , r̃T}, one can interpret this quantile as the
P-Value-at-Risk (VaR) at level ε of ν̃γT (w), so

P-VaRε(ν̃
γ
T (w)) = min

ν∈R

{
ν : P

(
1

T

T∑
t=1

(w′r̃t − γ)2 ≤ ν

)
≥ 1− ε

}
. (14)
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Note that ε is determined by the user and is usually chosen as a small number ≤ 0.1 (e.g.
ε ∈ [0.01, 0.05, 0.1]).

We therefore evaluate a single portfolio w ∈ W a priori by P-VaRε(ν̃
γ
T (w)), where we

prefer portfolios with small values of P-VaRε(ν̃
γ
T (w)) since for them, the (1 − ε) upper

bound of a realization of ν̃γT (w) is small.
Since we do not know the exact asset-return distribution, we have to robustify our definition
of P-VaRε(ν̃

γ
T (w)) against the ambiguity of P, which we will do in the following section.

4.2 Ambiguity of the Asset-Return Distribution

As mentioned above, in most practical cases the precise asset-return distribution P is
unknown, but we may know some more general properties. We define P as the set of
all asset-return distributions with these known properties. Since we assume that the real
distribution belongs to P , we have to adapt our portfolio evaluation P-VaRε(ν̃

γ
T (w)) with

respect to this ambiguity set. We will do this by simply requiring the inequality inside the
minimum of Equation (14) to hold for all P ∈ P and refer to this new evaluation as the
worst-case VaR of ν̃γT (w) at level ε, therefore

WVaRε(ν̃
γ
T (w)) : = max

P∈P
P-VaRε(ν̃

γ
T (w)) (15)

= min
ν∈R

{
ν : P

(
1

T

T∑
t=1

(wtr̃t − γ)2 ≤ ν

)
≥ 1− ε ∀P ∈ P

}
. (16)

By referring to [Roy, 1952], where he states that the first two moments of the asset return
distribution “are the only quantities that can be distilled out of our knowledge of the past”,
we want to motivate our decision to only use the first- and second-order moments of the
centered asset-return distribution for the definition of P .
We will therefore assume that the only information we have about the true return-distribution
are its (estimated) first- and second-order moments. It follows that P is of the form

Pµ,Σ =

{
P ∈ PnT

0 :
E[r̃t] = µ ∀t : 1 ≤ t ≤ T
E[r̃s · r̃′t] = δstΣ + µµ′ ∀s, t : 1 ≤ s ≤ t ≤ T

}
(17)

where µ ∈ Rn is the known (estimated) mean vector and Σ ∈ Rn×n is the known (esti-
mated) covariance matrix of the asset return distribution. See Section 6 for further details
on the estimation of µ and Σ.

Using all the above considerations, we can finally state our a priori evaluation of a given
portfolio w as

WVaRε(ν̃
γ
T (w)) := min

ν∈R

{
ν : P

(
1

T

T∑
t=1

(wtr̃t − γ)2 ≤ ν

)
≥ 1− ε ∀P ∈ Pµ,Σ

}
. (18)
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5 The Distributionally Robust Portfolio Optimization

Problem

As we have seen in Section 4 how to a priori evaluate a given portfolio by the WVaRε(ν̃
γ
T (w))

defined in Equation (18), and since we favour portfolios with small values of this measure,
we state the resulting portfolio optimization problem as

min
w

WVaRε(ν̃
γ
T (w))

s.t. w ∈W,
(19)

where W describes the set of all admissible portfolios.

Since we are not able to identify Problem (19) as a classical optimization problem yet,
due to the current formulation of the objective function, we cannot compute an optimizer
w∗ in a straight forward fashion.

In order to determine an optimal solution w∗ ∈ W to Problem (19), we will first look
for an alternative formulation of the objective function WVaRε(ν̃

γ
T (w)) in Section 5.1.

With some further assumptions on the set of admissible portfolios W, in Section 5.2 we
can reformulate the resulting problem as a classic SOCP, which can be solved by well-
known algorithms. Due to this reformulation, the computational effort for solving our
portfolio optimization problem for w∗ is comparable to the classic Markowitz portfolio.
Not only will the size of our resulting portfolio optimization problem be independent from
the investment horizon T ∈ N, but also will it admit an easy robustification against the
moment-estimations, see Section 5.3. In Section 5.4, we will present some characteristics
of w∗ with respect to the particular choice of γ.

5.1 The Analytic Representation of the Objective Function

We will now show that Problem (18) admits an analytic solution for every w ∈ Rn.
To do so, we first define the excess of a portfolio-return at time t ∈ [1, . . . , T ] with respect
to γ as

η̃t(w) := w′r̃t − γ. (20)

It follows that E[η̃t(w)] = µw − γ and E[η̃t(w)η̃s(w)] = δtsσ
2
w + (µw − γ)2, where again

µw = w′µ = w′E[r̃] denotes the expected portfolio return and σ2
w = w′Σw the portfolio

variance.

By using these return-excesses we can reformulate Definition (18) of the WVaRε(ν̃
γ
T (w))

as
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WVaRε(ν̃
γ
T (w)) = inf

ν∈R
ν s.t. P

(
1

T

T∑
t=1

η̃t(w)2 ≤ ν

)
≥ 1− ε ∀P ∈ Pη̃(w), (21)

where Pη̃(w) describes the η̃-distribution ambiguity set

Pη̃(w) =

{
P ∈ PT

0 :
E[η̃t(w)] = µw − γ ∀t : 1 ≤ t ≤ T
E[η̃t(w)η̃s(w)] = δtsσ

2
w + (µw − γ)2 ∀s, t : 1 ≤ s ≤ t ≤ T

}
.

Note that (η̃t(w))Tt=1 still follows a weak sense white noise process since (r̃t)
T
t=1 does.

In order to convert Problem (21) into a tractable SDP, we use the following theorem
(see [Rujeerapaiboon et al., 2014, Theorem A.1]).

Theorem 5.1. Let P be the set of all probability distributions of a random vector ξ̃ ∈ Rn

that share the same mean µ ∈ Rn and covariance matrix Σ ∈ Sn+, Σ � 0. Then, for
Q ∈ Sn+, q ∈ Rn and q0 ∈ R the following holds:

• a distributional robust chance constraint given by

inf
P∈P

P
(
ξ̃′Qξ̃ + ξ̃′q + q0 ≤ 0

)
≥ 1− ε,

where the first- and second-order moments of all distributions in P equal the given
parameters µ and Σ, respectively, is equivalent to

∃M ∈ Sn+1, β ∈ R : β +
1

ε
〈Ω,M〉 ≤ 0, M � 0

and M �
[

Q 1
2
q

1
2
q′ q0 − β

]
,

where Ω is a notational abbreviation for the second-order moment matrix of ξ̃, i.e.

Ω =

[
Σ + µµ′ µ

µ′ 1

]
.

Proof. See [Zymler et al., 2013, Theorem 2.3]

By applying this theorem to our chance constraint (21) we get

WVaRε(ν̃
γ
T (w)) = min ν

s.t. M ∈ ST+1, β, ν ∈ R

β +
1

ε
〈Ω(w),M〉 ≤ 0, M � 0

M−
[
I 0
0 −Tν − β

]
� 0,

(22)
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where I ∈ ST denotes the identity matrix and Ω(w) ∈ ST+1 describes the first- and second-
order moments of (η̃1(w), . . . , η̃T (w))′, hence

Ω(w) =

[
E[η̃t(w)η̃s(w)]t,s=1,...,T E[η̃t(w)]t=1,...,T

(E[η̃t(w)]t=1,...,T )′ 1

]

=


σ2
w + (µw − γ)2 (µw − γ)2 . . . (µw − γ)2 (µw − γ)

(µw − γ)2 σ2
w + (µw − γ)2 . . . (µw − γ)2 (µw − γ)

...
...

. . .
...

...
(µw − γ)2 (µw − γ)2 . . . σ2

w + (µw − γ)2 (µw − γ)
(µw − γ) (µw − γ) . . . (µw − γ) 1

 .
In the following, we will omit the reference to the fixed portfolio weights w and write e.g.
ηt instead of ηt(w).

We will now show that Problem (22) admits an analytical solution. To do so, we will
first study the structures of the matrices that appear in the above restrictions. This will
allow us to substitute the semidefinite restrictions by simple inequalities.

Definition 5.1 (Compound Symmetry). A matrix M ∈ ST+1 is compound symmetric if
there exist τ1, τ2, τ3, τ4 ∈ R with

M =


τ1 τ2 . . . τ2 τ3

τ2 τ1 . . . τ2 τ3
...

...
. . .

...
...

τ2 τ2 . . . τ1 τ3

τ3 τ3 . . . τ3 τ4

 . (23)

By the above definition, we can conclude that Ω is compound symmetric and state,
similar to [Rujeerapaiboon et al., 2014], the following proposition.

Proposition 5.1. There exists a maximizer (M, β, ν) of (22) with M compound symmet-
ric.

Proof. Analogous to proof of [Rujeerapaiboon et al., 2014, Proposition 4.2].

As we can now restrict our attention to compound symmetric matrices M, we use the
following proposition to reformulate the restrictions of (22) (see also [Rujeerapaiboon et al.,
2014, Proposition 4.3]).

Proposition 5.2. For any compound symmetric matrix M ∈ ST+1 of the form (23), the
following equivalence holds

M � 0⇔


τ1 ≥ τ2

τ4 ≥ 0

τ1 + (T − 1)τ2 ≥ 0

τ4(τ1 + (T − 1)τ2) ≥ Tτ 2
3 .
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Proof. [Rujeerapaiboon et al., 2014, Proposition 4.3]

By applying the above proposition to the restrictions of Problem (22) we obtain the
following non-linear program, where the first restriction corresponds to the inner-product
restriction of (22), the following four restrictions to M � 0 and the last four restrictions
to the last positive semidefinite restriction

WVaRε(ν̃
γ
T (w)) = min ν

s.t. τ ∈ R4, β, ν ∈ R

β +
1

ε

[
T (σ2

P + (µw − γ)2)τ1 + T (T − 1)(µw − γ)2τ2 + 2T (µw − γ)τ3 + τ4

]
≤ 0

τ1 ≥ τ2

τ4 ≥ 0

τ1 + (T − 1)τ2 ≥ 0

τ4(τ1 + (T − 1)τ2) ≥ Tτ2
3

τ1 − 1 ≥ τ2

τ4 + Tν + β ≥ 0

τ1 − 1 + (T − 1)τ2 ≥ 0

(τ4 + Tν + β)(τ1 − 1 + (T − 1)τ2) ≥ Tτ2
3 .

We note that the first restriction is binding in optimality for (τ, ν, β), as (τ, ν − ∆
T
, β + ∆)

has smaller objective value but stays feasible. Also, there exists an optimal solution for

which τ1 = τ2 + 1 since
(
τ1+(T−1)τ2−1

T
+ 1, τ1+(T−1)τ2−1

T
, τ3, τ4, ν, β

)
is feasible if (τ, ν, β) is

and has the same objective value.
Therefore, by substituting τ1 = τ2 + 1 and omitting redundant constraints, we can further
simplify the above optimization problem to

WVaRε(ν̃
γ
T (w)) = min ν

s.t. τ2, τ3, τ4, β, ν ∈ R

β +
1

ε

[
T (σ2

P + (µw − γ)2) + T (σ2
P + T (µw − γ)2)τ2 + 2T (µw − γ)τ3 + τ4

]
= 0

τ4 ≥ 0

τ4 + Tν + β ≥ 0

τ2 ≥ 0

τ4

(
τ2 +

1

T

)
≥ τ2

3

(τ4 + Tν + β)τ2 ≥ τ2
3 .

(24)
In order to find an analytical solution for Problem (24), we use the transformations
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r :=
τ4

2T
, x :=

τ4 + Tν + β

2T
, y := 2Tτ2 + 1 and z := τ3

and achieve a more compact formulation.
For these transformations the following equivalences hold

τ4 ≥ 0⇔ r ≥ 0,

τ2 ≥ 0⇔ y ≥ 1,

τ4 + Tν + β ≥ 0⇔ x ≥ 0,

τ4

(
τ2 +

1

T

)
≥ τ 2

3 ⇔ r(y + 1) ≥ z2 and

(τ4 + Tν + β)τ2 ≥ τ 2
3 ⇔ x(y − 1) ≥ z2.

We can also express ν as a linear function of r, x, y and z

ν = 2(x− r)− β

T

= 2(x− r) +
1

εT

[
T (σ2

w + (µw − γ)2)) + T (σ2
w + T (µw − γ)2))τ2 + 2T (µw − γ)τ3 + τ4

]
= 2(x− r) +

1

εT

[
T (σ2

w + (µw − γ)2)) + T (σ2
w + T (µw − γ)2))

y − 1

2T
+ 2T (µw − γ)z + 2Tw

]
=

(
2

ε
− 2

)
r + 2x+

σ2
w + T (µw − γ)2

2εT
y +

2(µw − γ)

ε
z +

σ2
w + (µw − γ)2

ε
− σ2

w + T (µw − γ)2

2εT

=

(
2

ε
− 2

)
r + 2x+

σ2
w + T (µw − γ)2

2εT
y +

2(µw − γ)

ε
z +

(µw − γ)2

2ε
+
σ2
w(2T − 1)

2εT
.

Therefore, if we set

a :=

(
2

ε
− 2

)
, b := 2, c :=

σ2
w + T (µw − γ)2

2εT
,

d :=
2(µw − γ)

ε
and e :=

(µw − γ)2

2ε
+
σ2
w(2T − 1)

2εT
,

we can finally express Problem (24), and hence WVaRε(ν̃
γ
T (w)), as

WVaRε(ν̃
γ
T (w)) = min ar + bx+ cy + dz + e

s.t. r, x, y, z ∈ R
r ≥ 0, x ≥ 0, y ≥ 1

r(y + 1) ≥ z2, x(y − 1) ≥ z2.

(25)

We are now ready to show that WVaRε(ν̃
γ
T (w)), respectively Problem (25), admits an

analytical solution.
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Lemma 5.1. Consider an optimization problem of the form

min ar + bx+ cy + dz + e

s.t. r, x, y, z ∈ R
r ≥ 0, x ≥ 0, y ≥ 1

r(y + 1) ≥ z2, x(y − 1) ≥ z2.

For a, b, c, d, e ∈ R and ∆ :=
√

4(a+ b)c− d2 with

(i) a, b, c > 0

(ii) 4(a+ b)c− d2 > 0 and

(iii) d+
√

b
a
∆ < 0,

the optimal value of the above optimization problem is given by

d3 + d2∆
(√

b
a
−
√

a
b

)
− d∆2 − 4dc(a+ b) + 2c(a+ b)∆

(√
a
b
−
√

b
a

)
2∆(a+ b)

(√
a
b

+
√

b
a

) + e. (26)

Proof. As the considered optimization problem states a convex SOCP with two hyperbolic
constraints, the Karush-Kuhn-Tucker (KKT) optimality conditions are necessary and suf-
ficient (see [Luenberger and Ye, 2008]).
Hence, we are looking for an candidate solution which satisfies the KKT-conditions.
With

p :=
−d−

√
b
a
∆

2(a+ b)
and q :=

−d+
√

b
a
∆

2(a+ b)

we will show that the candidate solution

y :=
p+ q

q − p
, z :=

2pq

q − p
, r :=

z2

y + 1
and x :=

z2

y − 1

is in fact optimal for our optimization problem.

We observe that by definition q > p and

y =
p+ q

q − p
= 1 + 2

p

q − p
.

Hence, y > 1⇔ p > 0, which is guaranteed by assumption (iii).
Obviously, r ≥ 0 and x ≥ 0 hold and the two hyperbolic constraints are binding.
We conclude that the above solution is indeed feasible.

42



By denoting λ1, λ2 and λ3 the Lagrange multipliers of the three linear inequalities and
λ4 and λ5 the Lagrange multipliers of the two hyperbolic constraints, it is easy to show
that for λ1 = λ2 = λ3 = 0, λ4 = a

y+1
and λ5 = b

y−1
all KKT-conditions are met.

The optimal value is thus given by

ar + bx+ cy + dz + e =a
z2

y + 1
+ b

z2

y − 1
+ cy + dz + e

=
2ap2q + 2bpq2 + c(p+ q) + 2dpq

q − p
+ e,

from which we obtain the optimal value (26) by substituting the definitions of p and q.

We can now use Lemma 5.1 to explicitly state the analytical solution of WVaRε(ν̃
γ
T (w)).

Theorem 5.2. For γ > µw +
√

ε
(1−ε)T σw the WVaRε(ν̃

γ
T (w)) of w ∈ Rn is given by

WVaRε(ν̃
γ
T (w)) =

(
γ − w′µ+

√
1− ε
εT

√
w′Σw

)2

+
T − 1

εT
w′Σw. (27)

Proof. As we have already shown, the WVaRε(ν̃
γ
T (w)) is given by the solution of Problem

(25), where a =
(

2
ε
− 2
)
, b = 2, c = σ2

w+T (µw−γ)2

2εT
, d = 2(µw−γ)

ε
and e = (µw−γ)2

2ε
+ σ2

w(2T−1)
2εT

.
To apply Lemma 5.1 we need to verify its assumptions.

Obviously a, b, c > 0 hold, and so does 4(a+ b)c− d2 = 2σw
ε
√
T
> 0.

It is also easy to verify that assumption (iii) of Lemma 5.1 is equivalent to γ > µw +√
ε

(1−ε)T σw and therefore all conditions of Lemma 5.1 are met.

By substituting the definitions of a, b, c, d and e back into the optimal solution (26), one
obtains the claimed representation of WVaRε(ν̃

γ
T (w)).

Remark 5.1. Note that the lower bound γlbw := µw +
√

ε
(1−ε)T σw in Theorem 5.2 depends

on the actual portfolio weights w ∈ Rn we are looking at, so in fact γlbw = γlb(w) =

w′µ+
√

ε
(1−ε)Tw

′Σw.

As we want to use the formulation (27) of WVaRε(ν̃
γ
T (w)) as the objective function

of our portfolio optimization problem, our chosen γ has to comply with the lower bound
restrictions for all considered portfolios, so γ > γlbw ∀w ∈W.
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By the use of the above result we can finally reformulate our initial Portfolio Optimiza-
tion Problem (19) as

min
w

(
γ − w′µ+

√
1− ε
εT

√
w′Σw

)2

+
T − 1

εT
w′Σw

s.t. w ∈W.

(28)

The objective function is now a closed form analytic function of the portfolio weights w.
We also observe that the length of the investment time interval does not affect the size of
this optimization problem. Naturally, it is also closely related to the portfolio optimization
problem derived in [Rujeerapaiboon et al., 2014], see Section 5.4 for this special case.

In order to solve this problem by widely used and accessible methods, we will reformu-
late it as a second-order cone program (SOCP) in Section 5.2.
The following remark will be used in Section 5.3 where we account for the ambiguity of
the true moments µ and Σ.

Remark 5.2. As long as γ > γlbw (> w′µ) holds, the worst-case value-at-risk of our portfolio
evaluation (27) is decreasing in the portfolio mean return w′µ and increasing in the portfolio
variance w′Σw.

This property simply means that under all portfolios with the same variance, our eval-
uation method prefers the ones with the highest expected return. Vice versa, under all
portfolios with the same expected return, we prefer the ones with the smallest variance.
Hence, a portfolio obtained by solving Problem (28) is mean-variance efficient in the clas-
sical sense, which we stated in Section 3 Definition 3.4.

We conclude that the distributionally robust portfolios we have just derived are mean-
variance efficient in the sense of the classical Markowitz approach presented in Section 3.
Therefore, all of this portfolios lie on the classical efficient frontier, where the risk-aversion
parameter controls the exact location.

Note that this property does not hold if we take moment ambiguity into account, which
will be presented in Section 5.3. Also, not all portfolios on the classical efficient frontier will
be “attainable” by certain choices of γ since the process of distributional robustification
induces additional restrictions on the selection process.

To provide the possibility of using one of the widely known solvers for SOCPs we will
reformulate Problem (28) as a second-order cone program in the following Section 5.2. We
have already presented some of the solvers that can be used in Section 2.3.
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5.2 Representation as a SOCP

We will now reformulate the Portfolio Optimization Problem (28) as a SOCP.
For this purpose, we recall the notion of cones by the definition of the so-called second-
order (or Lorentz) cone which we already stated in Section 2.1.
The second-order cone Cq in Rn+1 was defined as

Cq :=
{

(x0, x1, . . . , xn)′ ∈ Rn+1 : x0 ≥ ‖(x1, . . . , xn)‖q
}
, (29)

where ‖(x1, . . . , xn)‖q := q
√
|x1|q + . . .+ |xn|q for q ∈ Z denotes the finite dimensional

q-Norm of a vector x ∈ Rn.

Observation 5.1. If W describes the set of admissible portfolios and W is characterized
by a finite number of linear constraints, the Portfolio Optimization Problem (28) reduces
to a tractable SOCP whose size is again independent of the investment horizon

min
w

(
γ − w′µ+

√
1− ε
εT

s

)2

+
T − 1

εT
s2

s.t.w ∈W
(s,Σ1/2w) ∈ C2.

(30)

Note that by definition of the second-order cone, the last restriction (s,Σ1/2w) ∈ C2 is
equivalent to

s ≥ ‖Σ1/2w‖2 =

√
(Σ1/2w)

′
(Σ1/2w) =

√
w′Σw. (31)

Since we are minimizing and the objective function is increasing in s because γ > w′µ
due to the lower bound restriction on γ derived in Theorem 5.2, inequality (31) will be
binding in optimality, hence s =

√
w′Σw. This proves the equivalence of Problem (30) and

Problem (28) in terms of optimization.
Program (30) indeed states an SOCP which can be solved by many common program
packages (see Section 2.3). This becomes particularly obvious if we rewrite Problem (30)
as

min
w,t

t

s.t.w ∈W

t ≥

(
γ − w′µ+

√
1− ε
εT

s

)2

+
T − 1

εT
s2

(s,Σ1/2w) ∈ C2,

which is nothing but a quadratically constrained linear program which already has a conic
constraint.
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5.3 Robustification of the Moment-Estimations

Until now, we assumed that µ and Σ are the exact mean and covariance matrix of the asset-
returns. Of course, in practice we are obliged to use estimates µ̂ and Σ̂ which are bound to
errors. We will account for these errors by following the approach of [Rujeerapaiboon et al.,
2014, Section 5.2] and assume that the true moments µ and Σ lie in a convex uncertainty
set of the form

U =
{

(µ,Σ) ∈ Rn × Sn : (µ− µ̂)′Σ̂−1(µ− µ̂) ≤ δ1, δ3Σ̂ � Σ � δ2Σ̂
}
,

where µ̂ and Σ̂ are point estimates we obtain for example by applying the estimation
methods presented in Section 6.

Here, δ1 ≥ 0 and δ2 ≥ 1 ≥ δ3 ≥ 0 describe our confidence in the estimations µ̂ and Σ̂.
See again Section 6 for details on the determination of µ̂, Σ̂, δ1, δ2 and δ3.

Taking the moment-ambiguity into account and using our previous result from Equation
(27), the worst-case value-at-risk of our portfolio evaluation ν̃γT (w) is given by

WVaRε(ν̃
γ
T (w)) = max

(µ,Σ)∈U

(
γ − w′µ+

√
1− ε
εT

√
w′Σw

)2

+
T − 1

εT
w′Σw.

Again, we can reformulate this expression into a closed analytic form, which is done in the
following theorem.

Theorem 5.3. If Σ � 0 and γ > γlb = w′µ+
√

ε
(1−ε)Tw

′Σw for all (µ,Σ) ∈ U , then

WVaRε(ν̃
γ
T (w)) =

(
γ − w′µ̂+

(√
δ1 +

√
(1− ε)δ2

εT

)√
w′Σ̂w

)2

+
(T − 1)δ2

εT
w′Σ̂w.

Proof. As mentioned in Remark 5.2, the WVaRε(ν̃
γ
T (w)) is decreasing in the portfolio mean

return w′µ and increasing in the portfolio standard deviation
√
w′Σw. Hence, an upper

bound for the worst-case scenario, which is the highest possible value of WVaRε(ν̃
γ
T (w))

for w ∈W, can be obtained by substituting the smallest, respectively the highest possible
values for the mean return and the standard deviation into the above equation.
The highest possible portfolio variance, given the weight vector w, in our uncertainty set
U is obviously given by

max
(µ,Σ)∈U

√
w′Σw =

√
δ2

√
w′Σ̂w.

In order to determine the smallest return, i.e. the solution to the optimization problem
stated as

min
(µ,Σ)∈U

w′µ ⇔ min
µ
w′µ s.t. (µ− µ̂)′Σ̂−1(µ− µ̂) ≤ δ1,

46



we assume the positive definiteness of Σ̂ and use the substitution z := Σ̂−1/2(µ − µ̂) to
reformulate this problem as

min
z
w′µ̂+ w′Σ̂1/2z s.t. z′z ≤ δ1.

Again, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient (see [Lu-
enberger and Ye, 2008]). As w 6= 0 is given, the KKT conditions directly imply that for
the optimal solution z̃′z̃ = δ1 holds. By solving the remaining KKT-equation, the optimal
solution is given as z̃ = −

√
δ1√

w′Σ̂w
Σ̂1/2w′. We can now conclude that

min
µ,Σ

w′µ = w′µ̂−
√
δ1

√
w′Σw,

which yields the claim.

We obtain our portfolio optimization problem with robustification against moment
ambiguity by updating the objective function of Problem (30) to the above result

min
w

(
γP − w′µ̂+

(√
δ1 +

√
(1− ε)δ2

εT

)
s

)2

+
(T − 1)δ2

εT
s2

s.t.w ∈W
(s,Σ1/2w) ∈ C2.

(32)

By using the same arguments as in Section 5.2, we immediately formulated the problem
with moment robustification as an SOCP. Therefore, the computational effort to compute
the optimal solution does not change by introducing moment ambiguity.

Remark 5.3. The requirements Σ � 0 and γ > γlb = w′µ+
√

ε
(1−ε)Tw

′Σw for all (µ,Σ) ∈ U
of Theorem 5.3 are equivalent to

δ3Σ̂ � 0 and γ > w′µ̂+
√
δ1

√
w′Σ̂w +

√
εδ2

(1− ε)T

√
w′Σ̂w.

We have now formulated our portfolio optimization problem with and without moment
ambiguity in dependence of the risk aversion parameter. In the remainder of this section,
we will have a look at the implication of different choices of γ on the resulting portfolios.
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5.4 The Choice of the Risk-Aversion Parameter

We have already motivated the interpretation of the parameter γ as some sort of risk-
aversion adjustment in Section 4.1. Now we want to have a closer look at the choice of γ
and its implications.

In general, there are two lower bound restrictions one needs to consider when choosing
the risk-aversion parameter:

• The first one is the technical lower bound restriction which we obtained by the
derivation of the analytic formulation of WVaRε(ν̃

γ
T (w)) in Section 5.1.

We have seen that γ has to be bigger than γlbw for all admissible portfolios w, so

γ > w′µ+

√
ε

(1− ε)T
w′Σw ∀w ∈W, (33)

where again W denotes the set of all admissible portfolios.

• We stated the second lower bound restriction for γ in the very beginning of Section
4 (Portfolio Evaluation) where we demanded γ to be “sufficiently large such that
all realized portfolio-returns are smaller than γ”. The reason for this requirement is
the fact that otherwise, due to the definition of our penalization function fγ(x) as a
quadratic polynomial with its minimum at γ, we would penalize high (bigger than
γ) portfolio-returns like we do small ones. This, of course, is undesirable since we
welcome high portfolio returns and therefore should not penalize them more than
lower returns.

As the asset-returns, and therefore the portfolio-returns, are modelled as continuous
random variables unbounded from above, theoretically we cannot satisfy the second re-
quirement on γ stated above.
Nevertheless, we are now using the penalization function fγ(x) to choose from the set of
all feasible portfolios. Hence, for our purpose, γ does not have to comply with the re-
quirement of being bigger than any asset-return realization but actually has to exceed all
possible expected portfolio-returns.

Since
√

ε
(1−ε)Tw

′Σw ≥ 0 holds, a globally chosen γ such that the technical lower bound

restriction (33) is fulfilled, is also bigger than the expected portfolio return w′µ for any
portfolio w which is feasible. This implies that such a γ is bigger than the highest port-
folio return possible, and therefore the technical lower bound is sufficient to guarantee the
subject based second restriction.
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In order to comply with the technical restriction, we approximate the exact lower bound

maxw∈Ww
′µ+

√
ε

(1−ε)Tw
′Σw by

γ∗ := max
w∈W

w′µ+

√
ε

(1− ε)T
max
w∈W

√
w′Σw. (34)

Since γ∗ ≥ maxw∈Ww
′µ+

√
ε

(1−ε)T

√
w′Σw we can now choose γ ∈ (γ∗,∞] arbitrarily.

We observe that γ∗ is the mean return plus a multiple of the standard deviation, where
the multiplication factor contains the time horizon T in its denominator. For very long
investment horizons (T very big), the lower bound is getting smaller and will almost equal
the maximum expected return. We will further discuss this observation in Section 5.4.2.
We also observe that 0 < γ∗ � 1 will hold for most practical cases.

Observation 5.2. If one chooses γ as a function of the portfolio weights w, namely γ(w) =
w′µ, our methods of reformulating the initial Portfolio Optimization Problem (19) also work
fine although the technical lower bound restriction (33) is obviously not satisfied. One can

show that with ν̃γT (w) = 1
T

T∑
t=1

(w′r̃t − w′µ)2 instead of (13) and a similar derivation, the

objective function of (28) becomes

min
w

1

ε
w′Σw.

Obviously, this approach is equivalent to minimizing the portfolio variance per se. Thus,
we obtain the classical minimum variance portfolio which we will henceforth call MVAR.

In the following, we want to survey some explicit choices of γ. Where in Section 5.4.1
the parameter is chosen equal to one, we will further discuss the role of γ as a risk-aversion
parameter in Section 5.4.2.

5.4.1 The Robust Growth-Optimal Portfolio

For γ = 1 the objective function of our Portfolio Optimization Problem (28) becomes

min
w

(
1− w′µ+

√
1− ε
εT

√
w′Σw

)2

+
T − 1

εT
w′Σw,

which is, in terms of optimization, equivalent to the objective function of the robust growth-
optimal portfolio derived in [Rujeerapaiboon et al., 2014, Theorem 4.1], namely

max
w

1

2

1−

(
1− w′µ+

√
1− ε
εT

√
w′Σw

)2

− T − 1

εT
w′Σw

 .

Hence, if we choose γ = 1, we obtain the robust growth-optimal portfolio which we will de-
note by RGOP, respectively RGOP+ for the robust growth-optimal portfolio with moment-
ambiguity.
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Remark 5.4. Analogues to Remark 5.3 the requirements Σ � 0 and γ > γlb = w′µ +√
ε

(1−ε)Tw
′Σw for all (µ,Σ) ∈ U of Theorem 5.3 for γ = 1 are equivalent to

δ3Σ̂ � 0 and 1 > w′µ̂+
√
δ1

√
w′Σ̂w +

√
εδ2

(1− ε)T

√
w′Σ̂w.

Note that for most practical cases γ = 1 > w′µ +
√

ε
(1−ε)T

√
w′Σw ∀w ∈ W holds.

Otherwise, this can always be achieved by shortening the rebalancing intervals.
In their work, [Rujeerapaiboon et al., 2014] also state that “this condition even holds for
yearly rebalancing intervals if the means and standard deviations of the asset-returns fall
within their typical ranges reported in [Luenberger, 1998, § 8]”.

The RGOP portfolio is achieved by maximizing the worst-case value-at-risk of a quadratic
approximation of the portfolio growth rate. The difference between the growth rate γ̃T ,
given by

γ̃T = log T

√√√√ T∏
t=1

[1 + wtr̃t] =
1

T

T∑
t=1

log[1 + wtr̃t], (35)

and its quadratic approximation

γ̃′T =
1

T

T∑
t=1

(
wtr̃t −

1

2
(wtr̃t)

2

)
(36)

is thereby reported to be uniformly bounded by 1% under monthly and by 5% under yearly
rebalancing (see [Rujeerapaiboon et al., 2014, Section 4]).
We observe that for γ = 1, our evaluation function becomes

ν̃1
T =

1

T

T∑
t=1

(wtr̃t − 1)2 =
1

T

T∑
t=1

(
(wtr̃t)

2 − 2wtr̃t + 1
)
,

which is, in terms of optimization and since in our model we were minimizing, equivalent
to the quadratic approximation of the growth rate.

5.4.2 The Risk-Aversion Parameter

In the last part of this section, we again want to motivate the interpretation of γ as a
risk-aversion parameter. To better understand the implications of an explicit choice of
γ ∈ (γ∗,∞] (with γ∗ defined by (34)) to the resulting portfolio, we recall the example
figure of our penalization function fγ with respect to γ in Figure 8.
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Figure 8: Penalization function fγ(x) for different γ

We observe that as the chosen γ tends towards γ∗, the resulting portfolio will become
more risk averse, meaning that both expected return and variance decrease. This is due
to the fact that for small γ the curvature of fγ on [−1, γ∗] increases. Then, in order to
achieve good performance according to our evaluation ν̃γT (w) (see (13)), a high mean-return
becomes less important compared to small variance. We have already seen that for γ = 1
we achieve the robust growth optimal portfolio. Since γ = γ∗ is the most risk-averse we
can get, we want to name the resulting portfolio Robust Risk Averse Portfolio (RRAP) or
likewise RRAP+ under moment ambiguity.
We remark that for γ = γ∗ restriction (33) may not be fulfilled with strict inequality for
all w ∈W. But since our whole Portfolio Optimization Problem (28) is continuous in γ, a
permissible choice γ = γ∗ + εγ will (numerically) deliver the same resulting portfolio. We
also observe that γ∗ is decreasing in the length T of the investment horizon. Following
the above reasoning, this means that the longer the investment horizon gets, the more risk
averse the RRAP (or RRAP+) portfolio will get.

As mentioned earlier, the distributional robust portfolios without moment ambiguity
are all mean-variance efficient in the classical sense. Therefore, γ plays the same role as the
risk aversion parameter in the Markowitz mean-variance efficiency framework does. This
means they both define the location of the portfolio on the efficient frontier.

This completes our derivation of the distributionally robust portfolios. In Section 7.2
we will apply our theory to real life data where we use the moment estimation techniques
presented in the following Section 6.
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6 Parameter Estimation

In this section, we want to present our method of choice for estimating the first two
moments of the asset-returns r̃ = (r̃1, . . . , r̃n). It is well known that the naive approach of
selecting µ̂ and Σ̂ as the sample estimators often shows poor out of sample performance.
To avoid this problem, we utilize the approach of shrinkage estimators, combining the raw
estimate with “other information”. In our setting, this is reached by shrinking the sample
estimator towards a target estimator. We denote the shrinkage estimator of the expected
value µ by µsh and the shrinkage estimator of the covariance matrix Σ by Σsh.
In Section 6.1 we will present the basic idea of shrinkage estimators and state the particular
estimations for the expected value in Section 6.1.1 and for the covariance matrix in Section
6.1.2. Of course the shrinkage estimators are subject to estimation errors. We accounted
estimation errors in Section 5.3 by robustifying WVaRε(ν̃

γ
T (w)) against all (µ,Σ) ∈ U ,

where U defined uncertainty cones for both µ and Σ. In Section 6.2 we will define those
uncertainty cones and state the respective estimations. For later convenience we will denote
the sample estimators by

µsp :=
1

T

T∑
t=1

r̃t and

Σsp :=
1

T − 1

T∑
t=1

(r̃t − µsp)(r̃t − µsp)′,

where T ∈ N now describes the time horizon for which we observed the asset-returns.

Throughout this section we assume the covariance matrix estimation Σ̂ to be positive
definite. If this is not the case, one can use various methods to “correct” the estimation.
Among others, see [Rebonato and Jäckel, 1999] for further details.

6.1 Shrinkage Estimators of Moments

For our purpose of using the estimators for portfolio optimization, we will focus on the
approach of [DeMiguel et al., 2013] on shrinkage estimators. Shrinkage estimators are
convex combinations of the sample estimators and a scaled shrinkage target, where the
convexity parameter α is called the shrinkage intensity. We will denote the shrinkage
targets by µtg and Σtg and the scaling parameters by φµ and φΣ, respectively.

µsh := (1− αµ)µsp + αµφµµtg (37)

Σsh := (1− αΣ)Σsp + αΣφΣΣtg (38)

The general advantage of shrinkage estimators is that it can be shown that, under general
conditions, there exists a shrinkage intensity for which the resulting shrinkage estimator
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contains less estimation error than the original sample estimator.
In order to determine µsh and Σsh, we therefore need to estimate the optimal shrinkage
intensities αµ and αΣ.

In the case of estimating the mean, DeMiguel et al. derived a closed-form expression
for the true optimal shrinkage intensity, assuming that the returns are independent and
identically distributed (iid) without any other distributional assumptions.
When estimating the covariance matrix, such a closed-form expression is only given if
the returns are assumed to be iid normal. If the returns are iid but not normal, a non
parametric procedure to estimate the true optimal shrinkage intensity is presented.

6.1.1 Shrinkage Estimator of Mean Returns

For estimating the mean returns, the idea is to choose the shrinkage intensity such that
it minimizes the expected quadratic loss of the estimator. We choose the shrinkage target
µtg as the vector of ones and the scaling factor φµ to minimize the bias of the shrinkage
target, so

µtg = 1 and

φµ = argminφ ‖φ1− µ‖2
2 =

1

n

n∑
i=1

µi =: µ,

where µ denotes the true (unknown) mean return vector.
Note that DeMiguel et al. justify the choice of µtg = 1 by the fact that “in the case where
the shrinkage intensity is equal to one, the solution of the estimated mean-variance portfolio
would be the minimum-variance portfolio, which is a common benchmark”. We follow this
approach, and as we mentioned above, we choose the shrinkage intensity to minimize the
expected quadratic loss of the estimator. Therefore we select αµ as the optimal solution of

min
α

E
[
‖µsh − µ‖2

2

]
s.t. µsh = (1− α)µsp + αφµ1.

We are now ready to state the closed-form expression of the true optimal shrinkage intensity
in the following proposition as stated in [DeMiguel et al., 2013].

Proposition 6.1. For r̃t iid, the true optimal shrinkage intensity, in the sense of minimal
quadratic loss, is given by

αµ =
E
(
‖µsp − µ‖2

2

)
E
(
‖µsp − µ‖2

2

)
+ ‖φµ1− µ‖2

2

=
(n/T )σ2

(n/T )σ2 + ‖φµ1− µ‖2
2

, (39)

with σ2 = trace(Σ)/n.

Proof. See [DeMiguel et al., 2013, Appendix A. Proof of Proposition 1]
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We see that in Equation (39) we are still in need of the true moments µ and Σ.
[DeMiguel et al., 2013, Section 5] argue in their empirical tests that the use of the sample
estimators µsp and Σsp instead only bears some reasonable estimation risk.
We can therefore state our estimation for the optimal shrinkage parameter as

α̂µ =
trace(Σsp)/T

trace(Σsp)/T + ‖φµ1− µsp‖2
2

. (40)

Combining all our above results and plugging them in into equation (39), we obtain the
shrinkage estimator for the first moment of r̃ as

µsh = (1− α̂µ)µsp + α̂µµ1. (41)

6.1.2 Shrinkage Estimator of the Covariance-Matrix

Analogous to the approach for the shrinkage estimator of µ, we here choose the shrinkage
target Σtg as the identity matrix and the scaling factor φΣ to minimize the bias of the
shrinkage target, so

Σtg = I and

φΣ = argminφ ‖φI−Σ‖2
F =

1

n

n∑
i=1

σ2
i =: σ2,

where ‖ · ‖F denotes the Frobenius-Norm of a matrix (for A ∈ Rm×n the Frobenius-Norm
is defined by ‖A‖2

F =
∑m

i=1

∑n
j=1 |aij|2) and Σ the true (unknown) covariance matrix of

the returns with diagonal elements σ2
i for i = 1, . . . , n.

We again select the shrinkage intensity αΣ to minimize the expected quadratic loss, so

min
α

E
[
‖Σsh −Σ‖2

F

]
s.t. Σsh = (1− α)Σsp + αφΣI.

One can now show, by plugging the restriction into the objective function, that this problem
is equivalent to

min
α

E
[
‖Σsh −Σ‖2

F

]
= min

α
(1− α)2E

[
‖Σsp −Σ‖2

F

]
+ α2‖φΣI−Σ‖2

F . (42)

As the objective function of this problem is nothing but a quadratic function in the opti-
mization variable, we simply set the derivation with respect to α equal to zero and solve
the resulting equation. By using Equality (42) the resulting equation is given by

d

dα
E
[
‖Σsh −Σ‖2

F

]
= −2(1− α)E

[
‖Σsp −Σ‖2

F

]
+ 2α‖φΣI−Σ‖2

F ,

which can be easily solved for α and results in

αΣ =
E
[
‖Σsp −Σ‖2

F

]
E
[
‖Σsp −Σ‖2

F

]
+ ‖φΣI−Σ‖2

F

. (43)
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By assuming the returns to be iid normal and T > n + 4, DeMiguel et al. derive a closed
form expression for E

[
‖Σsp −Σ‖2

F

]
. As we intend to use this estimator in the context of

distributionally robust portfolio optimization, we cannot justify this assumption. There-
fore, we will use the technique of smoothed bootstrapping to obtain αΣ (see [DeMiguel
et al., 2013]).

For our purpose of calculating αΣ, we will use the bootstrap for the approximation of
the expected quadratic loss E

[
‖Σsp −Σ‖2

F

]
. We then estimate ‖φΣI−Σ‖2

F by simply using
the sample covariance matrix Σsp instead of the unknown true second moment Σ, which
we again justify by referring to the numerical results of [DeMiguel et al., 2013], where the
same approach is taken.

The “vanilla” version of the bootstrap method for approximating E
[
‖Σsp −Σ‖2

F

]
is to

simply generate B(∈ N) samples of asset-returns by drawing observations with replacement
from the original (observed) sample. For each of these samples Sb := (r1

t,b, . . . , r
n
t,b)

T
t=1 with

b = 1, . . . , B, we can then easily calculate ‖Σsp −Σsp,b‖2
F , with Σsp,b being the sample

covariance matrix of Sb. The expected value of the quadratic loss function is then estimated
by

Ê
[
‖Σsp −Σ‖2

F

]
=

1

B

B∑
b=1

‖Σsp −Σsp,b‖2
F .

When using the multivariate version of the smoothed bootstrap, one simply updates each
drawn (sub-) sample rbt = (r1

t,b, . . . , r
n
t,b) of Sb to

r∗bt = µsp,b + (I + ΣZ)−1/2
[
rbt − µsp,b + Σ

1/2
sp,bZbt

]
, (44)

where µsp,b and Σsp,b are the sample estimates of the first two moments based on Sb and
Zb is a multivariate normal random variable with zero mean and covariance matrix Σsp,b

(therefore ΣZ = Σsp,b). This modification implies that we are now sampling observations
from a continuous density function and hence, the probability of repeated observations is
zero. This result is very appealing, since many repeated observations are likely to lead to
singularity of the estimated covariance matrix.
We summarize the “vanilla” bootstrap in Algorithm 1 and the smoothed bootstrap in Al-
gorithm 2, respectively.
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Algorithm 1: Bootstrap for Expected Loss of Sample Covariance Matrix

input : {rt}Tt=1, Σsp, B ∈ N
output: Estimation for E

[
‖Σsp −Σ‖2

F

]
for b=1,. . .,B do

Sb ← sample of T return vectors sampled from {rt}Tt=1 with replacement
Σsp,b ← covariance matrix based on sample Sb

return 1
B

B∑
b=1

‖Σsp −Σsp,b‖2
F

As mentioned above, in the smoothed bootstrap we additionally update each drawn
(sub-) sample.

Algorithm 2: Smoothed Bootstrap for Expected Loss of Sample Covariance Matrix

input : {rt}Tt=1, Σsp, B ∈ N
output: Estimation for E

[
‖Σsp −Σ‖2

F

]
for b=1,. . .,B do

Sb ← sample of T return vectors sampled from {rt}Tt=1 with replacement
Σsp,b ← covariance matrix based on sample Sb
Zbt ← realization of a multivariate random variable with mean zero and
covariance matrix Σsp,b

r∗bt ← µsp,b + (I + ΣZ)−1/2
[
rbt − µsp,b + Σ

1/2
sp,bZbt

]
Σ∗sp,b ← covariance matrix based on (r∗bt)

T
t=1

return 1
B

B∑
b=1

∥∥Σsp −Σ∗sp,b
∥∥2

F

We obtain an approximation of the convexity parameter αΣ by plugging our above
(smoothed) results into equation (43), so

α̂Σ =

1
B

B∑
b=1

∥∥Σsp −Σ∗sp,b
∥∥2

F

1
B

B∑
b=1

∥∥Σsp −Σ∗sp,b
∥∥2

F
+ ‖σ2I−Σsp‖2

F

. (45)

Finally, our shrinkage estimator of Σ is given by Σsh := (1− α̂Σ)Σsp + α̂Σσ2I.
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6.2 Uncertainty Cones of Moments

In order to robustify our portfolio optimization problem against estimation error of the
asset-return moments, in Section 5.3 we assumed the true moments µ and Σ to be in a
convex uncertainty set U of the form

U =
{

(µ,Σ) ∈ Rn × Sn : (µ− µ̂)′Σ̂−1(µ− µ̂) ≤ δ1, δ3Σ̂ � Σ � δ2Σ̂
}
, (46)

with δ1, δ2, δ3 ∈ R+ and δ2 ≥ 1 ≥ δ1.

Of course, we select the center (µ̂, Σ̂) to be our point estimations µsh and Σsh, derived
in the previous section. Naturally, we cannot find reasonable δ1, δ2 and δ3 for which the
true moments lie in U with probability equal to one. Hence, our task is now to derive such
δ1, δ2, δ3 ∈ R+ for which (µ,Σ) ∈ U with a high level of confidence, say 1− δ. In fact, we
can immediately choose δ3 = 0, since in our application we only use the worst case scenario
of Σ, therefore only the upper bound δ2Σ̂ is needed.

Our approach will be based on a bootstrapping technique for estimating thresholds for
hypothesis-testing presented by [Bertsimas et al., 2013]. In their paper, Bertsimas et al.
interpret the analytical approach of [Delage and Ye, 2010] for deriving such an uncertainty
set U , as a hypothesis-test with the null hypothesis being

H0 : E[r̃] = µsh and E[r̃r̃′]− E[r̃]E[r̃′] = Σsh,

which is, using our notation, equivalent to

H0 : µ = µsh and Σ = Σsh. (47)

In order to estimate δ1 and δ2, we define two test-statistics T 1 and T 2 by

T 1(µ̂, Σ̂) := (µ̂− µsh)′Σ̂−1(µ̂− µsh)

T 2(µ̂, Σ̂) := max
λ∈Rn

λ′Σshλ

λ′Σ̂λ
,

where µ̂ and Σ̂ denote estimations of µ and Σ based on another sample of observed asset-
returns. Of course, we again use the presented shrinkage estimation methods for µ̂ and
Σ̂ and the “other sample” will be a bootstrap sample which we gain by sampling with
replacement from the real observed asset-returns.

The bootstrap method of Bertsimas et al. is then to draw B (∈ N) samples of size T
with replacement from the observed asset-returns {rt}Tt=1. For each of these samples Sb,
where b = 1, . . . , B, we then compute µ̂b, Σ̂b and T 1

b or T 2
b respectively. We then simply

estimate δi by the dB(1− δ)e-largest value of {T i1, . . . , T iB}, where i ∈ {1, 2}.
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For the purpose of readability, we summarize this bootstrap approach in Algorithm 3.

Algorithm 3: Bootstrapping Moment Thresholds

input : {rt}Tt=1, T i, δ ∈ (0, 1), B ∈ N, i ∈ {1, 2}
output: Estimation for δi
for b = 1, . . . , B do

Sb ← sample of T return vectors sampled from {rt}Tt=1 with replacement
T ib ← T i(µ̂b, Σ̂b) where µ̂ and Σ̂j are shrinkage estimators of mean and
covariance matrix based on Sb

return dB(1− δ)e-largest value of {T i1, . . . , T iB}

Note that while T 1(µ̂, Σ̂) can be computed immediately by its definition, T 2(µ̂, Σ̂) is
the maximum over all λ ∈ Rn of a quotient. In order to calculate this maximum, we
first compute the square root of the positive definite matrix Σ̂, so Σ̂ = Σ̂1/2Σ̂1/2. By
substituting Σ̂ by this decomposition and also plugging it in the enumerator, and since all
the matrices are symmetric, we get the following expression for our test-statistics.

T 2(µ̂, Σ̂) = max
λ∈Rn

λ′Σshλ

λΣ̂λ
= max

λ∈Rn

(Σ̂1/2λ)′Σ̂−1/2ΣshΣ̂
−1/2(Σ̂1/2λ)

(Σ̂1/2λ)′(Σ̂1/2λ)

This is nothing but the Rayleigh-Quotient of the matrix Σ̂−1/2ΣshΣ̂
−1/2. Since this matrix

is symmetric and we are maximizing, this equals the biggest eigenvalue. We can therefore
compute T 2(µ̂, Σ̂) by

T 2(µ̂, Σ̂) = λmax

(
Σ̂−1/2ΣshΣ̂

−1/2
)
. (48)

Algorithm 3 will deliver estimations δ̂1 and δ̂2, which we use to finally determine the convex
uncertainty set Û , in which we assume the true moments µ and Σ lie with probability of
at least (1− δ);

Û =
{

(µ,Σ) ∈ Rn × Sn : (µ− µsh)′Σ−1
sh (µ− µsh) ≤ δ̂1, 0 � Σ � δ̂2Σsh

}
. (49)
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7 Numerical Experiments

In this Section we want to apply our derived portfolio theory to real data. We will com-
pare the performance of investment strategies induced by the different portfolio selection
methods derived in Section 5.4. In addition, we will compare the results to the equally
weighted portfolio, which is known to be hard to outperform (see [DeMiguel et al., 2009]),
and the “classical” (Markowitz) minimum variance portfolio we introduced in Section 3.2.
We hence compare the following portfolios:

• (RGOP) Robust Growth Optimal Portfolio:

This is the portfolio derived in [Rujeerapaiboon et al., 2014], on which our approach
is based. As mentioned in Section 5.4.1, we obtain this portfolio by choosing the risk
aversion parameter γ equal to one and solving the corresponding Program (30).

• (RGOP+) Robust Growth Optimal Portfolio with Moment Uncertainty:

This is the portfolio we obtain by choosing γ equal to one and robustifying our
moment estimations, i.e. solving Program (32).

• (RRAP) Robust Risk Averse Portfolio:

This is the portfolio we derived in Section 5.4.2. It is the most risk averse portfolio
in our framework and is obtained by choosing γ equal to the technical lower bound
γ∗, where γ∗ is defined by Problem (34), and solving Program (30).

• (RRAP+) Robust Risk Averse Portfolio with Moment Uncertainty:

Similar to the above robust risk averse portfolio but with robustification against
moment uncertainty, i.e. the optimal solution of Program (32) with γ equal to γ∗.

• (MVAR) Minimum Variance Portfolio:

This is the “classical” Markowitz minimum variance portfolio which we reviewed in
Section 3.2. It is the efficient portfolio with the smallest variance and can be achieved
for example by solving Problem (6) for R equal to the smallest expected asset-return.

• (1/n) Equally Weighted Portfolio:

This portfolio simply weights every asset with 1/n, so w1 = 1
n
1, where n is the

number of considered assets.

From a theoretical point of view, we would expect the portfolios which consider moment
uncertainty, i.e. RRAP+ and RGOP+, to be more conservative than their “vanilla” coun-
terpart. As the RRAPs are by definition the most risk averse under all robust portfolios
and the same holds for the MVAR-portfolio in the set of all mean-variance efficient port-
folios, we expect a similar but not identical behaviour of these strategies. In contrast, the
RGOPs are the only considered portfolios which do not minimize the risk in some sense.
Therefore, it is most likely that they differ most from the other considered strategies.
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To compare these portfolio selection methods, we define investment strategies by up-
dating the portfolio weights every 12 months and rebalancing the corresponding portfolio
accordingly. This means investment strategy RRAP is given by solving Problem (30) cali-
brated with moment estimates based on the information available at time t=0 and γ = γ∗.
This portfolio is then kept for 12 months. After 12 months, or at t=1, Problem (30) is
again solved with γ = γ∗, using new estimates based on the available information at t=1.
The initial portfolio is then redeployed to match the new portfolio weights and so on. To
account this redeployment, we also consider proportional transaction costs of c = 50 basis
points per Euro traded. The parameter ε, which defines the confidence level of the worst-
case value-at-risk of our a priori performance measure ν̃γT (w) (WV aRε(ν̃

γ
T (w)), is chosen

as ε = 5%.

In Section 7.2 we will compare the performances of the several strategies in different
scenarios by using the performance measures presented in Section 7.1. A scenario is thereby
defined by the considered set of assets and the time horizon (starting date and number of
years) for which the capital is invested. Scenario 1 in Section 7.2.1 consists of the invest-
ment period December 2005 to December 2010 and a set of assets which all experienced a
price collapse at the outbreak of the global financial crisis in the year 2008. On the other
hand, Scenario 2 in Section 7.2.2 also covers the same investment period but includes as-
sets which either did not show any or only modest reaction to the global financial crisis.
For the purpose of easy visualization of the portfolio weight assignments we only consider
small sets of assets in these two scenarios. In contrast, Scenario 3 in Section 7.2.3 includes
all 30 assets of the Dow Jones Industrial Average.

We will also look at the actual influence the risk aversion parameter γ has on the cho-
sen portfolio in practice. As mentioned above, for γ small, i.e. close to the lower bound
γ∗ defined by Equation (34), we would expect the resulting portfolio to be “near” to the
MVAR-portfolio. On the other hand, as γ grows, we expect the resulting asset-weight
distribution to differ more from the minimum variance portfolio.

As mentioned above, we consider proportional transaction costs. Hence, excessive re-
deployment of a portfolio will result in smaller portfolio returns. We will therefore also
consider the “evolution” of our portfolios over time in order to determine if a strategy
causes a lot of redeployment costs. Naturally we expect the equally weighted portfolio 1/n
to cause the least redeployment costs.

For all strategies, the moment and parameter estimations are done with the methods
presented in Section 6, using the most recent 60 (=̂ five years) monthly observations avail-
able at the respective moment in time. As we have seen, for estimating the covariance
matrix and the moment uncertainty cone, we use a bootstrapping procedure, for which we
choose the number of iterations B = 500. The uncertainty cone around the shrinkage point
estimations µsh and Σsh is determined by the method presented in Section 6.2, where we
choose δ = 5%.
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7.1 Performance Measures

To compare the performance of the different investment strategies, we need some measures
to quantify the observed behaviours. Let wt ∈ Rn denote a portfolio kept in time period
(t − 1, t] and rt ∈ Rn the realized asset-returns over this interval, where t = 1, . . . , T .
Note that for all periods the portfolio weights wt sum up to one, which means that all of
the capital is invested and we do not consider a cash position. We assume proportional
transaction costs of c = 50 basis points per Euro traded. Obvious measures are of course
the mean return and the standard deviation of the realized portfolio returns which when
combined, result in the so-called Sharpe Ratio. We are also interested in the turnover rate
and maximum draw-down, describing the relative amount of redeployed capital and the
biggest relative decline of aggregate return, respectively.
We summarize the used performance measures in the following list:

1. Mean Return:

We simply take the mean of the realized portfolio returns, where we subtract the
costs for the portfolio redeployment at the dates t = 1, . . . , T .

r̂ :=
1

T

T∑
t=1

(
(1 + w′trt)

(
1− c

n∑
i=1

|wit − wit−|

)
− 1

)
.

Here, wt− denotes the portfolio weights of portfolio wt−1 at time t, where w0 := 0
accommodates the fact that nothing is invested at time t = 0. Obviously, we prefer
a high mean return.

2. Standard Deviation:

As this is the most intuitive measure for the volatility of our portfolio returns, we
prefer strategies with small standard deviation.

σ̂ :=

√√√√ 1

T − 1

T∑
t=1

(
(1 + w′trt)

(
1− c

n∑
i=1

|wit − wit−|

)
− 1− r̂

)2

.

3. Sharpe Ratio:

The Sharpe Ratio combines the two notions of high return and small volatility (vari-
ance). It is given by

ŜR :=
r̂

σ̂
,

where we considered the “risk free” reference interest rate equal to zero.
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4. Turnover Rate:

The turnover rate simply accumulates the differences in consecutive portfolios of one
strategy. As redeployment is charged by c basis points per Euro traded, we prefer
strategies with a small turnover rate. It is given by

T̂R :=
1

T

T∑
t=1

n∑
i=1

|wit − wit−|.

5. Net Aggregate Return:

The net aggregate return describes the worth at the end of the considered time
interval (t=T) of one Euro invested at time t = 0 in the portfolio strategy. By using

V̂t :=
t∏

j=1

[
(1 + w′jrj)

(
1− c

n∑
i=1

|wit − wit−|

)]
,

where V̂t describes the value at time t, the net aggregate return is given by

N̂R := V̂T .

6. Maximum Draw-down:

The maximum draw-down describes the biggest relative loss we have experienced
over the considered time interval. By using the notation above, it is given by

M̂DD := max
1≤s<t≤T

V̂s − V̂t
V̂s

.

Of course, only in very rare cases will there be one strategy dominating the others in
the sense of all the above measures. Therefore, in Section 7.2, we will compare all the
performance measures of every strategy with the others.
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7.2 Empirical Backtests

7.2.1 Scenario 1: A fragile Market during the Global Financial Crisis

In order to provide traceability and easy visualization, our first scenario consists of seven
assets to invest in. The investment horizon is chosen to be December 2005 to December
2010. We therefore use the monthly observations of the asset-returns from December 2000
to December 2005 to get the initial estimates for the first- and second-order moments µ
and Σ and the uncertainty cone parameters δ1 and δ2. Using these estimates, we can
determine the initial portfolios by solving the corresponding optimization problems. These
portfolios are held for 12 months, consequently we set the time horizon T = 12 accordingly.
This routine is repeated every 12 months for five consecutive years using a rolling five year
observation window for the estimation. Due to the portfolio recalculation in December,
the resulting investment strategies are only fixed-mix strategies for the one year periods
in-between the rebalancing dates.

The set of considered assets consists of five American and two European stocks, listed
in Table 2. Note that these corporations are chosen to be from very different economic
sectors as strongly correlated assets would not facilitate the display of differences in the
portfolio strategies.

Corporation Symbol Exchange Description

Coca-Cola Company KO New York
Beverage corporation and manufac-
turer.

Procter & Gamble PG New York Consumer goods company.
Exxon Mobil XOM New York Oil and gas corporation.
Pfizer PFE New York Pharmaceutical corporation.
United Health Group UNH New York Health care company.
L’Oreal OR.PA Paris Cosmetics and beauty company.
Iberdrola IBE.MC Madrid Electric utility company.

Table 2: Scenario 1: List of considered stocks

The adjusted closing prices4 for the relevant period of time, which are obtained from
Yahoo Finance5, are displayed in Figure 9. The rebalancing dates are marked by the dotted
vertical lines. Again, note that for updating the portfolio weights at the rebalancing dates,
only the most recent five years to the “left” of the rebalancing date are used.
We immediately observe obvious differences in the performances of the different stock
prices. Where the prices of the Spanish Iberdrola stock seem to be fairly stable, the
L’Oreal stock varies a lot more. These differences become particularly interesting when we
investigate their influence on the considered portfolios.

4The actual stock closing price amended to include dividends, stock splits and other corporate actions.
5http://finance.yahoo.com
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Figure 9: Scenario 1: Adjusted closing prices
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First, we want to have a look at the initial portfolios. They are visualized in Figure 10,
where we neglected to display the equally weighted portfolio since its weight assignment is
obvious and never changes. We observe that of all robust portfolios, the RRAP+ visually
(and numerically, in the sense of an arbitrary vector norm) is the closest to the classic
(Markowitz) minimum variance portfolio MVAR. In this sense of distance, also the RRAP
is closer to the MVAR portfolio than the RGOP and RGOP+. This is an expected pattern,
since the RRAP(+) and MVAR portfolios both minimize the risk in some sense, whereas
the growth optimal portfolios focus on the growth rate. Note that in this example the
RRAP and RRAP+ can only be distinguished numerically.
As moment ambiguity states an additional source of risk, its consideration results in even
more risk averse portfolios. This can be particularly observed when looking at the RGOP+,
which somehow lies between the RGOP and the risk averse portfolios.

Figure 10: Scenario 1: Initial portfolios

To further interpret these different portfolio weights, in Figure 11 we display the box-
plots of the asset-returns observed over the time horizon relevant for the initial portfolios,
i.e. December 2000 to December 2005. The median is depicted by the bold horizontal line.
We also marked the shrinkage estimators for the mean, as presented in Section 6, by bold
black points. The coloured boxes mark the lower and upper quartiles of the returns and
the dashed “whiskers” indicate the most extreme observations as long as their distance to
the median does not exceed 1.5 times the interquartile length, otherwise these “outliers”
are marked by circles.

As expected, we see that for all portfolio strategies the highest weights are observed for
the assets with the highest mean return, i.e. the best performing assets from the past. We
can see in Figure 10 that the biggest differences between the initial portfolios are observed
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for the assets IBE.MC and PFE. While the growth optimal portfolios RGOP and RGOP+
favour the higher mean return of IBE.MC, the risk averse portfolios RRAP(+) and MVAR
invest more in PFE, although it has a negative expected return. Note that from the box-
plot we can not identify the correlation between the assets, and therefore the advantages
of choosing PFE instead of IBE.MC in order to minimize the portfolio volatility is not
displayed.

Figure 11: Scenario 1: Boxplots of initial return-history

Next, we want to have a look at the impact of the risk aversion parameter γ on the
resulting portfolios. For this purpose, in Figure 12 we display the portfolio weights that we
obtain for different choices of γ when solving Problem (30), which is the distributionally
robust portfolio optimization problem without moment ambiguity. For γ = γ∗, where in
this example γ∗ = 0.02477 as defined by Equation (34), and γ = 1 we obtain the RRAP
and RGOP, respectively.

We observe that for higher, and therefore less risk averse choices of γ, the assets with
high expected returns dominate the portfolios. It also seems that for very big γ, the re-
sulting portfolio converges towards some “limit”-portfolio. For γ between γ∗ and one, we
see the biggest changes in asset weights.

We want to compare these results to the portfolios that take the moment ambiguity
into account. In Figure 13 we again display the portfolio weights for different choices of
γ, this time for the distributionally robust portfolio optimization problem with moment
ambiguity (Problem (32)). We can observe a similar pattern as in Figure 12. For increas-
ing γ, the changes in asset weights decrease. In contrast to the portfolios without moment
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ambiguity, the changes in asset weights are smaller and the “limit”-portfolio seems to be
more diversified. This is due to the fact that all of these portfolios are more risk averse
than their “vanilla” counterparts.

Figure 12: Scenario 1: Initial portfolios without moment ambiguity dependent on γ

Figure 13: Scenario 1: Initial portfolios with moment ambiguity dependent on γ

As the overall aggregated return is reduced by transaction costs, it is worth having
a look at the evolution of the asset-weights over the investment horizon. An excessive
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change in portfolio weights will result in high transaction costs at the rebalancing dates
in December. Therefore, we would prefer a strategy with less required redeployment. The
asset-weights evolution is presented for the robust risk averse and growth optimal strategies
in Figures 14 and 15, respectively.
From these figures we see that the slopes of the cumulated RGOP weights are more extreme
than those of the RRAP weights. This simply means that, in this scenario, the RGOP
strategy causes more transaction costs than the RRAP strategy. It is also worth mentioning
that our observations for the initial portfolios, which we stated above, stay true at all
rebalancing dates. Under all robust portfolios, the RRAP+ is the closest to the MVAR
portfolio. Also, at all rebalancing dates the portfolios with moment ambiguity are closer
to the minimum variance portfolio than the ones without.

Figure 14: Scenario 1: Asset-weights evolution of the RRAP

Finally, we want to a posteriori compare the investment strategies by using the per-
formance measures introduced in Section 7.1. An investment strategy is said to dominate
another strategy if for every considered measure its performance is better.
The results are presented in Table 3, where the figures refer to the monthly portfolio-returns
that realized in the considered investment period December 2005 to December 2010.

As we have mentioned above, the equally weighted portfolio strategy is surprisingly
hard to outperform, which is also documented in [DeMiguel et al., 2009]. In our example,
it outperforms all other strategies in every performance measure.
We also observe that in this scenario, the minimum variance portfolio performed better
than the robust portfolios. This is due to the fact that from 2007 to 2009 (the global
financial crisis) all of the stock prices experienced a major drawback and consequently risk
averse strategies performed better. This behaviour can also be observed if we look at the
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Figure 15: Scenario 1: Asset-weights evolution of the RGOP

r̂ σ̂ ŜR T̂R N̂R M̂DD
RRAP 0.00549 0.04530 0.12124 0.07064 1.30604 0.42044
RRAP+ 0.00550 0.04528 0.12154 0.07052 1.30699 0.42016
RGOP 0.00538 0.04612 0.11670 0.07392 1.29442 0.42611
RGOP+ 0.00543 0.04575 0.11868 0.07249 1.29950 0.42443
MVAR 0.00552 0.04517 0.12223 0.06999 1.30881 0.41902
1/n 0.00585 0.04499 0.13004 0.05570 1.33554 0.41135

Table 3: Scenario 1: Performance measures of strategies

robust portfolios. It is remarkable that both strategies with moment ambiguity dominate
their “vanilla” counterparts. Also the risk averse strategies RRAP and RRAP+ showed a
better performance than the growth optimal portfolios RGOP and RGOP+.
From Figures 14 and 15, which compared the asset-weights evolution, we concluded that
the RGOP strategy will cause more transaction costs than the RRAP strategy. This is
confirmed by the higher turnover rate that the robust growth optimal strategies produced.

In summary, we have seen a setting in which risk averse strategies performed better than
others. This was also observed within the set of robust portfolios, where the risk averse
dominated the growth optimal strategies. From all considered strategies, the minimum
variance was only outperformed by the equally weighted portfolio. In some sense, the
robust strategies “followed” the performance of the minimum variance portfolio.
We will now have a look at another Scenario to see if we can confirm these patterns.
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7.2.2 Scenario 2: A robust Market during the Global Financial Crisis

In contrast to Scenario 1, we will now consider a set of assets for which some of the stock
prices did not show such a negative reaction to the global financial crisis. The investment
horizon is again chosen to be December 2005 to December 2010. We also use exactly the
same investment strategies, e.g. the parameters for the respective portfolio optimization
problems are estimated using a rolling five year observation window and the portfolios are
rebalanced each December for consecutive five years.

This time, the set of considered assets consists of British stocks, which are again chosen
to be from different economic sectors and are listed in Table 4.

Corporation Symbol Exchange Description

Babcock International
Group

BAB.L London

Multinational corporation which
specialises in support service
managing complex assets and
infrastructure in safety-critical
environments.

British American To-
bacco

BATS.L London
One of the worlds five largest to-
bacco companies.

GlaxoSmithKline GSK.L London
A pharmaceutical, biologics, vac-
cines and consumer healthcare com-
pany.

Kingfisher KGF.L London
The largest home improvement re-
tailer in Europe.

United Utilities Group UU.L London
The United Kingdom’s largest listed
water company.

Vodafone Group VOD.L London
Multinational telecommunications
company.

Table 4: Scenario 2: List of considered stocks

We obtain the adjusted closing prices6 from Yahoo Finance7, where the listed symbols
in Table 4 state the corresponding ticker symbols.
From Figure 16 we can see that the price movements show another behaviour than in the
previous Scenario 1. There are no major drawbacks, and all of the prices at the end of
2010 are almost the same or above the prices from December 2005. We also recognise that
the BATS.L stock realized by far the best performance in the sense of aggregated return,
while other stock prices, especially VOD.L, relatively showed not as much movement.
The rebalancing dates are again marked by the dotted lines.

6The actual stock closing price amended to include dividends, stock splits and other corporate actions.
7http://finance.yahoo.com
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Figure 16: Scenario 2: Adjusted closing prices
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If we look at the initial portfolios in Figure 17, we observe a similar pattern as we have
seen in Figure 10 for Scenario 1. The robust risk averse portfolios RRAP and RRAP+ are
again very “close” to the MVAR portfolio. On the other side, the weight-assignments of
the RGOP differs the most from the others, where the RGOP+ again lies somewhere “in
between” the robust risk averse and the growth optimal portfolios. This also holds for the
RRAP+ (which can not be seen visually but can be verified numerically) and therefore,
as in the previous Scenario 1, both robust portfolios with moment ambiguity are closer to
the MVAR portfolios than those without moment ambiguity. We also note that this time,
the differences between the initial asset-weights of the different strategies are even smaller
than they were in Scenario 1.

Figure 17: Scenario 2: Initial portfolios

In Figure 18 we see the boxplots of the monthly asset-returns realized in the time pe-
riod December 2000 to December 2005. The shrinkage estimators for the means, which
are used for all portfolio selections, are again marked by bold black points. We see that
all strategies neglect to choose KDF.L due to its high volatility (many outliers) compared
to the other assets. We also observe that BATS.L is preferred to BAB.L, as both show
almost the same estimated mean but the latter has smaller variance. In contrast to the
risk averse strategies, the growth optimal portfolios put more weight on BATS.L and less
on VOD.L because of the higher expected return.

Based on the weight-assignments in Figure 17, the stocks of BATS.L and GSK.L seem
to be the most attractive ones. If we look at the first five years of the price history in Figure
16, the reasons for this preferences are quite obvious. As mentioned above, the prices of
the BATS.L performed best in the sense of mean return and also have an attractive, i.e.
small, variance. The choice of GSK.L seems counterintuitive at first glance, since the stock

72



lost value over the first five years (2000-2005). Nevertheless, it is chosen by all strategies
because it did not behave like the other assets, and therefore helps to minimize the expected
portfolio variance.

Figure 18: Scenario 2: Boxplots of initial return-history

We want to see how these portfolios develop over time. For this purpose we plot the
weight-assignments of the RRAP and RGOP for all rebalancing dates in Figures 19 and
20, starting with December 2005. In these figures one can observe a slightly higher move-
ment in the asset weights of the RGOP compared to the RRAP, which will be confirmed
by the higher turnover rate displayed in Table 5. The overall weight distribution at the
rebalancing dates December 2006 to December 2009 seem to follow the same pattern as
the initial portfolio at December 2005. The most attractive assets are BATS.L and GSK.L,
where the latter is chosen to minimize the portfolio variance.

We also want to mention that similar to Scenario 1, our observations for the initial
portfolios stay true at all subsequent rebalancing dates. This means that the robust risk
averse portfolios are “closer” to the minimum variance portfolio than the robust growth
optimal portfolios. The same holds for the robust portfolios with moment ambiguity com-
pared to their “vanilla” counterparts.

Note that although the various strategies are very similar at the beginning, the dif-
ferences at the last rebalancing date and especially in December 2007 are more distinct,
see Figures 19 and 20. Where the robust growth optimal strategy prefers BAB.L due to
its appealing performance from December 2005 to December 2008, the robust risk averse
strategy relies more on UU.L and KGF.L. From the price history in Figure 16, we see that
for this time period the price evolutions of UU.L and KGF.L do not seem to have much in
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common, which will result in a smaller correlation and hence expected portfolio variance
and states the reason why this combination is preferred by the risk averse strategies.

Figure 19: Scenario 2: Asset-weights evolution of the RRAP

Figure 20: Scenario 2: Asset-weights evolution of the RGOP

In Figures 21 and 22 we again display the influence of the risk aversion parameter γ on
the initial robust portfolios with and without moment ambiguity, respectively. As we have
already seen in Figure 17 that in this scenario there seems to be less differences between the
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robust portfolio weight-assignments, this of course holds for all choices of γ. Especially for
the portfolios with moment ambiguity (displayed in Figure 22) we can hardly depict any
differences visually. Nevertheless, we once again observe the same patterns as in Scenario
1. For increasing γ, the changes in asset weights decrease and hence the biggest differences
are observed for γ close to γ∗, where γ∗ = 0.02806 in this example, which corresponds to
the RRAP and RRAP+, respectively.

Figure 21: Scenario 2: Initial portfolios without moment ambiguity dependent on γ

Figure 22: Scenario 2: Initial portfolios with moment ambiguity dependent on γ
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We can now compare the performances of the strategies by using the performance
measures presented in Section 7.1. The results can be seen in Table 5, where the figures
correspond to realized monthly returns.

r̂ σ̂ ŜR T̂R N̂R M̂DD
RRAP 0.00884 0.03387 0.26098 0.05875 1.63962 0.16820
RRAP+ 0.00883 0.03387 0.26075 0.05871 1.63893 0.16776
RGOP 0.00895 0.03407 0.26277 0.06037 1.64999 0.17632
RGOP+ 0.00888 0.03390 0.26201 0.05932 1.64354 0.17185
MVAR 0.00882 0.03389 0.26024 0.05864 1.63766 0.16669
1/n 0.00979 0.03780 0.25895 0.05753 1.72048 0.18357

Table 5: Scenario 2: Performance measures of strategies

Once again the equally weighted portfolio strategy performed best in terms of mean
and net aggregated return. Where in Scenario 1 this naive diversification dominated the
other strategies we see that this time it produced the biggest maximum drawdown and
variance out of all considered strategies.
We also observe that the minimum variance portfolio, which dominated the robust strate-
gies in Scenario 1, is now outperformed by the robust risk averse portfolios. If we look at
the robust portfolios, the growth optimal outperformed the risk averse portfolios in terms
of the return measures r̂ and N̂R. On the other hand, the risk averse portfolios realized a
smaller variance, turnover rate and maximum drawdown. This perfectly suits their notion
of being risk averse.
Similar to Scenario 1, and in accordance with our observations on the initial asset-weights
distributions in Figure 17, the performances of the robust portfolios that take moment
ambiguity into account deviate from their “vanilla” counterparts towards the minimum
variance portfolio.

All in all we observed a similar pattern as in Scenario 1 Section 7.2.1, although this
time there was no single strategy dominating the others. The more risk averse the model
of a robust portfolio was, the more it resembled the weight assignments of the minimum
variance portfolio. This of course directly influenced the observed performances, for which
the same assertions hold.
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7.2.3 Scenario 3: The DJIA during the Global Financial Crisis

As a last example we apply our investment strategies to the set of assets that form the
Dow Jones Industrial Average (DJIA). The DJIA is a stock market index that represents
30 large publicly owned companies based in the United States. We again consider the
investment period from December 2005 to December 2010 and use the same method as
in the previous scenarios to periodically rebalance the portfolio weight assignments. The
evolution of the DJIA over the relevant time period December 2000 to December 2010 can
be seen in Figure 23. We immediately notice the big drawdown in 2008, which of course
was caused by the global financial crisis.

Figure 23: Scenario 3: DJIA from 12/2000 to 12/2010

We want to omit here the interpretation of the portfolio weight assignments since the
overall patterns we observed in the previous scenarios stay the same. The robust portfolios
RRAP and RGOP are close to the MVAR portfolio and the robust portfolios with moment
ambiguity RRAP+ and RGOP+ are even more risk averse in the classical sense.

In addition to the risk measures we introduced in the beginning of this section, we want
to compare the equally weighted portfolio to the RRAP and RGOP by the evolution of
the net aggregated returns. In Figure 24 we can observe that in periods where there was a
steady growth, the equally weighted portfolio outperformed the robust portfolios in terms
of aggregated return. On the other hand, from the end of 2007 to the beginning of 2009
and in 2010, i.e. in periods where DJIA dropped down or moved sidewards, the robust
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portfolios performed significantly better than the equally weighted.

Figure 24: Scenario 3: Net aggregated return of 1/n, RRAP and RGOP

The observation we made on the net aggregated returns in Figure 24 are backed by the
performance measures presented in Table 6. The equally weighted portfolio showed the
least favourable performance where the RGOP outperformed all other strategies in terms
of return and maximum drawdown. We again observe the pattern that the consideration
of the moment ambiguity shifted the robust portfolios towards the MVAR portfolio.

r̂ σ̂ ŜR T̂R N̂R M̂DD
RRAP 0.00785 0.03100 0.25320 0.06930 1.55394 0.20814
RRAP+ 0.00782 0.03099 0.25223 0.06929 1.55094 0.20843
RGOP 0.00819 0.03117 0.26265 0.06893 1.58506 0.20516
RGOP+ 0.00790 0.03102 0.25460 0.06928 1.55830 0.20769
MVAR 0.00780 0.03098 0.25159 0.06928 1.54893 0.20864
1/n 0.00738 0.04955 0.14901 0.05890 1.44588 0.44274

Table 6: Scenario 3: Performance measures of strategies
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8 Conclusion

In this thesis, we derived distributionally robust portfolios which are closely related to the
Markowitz mean-variance efficient portfolios. For this purpose we introduced a new method
of a posteriori evaluating the performance of a portfolio. We penalized small returns by
high values and high returns by small values and defined the average return penalization
over all observed portfolio returns as our performance measure. Our choice of penalization
function was a quadratic polynomial with positive curvature and a parametrized minimum
at γ ∈ R. From this definition we motivated the interpretation of γ as a risk aversion
parameter. This a posteriori performance measure depicted an a priori random variable
since the portfolio returns are unknown at the beginning of an investment horizon. By
the definition of this a priori measure, we preferred portfolios which tend to have a small
realization of this random variable. For that reason, we used the (1-ε)-quantile of the
performance measure’s distribution as the objective function for our portfolio optimization
problem. By using well known results from robust optimization and without any restric-
tive assumptions on the asset-return distribution we eventually reformulated this problem
as a second-order cone program. In the process of deriving our portfolio optimization
problem we obtained a lower bound restriction γ∗ on the risk aversion parameter. For
all γ > γ∗ the reformulation as a second-order cone program enabled us to solve the op-
timization problems very efficiently by using one of many already existing solvers. Our
approach also allowed us to easily take the moment ambiguity into account, which arises
from the necessity of estimating the asset-return’s first- and second-order moments. For
estimating these moments, we used the technique of the so-called shrinkage estimation, for
which again no restrictive assumptions about the asset-return distribution had to be made.

In the presented empirical backtests (and several others) we observed a distinct pattern.
The most risk averse robust portfolios tended to behave like the Markowitz minimum-
variance portfolio. The consideration of moment ambiguity likewise shifted the asset-
weights towards the minimum-variance portfolio. On the other side, the larger the risk
aversion parameter γ (γ ≥ γ∗), the more the resulting weight distribution differed from the
risk averse portfolios. However, this deviation from the risk averse portfolio was bounded
since the change in the weight-distribution was decreasing as a function of the risk aversion
parameter. We also observed that the robust risk averse portfolios indeed followed the per-
formance of the minimum-variance portfolio but never were as extreme. This means that
in scenarios where the minimum-variance strategy showed a poor performance compared
to the others, so did the robust risk averse strategies, but not as poorly. On the other
hand, in scenarios where the minimum-variance strategy showed a strong performance, the
robust risk averse portfolios did as well, but not as strongly. We have also observed the
well known result that the equally weighted portfolio is very hard to outperform.

From the empirical backtests and our derivation of the robust portfolios we conclude
that our framework contributes a distributionally robust extension to the classical mean-
variance efficient portfolios. This interpretation is even more appropriate since all of our
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robust portfolios are mean-variance efficient in the classical sense. The major advantages
of our approach, besides the obvious fact that we do not make any restrictive assumptions
on the asset-return distribution, are that it includes the notion of growth optimality and
allows for further robustification against moment ambiguity. Due to its reformulation as
an second-order cone program, the problem of determining the robust portfolios costs as
much computational effort as it does for the classical Markowitz mean-variance efficient
portfolios.

We again want to state that our derivation of distributionally robust portfolios is based
on the paper “Robust growth-optimal portfolios” which was published by Rujeerapaiboon
et al. in 2014. In their work, Rujeerapaiboon et al. approximated the asymptotic growth
rate by the second-order Taylor polynomial which, like the portfolio evaluation function
introduced in this thesis, is a quadratic polynomial function in the portfolio return. They
used the worst-case value-at-risk of the mean (approximated) growth rate as the objective
of their portfolio optimization problem, where the worst-case is taken over all asset-return
distributions with predefined (estimated) first and second-order moments. In contrast, we
simply used a parametrized quadratic polynomial with positive curvature, where the pa-
rameter defined the location of the minimum. We have seen that the objective functions
of the SOCP-reformulation of the approach of Rujeerapaiboon et al. and our approach are
equivalent in terms of optimization if we choose the risk aversion parameter equal to one.
This is obvious since for γ = 1, our polynomial penalization function is nothing but the
quadratic Taylor approximation of log-returns multiplied by −2 plus a constant term.

In conclusion, we interpret our approach as a generalization of “Robust growth-optimal
portfolios” introduced by Rujeerapaiboon et al.. It enables us to choose a risk aversion
parameter which defines the location of the resulting portfolio on the mean-variance efficient
frontier and thus the identification of the most risk averse robust portfolio. Like for robust
growth-optimal portfolios, our approach allows for easy robustification against moment
ambiguity and the computational effort is comparable to that of the classical mean-variance
efficiency framework.
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