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Abstract

Multipath-assisted indoor localization is a promising technology for realizing highly accurate
indoor localization systems based on ultra-wideband (UWB) radio signals. It exploits position-
related information contained in deterministic signal reflections, which makes it inherently robust
against malfunction in non-line-of-sight (NLOS) situations. Recent research results highlight
the potential of this approach. However, perfect clock synchronization between transmitters
and receivers was assumed up to now. This is not feasible in reality.

This thesis provides an in-depth analysis of multipath-assisted indoor localization in presence
of clock asynchronism for different scenarios with either a single or multiple anchors. The
fundamental limits of position estimation are studied by examining the Cramér-Rao lower bound
(CRLB), and a quantitative assessment of the achievable performance is presented by evaluating
the CRLB in an example scenario. The theoretical results are complemented by the examination
of a maximum likelihood estimator (MLE), introducing several issues of practical relevance. The
principal feasibility is successfully demonstrated using measurement data.

The theoretical results give evidence about the high achievable performance, which mainly
depends on the signal bandwidth and the signal-to-interference-plus-noise ratios (SINRs) of sig-
nal reflections. Increasing the bandwidth is also an effective measure to remedy the performance
degradation caused by the clock asynchronism as well as the influence of path overlap. Alter-
natively, the use of additional anchors also leads to a better room coverage. Multimodality
of the likelihood function (LHF) reveals to be a major issue of the MLE. This can lead to an
unacceptable number of outliers and therefore poor localization performance. An increase of
the robustness can be achieved with the use of additional measures such as coarse clock syn-
chronization, prior knowledge on the agent position, the use of multiple anchors or large signal
bandwidth.





Kurzfassung

”
Multipath-assisted indoor localization“ ist ein vielversprechender Lösungsansatz zur Realisie-

rung von hochauflösender Innenraumlokalisierung basierend auf Ultra-Breitband-Funktechnolo-
gie. Dieser Ansatz verwendet Positionsinformation, welche in deterministischen Signalreflexio-
nen enthalten ist. Aktuelle Forschungsergebnisse belegen das große Potential dieses Konzepts.
Allerdings wurde bis jetzt immer perfekte Synchronisation zwischen der Basisstation und den
Teilnehmern vorausgesetzt, was jedoch in der Praxis nicht realistisch ist.

Diese Masterarbeit untersucht den Einfluss der fehlenden Synchronisation auf Szenarien mit
einer oder mehreren Basisstationen. Die theoretischen Grenzen des Lokalisierungsfehlers werden
mit Hilfe der Cramér-Rao lower bound (CRLB) untersucht. Eine quantitative Beurteilung der
Ergebnisse erfolgt durch die numerische Auswertung der CRLB für einen einfachen Innenraum.
Die anschließende Analyse eines

”
Maximum-Likelihood“ (ML) Positionsschätzers liefert wich-

tige praxisrelevante Erkenntnisse, welche den theoretischen Teil der Arbeit vervollständigen.
Abschließend wird die prinzipielle Funktionalität von multipath-assisted indoor localization bei
fehlender Synchronisation mit realen Messdaten erfolgreich demonstriert.

Die theoretischen Ergebnisse heben die hohe Leistungsfähigkeit hervor, welche hauptsächlich
von der verwendeten Signalbandbreite sowie vom Signal-zu-Interferenz-und-Rausch-Abstand der
deterministischen Signalkomponenten abhängt. Eine Erhöhung der Bandbreite reduziert zudem
den Einfluss der fehlenden Synchronisation und von zeitlicher Überlappung der Mehrwegekom-
ponenten. Alternativ können auch mehrere Basisstationen verwendet werden, wodurch zusätzlich
noch die Raumabdeckung erhöht wird. Die Multimodalität der Likelihood-Funktion stellt sich
als das Hauptproblem des ML Schätzers heraus. Durch diese kann es zu Ausreißern kommen,
wodurch die Leistungsfähigkeit stark beeinträchtigt wird. Die Robustheit kann jedoch mit ge-
eigneten Mitteln erhöht werden, z.B. mit Hilfe von teilweiser Synchronisation, a-priori Wissen
über die Position, Verwendung mehrerer Basisstationen oder hoher Signalbandbreite.
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1
Introduction

During recent years, a rising demand for highly accurate indoor localization systems has been
observed. Terms like ubiquitous computing or context- and location-awareness shape a new
generation of devices, enabling numerous new applications. Potential applications cover the
commercial sector, public safety, and the military sector and could provide assistance in logistics,
security, rescue operations etc. [1, 2].

While location awareness is already enabled in outdoor environments e.g. by the use of the
Global Positioning System (GPS), highly accurate and especially robust indoor localization is
still a major research topic. Different approaches for indoor localization exist, including e.g.
optical systems and signal strength based systems [3, 4]. Localization systems based on range
measurements [1] using radio signals are especially attractive, as they could be implemented
in already existing communication devices. However, existing localization techniques cannot
directly be applied to indoor environments, due to the harsh propagation environment. Mul-
tipath propagation, caused by specular reflections and scattering on walls and objects, as well
as frequent NLOS situations represent the main difficulties for indoor localization [1]. Differ-
ent approaches were proposed to deal with these issues, including e.g. the detection of NLOS
situations [5].

While multipath propagation represents a major issue for most localization systems, it en-
ables at the same time a completely different approach to the localization problem, which was
named multipath-assisted indoor navigation and tracking (MINT) in [6]. This concept explicitly
uses deterministic multipath components (MPCs), resulting from signal reflections on walls and
other surfaces. Together with floor plan information of the indoor environment, these deter-
ministic MPCs contain valuable position information, which can be used for localization. The
resulting advantages are its inherent robustness to multipath propagation and a reduced cost
for infrastructure, by theoretically allowing localization with only one fixed anchor. Performing
multipath-assisted localization requires to extract individual MPCs from the received signal,
which makes the use of UWB signals obligatory [7]. Current research results [8,9] highlight the
feasibility of this approach also in real-time implementations as well as the impressive perfor-
mance.

An open issue of the current MINT analyses and implementations is that they rely on per-

September 15, 2014 – 1 –



1 Introduction

fect clock synchronization between transmitter and receiver, thus enabling localization directly
based on the arrival times of MPCs. In a realistic implementation, the desired sub-nanosecond
clock accuracy is most likely not feasible. In [10] it is shown that perfect pairwise clock syn-
chronization is not possible when having asymmetric path-delays. The performance of clock
synchronization using protocols commonly used in wireless sensor network (WSN) are insuffi-
cient. E.g. the network time protocol (NTP), reference broadcast synchronization (RBS) or
timing-sync protocol for sensor networks (TPSN) achieve clock synchronization in the range of
milliseconds to microseconds [11]. Synchronization using an impulse-radio-based ultra-wideband
technology (IR-UWB) was shown to achieve a performance in the order of 1 ns [12]. Still, when
performing localization, such a synchronization error results in a rather large error.

As a consequence, we explicitly need to take the clock asynchronism into account, and focus on
feasibility of multipath-assisted indoor localization in presence of clock asynchronism. Without
having prior knowledge on the clock error, only the differences of the arrival times of the MPCs
carry information which can be used for localization, therefore we refer to multipath-assisted
localization in presence of a clock offset as multipath-assisted time-difference-of-arrival (TDOA)
(In contrast, if perfect synchronization is assumed, we call it the time-of-arrival (TOA) setup).
The receiver needs to perform the position and clock estimation jointly, solely based on the
received signal and the knowledge of the floor plan.

The methodology for the present analysis is as follows: We will first examine the CRLB for
the position estimation error, which yields the fundamental limit of position estimation. The
CRLB for TDOA systems has already been the focus of several publications like [13–17] and
similar. But these derivations are based directly on the TDOA metric, i.e. the differences of the
arrival times. Therefore, the difficulty of extracting the TDOA metric from the received signal
is ignored. We on the other hand formulate the CRLB of the position error solely based on one
observation of the received signal. This approach is an extension of the work in [6], so that it
considers the unknown clock offset. It is also similar to the TDOA analysis in [2], but with focus
on multipath-assisted localization.

Since the analysis using the CRLB does not cover all issues which arise when implementing a
multipath-assisted TDOA system, we also analyze how the clock offset affects a real estimator,
by examining its impact on an MLE. Efficient methods for maximum likelihood (ML) position
estimation based on the TDOA metric exist (e.g. [18] etc.), but are not directly applicable to the
given problem, since the extraction of the metric as well as data association are not possible in a
simple and reliable way. We therefore implement the MLE directly based on a sampled version
of the received signal. This approach also has the advantage that the performance results of the
MLE can be compared with the theoretical results of the CRLB.

1.1 Contribution of this Thesis

� Extension of the system model in [6] to consider the clock asynchronism between trans-
mitter and receiver.

� The derivation and analysis of the CRLB for the position estimates and clock offset,
based on the received signal waveform. Thereby scenarios with either a single or multiple
synchronous / asynchronous anchors are considered. The results have also been published
in [19].
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1.2 Outline

� Numerical evaluation and analysis of the CRLB across a floor plan of an example scenario.
Qualitative and quantitative comparison of the differences between TDOA and TOA;
assessment of measures to circumvent the performance loss.

� Formulation of the MLE for the agent position, considering a setup with either a single or
multiple synchronous / asynchronous anchors.

� Numerical evaluation of the MLE, investigation of potential problems, presentation of
remedial measures.

� Verification of the CRLB by comparison with the MLE performance.

� Case study: Performing localization using the MLE with measurement data.

1.2 Outline

The remaining work is structured as follows:

Chapter 2 gives an overview about the system model. It introduces the concept of virtual
anchors (VAs), which is used to model deterministic signal reflections. Extending this
model by probabilistic assumptions about diffuse multipath leads then to a model for the
received signal. This forms the basis for analyzing the impact of the unknown clock offset.
We then define the position estimator and discuss some basic issues and challenges of the
estimation problem. The model is extended for the use of multiple anchors. The chapter
finishes with the definition of an example scenario, which is used in Chapter 3 and 4 to
perform the numerical evaluation of the CRLB and the MLE.

Chapter 3 presents a detailed analysis of the impact of the unknown clock offset on the the-
oretical limits of position estimation. We start the analysis by discussing performance
measures for estimators such as the covariance matrix of the position estimates, and then
introduce the CRLB as a lower bound for it. After deriving the CRLB for different sce-
narios with single or multiple anchors, we simplify the result using the concepts of the
equivalent Fisher information matrix (EFIM) and position error bound (PEB). The in-
fluence of design parameters is analyzed and the influence of the clock asynchronism is
quantified by numerical evaluation for the example scenario. The results highlight the
importance of design parameters such as the signal bandwidth, and the problem of path
overlap (PO). They also allow to find appropriate countermeasures to reduce the impact
of the clock offset.

Chapter 4 examines the impact of the unknown clock offset on an actual estimator implemen-
tation, namely an MLE. Therefore statistical properties of the sampled received waveform
are derived, and the MLE is defined. Because of the high computational cost some sim-
plifications of the LHF are discussed. Issues of practical relevance are examined by visual
inspection of the LHF, and remedial measures are presented. The performance of the
MLE is compared with the CRLB. The principal feasibility of multipath-assisted localiza-
tion in presence of a clock offset is then demonstrated by evaluating the MLE based on
measurement data.

Chapter 5 finally draws a conclusion and discusses further work.
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2
System Model

2.1 Introduction

In this chapter we will introduce the system model, which provides the basis for analyzing the
impact of the unknown clock offset in the following chapters. More precisely, we will focus on
how to model the received signal, as this is essential for assessing estimator performance as well
as for deriving an optimal estimator. In order to develop an accurate model, it is necessary
to first understand multipath-assisted indoor localization. We will discuss the concept of VAs
and how they help to model deterministic signal reflections. With the introduction of the clock
offset and probabilistic assumptions about diffuse multipath we are finally able to give a model
for the received signal.

What follows are some first considerations about similarities to other localization systems,
possible challenges and limitations. Furthermore, we will extend the model for the use of multiple
transmitting anchors, which can be beneficial to overcome some of the arising problems. We also
define an example room scenario at the end of the chapter, which will later be used to perform
numerical evaluation of the results of the following chapters.

It must be noted that the model described in this chapter does not differ very much from
the model introduced in [6]. Actually the main difference is the introduction of the clock offset.
However, here the whole model is treated more detailed and with additional interpretations for
the sake of a better understanding and completeness.

2.2 Multipath-assisted Indoor Localization

Mutlipath-assisted indoor localization was first introduced in [20] under the title MINT. In
contrast to conventional localization systems which make use of muliple transmitting anchors,
the idea is to use only one transmitter, and extract geometric information from deterministic
signal reflections. This requires some a priori information about the scenario, like e.g. the floor
plan.
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A scenario with minimal assumptions consists of only one anchor with a known position in
an indoor environment, and a mobile agent with unknown position. The fixed anchor transmits
a UWB signal which propagates on different paths to the receiver antenna. The mobile agent
then examines the received signal, which contains valuable position information in the form of
deterministic MPCs. These correspond to the line-of-sight (LOS) signal and signal reflections
on walls and other surfaces. Together with the floor plan information, the receiver can then
estimate its position using these deterministic MPCs1.

The use of information contained in deterministic MPCs is an important advantage of this
approach in contrast to conventional localization systems: For the latter, MPCs are often a
source of error, and especially NLOS situations are difficult to handle. The explicit use of these
MPCs makes the MINT approach robust against malfunction under these conditions.

Being able to extract the information contained in deterministic MPCs requires that we can
resolve individual MPCs. The enabling technology is the use of UWB signals. These are defined
as signals with an absolute bandwidth larger or equal than 500 MHz, or relative bandwidth
greater than 20%. With the time-bandwidth product being constant, these signals have such
low pulse durations, that it is possible to resolve individual MPCs, even if the are very close
together. This is mandatory to achieve a high spatial resolution of the localization system.

The localization system can be extended by an arbitrary number of mobile agents at no
additional cost for localization infrastructure – all these agents process the received signal from
the same anchor. On the other hand this system can also be enhanced by using multiple
transmitting anchors. Then every agent is able to estimate its position based on multiple
observations, which leads to a better localization performance and enhanced room coverage.

2.3 The concept of Virtual Anchors

From the previous section it is clear, that deterministic signal reflections are essential for the
presented approach. We now introduce VAs, which provide a simple yet elegant way to describe
deterministic signal reflections. In addition they allow us to gain some more insight in the
localization problem, as we will see in Section 2.6. In the following we will cover everything that
is needed to understand the modelling of deterministic MPCs using VAs. For further reading
see e.g. [21].

When considering an arbitrary scenario with a fixed anchor transmitting a waveform, the
reflected signal components can be seen as signals transmitted by VAs. Therefore a VA, as
indicated by its name, acts similar as an anchor. Each VA belongs to one specific physical
anchor, and has a fixed position. It can be classified such as first-order VA, second-order and so
forth, where the order corresponds to the number of signal reflections.

In order to understand the concept, we start by looking at how a set of VAs is constructed. For
simplicity we restrict to the simple two-dimensional (2D) floor plan illustrated in Fig. 2.1(a),
although this concept is easily extensible for complex 3D scenarios. The scenario consists of
two wall segments in the 2D plane, with one fixed anchor used as transmitter. We obtain the
first-order VAs by mirroring the anchor with respect to the wall segments, which results in two
first-order VAs – one for each wall. This step is illustrated in Fig. 2.1(b). The second-order VAs

1 Note that we can also interchange the tasks of the fixed anchor and the mobile agent, i.e. the mobile transmits
the radio frequency (RF) waveform, and the fixed anchor performs the position estimation.
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are then constructed from the first-order VAs, again by mirroring their position with respect to
the wall segments as shown in Fig. 2.1(c). This results in two second-order VAs at the same
coordinates, therefore we can merge these two and model them by a single second-order VA.
With this procedure we can construct a set of VAs for an arbitrary floor plan, and for any desired
VA order.

Anchor

Wall segments

(a) Scenario

Anchor1st order VA

1st order VA

(b) Construction of 1st order VAs

Anchor1st order VA

1st order VA2nd order VA

(c) Construction of 2nd order VA

Figure 2.1: Construction of VAs in the 2D plane. (a) shows the scenario, which consists of two
wall segments and a fixed anchor. The first-order VAs are constructed by mirroring the
anchor position with respect to the wall segments (b). For the second-order VAs we again
have to mirror the first-order VAs (c).

Now that we have a set of VAs, we can look at how these help to model deterministic signal
reflections. We assume that the fixed anchor transmits a waveform, which propagates along
different paths towards the receiver as it is illustrated in Fig. 2.2. The figure indicates the LOS
component as well as first and second-order reflections. Note that the distances which the waves
propagate on each path are equal to the distances between the VAs and the mobile agent. With
the time-of-flight (TOF) being proportional to the traveled distance, we can specify the TOFs
{∆tk ∈ R : k = 1 . . .K} of the individual K received MPCs by

∆tk =
1

c
‖p− pk‖,

where c ≈ 3 · 108 m/s is the speed of light, and the vectors p and pk denote the position of the
mobile agent and of the k-th VA, respectively. From the illustration we can also see, that the
angle of incident of MPCs can be modeled using VAs. The k-th MPC arrives in the direction
p− pk, with the angle written as φk.

Agent at p

Anchor at p1

1st order VA at p2

hidden 1st order VA

2nd order VA at p3

φ3

l1
l2

l3

LOS

1st order reflection

2nd order reflection

Figure 2.2: Modeling signal reflections using VAs. Both, the distance which the wave needs to travel,
as well as the angle of incident can be modeled using VAs (e.g. for the second-order
reflection: l1 + l2 + l3 = ||p− p3||, ](p− p3) = φ3).

However, we have to take into account that in general not all VAs are visible at the agent
position. E.g. in Fig. 2.2 the mobile agent does not receive a MPC from the hidden first-order
VA. The visibility of this specific VA is limited to an area above the agent and can be seen in
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Fig. 2.3. Therefore {pk : k = 1 . . .K} denotes the set of visible VAs for a specific agent position.
Determining visibilities of VAs while performing localization is very expansive. But this can
easily be avoided by precomputing the visibilities by e.g. using ray tracing, and then storing the
results in a lookup table.

Agent at p

Anchor at p1hidden 1st order VA

Figure 2.3: Visibility of a specific VA. The VA at p3 is not visible at the agent position. Its visibility
is indicated by the shaded area.

Finally, we are able to summarize the requirements for a full scenario description: It can
either be provided by a floor plan with the anchor position given, or by a set of VAs with
the corresponding visibilities, where the later is for our purpose not only sufficient, but also
beneficial.

2.4 Clock Asynchronism

If we assume perfect clock synchronization between transmitter and receiver, i.e. both use the
same timebase t, we can easily determine the arrival times of the deterministic MPCs. Think
of a signal transmitted at time t = 0, then the k-th deterministic MPC arrives at the receiver
after ∆tk = 1

c‖p − pk‖. However, the requirements on suitable clock synchronization are very
high. When e.g. using a UWB pulse for ranging, then even a small synchronization offset of

1 ns results in an error of 1 ns
∧
= c · 1 ns = 30 cm. The desired sub-nanosecond synchronization

accuracy would require immense effort and would most probably be unjustifiable. On the other
hand just neglecting such a synchronization error would result in an unpredictable and large
localization error when performing indoor localization.

Therefore, we have to be aware of the clock asynchronism, and take it into consideration
during the whole analysis. This requires to study and model the clock offset. The model needs
to be valid for a finite observation time Tobs ∈ R, which obviously needs to be larger than the
information carrying part of the channel impulse response (CIR), i.e. until the last considered
deterministic MPC is received. With typical values for the root mean square (RMS) delay spread
τrms in an indoor environment being somewhere between 10 ns and 300 ns, an observation time
of Tobs = 500 ns still covers a TOF of at least 200 ns for the first deterministic MPC. This
corresponds to a maximum distance of 60 meters between the anchor and the mobile agent,
and therefore is clearly sufficient. When limiting the observation time to values in the order of
several hundred nanoseconds, it is appropriate to apply a short time model as it is e.g. used for
UWB ranging in [1],

Cagent(ttrue) = (1 + ζ)ttrue + ξ, 0 ≤ ttrue ≤ Tobs. (2.1)

Here the local clock of the agent Cagent(ttrue) is given as a function of the true time ttrue ∈
[0, Tobs], and considers an initial clock offset ξ, as well as a drift linearly depending on the true
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time modeled by ζ =
dCagent(ttrue)

dttrue
. The clock offset causes a shift of the received signal, while it

is compressed or spread by the drift.

Applying the model (2.1) on e.g. a crystal clock makes some more simplifications evident: In
this case typical values the frequency stability are in the order of a few parts per million (ppm),
e.g. when considering a room temperature crystal oscillators (RTXO) the temperature stability
dominates the frequency error with 2.5ppm over a 0 to 50 degree range followed by aging with
a rate of less than 0.3ppm for a 30-days period [22]. Assuming a crystal oscillator aged for ten
years, this causes a clock error in the range of picoseconds during the observation time, which is
clearly negligible when considering pulse durations in the order of nanoseconds. For the present
problem we can therefore simplify the expression for the local clock to

Cagent(ttrue) ≈ ttrue + ξ, 0 ≤ ttrue ≤ Tobs. (2.2)

In the following we will express the received signal in the timebase of the agent, which we
denote as t := Cagent(ttrue). With this definition it is sufficient to only consider the clock offset
ξ. For the derivations in Chapter 3 and 4 it is important to mention, that we model ξ as an
unknown but deterministic parameter, since we do not consider a probability density function
(PDF) for it.

2.5 Modeling the Received Signal

With the findings of the previous chapters we are able to model the deterministic signal re-
flections. In order to achieve a realistic signal model, we also have to consider scattering and
reflections on small surfaces. This is achieved by adapting the hybrid model of [6]. It accounts
for deterministic components s̃(t), diffuse multipath nc(t) and observation noise w(t) as a func-
tion of the agent time t. Without loss of generality we assume that the anchor transmits the
RF waveform at the true time ttrue = 0. The baseband model r(t) ∈ C for the received signal
in the timebase of the receiver is then given by

r(t) = s̃(t) + nc(t) + w(t).

The deterministic part s̃(t) consists of K pulses, one from each visible VA. The pulses are
shifted to the corresponding arrival times τk and have amplitudes αk ∈ C,

s̃(t) =

K∑

k=1

αks(t− τk).

The pulse-shapes of the MPCs are defined by the transmit pulse s(t). We denote its pulse-
duration by Tp, and its Fourier-transform as F{s(t)} = S(f). The amplitudes depend on the
properties of the reflecting surfaces, and are not further specified. The arrival-times can easily
be stated using the previously discussed concept of VAs and considering the clock offset. They
are given by

τk =
1

c
‖p− pk‖+ ξ. (2.3)

The diffuse components are modeled by making assumptions about the random nature of the
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channel. We model the frequency selectivity of the channel by specifying its power delay profile
(PDP) Sν(τ). Assuming uncorrelated scattering its autocorrelation function (ACF) is given by

Kν(τ, u) = E{ν(τ)ν∗(u)} = Sν(τ)δ(τ − u).

where ν(τ) is a Gaussian random process (RP) representing the CIR of the diffuse part of the
channel. The contribution to the received signal is then given by convolving the transmit pulse
with a realization of the diffuse CIR taking account for the clock offset, and is present as a
colored Gaussian process,

nc(t) =

∫ ∞

−∞
s(λ)ν(t− ξ − λ)dλ. (2.4)

Note that we only consider frequency selectivity of the channel, and not time variability. Fur-
thermore we assume a spatial stationarity of ν(t) in the vicinity of the inspected position.

Finally the observation noise w(t) is modeled as additive white gaussian noise (AWGN), with
double sided power spectral density (PSD) of N0/2. This leads to the final signal model

r(t) =

K∑

k=1

αks(t− τk) +

∫ ∞

−∞
s(λ)ν(t− ξ − λ)dλ+ w(t), (2.5)

which is represented as a realization of a complex Gaussian RP. An example is illustrated in
Fig. 2.4. It shows the composition of the received signal for the scenario described in Section 2.8.
This model was verified in [23]. Measurements have shown, that the deterministic MPCs are

0 10 20 30 40 50 60 70 80
0

2

4

6

8
·10−4

t [ns]

|r(
t)
|

|r(t)|
|w(t)|
|nc(t)|
|s̃(t)|

Figure 2.4: Illustration of an example signal r(t). Also shown are the deterministic components
s̃(t), a realization of the diffuse part nc(t) and the observation noise w(t). This signal
was generated from the signal model (2.5) with the floor plan and parameters defined in
Section 2.8 for the agent position p = [4, 5]T .

relevant features of the received signal and explain up to 90 % of the engergy capture.
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2.6 The Estimation Problem at a First Glance

From a mathematical point of view, the continuous time waveform r(t) results from a proba-
bilistic mapping from the multidimensional parameter space to the continuous-time observation
space. The problem is present as a signal with unknown nonrandom2 parameters in colored
noise. Goal is to find a suitable3 estimation rule that yields estimates p̂(r(t)) of the true agent
position p based on the observation r(t), with t ∈ [0, Tobs].

The considerations of the previous sections help to look at the problem from another point
of view. Especially the concept of VAs is of major importance, since it indicates that all VAs
act like fixed and synchronized anchors, but all using the same transmit pulse. This approach
allows to figure out similarities to existing localization systems as well as potential challenges.

We start by making the following assumptions: We assume that we can extract the arrival
times {τk} and map them to the corresponding VAs. Then, if the clock offset is known, the
problem is exactly the one when performing TOA estimation with K anchors. In this case the
MPCs define circles around each VA, with radii ‖p − pk‖ = τk · c as illustrated in Fig. 2.5(a).
The position of the mobile is then found at the intersection off all these circles. Note that we
need at least three VAs when 2D localization is performed. In 3D we have to deal with spheres
instead of circles, and at least four anchors are needed4.

In the present case with an unknown clock offset the absolute arrival times of isolated MPCs
do not carry information which could be used for localization. On the other hand, the difference
of arrival times gives some meaningful information, more precisely they define hyperbolas,

τi − τj =
1

c
‖p− pi‖+ ξ − 1

c
‖p− pj‖ − ξ =

1

c
(‖p− pi‖ − ‖p− pj‖) .

This signal metric is referred to as TDOA, and position estimation using TDOA is often called
hyperbolic localization. From now on we refer to multipath-assisted localization in presence of
a clock offset as the TDOA case. In contrast to a conventional TDOA system, in the given
scenario the assignment of the deterministic MPCs to the corresponding VAs is not given5.
Since the contribution of each VA only differs in phase and amplitude, we cannot ensure proper
assignment between MPCs and VAs. Even if we know the involved set of K VAs and MPCs,
there are still K! (factorial of K) possibilities for assigning MPCs to VAs. From the rather large
set of resulting hyperbolas the true set has to be chosen.

In general even these assumptions are too optimistic. We will already face difficulties when
estimating the correct set of arrival times {τk} of the deterministic MPCs, which result in a
degradation of the localization performance. This is caused by multiple factors, such as the
disturbance caused by diffuse multipath, hidden VAs, noise etc. An important limiting factor
is PO. We refer to a PO situation if two MPCs arrive at almost equal times, more precisely
if the arrival times are in the range of |τi − τj | ≤ Tp. This causes that the pulses are merged,
which can lead to destructive interference and make the estimation impossible. This problem is
illustrated in Fig. 2.6.

The discussion above clearly shows the complexity of the given estimation problem. In order
to overcome these difficulties, a suitable estimator has to be able to extract signal metrics,

2 It is nonrandom, since we do not take any knowledge about the distribution of the parameters into account.
3 We will discuss estimator performance measures in Section 3.2.
4 Holds if we assume no further information about the floor plan and position of the agent.
5 This is also the case if the clock offset is known, i.e. in the TOA case.
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perform data association and deal with diffuse multipath, PO situations, blocked signal paths,
room symmetries and so on. The estimator presented in Chapter 4 performs all these steps
implicitly, by examining the entire received signal with statistical methods.

Mobile

Anchor 1

Anchor 2

Anchor 3

(a) TOA

Mobile

Anchor 1

Anchor 2

Anchor 3

(b) TDOA

Figure 2.5: Illustration of (a) TOA and (b) TDOA. The TOA metric defines circles, while the
TDOA metric defines hyperbolas. The agent is located at the intersection point of all
the circles/hyperbolas.

τ1 τ2 τ3

0

0.5

1

t

r(
t)

r(t)

s(t− τ1)

s(t− τ2)

s(t− τ3)

Figure 2.6: Illustration of PO. Shown are three MPCs arriving at τ1 . . . τ3. Note that τ2 − τ1 ≈ Tp,
therefore PO occurs. On the other hand the MPC a τ3 is far off the other pulses, and
can easily be identified.

2.7 Extension to Multiple Transmitting Anchors

So far we have only looked at the case, where a single anchor was used for localization. Now
we will extend the localization system also to J > 1 anchors. In the numerical evaluation in
Section 3.6 we will see that using multiple anchors has several advantages, especially in regions
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where PO occurs, or in areas where only few VAs are visible.

When considering a system with multiple anchors, we distinguish between two different sce-
narios: (i) Anchors all have their own clock, without any synchronization at all. (ii) Anchors
could be synchronized among each other. Of course also hybrid forms are possible, but we
restrict the analysis to these two cases. Note that in either case we assume that there is no
synchronization between the anchors and the mobile agent.

We can model the received signal independently of the above mentioned scenarios. We can
always see it as a composition of the received signals r(j)(t) from each anchor, denoted as r(j),
where 1 ≤ j ≤ J refers to the corresponding anchor. Each r(j)(t) is modeled as in (2.5) with its
own set of parameters. Furthermore, we will assume that each anchor uses an orthogonal signal
waveform, such that we can distinguish the signals from the different anchors. In the simplest
case these orthogonal signals can be achieved by e.g. shifting the transmit-signals from the
different anchors in time. With this assumption, we are always able to extract the contributions
r(j) from the individual anchors without any loss of information. The stacked signal vector of
all received signals is given by

rM = [r(1)T r(2)T . . . r(J)T ]T .

Based on this extended signal model, the position of the mobile agent is then estimated by
extracting information of this observation, i.e. p̂(rM).

When looking at a problem which involves multiple anchors, parameters belonging to the j-th

anchor are labeled by a superscript, e.g. α
(j)
k . If a symbol is common to all anchors, e.g. the

signal bandwidth β(1) = β(2) = · · · = β(J), we will simply drop the anchor index and instead
write β.

2.8 Scenario for Numerical Evaluation

In the following two chapters, we will perform numerical evaluation of the theoretical limits of
position estimation and of an estimator implementation. In order to be able to find meaningful
interpretations of the simulation results, we have to reduce the complexity of a real scenario.
Therefore we use the simple scenario adapted from [6], which shall be introduced in the following.

The scenario is illustrated in Fig. 2.7. It consists of an L-shaped room with two fixed anchors

at the positions p
(1)
1 = [8, 7]T and p

(2)
1 = [1, 3]T . Constructing the corresponding VAs up to

order two yields the VAs in Fig. 2.7(b). The blue and red-colored VAs belong to the first and
second anchor, respectively.

In this scenario both anchors transmit root-raised-cosine (RRC) pulses with unit energy (εs =∫∞
−∞ s

2(t)dt = 1) modulated onto a carrier with frequency fc = 7 GHz. Transmitter and receiver
antennas have identical polarization, an omnidirectional propagation pattern (i.e. power is
radiated uniformly in all directions in the 2D plane), and antenna gain of GT = GR = 1.
Wave propagation is modeled using the Friis transmission equation6. It specifies the amount
of power at the receiver antenna under ideal conditions, i.e. for the LOS signal. With the

6 Note that although we define how to model amplitudes of MPCs for numerical evaluation, we do not need this
for deriving the CRLB or the MLE.
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(a) Floorplan and two fixed anchors
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(b) The set of 1st and 2nd order VAs

Figure 2.7: Floorplan of an example room, its anchors and VAs. Fig. 2.7(a) shows the floor plan

of the L-shaped room, with two anchors at p
(1)
1 = [8, 7]T and p

(2)
1 = [1, 3]T . In (b) a

overview of the VAs up to order two is illustrated. The colors indicate the affiliation of
the VAs to the anchors.

energy of the transmit pulse being εs =
∫∞
−∞ s

2(t)dt := 1 the energy of the k-th MPC is given

as εk =
∫∞
−∞ |αk|2s2(t)dt = |αk|2. We can then express the energies as

|αk|2 = Gk GT GR

(
λ

4π||p− pk||

)2

= Gk

(
c

4πfc||p− pk||

)2

,

where the term in the braces is the inverse of the free-space path loss, and λ is the wavelength
λ = c

fc
. Since the Friis transmission equation does only considers LOS signals, Gk is introduced

to account for the attenuation caused by signal reflections. It is chosen to be −3 dB per reflection,
i.e.

Gk =





1
∧
= 0 dB for the LOS signal,

10−3/10 ∧= −3 dB for a 1st order reflection,

10−6/10 ∧= −6 dB for a 2nd order reflection.

Also the phase of the received signal is assumed to be distance depending,

arg{αk} = 2πfc
1

c
||p− pk||.

The PDP of the diffuse multipath is modeled by a double exponential decay [24]

Sν(τ) = Ω1
γ1 + γrise

γ1(γ1 + γrise(1− χ))
(1− χe−τ/γrise)e−τ/γ1 .

Its shape parameters (γ1, γrise, χ) and energy Ω1 were chosen as in [6], and result in a RMS
delay spread of τrms ≈ 20 ns, which is appropriate for an indoor environment.
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All the simulation parameters are summarized in Tab. 2.1, and are used unless otherwise
mentioned. A realization of the received signal based on these parameters is shown in Fig. 2.4.

Parameter Value Description

Deterministic MPCs
2 maximum order of reflections

−3 dB attenuation per reflection

Signal parameters

fc 7 GHz carrier frequency

Tp 1 ns, (0.5 ns, 2 ns) transmit-pulse duration
RRC pulse shape

R 0.6 roll-off factor
εs 1 energy of transmit-pulse

Diffuse MPC parameters

Ω1 1.16 · 10−6 normalized power of diffuse MPC
γ1 20 ns

shape parametersγrise 5 ns
χ 0.98

AWGN N0 10−8 AWGN density

Table 2.1: Parameters for the example scenario
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Impact of Clock Offset on Multipath-assisted Indoor Localization

3
Cramér-Rao Lower Bound

on the Position Estimation

3.1 Introduction

In this chapter we analyze the performance of estimators for the problem defined in Chapter 2.
Since the influence of the channel parameters on the TOA case was already analyzed in [6], we
will especially focus on the influence of the unknown clock offset. Therefore we will compare
the performance of the TOA and TDOA system. Furthermore, we will see how we can prevent
the performance degradation by varying design parameters (such as signal-bandwidth) or by
enhancing the topology by additional transmitting anchors. The derivations are very close to
the ones found in [6] and [2].

3.2 Estimator Performance Characterization

To assess the estimator performance we need to find a suitable performance measure. Since the
estimator is a functional of a random process, the estimates are random variables. Therefore,
we need to use statistical methods for the characterization. We will restrict our analysis to the
class of unbiased estimators, which yield the true agent position on average,

E{p̂} = p. (3.1)

We can further specify the performance by determining the variance of the position estimates
var{x̂} and var{ŷ}. An estimator with low variance means that the position estimates are
on average distributed closer to the true position, which makes it superior to one with larger
variance. Even more meaningful is the consideration of the covariance matrix of the estimates,

Cp̂ = E
{

(p̂− E{p̂}) (p̂− E{p̂})T
}
.
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Especially, if we assume the position estimates to be jointly Gaussian, then in [25] it is shown
that the covariance-matrix defines concentration ellipses, which are described in the following.
In this case the PDF is given as

fp̂(p̂) =
1

2π
√

det Cp̂

exp

(
−1

2
(p̂− E{p̂})TC−1

p̂ (p̂− E{p̂})
)
,

and has its equal height if the exponent is held constant. With (3.1) we can specify the set E of
points on this locus as

E =
{

peq ∈ R2 : (peq − p)TC−1
p̂ (peq − p) = C2

}
, C ∈ R. (3.2)

Eq. (3.2) defines an ellipse centered around the true agent position p and provides a geometrical
interpretation of the covariance matrix. The probability that the estimates are within this ellipse
is given in [25] as

P = 1− exp

(
−C

2

2

)
.

Therefore, the covariance matrix gives a measure of the concentration of the density. The
orientation of the ellipse is defined by the eigenvectors of the covariance matrix Cp̂, while the
length of the major and minor axes are defined by the square-root of its eigenvalues and the
choice of C. In the following we will always choose C = 1, and refer to the resulting ellipse as
concentration ellipse.

However, we cannot claim that the position estimates are jointly Gaussian. But even in this
case, the concentration ellipse roughly indicates the spread of the estimates around the agent
position, and hereby provides some useful information.

The covariance matrix Cp̂ yields a meaningful performance measure which is commonly used
to evaluate estimators. But for our task it has a major disadvantage: it depends on the actual
estimator implementation. To analyze our problem it would be necessary to find and implement
different estimators and compare the results. This would not only be very time-consuming, but
also not very meaningful, since this approach is not conclusive.

3.3 The Cramér-Rao Lower Bound

The CRLB helps to circumvent this problem. It provides us with a lower bound on the variance
of any unbiased estimator, without the need of finding the actual estimator. As soon as we have
determined this lower bound, it does not necessarily mean that we can find an estimator which
attains the CRLB, but we can still use the result as a benchmark to compare any estimator
against it. Furthermore, it helps to analyze the influence of the different parameters on the
localization performance, and hereby helps to make good decisions when implementing such a
system. Different bounds exist, but the CRLB is very popular for such a problem, since it is easy
to derive for Gaussian signal models, and known to hold for high signal-to-noise ratios (SNRs).

We will now state the CRLB theorem as it can be found in many textbooks (e.g. in [25,26]).
We will also briefly discuss the involved terms in general. How to apply the CRLB to our
problem will then be elaborated in the following sections.
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3.4 Localization with a Single Transmitting Anchor

Let θ̂ be a vector containing the estimates of a parameter vector θ ∈ RDθ ,

θ̂ = [θ̂1, θ̂2, . . . , θ̂Dθ ]T ∈ RDθ ,

with the covariance matrix

Cθ̂ = E

{(
θ̂ − E

{
θ̂
})(

θ̂ − E
{
θ̂
})T}

, (3.3)

then the CRLB states that the covariance satisfies

Cθ̂ − J−1
θ (θ) � 0 , (3.4)

where Jθ(θ) is the Fisher information matrix (FIM)7 and the � sign indicates a positive-
semidefinite matrix. The diagonal elements of a positive-semidefinite matrix are always positive,
therefore we can express the lower bound on the variance of the parameters as the diagonal el-
ements of the inverted FIM, given by

var
{
θ̂i

}
= [Cθ̂]i,i ≥ [J−1

θ (θ)]i,i .

The FIM Jθ(θ) is a measure of how much information for the estimation of the parameter vec-

tor θ is contained in the observation r. Assuming that the regularity condition E
{
∂ ln f(r;θ)

∂θ

}
= 0

is fulfilled, its elements are given by

[Jθ(θ)]i,j = −E

{
∂2 ln f(r;θ)

∂θi∂θj

}
= E

{
∂ ln f(r;θ)

∂θi

∂ ln f(r;θ)

∂θj

}
, (3.5)

where f(r;θ) is the probability density for the observation r given the parameter vector θ 8.
But in this case we look at it as a function of θ, where the observation r is given. Therefore it
is called the LHF of θ. This function plays an important role, and its derivation is a major task
when determining the CRLB.

The CRLB-theorem indicates the next steps: in order to be able to compute the FIM, we
need to know the structure of the LHF. As soon as we have the FIM, the computation of the
CRLB is accomplished by a matrix inversion.

3.4 Localization with a Single Transmitting Anchor

We have now discussed the main ideas of the CRLB, and we will now look at the problem of
estimating the position of an agent for the case where only one transmitting anchor is given.
Later on we will also look at the problem when using multiple anchors.

7 The used notation emphasizes that Jθ(θ) is the FIM for the parameter vector θ parameterized by θ. For
simplicity we will sometimes omit the argument and instead write Jθ

8 We will here use the notation as in [26] to emphasize that θ is an unknown but deterministic parameter, and
no random vector.
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3.4.1 The Approach

The first step is to define the parameter vector θ. It has to contain all parameters, on which
the received signal depends. The agent position p is the primary parameter of interest, so we
have to include this parameter. Furthermore, we have to add all other parameters, on which the
received signal depends, even if we are not interested in the CRLB of those – these parameters are
nuisance parameters. Including the clock offset ξ allows together with p to compute all arrival-
times {τk : 1 ≤ k ≤ K}. At last we also have to add the path-amplitudes to the parameter
vector. Of course the received signal does also depend on the parameters describing the diffuse
multipath, but these can be excluded, since we assume stationarity in the close vicinity of the
position, where we examine the CRLB. The AWGN is assumed to be stationary in general. The
resulting vector is then written as

θ = [pT ξ αTR α
T
I ]T ∈ RDθ , Dθ = 2K + 3 . (3.6)

The order of the elements in θ is arbitrary, but if we formulate it as in (3.6) we will have an
advantage for the further evaluation. More precisely it makes it easier to compute the EFIM as
we will see in Section 3.4.4. Now that we have defined the parameter vector, we could express
the LHF for θ, and then compute the FIM.

Alternatively we can use the same approach as in [2,6]. There the FIM was computed in two
steps: At first the FIM Jψ(ψ) for the signal parameter vector

ψ = [τT αTR α
T
I ]T ∈ RDψ , Dψ = 3K (3.7)

was computed and then a parameter transformation was used to compute the final FIM Jθ(θ).
Note that ψ is expressed purely in terms of the multipath parameters (arrival-times and ampli-
tudes of the MPCs), whereas θ introduces the agent position and clock offset.

Expressing the LHF and the FIM for ψ has advantages: it is more intuitive, because the
arrival times are closer related to the actual observation r. They are the primarily accessible
parameters when looking at the received waveform. But even more important for our problem is,
that this provides a separation of the problem: when determining Jψ(ψ) we do not care about
the estimation of the agent position but only on the estimation of the MPCs. The underlying
geometrical relation is not of interest, therefore this problem is identical for TOA and TDOA.
This allows us to reuse the FIM Jψ(ψ) from [6], and reduces the problem of computing the
CRLB of the agent position to finding a suitable parameter transformation.

3.4.2 The Likelihood Function

In Section 2.5 we modeled the received signal as a complex-valued colored Gaussian process.
When deriving the LHF the main difficulty arises because of the time-continuous and colored
nature of the signal, since in general no analytical solution exists for the PDF or LHF for such a
signal. In order to derive a LHF, some sort of whitening is required, i.e. we need to decorrelate
the RP. This decorrelation can be achieved using the Karhunen-Loève transformation [25], which
is basically an orthogonal series representation when using a special set of basis functions. This
approach is used in [6] for deriving the LHF for the multipath parameters ψ. However, because
of the importance of the LHF we will reflect the main idea here.

Assuming that we have a set of orthogonal basis functions {ϕi(t) : R → R, i = 0 . . . N − 1},
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3.4 Localization with a Single Transmitting Anchor

i.e. a set of functions which fulfill

∫ Tobs

0
ϕi(t)ϕj(t)dt = 0 for i 6= j, i, j = 0 . . . N − 1, (3.8)

with N approaching infinity, we can represent any received signal in this basis using

r(t) = lim
N→∞

N−1∑

i=0

ciϕi(t), 0 ≤ t ≤ Tobs.

The coefficient ci for a particular basis function is then given by the projection of the received
signal onto the corresponding basis function,

ci =

∫ Tobs

0
r(t)ϕi(t)dt .

With a clever choice of the orthogonal basis, these coefficients are statistically independent
Gaussian random variables, for which we can easily give the joint PDF. This is exactly the case,
if we choose the basis functions to be eigenfunctions of the covariance Kc(t, u) of the colored
noise process,

λiϕi(t) =

∫ Tobs

0
Kc(t, u)ϕi(u)du, 0 ≤ t ≤ Tobs. (3.9)

Performing the transformation using a basis which fulfills both requirements, i.e. (3.8) and (3.9),
is referred to as the Karhunen-Loève transformation [25].

For the given problem it turns out, that a finite set of N eigenfunctions is given by pulses
shifted in time by the pulse duration Tp,

ϕi(t) = s(t− iTp), i = 0 . . . N − 1. (3.10)

Furthermore, assuming perfect autocorrelation properties and unit energy of the transmit pulse,
these yield an orthonormal basis. Performing the steps indicated above, i.e. formulating the
joint PDF in terms of the coefficients, leads after some simplifications to the LHF [6]

f(r;ψ) ∝ exp

{
2

N0

∫ T0

0
Re

{
r(t)−

K∑

k=1

w2
kα
∗
ks(t− τk)

}
dt

− 1

N0

∫ T0

0

K∑

k′=1

αk′s(t− τk′)
K∑

k=1

w2
kα
∗
ks(t− τk)dt

}
. (3.11)

Note that the difference between (3.11) and a standard LHF is only given by the weights wk
which account for the whitening operation. These weights are given by [6]

w2
k =

N0

N0 + TpSν(τk − ξ)
. (3.12)

However it is important to mention, that the above assumptions clearly restrict the validity of
the LHF (3.11). First of all, as we have already stated, we assume the pulses shifted by Tp to be
orthogonal. For the RRC pulses specified in Section 2.8 this requirement is not fulfilled, therefore
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the result (3.11) is only an approximation. Even more important is, that the orthonormal basis
{ϕi(t)} is in general not a complete basis. Clearly, if an MPC has an arrival time different from
a multiple of Tp, it can not be fully represented using this basis. However, for our purposes
(3.11) still yields a good approximation when neglecting PO as it is done in Section 3.4.5. For
completeness further investigations on the validity of the LHF are in progress.

3.4.3 The Fisher Information Matrix

The FIM Jψ(ψ) can now be computed according to (3.5) (substituting θ by ψ and θi by ψi),
and it is given in [6] as

Jψ =

[
ΛA ΛB

ΛT
B ΛC

]
, ΛB = [ΛR

B,Λ
I
B], ΛC =

[
Λ′C 0

0 Λ′C

]
. (3.13)

The elements of the FIM can be computed using [6]

[ΛA]k,k′ =
2

N0
Re{αkα∗k′}w2

k

∂2Rs(τk − τk′)
∂τk∂τk′

, (3.14)

[ΛR
B]k,k′ =

2

N0
αRk w

2
k

∂Rs(τk − τk′)
∂τk

, (3.15)

[ΛI
B]k,k′ =

2

N0
αIkw

2
k

∂Rs(τk − τk′)
∂τk

, (3.16)

[Λ′C ]k,k′ =
2

N0
w2
kRs(τk − τk′), (3.17)

where Rs(τ) is the ACF of the transmit pulse s(t).

In order to arrive at the final FIM Jθ(θ) we have to perform the parameter transformation.
We can write the partial derivatives in (3.5) using the chain rule,

∂ ln f(r;θ)

∂θi
=

Dψ∑

j=1

∂ ln f(r;ψ)

∂ψj

∂ψj
∂θi

. (3.18)

With (3.18) in (3.5) we can already express the elements of Jθ(θ) in terms of the elements of
Jψ(ψ). But we can even go one step further by expressing the FIM in matrix notation,

Jθ(θ) = E

{[
∂ ln f(r;θ)

∂θ

] [
∂ ln f(r;θ)

∂θ

]T}
.

The term ∂ ln f(r;θ)
∂θ is the gradient of the log-LHF, which is a column vector containing all the

partial derivatives of the log-LHF with respect to the elements of θ. Equally as in (3.18) we can
express the gradient using the chain rule,

∂ ln f(r;θ)

∂θ
=

(
∂ψ

∂θ

)T ∂ ln f(r;ψ)

∂ψ
.

Here ∂ψ
∂θ is the Jacobian matrix, which contains all the partial derivatives of the elements of ψ
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with respect to the elements of θ,

∂ψ

∂θ
=




∂ψ1

∂θ1
∂ψ1

∂θ2
· · · ∂ψ1

∂θN
∂ψ2

∂θ1
∂ψ2

∂θ2
· · · ∂ψ2

∂θN
...

...
. . .

...
∂ψL
∂θ1

∂ψL
∂θ2

· · · ∂ψL
∂θN



.

Finally we are able to express Jθ(θ) using the given Jψ(ψ),

Jθ(θ) =

[
∂ψ

∂θ

]T
E

{[
∂ ln f(r;ψ)

∂ψ

] [
∂ ln f(r;ψ)

∂ψ

]T}[∂ψ
∂θ

]

=

[
∂ψ

∂θ

]T
Jψ(ψ)

[
∂ψ

∂θ

]

= TTJψT. (3.19)

So the transformation matrix T ∈ RDψ×Dθ is the key element which connects the FIM for
the MPCs with the desired FIM for θ. We will now take a closer look at this transformation
matrix. We have already partitioned the parameter vectors ψ and θ to subvectors when we
defined them (3.7, 3.6), so it also makes sense to express the Jacobian matrix in terms of these
subvectors and partition it as following,

T =
∂ψ

∂θ
=




∂τ
∂p

∂τ
∂ξ

∂τ
∂αR

∂τ
∂αI

∂αR
∂p

∂αR
∂ξ

∂αR
∂αR

∂αR
∂αI

∂αI
∂p

∂αI
∂ξ

∂αI
∂αR

∂αI
∂αI


 .

With this representation it is trivial to determine all these submatrices:

The first submatrix ∂τ
∂p assembles how the arrival-times relate to the agent position. Because

of the importance of this submatrix we will define the new symbol H ∈ RK×2. Using (2.3) leads
to

H =
∂τ

∂p
=




∂τ1
∂x

∂τ1
∂y

∂τ2
∂x

∂τ2
∂y

...
...

∂τK
∂x

∂τK
∂y




=




1
c cos(φ1) 1

c sin(φ1)
1
c cos(φ2) 1

c sin(φ2)
...

...
1
c cos(φK) 1

c sin(φK)



. (3.20)

Here the variables φi refer to the angle of incident of the i-th MPC. Note that when comparing
(3.20) with the result in [6], we can see that H is equal for both cases, no matter whether we
consider the TOA- or the TDOA-case.

The vector ∂τ
∂ξ is determined by the derivative of (2.3) with respect to ξ and yields

k =
∂τ

∂ξ
= [1, 1, . . . , 1]T ∈ RK×1.

All remaining submatrices contain either the partial derivatives of the path amplitudes with
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respect to the other parameters or vice versa. Since the path amplitudes do not depend on any
other parameters except of themselves, all terms with the exception of ∂αk

∂αk
= 1, k = 1, . . . ,K

are zero matrices.

The fully assembled transformation matrix T is thus given by

T =



∂τ
∂p

∂τ
∂ξ 0 0

0 0 IK×K 0
0 0 0 IK×K


 =

[
HK×2 kK×1 0K×2K

02K×2 02K×1 I2K×2K

]
,

where I is the identity matrix. The only thing that is left in order to formulate the final FIM is
to repartition the transformation matrix in a way, so that blockwise matrix multiplication can
be performed. This is achieved as follows,

T =

[
H k 0

0 0 I

]
=

[
H K
0 L

]
,

with

K = [k,0] =




1 0 · · · 0
...

...
...

1 0 · · · 0


 , K ∈ RK×2K+1 , (3.21)

and

L = [0, I] =




0 1
...

. . .

0 1


 , L ∈ R2K×2K+1 . (3.22)

Applying the parameter transformation (3.19) is now straight forward and results in the final
FIM Jθ(θ) ∈ RDθ×Dθ

Jθ(θ) =

[
HTΛAH HTΛAK + HTΛBL

KTΛAH + LTΛBH KTΛAK + KTΛBL + LTΛBK + LTΛCL

]
. (3.23)

With (3.23) we can now easily compute the CRLB for the estimates of the position by inversion
of the FIM. The bounds for the variances of the x̂ and ŷ estimates are given by

var{x̂} ≥ [Jθ(θ)−1]1,1, var{ŷ} ≥ [Jθ(θ)−1]2,2. (3.24)

Note that we wrote the FIM as a function of θ, while the elements of Jψ(ψ) were parametrized
by ψ. This is of course valid, since we can express the elements of ψ as a function of θ. However,
θ also contains the clock offset ξ, but its value does not affect the FIM. Consequently it would
be appropriate to write Jθ(p,αR,αI), but for simplicity we will keep the current notation.

Hereby, we have succeeded in computing the CRLB of the position estimates. But for several
reasons the result (3.23) is not satisfying:

� It gives us no insight, how the different parameters affect the CRLB.
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� The high dimensionality of the matrix and the matrix inversion makes it difficult to learn
about the relevant terms.

� A geometrical interpretation is not possible.

3.4.4 Equivalent FIM and Position Error Bound

We saw in the previous section that the FIM is a matrix of high dimensionality, which makes
further analysis difficult. To simplify the problem we will use the notion of the EFIM and the
definition of the PEB, which were both introduced in [2] and also used in [6].

The EFIM allows to formulate the CRLB specifically for the parameter of interest (in our
case the agent position p) as opposed to the whole parameter vector θ, which also contains
the nuisance parameters. The definition of the EFIM results from the property, that principal
submatrices of a positive-semidefinite matrix are also positive-semidefinite. We have placed the
position vector as the first entry of θ, therefore the covariance matrix Cp̂ is the upper left
submatrix of Cθ̂,

Cθ̂ =

[
Cp̂ · · ·
· · · · · ·

]
.

Formulating (3.4) using Cp̂ results in

Cθ̂ − J−1
θ (θ) =

[
Cp̂ − [J−1

θ (θ)]2×2 · · ·
· · · · · ·

]
� 0 .

Here the matrix Cp̂ − [J−1
θ (θ)]2×2 is a principal submatrix of Cθ̂ − J−1

θ (θ), therefore it is
positive-semidefinite too. With the definition of the EFIM Jp(θ) ∈ R2×2 satisfying

J−1
p = [J−1

θ ]2×2, (3.25)

we can express the CRLB for the position by using the following inequality

Cp̂ − J−1
p (θ) � 0 . (3.26)

As we can see the EFIM is still parametrized by θ. However, in contrast to the original FIM it
assembles the influence of all the parameters on the position estimates in a 2× 2 matrix.

The reduced dimensionality of the EFIM makes further analysis much easier. In addition the
formulation of the CRLB using (3.26) allows to make a statement about the concentration ellipse,
which was introduced in Section 3.2, Eq. (3.2), as a measure for the estimator performance. In
[25] it is shown, that the minimum size of the concentration ellipse (3.2) of any unbiased estimator
is bounded by the ellipse

Emin =
{
peq ∈ R2 : (peq − p)TJp(peq − p) = C2

}
, C ∈ R. (3.27)

From now in we will use C = 1 and refer to the resulting ellipses as error ellipses. Similar as for
the concentration ellipse its size is determined by the eigenvalues of J−1

p , while the orientation is
defined by its eigenvectors. Because of the importance of this result, it is worth to notice again:
By computing the EFIM (3.25), we immediately obtain the bound of the concentration ellipse

September 15, 2014 – 25 –



3 Cramér-Rao Lower Bound on the Position Estimation

of any unbiased estimator. This is illustrated in Fig. 3.1, where also the lengths of the minor
and major axes are indicated.

c1

c2

b1

b2

x

y

Concentration Ellipse

||ci|| =
√
λi(C), i = 1, 2

Error Ellipse

||bi|| =
√
λi(J

−1
p ), i = 1, 2

Figure 3.1: Illustration of an error ellipse and a concentration ellipse: The minimum size of the
concentration ellipse of any unbiased estimator is bounded by the error ellipse (3.27).
The axes of the ellipses are denoted as bi and ci.

With the EFIM we can also introduce the scalar PEB which is defined as [2]

PEB :=
√

Tr
(
J−1

p

)
=
√
||b1||2 + ||b2||2 . (3.28)

It is especially helpful to visualize the localization performance across a floor plan. Further-
more, it can be easily seen that the PEB represents a performance measure independent of the
coordinate system, i.e. a rotation of the coordinate system does not affect the PEB.

We will now compute the EFIM for the given problem. The position vector p was placed
as the first element in θ. This arrangement makes it possible to compute the EFIM using the
Schur Complement,

[
A B
C D

]−1

=

[
(A−BD−1C)−1 . . .

. . . . . .

]
.

Now we need to take care that the matrix A represents the upper left 2× 2 submatrix of Jθ(θ)
(3.23), and the matrices B . . .D represent the remaining parts of the FIM. Then the EFIM is
given by

Jp = A−BD−1C.

This does not require a repartitioning, and we define the submatrices as

A := HTΛAH A ∈ R2×2 , (3.29)

B = CT := HTΛAK + HTΛBL B,CT ∈ R2×2K+1 , (3.30)

D := KTΛAK + KTΛBL + LTΛBK + LTΛCL D ∈ R2K+1×2K+1 . (3.31)

– 26 – September 15, 2014



3.4 Localization with a Single Transmitting Anchor

Finally, the 2× 2 EFIM for the position estimates is given by

Jp = HTΛAH− (HTΛAK + HTΛBL)

(KTΛAK + KTΛBL + LTΛBK + LTΛCL)−1(KTΛAH + LTΛBH) (3.32a)

= HT
[
ΛA − (ΛAK + ΛBL)(KTΛAK + KTΛBL + LTΛBK + LTΛCL)−1

(KTΛA + LTΛB)
]
H. (3.32b)

When comparing (3.32a) with [6], then we can see that the first term HTΛAH is exactly the
result of the EFIM for TOA, under the condition that we neglect PO. From this we can imme-
diately conclude, that the subtractive term in (3.32a) accounts for the estimation of the clock
offset as well as for the influence of PO. Since the later also affects the estimation of the clock
offset, it is difficult to distinguish the source of the deterioration. One possible way to gain more
insight is to only consider the case where we neglect PO. This will help to quantify the influence
of the clock offset with respect to the TOA scenario and will help us to find countermeasures.
We will look at this case in detail in the following section.

3.4.5 Neglecting Path Overlap

As mentioned above, it makes sense to neglect PO in order to quantify the impact of the
unknown clock offset. This means that we will now assume that we can always distinguish
individual MPCs from each other, even if the arrival times are very close to each other and PO
occurs. In reality this is clearly not always the case. However, there is also a different motivation
for considering this case: Actually the information about positions where PO occurs is contained
in the knowledge of the floor plan and anchor position. Therefore, one could reformulate the
problem ignoring MPCs which lead to PO. This is actually a very reasonable approach when
implementing an estimator as we will see in Chapter 4. From this point of view, considering the
case when neglecting PO could even be more meaningful than the case where we account for
PO.

We will start the analysis by going some steps back, and again look at the FIM Jψ(ψ)
in (3.13). Note that all off-diagonal elements determine how the estimation of parameters is
affected among the estimation of the others. For example the estimation of the amplitudes
and arrival times of MPCs is connected, and they cannot be estimated individually. In Jψ(ψ)
the submatrix ΛB describes this dependency. ΛA on the other hand describes the dependence
between the estimation of the arrival times of individual MPCs. From intuition we can say
that when assuming orthogonal signals from the VAs, ΛA and ΛC have to be diagonal since
individual MPCs do not influence each other. Another way is to simply look at the case where
no PO occurs, that is if the arrival times of the MPCs are sufficiently spaced in time,

|τk − τk′ | � Tp, k, k
′ = 1 . . .K, k 6= k′.

For a transmit pulse with appropriate autocorrelation properties, the ACF Rs(τk− τk′) and also
its derivatives will be zero. Therefore the FIM (3.13) is reduced to a diagonal matrix, i.e. ΛA

and ΛC are diagonal, while ΛB is a zero matrix. To indicate that we neglect PO, we will mark
all used symbols with a tilde and write

J̃(ψ) =

[
Λ̃A Λ̃B

Λ̃T
B Λ̃C

]
=

[
Λ̃A 0

0 Λ̃C

]
,
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Λ̃A = diag([ΛA]1,1 [ΛA]2,2 . . . [ΛA]K,K), Λ̃C = diag([ΛC ]1,1 [ΛC ]2,2 . . . [ΛC ]K,K).

Note that because of the diagonal structure of the FIM the CRLB of the arrival times are now
given by the inverse of the corresponding diagonal elements,

var{τ̂k} ≥ [J̃(ψ)−1]k,k = [Λ̃−1
A ]k,k =

1

[Λ̃A]k,k
, 1 ≤ k ≤ K.

The diagonal elements of Λ̃A play a major role not only when estimating the arrival times τk,
but also when estimating the agent position. Therefore we take a closer look at these. From
(3.14) follows for the diagonal elements with k = k′ [6]

[ΛA]k,k = 2
|αk|2
N0

w2
k

∂2Rs(τk − τk′)
∂τk∂τk′

∣∣∣∣
τk′=τk

= −2
|αk|2
N0

w2
k

︸ ︷︷ ︸
SINRk

∂2Rs(τ)

∂τ2

∣∣∣∣
τ=0︸ ︷︷ ︸

−4π2β2

= 8π2β2 SINRk, (3.33)

where SINRk = |αk|2
N0

w2
k is the SINR [6] of the k-th MPC, and β is the RMS bandwidth of the

transmit pulse,

β2 =

∫∞
−∞ f

2|S(f)|2df∫∞
−∞ |S(f)|2df

. (3.34)

We assume that the energy of the transmit pulse is normalized to one, therefore the denominator
of (3.34) is one and β2 =

∫∞
−∞ f

2|S(f)|2df . The connection of the second derivative of the ACF
and the effective bandwidth is derived by using the Fourier-transformation of the ACF,

F{Rs(τ)} = |S(f)|2,

Rs(τ) =

∫ ∞

−∞
|S(f)|2ej2πfτ df,

∂2Rs(τ)

∂τ2

∣∣∣∣
τ=0

= −4π2

∫ ∞

−∞
f2|S(f)|2ej2πfτdf

∣∣∣∣
τ=0

= −4π2β2.

With (3.33) we can now express the CRLB for the arrival times estimates as

var{τ̂k} ≥ [J̃(ψ)−1]k,k =
1

8π2β2 SINRk
, 1 ≤ k ≤ K,

which clearly emphasizes the importance of the signal bandwidth and the SINRs of the MPCs.
Therefore, a high signal bandwidth as well as high SINRs are beneficial for the estimation of
arrival times.

Since the estimation of the agent position is closely related to the estimation of arrival times,
we can already assume that the bandwidth and SINRs of the MPCs also play an important role
for the EFIM J̃p. We obtain J̃p by replacing the elements of Jψ(ψ) in (3.32a) by the elements
of J̃ψ(ψ),

J̃p = HT Λ̃AH− (HT Λ̃AK)(KT Λ̃AK + LT Λ̃CL)−1(KT Λ̃AH). (3.35)
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Note that this result has a minor flaw: we already saw that the arrival times can be estimated
individually from the amplitudes, but now Λ̃C appears, which clearly shows some inconsistence.
However, in Appendix A.1 it is shown, that when plugging in the definitions of H, K and L the
matrix Λ̃C vanishes, which confirms our idea.

I decided here to take another approach instead of plugging in the matrices. It is easier and
it gives us more insight if we first compute a 3 × 3 EFIM Jp,ξ for a parameter vector [pT ξ]T ,
and use this result to compute the 2× 2 EFIM for p. In order to compute Jp,ξ we partition the
transformation matrix T slightly different,

T =

[
HK×2 kK×1 0K×2K

02K×2 02K×1 I2K×2K

]
=

[
GK×3 0

0 I2K×2K

]
, (3.36)

with

GK×3 = [HK×2 kK×1]. (3.37)

Applying the transformation and computing the EFIM results in

Jp,ξ = GTΛAG−GTΛBΛ−1
C ΛT

BG.

When neglecting PO this reduces to

J̃p,ξ = GT Λ̃AG

= 8πβ2
K∑

k=1

SINRk Jr,3(φk), (3.38)

where Jr,3(φk) is the matrix

Jr,3(φk) =




1
c2

cos2(φk)
1
c2

cos(φk) sin(φk)
1
c cos(φk)

1
c2

cos(φk) sin(φk)
1
c2

sin2(φk)
1
c sin(φk)

1
c cos(φk)

1
c sin(φk) 1


 .

When looking at the result (3.38), one can immediately see that it is in canonical form, i.e. it
is given as the sum of the contributions of each VA. While the contribution of the k-th VA is
scaled by its SINR, the whole EFIM is scaled by the effective bandwidth. The matrix Jr,3 can
be represented as

Jr,3(φk) = vvT , v =
[

1
c cos(φk)

1
c sin(φk) 1

]T
,

and is therefore a rank one matrix with one nonzero eigenvalue

λ1(Jr,3(φk)) = ||v||2 =
1

c2
+ 1 ≈ 1.

Therefore each VA adds information for the estimation of p and ξ.

From the result (3.38) we can now compute the EFIM J̃p by applying the Schur complement
again. It can be expressed in a rather compact way with the introduction of the ranging direction
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matrix Jr(φk) [2] and an additional matrix W as

J̃p =
8π2β2

c2

[
K∑

k=1

SINRk Jr(φk)−W

]
, (3.39)

with

Jr(φk) =

[
cos2(φk) cos(φk) sin(φk)

cos(φk) sin(φk) sin2(φk)

]
,

and

W =
1

∑K
k=1 SINRk

wwT , w =
[∑K

k=1 SINRk cos(φk)
∑K

k=1 SINRk sin(φk)
]T
. (3.40)

The result (3.39) finally allows some meaningful interpretation. When comparing it with the
result for TOA in [6], i.e

J̃p|toa =
8π2β2

c2

K∑

k=1

SINRk Jr(φk), (3.41)

then the similarities between TDOA and TOA can clearly be seen: Every VA adds useful
information for the estimation of the agent position in direction of φk, with the contribution
being proportional to the SINR of the corresponding MPC. On the other hand, the difference
between the two cases manifests itself with the subtraction of the scaled matrix W, which
therefore accounts for the influence of the clock offset estimation. From (3.40) we can clearly
see that this is a rank one matrix with at maximum one nonzero eigenvalue

λ1(W) =
1

∑K
k=1 SINRk

||w||2,

and the eigenvector w. With the eigenvalue being λ1(W) ≥ 0, the matrix W is a positive-
semidefinite matrix, which means that its subtraction can reduce the information provided by
the VAs. Therefore we can argue similar as in Section 3.4.4 that the minimum size of the error
ellipse for TDOA is bounded by the error ellipse of the TOA system. From this property follows
the inequality

P̃EBTDOA ≥ P̃EBTOA. (3.42)

Equality of the localization performance of TOA and TDOA is obtained for the rather unre-
alistic case where W = 0. This case can theoretically occur, e.g. if the agent is surrounded by
VAs with identical SINRs but from opposite directions. This scenario is illustrated in Fig. 3.2.
Note that at least the SINRs of opposing VAs needs to be equal.
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VA 1

VA 2

VA 3

VA 4

Agent

Figure 3.2: Case study: Difference TDOA and TOA. We assume equal SINRs for all VAs. Then
the condition for W = 0 is fulfilled, therefore the TDOA system shows no performance
loss compared to the TOA system.

3.4.6 CRLB for the Estimation of the Clock Offset

With the results from the previous section the investigation of the single-anchor case is mainly
done. However, from the 3 × 3 EFIM J̃p,ξ (3.38) we can not only derive the EFIM for the
position estimation, but also for the clock offset estimation. Although this is not the focus of
this thesis, it is still interesting to see how well the estimation of the clock offset is possible,
and how it affects the position estimation. The result is also of interest when performing the
numerical evaluation in Section 3.6.2, since it gives us some hint on the requirements on suitable
synchronization.

The derivation is only performed for the case when neglecting PO, and is carried out anal-
ogously to the one in Section 3.4.5. The equivalent Fisher information J̃ξ for the clock offset
estimation is then given by

J̃ξ = 8πβ2




K∑

k=1

SINRk−wT

(
K∑

k=1

SINRk Jr(φk)

)−1

w


 . (3.43)

First of all the Fisher information is again scaled by the effective bandwidth, which shows the
beneficial influence of a high signal bandwidth. Then the first term

∑K
k=1 SINRk accumulates

the contribution of each VA. The contributions are again weighted by the SINRs of the MPCs.
The subtractive term accounts for the influence of the geometry.

For the rather unrealistic case where w = 0, only the number of visible VAs and their SINRs
determine the Fisher information. These geometrical conditions were already discussed in the
previous section. Note that in this case we can estimate the clock offset even if the agent is
not locatable, i.e. J̃p is singular. An example scenario, where an agent is located on the axis
between two VAs, is illustrated in Fig. 3.3 (a). Here localization is not possible, since we do not
have contributions from orthogonal directions. But if we assume equal SINRs from both VAs,
then clock offset estimation is possible.

In the case that w 6= 0, the matrix
∑K

k=1 SINRk Jr(φk) affects the clock offset estimation.
Note the similarity of this matrix with the EFIM for TOA (3.41). Provided that the agent is
locatable, this matrix is always positive definite. This also holds for its inverse, meaning that

wT

(
K∑

k=1

SINRk Jr(φk)

)−1

w ≥ 0, where equality holds only if w = 0.

A borderline case is illustrated in Fig. 3.3 (b) : It is understandable that here neither clock offset
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VA 1 VA 2Agent

(a) Clock offset estimation possible

VA 1 VA 2 Agent

(b) Clock offset estimation not possible

Figure 3.3: Case study: Estimation of the clock offset. In (a) a scenario is shown, where perfect clock
estimation is possible when having equal SINRs from both VAs, although localization is
not possible. On the other hand in (b) the estimation of the clock offset is not possible
when not having prior knowledge about the agent position.

estimation nor localization are feasible. However, if we think of a slightly different scenario,
where the agent is locatable, then we can see that the subtractive term of J̃ξ is reduced, the
better the position estimation is possible. I.e. if the geometric alignment allows good localization
performance in terms of TOA, also the performance of the clock offset estimation is increased,
enabled by a smaller subtractive term. This again shows the connection of agent localization
and clock offset estimation.

From the Fisher information (3.43) the bound for the variance of unbiased estimates is com-
puted by inversion. With the definition of the clock error bound (CEB)

CEB =
√
J−1
ξ

we can express the bound of the standard deviation σξ̂ of the estimates as

σξ̂ =

√
var
{
ξ̂
}
≥ CEB.

3.5 Localization using Multiple Anchors

We will now derive the CRLB for a multipath-assisted indoor localization system using multiple
anchors given the assumptions made in Section 2.7. Now the position estimation is based on
multiple observations, but all from different anchors. Note that it is well known, that the FIM
is additive for multiple independent observations. However, this is not helpful in the present
case, since the FIMs associated with the different anchors differ in their dimensions, and are
all parametrized differently. But the question arises, whether the EFIM instead of the FIM is
additive in the present scenario. In order to find an answer we will derive the EFIMs for the
two cases described in Section 2.7: having multiple anchors with and without synchronization.

For the derivation of the EFIM we choose the same approach as before: We first compute
the FIM for the multipath parameters, and then derive the CRLB for the position by using a
parameter transformation. We start by again formulating the observation as a vector consisting
of the signals from the individual anchors,

rM = [r(1)T r(2)T . . . r(J)T ]T .

Deriving its PDF requires the definition of the parameter vector ψM. It is beneficial to stack
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the parameter vectors of the MPCs of the individual anchors as follows,

ψM = [ψ(1)T ,ψ(2)T , . . . ,ψ(J)T ]T .

Note that the number of MPCs from each anchor can be different and therefore the number
of elements differs for each ψ(j). The definition of ψM enables us to express the joint PDF for
rM, which is also the desired LHF for the combined parameter vector ψM. Since all r(j) are
independent from each other, we obtain the joint PDF by multiplying the PDFs f (j)

(
r(j);ψ(j)

)

of the individual anchors. The likelihood for ψM is then given by

fM(rM;ψM) =

J∏

j=1

f (j)
(
r(j);ψ(j)

)
,

and the log-LHF is

ln fM(rM;ψM) =
J∑

j=1

ln f (j)
(
r(j);ψ(j)

)
. (3.44)

The FIM can again be computed using equation (3.5), which means that we have to partially
derive the log-LHF with respect to the different multipath parameters. Since the parameters of
different anchors are independent from each other – they are called orthogonal parameters – this
is a fairly simple task – the derivatives are all equal to zero. The remaining nonzero elements

are given by the ones of FIMs J
(j)

ψ(j) from the individual anchors, which allows to formulate the

final FIM as

JψM
=




J
(1)

ψ(1)

. . .

J
(J)

ψ(J)


 = diag

(
J

(1)

ψ(1) ,J
(2)

ψ(2) , . . . ,J
(J)

ψ(J)

)
.

In order to compute the EFIM and CRLB for the agent position, we have to perform the
parameter vector transformation. This transformation depends on the used topology, i.e. if the
anchors are synchronized or not. We will examine these different cases in the next two sections.

3.5.1 Multiple Transmitting Anchors without Synchronization

We first consider the case where each anchor is operating on its own, without any synchronization
at all. That means we can express the arrival times of the MPCs from the j-th anchor as

τ
(j)
k =

1

c
‖p− p

(j)
k ‖+ ξ(j),

which means that the MPCs of each anchor are delayed by its individual clock offset. The
corresponding stacked parameter vector is given as

θM = [pT , ξ(1),α
(1)
R

T
,α

(1)
I

T
, ξ(2),α

(2)
R

T
,α

(2)
I

T
, . . . ξ(J),α

(J)
R

T
,α

(J)
I

T
]T .
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In θM the clock offset and path-amplitudes of each anchor are grouped together. This allows
us to write the transformation matrix using the submatrices H, K and L, which were already
defined in (3.20-3.22). Of course, it is necessary to adapt the dimensions and definitions of these
matrices to match the corresponding anchors. The transformation matrix has then the form

TM =
∂ψM

∂θM
=




H(1) K(1)

L(1)

H(2) K(2)

L(2)

...
. . .

H(J) K(J)

L(J)




.

Applying the transformation yields the matrix

JθM = TT
MJψM

TM

=




J∑
j=1

H(j)TΛ
(j)
A H(j) H(1)TΛ

(1)
A K(1)

+ H(1)TΛ
(1)
B L(1)

· · · H(J)TΛ
(J)
A K(J)

+ H(J)TΛ
(J)
B L(J)

K(1)TΛ
(1)
A H(1)

+ L(1)TΛ
(1)
B

T
H(1)

K(1)TΛ
(1)
A K(1) + K(1)TΛ

(1)
B L(1)

+ L(1)TΛ
(1)
B K(1) + L(1)TΛ

(1)
C L(1)

...
. . .

K(J)TΛ
(J)
A H(J)

+ L(J)TΛ
(J)
B

T
H(J)

K(J)TΛ
(J)
A K(J) + K(J)TΛ

(J)
B L(J)

+ L(J)TΛ
(J)
B K(J) + L(J)TΛ

(J)
C L(J)




.

The structure of the FIM can be written as

JθM =




∑J
j=1 A(j) B(1) · · · B(J)

B(1)T D(1)

...
. . .

B(J)T D(J)



, (3.45)

where the submatrices A(j), B(j) and D(j) are computed by adapting the definitions in (3.29-
3.31) for the corresponding anchor. Computing the EFIM then yields

Jp

∣∣
J anchors

=
J∑

j=1

A(j) − [B(1) · · ·B(J)]




D(1)

. . .

D(J)




−1



B(1)T

...

B(J)T




=
J∑

j=1

A(j) −B(j)D(j)−1
B(j)T

=

J∑

j=1

J
(j)
p .
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The resulting EFIM is given as the sum of the EFIMs of the individual anchors, meaning that it
is additive for multiple anchors without synchronization. This has the obvious advantage that
it further reduces the PEB, prevents deterioration caused by PO, and enables better coverage
in large indoor environments. When neglecting PO the EFIM is given by

J̃p

∣∣
J anchors

=
8π2β2

c2




J∑

j=1

K∑

k=1

SINRk J(j)
r (φk)−WM


 , (3.46)

where the subtractive term WM consists of the sum off all W(j) as defined in (3.40),

WM =

J∑

j=1

W(j).

Since all W(j) are positive semidefinite matrices, equal performance as for the corresponding
TOA system is achieved, if the condition W(j) = 0 is fulfilled for each anchor. This condition
was already discussed in Sections 3.4.5, and indicates that this case is not very relevant for
practical scenarios.

3.5.2 Multiple Synchronized Transmitting Anchors

When considering synchronization between the anchors, we assume that all anchors have equal
clock offsets ξ(1) = · · · = ξ(J) = ξ resulting in equal delay for the arrival times of all MPCs,

τ
(j)
k =

1

c
‖p− p

(j)
k ‖+ ξ.

Consequently the resulting parameter vector can be formulated as

θMs = [pT , ξ,α
(1)
R

T
,α

(1)
I

T
,α

(2)
R

T
,α

(2)
I

T
, . . .α

(J)
R

T
,α

(J)
I

T
]T .

In the previous section the EFIM for the anchor position turned out to be additive. Now
that the contributions from all anchors share the same agent position p and clock offset ξ,

this suggests the additivity of the 3 × 3 EFIMs J
(j)
p,ξ. With this in mind, we partition the

transformation matrix in a way, which simplifies the computation of the 3×3 EFIM afterwards.
In this case it shows a clear similarity to (3.36) which utilizes the matrix G ∈ RK×3 (3.37).
Adapting this matrix to account for the different number of MPCs by each anchor, leads to the
matrices G(j) ∈ RK(j)×3. The transformation matrix TM is then given by

TMs =
∂ψM

∂θMs
=




G(1)

I(1)

G(2)

I(2)

...
. . .

G(J)

I(J)




,

September 15, 2014 – 35 –



3 Cramér-Rao Lower Bound on the Position Estimation

with I(j) being identity matrices with dimensions 2K(j) × 2K(j). Applying the parameter trans-
formation leads to the FIM JθMs

for the parameter vector θMs,

JθMs
= TT

MsJψM
TMs

=




∑J
j=1 G(j)TΛ

(j)
A G(j) G(1)TΛ

(1)
B · · · G(J)TΛ

(J)
B

Λ
(1)
B

T
G(1) Λ

(1)
C

...
. . .

Λ
(J)
B

T
G(J) Λ

(J)
C



.

The computation of the 3×3 EFIM verifies our previous assumption about the additivity of the
3× 3 EFIM,

Jp,ξ

∣∣
J synced anchors

=
J∑

j=1

[
G(j)TΛ

(j)
A G(j) −G(j)TΛ

(j)
B Λ

(j)
C

−1
Λ

(j)
B

T
G(j)

]
.

Note that the expression in the sum is exactly the 3 × 3 EFIM J
(j)
p,ξ. As it can be seen, when

using multiple synchronized anchors, we have to sum up the 3 × 3 EFIMs from the individual
anchors,

Jp,ξ

∣∣
J synced anchors

=
J∑

j=1

J
(j)
p,ξ.

In order to compute the EFIM for the agent position, it is necessary to again partition the
3 × 3 EFIM and compute the Schur complement. This is straight forward, therefore we will
only derive and analyze the EFIM for the case when neglecting PO. In this case the 3× 3 EFIM
reduces to

J̃p,ξ

∣∣
J synced anchors

=
J∑

j=1

G(j)T Λ̃
(j)
A G(j)

= 8πβ2
J∑

j=1

K∑

k=1

SINR
(j)
k




1
c2

cos2(φ
(j)
k ) 1

c2
cos(φ

(j)
k ) sin(φ

(j)
k ) 1

c cos(φ
(j)
k )

1
c2

cos(φ
(j)
k ) sin(φ

(j)
k ) 1

c2
sin2(φ

(j)
k ) 1

c sin(φ
(j)
k )

1
c cos(φ

(j)
k ) 1

c sin(φ
(j)
k ) 1


 .

(3.47)

The EFIM for the agent position is then given by

J̃p

∣∣
J synced anchors

=
8π2β2

c2




J∑

j=1

K∑

k=1

SINRk J(j)
r (φk)−WMs


 , (3.48)
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with

WMs =
1

∑J
j=1

∑K
k=1 SINR

(j)
k


∑J

j=1

∑K
k=1 SINR

(j)
k cos(φ

(j)
k )

∑J
j=1

∑K
k=1 SINR

(j)
k sin(φ

(j)
k )





∑J

j=1

∑K
k=1 SINR

(j)
k cos(φ

(j)
k )

∑J
j=1

∑K
k=1 SINR

(j)
k sin(φ

(j)
k )



T

. (3.49)

When looking at the result (3.47) and (3.48) we can see, that they basically have the same
structure as the results (3.38) and (3.39) for a single anchor, when we think of the case where
all VAs belong to this anchor. Note that when looking at the problem from this point of view,
the above derivation was almost superfluous. The additional synchronized anchors just extend
the set of used VAs. With the alternative definition of the parameter vector for the multipath
components

ψ′M = [τ ′
T
α′R

T
α′I

T
]T ,

with

τ ′ = [τ (1)T . . . τ (J)T ]T , α′R = [α
(1)
R

T
. . .α

(J)
R

T
]T , α′I = [α

(1)
I

T
. . .α

(J)
I

T
]T ,

the similarity to the single-anchor based TDOA system becomes obvious, and we could directly
specify the EFIM. This makes further discussions unnecessary.

3.5.3 Comparison of the Position Error Bound

Using multiple anchors has in any case (synchronized or not) obvious advantages compared to
the scenario using a single anchor. Since the resulting EFIM is given as the sum of positive
definite matrices9, the CRLB and PEB are reduced, compared to the scenario with a single
anchor. Even if one of the anchors would not be sufficient for localizing the agent on its own
(i.e. its EFIM would be positive semidefinite), it in general still provides useful information
for the overall localization problem. This has the obvious advantage that additional anchors
not only reduces the PEB, but also prevents deterioration caused by PO, and enables better
coverage in large indoor environments.

When directly comparing the scenarios considering multiple anchors with and without syn-
chronization, it is difficult to state which one to prefer in terms of the CRLB. However, in the
case with synchronized anchors we only have to estimate one clock offset ξ compared to the J
clock offsets {ξ(j)}. Therefore, the number of parameters to be estimated is smaller, which in
general results in a decrease of the CRLB. Further statements can be made by looking at the
sum of the eigenvalues of the EFIMs. Since the additive parts in (3.46) and (3.48) are equal,
we will only look at the trace of the subtractive part. When neglecting PO we can derive the

9 The EFIMs of the individual anchors are positive definite provided that the agent is locatable with a single
anchor.
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following inequality,

Tr{WMs} =
1

∑J
j=1

∑K
k=1 SINR

(j)
k

∥∥∥∥∥∥



∑J

j=1

∑K
k=1 SINR

(j)
k cos(φ

(j)
k )

∑J
j=1

∑K
k=1 SINR

(j)
k sin(φ

(j)
k )



∥∥∥∥∥∥

2

≤ 1
∑J

j=1

∑K
k=1 SINR

(j)
k

J∑

j=1

∥∥∥∥∥

[∑K
k=1 SINR

(j)
k cos(φ

(j)
k )

∑K
k=1 SINR

(j)
k sin(φ

(j)
k )

]∥∥∥∥∥

2

=

J∑

j=1

1
∑J

j′=1

∑K
k′=1 SINR

(j′)
k′

∥∥∥∥∥

[∑K
k=1 SINR

(j)
k cos(φ

(j)
k )

∑K
k=1 SINR

(j)
k sin(φ

(j)
k )

]∥∥∥∥∥

2

≤
J∑

j=1

1
∑K

k′=1 SINR
(j)
k′

∥∥∥∥∥

[∑K
k=1 SINR

(j)
k cos(φ

(j)
k )

∑K
k=1 SINR

(j)
k sin(φ

(j)
k )

]∥∥∥∥∥

2

= Tr{WM}.

From this follows

Tr{Jp

∣∣
J synced anchors

} = Tr{· · · }−Tr{WMs} ≥ Tr{Jp

∣∣
J anchors

} = Tr{· · · }−Tr{WM}. (3.50)

Remember that larger eigenvalues of the EFIM result in a reduced size of the error ellipse.
Equation (3.50) indicates that in many cases the error ellipse is smaller when using multiple
synchronized anchors compared to the case when not having synchronization. However, from
the mathematical point of view this is not sufficient to state that the PEB is always lower for
multiple synchronized anchors. In general, the smaller eigenvalue of the EFIM dominates the
PEB as can be seen in the following,

PEB =

√
Tr{J−1

p } =

√
λ1(J−1

p ) + λ2(J−1
p )

=

√
1

λ1(Jp)
+

1

λ2(Jp)

≥
√

1

min(λ1(Jp), λ2(Jp))
.

Although it might not be relevant in a practical scenario, we can always think of a case, where
WM affects the eigenvalues of the EFIM in a way, that the PEB is reduced compared to the case
when considering synchronization, even if the inequality (3.50) is fulfilled. So, the PEB could also
be smaller when using multiple anchors without synchronization. However, in Section 3.6.4 we
will see, that in realistic scenarios the PEB is clearly reduced when using synchronized anchors.

3.6 Numerical Evaluation

The aim of this section is to gain a deeper understanding on how localization performance is
affected by the presence of a clock offset. We will quantify the differences between TDOA and
TOA, and verify the results from the previous sections. In addition, we also make statements
about the robustness of the multipath-assisted indoor localization system by investigating on
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the performance under conditions close to reality.

We perform the evaluation based on the theoretical foundations derived in the previous sec-
tions. These allow to compute the CRLB for an arbitrary position in the given indoor environ-
ment. For the visualization of the results we have the following possibilities:

� To get an overall feeling of the localization performance it is interesting to visualize the
PEB across the floor plan. This approach is especially helpful to visualize its structure
and provides helpful insight on the connections between the PEB and the room geometry.
Examples for such illustrations are shown in Fig. 3.4. We always plot the logarithm of the
PEB, and use the same coloring to make a comparison of the results possible.

� Beside these plots, we will also make use of cummulative distribution functions (CDFs),
which enable a more quantitative comparison of the results. A CDF FPEB(PEB) is then
computed as

FPEB(PEB) =
1

M

M∑

m=1

1 (PEBm ≤ PEB) ,

where M is the number of grid points across the floor plan, PEBm is the PEB for the m-th
grid point and 1(·) is the indicator function.

� Finally, we also use an illustration of the error ellipses across the floor plan to asses the
2D components of the CRLB.

Independent of the purpose of the evaluation, we will in most cases investigate the cases
where we consider and where we neglect PO. As already stated, the former case leads to rather
conservative results, whereas the later yields some more optimistic values for the PEB. When
using a two column layout for the illustrations, we will from now on always show the result for
the case when considering PO on the left hand side, whereas the results when neglecting PO are
illustrated on the right hand side.

3.6.1 Simulation Issues

As already stated we will use the scenario described in Section 2.8 and the parameters defined
in Tab. 2.1 for the evaluation. The CRLB is computed across the floor plan on a grid with 2 cm
spacing in the x and y directions, i.e. this yields the CRLB for 160000 positions inside the room
and allows to make meaningful statements about the performance bound.

When computing the CRLB some additional issues have to be taken into consideration. Es-
pecially, some of the assumptions under which the LHF is valid are violated. Not only that
the RRC pulses are not perfectly orthogonal, but especially we inevitably have to deal with
PO situations. When total PO occurs, the FIM is ill-conditioned and singular, yielding a PEB
which approaches infinity. In the following evaluation theses situations have been prevented by
simply adding a small offset of 3 mm in x and 7 mm in the y direction to all the grid points on
which the CRLB is evaluated to avoid equal distances between the agent position and multiple
anchors or VAs.

For the comparison with TOA we need to compute its CRLB. Therefore the result [6, Eq.
(16)] was used, and Eq. (3.41) when neglecting PO.
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3.6.2 Comparison of TOA and TDOA

As the title of the thesis suggests, we focus on the impact of the clock offset on localization
performance. Assessing the impact requires to compare the localization performance with the
case, where the clock offset is known. This leads us to the comparison of TDOA and TOA. We
start with the single anchor scenario and will later treat the multiple-anchor case.

Fig. 3.4 shows the PEB for TDOA (a),(b) and TOA (c),(d) when considering (a),(c) or ne-
glecting (b),(d) PO for the pulse duration Tp = 1 ns. In any case the performance of the TDOA
system is reduced in comparison to the TOA system. Although the overall structure is very sim-
ilar, the results indicate at least at some areas an increase of the overall PEB. This is especially
the case at positions where partial PO occurs, or where only a low number of VAs are visible as
it can be seen in the lower right hand corner.

A more quantitative assessment is provided by evaluating the CDFs for the different cases.
Fig. 3.5 shows a comparison of the CDFs for TDOA and TOA depending on the pulse duration,
where (a) is for the case considering PO, and (b) when neglecting it. In both cases it confirms
the inequality (3.42), which states that the performance of the TOA system must always be
better or equal than for the TDOA system when considering the same scenario. It furthermore
highlights that the differences between TDOA and TOA are reduced when decreasing the pulse
duration. From this point of view, a TDOA system can easily achieve equal or even better
localization performance as a TOA system when decreasing the pulse duration with respect to
the TOA system.

Reducing the pulse duration not only leads to a better localization performance, but also
decreases the influence of PO. This is shown in Fig. 3.6 which restricts itself to evaluating the
influence of the pulse duration on the impact of PO.
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Figure 3.4: Comparison of the PEB for TDOA and TOA across the floor plan. Each plot shows the
logarithm of the PEB across the floor plan. The PEB was computed for the scenario
described in Section 2.8 for a pulse duration of Tp = 1 ns. The PEB for TDOA (a,b) is
clearly increased compared to the TOA case (c,d), especially in regions where PO occurs,
or at positions where only few VAs are visible.
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TDOA: Tp = 2 ns Tp = 1 ns Tp = 0.5 ns

TOA: Tp = 2 ns Tp = 1 ns Tp = 0.5 ns
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Figure 3.5: CDF comparison of the PEBs for TDOA and TOA. TDOA (solid lines) is compared
with TOA (dashed lines) for different pulse durations. A performance degradation of
TDOA is clearly visible. However, when decreasing the pulse duration Tp the CDF for
TDOA approaches the CDF for TOA. Furthermore the result suggests, that a TDOA
system can achieve the performance of a TOA system by reducing the pulse duration.
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Figure 3.6: CDF comparison for TDOA with and without PO. Decreasing the pulse duration Tp
leads to a reduced influence of PO.
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A more convincing illustration of the structural changes is provided in Fig. 3.7, showing the
actual differences between the PEB for TDOA and TOA, i.e. ∆PEB = PEBTDOA − PEBTOA,
again for the case with PO in (a) and when neglecting it in (b). As already mentioned, in (a)
one can observe the increased influence of PO. In (b) it can be seen that, in general, regions with
low VA visibilities are more affected by performance degradation. However, this is not true in
general and we can clearly see some exceptions, e.g. in the lower right hand corner. We already
saw in the theoretical analysis that the PEB depends on the number of visible VAs, the SINRs
and also the influence of the geometry.

The previous observations lead to the comparison of the PEB degradation with the CEB,
which is shown in Fig. 3.8. Now it is especially interesting to compare these results with Fig. 3.7.
Note that the structure of the CEB is very similar to the structure of the difference of the PEB.
Regions where the clock offset can be estimated well show little deterioration of the PEB, whereas
bad clock offset estimation performance manifests itself with increased influence on the PEB.
It clearly shows that the problems of clock offset estimation and position estimation are closely
linked, and verifies the results which were found in the theoretical part in Section 3.4.5 and
3.4.6.

Motivated by these observations we now selectively determine the influence of the CEB on
the PEB. Therefore, we only consider a limited area of the floor plan, where a certain CEB is
achieved. Then the CDF of the PEB is computed for this area. The results can be seen in
Fig. 3.9, and clearly show the importance of a low clock synchronization error. E.g. in order to
achieve a reduction of the PEB of maximum 2 cm with respect to TOA with a coverage of more
than 80% of the area, we need unbiased estimation of the clock offset with a standard deviation
lower than σξ̂ ≤ 0.1 ns. In contrast the area where we achieve σξ̂ > 0.1 ns leads to a performance
degradation in the range of almost 10 cm.

We complete the comparison by examining the influence on the error ellipses. Fig. 3.10, which
shows some ellipses across the floor plan, makes the spreading and rotation of the ellipses clearly
visible. It can be seen, that as already stated in Section 3.4.5, the error ellipses for TDOA are
bounded by those of the TOA system, i.e. the performance of the TDOA system can never
exceed the performance of the TOA system. From the result it can also be seen, that mainly
the length of the minor axes of the ellipses are affected, resulting in a more even spread of the
ellipses in the x and y directions. Also note that when comparing the ellipses for TOA and
TDOA, the latter is only affected in one direction while it is not influenced in the orthogonal
direction. This can be ascribed to the fact, that the matrix W in (3.39), which accounts for the
influence of the clock offset, is of rank one with at maximum one nonzero eigenvalue.
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Figure 3.7: Detailed difference of the PEBs between TDOA and TOA across the floor plan. This
plot only shows the differences between the two cases, and shows an increase of the PEB
for TDOA at positions affected by PO as well as in areas with low VA visibility (with
exceptions).

0 2 4 6 8 10

0

2

4

6

8

x[m]

y
[m

]

−3 −2 −1 0

CEB [log(ns)]

(a) CRLB for the clock offset estimation, considering
PO

0 2 4 6 8 10

0

2

4

6

8

x[m]

y
[m

]

−3 −2 −1 0

C̃EB [log(ns)]

(b) CRLB for the clock offset estimation, neglecting
PO

Figure 3.8: CEB across the floor plan. It is especially interesting to see the connection between the
CEB and the difference in the PEB in Fig. 3.7.
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which indicate the connection between importance of a low clock synchronization error.
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Figure 3.10: Comparisons of the error ellipses for TDOA and TOA. The result is shown for the
case when neglecting PO. Comparing the TDOA and TOA case shows a spreading and
a rotation of the error ellipses. Clearly, the error ellipses for TOA are a lower bound
for the error ellipses in the TDOA case.
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3.6.3 Limitations under Real-Life Conditions

The assumptions made in the previous section do not always meet the conditions in a real
scenario. Sometimes the building materials provide only poor signal reflectivity, additional
scatterers make the estimation of MPCs difficult and moving objects can block signal paths. All
these factors deteriorate the localization performance. Although this is not the main focus of
this work, we will briefly analyze the influence here.

We start by analyzing a scenario where an object blocks the LOS path, which means that
we have to deal with an NLOS situation. In a realistic scenario it is rather unlikely that only
the LOS is blocked, in most cases this would also affect the visibility of other VAs. But for
simplicity we restrict the analysis solely to an NLOS situation. In the TOA scenario in [6],
it was obvious, that the LOS component was a dominating contributor to a low PEB. The
importance of this MPC is reduced in the TDOA case, but nevertheless it also provides valuable
localization information. In Fig. 3.11 (a),(b) the influence on the PEB for TDOA is shown.
When comparing it with Fig. 3.4 (a),(b) no big difference can be observed. The slight increase
of the PEB is better noticeable when comparing the CDFs in Fig. 3.11 (c),(d). This illustration
also shows that the TOA system is more affected by the NLOS situation than the TDOA system,
but both seem to be quite robust to NLOS situations. Furthermore, the result for TDOA with
Tp = 0.5 ns shows that reducing the pulse duration is clearly a way to reduce the performance
loss and achieve even much better performance than the TOA system.

The situation changes when assuming high attenuation of signal reflections. We refer to this
scenario as the low-reflectivity case. It is emulated by attenuating first-order reflections by 6 dB,
and neglecting second-order reflections completely. Now the impact shown in Fig. 3.12 (a),(b)
is much more drastic. In this case we encounter large areas where localization is not possible,
e.g. in the lower right hand corner. Also the impact of PO is greatly increased, although the
areas affected by PO are reduced due to less involved VAs. The CDFs in (c),(d) again show the
drastic consequences of such a situation. In contrast to the NLOS scenario one can also notice,
that now the TDOA system is more sensitive to the reduced set of VAs when comparing it with
the TOA system. It is also important to mention, that even a reduction of the pulse duration
to Tp = 0.5 ns is only partially a suitable measure to overcome the deterioration. Using this
shorter pulse leads to a comparable performance as for TOA with twice the pulse duration.

The obtained results indicate that reducing the pulse duration helps to overcome some short-
comings of the TDOA system. However, depending on the requirements, this might be a quite
expensive measure. As an alternative we will now examine the case when extending the topology
by additional anchors.
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TDOA: Tp = 1 ns NLOS Tp = 1 ns with LOS Tp = 0.5 ns NLOS

TOA: Tp = 1 ns NLOS Tp = 1 ns with LOS

Figure 3.11: Localization performance in a NLOS scenario. The PEB across the floor plan shows
a similar result as in 3.4 (a,b) with an overall increase of the PEB.
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TDOA: Tp = 1 ns low refl. Tp = 1 ns, normal scenario Tp = 0.5 ns low refl.

TOA: Tp = 1 ns low refl. Tp = 1 ns, normal scenario

Figure 3.12: PEB for a scenario with low wall reflectivity. Low reflectivity is emulated by consid-
ering only VAs up to order one, and an increased attenuation of 6 dB for a reflection.
Obviously such a scenario is a major problem when considering TDOA localization. In
some areas with low VA visibility the position estimation even becomes impossible.
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3.6.4 Remedy by using Multiple Transmitting Anchors

The theoretical analysis in Section 3.5 showed that the use of multiple anchors can significantly
improve the performance of TDOA. Therefore, we investigate the suitability of a multi-anchor
system to overcome the disadvantages when using a TDOA system instead of a TOA system.

We first look at the PEB across the floor plan when using two asynchronous anchors (J = 2).
This is shown in Fig. 3.13 (a),(b). Comparing it with Fig. 3.4, where only one anchor was used,
one can see that the PEB is distributed much more smoothly, and that the impact of PO is
significantly reduced. The results for two synchronous anchors are not shown, since they are
very similar to the presented results. However, the difference of the results is illustrated using
the CDFs in Fig. 3.13 (c),(d). In terms of the CDFs, two synchronized anchors perform slightly
better than two asynchronous anchors. This is basically what we expected from the theoretical
comparison in Section 3.5.3. Another fact becomes obvious: The TDOA systems using two
anchors are in any case superior to the single-anchor systems, no matter whether using TOA or
TDOA.

Now it is interesting, how the two-anchor system performs under the real-life conditions defined
in Section 3.6.3. Since we have already shown that there is only a slight difference between two
synchronized / asynchronous anchors, we will restrict the following analysis to the case with two
asynchronous anchors.

When analyzing the impact of an NLOS situation (Fig. 3.14) or a low-reflectivity scenario
(Fig. 3.15), it is remarkable that the performance degradation with respect to the single-anchor
case is drastically reduced. In both cases the PEB is much more smoothly distributed. Especially
the NLOS situation in Fig. 3.14 does only slightly affect the localization problem. Only when
looking at the PEB in the low-reflectivity scenario (Fig. 3.15) some problematic regions can be
seen, while the overall performance is still very good. The CDFs in Fig. 3.14 (c),(d) do not
provide much additional information, except that they show that a single-anchor TDOA system
needs twice the bandwidth to achieve similar performance. On the other hand, the CDFs for
the low-reflectivity scenario (Fig. 3.15 (c),(d)) highlight an important result: In such a scenario
a multi-anchor system is clearly superior to a single-anchor system, even if the single anchor
system operates with much more bandwidth. Note that by now increasing the bandwidth of
the transmit pulse in a single anchor TDOA system has always been a possible remedy against
performance degradation. This also might be true in the present case, but the demand on the
signal bandwidth would be disproportionately high.
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2 async anchors only anchor 2

Figure 3.13: Performance when considering a TDOA system with two anchors. (a,b) show the
smoothly distributed PEB for the case with asynchronous anchors. The result for syn-
chronized anchors is not illustrated, since it differs only slightly. The CDFs comparison
(c,d) clearly shows the performance gain compared to the single-anchor systems. It also
shows the minor differences between multiple anchors with / without synchronization.
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(d) CDF comparison, neglecting PO

TDOA, J = 2: Tp = 1 ns NLOS Tp = 1 ns with LOS

TDOA, J = 1: Tp = 1 ns NLOS Tp = 1 ns with LOS Tp = 0.5 ns NLOS

TOA, J = 1: Tp = 1 ns NLOS Tp = 1 ns with LOS

Figure 3.14: Performance of the two-anchor system in a NLOS situation. Only the case for two
anchors without synchronization is shown. Comparing the structure of the PEB across
the room (a,b) with Fig. 3.13 shows some minor degradations, but the overall influence
of a NLOS scenario is almost negligible. This is also visible when looking at the CDFs
(c,d). Additionally, these indicate that a single-anchor TDOA system needs twice the
bandwidth in order to achieve the same performance.
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TDOA, J = 2: Tp = 1 ns low refl. Tp = 1 ns, normal scenario

TDOA, J = 1: Tp = 1 ns low refl. Tp = 1 ns, normal scenario Tp = 0.5 ns low refl.

TOA, J = 1: Tp = 1 ns low refl. Tp = 1 ns, normal scenario

Figure 3.15: Performance of the two-anchor system for a scenario with low wall reflectivity. Only
the case for two anchors without synchronization is shown. When comparing the per-
formance result with the single-anchor case in Fig. 3.12, one can clearly see the huge
performance improvement. The CDFs (c,d) also indicate that in this case the TDOA
system with two anchors is clearly superior to a system with only one anchor, even
when halving its pulse duration.
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4
Maximum Likelihood Estimation

4.1 Introduction

So far we have derived the CRLB for the position estimates, which gave us helpful insight in the
estimation problem. However, the CRLB yields the theoretical limits of position estimation, and
is only valid in the close vicinity of the examined position. As already mentioned in Section 2.6 it
is obvious, that e.g. room symmetries can lead to situations, where accurate position estimation
is not possible. Such, and also other cases are not covered when examining the CRLB. Therefore,
we will complete our analysis by studying the impact of the clock offset on a practical position
estimator, namely an MLE.

The choice of the MLE was made because of its advantageous properties, which make the
analysis meaningful while at the same time keeping the effort low. First of all, we can compare the
performance of the MLE with the CRLB. It is known, that the MLE is asymptotically efficient
[26], which means that it attains the CRLB if the set of data is large enough. Furthermore,
as its name suggests, the MLE obtains estimates of the agent position by maximizing the LHF
of its underlying parameters. This involves evaluation of the LHF, a function which yields
the basis for other practical estimators such as the maximum a posteriori (MAP) estimator.
The maximization of the LHF can be performed numerically, and a closed-form solution is not
required. It is sufficient to perform a simple grid search, where we only have to compute the
result of the LHF on a grid across the room, and we do not have to consider particular algorithms
for the maximization such as e.g. gradient search algorithms.

On the downside, the MLE does not belong to the class of minimum variance unbiased esti-
mators (MVUEs) [26], although for some cases it yields equal results. But given its approximate
efficiency it is sufficient for our analysis. Furthermore, the implementation using a grid search
is not very well suitable for practical position estimation. The computational expenses increase
with the required spatial resolution and the number of parameters. A more practical approach
for the implementation of an MLE would be to e.g. use a particle filter, as it is done in [9].
This helps to reduce the computational effort drastically and makes even real-time localization
feasible. Finally, it is important to mention that the results of this chapter are not conclusive.
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The evaluation of the LHF helps to gain insight, but of course relying on computer simulations
is not sufficient to fully asses estimator performance.

We will approach the problem similarly as in Chapter 3, i.e. we will first look at the problem
when using only a single anchor, and later extend it for the case where multiple anchors are
used. In order to assess the reliability and performance of the MLE, we will analyze the shape
of the LHF in detail and compare the MLE performance with the CRLB. The final evaluation
of measurement data should be seen as a feasibility study to emphasize the proper functionality.

4.2 Maximum Likelihood Estimation with a Single Anchor

The aim is to perform ML estimation of the agent position considering the problem defined in
Chapter 2. For simplicity we start with the case where only one anchor is used. In general the
estimation procedure can mathematically be formulated as

θ̂ = arg max
θ

f(r;θ), (4.1)

i.e. the estimated parameter vector θ̂, which also contains estimates p̂ of the agent position p, is
obtained by varying the parameters θ (3.6), searching for the set of parameters which maximize
the LHF f(r;θ) for θ, given the observation r.

In a practical system it is not feasible to perform the ML estimation based on the continuous
time waveform r(t) as it is done in Chapter 3. Instead we have to consider a sampled data
model, which describes a filtered and sampled version r of the received signal. Therefore, we
cannot directly use the LHF defined in (3.11), but have to consider an adapted LHF.

The above considerations clarify the further approach: In order to perform the ML estimation,
we need to derive the LHF. This requires to first study the statistical properties of the filtered
and sampled received signal, which is done in the following section.

4.2.1 Sampling the Received Signal

In order to fulfill the Nyquist criterion, we need to process the received signal r(t) with an
anti-aliasing filter hlp(τ). The band-limited signal rlp(t) is then given by

rlp(t) = (r ∗ hlp)(t) =

∫ ∞

−∞
r(τ)hlp(t− τ)dτ.

We can think of different filters for that purpose, e.g. an ideal low-pass filter, or alternatively a
matched filter. The former has its cutoff frequency fc exactly at half the sampling rate fc = fs/2,
while the latter matches the shape of the transmit pulse so that the condition

hlp(t) = s(Tp − t), 0 ≤ t ≤ Tp

is fulfilled. The filtered waveform is then sampled with the sampling frequency fs = 1/Ts,
resulting in the discrete-time signal r[n]

r[n] = rlp(nTs), n = 0 . . . N − 1,
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or in the signal vector r ∈ CN when using vector notation,

r =
[
r[0] r[1] · · · r[N − 1]

]T
.

Since we assume a linear time-invariant (LTI) system, we can examine the filtering and sampling
process also on the components of the received signal. For the following part we assume that
the Nyquist criterion is satisfied, i.e. the sampling frequency fs exceeds twice the maximum
frequency of the transmit signal.

We start by looking at the deterministic signal components s̃(t). These consist of a sum of K
weighted baseband pulses. Clearly an ideal low-pass filter has no influence on the deterministic
components. When using a matched filter on the other hand, the pulse shape is changed. Thus
we can write the sampled version ot the deterministic components as

s̃[n] = s̃lp(nTs) =
K∑

k=1

αkslp(nTs − τk),

where slp(t) = (s ∗ hlp)(t) denotes the pulse shapes of the filtered received pulses. Using vector
notation, we define a vector s̃ ∈ RN containing the samples of the deterministic part,

s̃ =
[
s̃[0] s̃[1] · · · s̃[N − 1]

]T
.

Note that this vector can easily be expressed as a multiplication of a signal-matrix Sτ ∈ RN×K
with a vector α ∈ CK containing the path-amplitudes. It is then defined by

s̃ = Sτα , (4.2)

with

α =
[
α0 α1 · · · αK

]T
, αk ∈ C,

and the signal matrix consisting of K pulses shifted in time,

Sτ =
[
sτ1 sτ2 · · · sτK

]
,

where

sτk =
[
slp(0 · Ts − τk) slp(1 · Ts − τk) · · · slp((N − 1) · Ts − τk)

]T
.

When looking at the diffuse MPCs we have a similar situation as for the deterministic com-
ponents. We can formulate the sampled diffuse multipath signal nc[n] as a convolution of the
low-pass filtered transmit pulse slp(t) and the CIR of the diffuse MPC ν(τ) similar as in (2.4),

nc[n] = nc,lp(nTs) = (nc ∗ hlp)(nTs) = (s ∗ ν ∗ hlp)(nTs) = (slp ∗ ν)(nTs)

=

∫ ∞

−∞
slp(λ)ν(nTs − ξ − λ)dλ. (4.3)

Using matrix notation again, we can express the colored noise component as

nc =
[
nc[0] nc[1] · · · nc[N − 1]

]T
, nc ∈ CN . (4.4)
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The samples of the observation noise are given by

w[n] = wlp(nTs)

or

w =
[
w[0] w[1] · · · w[N − 1]

]T
, w ∈ CN ,

where wlp = (w ∗ hlp)(t) is again the filtered version of the observation noise w(t).

With this we can formulate the signal vector r, which forms the basis for the present estimation
problem, as

r = s̃ + nc + w

= Sτα+ nc + w. (4.5)

4.2.2 Statistical Properties of the Signal Vector

We will now derive the statistical properties of the signal vector r, which is necessary to formulate
the LHF. Helpful is the following considerations: The received signal r(t) (2.5) is modeled as
a Gaussian RP. Applying a LTI filter operation does not change the nature of the RP, thus
sampling yields a Gaussian random vector. Therefore, we can fully characterize the sampled
signal r by computing its mean vector E{r} and its covariance matrix C.

The mean vector E{r} is given by the sum of all contributions, i.e.

E{r} = E{Sτα}+ E{nc}+ E{w} .

The observation noise w(t) as well as the part of the CIR for the diffuse multipath (modeled
by ν(τ)) are zero-mean Gaussian RPs. A linear functional of a zero-mean Gaussian RP yields
again a zero-mean Gaussian RP, resulting in E{nc} = E{w} = 0. Therefore, the mean vector
is exclusively determined by the deterministic part of the signal, i.e.

E{r} = Sτα. (4.6)

The covariance matrix for a complex valued random vector (RV) r is defined as

C = E
{

(r− E{r}) (r− E{r})H
}
.

Inserting (4.6) and (4.5) in the equation above results in

C = E
{
ncn

H
c

}
+ E

{
wwH

}
+ 2E

{
ncw

H
}
,

where the first two terms are the covariance matrices of the diffuse multipath and observation
noise, respectively. The last term 2E

{
ncw

H
}

= 0 is zero, since the observation noise is assumed
to be statistically independent from the diffuse components. Therefore, the covariance matrix
C for r is given by the sum of the covariance matrices Cnc and Cw for the diffuse multipath
and observation noise,

C = Cnc + Cw.
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We will first examine the covariance matrix of the diffuse multipath, which is due to its zero
mean property given by

Cnc = E
{
ncn

H
c

}
.

To simplify the result, we will look separately at the elements of Cnc . With (4.3) and (4.4)
follows that the element in its n-th row and u-th column is given by

[Cnc ]n,u = E

{∫ ∞

−∞
slp(nTs − ξ − λ)ν(λ)dλ ·

∫ ∞

−∞
slp(uTs − ξ − η)ν∗(η)dη

}
.

With λ′ = λ+ ξ and η′ = η + ξ follows

[Cnc ]n,u =

∫ ∞

−∞

∫ ∞

−∞
slp(nTs − λ′)E

{
ν(λ′ − ξ)ν∗(η′ − ξ)

}
slp(uTs − η′)dη′dλ′

=

∫ ∞

−∞

∫ ∞

−∞
slp(nTs − λ′)Sν(λ′ − ξ)δ(λ′ − η′)slp(uTs − η′)dη′dλ′.

The inner integral can be eliminated using the sifting property of the Dirac delta function and
leads to

[Cnc ]n,u =

∫ ∞

−∞
slp(nTs − λ′)Sν(λ′ − ξ)slp(uTs − λ′)dλ′.

This integral can be approximated by

[Cnc ]n,u ≈ Ts ·
N−1∑

i=0

slp(nTs − iTs)Sν(iTs − ξ)slp(uTs − iTs)

= Ts ·
N−1∑

i=0

slp[n− i]Sν(iTs − ξ)slp[u− i],

which helps to formulate the covariance matrix directly in a compact form,

Cnc = Ts Φ Sν ΦT . (4.7)

Here Sν is a N ×N diagonal matrix with the sampled PDP shifted by ξ on the diagonal, i.e.

Sν = diag (Sν(0 · Ts − ξ), . . . , Sν((N − 1) · Ts − ξ)) ,

and Φ is a matrix consisting of N pulses shifted by multiple integers of the sampling period Ts,

Φ =
[
s0 s1 · · · sN−1

]
, si = [slp ((0− i)Ts) , slp ((1− i)Ts) , . . . , slp ((N − i)Ts)]T .

Note that for the special case when the pulses slp(t− iTs), i = 0, . . . , N − 1 are orthogonal, and
Nyquist sampling is used (i.e Ts = Tp), then the signal vectors in Φ are linearly independent,
meaning that Φ is an orthogonal matrix. Therefore (4.7) becomes a diagonal matrix, meaning
that the samples of the diffuse multipath are uncorrelated. This is e.g. the case when using an
RRC transmit pulse in conjunction with a matched filter, and sampling with Ts = Tp.

The last step is to derive the covariance matrix of the observation noise. In contrast to the
continuous time model used in Chapter 3, the observation noise is now band-limited by the

September 15, 2014 – 57 –



4 Maximum Likelihood Estimation

low-pass filter. The elements of its covariance matrix are given by samples of the ACF Φwlp of
the low-pass filtered observation noise wlp,

[Cw]n,u = E{w[n]w∗[u]} = E
{
wlp(nTs)w

∗
lp(uTs)

}
= Φwlp((n− u)Ts).

To derive the ACF of the filtered noise we utilize the Wiener Khinchin theorem, which states
that the PSD of a wide sense stationary random process is connected with its ACF through the
Fourier transformation,

Swlp(jω) = F
{

Φwlp(τ)
}
.

The PSD of the observation noise is on the other hand affected by the low-pass filter by multi-
plication with the squared magnitude of the low-pass frequency response,

Swlp(jω) = Sw(jω) · |Hlp(jω)|2 .

Now the inverse Fourier transform is used to arrive at the ACF of the filtered observation noise,

Φwlp(τ) = F−1
{
Swlp(jω)

}
.

Since the PSD of the continuous time process is given as Sw(jω) = N0, the impulse response
of the low-pass filter determines the shape of the ACF. Note that e.g. in the case when using
an ideal anti-aliasing filter (i.e. a sinc filter) with cutoff frequency fc = fs/2, then the ACF is
given by

Φwlp(τ) = N02fc sinc(2fcτ) = N0fs sinc(fsτ),

where sinc(t) denotes the normalized sinc function. Sampling the ACF with Ts = 1/fs leads to
uncorrelated samples with variance var{w[n]} = N0fs, i.e.

Cw = N0fsI. (4.8)

Clearly, increasing the sampling frequency also increases the noise bandwidth and thus also the
variance of the samples. On the other hand, when using oversampling in conjunction with a
filter other than the ideal anti-aliasing filter, then the samples are not uncorrelated anymore,
i.e. Cw is not diagonal anymore. We will see in Section 4.4 when performing the numerical
evaluation, that it is important to consider this case, since oversampling but at the same time
limiting the noise bandwidth is necessary to obtain meaningful results from the MLE.

So far we have completely characterized the RV r. Its mean value is given by (4.6), while its
covariance matrix is given by the sum of (4.7) and (4.8), yielding

C = Cc + Cw = N0fsI + Ts Φ Sν ΦT . (4.9)

4.2.3 The Likelihood Function

In the previous section we saw, that the received signal vector r is given as a sample of a
multivariate complex Gaussian distribution,

r ∼ CN (Sτα, C).
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For such a random vector the LHF is well known,

f(r;θ) =
1

πN det(C)
exp

[
−(r− Sτα)HC−1(r− Sτα)

]
. (4.10)

When considering the assumptions made in Section 3.4.2, the approximation of the LHF leads
to a result very similar to (3.11). More precisely, when assuming orthogonal pulses and Nyquist
sampling, then Φ in (4.9) is an orthogonal matrix. This in turn allows to find a simple expression
for the inverse of the covariance matrix C, which only utilizes matrix transposition and inversion
of a diagonal matrix. We finally arrive at the log-LHF

ln f(r;θ) ∝ 2Re
{
rHSτWα

}
−αHSTτ SτWα, (4.11)

where we also assume the covariance matrix C to be known, thus the term rHC−1r is constant
and vanishes. The matrix W is given by

W = diag
(
w2

1, w
2
2, . . . , w

2
K

)
, w2

k =
N0

N0 + TsSν(τk)
.

The similarity between (4.11) and (3.11) can clearly be seen. The detailed derivation can be
found in Appendix B.1.

4.2.4 Maximum Likelihood Estimation

With the LHF (4.10) derived in the previous section we are basically in the position, where we
can numerically evaluate the LHF. But for the sake of reducing the computational complexity,
we will briefly look at how we can simplify the MLE although this is not the main focus.

First of all, it is sufficient to perform the maximization of the logarithm of the LHF. Since
the natural logarithm is strictly monotonic, maximization of the LHF equals the problem of
maximization of the logarithm of the LHF,

θ̂ = arg max
θ

f(r;θ) = arg max
θ

ln f(r;θ)

= arg max
θ

(
− ln (det(C))− (r− Sτα)HC−1(r− Sτα)

)
.

If the covariance matrix can be estimated in an independent step and is assumed to be known
for the position estimation, then the term ln (det(C)) does not depend on θ, and does not need
to be considered for the maximization.

We can further simplify the estimation procedure by separating the amplitude estimation.
This can be seen, when writing the optimization problem as follows,

θ̂ = arg max
p,ξ

max
α

ln f(r;θ).

The inner maximization yields amplitude estimates for a given position p and synchronization
offset ξ,

α̂(p, ξ) = arg max
α

ln f(r; p, ξ,α).

Since the covariance matrix C depends on the position and clock offset, it is here constant and
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can be neglected for the maximization in any case, reducing the LHF to

ln f(r; p, ξ,α) ∝ −(r− Sτα)HC−1(r− Sτα)

∝ 2Re
{
rHC−1Sτα

}
−αHSTτ C−1Sτα.

The advantage of the seperation of the problem becomes now obvious, since we can find an
analytical expression for the ML estimates of the path amplitudes. For the maximization we set
the gradient of the log-LHF equal to zero,

∇α ln f(r; p, ξ,α)
!

= 0 .

The maximum likelihood estimator is given by [26]

α̂ = (STτ C−1Sτ )−1STτ C−1r. (4.12)

The similarity with the solution of a weighted least squares estimator [26] becomes immediately
obvious. The weights are given by the inverse of the covariance matrix. Even more important
is the fact that the MLE solution equals the solution of the linear model [26], provided that we
examine the LHF at the true agent position p and true clock offset ξ. Indeed, the problem can
be formulated using a linear model,

r = Sτα+ n, n ∼ CN (0, C) .

Since the solution for the linear model yields the MVUE, we can conclude that the amplitude
estimation (4.12) also yields the MVUE when examining it at the true agent position p and
clock offset ξ.

Further, we can simplify the amplitude estimation provided that the assumptions about or-
thogonality of the pulses as well as Nyquist sampling are fulfilled. Based on the approximation
of the LHF (4.11) the path amplitudes can then be estimated using

α̂ ≈ (STτ SτW)−1WTSTτ r.

This follows from the result obtained in Appendix B.1.

4.3 Maximum Likelihood Estimation with Multiple Anchors

When using multiple anchors, where J is the total number of anchors, we can again distin-
guish the two scenarios with either multiple synchronized or asynchronous anchors, as already
discussed in Section 3.5. In any case we can formulate a joint LHF ln fM(rM;ψM) for the
stacked observations and parameter vectors as in (3.44) by adding the individual log-LHFs
. However, for the actual maximization it is easier to only consider the individual LHFs
ln f (j)(r(j);θ(j)) = ln f (j)(r(j); p, ξ(j),α(j)) as follows.

4.3.1 Multiple Synchronized Anchors

For a setup with J synchronized anchors, all of these anchors share a common synchronization
offset, i.e. ξ(1) = · · · = ξ(J) = ξ. This needs to be considered when performing the maximization,
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and leads to

p̂ = arg max
p,ξ

J∑

j=1

max
α(j)

ln f (j)(r(j); p, ξ,α(j)).

4.3.2 Multiple Anchors without Synchronization

For multiple asynchronous anchors the estimation procedure does not vary a lot. Here, we have
to find the position p, which maximizes the overall LHF, while the LHFs corresponding to the
individual anchors are parameterized by their own path-amplitudes α(j) and clock offset ξ(j).
This leads to

p̂ = arg max
p

J∑

j=1

max
α(j),ξ(j)

ln f (j)(r(j); p, ξ(j),α(j)).

4.4 Numerical Evaluation

Now we have completely defined the MLE, and are ready for its evaluation. The aim is, to
validate the ability of localization in presence of a clock offset in principle, and furthermore
verify the results of Chapter 3. During this evaluation we will gain additional insight about
problems and limitations of the MLE, which were not covered by the analysis of the CRLB, and
therefore perfectly complement the results from Chapter 3.

For a meaningful analysis, we again reduce the complexity of a real indoor environment by
restricting to the example scenario defined in Section 2.8. However, we will also analyze the ML
estimation using measurement data later on.

In order to assess the MLE performance, we will use two different approaches: We start by
looking at the LHF across the floor plan, i.e. we view it as a function of the position10 p′,

L(r; p′) ∝ max
ξ,α

ln f(r; p′, ξ,α). (4.13)

This allows to make statements about the shape of the likelihood, and about locatability on a
large-scale. On the other hand, we will also take a detailed look at the LHF in the vicinity of the
agent position. We therefore compute multiple realizations of the received signal, and perform
the ML estimation. The results are then used to compare them with the theoretical results of
the CRLB. During the whole evaluation we have to keep in mind that the results of this section
are not conclusive, since we use a statistical signal model for the received signal, but we only
analyze a few realizations of r.

4.4.1 Simulation Issues

For the numerical evaluation we assume the usage of a matched filter. With the transmit
pulse being an RRC pulse, the pulses slp(t) have a raised-cosine (RC) shape. All other signal
parameters are specified in Section 2.8.

10 We write p′ for an arbitrary position on the floor plan, to distinguish from the agent position p.
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For the choice of an appropriate sampling frequency, we must address the following issue: In
order to fulfill the sampling theorem, it would be sufficient to take the bandwidth extension of
the RC pulse into account. However, using the minimum allowed sampling frequency leads to
rather bad results when evaluation the LHF. The reason can already be found, when looking
at the scalar product of two sampled pulses:

∑N−1
n=0 slp(t0 + nTs − τ1) · slp(t0 + nTs − τ2). If

the pulse duration is in the order of the sampling period, i.e. Tp ≈ Ts, then the outcome
varies drastically, depending on the initial offset t0 of the sampling process. Proceeding with an
oversampling-factor of M = 4, i.e. the sampling frequency is given by fs = M/Tp, avoids this
problem.

The covariance matrix is assumed to be known. In reality, it is also necessary to estimate the
covariance matrix. This estimation could be based on multiple measurements in the vicinity
of the agent, or it could rely on a appropriate model for the diffuse multipath. In our case we
assume perfect knowledge of the covariance matrix. Using this knowledge yields some sort of
a gold standard estimator, since it neglects the uncertainty which arises when estimating this
matrix. Furthermore, we neglect correlations of the diffuse multipath in order to reduce the
computational complexity. This means that only the main diagonal of the covariance matrix
C is considered. This does of course affect the estimation problem, since we hereby omit the
whitening operation. However, it does not change the shape of the LHF very drastically, meaning
that it is still sufficient for our purposes.

As already mentioned in the introduction, we stick to the computation of the ML estimates
using a simple grid search. This means that L(r; p′) (4.13) is computed for all positions on a
grid, with a spacing of 2 cm. Prior attempts clearly showed, that for our purpose this resolution
is sufficient. For a better visualization of the results, the illustrations of the LHF use shaded
interpolation.

When evaluating L(r; p′), we inherently encounter PO situations. If total PO occurs, i.e. if the
arrival times of two MPCs are equal, then even the amplitude estimation (4.12) becomes an ill-
posed problem, meaning that we cannot estimate the path amplitudes under these conditions. To
prevent such situations, we make use of the prior floor plan information, and exclude overlapping
MPCs from the estimation procedure. As threshold for the minimum time difference of two
consecutive MPCs we choose |τi− τj | ≥ Tmin. diff = Tp/20, which ensures avoidance of numerical
problems.

Finally, we also have to discuss a modification of the MLE, which is necessary to roughly
compare its performance with the CRLB. We have mentioned several times, that the CRLB only
makes statements about the estimation performance in the close vicinity of the agent position.
However, as we will see soon, the MLE fails in many cases to find even the approximate agent
position. To still compare the performance with the CRLB, we need to restrict the evaluation of
L(r; p′) to the area around the agent position. When limiting the considered area, we basically
perform a MAP estimation when assuming uniform distribution of the agent position across
the restricted area. Therefore, we will refer to this approach as MAP estimation. The MAP
estimator will only consider positions with a maximum distance to the true agent position
||p − p′|| ≤ rmap, where we choose rmap = 25 cm. In this area it computes L(r; p′) with a
grid spacing of 2 cm. For the comparison with the CRLB it makes sense to obtain even higher
estimator resolution. This is achieved, by adding an additional estimation step where we perform
a high resolution grid search within a radius of rmap hr = 0.05 m with a grid spacing of 2 mm
around the previously found estimate. The used simulation parameters are finally summarized
in Tab. 4.1.
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Parameter Value Description

Receiver
matched filter receive filter

Ts 0.25 ns sampling interval

MLE

Tobs 200 ns observation time
0 ns . . . 50 ns range of considered clock offset

0.1 ns resolution of the clock offset
0.02 m grid resolution

Tp/20 min. difference of arrival times

MAP estimator

rmap 0.25 m evaluation radius
0.02 m grid resolution

rmap hr 0.05 m high resolution evaluation radius
0.002 m grid high resolution

Table 4.1: MLE and MAP simulation parameters

4.4.2 A brief Comparison of TDOA and TOA

We start by comparing the log-LHF for TDOA and TOA. We will use the same parameters
as in Chapter 3, i.e. the parameters specified in Tab. 2.1, for which the CRLB suggested good
localization performance. The results are shown in Fig 4.1. In (a) the LHF for TOA is shown. It
has its global maximum approximately at the true agent position. One can see some other local
maxima, especially in the vicinity of the anchor, which could potentially cause the localization to
fail. On the other hand, when looking at the TDOA case in (b), the big influence of the unknown
clock offset becomes visible. The global maximum is at a completely wrong position, and in this
case localization would clearly fail, although the CRLB suggests a low PEB. It is apparent, that
we cannot apply the MLE directly. The question about the feasibility of a multipath assisted
TDOA localization system arises, and requires us to study the problems in more detail.
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Figure 4.1: Comparison of TOA and TDOA. The log-LHF for TOA (a) allows localization, while
TDOA (b) fails although using the same parameters.
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4.4.3 Composition of the Log-Likelihood Function

We will now look at the composition of the log-LHF by gradually increasing the complexity of
the estimation problem. Therefore we reduce the set of considered VAs, i.e. we will only consider
the anchor and one, two or all VAs up to order two. The corresponding scenarios are shown in
Fig. 4.2, with the agent at p = [2.5; 2.5], the anchor at p1 = [8; 7], and the two additional VAs
at p2 = [−8; 7] and p3 = [8; 9]. The full set of VAs was shown in Fig. 2.7(b).
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(b) Considering the anchor and two additional
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Figure 4.2: Reduced VA sets for analyzing the composition of the LHF. We first look at the LHF for
a scenario with only one anchor and one VA (a), and then add a 2nd VA (b).

In addition to reducing the set of VAs, we also choose the density of the observation noise
and the power of diffuse multipath negligibly small. The log-LHF is shown in Fig. 4.3. As
expected, the case where only one additional VA is considered leads to one visible hyperbola
(a). Note that there exists a second one, but outside the room. Adding an additional VA in (b)
results in already five overlapping hyperbolas. Furthermore, it is noticeable, how the hyperbola
defined by the anchor and the VA at p3 = [8; 9] broadens towards the agent position, since the
anchor and the second VA are close to each other, but far away from the agent. Note that this
hyperbola is a very important contribution for the localization, and its broadening can cause
trouble when also considering noise. The position of the agent is clearly visible at the peak of
the LHF. Considering all VAs up to order two leads to (c). The global maximum is at the true
agent position. But we can already see that the LHF is highly multimodal, which can cause
serious problems at different agent positions, especially if noise is involved.

The impact of diffuse multipath and observation noise is shown in Fig. 4.4. The noise com-
ponents lead to additional hyperbolas, making the estimation problem even more difficult to
handle. Using the whole set of second-order VAs clearly makes the position estimation infeasi-
ble.

The results above indicate a big problem when performing ML estimation: Even if no noise
and diffuse MPCs are present, the LHF is highly multimodal. Without taking further measures
we cannot ensure proper functionality of the TDOA localization.
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Figure 4.3: The LHF without the influence of noise. Both, the observation noise as well as dif-
fuse multipath were choosen negliblly small. Furthermore only a reduced set of VAs is
considered.
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Figure 4.4: Influence of noise and diffuse multipath. In contrast to Fig. 4.3, now also the noise
components are considered.

4.4.4 Measures to Improve the Estimation Performance

We have identified some issues which arise when implementing an MLE. The next step is to
find a way to circumvent these problems. We have already discussed some options to reduce
the PEB in Chapter 3: e.g. increasing the signal bandwidth, using multiple anchors etc. Now
we will apply these and also other measures to the MLE, with the focus on how they affect the
shape of the LHF.

We saw in the previous section that noise, and therefore the SINRs of the deterministic MPCs
are important factors. Therefore the following evaluation is performed for a low-SINR and a
high-SINR scenario. The former uses the parameters as defined in Tab. 2.1 (N0 = 10−8,Ω1 =
1.16 · 10−6). This results in a constant SNR for the diffuse multipath across the floorplan,
with SNRdiff = 20.6 dB. At the agent position p = [3.5; 4.5]T the LOS component has the
SINRLOS = 15.8 dB, and the SINR of all reflected MPCs is at SINRtotal = 9.8 dB. The high-
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SINR scenario uses N0 = 10−10 and Ω1 = 1.16 · 10−7, which results in SNRdiff = 30.7 dB,
SINRLOS = 32.5 dB and SINRtotal = 21.3 dB.

In Fig. 4.5 the likelihood is shown for the low-SINR scenario in (a) and for the high SINRs
scenario in (b). In the latter case the reduction of noise leads to a distinctive peak at the agent
position, and the general assumption about the beneficial effect of high SINR is comprehensible.
The SINRs also played a crucial role for the CRLB, and one should in any case try to reduce it.
However, while measures can be taken to reduce the observation noise, the power of the diffuse
multipath is rather difficult to influence, since it depends on the transmit power as well as the
physical properties of the indoor environment.

That high SINRs are still no guarantee for failsafe localization is clearly shown in Fig. 4.6.
The agent is now located at p = [5; 0.5]T , which means that we have to deal with an NLOS
situation. No matter if we examine the low or high-SINR scenario, the position estimation fails.
However, for the high-SINR case in (b) at least a local maximum can be observed. Under certain
circumstances one can make use of this peak.

The positive effect of a reduced pulse duration (Tp = 0.5 ns) is shown in Fig. 4.7. When
comparing it with the results for Tp = 1 ns (Fig. 4.5), we notice the much more distinct peaks of
the likelihood, which suggests that the position estimation can be performed more accurately.
This also matches the observations when examining the CRLB, where we saw that the signal
bandwidth directly scaled the EFIM and the PEB. But it is only an effective measure, when
considering a high-SINR scenario as shown in (b), otherwise we still cannot ensure proper
functionality (a). So a reduction of the pulse duration is only effective when combining it with
some other countermeasures, and comes at the cost of enhanced bandwidth requirements.

A much cheaper countermeasure could be to restrict to first-order VAs. This is somehow
counterintuitive, since each additional VA adds information for the position estimation. But on
the other hand, the results when using only first-order VAs (Fig. 4.8) indicate, that this affects
the shape of the log-LHF in a way, so that the large number of distinct local maxima is clearly
reduced. And again to address the increase of the PEB: This measure can be used in a two-
step approach, i.e. first performing coarse localization with the reduced VA set, and afterwards
performing high resolution localization with the full VA set, but restricting to the vicinity of the
previously found estimate. However, in Section 4.5 we apply this measure to measurement data
without success. In a realistic scenario it seems to be better not to restrict to first-order VAs,
but to a rather small set of significant VAs with high SINRs.

When assuming prior knowledge of the clock offset, which could be available due to coarse
synchronization, the results for TDOA in Fig. 4.9 resemble the ones for TOA in Fig. 4.1 (a).
Here we assumed the clock offset to be uniformly distributed in an interval [−1 ns, 1 ns], i.e.
ξ ∼ U(−1 ns, 1 ns). It can be seen that even a clock synchronization in the range of nanoseconds
would greatly improve the reliability of the estimator.

Finally, the relatively simple yet effective approach with two asynchronous anchors is exam-
ined. The analysis in Section 3.5 emphasized the beneficial influence of multiple anchors on
the PEB. This is not only true when examining the CRLB, but also when looking at the LHF
in Fig. 4.10. Especially in the high-SINR case (b) the global maximum is now well above the
other local maxima when comparing it with the single-anchor case Fig. 4.5 (b). When using two
synchronized anchors, the resulting LHF does not differ very much, therefore it is not shown.
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Figure 4.5: Multimodality of the log-LHF. Tp = 1 ns, p = [3.5; 4.5]T .
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Figure 4.6: The log-LHF in case of a NLOS scenario. Tp = 1 ns, p = [5; 0.5]T .
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Figure 4.7: Influence of a reduced pulse duration. Tp = 0.5 ns, p = [3.5; 4.5]T .
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Figure 4.8: Using only first-order VAs for the ML estimation. Tp = 1 ns, p = [3.5; 4.5]T .
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Figure 4.9: The log-LHF when having prior knowledge about the clock offset. Tp = 1 ns, p =
[3.5; 4.5]T , ξ ∼ U(−1 ns, 1 ns).
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Figure 4.10: Log-LHF when using two asynchronous anchors. Tp = 1 ns, p = [3.5; 4.5]T .
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Still, none of the measures above was able to deal with the low-SINR scenarios. However,
in all these scenarios in Fig. 4.5-4.10 (a) one can recognize a local maximum at the true agent
position, which can be helpful when assuming prior knowledge about the agent position, e.g.
from a agent tracking algorithm.

From these results we can conclude, that multipath-assisted TDOA localization can be enabled
in principal, provided that the SINRs are sufficiently high. Reliability can be enhanced by
a useful combination of the measures above. To also obtain some degree of robustness, the
additional use of tracking algorithms is most likely mandatory.

4.4.5 Comparison with the Cramer Rao Lower Bound

We now assess the small-scale estimator performance, and attempt to compare the achievable
localization performance with the CRLB. Note that it is not appropriate, to compare the MLE
directly with the CRLB, since we already saw that we permanently have to deal with outliers.
To still get an appropriate comparison, we need to restrict to the local maximum of the LHF
closest to the true agent position.

A possible way to solve this problem is to use the modified MLE, i.e. the MAP estimator
defined in Section 4.4.1. This means that we still perform ML estimation, but only consider
the area around the agent position. Performing the position estimation for 1000 realizations of
the received signal (also with different realizations of the diffuse multipath) allows to compute
a sufficiently accurate covariance matrix Cp̂ of the estimates p̂. We can then compare the
concentration ellipses defined by Cp̂ with the error ellipses defined by the CRLB.

A scatter plot showing the estimates p̂ is shown in Fig. 4.11 (a). It was performed using a single
anchor with Tp = 1 ns, assuming a medium-SINR scenario with N0 = 10−9 and Ω1 = 0.55 · 10−6

(SNRdiff = 27.6 dB, SINRLOS = 24.1 dB, SINRtotal = 14.1 dB). In (b) and (c) are the scatter
plots for the low and high-SINR scenarios as defined in Section 4.4.4 shown. In all three cases
the mass of the estimates is clearly around the true agent position p = [3.5; 4.5]T , indicating that
the estimates are unbiased. The concentration ellipse (colored black) shows similar orientation
as the error ellipse (green), and also its sizes match well, especially for the high-SINR case. For
medium SINR the concentration ellipse is slightly spread. In the low-SINR case the evaluation
radius is too small to assess the concentration ellipse. The histograms on the outside of (a)
give us a hint about the distribution function of the estimates. Resembling the distribution of a
Gaussian random variable, this confirms the validity and significance of the concentration ellipse
as performance measure for the estimator.

The empirical CDFs for the localization error are shown in Fig. 4.12. Also shown are the CDFs
as expected from the CRLB, which again allows for a comparison of the MLE performance with
the CRLB. For high SINRs, the results of the MLE match the CDFs of the CRLB very well.
When examining the medium-SINR case, the connection between the CRLB and the MLE
performance is still evident, but not as well as for the high-SINR scenario. In the low-SINR case
it can be seen that the comparison is not proper, since the restriction of the examined area due
to the MAP estimator falsifies the statistics.
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Figure 4.11: Comparison of the MAP estimator performance with the CRLB. The influence of differ-
ent SINRs is shown. Fig. (a) shows a medium-SINR scenario, whereas (b) and (c) show
the results for the low- and high-SINR cases, respectively. Tp = 1 ns, p = [3.5; 4.5]T .
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Figure 4.12: CDF comparison of the MAP estimator performance. The empirical CDFs of the
estimates are shown for the low-, medium- and high-SINR scenarios. Additionally, the
CDFs as expected from the CRLB are illustrated.

4.5 Evaluation based on Measurement Data

We complete the chapter by applying the ML estimation on measurement data collected in a real
indoor environment. The purpose is to demonstrate the applicability and principal functionality
of multipath-assisted TDOA localization on measurement data.

4.5.1 Scenario Description and Signal Parameters

The used measurement data originate from a measurement campaign [27], performed in an
indoor environment with the floor plan shown in Fig. 4.13. The localization infrastructure

consisted of two anchors, located at p
(1)
1 = [0.5; 7]T and p

(2)
1 = [5.2; 3.2]T .

The agent was moved along the red colored trajectory in 5 cm steps, which results in L = 220
agent positions. For each of these the CIR was recorded. In addition, measurements were taken
on a 5×5 grid around each agent position, with one centimeter spacing (this is also illustrated in
Fig. 4.13). These additional measurements are used for the estimation of the covariance matrix
of the diffuse multipath, which is described in the next section.

Postprocessing of the CIR data results in the complex-valued baseband signals for both anchors
and all L trajectory positions. The postprocessing is performed for an RC pulse, with pulse
duration Tp = 0.5 ns and roll-off factor β = 0.5. The sampling frequency is fs = 1/0.144 ns ≈
6.95 GHz.
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Figure 4.13: Floor plan of the indoor environment. Windows and doors are drawn light and dark
gray, respectively. Also illustrated are the two anchors (blue), the agent trajectory (red)
and the 5× 5 measurement grid.

4.5.2 Estimation Procedure

Before we can apply the MLE as defined in Section 4.2.4, we need to perform the additional
steps of VA relocation and covariance estimation as follows:

The VA relocation is solely done to eliminate uncertainties of the floor plan information,
and yields an updated set of VAs. For this purpose the relocation process makes use of the
measurement data as well as the known agent position along the trajectory to estimate the VA
locations. More details about the algorithm can be found in [28]. We use the resulting updated
set of VAs throughout the remaining computations.

In order to achieve the maximum possible estimator performance, a sufficiently accurate es-
timation of the covariance matrix is needed. This is a challenging task on its own, and out of
scope of this work. Instead we will simply use the M = 25 measurements rm,m = 1, . . . ,M , on
the grid around a specific agent position, and estimate the covariance matrix Ĉ as follows,

Ĉ =
1

M

M∑

m=1

(rm − s̃) (rm − s̃)H .

Here s̃ denote again the deterministic signal components (4.2), which are computed using the
knowledge of the agent position p and the relocated VAs. This approach yields for our purpose
sufficiently accurate estimates of the covariance matrix.

Thus all prerequisites are fulfilled, and the localization can be performed as described in
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Sections 4.2.4 and 4.3. Note that we again only use the main diagonal of the covariance matrix
for computational reasons.

4.5.3 Performance Results

Performing the localization with a single anchor and assuming prior knowledge on the distribu-
tion of the clock offset ξ ∼ U(−10 ns, 10 ns) leads as expected to a rather large number of outliers
and hence a poor performance. The results are shown in Fig. 4.14 (a). Here all the estimates
of the agent positions are drawn on the floor plan, which gives us an idea of the functionality
of the MLE for the present problem. No matter whether using VA order one or two (blue and
green colored crosses, respectively), the number of outliers is unacceptably high. The estima-
tion based on only first-order VAs shows slightly better results. Much better are the results for
ξ ∼ U(−1 ns, 1 ns) (b). In contrast to (a), now the number of outliers is reduced when using
VAs up to order of two.

Localization results using two anchors are shown in Fig. 4.14 (c) and (d). Again, in (c) prior
knowledge of ξ ∼ U(−10 ns, 10 ns) is assumed, while (d) is for ξ ∼ U(−1 ns, 1 ns). Interest-
ingly, comparing (c) with (b) reveals that the two-anchor system with ξ ∼ U(−10 ns, 10 ns)
is more vulnerable to localization errors due to outliers than the single-anchor system with
ξ ∼ U(−1 ns, 1 ns), highlighting the importance of clock synchronization. Best performance is
achieved with the two-anchor system assuming ξ ∼ U(−1 ns, 1 ns), as can be seen in (d). Note
that in neither case it was possible to localize the agent in the upper part of the trajectory. The
results in this part of the trajectory are not illustrated for better clarity.

Figure 4.15 shows the obtained results in terms of the localization error ||p − p̂|| along the
trajectory (the results for a single anchor with poor prior knowledge are not illustrated, due
to the high number of outliers). Here (a) was obtained assuming the single anchor system
with ξ ∼ U(−1 ns, 1 ns), while (b) and (c) are for two anchors with ξ ∼ U(−10 ns, 10 ns) and
ξ ∼ U(−1 ns, 1 ns), respectively. Together with the CDF comparison in Fig. 4.16, these results
confirm the observations made before. They also show that, with minor exceptions, the use of
VAs up to order two results in a smaller localization error.
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Figure 4.14: Performing multipath-assisted TDOA localization along a trajectory in a real indoor
environment. The illustrations show the estimated positions for a single-anchor in (a)
and (b), and for two-anchors in (c) and (d). In (b) and (d) we assume prior knowledge
on the clock offset: ξ ∼ U(−1 ns, 1 ns). The green crosses denote estimates based on
the ML estimation using VA order one, while the blue crosses are for the case when
using VA order two.
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Figure 4.15: Localization error along the trajectory when using two asynchronous anchors. The
localization error ||p− p̂|| is shown for every trajectory position. (a) shows the results
when using a single anchor with ξ ∼ U(−1 ns, 1 ns), while (b) and (c) are for the
cases with two asynchronous anchors and ξ ∼ U(−10 ns, 10 ns) and ξ ∼ U(−1 ns, 1 ns),
respectively. The results are shown for VA order one and two.
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Figure 4.16: CDF comparison of the localization error along the trajectory. Best performance is
obtained when using two anchors with prior knowledge ξ ∼ U(−1 ns, 1 ns). When having
ξ ∼ U(−10 ns, 10 ns) the additional outliers can be seen. Also good performance is
achieved when using a single anchor with ξ ∼ U(−1 ns, 1 ns). In general, the use of
VAs up to order two provides better localization performance than restricting to first-
order VAs.
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5
Conclusion and Outlook

This thesis provides an in-depth analysis of multipath-assisted indoor localization in presence
of a clock offset. We examined the theoretical limits of localization performance, and compared
the results with the performance of an actual estimator implementation.

5.1 Conclusion

The derivation and analysis of the CRLB gives us helpful insight into the estimation problem.
Similar as for TOA, it highlights that when considering areas not affected by path overlap,
each deterministic signal component (i.e. each VA) contributes information to the estimation
problem, which increases the localization accuracy. The amount of information depends on
the effective signal bandwidth and on the SINRs of the deterministic signal components. The
former is a design parameter and is only limited by technological feasibility and legal regulations,
while the latter depends on multiple factors such as the transmit power, attenuation of signal
reflections (and hereby material properties of the indoor environment), observation noise and
diffuse multipath.

As expected, the comparison with TOA shows a performance degradation caused by the un-
known clock offset. The differences mainly depend on the geometrical conditions, and hereby on
the indoor environment. Still the results suggest that good localization performance is achiev-
able. If the performance is not sufficient, effective countermeasures are presented in order to
circumvent the performance loss:

� Increasing the signal bandwidth has the positive effect of scaling the EFIM, thus reducing
the CRLB. The shorter pulse duration also decreases the areas which are affected by path
overlap. All this comes at the high cost of additional bandwidth.

� Extending the localization infrastructure by additional anchors not only leads to a re-
duced CRLB, but also reduces vulnerability against path overlap situations, enhances
room coverage, and improves localization under NLOS conditions or in case of reduced
signal reflectivity.
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The analysis of the MLE covers open issues which are ignored when examining the CRLB.
The results point out that the performance suggested by the CRLB is attainable only with the
use of additional measures. Thereby multimodality of the LHF turns out to be a major issue,
which causes the estimation procedure to fail in many cases. The evaluation of counter-measures
yields the following possibilities:

� Keeping the SINR as high as possible leads to a smoother shape of the LHF, which helps
to identify the correct agent position. Hence, an increase of the transmit power as well as
choosing a high signal bandwidth have a positive effect.

� Increasing the signal bandwidth not only leads to better performance in terms of the CRLB
and higher SINRs, but also to more distinct peaks in the LHF, which makes the recognition
of the maximum easier.

� Choosing a rather small VA-order for a coarse localization can make the estimation of the
agent position easier, due to the reduced number of distinct modes of the LHF, but in
general the use of a higher VA-order is preferable.

� The positive properties when using multiple anchors are not only evident when examining
the CRLB, but also when looking at the resulting LHF, as it has a much more distinct
local maximum.

� If prior information on the clock offset is available, e.g. from a coarse synchronization,
this greatly reduces the multimodality of the LHF.

� Finally prior information on the agent position, e.g. provided by a tracking algorithm,
restricts the search area and hereby makes position estimation not only more robust, but
also reduces the computational expenses.

In order to obtain the best possible estimator performance, a carefully selected combination of
these countermeasures seems to be most efficient. If we can assure that the global maximum of
the LHF is on average at the agent position, then the performance suggested by the CRLB is
roughly achieved, especially in high SINR scenarios.

Applying the MLE to measurement data finally verified the principle feasibility of the pre-
sented approach and suggests good performance when either using a tracking algorithm or
multiple transmitting anchors.

5.2 Outlook

The presented approach yields a promising technology for indoor localization. For TOA the
feasibility of a real-time indoor localization system was already shown [8]. In order to realize a
functional and robust TDOA system, several issues need to be addressed in future work:

� A substantial hurdle when implementing a TDOA system will be to deal with the high
computational complexity. For the reduction of the computational expense different ap-
proaches are conceivable: A coarse clock synchronization would be beneficial, since it
reduces the range of clock offset. Efficient optimization algorithms, such as the particle
swarm filter in [9] could be used. On the other hand, relying on carefully selected signal
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metrics could reduce the computational complexity greatly, without reducing the local-
ization performance excessively. In this case an approach as for the TOA system [29] is
thinkable, where an iterative search-and-subtract implementation of an MLE is used for
estimating the arrival times.

� Being able to achieve the maximum possible localization performance requires the knowl-
edge of the covariance matrix of the diffuse multipath and observation noise. In the present
work we assumed its perfect knowledge, which is not appropriate in reality. Thus the task
of determining the covariance matrix must be considered besides the actual localization
problem. Possible approaches include the computation of the covariance matrix based on a
sufficiently accurate environment model or by realizing online joint position and covariance
matrix estimation based on multiple consecutive observations.

� To achieve a certain degree of robustness, the use of tracking algorithms is inevitable. E.g.
using a Kalman filter for tracking the agent position has shown to greatly improve the
TOA estimator performance in [29], and should also be applicable in a TDOA system.
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A
Appendix to Chapter 3

A.1 Direct Derivation of the 2 x 2 EFIM when neglecting
path-overlap

In this section we will examine (3.35) directly, without computing the 3×3 EFIM first. Therefore
we first evaluate all the terms of (3.35) separately, using the definitions of H,K and L in
Eq. (3.20), (3.21) and (3.22).

HT Λ̃AH =

=

[
1
c cos(φ1) · · · 1

c cos(φK)
1
c sin(φ1) · · · 1

c sin(φK)

]


[ΛA]1,1
. . .

[ΛA]K,K







1
c cos(φ1) 1

c sin(φ1)
...

...
1
c cos(φK) 1

c sin(φK)




=
1

c2

K∑

k=1

[ΛA]k,k

[
cos2(φk) cos(φk) sin(φk)

cos(φk) sin(φk) sin2(φk)

]
, (A.1)

HT Λ̃AK =

[
1
c cos(φ1) · · · 1

c cos(φK)
1
c sin(φ1) · · · 1

c sin(φK)

]


[ΛA]1,1
. . .

[ΛA]K,K







1
...
1

0K×2K




=

[∑K
k=1[ΛA]k,k

1
c cos(φk) 0 · · · 0∑K

k=1[ΛA]k,k
1
c sin(φk) 0 · · · 0

]
,
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KT Λ̃AK =

[
1 · · · 1

02K×K

]



[ΛA]1,1
. . .

[ΛA]K,K







1
... 0K×2K

1




=

[∑K
k=1[ΛA]k,k 01×2K

02K×1 02K×2K

]
,

LT Λ̃CL =




0 · · · 0
1

. . .

1


 Λ̃C




0 1
...

. . .

0 1


 =

[
0 01×2K

02K×1 Λ̃C

]
,

(KT Λ̃AK + LT Λ̃CL)−1 =

[
1∑K

k=1[ΛA]k,k
01×2K

02K×1 Λ̃−1
C

]
.

Evaluating the subtractive term of (3.35) shows that Λ̃C vanishes,

(HT Λ̃AK)(KT Λ̃AK + LT Λ̃CL)−1(KT Λ̃AH) =

=

[∑K
k=1[ΛA]k,k

1
c cos(φk) 0 · · · 0∑K
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1
c sin(φk) 0 · · · 0
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1∑K

k=1[ΛA]k,k
0

0 Λ̃−1
C

]
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k=1[ΛA]k,k

1
c cos(φk)
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k=1[ΛA]k,k

1
c sin(φk)

0 0
...

...
0 0




=
1

∑K
k=1[ΛA]k,k

1

c2
·

[∑K
k=1[ΛA]k,k cos(φk)∑K
k=1[ΛA]k,k sin(φk)

] [∑K
k=1[ΛA]k,k cos(φk)

∑K
k=1[ΛA]k,k sin(φk)

]
. (A.2)

Finally (3.39) is obtained by subtracting (A.2) from (A.1), and using (3.33).
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B
Appendix to Chapter 4

B.1 Approximation of the Likelihood Function

We first rewrite the covariance matrix,

C = N0fsI + Ts Φ Sν ΦT

= Φ
[
N0fsΦ

−1ΦT−1
+ Ts Sν

]
ΦT . (B.1)

As already mentioned, Φ is an orthogonal matrix when assuming perfect autocorrelation prop-
erties of the transmit pulse s(t) and Nyquist sampling. We obtain an orthonormal matrix
Φ′ by normalizing the columns of Φ, which is achieved by utilizing a diagonal matrix Ls =
diag (||s0||, ||s1||, . . . , ||sN−1||), i.e. Φ′ = Φ · L−1

s . With Φ = Φ′ · Ls we can rewrite (B.1) as

C = Φ′Ls

[
N0fsL

−1
s Φ′−1Φ′T

−1
LTs
−1

+ Ts Sν

]
LsΦ

′T .

We can now make use of the orthogonality of Φ′, i.e. Φ′−1 = Φ′T and with Ls = LTs we finally
arrive at

C = Φ′ [N0fsI + Ts EsSν ] Φ′T , (B.2)

where Es is a diagonal matrix with the energies of the shifted pulses εsi = ||si||2 on its diagonal,

Es = LsLs = diag
(
εs0 , εs1 , . . . , εsN−1

)
.

The advantage from the formulation (B.2) is obvious, since inverting C can now be done by
simply inverting a diagonal matrix,

Q := C−1 = Φ′ [N0fsI + Ts EsSν ]−1 Φ′T .
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Expansion of the log-LHF leads to

ln f(r;θ) = ln (det(Q))− ln (πN )− (r− Sτα)HQ(r− Sτα)

∝ 2Re
{
rHQSτα

}
−αHSTτ QSτα.

We can further simplify the following term g := QSτα. We therefore assume equal energies for
the shifted pulses, εs0 = εs1 = · · · = εsN−1 = εs and express the elements of Q as

[Q]n,u =

N∑

i=1

1/εsslp((n− i)Ts)slp((u− i)Ts)
fsN0 + TsεsSν(iTs − ξ)

.

With this we can write the elements of g as

[g]n =

N−1∑

u=0

[Q]n,u ·
K∑

k=1

αkslp(uTs − τk)

=
N−1∑

u=0

N∑

i=1

1/εsslp((n− i)Ts)slp((u− i)Ts)
fsN0 + TsεsSν(iTs − ξ)

·
K∑

k=1

αkslp(uTs − τk)

=

N∑

i=1

K∑

k=1

1/εsslp((n− i)Ts)αk
∑N−1

u=0 slp((u− i)Ts)slp(uTs − τk)
fsN0 + TsεsSν(iTs − ξ)

.

Note that the inner sum
∑N−1

u=0 (·) equals zero if τk 6= iTs, which leads to

[g]n =
K∑

k=1

1/εsslp(nTs − τk)αk
∑N−1

u=0 s
2
lp(uTs − τk)

fsN0 + TsεsSν(τk − ξ)

=

K∑

k=1

1/εsslp(nTs − τk)αkεs
fsN0 + TsεsSν(τk − ξ)

=
K∑

k=1

slp(nTs − τk)αk
fsN0 + TsεsSν(τk − ξ)

.

With the definition of the weights w2
k = N0

N0+TsSν(τk−ξ) (3.12) and εs ≈ 1/Ts follows

[g]n =
1

fsN0

K∑

k=1

αkw
2
kslp(nTs − τk),

or in matrix notation with W = diag
(
w2

1, w
2
2, . . . , w

2
K

)
,

g =
1

fsN0
SτWα.

With this approximation the log-LHF reduces to (4.11)

ln f(r;θ) ∝ 2Re
{
rHSτWα

}
−αHSTτ SτWα.
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[9] E. Leitinger, M. Fröhle, P. Meissner, and K. Witrisal, “Multipath-assisted maximum-
likelihood indoor positioning using UWB signals,” in IEEE ICC 2014 Workshop on Ad-
vances in Network Localization and Navigation (ANLN), Sydney, Australia, 2014.

[10] N. Freris, S. Graham, and P. Kumar, “Fundamental limits on synchronizing clocks over
networks,” IEEE Transactions on Automatic Control, vol. 56, no. 6, pp. 1352–1364, Jun.
2011.

September 15, 2014 – 87 –

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4802191
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4802191
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5571900
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5571900
http://www.tandfonline.com/doi/abs/10.3846/1392-1541.2009.35.18-22
http://www.tandfonline.com/doi/abs/10.3846/1392-1541.2009.35.18-22
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6363827
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6363827
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=660796
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=660796


BIBLIOGRAPHY

[11] N. Freris, H. Kowshik, and P. Kumar, “Fundamentals of large sensor networks: Connec-
tivity, capacity, clocks, and computation,” Proceedings of the IEEE, vol. 98, no. 11, pp.
1828–1846, Nov. 2010.

[12] P. Carbone, A. Cazzorla, P. Ferrari, A. Flammini, A. Moschitta, S. Rinaldi, T. Sauter,
and E. Sisinni, “Low complexity UWB radios for precise wireless sensor network synchro-
nization,” IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 9, pp.
2538–2548, Sep. 2013.

[13] J. Xu, M. Ma, and C. Law, “Position estimation using UWB TDOA measurements,” in
The 2006 IEEE 2006 International Conference on Ultra-Wideband, 2006, pp. 605–610.

[14] J. Xu, M. Ma, and C. L. Law, “Theoretical lower bound for UWB TDOA positioning,” in
Global Telecommunications Conference, 2007. GLOBECOM’07. IEEE, 2007, p. 4101–4105.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4411690

[15] J. Xu, M. Ma, and C. Law, “Performance of time-difference-of-arrival ultra wideband indoor
localisation,” IET Science, Measurement & Technology, vol. 5, no. 2, p. 46, 2011. [Online].
Available: http://digital-library.theiet.org/content/journals/10.1049/iet-smt.2010.0051

[16] R. Kaune, “Accuracy studies for TDOA and TOA localization,” in 2012 15th International
Conference on Information Fusion (FUSION), 2012, pp. 408–415.

[17] Y. Qi, H. Kobayashi, and H. Suda, “Analysis of wireless geolocation in a non-line-of-sight
environment,” Wireless Communications, IEEE Transactions on, vol. 5, no. 3, p. 672–681,
2006. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1611097

[18] A. Urruela and J. Riba, “Novel closed-form ML position estimator for hyperbolic location,”
in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004. Pro-
ceedings. (ICASSP ’04), vol. 2, 2004, pp. ii–149–52 vol.2.

[19] E. Leitinger, P. Meissner, C. Ruedisser, G. Dumphart, and K. Witrisal, “Evaluation of
position-related information in multipath components for indoor positioning,” IEEE Jour-
nal on Selected Areas in Communications - 2014 Special Issue on Location-Awareness for
Radios and Networks., 2014, submitted.

[20] P. Meissner, C. Steiner, and K. Witrisal, “UWB positioning with virtual anchors and
floor plan information,” in Positioning Navigation and Communication (WPNC), 2010
7th Workshop on, 2010, p. 150–156. [Online]. Available: http://ieeexplore.ieee.org/xpls/
abs all.jsp?arnumber=5650374

[21] G. Dumphart, “Performance bounds for anchorless cooperative indoor localization exploit-
ing multipath,” Master’s thesis, Graz University of Technology, 2014.

[22] Fundamentals of Quartz Oscillators, Application Note 200-2, Hewlett-Packard Company,
1997.

[23] P. Meissner, D. Arnitz, T. Gigl, and K. Witrisal, “Analysis of an indoor
UWB channel for multipath-aided localization,” in Ultra-Wideband (ICUWB), 2011
IEEE International Conference on, 2011, p. 565–569. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6058910

– 88 – September 15, 2014

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4411690
http://digital-library.theiet.org/content/journals/10.1049/iet-smt.2010.0051
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1611097
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5650374
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5650374
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6058910
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6058910


BIBLIOGRAPHY

[24] J. Karedal, S. Wyne, P. Almers, F. Tufvesson, and A. Molisch, “A measurement-based
statistical model for industrial ultra-wideband channels,” IEEE Transactions on Wireless
Communications, vol. 6, no. 8, pp. 3028–3037, Aug. 2007. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4290044

[25] H. L. V. Trees, Detection, Estimation, and Modulation Theory. John Wiley & Sons, Apr.
2004.

[26] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-
Hall PTR, 1998.

[27] P. Meissner, E. Leitinger, M. Lafer, and K. Witrisal, MeasureMINT UWB database,
Graz University of Technology, 2013. [Online]. Available: www.spsc.tugraz.at/tools/
UWBmeasurements

[28] P. Meissner and K. Witrisal, “Analysis of position-related information in measured
UWB indoor channels,” in Antennas and Propagation (EUCAP), 2012 6th European
Conference on, 2012, p. 6–10. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=6206547
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