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Abstract

Motor planning algorithms are essential for the development of robust autonomous robot

systems. Various approaches exist to compute movement trajectories efficiently by ap-

plying quadratic control costs. However, with quadratic costs hard constraints cannot be

adequately modelled. In this thesis I choose the Monte Carlo (MC) sampling approach to

investigate how dynamic motor planning tasks, considering hard constraints can be solved

efficiently. For efficient sampling, Gibbs sampling, rejection sampling, and importance

sampling are combined. Two different sampling methods are investigated. The first and

simpler method does not consider the dynamic state transition model of a robot. The

second method is more sophisticated and considers a linearised approximation of this dy-

namic model. The experiments range from simple tasks on a 2-link robot arm to tasks

using a more complex 4-link robot arm. To enhance the performance of the investigated

methods, they are extended by a via point approach. Finally, in a novel trajectory mixing

approach complex planning scenarios are solved by mixing multiple trajectories, which are

computed in parallel.

Keywords: motor planning, hard constraints, Monte Carlo sampling, stochastic optimal

control, Gibbs sampling, rejection sampling, importance sampling.
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Kurzfassung

Bewegungsplanungsalgorithmen sind für die Entwicklung von robusten autonomen Ro-

botersystemen essentiell. Es existieren verschiedene Ansätze, um Bewegungstrajektorien

mit quadratischen Kosten effizient zu berechnen. Allerdings können harte Beschränkun-

gen mit quadratischen Kosten nicht adäquat modelliert werden. In dieser Arbeit habe ich

den Monte Carlo (MC) sampling Ansatz ausgewählt, um zu untersuchen wie dynamische

Bewegungsplanungsaufgaben mit harten Beschränkungen effizient gelöst werden können.

Um effizient Stichproben zu ziehen, werden Gibbs sampling, rejection sampling und im-

portance sampling kombiniert. Dazu werden zwei unterschiedliche Stichprobenverfahren

untersucht. Die erste und simplere Methode berücksichtigt das dynamische Zustandsmo-

dell eines Roboters nicht. Die zweite Methode ist komplexer und berücksichtigt eine linea-

risierte Approximation dieses dynamischen Modells. Die Experimente umfassen einfache

Aufgabenstellungen an einem zweigliedrigen Roboterarm und Aufgabenstellungen, wel-

che einen komplexeren viergliedrigen Roboterarm verwenden. Um die Leistungsfähigkeit

der untersuchten Methoden zu steigern, werden diese durch einen via point Ansatz erwei-

tert. Zuletzt werden komplexe Planungsszenarien mit einem neuen Trjaektorienmischungs-

Ansatz mit mehreren parallel berechneten Trajektorien gelöst.
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1. Introduction

Warum beglückt uns die herrliche, das Leben erleichternde, Arbeit er-

sparende Technik so wenig? Die einfache Antwort lautet: weil wir noch

nicht gelernt haben, einen vernünftigen Gebrauch von ihr zu machen. Im

Kriege dient sie dazu, daß wir uns gegenseitig verstümmeln. Im Frieden

hat sie unser Leben hastig und unsicher gestaltet. Statt uns weitgehend

von geisttötender Arbeit zu befreien, hat sie die Menschen zu Sklaven der

Maschine gemacht, die meist mit Unlust ihr eintöniges, langes Tagewerk

vollbringen und stets um ihr armseliges Brot zittern müssen.

Albert Einstein (1879-1955)

During the last decades robots evolved from simple systems with one special purpose

to highly complex systems including numerous sensors, communication devices and the

ability for performing complex movements. The development process is illustrated by

the first industrial robot Unimate described in Engelberger [9] and the actual mars rover

Curiosity, illustrated in Figure 1.1.

To extend the scope of application of complex robot systems, scientists are developing

algorithms to enhance their autonomy. These autonomous robot systems are very useful

for numerous different fields and become even more important in the future. They help

reducing risk of human life by replacing people in dangerous environments and take over

important processing parts in industry due to the fact that these systems need no per-

manent control. The more sophisticated autonomous systems are, the more tasks can be

handed over to them and the higher their advantages will be. Integrating autonomous

systems in human environment also raise challenges. For instance, losing control over

highly complex autonomous systems cause more drastic consequences to the environment

than losing control over non-autonomous systems. For example, the loss of control over a

self-steering car affect the environment more drastically compared to an industrial robot

without control. Hence the responsibility of system engineers is high and their aim is to

1
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(a) (b)

Figure 1.1: The first industrial robot Unimate [12] described in Engelberger [9] is shown
in (a). In (b) the NASA’s mars rover Curiosity on the Mars is depicted, published by
National Aeronautics and Space Administration (NASA) [23].

construct reliable systems. Motor planning tasks are essential for developing sophisticated

autonomous robot systems to act appropriate, even in unknown environments. As a re-

sult, numerous research disciplines are investigating efficient and robust motor planning

algorithms.

known

initial state target

known?
actions

Figure 1.2: In motor planning the initial state and the target are known. The goal of
motor planning is to compute the actions to reach the target.

Motor planning in general means the computation process in order to execute a series of

motions. Motor planning is simple for humans, but it takes years until a series of complex

movements are generated by interconnected brain areas intuitively [6]. Recent experiments

in psychological science, presented in Griffiths et al. [10] suggest that statistical predictions

determined by the human brain are close to Bayesian models. In Buesing et al. [5] and

Pecevski et al. [24] it was shown that networks of spiking neurons can perform probabilistic

inference. The applied sampling approach (neural dynamics sampling) is closely related

to Gibbs sampling, which is used in this thesis. Due to this close relationship it is possible

to use the obtained results from this thesis for neural dynamic sampling on similar tasks.

In motor planning typically the initial and the final state are known and the corre-

sponding actions have to be computed (see Figure 1.2). In general, motor planning tasks

can be solved by different movement trajectories, e.g. reaching a target with a robot
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arm can be performed by different arm constellations. Motor planning algorithms are ap-

plied to determine the optimal movement trajectory solving the task, considering defined

features and goals. This features and goals constrain the task solution. For instance,

avoiding an obstacle on the path to the target or restricting the movement speed of the

robot arm is implemented by features that limit possible solutions. This task constraints

are implemented in general by a cost function to prioritise different features. A graphical

model including multiple features implemented by a cost function is illustrated in Figure

1.3. Here, the costs are denoted by c1, . . . , cK and might be different for individual states

or actions.

known

initial state target

known?

c1

cK

c1

cK

c1

cK

actions
Figure 1.3: The graph shows a general motor planning task considering multiple features
encoded by costs c1:K . In general, features are implemented by a cost function.

1.1 Motivation

State of the art Stochastic Optimal Control (SOC) algorithms, i.e. Iterative Linear

Quardratic Regulator (ILQR) [27] or Approximate Inference Control (AICO) [28] are very

efficient planning methods, assuming quadratic costs. Most real world tasks, however,

include obstacles which can only be modelled by hard constraints and therefore cannot be

solved properly by these methods [20]. The following examples of advanced autonomous

robot systems illustrate the importance of hard constraints in practical tasks appearing in

various fields of application. The requirements of autonomous robot systems dealing with

hard constraints depend on the purpose of the autonomous system.

In various real world scenarios movements are restricted by static constraints. These

static constraints are represented by buildings, walls, or other fixed objects while process-

ing and executing a movement. Therefore, the definition of static constraints depends on

the time horizon of the task. Due to their temporal and spacial invariance, static con-

straints must be recognised only once. Slopping a ball from a cup into a jug described in
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Kroemer et al. [19], illustrates a task including hard constraints by grasping the cup and

the restrictions by the jug, showed in Figure 1.4 (a). The drumming task illustrated in

Figure 1.4 (b) represents a complex task including a combination of rhythmic and discrete

movements considering hard constraints. Drums are the hard constraints that need to be

hit with a certain force. This scenario was used in Degallier et al. [7] to test a modular

architecture for movement generation.

(a) (b)

Figure 1.4: In (a) a grasping task including hard constraints is illustrated. The goal of
the task is to slop a ball from a cup into the jug [19]. The iCub robot performing the
drumming task is shown in (b) [3]. For successful drumming, the robot has to combine
rhythmic and discrete movements using drumsticks.

In contrast, tasks with temporal and spacial changing constraints are more challenging

due to limited processing time and additional sensors necessary for permanent constraint

recognition. The tasks become even more difficult with a increasing task constraint vari-

ability in time. In a table tennis task this fast variability is represented by the position

of the ball. The constraints are recognised in real time by a visual ball tracking system.

The task is illustrated in Figure 1.5, taken from Muelling et al. [22].

Figure 1.5: The series of figures show a robot arm playing table tennis applying a mixture
of movement primitives. To be able to fulfil the requirements a high speed motion robot
arm and a visual ball tracking system are used [22].
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1.2 My Contributions to existing Methods

The goal of the thesis is to investigate sampling methods for motor planning tasks focussing

on hard constraints. Therefore, a combination of Gibbs sampling, importance sampling,

and rejection sampling from Bishop [4] are applied to draw appropriate samples. In the

existing literature only Gibbs sampling is used to model distributions with sample based

methods. Two sampling approaches are investigated in this thesis. First, the model-free

sampling approach (described in Section 4.1) draws samples from a Gaussian distribution

without considering the model of the robot arm. Second, a model-based sampling approach

(discussed in detail in Section 4.2) is applied to draw samples, considering the dynamic

model of the robot arm. Both investigated sampling approaches are discussed in the

context of optimal control methods for movement planning using quadratic cost functions

defined in state and task space [31].

In the evaluated implementation, the necessary parameters for both approaches are

optimised by applying a learning framework similar to the framework presented in Rückert

et al. [25]. The framework applied in this thesis (described in Section 4.4) does not

include parallel model learning and uses a linear feedback controller instead of a nonlinear

feedback controller. To investigate the practical relevance of the applied sampling-based

methods, the performance and trajectories are compared to an implementation of AICO

[28]. Finally, in a novel trajectory mixing approach complex planning scenarios are solved

by mixing multiple trajectories, which are computed in parallel.
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1.3 Notation

The notation used in this thesis follows the one in the book Pattern Recognition and Ma-

chine Learning [4].

x . . . scalar value

x = (x1, x2, . . . , xN ) . . . column vector containing N elements

xi . . . i-th element of vector x

xT . . . transposed vector x equals a row vector

X . . . random variable

X . . . matrix

XT . . . transposed matrix X

X−T . . . inverted and transposed matrix X

xi,j . . . element of matrix X on i-th row and j-th column

diag(X) . . . diagonal elements of matrix X

I . . . unit matrix (all elements are zero except the diagonal

elements with value one)

p(.) . . . probability distribution

1.4 Outline

The following section covers background information about related models and describes

state of the art methods for solving motor planning tasks. Section 3 explains graphical

models, probability theory basics, the applied graphical model for planning, and prob-

abilistic inference methods, followed by a description of the used sampling methods in

general. A detailed discussion about motor planning tasks applying the chosen sampling

methods are given in Section 4. In Section 5 the performed experiments and the obtained

results are explained. The work of the thesis and the results are discussed in Section 6

and are concluded in Section 7.



2. Related Work

In Kappen [17] stochastic control problems are distinguished based on their time horizon

which can be either finite or infinite. This thesis focuses on the special case of control prob-

lems with a finite time horizon and linear controls at every time step applying quadratic

control costs, which can be solved efficiently. The methods applied to solve this class of

control problems are called Stochastic Optimal Control (SOC) methods [18]. One well

studied approach originating from system theory implements motor planning as graphi-

cal model inference problem [31]. Here, the system dynamics are approximated by Linear

Quadratic Gaussian (LQG) systems. LQG systems approximate non-linear stochastic con-

trol problems by linearised models using Gaussians. The advantage of this approach is that

optimal controls can be approximated efficiently by approximate inference algorithms [18].

For inference in graphical models numerous algorithms exist, i.e. Laplace approximation,

variational methods, Expectation Propagation (EP), and Monte Carlo (MC) sampling.

For completeness the mentioned algorithms are summarised briefly.

The basic idea of Laplace approximation is to compute the optimal control trajectory

by solving deterministic equations, approximating the path integral [16]. The path integral

describes the probability of all possible paths from a starting point to a target. The

efficiency and simple usage are the main advantages of the Laplace approximation. The

drawbacks of the Laplace approximation are that a large set of data points is necessary

for good approximation results and that the search behaviour is local [4].

Variational methods transform the existing inference problem into an optimisation

problem [13]. For that, variational methods introduce a family of probability distributions

to approximate a desired probability distribution. This family of probability distributions

should be simple enough to be tractable but must also scale with the complexity of the

problem [13]. The approximation quality is measured by the Kullback-Leibler divergence

[2, 13]. One distribution is chosen out of the family of distributions by minimising the

Kullback-Leibler divergence with respect to the variational parameters. By choosing all

approximation distributions of the family, the best approximation within the family is

obtained. The advantages of variational methods are their fast computation and that

variational methods are not limited to Gaussian distributions [14]. Variational methods

can be also combined with other approximation methods, e.g. sampling methods [2, 14, 13].

However, the obtained variational approximation model is not applicable in general but

7
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only for the specific inference problem, solved by variational approximation [13].

The EP algorithm described in Minka [21] is a special case of variational methods.

EP approximates a desired probability distribution also by a family of approximating

distributions but compute the Kullback-Leibler divergence by applying assumed-density

filtering. In experiments described in Mensik et al. [20], EP demonstrated remarkable

performance compared to MC sampling techniques.

Two sophisticated SOC methods applying probabilistic inference are the Iterative Lin-

ear Quardratic Regulator (ILQR) [27] and Approximate Inference Control (AICO) [28]

algorithms. Both approaches yield promising results, also applying high dimensional tasks

[28]. Therefore, the methods investigated in this thesis are compared to AICO. ILQR is

based on iterative Sequential Quadratic Programming (SQP), optimising the cost function

of the ”global trajectory . . . over the full time interval”, [28]. By contrast, AICO applies

approximate inference to optimise several local messages to optimise a distribution of

trajectories. Due to quadratic costs, the probability hitting an obstacle with the trajec-

tory must be non-zero for these methods [20]. Therefore, a trajectory will probable move

through obstacles instead of passing around. To be able to deal with hard constraints

using AICO, truncated Gaussian EP can be used as described in Toussaint [29]. With

this extension AICO is able to avoid collisions successfully. However, for each obstacle one

truncated Gaussian is needed, which is computational demanding [29].

As an alternative, MC sampling methods are proposed for stochastic control problems

with hard constraints [20]. MC sampling methods approximate a complex probability dis-

tribution by only drawing samples from that distribution. Thus, the shape of the complex

distribution does not need to be known. MC sampling methods and possible applications

are discussed in detail in Doucet and Johansen [8]. The main drawback of these methods

are their computational effort by drawing sufficient samples for an appropriate approxima-

tion. Another issue arises if sampling from the desired distribution is difficult. In Mensik

et al. [20] the applied MC sampling methods suffer from infinite costs resulting from hard

constraints. In this thesis a combination of MC sampling methods is used to circumvent

these problems. A more detailed description of the applied sampling methods is given in

Section 4.

While the discussed approaches in general can be applied to complex motor control

tasks, a common strategy to simplify the control problem is to use Movement Primitives

(MPs) [26]. Dynamic Movement Primitives (DMPs) [26] generate a movement trajectory

with fixed shape, determined by a parameterised dynamical system and followed by a

linear feedback controller [25]. Planning Movement Primitives (PMPs) were introduced in

Rückert et al. [25] which build on AICO. In comparison to DMPs, with PMPs the intrinsic

costs have to be determined for each time step. The shape of the trajectory is updated at

each time step considering the intrinsic costs and applying a time-varying linear feedback

controller. Therefore, the trajectory has no fixed shape as in the DMPs case and hence is

able to react on a changing environment [25]. I also apply this concept of using MPs.



3. Background on Probability Theory and

Inference Methods

In this section probabilistic models for motor planning tasks are discussed. First, graphical

models in general are described. Second, probabilistic inference methods for graphical

models are discussed. The third part is dedicated to the definition of the cost function

used for motor planning. The following information about graphical models and inference

are presented more detailed in Bishop [4].

3.1 Graphical Models and Probability Theory

Graphical models are convenient to represent information in a structured form to sim-

plify necessary computations. In graphical models, random variables are represented by

nodes and the connecting links define the probabilistic relations between the random vari-

ables. Graphical models involve various representations (for instance, Bayesian Networks,

Markov Random Fields, and Factor Graphs) with different characteristics, illustrated in

Figure 3.1. Bayesian Networks are directed graphical models (a), were Markov Ran-

dom Fields are undirected graphical models (b). Factor Graphs introduce factor nodes

in addition to nodes and links (c). Graphical models can be transformed into different

representations, but the transformation must not be unique (for instance, different factor

graphs exist for the same undirected graph in Figure 3.1).

In probability theory a probability distribution of a random variable X which takes the

value xi (i = 1, . . . , N), is defined as p(X = xi). The probability distribution over multiple

random variables, i.e. X,Y that take the values xi and yj (j = 1, . . . ,M) is defined as

p(X = xi, Y = yj) and called joint distribution. The probability over one random variable

X given multiple random variables X,Y is obtained by integrating out all other random

variables, called marginal distribution

p(X = xi) =

∫
y

p(X = xi, Y = yj)dy.

The conditional probability distribution of a random variable X = xi given Y = yj is

defined as

9
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X Y

Z

X Y

Z

X Y

Z

(a) (b) (c)

Figure 3.1: (a) A directed graph with three random variables. (b) The corresponding
undirected graph. (c) One equivalent factor graph with a factor node, represented by the
black square. [4]

p(X = xi|Y = yj) =
p(X=xi,Y=yj)

p(Y=yj)
,

where the distributions are normalised to probability 1, i.e.
∑

X,Y p(X,Y ) = 1. A more

convenient way to specify a probability distribution p(X = x) for a particular value x is

the notation p(x), whereas the probability distribution over random variable X is denoted

as p(X).

If two random variables are independent, the following expressions are implied:

p(X,Y ) = p(X)p(Y ),

p(X|Y ) = p(X).

The following two equations are the fundamental rules of probability theory:

sum rule p(X) =

∫
Y

p(X,Y )

product rule p(X,Y ) = p(Y |X) p(X)

The Bayes Theorem is derived from the product rule in combination with the symmetry

property p(X,Y ) = p(Y,X) and is defined as

p(Y |X) = p(X|Y ) p(Y )
p(X) .

An alternative representation of Bayes Theorem is given by

posterior = likelihood × prior
evidence .

The posterior defines the probability of an event with a likelihood based on the prior



3. Background on Probability Theory and Inference Methods 11

knowledge and the evidence variables. This representation of Bayes Theorem is conve-

nient to understand the process of computing the posterior given the known variables.

Explaining inference, different types of variables must be defined referring to the second

representation of Bayes Theorem.

Ei=1:m . . . observed variables, defining the evidence

Hi=1:n . . . hidden (unobserved) variables

Yi=1:k . . . unobserved variables, the posterior is requested

The Bayes Theorem can be rewritten using the introduced variables as

p(Y1:k|E1:m) = p(E1:m|Y1:k) p(Y1:k)
p(E1:m) ,

and approximated by

p(Y1:k|E1:m) ∝
∑
H1:n

p(E1:m, H1:n|Y1:k) p(Y1:k),

which is called probabilistic (or approximate) inference. Probabilistic inference is discussed

in more detail in Bishop [4].

3.2 Inference in Graphical Models for Motor Planning

Probabilistic inference in combination with graphical models are described in Jordan and

Weiss [15] and are widely applied in state of the art methods. The advantage of this

methods is a possible complexity reduction compared to unstructured representations,

where information is added in form of the structure of the graphical model. Therefore,

stochastic processes for motor planning in general are described briefly. Due to the focus

on Stochastic Optimal Control (SOC) methods, approximate inference implemented by

message passing and approximate inference implemented by Monte Carlo (MC) sampling

methods are discussed in detail afterwards. The stochastic process for motor planning

(illustrated in Figure 3.2) is given as:

p(q1:T ,u1:T , z1:T ) = p(q1)
T−1∏
t=1

p(ut|qt)
T−1∏
t=1

p(qt|qt−1,ut−1)
T−1∏
t=1

p(zt|qt,ut),

The robot states are denoted by the state vector q1:T , whereas controls are defined as

u1:T−1, constraints are denoted by z1:T , and the time horizon is specified by T. The term

p(q1) denotes the initial state distribution and p(ut|qt) defines the prior distribution of

the controls. The state transition model is defined as p(qt|qt−1,ut−1) and the distribution

p(zt|qt,ut) denotes the forward kinematic model. To determine the state vetor q1:T con-
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sidering constraints z1:T , the posterior distribution p(q1:T |u1:T , z1:T ) must be computed.

...

...

...z2

q2q1 q3 qT

u1 u2 u3

z3 zT

Figure 3.2: Graphical model used for motor planning tasks with finite time horizon T.
Robot states are represented by nodes, with grey shaded nodes for known states. Depen-
dencies between states are represented by arrows, connecting the nodes.

3.3 Approximate Inference implemented by Message Pass-

ing

To efficiently compute probabilistic inference in arbitrary graphs, the message passing

algorithm for chain graphs and the sum-product algorithm for tree graphs were invented.

To correctly compute probabilistic inference with these methods, the graph must not

contain loops. The probability p(X) considering the model in Figure 3.3 is computed by

x2 xNxnx1

f1 fn fN-1
Figure 3.3: The factor graph represents a chain of values x1:N of the random variable X
connected by factors f1:N−1

p(X) = 1
Z f1(x1, x2)f2(x2, x3) . . . fN−1(xN−1, xN ).

The unknown normalisation constant Z is only necessary if the factor graph was derived

from an undirected graphical model. The marginal distribution p(xn) is computed by

summing out all other possible values of X:

p(xn) =
∑
x1

. . .
∑
xn−1

∑
xn+1

. . .
∑
xN

p(X).

By rearranging the order of sums the term can be written as the product of two parts.
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The forward message µα(xn) includes the sums over x1:n−1 and the backward message

µβ(xn) includes the sums over xn+1:N (see Figure 3.4).

forward message:

µα(xn) =
∑
xn−1

fn−1(xn−1, xn) . . .
∑
x2

f2(x3, x2)
∑
x1

f1(x2, x1),

=
∑
xn−1

fn−1(xn−1, xn)µα(xn−1),

backward message:

µβ(xn) =
∑
xn+1

fn+1(xn, xn+1) . . .
∑
xN

fN−1(xN−1, xN ),

=
∑
xn+1

fn+1(xn, xn+1)µβ(xn+1).

xn-1 xNxnx1

µα(xn-1) µα(xn) µβ(xn) µβ(xn+1)

xn+1

Figure 3.4: The graphical model depicts the recursive message passing through the chain
for the value xn [4].

Now the sum-product algorithm is applied to compute the messages for the whole

graphical model, dividing the model into subtrees connected to the node x as illustrated

in Figure 3.5. The joint distribution p(x) is computed by the product over all subtrees

connected to the node x and written as

p(x) =
∏

s∈ne(x)

Fs(x,Xs).
x

μfs→x(x)

fsF s
(x
,X
s)

Figure 3.5: The graphical model is divided into var-
ious subtrees connected to the node x [4].

The term ne(x) denotes the set of factor nodes connected to variable node x and Xs de-

notes the set of all variables connected to node x by the factor node fs of the subtree s.

Fs(x,Xs) denotes the product over all factors connected to factor fs of the subtree s. By
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summing out all variables Xs we obtain the marginal distribution

p(x) =
∏

s∈ne(x)

[∑
Xs

Fs(x,Xs)

]
,

=
∏

s∈ne(x)

µfs→x(x).

The term µfs→x(x) denotes the message from the factor node fs to variable node x. The

subtree can be again divided into subtrees until the leaf nodes are reached. The messages

of the leaf nodes are defined as

µf→x(x) = f(x) if the leaf node is a factor node,

µx→f (x) = 1 if the leaf node is a variable node.

The sum-product algorithm evaluates all messages starting from the leaf nodes of the

model to the node x. The algorithm is discussed in more detail in Bishop [4]. Applying

these general methods on the graphical model of motor planning, we obtain the following

equations and the corresponding Figure 3.6.

p(xt) = αt(xt)βt(xt)ρt(xt),

forward message:

αt(xt) =
∑
xt−1

p(xt|xt−1)ρt−1(xt−1)αt−1(xt−1),

backward message:

βt(xt) =
∑
xt+1

p(xt+1|xt)ρt+1(xt+1)βt+1(xt+1),

actual message:

ρt(xt) = p(yt|xt).

The conditional probability p(yt|xt) denotes the probability of the forward kinematic model

and p(xt|xt+1) denotes the state transition probability from state xt to state xt+1. By using

Gaussian distributions specified by Equation B.1 in the Appendix and applying a linear

state space model with following equations
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initial state distribution p(x0) = N (x0|a0,Q0),

state transition model p(xt+1|xt) = N (xt+1|Atxt + at,Qt),

observation model p(yt|xt) = N (yt|Dtxt + dt,Ct),

we obtain the following (canonical Gaussian) messages:

αt(xt) = N [xt|st,St],

with St = (Qt−1 + At−1(Rt−1 + St−1)
−1AT

t−1)
−1,

and st = St(at−1 + At−1(Rt−1 + St−1)
−1(st−1 + rt−1)),

βt(xt) = N [xt|vt,Vt],

with Vt = (A−1t (Qt + (Rt+1 + Vt+1)
−1)A−Tt )−1,

and vt = VtA
−1
t ((Rt+1 + Vt+1)

−1(rt+1 + vt+1)− at),

ρt(xt) = N [xt|rt,Rt],

with Rt = DT
t C−1t Dt,

and rt = DT
t C−1t (yt − dt).

The state noise model is denoted by Q and Ct denotes the model precision matrix. The

marginal probability distribution p(xt) is computed by the product of the three messages:

p(xt) = N [xt|st,St]N [xt|rt,Rt]N [xt|vt,Vt]

= N (xt|bt,Bt)

with Bt = (St + Rt + Vt)
−1

and bt = Bt(st + rt + vt)

This message passing approach with Gaussians is implemented by the AICO algorithm in

Toussaint [28].
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xt-1 xt+1xt

ρ(xt)

α(xt) β(xt)Fpast(x0:t) Ffuture(xt:T)

yt-1 yt yt+1

xt-1

Figure 3.6: The example illustrates message passing by the sum-product algorithm for
node xt. The forward message α(xt) includes all messages from nodes x1:t−1 of the subtree
Fpast(x0:t), whereas the backward message β(xt) includes the messages from nodes xt+1:T

of the subtree Ffuture(xt:T ). The message ρ(xt) considers the defined constraints yt of
node xt.

3.4 Approximate Inference implemented by Monte Carlo

Sampling

In comparison to other SOC methods, sampling methods do not approximate the optimal

trajectory by Gaussian kernels but by sampling from Gaussian distributed samples. The

following section discusses the applied sampling methods to solve motor planning tasks.

3.4.1 Gibbs Sampling

Markov Chain Monte Carlo (MCMC) sampling methods are an alternative method to

solve integration and optimisation problems [1]. The idea behind Monte Carlo (MC)

sampling, is to approximate a target distribution p(x) by drawing independent and iden-

tically distributed (i.i.d) samples from p(x). In most cases, sampling from the target

distribution p(x) is not feasible. Hence, samples must be drawn from a proposal distri-

bution q(x) and be evaluated by a normalising constant. To be able to apply MCMC

sampling methods, the used graphical model must be a Markov chain with finite state

space xt = (x1,x2, . . . ,xT ). A stochastic process is a Markov chain if the Markov prop-

erty is fulfilled: p(xt|xt−1, . . . ,x1) = p(xt|xt−1) [1]. Figure 3.2 shows that the stochastic

process is a Markov chain, where state xt depends only on the state xt−1 and controls

ut−1. MCMC sampling is implemented in this thesis by Gibbs sampling, which is a spe-

cial case of the popular Metropolis-Hastings algorithm. Gibbs sampling is used to update

each value of the stochastic process p(x) = (x1, . . . ,xT ) with the Markov property. In

each update step the value xt is updated by a value drawn from the distribution p(xt|x\t).
With xt as t-th value of x and p(xt|x\t) = p(x1, . . . ,xt−1,xt+1, . . . ,xT ). The T update

steps can be performed in a defined order or in random sequence. Due to the focus on

hard constraints in this thesis, samples violating the constraints are rejected by rejection
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sampling before assigning probabilities. As a result, problems with zero probabilities are

avoided, in contrast to MC sampling implemented in Mensik et al. [20]. Subsequently, to

obtain optimal update states, the drawn and valid samples are weighted by importance

sampling.

3.4.2 Rejection Sampling

Rejection sampling is applied, if a direct model by sampling from a desired distribution

p(z) is difficult to generate. Assume that p(z) can be evaluated for any value z up to an

unknown normalising constant Zp by

p(z) = 1
Zp
p̃(z).

Figure 3.7: The figure taken from Bishop [4] illustrates the idea
of rejection sampling. The samples drawn from the grey shaded
area, bounded by the approximated desired distribution p̃(z)
and the proposal distribution q(z) are rejected. Only samples
fulfilling the condition u0 ≤ p̃(z0) are accepted.

To approximate the complex distribution p(z), a second distribution (proposal distribu-

tion) q(z) is introduced. Sampling from the proposal distribution is simple and kq(z) ≥
p(z), with the constant k. The constant k should be as small as possible under the per-

mission that kq(z) must be always larger than p̃(z). As first step, z0 is drawn from the

proposal distribution q(z) and u0 is drawn from the uniform distribution [0, kq(z0)]. The

values z0 and u0 are uniformly distributed under the distribution kq(z). The second step

includes the rejection of u0 if u0 > p̃(z0). Not rejected pairs of z0 and u0 approximate the

distribution p̃(z) proportional to the desired distribution p(z). The probability of accep-

tance of a drawn sample is defined as

paccept = 1
k

∫
p̃(z).
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3.4.3 Importance Sampling

The idea behind importance sampling, is to sample from a distribution p(z) with respect

to maximising the expectation of a function f(z). That means, samples should be drawn

from the region with maximal values of the product of p(z) and f(z). The expectation

can be evaluated by the sum of the product over L samples drawn from q(z).

E[f ] =

∫
f(z)p(z) dz,

=

∫
f(z)p(z)q(z)q(z) dz,

' 1
L

L∑
l=1

p(z(l))

q(z(l))
f(z(l)),

' 1
L

L∑
l=1

rlf(z(l)).
Figure 3.8: Importance sampling maximises
the expectation of function f(z) with respect
to distribution p(z). Because sampling from
p(z) is difficult, the samples are drawn from a
simple proposal distribution q(z). This figure
is taken from Bishop [4].

The variable rl denotes the importance weights and defines the weight of each drawn

sample. If samples cannot be drawn from the distribution p(z) directly, p(z) must be

approximated by p̃(z) of the form

p(z) = 1
Zp
p̃(z).

The distribution q̃(z) follows the same argumentation, with the normalisation constant

Zq. In this case the expectation is represented by

E[f ] =
Zq

Zp

∫
f(z) p̃(z)q̃(z)q(z) dz,

' Zq

Zp

1
L

L∑
l=1

r̃lf(z(l)),

'
L∑
l=1

wlf(z(l)), with wl = r̃l∑
m
r̃m

.

3.5 Cost Functions for Motor Planning

In Section 3.2 the stochastic process and the corresponding model for motor planning

were described. Further, both probabilistic inference methods focussed in this thesis, were
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discussed in detail. In this section, the cost functions applied in AICO and both sampling

methods are described. Referring to the implementation of AICO from Toussaint [28], the

term p(zt|qt,ut) from Section 3.2 is used to introduce the cost function as

p(zt = 1|qt,ut) = exp(−ct(qt,ut)).

The term ct(qt,ut) denotes the intrinsic cost function at time step t. The sum over all T

time steps act as performance criteria of the computed trajectory τ

L(τ) =

T∑
t=1

ct(qt,ut).
(3.1)

Equations (11) - (13) in Toussaint [28] explain the relation of costs minimisation and

finding the optimal trajectory τ∗. A trajectory τ in state space, represents a sequence

of state-control pairs 〈q1:T ; u1:T 〉 to reach the defined target over time horizon T. The

state vector qt is represented by pairs of angles q and velocities q̇ for all M joints qt =

[q1,t, q̇1,t, . . . , qM,t, q̇M,t]
T .

The implementation of AICO from Toussaint [28] defines a quadratic cost function

ct(qt,ut) in state space by the term

ct(qt,ut) = (qt − qtarget)
TRt(qt − qtarget),

= (qTt Rt − qTtargetRt) (qt − qtarget),

= qTt Rtqt − qTt Rtqtarget − qTtargetRtqt + qTtargetRtqtarget),

due to identical form of qt and qtarget, the term qTt Rtqtarget is equal to qTtargetRtqt,

ct(qt,ut) = qTt Rtqt − 2(qTtargetRtqt) + qTtargetRtqtarget︸ ︷︷ ︸
constant

,

with rt = qTtargetRt,

≈ qTt Rtqt − 2rTt qt,

including the controls, the following approximation is obtained

ct(qt,ut) ≈ qTt Rtqt − 2rTt qt + uTt Htut.

The matrices Rt and Ht denote the precision for state space vector qt and controls ut.

For the evaluated MC sampling methods, the identical quadratic cost function as used
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in AICO is applied

ct(qt) = (qt − qtarget)
TR(qt − qtarget),

neglecting the control dependent part. Therefore, the cost function ct(qt) in state space

of the model-based approach is defined by the term

ct(qt) =


(qt − qt−1)

TR(qt − qt−1) + (qt − qtarget)
TRT (qt − qtarget) if t = T ,

(qt − qt−1)
TR(qt − qt−1) + (qt − qt+1)

TR(qt − qt+1) else.
(3.2)

The precision matrices R and RT are invariant of time step t in contrast to precision

matrices applied in AICO. Matrix R denotes the transition probability between two

subsequent states qt and qt+1. Precision matrix RT denotes the transition probability

between an arbitrary state qt and the target qtarget. Hence, the costs ct(qt) represent the

costs for transition from state qt−1 to qt and from state qt to qt+1. Transition matrix RT

is introduced to be able to sample in a wider range during the time sequence while ensuring

a high precision at the target. Introducing RT results in higher sampling flexibility and

increased robustness against local minima and obstacles.

The corresponding cost function in task space with kinematic model xt = Φ(qt) is

computed by the Euclidean distance between the state xt and target xtarget

(xt − xtarget)
TCT (xt − xtarget).

The task space vectors xt and xT are defined by x/y-coordinate pairs, specifying the

endeffector positions of the joints and the endeffector position of the target. CT denotes

the corresponding precision matrix in task space.

ct(xt) =


(qt − qt−1)

TR(qt − qt−1) + (xt − xtarget)
TCT (xt − xtarget) if t = T ,

(qt − qt−1)
TR(qt − qt−1) + (qt − qt+1)

TR(qt − qt+1) else.
(3.3)

The model-free approach applies the same cost function as the model-based approach,

only replacing the precision matrices R and RT by Rtrans and Rjoint.



4. Motor Planning with Sampling Meth-

ods

4.1 Model-free Sampling Approach

The considered joint probability distribution of the model-free sampling approach

p(zt,qt,qt−1) = p(zt|qt)p(qt|qt−1)p(qt−1),

is equivalent to the joint distribution of the kinematic motor planning, denoted by Equa-

tion (1) in Toussaint and Goerick [31] and corresponds to Figure 3.2. The distribution

p(qt−1) denotes the probability distribution of state qt−1. The state transition probabil-

ity p(qt|qt−1) denotes the multivariate Gaussian distribution from which the samples are

drawn, specified by the covariance matrix W

p(qt|qt−1,W) = N (qt|qt−1,W)

The forward kinematic model p(zt|qt) is identical to Equation (3) in Toussaint and Goer-

ick [31]

p(zt|qt) = N (zt|Φ(qt),R
−1).

Matrix R−1 is representative for precision matrices R−1trans or R−1joint, depending on time

step t. The function Φ(qt) denotes the two dimensional transformation function between

the endeffector representation of task space and state space of a robot arm with M links

Φ(qt) =


l1 cos(φ1) l1 cos(φ1) + l2 cos(φ1 + φ2) . . .

M∑
i=1

li cos

(
i∑

j=1
φj

)

l1 sin(φ1) l1 sin(φ1) + l2 sin(φ1 + φ2) . . .
M∑
i=1

li sin

(
i∑

j=1
φj

)


The link lengths of the robot arm are denoted by l1:M and the corresponding angles of the

links are denoted by φ1:M . The first row of Φ represents the x-coordinates of all M links,

21
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whereas the y-coordinates are represented by the second row. For illustration assume a

three link robot arm. The intermediate endeffector of the first arm link is represented

by the x/y-coordinates of the first column of Φ. The coordinates of the intermediate

endeffector of the first two joints are represented by the second column of Φ. And the

endeffector coordinates of the entire arm is represented by the third column. Instead of

computing the Jacobian as in the kinematic case in Toussaint and Goerick [31], rejection

sampling is applied to enforce task constraints.

To infer state qt the posterior distribution p(qt|zt,qt−1) is computed. The posterior

distribution is computed by applying importance sampling on the remaining samples. The

posterior is determined by the Maximum A Posteriori (MAP) solution, choosing the sample

with lowest costs ct(qt). The posterior must be computed for time steps t = 2, . . . , T to

generate the trajectory τ . To improve the quality of trajectory τ , numerous rollouts are

performed, each rollout starting with the previous trajectory as initial state vector. The

number of rollouts performed by the algorithm depends on the task complexity and on

computational resources.

4.2 Model-based Sampling Approach

In the model-based sampling approach a joint probability distribution similar to the model-

free approach is applied

p(zt,qt,qt−1,qt+1) = p(zt|qt)p(qt|qt−1,qt+1)p(qt+1)p(qt−1).

The probability distribution of state qt−1 and the forward kinematic model p(zt|qt) are

identical to the model-free approach. In addition, the probability distribution of qt+1

is considered. In comparison to the model-free approach, a linearised approximation of

the non-LQG model by adapting the state transition probability p(qt|qt−1,qt+1) is in-

cluded, according to the linearised model. The linearisation is implemented by Taylor

series expansion, where the applied linear model is defined as Atqt + Btut.

The following mathematical explanation describes how the sampling distribution is

computed, considering a linear model. The samples are drawn each time step from the

probability distribution

p(qt|qt−1,qt+1) = N (qt|qt−1) N (qt|qt+1),

which is the product of two Gaussians representing the state transitions from state qt−1

to qt and qt to qt+1. The state at time step t = 1 is fixed as initial state q1 and therefore

sampling is not applied.
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N (qt|qt−1) =

∫
ut−1

N (qt|At−1qt−1 + at−1 + Bt−1ut−1,Q) p(ut−1) dut−1,

=

∫
ut−1

N (qt|At−1qt−1 + at−1 + Bt−1ut−1,Q) N [ut−1|ht−1,H] dut−1.

N (qt+1|qt) =

∫
ut

N (qt+1|Atqt + at + Btut,Q) p(ut) dut,

=

∫
ut

N (qt+1|Atqt + at + Btut,Q) N [ut|ht,H] dut.

Q . . . constant state noise

H . . . constant control weight matrix

ht . . . linear control cost term

The mathematical terms are now transformed to normal form by using Equation B.4 and

integrated according to the propagation rule defined in Equation B.7.

N (qt|qt−1) =

∫
ut−1

N (qt|At−1qt−1 + at−1 + Bt−1ut−1,Q)

N (ut−1|H−1ht−1,H−1) dut−1,

= N (qt|At−1qt−1 + at−1 + Bt−1H
−1ht−1,Q + Bt−1H

−1BT
t−1),

= N (qt|At−1qt−1 + at−1 + Bt−1H
−1ht−1,Q

∗
t−1),

with Q∗t−1 = Q + Bt−1H
−1BT

t−1.

N (qt+1|qt) =

∫
ut

N (qt+1|Atqt + at + Btut,Q) N (ut|H−1ht,H−1) dut,

= N (qt+1|Atqt + at + BtH
−1ht,Q + BtH

−1BT
t ),

= N (qt+1|Atqt + at + BtH
−1ht,Q

∗
t ),

with Q∗t = Q + BtH
−1BT

t ,

which can be written as (due to the symmetry property of Gaussian distributions)

N (qt+1|qt) = N (Atqt + at + BtH
−1ht|qt+1,Q

∗
t ).
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After linear transformation using the Equation B.6 we obtain

N (qt+1|qt) = 1
|At|N (qt|A−1t (qt+1 − at −BtH

−1ht),A
−1
t Q∗tA

−T
t ),

∝ N (qt|A−1t (qt+1 − at −BtH
−1ht),A

−1
t Q∗tA

−T
t ).

To be able to multiply both distributions according to Equation B.5, the distributions are

transformed into canonical form using Equation B.4

N (qt|qt−1) = N (qt|At−1qt−1 + at−1 + Bt−1H
−1ht−1,Q

∗
t−1),

= N [qt|Q∗t−1(At−1qt−1 + at−1 + Bt−1H
−1ht−1),Q

∗−1
t−1 ],

N (qt+1|qt) = N (qt|A−1t (qt+1 − at −BtH
−1ht,A

−1
t Q∗tA

−T
t ),

= N [qt|Q̃−1t (A−1t (qt+1 − at −BtH
−1ht)), Q̃

−1
t ],

with Q̃t = A−1t Q∗tA
−T
t .

Using Equation B.3 the resulting distribution is transformed back to normal form

N [x|a,A] N [x|b,B] = N [qt|Q∗−1t−1 m,Q∗−1t−1 ] N [qt|Q̃−1t n, Q̃−1t ],

∝ N [qt|Q∗−1t−1 m + Q̃−1t n,Q∗−1t−1 + Q̃−1t ],

with m = At−1qt−1 + at−1 + Bt−1H
−1ht−1,

and n = A−1t (qt+1 − at −BtH
−1ht).

Finally, the state transition distribution is represented by the following Gaussian

p(qt|qt−1,qt+1) = N (qt|(Q∗−1t−1 + Q̃−1t )−1(Q∗−1t−1 m + Q̃−1t n), (Q∗−1t−1 + Q̃−1t )−1).

Task constraints in the forward kinematic model are enforced by rejection sampling. The

posterior distribution p(qt|zt,qt−1,qt+1) to infer qt, is computed by the MAP solution

as importance sampling method. The posterior distribution is, identical to the model-

free approach also computed for each time step except the initial one and improved by

performing several rollouts.
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4.3 Extended Methods combined with Gibbs Sampling

In this section, extensions of the presented sampling based algorithms for solving chal-

lenging motor planning problems in robotics, i.e. a via point approach and a trajectory

mixing method are discussed.

4.3.1 Via Point Approach

...

g2

...

...g1 g1 g2

q2q1 qt+1 qT

u1 u2 ut+1...

...

... g1

qt

ut

Figure 4.1: The graphical model with state vector qt=1:T and controls ut=1:T−1 is divided
into two sub-tasks, defining two sub-goals g1 and g2. The state transitions are represented
by arrows connecting the states which are represented by nodes. Grey shaded nodes
represent known and also fixed states.

The via point approach applied on graphical models is introduced in Rückert et al.

[25]. The via point approach intent to divide a complex task into simpler sub-tasks by

introducing sub-goals as illustrated in Figure 4.1. The computation of the sub-trajectories

should be simple and therefore the computation of the overall trajectory is simplified.

Number and positions of the sub-goals are important for maximal gain in performance.

Therefore, the number of sub-goal and their positions should be learned to ensure optimal

via points. The tradeoff between performance gain and additional computational effort,

necessary to learn the sub-goal positions, is an additional challenge. For simplicity, the

number and positions of via points are set manually in this thesis and stated as prior

knowledge. To extend the applied via point approach, additional features e.g. maximum

costs, or maximum simulation time for reaching a goal can be defined.

4.3.2 Trajectory Mixing Approach

The proposed trajectory mixing approach combines two trajectories computed in parallel

to generate an optimal trajectory. The first trajectory is starting at the initial position

and evolves towards the target position. The second trajectory is starting at the target

position and evolves towards the initial position. These two trajectories are combined.

Therefore, one additional joint angle constellation, the target position, must be known to

initialise the second trajectory. This approach is illustrated in Figure 4.2. After each round

the minimum Euclidean distance between both trajectories at each time step is used to
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find an optimal mixing point. If the minimum Euclidean distance d is below a threshold

δ, i.e. d ≤ δ, both trajectories are merged. Merging two trajectories is applied only

once during a rollout to reduce computational effort. The threshold depends on the task

complexity and is defined as the length of two links δ = 2l of the robot arm. The time steps

indicating the minimum endeffector distance between both trajectories are denoted by t1

for the first trajectory and by t2 for the second trajectory. When mixing both trajectories

only the states at t = 1, . . . , t1 of the first trajectory and the states at t = 1, . . . , t2 of

the second trajectory (with t2 = 1 at the target location), are combined. The resulting

trajectory contains t1 states of the first trajectory and t2 states of the second trajectory.

For simplicity the resulting trajectory replaces the first trajectory after the mixing process.

The following example explains the mixing process.

t2

t1

d

t2 =1

t1=1

Figure 4.2: The example illustrates the trajectory mixing approach with one obstacle. The
start position and the target position are indicated by red crosses and the grey shaded
area defines the obstacle. The minimal Euclidean distance d between both trajectories
is reached at time step t1 and t2 and must be smaller as a threshold δ for mixing the
trajectories. The resulting trajectory is the combination of the orange shaded regions
enclosing the two trajectory parts.

Let us imagine two trajectories with each 40 time steps and an optimal mixing point at

t1 = 33 for the first trajectory and t2 = 25 for the second trajectory. Let us suppose that

the minimum Euclidean distance between the endeffector positions at this time steps is

smaller than the threshold δ. Then the resulting trajectory contains the first 33 states

of the first trajectory and the first 25 states in reverse order of the second trajectory.

Thus, illustrated in the example the resulting trajectory must not have the same length

as the two original trajectories. To achieve the equal length of the resulting trajectory, a

shorter trajectory is expanded with additional states at t1 of the first trajectory. A longer

resulting trajectory is resampled to reduce its length.
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4.4 Motor Planning Framework with Parameter Optimisa-

tion

The results obtained by the sampling methods, depend heavily on the task environment

and the parameterisation of the implemented Gaussians, i.e. the precision matrices. There-

fore the parameters must be adapted for each task separately. Adjusting the parameter-

isation manually is demanding and in most cases does not lead to optimal results. In

order to optimise the parameterisation for a given task the parameters are learned. In

this thesis the parameter optimisation is implemented by the policy search algorithm Co-

variance Matrix Adaption - Evolution Strategy (CMA-ES) described in Hansen et al. [11].

CMA-ES is chosen due to performance advantages compared to other policy search meth-

ods and its simple implementation [25]. A motor planning framework including parameter

optimisation is illustrated in Figure 4.3.

Policy Search
CMA-ES

Trajectory Optimisation

Intrinsic Cost Function  L(τ;θ)

Simulator
Physical Model

Feedback 
Controller+

...

...

...z2

q2q1 q3 qT

u1 u2 u3

z3 zT

parameter 
vector    ...θ controls ... ut

reward function C(τ)

Figure 4.3: The described learning framework with parameter optimisation consists of
three parts, the policy search, the trajectory optimisation, and the simulation on the
physical model. The policy search algorithm CMA-ES returns the optimised parameter
vector θ to the motor planning model. The motor planning model optimises the parame-
terised trajectories regarding their intrinsic costs L(τ ;θ). The controls ut are obtained by
applying the trajectory τ on the feedback controller. Subsequently the simulator applies
the obtained result on the physical model and influence the policy search behaviour by a
reward function C(τ).
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In the motor planning framework similar to the framework described in Rückert et al.

[25], the parameter vector θ obtained by the policy search method is applied on the motor

planning model to generate a trajectory τ , minimising the parameterised intrinsic cost

function L(τ ;θ). After computing the trajectory for several rollouts, the obtained data is

applied on the linear feedback controller. The obtained controls ut from linear feedback

controller are simulated on the physical model of a robot arm. The simulator includes a

reward function, acting as performance criteria of the executed movements. The policy

search method adapts its policy search behaviour for generating a new parameter vector

θ according to the extrinsic cost function C(τ).

C(τ) =
T∑
t=1

dt((xt − xtarget)
TCsim(xt − xtarget) + uTt Hsimut).

(4.1)

The extrinsic cost function is computed similar to the cost function ct(qt,ut) but includes

also the controls ut and is weighted with discretisation step dt. The difference between

the states xt and xtarget in task space is computed by the Euclidean distance. Both diag-

onal matrices Csim and Hsim of size M x M (M . . . number of joint angles) are constant

with identical values for both physical models (2-link and 4-link robot arm). The diag-

onal elements of Csim are specified by (1e4 1e2 1e4 1e2) and diag(Hsim) is specified by

(1e−1 1e−1 1e−1 1e−1), for the 2-link model.

Now the motor planning framework for parameter optimisation, applied to obtain the

task specific optimal parameter vector θ∗, is discussed in detail. The parameter vectors

for model-based θTmb and model-free θTmf sampling are defined as

θTmb =


gain

wq

wu

wT

, and θTmf =


gain

diag(W)

diag(Rtrans)

diag(Rjoint)

.

The row vector gain denotes the gain values included in the computation of controls of the

linear feedback controller. The values indicate for each joint angle and velocity separately,

how fast the feedback controller change controls on differences between states qt and qt+1.

The logarithmic scaled vectors wq, wT , and wu specify the diagonal elements of matrices

R, RT /CT , and H, introduced in Section 3.5. The dimension of vector wT is different

for the intrinsic costs in state space or task space. In state space, the vector wstate
T has

a size of 1 x 2M, representing the target weights for each joint angle and corresponding

velocity. Due to the endeffector representation of the target in task space, the vector

wtask
T has only a size of 1 x 2, representing the target weights of the x/y-coordinate pairs.

In case of model-free sampling the learning parameters are also specified by gain and
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the diagonal elements of matrices W, Rtrans, and Rjoint described in Section 4.1. For

learning the via points instead of setting them manually, the parameters of via points can

be included in the parameter vector θ. The parameters θ are evolved by CMA-ES over

300 generations with learnrate 0.1. For each generation a number of offspring’s depending

logarithmically on the number of parameters is executed. The search space of the CMA-ES

is limited between 0.9 θ ≤ θ ≤ 1.1 θ. The boundaries are set manually, depending on the

quality of the initial parameters. For the first parameter learning attempt in an unknown

environment a larger search space is advantageous to avoid local optimal results. With

more knowledge about the environment the search space boundaries can be tightened

up. After obtaining parameter vector θ and controls u, the outputs are executed in the

simulator. As simulator, a physical model of a 2-link or 4-link robot arm is used. For

simplicity both physical models consider neither gravity nor friction and the link lengths

and masses are set to 1. However, inertias are modelled, which renders the dynamic task

challenging. For realistic conditions, additive Gaussian noise with standard deviation 0.1

is added to the controls by the feedback controller.

Learning Framework
with

Parameter Optimisation

Trajectory Optimisation

Intrinsic Cost Function  L(τ;θ)
Feedback 
Controller+
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...

...z2
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Figure 4.4: The results presented in the experiments are obtained by applying the optimal
parameters θ from the learning framework on the motor planning model, using a linear
feedback controller.

After the policy search step, the obtained parameters θ are used for motor planning

simulation according to Figure 4.4. Specific parameters (e.g. simulation time steps, num-

ber of samples) must be adjusted manually, depending on the task. Finding appropriate

parameter values manually, is not simple and therefore optimal values cannot be guaran-

teed.
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In the following experiments the advantages and drawbacks of sampling based methods

are addressed and compared to Approximate Inference Control (AICO) [28, 25]. For this

purpose, the computed trajectory τ , the intrinsic costs L(τ) of the trajectory (defined

in Equation 3.2 and 3.3), the convergence behaviour of L(τ), and the extrinsic costs

C(τ) (defined in Equation 4.1) are chosen as performance metrics. The experiments are

performed on dynamic models, a 2-link arm representing a low dimensional task and a 4-

link arm representing a higher dimensional task. In both scenarios the experiments include

obstacles to increase the task complexity. To emphasise hard constraints, the placed

obstacles are rectangular. Furthermore, model-based sampling extended by a via point

and a multiple trajectory approach is evaluated. To be able to make general predictions,

for every experiment the results of the applied methods are averaged over 10 runs.

5.1 Parameter Settings

As mentioned in Section 4.4, the parameter vector θ depends on the task specifications.

The values for task specific parameters are listed for each task and method separately.

Global parameters, i.e. simulation time or discretisation steps are defined for a class of

tasks (e.g. experiments applying the 2-link arm model). Model parameters, for instance

the parameterisation of the Covariance Matrix Adaption - Evolution Strategy (CMA-ES)

algorithm do not change in all experiments. The parameterisation of CMA-ES, the level of

Gaussian noise added to the controls of the feedback controller, and the state noise model

Q, are defined as model parameters. The state noise model Q expresses the reliability

about the observed state. In the model-free approach, the state noise model Q is included

in the covariance matrix W. For model-based sampling and Approximate Inference Con-

trol (AICO) the 2-link state noise models are specified by

Qmb =


10−2 0 0 0

0 10−3 0 0

0 0 10−2 0

0 0 0 10−3

, and QAICO =


10−12 0 0 0

0 10−11 0 0

0 0 10−12 0

0 0 0 10−11

.

For the 4-link experiments the state noise model Q is a 8 x 8 diagonal matrix with identical

30
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values as used in the 2-link arm reaching experiments.

5.2 Two Link Arm Experiments

A simple 2-link arm model is used to demonstrate the behaviour of model-free sampling,

model-based sampling and Approximate Inference Control (AICO). All 2-link arm experi-

ments are performed in state space, hence the target vector qtarget is represented by angles

and velocities. The state vector q1:T is initialised with values of the starting position q1

by default. The following model parameters are set manually and remain unchanged for

all experiments performed on the 2-link model.

parameter value

Ts 2
dt 5e−2

simdt 5e−3

Table 5.1: Simulation Parameters for the 2-link model experiments.

The simulation time Ts in seconds denotes the time horizon of the arm movement and the

discretisation of time steps is given by dt in seconds. The number of time steps n results

from n = rounding(Ts/dt). The function rounding denotes the round function to the

nearest integer. The variable simdt specifies the discretisation steps in seconds, applied

on the physical model of the 2-link arm.

parameter value

iterations 80
wT [5e2 5e2]T

wo 1e5

wu [1 1]T

Table 5.2: Parameters of AICO for the 2-link experiments.

The parameters for the AICO algorithm are invariant for all 2-link experiments. The

number of iterations performed by AICO are specified by the variable iterations. Vector

wT specifies the importance of reaching the target, whereas the scalar wo weights obstacle

boundary violations. Vector wu denotes the diagonal elements of control precision matrix

H introduced in Section 3.5.

5.2.1 Task with a single Obstacle

In the first task, the arm is initialised with q1 (with angles represented in radiant and

zero velocities) and controls u1. The target position qtarget for the endeffector is marked

with a red cross and lies beside a rectangular obstacle in Figure 5.1. For this task the arm
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must pass the edge of the obstacle in order to reach the target position. The task focus

on the ability of bypassing the edge without moving through the obstacle.

q1 =


117 π

180

0

−140 π
180

0

, u1 =

[
0

0

]
, and qtarget =


60 π

180

0

−49 π
180

0



parameter model-free model-based

rounds 80 80
samples 500 500
gain [0.100 10.000 24.570 0.100]T [49.986 1.046 49.452 6.316]T

wq [3.441 1.750 3.606 1.661]T

wu [−0.008 − 0.008]T

wstate
T [5.105 5.375 4.950 5.300]T

diag(R−1joint) [1e3 1e3 1e3 25]

diag(R−1trans) [25 0.230 23.256 0.241]
diag(W) [0.239 0.028 0.312 0.001]

Table 5.3: Task specific parameters of the sampling methods for the task setting with one
obstacle.

Table 5.3 contains the parameter values of the model-free and model-based approach,

applied on the simple 2-link task. The number of rollouts and drawn samples are denoted

by rounds and samples and set manually. The parameters for model-based sampling and

model-free sampling, described in Section 4.4 are learned applying the framework from

Section 4.4.

Figure 5.1 compares the trajectories of the different methods. AICO and the model-

based approach compute both smooth trajectories reaching the target position. The tra-

jectory computed by the model-free approach jitters and is not able to reach the target

precisely. Zooming into Figure 5.1 reveals the inability of AICO avoiding movements

through the obstacle, shown in Figure 5.1 in the right panel. The intrinsic costs obtained

by the different methods are illustrated in Figure 5.2. The intrinsic costs are averaged

over 10 independent trials, applying the cost function specified in Equation 3.1 with the

standard deviation represented by error bars. For a better comparison of the convergence

behaviour, the intrinsic costs obtained by the model-based sampling approach are scaled

by multiplying with a factor of 1e−3. Due to different precision matrices and weights

applied on the different methods, the intrinsic costs between the different methods can-

not be compared directly. Therefore, the intrinsic costs can only be used to compare the

performance of one method for different tasks. Nevertheless, the convergence behaviour

of the intrinsic costs for different methods can be used to compare their performances.

AICO converges in less than 10 iterations with low standard deviation. Model-free
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Figure 5.1: The different trajectories computed for the task with one obstacle are com-
pared, focussing on the enlarged edge of the obstacle. The initial arm constellation is
shown by the blue two link arm and the target position is marked by a red cross. The
trajectories of model-free sampling (green line), model-based sampling (blue line), and
AICO (red line) are compared. The optimal trajectory is a smooth trajectory without
violating the obstacle (grey shaded) boundaries.

sampling converges also in less than 20 rounds but shows a high standard deviation at

the beginning and also relatively large standard values over the whole iterative process.

Large values of the standard deviation are due to representing different trajectories simul-

taneously, where the method is not able to converge to a single solution. In contrast, the

model-based approach needs more rounds to converge. The values of standard deviation

are small compared to model-free sampling.
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Figure 5.2: The convergence behaviours of the intrinsic costs L(τ) for the task with
one obstacle are compared applying the different methods. Note that the intrinsic cost
definitions are different for all methods. Therefore, the convergence behaviour is chosen to
compare the performance of the different methods. For a better comparison the intrinsic
costs for model-based sampling are scaled with factor 1e−3.

In Figure 5.3 (a) both joint angles are shown over time. To obtain a trajectory with

minimum costs both angles should evolve smoothly over time. AICO and model-based
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sampling are able to compute smooth angle trajectories, whereas the model-free sampling

approach is not. The progress of joint angles, velocities, and controls over the time horizon

T determines the movement of the physical 2-link model returned by the simulator. The

extrinsic costs computed by the reward function C(τ) specified in Equation 4.1, are pre-

sented in Figure 5.3 (b). As expected, the extrinsic costs C(τ) and the standard deviation

of model-free sampling are high compared to model-based sampling and AICO.
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Figure 5.3: In (a) the joint angles are illustrated over the simulation process in radiant.
Smooth trajectories result in lower extrinsic costs C(τ) obtained by the simulator applying
the results from the feedback controller on the physical model, shown in (b).

5.2.2 Task with two Obstacles

To increase the task complexity a second obstacle is introduced. The target is placed

between both obstacles to generate a narrow passage. This task focuses on the ability to

pass through the narrow passage without hitting the surrounding obstacles.

q1 =


117 π

180

0

−140 π
180

0

, u1 =

[
0

0

]
, and qtarget =


60 π

180

0

−49 π
180

0


To compute the optimal trajectory for this task, the parameter vector θ has to be

relearned for sampling methods, which are shown in Table 5.4. Applying the framework

for parameter optimisation, the whole parameter vector θ is relearned. This setting may

result in completely different parameter vectors for similar tasks. It is also possible to

learn arbitrary parameter constellations by reusing specific parameters, e.g. reuse vector

gain and learn only wq,wu, and wT . Only model-based sampling is able to reach the

target position without moving through obstacles as shown in Figure 5.4 (a). Compared to
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parameter model-free model-based

rounds 80 80
samples 500 500
gain [50.000 17.210 10.000 0.100]T [3.100 1.750 3.606 1.661]T

wq [3.531 1.901 3.398 1.508]T

wu [−0.007 − 0.007]T

wstate
T [4.916 5.082 4.850 5.703]T

diag(R−1joint) [26.316 0.0229 23.256 0.241]

diag(R−1trans) [83.333 90.909 100 100]
diag(W) [0.033 0.003 0.027 0.003]

Table 5.4: Task specific parameters of the sampling methods for the 2-link arm reaching
task with two obstacles and without a via point.
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Figure 5.4: In (a) the trajectories of the three methods are illustrated. The intrinsic costs
of the different approaches and their convergence behaviour is shown in (b).

the previous task, the standard deviation values are larger and the intrinsic costs converge

slower as shown in Figure 5.4 (b). AICO is not able to find a trajectory passing through

the narrow passage without hitting an obstacle and therefore, the intrinsic costs are higher

compared to the task with only one obstacle, shown in Figure 5.4. However, AICO is still

able to converge within 10 iterations. By increasing the weight for obstacle violations,

wo = 1e8, the trajectories generated with AICO are repelled stronger by the obstacle

illustrated in Figure 5.5 (a). Nevertheless, AICO is not able to avoid obstacle violations

completely and the trajectory becomes unstable indicated by peaks of the intrinsic cost

function in Figure 5.5 (b). However, obstacle weights wo ≥ 1e8 causes singular matrices

during the computations. Thus the choice of the obstacle weight is a tradeoff between a

stable algorithm and the ability of avoiding obstacles.

The model-free sampling method is also not able to find an appropriate trajectory. The

standard deviation of the intrinsic costs in Figure 5.4 (b) are low as always similar tra-

jectories are chosen. Figure 5.6 shows again the joint angle trajectories and the extrinsic
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Figure 5.5: In (a) the different trajectories applying an obstacle weight of 1e8 for AICO
are compared. In (b) the changed convergence behaviour of intrinsic costs are illustrated.
As illustrated in (a) the trajectory generated by AICO repels stronger from the obstacle
but the method becomes unstable causing high peaks of intrinsic costs in (b).

costs for all applied methods. Only the extrinsic costs returned by the model-free sampling

method in Figure 5.6 (b) are lower compared to the costs in Figure 5.3 (b) as model-free

sampling generates simple trajectories which do not reach the target.
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Figure 5.6: In (a) the joint angle trajectories of the 2-link arm generated by the different
methods are presented. In (b) the corresponding extrinsic costs obtained by the reward
function are compared.

5.2.3 Task with two Obstacles and one Via Point

To improve the performance of sampling methods, one via point
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qvia =
[
117 π

180 0 − 107 π
180 0

]T
at time step nvia = 10 is introduced as intermediate target position, see Figure 5.7. The

initialisation vectors q1,u1 and the target position qtarget are identical as for the previous

task without a via point.
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Figure 5.7: Illustrated are the movement trajectories for all three methods using two
obstacles. The via point is marked by a black cross, whereas the target is marked by a
red cross.

In this scenario the trajectories have to reach the via point first and afterwards the original

target position. The via point is chosen to divide the original trajectory into two simpler

trajectories. Hence, the position of the via point is crucial for an optimal performance.

For simplicity, the position is manually chosen in front of the narrow passage to support

the moving into the passage. However, it could also be learned. Due to the simplification

obtained by the via point, the parameter vector θ of the previous experiment with one

obstacle, shown in Table 5.3 can be reused. The via point is not used within AICO as

standard SOC methods are able to solve such simple motor planning tasks already with

via points [28].

With the via point, also the model-free sampling approach is able to reach the target

position. The trajectories of the model-free sampling reach the via point and the target

not exactly and jitters heavily in the first half of the movement. Note that the precision of

reaching the target and the via point depends on the values of diag(R−1joint). In comparison

model-based sampling reaches the via point, but does not move straight to the target

position. This behaviour is discussed later in experiments with a 4-link model.

The intrinsic costs L(τ) are shown in Figure 5.8. Model-free sampling has initially high

intrinsic costs with high standard deviation, which converge within 30 rounds. However,

the intrinsic costs and standard deviation remains higher compared to the other methods.

Compared to the experiment without a via point, the final intrinsic cost values for model-

based sampling are higher. The reason for this behaviour results from the not optimal

position of the via point. Therefore, introducing a learned via point at an optimal position
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Figure 5.8: The convergence behaviour of intrinsic costs for the 2-link task applying one
via point is compared with the focus on the different convergence behaviour.

would reduce the peak. The trajectory and the costs obtained by AICO are identical to

the previous scenario because the via point was only used in the sampling methods. The

joint angles and the extrinsic costs C(τ), are illustrated in Figure 5.9.
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Figure 5.9: In (a) the joint angle trajectories of the 2-link arm for the different methods
are shown. In (b) the corresponding extrinsic costs obtained by the reward function are
illustrated.

5.2.4 Summary

The experiments show that all applied methods are able to solve simple tasks using ap-

propriate parameters. More complex tasks can be solved by extending the basic methods,

applying the via point approach. As listed in Table 5.5 both sampling methods obtain

remarkable increasing intrinsic costs and standard deviation values, solving more complex

tasks. Compared to model-free sampling, model-based sampling is more robust solving

complex tasks. Therefore, the model-free sampling method is not applied on higher di-
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task model-free model-based AICO

task with a single obstacle 24± 4 4.8± 0.6 21.8± 3.7e−15

task with two obstacles target not reached 20± 26 21.8± 3.7e−13

task with one via point 218± 116 62± 60 21.8± 3.7e−14

Table 5.5: The intrinsic costs and standard deviation values for different 2-link tasks are
compared, considering the applied methods.

mensional tasks. Extending the sampling approaches with an appropriate via point is able

to decrease the intrinsic costs. Due to the manually chosen via point the resulting costs

for model-based sampling are higher. AICO yields very good results in general but is not

able to avoid the obstacles even for simple tasks.

5.3 Four Link Arm Experiments

A 4-link arm model is used to demonstrate the behaviour of the model-based sampling

method on a higher dimensional dynamic task. Due to suboptimal trajectories generated

by model-free sampling, especially for complex 2-link tasks, the model-free sampling ap-

proach is not applied on 4-link tasks. Due to numerical instabilities, AICO is also not

applied on the 4-link tasks. These numerical problems result from the increased number

of possible arm constellations to reach the target. Such numerical problems can be cir-

cumvented by applying inverse kinematic control as initial solution, which is beyond the

scope of this work.

In the 4-link experiments, different initialisations are investigated. Also the challenge

of multiple arm reaching solutions in motor planning is addressed and how model-based

sampling deals with these challenging constellations. To evaluate multiple arm reaching so-

lutions, task space planning is applied representing the intrinsic costs as a two-dimensional

coordinate vector, introduced in Equation 3.3. To avoid numerical problems when sam-

pling from a multivariate Gaussian distribution N (µ,Σ), the symmetry of the matrix

representing Σ must be enforced, which is typically not guaranteed for the dynamics of

the 4-link model.

The simulation parameters for the 4-link experiments are identical to the values applied

for the 2-link arm. Only the simulation steps simdt for simulating the movements on the

physical model are refined to enhance the ability of the simulator to deal with the increased

complexity. These parameters are specified in Table 5.6.

parameter value

Ts 5
dt 5e−2

simdt 5e−4

Table 5.6: Simulation Parameters for the 4-link arm experiments.



5. Experiments and Results 40

5.3.1 Comparison of different Initialisation Methods

This scenario investigates the advantages of different initialisation methods. The goal of

this task is again to bypass an obstacle in order to reach the target, which is illustrated

in Figure 5.10 (a). The applied parameters for model-based sampling are listed in Table

5.7. The task specifications applying the cost representation in task space are listed below.

q1 =



90 π
180

0

0

0

0

0

−45 π
180

0


, xvia =

[
0.637

0.796

]
, and xtarget =

[
1.851

0.674

]
.

parameter model-based

rounds 150
samples 500
gain [0.009 9.991 48.725 0.013 49.869 0.082 46.729 0.673]T

wq [4.053 2.117 4.160 2.155 4.039 2.138 4.033 1.989]T

wu [−0.09 − 0.09 − 0.09 − 0.09]T

wtask
T [4.250 4.425]T

Table 5.7: Parameters for the model-based sampling approach comparing different initial-
isation methods.

The trajectory denoted by the green line, shown in Figure 5.10 (a) is generated by

initialising q1:T with q1. The trajectory reaches the via point, however, does not move

towards the target subsequently. Instead of moving towards the target the arm returns

to the initial position as the method is not able to bypass the obstacle. Due to the

initialisation of q1:T with q1, the costs for moving from the via point to the target are

higher compared to the movement costs returning to the starting point. A similar effect

was observed in the 2-link arm reaching task in Section 5.2.2.

To avoid this behaviour an alternative online re-initialisation procedure is applied. The

state vector q1:T is also initialised with q1 identical to the first method. Reaching the via

point at time step t, the state vectors of the remaining time steps qt:T are re-initialised

with the state vector qt. Now the model-based sampling method is able to reach the target

as indicated by the blue line in Figure 5.10 (a). The via point is reached if the Euclidean

distance dmax, between the arm endeffector and the via point reaches dmax ≤ l/10 with

link length l.

The intrinsic costs L(τ) of both initialisation methods converge similar for the first



5. Experiments and Results 41

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x−axis

y−
ax

is

MB init 2
MB init 1

(a)

0 50 100 150
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

6

rounds/iterations

in
tr

is
ic

 c
os

ts

MB init 2
MB init 1

(b)

Figure 5.10: In (a) the trajectories of model-based sampling with different initialisation
methods are shown. Applying the initialisation method 1 (green line), the state vector q1:T

is initialised with q1. The second initialisation method (blue line) indicates the trajectory,
applying the online re-initialisation. In (b) the intrinsic costs of the trajectories and their
convergence behaviour are compared, applying the different initialisation methods.
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Figure 5.11: In (a) the joint angle trajectories of the 4-link arm for model-based sampling
are illustrated, using different state vector initialisations. In (b) the corresponding extrinsic
costs are compared.
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half of rounds, as shown in Figure 5.10 (b). However, the intrinsic costs of the second

initialisation method decrease rapidly, whereas the intrinsic costs of the first initialisation

method remain stable in the second half. The high standard deviation during the drop

is caused by the exploration of the optimal trajectory from the via point to the target.

Hence, model-based sampling applying the second initialisation method is able to find

a movement trajectory with low intrinsic costs, reaching the target. In the following

experiments always the second initialisation method is applied.

The joint angles and the extrinsic costs are shown in Figure 5.11. The noisy joint

angle trajectories are supposed to result from the increased complexity of the 4-link model

and the cost representation in task space. The joint angle trajectories of the following

experiment confirm this observation.

5.3.2 Comparison of different Cost Representations

In this scenario, the differences between the state space cost representation and the task

space cost representation are investigated. The state space cost representation applies the

state vector q1:T , the via point qvia, and the target qtarget as joint angle constellations and

compute the intrinsic costs in the state space, see Equation 3.2. In contrast, the task space

cost representation defines the via point xvia and the target xTarget as two dimensional

coordinate vectors, defined in Equation 3.3. The difference between the state space and

the task space is the representation and cost computation of the via point and the target

position. However, the state vector q1:T represents joint angle constellations in both, the

state space and the task space cost representation. The state space cost representation

restricts possible trajectories for reaching a target, however, it also simplifies the task by

limiting the search space. In contrast, a task space cost representation does not restrict

the possible arm constellations to reach the target. This task is solved by applying model-

based sampling in state space and task space cost representation. The task specifications

in state space and the corresponding task space vectors are presented below.

q1 =


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, qvia =
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, qtarget =


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.
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xvia =

[
0.637

0.796

]
, and xtarget =

[
1.851

0.674

]
.

Due to the identical task constellation to the previous task, the parameters can be reused.

Applying the cost computation in state space requires an additional learned weight vec-

tor wstate
T , defined in Table 5.8. To illustrate the behaviour of the model-based sampling

applying the state space cost representation appropriately, the number of rounds are in-

creased to 200.

parameter model-based

rounds 200
samples 500
gain [0.009 9.991 48.725 0.013 49.869 0.082 46.729 0.673]T

wq [4.053 2.117 4.160 2.155 4.039 2.138 4.033 1.989]T

wu [−0.09 − 0.09 − 0.09 − 0.09]T

wtask
T [4.250 4.425]T

wstate
T [4.4354.4094.4054.4194.5834.3894.2514.468]T

Table 5.8: Parameters for the model-based sampling approach comparing different cost
representations.
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Figure 5.12: In (a) the trajectories of model-based sampling with different representations
are shown. The trajectory obtained by the state space cost representation is represented
by the green line, whereas the blue line represents the trajectory obtained by the task
space cost representation. In (b) the intrinsic costs of the different representations and
their convergence behaviour are compared.

The movement trajectories, illustrated in Figure 5.12 (a) are similar for both represen-

tations, but the trajectory applying the state space cost representation is not able to reach

the target precisely. The intrinsic cost function obtained by the cost representation in task

space is identical to the second initialisation method of the previous task and converges
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Figure 5.13: The joint angle trajectories of the 4-link arm for state and task space cost
representation are illustrated in (a). In (b) the corresponding extrinsic costs obtained by
the reward function are shown.

to low costs with low standard deviation. Also the intrinsic cost function obtained by the

cost representation in state space converges in the first half. As a result of the applied

initialisation method, the intrinsic costs and the standard deviation values increase in the

second half by re-initialising the remaining state vectors qt:T . The joint angle trajectories

of the cost function in state space, illustrated in Figure 5.13 (a) is smoother compared to

the trajectories of the cost function in task space. Therefore, the corresponding extrinsic

costs shown in Figure 5.13 (b) are remarkably lower for the cost function in state space

compared to the cost function in task space.

5.3.3 Learning Multiple Arm Reaching Solutions

This task applies the task space cost representation to allow multiple arm reaching solu-

tions. This scenario was chosen as classical motor planning methods have difficulties with

such constellations (if the trajectory is not well chosen) [31]. The initial arm constellation

and the target are presented below, followed by the learned task specific parameters listed

in Table 5.9.

q1 =
[
90 π

180 0 0 0 0 0 0 0
]T

and xtarget =
[
0 − 3

]T
.

The symmetric task in Figure 5.14 (a) illustrates a task constellation with multiple path

solutions. In this task multiple trajectories with identical intrinsic costs can be generated

by moving the arm either to the left or to the right side. To avoid moving straight from

the initial position to the target, an obstacle is placed between the positions. Model-

based sampling is able to find both possible arm reaching solutions in different runs with

minimum costs performing several rollouts. The different trajectories are represented by a
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parameter model-based

rounds 150
samples 500
gain [0.000 1.082 11.459 0.319 5.569 3.884 0.097 4.484]T

wq [4.063 2.083 4.457 2.260 4.061 1.998 3.792 2.069]T

wu [−0.081 − 0.081 − 0.081 − 0.081]T

wtask
T [4.536 4.163]T

Table 5.9: Task specific parameters of the model-based sampling method for the task
considering multiple arm reaching solutions.
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Figure 5.14: In (a) the different arm reaching paths, generated by model-based sampling
using the task space cost representation are shown. Two possible paths are represented
by a solid and a dotdashed blue line, generated in the same experiment but in different
runs. The corresponding intrinsic costs and the convergence behaviour generating multiple
paths is illustrated in (b).

solid line moving to right side and a dotdashed line moving to the left side. The target can

be reached by the endeffector of the arm without difficulties with fast converging intrinsic

costs, shown in Figure 5.14 (b).

Due to a limited amount of samples, the computed endeffector trajectories differs slightly

from each other indicated by the standard deviation of intrinsic costs. One joint angle

trajectory is illustrated in Figure 5.15. In contrast to the smooth endeffector trajectory,

the joint angle trajectories are jittering and result in extrinsic costs of 2.36e6 with standard

deviation 1.71e5.

5.3.4 Summary

Model-based sampling is able to solve higher dimensional tasks, illustrated by the experi-

ments applying the 4-link model. Tasks including multiple obstacles can be solved as well

as tasks with multiple arm reaching solutions by extending the standard method applying
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Figure 5.15: The joint angle trajectory of one run of
the model-based sampling method is shown, solving
the task with multiple arm reaching solutions in task
space.

task model-based

task with a single obstacle 3.5e4 ± 1.5e3

task with multiple arm reaching solutions 4.6e4 ± 3.2e3

task applying the trajectory mixing approach 2.2e6 ± 2.6e5

Table 5.10: The intrinsic costs and standard deviation values for different 4-link tasks are
compared. The first two tasks are solved by model-based sampling with a single trajectory.
The third task is solved by model-based sampling with trajectory mixing.

trajectory mixing or via points. Although, the computed trajectories are less smooth and

the costs are remarkable higher compared to 2-link tasks, shown by the intrinsic costs in

Table 5.5 and Table 5.10.

5.4 Trajectory Mixing Approach

This task applies a similar task constellation as in the previous task but includes multiple

obstacles, which is used to demonstrate the performance gain of the trajectory mixing

approach (introduced in Section 4.3.2). For the trajectory mixing approach the task space

cost representation is used. In addition, one joint angle constellation for the target po-

sition in state space must be known, to initialise a second trajectory starting at the target.



5. Experiments and Results 47

q1 =
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.

The learned parameters for model-based sampling are presented in Table 5.11. Due to the

increased task complexity, the number of rounds is set to 200.

parameter model-based

rounds 200
samples 500
gain [31.488 4.475 3.710 0.107 1.854 7.628 15.406 9.902]T

wq [4.361 1.938 3.858 2.179 3.975 2.149 4.303 1.815]T

wu [−0.081 − 0.081 − 0.081 − 0.081]T

wtask
T [4.014 4.051]T

Table 5.11: Parameters for model-based sampling including multiple obstacles.

Two model-based sampling methods with different initialisations (one starts at q1 and

one at qtarget) are implemented. The resulting final trajectory is indicated by the green

line, shown in Figure 5.16 (a).
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Figure 5.16: In (a) the trajectories of standard model-based sampling (blue line) and
model-based sampling with trajectory mixing (green line) are compared. The target po-
sition is marked by a red cross and the obstacles are represented by grey shaded regions.
The two trajectories of the trajectory mixing approach are shown in (b) at the time of
mixing (d ≤ 2l).
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The trajectory mixing approach is compared to model-based sampling with a single trajec-

tory, denoted by the blue line. The single trajectory of the standard model-based approach

is not able to move around the central obstacle.
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Figure 5.17: The intrinsic costs, generated by model-based sampling with a single trajec-
tory and the costs obtained by model-based sampling with trajectory mixing, are shown
in (a). The high standard deviation values in the central part of the evolution process
for the trajectory mixing approach result from the different mixing points, obtained by
different runs. In (b) the corresponding joint angle trajectories are illustrated.

In Figure 5.16 (b) both trajectories of the trajectory mixing approach are presented

at the time of mixing (the minimum distance between both trajectories is smaller than

δ). Both trajectories separately perform similar to the single trajectory of the standard

model-based sampling approach but only the combination is able to solve the task.
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Figure 5.18: The extrinsic costs for standard model-
based sampling (blue bar) and trajectory mixing
(green bar) are compared.

The maximum mixing distance is crucial for solving the task and depends on the task
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complexity. A small distance may prevent mixing both trajectories. With a large distance,

mixing is more likely but both trajectories are not able to evolve properly. Hence, the

mixing is not very efficient and the result may jump through obstacles. Therefore, the

threshold represents a tradeoff between mixing efficiency and the ability to solve the task.

The threshold is set manually to δ = 2l.

The intrinsic costs and the corresponding joint angle trajectories are illustrated in

Figure 5.17. The high standard deviation values in the central part of the evolution process

for the trajectory mixing approach result from the different mixing points, obtained by

different runs. The resulting extrinsic costs shown in Figure 5.18 are remarkable lower

compared to the 4-link tasks before. This fact is interesting because the task is more

complex by considering multiple obstacles constraining possible solutions. The trajectory

mixing approach is an alternative extension to the via point approach to solve complex task

constellations. Applying the trajectory mixing approach does not influence the solution

as introducing a via point. The drawback compared to the via point approach is that the

target must be additionally defined and known in state space.



6. Discussion

In this thesis Monte Carlo (MC) sampling methods [4] were investigated to solve Stochastic

Optimal Control (SOC) problems with a finite time horizon and quadratic control costs.

Two sampling approaches were evaluated. First, a simple model-free sampling approach

is evaluated. Second, a model-based approach considering a linearised approximation of

the dynamic model is investigated. The sampling methods are an alternative approach

to classical SOC methods [16, 28] to solve motor planning tasks, especially when dealing

with hard constraints. However, their computational effort prevent their usage in time-

critical applications. The extraordinary computational effort compared to Approximate

Inference Control (AICO), results from the necessity of adapting parameters for each

task and drawing an appropriate number of samples. Especially, considering multiple

obstacles leads to a high computational effort, where each drawn sample must be evaluated

if it violates any obstacle. However, several important aspects should be considered to

solve motor planning tasks efficiently. Due to their local search behaviour, sampling

methods require an appropriate initialisation to find the optimal trajectory. This is also

confirmed by the obtained results from the experiments. However, finding the optimal

trajectory can only be guaranteed drawing infinitely many samples from the distribution

which is practically infeasible. Therefore, a tradeoff must be found between an optimal

approximation of the desired distribution and computational feasibility. Another crucial

aspect to solve a task efficiently is to find appropriate values for the policy parameter vector

θ. Typically optimal values for θ depend on a specific task. Adjusting the parameters

manually is demanding and learning optimal values is not guaranteed to converge to the

global optimum. In the experiments, the parameter vector θ is learned for each task

separately by applying the Covariance Matrix Adaption - Evolution Strategy (CMA-ES)

algorithm [11]. However, the parameters of the via point are set manually for each task

and the results show that the chosen parameters are in most cases not optimal. For further

experiments I recommend learning the parameters of via points as well. Extending the

model-based sampling method with the via point or trajectory mixing approach results in

a noticeable performance improvement and tasks with higher complexity can additionally

be solved. For further experiments, hierarchical sampling may be promising to decrease

the computational effort by introducing several layers for different time resolutions. Also

hybrid methods, applying sampling methods only in regions near to obstacles and using
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traditional SOC methods elsewhere may be able to decrease the computational effort. The

acquired knowledge from this thesis may be also relevant for further research on motor

planning with spiking neural networks, e.g. the differences between task space planning

and state space planning.



7. Conclusion

In this thesis a model-free [4] and a model-based Monte Carlo (MC) sampling approach

are investigated for motor planning tasks with hard constraints. To improve the perfor-

mance of these sampling methods, a via point approach and a trajectory mixing approach

were applied. The methods were evaluated on tasks using dynamic 2-link and 4-link robot

arm models. The basic behaviour using hard constraints, different initialisation methods,

as well as differences between state and task space cost representations, and the perfor-

mance improvements applying different extensions were evaluated. On a 2-link model the

sampling methods were compared to a standard implementation of Approximate Inference

Control (AICO) [28]. Both sampling methods do not meet the performance of AICO but

can generate trajectories without obstacle violations. Further model-based sampling is

able to solve complex 4-link motor planning tasks using either a state space cost represen-

tation or a task space cost representation for planning. With the novel trajectory mixing

extension, model-based sampling is able to solve complex 4-link tasks with an increased

performance, where single trajectory based approaches fail.

52



Appendix A. Abbreviations

AICO Approximate Inference Control

CMA-ES Covariance Matrix Adaption - Evolution Strategy

DMPs Dynamic Movement Primitives

EP Expectation Propagation

ILQR Iterative Linear Quardratic Regulator

LQG Linear Quadratic Gaussian

MAP Maximum A Posteriori

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MPs Movement Primitives

PMPs Planning Movement Primitives

SOC Stochastic Optimal Control

SQP Sequential Quadratic Programming
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Appendix B. Gaussian Identities

This appendix defines the used gaussian identity equations in this thesis. More detailed
information about gaussian identities can be found in [30].

Gaussian distribution over x with mean a and covariance matrix A

N (x|a,A) = 1
|2πA|1/2 exp(−1

2(x− a)TA−1(x− a))

(B.1)

Canonical form of a Gaussian distribution with belief a and precision matrix A

N [x|a,A] =
exp(− 1

2
aTA−1a)

|2πA−1|1/2 exp(−1
2x

TAx+ xTa)
(B.2)

with properties

N [x|a,A] = N (x|A−1a,A−1)
(B.3)

N (x|a,A) = N [x|A−1a,A−1]
(B.4)

Product of two Gaussians in canonical form

N [x|a,A] N [x|b,B] ∝ N [x|a + b,A + B]
(B.5)

Linear transformation

N (Fx+ f |a,A) = 1
|F|N (x|F−1(a− f),F−1AF−T )

(B.6)

Propagation rule

54



Appendix B. Gaussian Identities 55

∫
y
N (x|a+ Fy,A) N (y|b,B) dy = N (x|a+ Fb,A + FBFT )

(B.7)
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