
Master Thesis

Design and Implementation of an Ultra Low
Power UHF Transponder for the EPC

Class-1 protocol

Martin Zechleitner

————————————–

Institute of Microwave and Photonic Engineering
Graz University of Technology

Head: Univ.-Prof. Dipl.-Ing. Dr.techn Wolfgang Bösch

Supervisor: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Erich Leitgeb
External Supervisor: Dipl.-Ing. Johannes Schweighofer

Graz, September 2013

Kurzfassung

Die Radiofrequenz-Identifikation (RFID) Technologie zählt zu einen der am schnellsten
wachsenden Märkten. Eine der beiden Realisierungsarten dieser Technologie, die Fern-
feldübertragung, wird in dieser Diplomarbeit behandelt. Ein Anwendungsgebiet findet diese
Art der RFID Chips in Kaufhäusern oder Lagern. Durch das Electronic Product Code
(EPC) Class-1 Generation 2 Protokoll wird für die Fernfeldübertragung die physischen und
logischen Anforderungen spezifiziert und standardisiert.

Die Zielsetzung dieser Arbeit war die Entwicklung eines prozessorbasierten digitalen ASICs
(Application-Specific Integrated Circuit) welcher mit dem EPC Class-1 Generation 2 Pro-
tokoll kompatibel ist. Um einen Einblick in den Ablauf des Protokolls zu geben werden die
Zustände und Kommandos sowie deren Anwendung durch eine Beispielsequenz dargestellt.
Für die Realisierung der Architektur standen zwei unterschiedliche Prozessoren zur Auswahl
welche analysiert und evaluiert wurden. Um einen möglichst effizienten Chip zu entwerfen
wurden verschiedene leistungssparende Techniken angewandt.
Neben der in Assembler programmierten Firmware wurden periphere Hardware Module
entworfen, welche eine Schnittstelle zwischen dem Prozessor und den zu verarbeitenden
Daten bilden und desweiteren Rechenarbeit vom Prozessor auslagern. Auf die entwick-
elte Firmware wird mittels einer Aufbaubeschreibung sowie durch graphische Beispiele
eingegangen. Die Besonderheit der Firmware besteht darin, dass der Prozessor speziell
für den Anwendungsbereich von RFID Chips entworfen wurde. Dadurch ergibt sich ein
reduzierter Befehlssatz was dem Prozessor ein äußerst energieeffizientes Arbeiten ermöglicht.

Durch Simulationsergebnisse wird dargestellt wie das entworfene System mit den EPC Class-
1 Generation 2 Protokoll interagiert. Das implementierte System wurde für einen 130nm

Complementary Metal Oxide Semiconductor (CMOS) Prozess synthetisiert.

i

Abstract

The Radio Frequency Identification (RFID) technology is one of the fastest growing
industries. One of the main components of this technology is the far field propagation,
which is issued in this thesis. A typical application scenario for this kind of RFID technology
is a department store or a warehouse. With the Electronic Product Code (EPC) Class-1
Generation 2 protocol the far propagation of far field is specified and standardized.

The objective of this thesis is to develop a processor based digital ASIC (Application-Specific
Integrated Circuit) compatible to the EPC Class-1 Generation 2 protocol. For an insight to
the flow of events of the protocol the states and commands are explained. Furthermore an
example sequence is given.
For the realization of the architecture two different processors were available that had to be
analyzed. To develop an efficient chip, miscellaneous low-power techniques were applied.
In addition to the in assembler programmed firmware, peripheral hardware units were
developed which act as interface between the processor and the data to be processed.
Furthermore computational load from the processor is outsourced in the hardware units.
The composition of developed firmware is described and graphical examples of the firmware
are given. The special feature of the firmware is the processor dedicated for RFID systems.
By this the instruction set is reduced whereby the processor can work very energy-efficient.

Simulation results show how the implemented system interacts with the EPC Class-1 Genera-
tion 2 protocol. The implemented system had been synthesized for a 130nm Complementary
Metal Oxide Semiconductor (CMOS) process.

ii

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich
und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

iii

Acknowledgement

First I would like to thank Prof. Erich Leitgeb, at the Institute of Microwave and Photonic
Engineering at the Graz University of Technology, for supervising my thesis as well as for
his outstanding support.

Furthermore, I would like to thank Dipl.-Ing. Gerald Holweg, head of the Contactless and
Radio Frequency Exploration (CRE) Department of Infineon Technologies Austria AG,
for the opportunity to design and write my thesis in an industrial and practical environment.

I truly appreciate the supervision of Dipl.Ing. Johannes Schweighofer at Infineon Tech-
nologies Austria AG in Graz. His excellent guidance and constructive reviews were a great
benefit and personal gain during the course of my whole thesis. I would also like to thank all
my colleagues of the CRE department of Infineon Technologies Austria AG for the positive
and creative work atmosphere.

Finally, I would like to express my gratitude to all of my family and especially to my parents
Cäcilia and Dieter Zechleitner for their wonderful support during my whole life.

iv

Contents

List of Abbreviations viii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 RFID Systems . 1
1.2 Motivation and Project Goals . 2
1.3 Thesis Outline . 3

2 EPC Global Class-1 Generation-2 UHF RFID Standard 4
2.1 General . 4
2.2 Encoding . 5

2.2.1 Reader to Tag . 5
2.2.2 Tag to Reader . 6

2.3 Timing . 9
2.4 Memory . 10
2.5 States . 12
2.6 Commands . 13

2.6.1 Select Command . 14
2.6.2 Inventory Commands . 16
2.6.3 Access Commands . 21
2.6.4 Custom Commands . 26

2.7 Examples for a Communication Sequences . 27

3 System Overview 30
3.1 EPC . 31
3.2 NFC . 31
3.3 Memory . 31

3.3.1 NVM . 32
3.3.2 RAM . 32

3.4 SPI . 32

v

3.5 Sensor Interface . 32
3.6 Wishbone Bus . 32

4 Controller Evaluation 33
4.1 FSM-based EPC Implementation . 33
4.2 RISC Controller . 34
4.3 Analysis of the Applicable Controller . 34

4.3.1 8 Bit Controller . 34
4.3.2 16 Bit Controller . 35

4.4 Summary . 35

5 RTL Hardware Design 37
5.1 Low Power Design Principles . 37

5.1.1 Frequency scaling . 38
5.1.2 Clock Gating . 38

5.2 Overview . 39
5.3 Component Description . 41

5.3.1 EPC DFE . 41
5.3.2 Interrupt Controller . 44
5.3.3 CRC LFSR . 46
5.3.4 General Purpose Timer . 49
5.3.5 Decode Bits . 49
5.3.6 LUT . 49
5.3.7 Bridge . 49
5.3.8 Analog Control . 50

6 Firmware 51
6.1 General Structure . 51

6.1.1 Interrupts . 52
6.1.2 Application Flow of a Command . 52

6.2 Code Analysis . 56
6.3 Time Analysis . 57

7 Simulation 61
7.1 Simulation Environment and Test Bench . 61
7.2 Read Example . 63
7.3 Write Example . 66

8 Synthesis 68
8.1 Area . 68
8.2 Clock gating . 68
8.3 ASIG Synthesis . 69

vi

9 Conclusion 73
9.1 Summary and Results . 73
9.2 Further Work . 74

List of Abbreviations 75

Bibliography 75

vii

List of Abbreviations

ALU Arithmetic and Logic Unit
ASIC Application-Specific Integrated Circuit
ASIG Autonomous Sense and Identification Grain
ASIP Application-Specific Instruction-set Processor
ASK Amplitude Shift Keying
CMOS Complementary Metal Oxide Semiconductor
CRC Cyclic Redundancy Check
CW Continuous Wave
DFE Digital Front End
DR Divide Ratio
EBV Extensible Bit Vectors
EEPROM Electrically Erasable Programmable
EPC Electronic Product Code
FSM Finite State Machine
GE Gate Equivalents
GS1 Global Standards One
HF High Frequency
HW Hardware
LF Link Frequency
LFSR Linear Feedback Shift Register
LUT Look Up Table
MSB Most Significant Bit
NFC Near Field Communication
NVM Non Volatile Memory
PIE Pulse Interval Encoding
PRNG Pseudo Random Number Generator
PSK Phase Shift Keying
PW Pulse Width
RAM Random Access Memory
RF Radio Frequency
RFID Radio Frequency Identification
ROM Read Only Memory
RTcal Reader Tag calibration time

viii

RTL Register Transfer Level
SFR Special Function Register
SPI Serial Peripheral Interface Bus
TID Tag Identifier
TRcal Tag Reader calibration time
UHF Ultra High Frequency
VHDL Very High Speed Integrated Circuit Hardware Description Lan-

guage

ix

List of Figures

2.1 PIE symbols, [EPCGlobal 2005] . 5
2.2 RT preamble and frame-sync, [EPCGlobal 2005] 6
2.3 FM0 sequences, [EPCGlobal 2005] . 6
2.4 FM0 preamble, [EPCGlobal 2005] . 7
2.5 Miller preamble, [EPCGlobal 2005] . 7
2.6 Miller sequences, [EPCGlobal 2005] . 8
2.7 Memory map, [EPCGlobal 2005] . 11

3.1 System overview . 30

5.1 Latch free clock gating . 39
5.2 Latch based clock gating . 39
5.3 EPC system overview . 40
5.4 EPC DFE . 42
5.5 Interrupt Controller . 45
5.6 RISC Control . 46
5.7 CRC LFSR Control . 48

6.1 Command occurrence . 57
6.2 Time analyses for encoding 16 bit . 58
6.3 Time analysis for the read loop . 59

7.1 All tested sequences . 62
7.2 The Read command . 64
7.3 The Read command in detail . 65
7.4 The Write command . 67

8.1 The layout of the ASIG chip . 71
8.2 The digital layout of the ASIG chip . 72

x

List of Tables

2.1 Command overview, [EPCGlobal 2005] . 13
2.2 The Select command in detail, [EPCGlobal 2005] 15
2.3 Tag response to Action parameter, [EPCGlobal 2005] 15
2.4 Query command in detail, [EPCGlobal 2005] 17
2.5 Query command response, [EPCGlobal 2005] 17
2.6 Query Adjust command in detail, [EPCGlobal 2005] 18
2.7 Query Adjust command response, [EPCGlobal 2005] 18
2.8 Query Reply command in detail, [EPCGlobal 2005] 19
2.9 Query Reply command response, [EPCGlobal 2005] 19
2.10 Acknowledge command in detail, [EPCGlobal 2005] 20
2.11 Acknowledge command response, [EPCGlobal 2005] 20
2.12 Not Acknowledge command in detail, [EPCGlobal 2005] 20
2.13 Request Random Number command in detail, [EPCGlobal 2005] 21
2.14 Request Random Number command response, [EPCGlobal 2005] 21
2.15 Read command in detail, [EPCGlobal 2005] 22
2.16 Read command response, [EPCGlobal 2005] 22
2.17 Write command in detail, [EPCGlobal 2005] 23
2.18 Write command response, [EPCGlobal 2005] 23
2.19 Kill command in detail, [EPCGlobal 2005] . 24
2.20 Kill command response to the first Kill command, [EPCGlobal 2005] 24
2.21 Kill command response to a successful Kill command, [EPCGlobal 2005] . . . 24
2.22 Kill command in detail, [EPCGlobal 2005] . 25
2.23 Lock command response, [EPCGlobal 2005] 25
2.24 Lock command Action-field functionality, [EPCGlobal 2005] 25
2.25 Test Read command in detail . 26
2.26 Test Read command response . 26
2.27 Test Write command in detail . 27
2.28 Test Write command response . 27

4.1 Comparison of the two controllers . 36

6.1 Register 12 and register 13 . 51

xi

6.2 Command analysis . 56
6.3 Command response times . 59

8.1 Synthesis result for the area . 68
8.2 Synthesis result for the clock gated registers 69
8.3 Synthesis result for the area for the ASIG . 69
8.4 Synthesis result for the clock gated registers for the ASIG 70

xii

Chapter 1: Introduction

This chapter provides an overview of Radio Frequency Identification (RFID) systems, their
different technologies, techniques and application areas. Furthermore the goal and the mo-
tivation for this project are given as an outline of the thesis.

1.1 RFID Systems

The RFID technology is based on integrated circuits which are able to communicate con-
tactless with a reader. In contrast to contact based chips like these on a cash card are very
prevalent in the modern environment, the contactless chips give a new scope to these ap-
plications. New cellular phones already provide an RFID interface, which can be seen as an
enabler for contactless technology.
According to [Finkenzeller 2002] the RFID market is one of the fastest growing markets.
Due to the shared communication medium, a strong anti-collision system has to be provided,
in addition to a cryptographic system providing the security of personal data.

The most simple RFID system consists of two components, a reader and a tag. The reader
provides the energy for the tag and queries the tag. Since a single reader can communicate
with a bunch of tags, the efficient design for a low-power and small area is more important
for the tag than for the reader [Finkenzeller 2002].

Furthermore RFID tags can be subdivided in two classes: active RFID chips and passive
RFID chips. On the one hand active tags have an own power supply in form of on-chip
batteries or a direct connected supply. On the other hand passive RFID chips gain their
energy out of the field from reader. A combination between these classes is a semi passive
RFID tag. These tags gain their energy out of the field from the reader as passive RFID
tags. For the receiving mechanism a semi passive chip uses a power source on the chip. By
this technique the range of the tag can be increased. The most interesting type of RFID
tags are the passive tags since they are independent to any power supply and their lifetime
is not limited by any battery [Finkenzeller 2002].

The data exchange of RFID tags depends on the used frequency, more in detail whether the
tag is in the near field or in the far field of the reader. The technique how the chip sends

1

Martin Zechleitner 1.2 Motivation and Project Goals

data back to the reader is defined by the difference between near field and far field. In the
case of a near field tag, the chip gains the power supply out of the magnetic field of the
reader. By doing a load modulation, the reader can detect a difference in the used current
for generating the field. The technology for a far field chip is called backscattering. Since
the chip is in the far field, the weak magnetic field cannot supply the chip. Therefore the
electro-magnetical field is gained by an dipole antenna. In the backscattering technique the
chip changes the antenna coefficient by switching a load onto the antenna. This change in
the antenna coefficient reflects the electro-magnetic wave towards the reader. The reader
can detect this small change in the sent signal and generates the data from the tag out of
it [Want 2006] [Finkenzeller 2002].

The near field tags and far field tags are used in different application scenarios. Since the
working distance of the reader to the tag in the near field is very small compared to the far
field, the near field supports usually weak anticollision routine. Contrary to the near field,
at the far field many chips can respond to the reader. This calls for a strong anticollision
scheme. In the near field more power can be transmitted to the tag. Due to this fact, and
the short anticollision scheme, a higher data rate can be achieved in comparison to the far
field. The benefit of the far field tags is the long reading range [Finkenzeller 2002].
By this basic principles the near field and far field tags find different applications. The
near field technology is used for personal identification, ticketing systems and even as an
electronic wallet. Generally, the near field technology is used in case of objects near to
the reader. Contrarily, the far field technology is predestinated to detach the printed bar
code. Far field chips are very interesting for storage management. One of the most prominent
example for the utilization of the far field tags is a supermarket. Here the consumer just pass
a reader which computes the prices of all purchased tagged products without any queues.
Dependent on the application a near field or far field chip can be used. Commonly the NFC
(Near Field Communication) protocol is used for the near field communication. Contrarily
to the far field main protocol is the EPC (Electronic Product Code). This thesis issues the
implementation of the EPC protocol [Want 2006] [Finkenzeller 2002].

1.2 Motivation and Project Goals

The goal of the project was the implementation of a processor based solution for the EPC
Global Class-1 Generation-2 Ultra High Frequency (UHF) RFID Standard. The state before
the thesis was a small and fast hardware based chip with a huge finite state machine as core
unit. Due to its complexity this state machine became unmaintainable. Therefore a slower
but more flexible and adaptable implementation was desired. This solution is a processor
based approach which guarantees a higher hardware independence.

2

Martin Zechleitner 1.3 Thesis Outline

1.3 Thesis Outline

In chapter 2 the EPC Global Class-1 Generation-2 UHF RFID Standard is introduced and
explained.
Chapter 3 gives an overview of the ASIG (Autonomous Sense and Identification Grain)
project where the work of this thesis is included for one of the two communication protocols.
The planning of the implementation and design criteria is the topic of chapter 4.
The register transfer level design and every implemented unit are issued in chapter 5.
Chapter 6 deals with the firmware, the flow of the commands and gives an analysis of the
implemented code. Furthermore the timing of the firmware is analyzed and the firmware is
explained with two examples.
The simulation, the test bench and some examples are shown in chapter 7.
The output of the synthesis is given in chapter 8.
Finally in chapter 9 concluding remarks are done.

3

Chapter 2: EPC Global Class-1
Generation-2 UHF RFID
Standard

This chapter summarizes and explains the most important information of the Global Class-1
Generation-2 UHF RFID Standard in respect of this thesis.

2.1 General

The EPC intends to generate a universal identifier for any objects. Developed by the EPC-
global, a part of the Global Standards One (GS1), the EPC is the state of the art standard
for UHF RFID systems. Compared to High Frequency (HF) systems the increased operating
range enables UHF systems to operate in a new field of applications. Just one example of
many is a warehouse inventory management system.
Every RFID system consists of at least one reader, also known as interrogator, and at least
one tag, also known as label or transponder. These components communicate contactless
with each other [Chawla and Ha 2007] [EPCGlobal 2005].

Class-1 tags are transponders which backscatter their information passively to the reader.
An integrated memory stores data like the EPC and a Tag Identifier (TID). The Class-1
tags support a kill function to disable a tag. A password protected access control and a user
memory is declared as optional in the standard. Compared to the other classes like Class-2
tags or Class-4 tags, the Class-1 tags support just the basic functions of a transponder. As
defined by the protocol the reader has to initiate the communication. Since the tag is in
range of a reader, it is powered by the Radio Frequency (RF) field of the reader. With the
backscattering mechanism data is sent from the tag to the interrogator. While the tag is
backscattering data, the reader sends a Continuous Wave (CW) RF signal [EPCGlobal 2005].

According to [Finkenzeller 2002] the backscattering mechanism is described as follows, where
P1’ is the power received from the tag and P2 is the power sent from the tag:

4

Martin Zechleitner 2.2 Encoding

“A proportion of the incoming power P1’ is reflected by the antenna and returned
as power P2. The reflection characteristics (= reflection cross-section) of the
antenna can be influenced by altering the load connected to the antenna. In order
to transmit data from the transponder to the reader, a load resistor RL connected
in parallel with the antenna is switched on and off in time with the stream to be
transmitted. The amplitude of the power P2 reflected from the transponder can
thus be modulated (modulated backscatter).” [Finkenzeller 2002]

Since the tags needs to be powered by the reader, the communication is half-duplex. In-
terrogators modulate their data by double-sideband amplitude shift keying, single-sideband
amplitude shift keying or phase-reversal shift keying. The data from the reader to the tag
is pulse interval encoded (PIE). Tags encode their data in FM0 or Miller and modulate the
data by amplitude shift keying (ASK) or phase shift keying (PSK) [Chawla and Ha 2007]
[EPCGlobal 2005].

2.2 Encoding

The different encoding schemes from the interrogator and the tag are shown here.

2.2.1 Reader to Tag

The pulse interval encoding is shown in figure 2.1. A Tari defines the duration of a data-0
sequence and is in the range between 6.25µs and 25µs. The data-1 sequence is defined by
the Tari time value multiplied with 1.5 to 2. The Pulse Width (PW) is given by the Tari
time value multiplied with 0.265 to 0.525, but must exceed at least 2µs [EPCGlobal 2005].

Figure 2.1: PIE symbols, [EPCGlobal 2005]

At the beginning of every transmission from the interrogator to the tag the frame-sync is
sent. This sequence contains a delimiter, a data-0 field and the Reader to Tag calibration
time (RTcal), see figure 2.2. At the Query command a special sequence is sent instead of the
frame-sync. This sequence is called preamble and equals the frame sync plus Tag to Reader
calibration time (TRcal) [EPCGlobal 2005].
The intent for the symbols RTcal and TRcal are further explained in the timing section 2.3.

5

Martin Zechleitner 2.2 Encoding

Figure 2.2: RT preamble and frame-sync, [EPCGlobal 2005]

2.2.2 Tag to Reader

Tags can backscatter their data in four different encoding schemes: FM0, Miller2, Miller4 and
Miller8. The interrogator selects one of these four encoding schemes in the Query command,
declared in section 2.6.2 [EPCGlobal 2005].

FM0

In the FM0 encoding a data-0 is defined by inverting the signal in the middle of the symbol.
A data-1 is defined as a zero or one for the whole symbol duration. After every symbol the
base band phase is inverted. The duty cycle of two identical bits encoded should have a
nominal value of 50%± 5% [EPCGlobal 2005].

Figure 2.3: FM0 sequences, [EPCGlobal 2005]

6

Martin Zechleitner 2.2 Encoding

Figure 2.4: FM0 preamble, [EPCGlobal 2005]

Before the data transition starts the FM0 preamble (see figure 2.4) has to be sent. This
preamble can be extended by the reader with 12 leading encoded data-0 bits. The "v" in
figure 2.4 indicates a FM0 violation. At the end of a FM0 sequence the FM0 End-Of-Signaling
is added, a data-1 bit encoded [EPCGlobal 2005].

Miller

The Miller encoding scheme uses phase inversion for transferring data. A data-0 bit is en-
coded by no phase inversion. A data-1 bit is encoded by inverting the phase in the middle
of the symbol. Between two data-0 bits the phase is also inverted [EPCGlobal 2005].

Figure 2.5: Miller preamble, [EPCGlobal 2005]

7

Martin Zechleitner 2.2 Encoding

Figure 2.6: Miller sequences, [EPCGlobal 2005]

Depending on the modulation index determined by the Query command, declared in section
2.6.2, the Miller sequence contains two, four or eight sub carrier cycles per bit. The duty
cycle of two identical bits encoded should have a nominal value of 50% ± 5%. In figure 2.6
the Miller preamble is depicted. The reader can extend the preamble by sending a TRext
= 1 at the Query command. The extended preamble starts with 12 leading not encoded
symbols. After the extension the preamble as shown in figure 2.6 with TRext = 0 is sent.
At the end of a Miller encoded sequence an encoded data-1 bit is added [EPCGlobal 2005].

8

Martin Zechleitner 2.3 Timing

2.3 Timing

In the standard four times for the communication are defined by t1, t2, t3 and t4.

t1 is the most important time for a tag. It defines the time when a tag has to respond to
a command sent from the reader. To meet the requirements of the standard the maximal
value of t1 must not be exceeded as well as the minimal value of t1 must not be undercut.
t2 is the time a reader has to wait to send a new command after a response from the tag
has been received. In case of a non responding tag, the reader has to wait for the time t3 as
long as there is no Lock, Kill or Write command. For these commands the t3 is extended
since they write to non volatile memory (NVM) and this operation takes more time than
t3. More details for this case can be seen in the section 2.6.3. t4 is the minimum time a
reader needs to wait between two commands.

Equation 2.1 shows the composition of t1max. RTcal is the Receiver to Tag calibration
time and Tpri is the link period, defined by equation 2.3 where LF is the link frequency,
declared at equation 2.2. The term FT is the frequency tolerance which depends on the
used frequency and varies from ±4% to ±22%. To reduce the variables to the initial values
RTcal and TRcal the link frequency is defined by equation 2.2 where DR is the divide
ratio. The divide ratio is set by the Query command, declared in section 2.6.2, to 8 or
64/3. Equation 2.2 shows that the link frequency depends on the divide ratio and on TRcal

[EPCGlobal 2005].

t1max = max(RTcal, 10× Tpri × (1 + FT) + 2µs) (2.1)

LF =
DR

TRcal
(2.2)

Tpri =
1

LF
(2.3)

Assumed a tag has a response time of 40µs, the resulting maximum link frequency is
200 kHz for a divide ratio of 8 (see equation 2.4) and 533.3 kHz for a divide ratio of 64/3
(see equation 2.5) [EPCGlobal 2005].

LF =
DR

TRcal
=

8

40µs
= 200 kHz (2.4)

9

Martin Zechleitner 2.4 Memory

LF =
DR

TRcal
=

64
3

40µs
= 533.3 kHz (2.5)

Since the protocol has 12mandatory commands, the response time varies for every command.
The longest response time has to be taken into account to set the maximal RTcal. The
maximal link frequency is calculated in equation 2.2 and depends also on RTcal since TRcal

is a variable multiplication of RTcal. The data rate depends beside this on the encoding of
the data. At the FM0 encoding scheme the bit rate equals the link frequency, the bit rate
at Miller2 is half the link frequency, Miller4 uses LF

4 as bit rate and the bit rate at Miller8
is LF

8 [EPCGlobal 2005].

2.4 Memory

The standard describes no maximal or minimal memory amount, only the format of the
memory is given. The tag memory is divided into four memory banks.[EPCGlobal 2005]

Starting at the address 00h the memory bank RESERV ED includes a 16 bit password for
the kill command and a 16 bit access password. An explanation for the use of the passwords
is given in the commands section 2.6. The RESERV ED memory bank can be expanded
optionally.
The second memory bank is the EPC bank. Here the 16 bit Cyclic Redundancy Check (CRC-
16), Protocol Control (PC) and EPC is stored. The CRC-16 is the actual checksum. The PC
bits contain a definition of the length of the EPC and a numbering system identifier (NSI).
The NSI is an EPCglobal header as defined in the EPC Tag standard [EPCGlobal 2011].
Optional the NSI bits can be set zero. The EPC consists on the one hand of up to 31 words,
where one word equals 16 bits. On the other hand the minimum size of the EPC is zero
words.
In the TID memory bank an 8 bit class identifier, a 12 bit tag mask designer identifier and
a 12 bit tag model number is stored. The TID memory bank can be expanded optionally.
As fourth and last memory bank the USER bank contains user or application specific data
with no constraints from the protocol [EPCGlobal 2005].

All data is stored with the most significant bit (MSB) first. Logically every memory bank
begins at address zero (00h). Figure 2.7 depicts the memory map of the tag memory.

10

Martin Zechleitner 2.4 Memory

Figure 2.7: Memory map, [EPCGlobal 2005]

Every memory bank except the RESERV ED bank can be locked by the Lock command
2.6.3 which cause the tag backscattering an error code whether a data operation of a locked
memory bank is requested. For the RESERV ED memory bank the Lock command can
lock each of the two passwords separately [EPCGlobal 2005].

Beside the tag memory some other memory elements are needed for the protocol adherence.
Tags can be in four logical sessions, S0, S1, S2 and S3 with an inventoried flag each. Every
session’s inventoried flag can be set to session A or session B.
Another memory element is the selected flag. This flag is binary, so the reader can set or
reset a tag’s selected flag. Afterward the reader chooses all selected or all not selected tags.
For the anti collision routine a 16 bit slot counter affects the decision whether a tag should
reply to the reader or not. The slot counter is loaded with a 16 bit random number. To
make the anti collision more adaptable just 2Q bits of the random number get loaded into
the slot counter. The Q value consists of four bits which are set at the Query command
2.6.2. A Pseudo Random Number Generator (PRNG) is needed for the slot counter, the
handle and for replying random numbers. The data denoted as handle is the random number

11

Martin Zechleitner 2.5 States

which was generated at the last state transition from Acknowledged to Open or Secured
[EPCGlobal 2005].

2.5 States

The EPC protocol consists of seven states: Ready, Arbitrate, Reply, Acknowledged, Open,
Secured and Killed.
Ready is the first state and also the initial state which is entered when the tag is energized. A
tag state transition can only occur whether a valid command has been received successfully.
For anti collision in the inventory round the slot counter has to equal zero to enter a higher
state. A Query command 2.6.2 with matching parameters is needed to change the state
to Arbitrate or Reply. In case of a change to the state Arbitrate the internal slot counter
exceeds zero. Otherwise, in case of the internal slot counter equals zero, the state changes
to Reply. A state change from Arbitrate to Reply occurs again in case that a slot counter
equals zero. This can be achieved by one of the commands Query, Query Reply or Query
Adjust [EPCGlobal 2005].

In the Reply state the interrogator can send a valid Acknowledge command 2.6.2 to enter
the state Acknowledged. In case of an invalid Acknowledge command the state changes
back to Arbitrate. From Acknowledged every state except Killed is reachable. Whether an
Inventory command (see 2.6.2) is sent from the reader the tag cannot reach any higher
state than Acknowledged. The state of the tag will fall back to the inventory states Ready,
Arbitrate or Reply [EPCGlobal 2005].

With the command Request Random Number 2.6.3 the states Open or Secured can be
reached in case of the actual state is Acknowledged. In both cases the reader has to send
a valid random number for a valid command. By this precondition, the state changes
to Open whether the access password is not zero, also denoted as not empty. In case of
an empty access password the state changes to Secured. The states Open and Secured
enable the reader to send a Kill, Read or Write command to interact with the memory of
the tag. Only in the Secured state the lock bits of the internal memory can be modified.
Except this the tag acts in the Secured state the same as in the Open state [EPCGlobal 2005].

The last state is the Killed state. This state can be reached from the states Open and
Secured. To enter the Kill state the reader has to send the 32 bit kill password to the tag. In
the case a tag enters the Kill state the state remains the same and the tag does not interact
with the environment any more [EPCGlobal 2005].

12

Martin Zechleitner 2.6 Commands

2.6 Commands

Additionally to the 11 in the standard defined commands two custom commands were real-
ized, Test Read and Test Write. Every command has an individual command code. In the
standard four classes of encoded commands exist: 2 bit commands, 4 bit commands and 8

bit commands. According to the standard also 16 bit commands are possible whether they
are needed but these are not further used here [EPCGlobal 2005].
All the implemented commands are listed in table 2.1 with their specific command code
and command length.

Command Code (binary) Length (bits)
Query Reply 00 4
Acknowledge 01 18
Query 1000 22
Query Adjust 1001 9
Select 1010 >44
Reserved for future use 1011 -
Not Acknowledge 11000000 8
Request Random Number 11000001 40
Read 11000010 >57
Write 11000011 >58
Kill 11000100 59
Lock 11000101 60
Test Read 11100001 >57
Test Write 11100010 >58

Table 2.1: Command overview, [EPCGlobal 2005]

13

Martin Zechleitner 2.6 Commands

2.6.1 Select Command

The purpose of the Select command is to pick a certain amount of desired tags out of a
bunch of tags. After the Select command the reader can interact with the selected tag(s).
All other tag(s) ignore following inventory or access commands [EPCGlobal 2005].

Select

Before any inventory round starts the Select command can choose tags to respond. With the
Select command the session of the tag can be set to one of the four possible sessions. The
inventoried flag of the tag can be set or reset by the Select command. The Select command
sends a certain amount of data which is compared to the data in the internal memory of
the tag. In case of the sent data equals the data in the memory the action matches. By this
the above mentioned flags are set or reset in respect of table 2.3. In case of the truncate
bit is set the Acknowledge command 2.6.2 should respond shorter or individually. Beside
a set truncate bit, the target bits of the Select command need to be binary 100 and the
compared sent data has to end in the EPC memory bank to generate a valid truncate. The
whole Select command, as shown in table 2.2, is protected by a 16 bit CRC checksum. This
checksum starts at the first command bit and ends at the truncate bit [EPCGlobal 2005].
The Select command is listed in table 2.2 and table 2.3.

14

Martin Zechleitner 2.6 Commands

C
om

m
an

d
T
ar

ge
t

A
ct

io
n

M
em

B
an

k
P
oi

nt
er

L
en

gt
h

M
as

k
T
ru

n
ca

te
C

R
C

#
of

b
it

s
4

3
3

2
E
B
V

8
V
ar
ia
bl
e

1
16

d
es

cr
ip

ti
on

10
10

00
0:

In
ve
nt
or
ie
d
(S
0)

Se
e

00
:R

F
U

St
ar
ti
ng

M
as
k

M
as
k

0:
D
is
ab

le
00

1:
In
ve
nt
or
ie
d
(S
1)

T
ab

le
01

:E
P
C

M
as
k

le
ng

th
va
lu
e

tr
un

ca
te

01
0:

In
ve
nt
or
ie
d
(S
2)

2.
3

10
:T

ID
ad

dr
es
s

(b
it
s)

1:
E
na

bl
e

01
1:

In
ve
nt
or
ie
d
(S
3)

11
:U

se
r

tr
un

ca
te

10
0:

SL
10

1:
R
F
U

11
0:

R
F
U

11
1:

R
F
U

T
ab

le
2.
2:

T
he

Se
le
ct

co
m
m
an

d
in

de
ta
il,

[E
P
C
G
lo
ba

l2
00

5]

A
ct

io
n

M
at

ch
in

g
N
on

-M
at
ch
in
g

00
0

as
se
rt

SL
or

in
ve
nt
or
ie
d
->

A
de

as
se
rt

SL
or

in
ve
nt
or
ie
d
->

B
00

1
as
se
rt

SL
or

in
ve
nt
or
ie
d
->

A
do

no
th
in
g

01
0

do
no

th
in
g

de
as
se
rt

SL
or

in
ve
nt
or
ie
d
->

B
01

1
ne

ga
te

SL
or

(A
->

B
,B

->
A
)

do
no

th
in
g

10
0

de
as
se
rt

SL
or

in
ve
nt
or
ie
d
->

B
as
se
rt

SL
or

in
ve
nt
or
ie
d
->

A
10

1
de

as
se
rt

SL
or

in
ve
nt
or
ie
d
->

B
do

no
th
in
g

11
0

do
no

th
in
g

as
se
rt

SL
or

in
ve
nt
or
ie
d
->

A
11

1
do

no
th
in
g

ne
ga

te
SL

or
(A

->
B
,B

->
A
)

T
ab

le
2.
3:

T
ag

re
sp
on

se
to

A
ct
io
n
pa

ra
m
et
er
,[
E
P
C
G
lo
ba

l2
00

5]

15

Martin Zechleitner 2.6 Commands

2.6.2 Inventory Commands

In the inventory round the reader identifies tags which were selected by the Select command.
The inventory round is the period between successive Query commands. Since more than
one tag can be selected, the reader may detect and resolve a collision. In case of a non
resolvable collision the reader issues a Query Adjust command, a Query Reply command or
a Not Acknowledge command. With this commands the tags return to the Arbitrate state
and wait for a new command to reach the Reply state. By this procedure the reader can
communicate with the desired tags [EPCGlobal 2005].

Query

The Query command defines the data encoding type of the tag by the parameters DR, M
and TRext. For ensuring to modify the selected tag(s), the Select, Session and Target bits,
sent from the reader, has to match the internal flags of the tag. The Q value is for the anti
collision mechanism. The reader can send a Q value from 0 up to 15. This value is set to
the power of two and defines how many bits of the random number are loaded into the slot
counter. In case that the slot counter equals zero a random number is transmitted to the
reader and the state changes to Reply. The slot counter can be zero whether the Q value
is zero, the random number is zero or the valid bits of the random number are zero. By
this the tag response probability can be set from 20(1) to 2−15(0.000031). Depending on the
tags in the field of the reader the Q value can vary. Whether the reader assumes only a few
tags, a low Q value gives a faster response from the tags. On the contrary, in case of a huge
amount of tags is assumed in the field, a high Q value prevents collisions.
In the states Acknowledged, Open and Secured the Query command causes a tag to invert
the inventoried flag in case of the session parameter matches the session in the inventory
round [EPCGlobal 2005].
The Query command is listed in table 2.4 and table 2.5.

16

Martin Zechleitner 2.6 Commands

C
om

m
an

d
D

R
M

T
R

ex
t

S
el

S
es

si
on

T
ar

ge
t

Q
C

R
C

-5
#

of
b
it

s
4

1
2

1
2

2
1

4
5

d
es

cr
ip

ti
on

10
00

0:
D
R

=
8

00
:M

=
1

0:
N
o
pi
lo
t
to
ne

00
:A

ll
00

:S
0

0:
A

0-
15

1:
D
R

=
6
4 3

01
:M

=
2

1:
U
se

pi
lo
t
to
ne

01
:A

ll
01

:S
1

1:
B

10
:M

=
4

10
:~

SL
10

:S
2

11
:M

=
8

11
:S

L
11

:S
3

T
ab

le
2.
4:

Q
ue

ry
co
m
m
an

d
in

de
ta
il,

[E
P
C
G
lo
ba

l2
00

5]

R
es

p
on

se
#

of
b
it

s
16

d
es

cr
ip

ti
on

R
N
16

T
ab

le
2.
5:

Q
ue

ry
co
m
m
an

d
re
sp
on

se
,[
E
P
C
G
lo
ba

l2
00

5]

17

Martin Zechleitner 2.6 Commands

Query Adjust

The main purpose of the Query Adjust command is to adjust the Q value. The reader can
increment or decrement the number of valid bits of the random number in the slot counter.
At every new Query Adjust command the valid bits of a new random number are loaded into
the slot counter. Only whether the session the reader sent matches the session of the tag the
Query Adjust command is valid and evaluates the Up/Down bits. In case of the slot counter
equals zero in the inventory round, the tag changes its state to Reply and backscatters a
random number. On the other hand, the state remains the same whether the slot counter
does not equal zero.
In the states Acknowledged, Open and Secured the Query Adjust command causes a tag
to invert the inventoried flag in case of the session parameter matches the session in the
inventory round [EPCGlobal 2005].
The Query Adjust command is listed in table 2.6 and table 2.7.

Command Session UpDn
of bits 4 2 3

description 1001 00: S0 110: Q = Q + 1
01: S1 000: No change to Q
10: S2 011: Q = Q - 1
11: S3

Table 2.6: Query Adjust command in detail, [EPCGlobal 2005]

Response
of bits 16

description RN16

Table 2.7: Query Adjust command response, [EPCGlobal 2005]

Query Reply

The Query Reply command decrements the slot counter. While the Query Adjust modifies
the Q value, the Query Reply modifies the slot counter directly. By this the slot counter
gets affected bitwise. As at the Query Adjust command, the session sent from the reader
has to match the session bits of the tag to perform an action. In case of a slot counter which
equals zero after the decrementation in the inventory round, the tag backscatters a random
number and enters the state Reply. On the contrary the tag gives no response and does not
change its state.
In the states Acknowledged, Open and Secured the tag inverts the inventoried flags whether
the sessions parameter matches the session in the inventory round [EPCGlobal 2005].

18

Martin Zechleitner 2.6 Commands

Command Session
of bits 2 2

description 00 00: S0
01: S1
10: S2
11: S3

Table 2.8: Query Reply command in detail, [EPCGlobal 2005]

Response
of bits 16

description RN16

Table 2.9: Query Reply command response, [EPCGlobal 2005]

The Query Reply command is listed in table 2.8 and table ??.

Acknowledge

An Acknowledge command forces a tag to identify itself to the reader in case of it is selected.
To perform this the tag has to be in the Reply state or any state above (Acknowledged, Open
or Secured). The reader selects the tag by sending the random number which was backscat-
tered when the tag changed the state from Arbitrate to Reply. Since this random number
should be unique, only one tag shall reply to the Acknowledge command. In the states Ready
and Arbitrate an Acknowledge command has no effect on the tag. The Acknowledge com-
mand leads from the inventory round to the Access commands. Whether a tag is already
in the Open or Secured state the sent 16 bit value of the command has to be the handle
instead of the random number.
The backscattered data depends on the truncate bit from the Select command. In case of
the reader has sent a valid truncate the tag will respond with a truncated EPC. In this case
the first five bits of the reply data are defined as five zero bits. Then the EPC in the memory
after the truncate EPC is sent back. The response is protected by a CRC-16 checksum. In
case of a non truncated response the whole EPC with the PC bits is backscattered to the
reader. The length of the EPC is defined with the PC bits [EPCGlobal 2005].
The Acknowledge command is listed in table 2.10 and table 2.11.

Not Acknowledge

The command Not Acknowledge sets the tag back into the inventory round. At the states
Ready and Killed the state remains the same. In any other state the next state becomes
Arbitrate. By this the tag needs again a slot counter of zero to reach the Reply state which
is a precondition for any access commands [EPCGlobal 2005].

19

Martin Zechleitner 2.6 Commands

Command RN
of bits 2 16

description 01 Echoed RN16 or handle

Table 2.10: Acknowledge command in detail, [EPCGlobal 2005]

Response
of bits 21 to 528

description {PC, EPC, CRC16} or {000002, truncated EPC, CRC16 }

Table 2.11: Acknowledge command response, [EPCGlobal 2005]

The Not Acknowledge command is listed in table 2.12.

Command
of bits 8

description 11000000

Table 2.12: Not Acknowledge command in detail, [EPCGlobal 2005]

20

Martin Zechleitner 2.6 Commands

2.6.3 Access Commands

The access commands are executed by tags in the Secured or Open state. The Request
Random Number command can also be performed by tags in the Acknowledge state to
reach the states Open or Secured. Except Request Random Number all access commands
have to reply with a zero header in case of a successful command. In case of an error, the tag
backscatters a data-1 header followed by an error code, the handle and a CRC-16 checksum.
For the commands Write, Kill and Lock a tag replies with the extended preamble (TRext =
1) even whether the TRext parameter at the Query command is not set [EPCGlobal 2005].

Request Random Number

Tags in the Acknowledged state need a Request Random Number command with the last
backscattered random number to enter the Open or Secured state. Depending on the pass-
word in the memory of the tag, the next state is Secured in case of the access password equals
zero or Open whether the password does not equal zero. Since the Access command is not
implemented in the firmware, the only way to enter the Secured state is a zero access pass-
word. In the case that the random number equals the last from the tag sent random number
and the CRC-16 matches, the tag loads a new random number from the random number
generator, saves this random number as handle and backscatters the generated handle.
In the states Open and Secured the reader sends the handle instead of the last random
number from the inventory round. The new random number, which is backscattered from
the tag, will not be saved as new handle. This random number is needed for the commands
Kill and Write. In case of a Request Random Number command in the Open or Secured
state the state will not be modified [EPCGlobal 2005].
The Request Random Number command is listed in table 2.13 and table 2.14.

Command RN CRC16

of bits 8 16 16
description 11000001 Prior RN16 or handle

Table 2.13: Request Random Number command in detail, [EPCGlobal 2005]

RN CRC16

of bits 16 16
description New RN16 or handle

Table 2.14: Request Random Number command response, [EPCGlobal 2005]

Read

The Read command sends the read data back to the interrogator as long as it executes suc-
cessfully. The command reads from all memory banks of the NVM. A valid Read command

21

Martin Zechleitner 2.6 Commands

needs the actual handle of the tag and a valid CRC-16 checksum. Since all memory banks
start virtually at address zero, the MemBank parameter gives the offset for the physical
memory address. The parameter WordPtr is the word pointer which gives the exact start
address of the first word which should be read. To know how many words the command
should read out of the memory the WordCount value gives the quantity of required words.
The tag only replies to the command whether the Lock bits of the read memory are not
set to read-locked. An error is backscattered in case of the address of the required memory
words does not exist.
Since the Read command is an access command it can only be executed from tags in the
Open or Secured states [EPCGlobal 2005].
The Read command is listed in table 2.15 and table 2.16.

Command MemBank WordPtr WordCount RN CRC16

of bits 8 2 EBV 8 16 16
description 11000010 00: Reserved Starting Number of handle

01: EPC address words to
10: TID pointer read
11: User

Table 2.15: Read command in detail, [EPCGlobal 2005]

Header Memory Words RN CRC16

of bits 1 Variable 16 16
description 0 Data handle

Table 2.16: Read command response, [EPCGlobal 2005]

Write

Tags can write to all memory banks with the Write command. Whether the lock bits of
the memory indicate a write locked memory bank which should be written an error code is
backscattered. A valid Write command needs a preceding Request Random Number com-
mand. The data which should be written to the memory has to be xor-ed with the new
random number. Since writing data to the memory needs more time than T1, the maximal
response time for a Write command is defined by 20ms. Whether this time is exceeded, the
interrogator expects the Write command as not successful and continues with any command.
Since the Write command sends just one word to write, there is no word counter needed.
The Write command response has to start with the extended preamble. Since the Write
command is an access command it can only be executed from tags in the Open or Secured
states [EPCGlobal 2005].
The Write command is listed in table 2.17 and table 2.18.

22

Martin Zechleitner 2.6 Commands

Command MemBank WordPtr Data RN CRC16

of bits 8 2 EBV 16 16 16
description 11000011 00: Reserved Address RN16 xor handle

01: EPC pointer word to be
10: TID written
11: User

Table 2.17: Write command in detail, [EPCGlobal 2005]

Header RN CRC16

of bits 1 16 16
description 0 handle

Table 2.18: Write command response, [EPCGlobal 2005]

Kill

A successful Kill command sets the state of the tag to the Killed state where no more
commands get executed by the tag. By this the tag is permanently disabled. The whole
kill procedure consists of a Request Random Number command followed by the first Kill
command. After this again a Request Random Number command has to be sent followed
by the second Kill command. In case of all these commands succeed the tag is killed. Since
the kill password has 32 bit, the first Kill sends the most significant 16 bit of the password
and the second Kill command sends the least significant bits. The password bits get xor-ed
with the requested random number. Whether the Kill procedure is interrupted by any other
command, except a Query, the tag falls back into the Arbitrate state.
As response to the first Kill command the tag sends no header bit since the Kill procedure
has not been finished. At the second Kill command a logically zero header is the start of
the backscattered data. Tags respond to the first Kill command within the limit of T1 and
with a TRext as set from Query. At the second Kill command the response has to be sent
within 20ms and with the extended preamble. Only tags with a nonzero kill password can
be killed. In case of a kill password which equals zero the tag backscatters an error code as
response to the Kill command [EPCGlobal 2005].
The Kill command is listed in table 2.19 table 2.20 and table 2.21.

23

Martin Zechleitner 2.6 Commands

Command Password RFU RN CRC16

of bits 8 16 3 16 16
description 11000100 (1

2 kill password) xor RN16 0002 handle

Table 2.19: Kill command in detail, [EPCGlobal 2005]

RN CRC16

of bits 16 16
description handle

Table 2.20: Kill command response to the first Kill command, [EPCGlobal 2005]

Header RN CRC16

of bits 1 16 16
description 0 handle

Table 2.21: Kill command response to a successful Kill command, [EPCGlobal 2005]

Lock

Every memory bank can be locked individually by the lock bits. These lock bits are set by
the Lock command. The lock bits consist of two bits for the memory banks EPC, TID
and USER. Furthermore the kill password and the access password in the RESERV ED
memory bank have two lock bits each. These bits added together result in ten lock bits. The
Lock command consists of the payload followed by the handle and the CRC-16 checksum.
The payload has a mask and an action field. By the mask the Lock command can modify
each bit separately and leave all other bits unchanged. The action field describes the action
which should be taken in case of the mask is set. The action bits are listed in table 2.24.
The lock bits have different actions for the passwords and the other memory banks. Since
the other memory banks should be readable all the time, the action bits just configure the
write ability of these memory banks. For the passwords in the RESERV ED memory bank
also reading can be prohibited by the lock bits.
The combination of the two action bits, pwd-write and permalock, gives four different config-
urations (see table 2.24). Since the action bits can be skipped by the mask bits the resulting
lock bits can also be a combination of the existing bits of the tag with the payload bits. The
permalock bits cannot be changed whether they once were set to a logically one. In case of a
Lock command attempts to reset a permalock bits which is logically one to a logically zero
the tag backscatters an error.
The response of a tag to a Lock command starts with an extended preamble. Tags should
respond to a Lock command within 20ms. In case that this time has been exceeded the
interrogator can send any command [EPCGlobal 2005].
The Lock command is listed in table 2.22 table 2.23 and table 2.24.

24

Martin Zechleitner 2.6 Commands

C
om

m
an

d
P
ay

lo
ad

R
N

C
R

C
16

#
of

b
it

s
8

20
16

16
d
es

cr
ip

ti
on

11
00

01
01

M
as
k
an

d
A
ct
io
n
F
ie
ld
s

ha
nd

le

T
ab

le
2.
22

:K
ill

co
m
m
an

d
in

de
ta
il,

[E
P
C
G
lo
ba

l2
00

5]

H
ea

d
er

R
N

C
R

C
16

#
of

b
it

s
1

16
16

d
es

cr
ip

ti
on

0
ha

nd
le

T
ab

le
2.
23
:L

oc
k
co
m
m
an

d
re
sp
on

se
,[
E
P
C
G
lo
ba

l2
00

5]

pw
d
-w

ri
te

p
er

m
al

oc
k

D
es

cr
ip

ti
on

0
0

A
ss
oc
ia
te
d
m
em

or
y
ba

nk
is

w
ri
ta
bl
e
fr
om

ei
th
er

th
e
op

en
or

se
cu

re
d
st
at
es
.

0
1

A
ss
oc
ia
te
d
m
em

or
y
ba

nk
is

pe
rm

an
en
tl
y
w
ri
ta
bl
e
fr
om

ei
th
er

th
e
op

en
or

se
cu

re
d

st
at
es

an
d
m
ay

ne
ve
r
be

lo
ck
ed

.
1

0
A
ss
oc
ia
te
d
m
em

or
y
ba

nk
is

w
ri
ta
bl
e
fr
om

se
cu

re
d
st
at
e
bu

t
no

t
fr
om

th
e
op

en
st
at
e.

1
1

A
ss
oc
ia
te
d
m
em

or
y
ba

nk
is

no
t
w
ri
ta
bl
e
fr
om

an
y
st
at
es
.

pw
d

re
ad

/w
ri

te
p
er

m
al

oc
k

D
es

cr
ip

ti
on

0
0

A
ss
oc
ia
te
d
pa

ss
w
or
d
lo
ca
ti
on

is
re
ad

ab
le

an
d
w
ri
ta
bl
e
fr
om

ei
th
er

th
e
op

en
or

se
cu

re
d
st
at
es
.

0
1

A
ss
oc
ia
te
d
pa

ss
w
or
d
lo
ca
ti
on

is
pe

rm
an

en
tl
y
re
ad

ab
le

an
d
w
ri
ta
bl
e
fr
om

ei
th
er

th
e

op
en

or
se
cu

re
d
st
at
es

an
d
m
ay

ne
ve
r
be

lo
ck
ed
.

1
0

A
ss
oc
ia
te
d
pa

ss
w
or
d
lo
ca
ti
on

is
re
ad

ab
le

an
d
w
ri
ta
bl
e
fr
om

th
e
se
cu

re
d
st
at
e
bu

t
no

t
fr
om

th
e
op

en
st
at
e.

1
1

A
ss
oc
ia
te
d
pa

ss
w
or
d
lo
ca
ti
on

is
no

t
re
ad

ab
le

fr
om

an
y
st
at
e.

T
ab

le
2.
24
:L

oc
k
co
m
m
an

d
A
ct
io
n-
fie

ld
fu
nc

ti
on

al
it
y,

[E
P
C
G
lo
ba

l2
00

5]

25

Martin Zechleitner 2.6 Commands

2.6.4 Custom Commands

The EPC standard gives the developer the possibility to define custom commands. Since
the designed chip is still in the prototype status, the custom commands Test Read and Test
Write were implemented. These commands have the same payload as the in the standard
defined commands Read and Write. Nevertheless the lock bits are not checked at the Test
Read and Test Write commands and the handle does not need to match the tags handle.
The main advantage compared to the Read and Write commands defined by the standard
is the independence of the actual state of the tag. This enables the interrogator to read and
write to the memory at any time with no additional proceeding commands to reach the
states Open or Secured.

Test Read

Test Read has the same parameters as Read. The backscattered random number is generated
from the random number generator. The tag backscatters also a valid CRC-16 checksum.
Since Test Read can be executed from any state the handle is not compared to the internal
handle. There might be no internal handle in case that the tag is in the inventory round. To
be able to read and write all memory regions, the lock bits are ignored by the tag.
The Test Read command is listed in table 2.25 and table 2.26.

Command MemBank WordPtr WordCount RN CRC16

of bits 8 2 EBV 8 16 16
description 11000010 00: Reserved Starting Number of handle

01: EPC address words to
10: TID pointer read
11: User

Table 2.25: Test Read command in detail

Header Memory Words RN CRC16

of bits 1 Variable 16 16
description 0 Data handle

Table 2.26: Test Read command response

Test Write

Test Write has the same parameters as Write. The difference between Write and Test Write
is that the lock bits are not checked, the handle is not checked, the data is not xor-ed with
a random number and there is no need for a proceeding Random Number command.
The Test Write command is listed in table 2.27 and table 2.28.

26

Martin Zechleitner 2.7 Examples for a Communication Sequences

Command MemBank WordPtr Data RN CRC16

of bits 8 2 EBV 16 16 16
description 11000011 00: Reserved Address Word to be handle

01: EPC pointer written
10: TID
11: User

Table 2.27: Test Write command in detail

Header RN CRC16

of bits 1 16 16
description 0 handle

Table 2.28: Test Write command response

2.7 Examples for a Communication Sequences

To show how the protocol works in practice a simple communication example sequence is
provided here. All listed parameters in this example are decimal as long as there is no 0x

notation.

The first command in the example is a Query command with the parameters

DR = 0, M = 2, TRext = 1, SEL = 2, SESSION = 0, TARGET = 0, Q = 10

Since the parameters match a tag in the initial state, the slot counter is loaded with 10 bits
from the random number generator. The probability is about 0.1% that the slot counter
is loaded with all zeros because the random number generator has the same probability
of 50% for a zero and a one bit. Therefore, the tag might enter the Reply state or the
Arbitrate state. In the case that the slot counter was loaded with zero, the tag changes its
state to Reply. All transmitted data is saved in the internal memory of the tag.

Select is the next command sent in the example. Since the tag executes a Select in any state
except Killed the actual state is regardless. The Select parameters are:

TARGET = 4, ACTION = 0, MEMBANK = 1, POINTER = 2, LENGTH = 16,

MASK = 0xFEDC, TRUNCATE = 1

The EPC memory of the tag is filled up with the sequence 0xFEDCBA9876543210FEDC
and so on for 31 words. By the Select command a valid truncate is generated and the tag
gets selected although it would be selected anyway. The tag changes the state to Ready
since a new Select command has been sent.

27

Martin Zechleitner 2.7 Examples for a Communication Sequences

To start the inventory round again a new Query command is sent. This command has the
parameters:

DR = 0, M = 0, TRext = 1, SEL = 2, SESSION = 0, TARGET = 0, Q = 0

Since the Q value is zero, the tag loads its slot counter with zero and replies with a random
number. The internal state of the tag changes to Reply. All parameters are saved again in
the internal registers and the Random Access Memory (RAM) of the tag.

To demonstrate a longer inventory round, two Query Adjust commands are sent next. The
session has to be zero to match the session of the tag. To force the tag to increment the
Q value, the updown field holds the data 0x06. By this the Q value is incremented from
zero to one. Since the first generated random number is assumed for the first Query Adjust
as 0xCE3D the slot counter is loaded with 0x01 and the tags state changes from Reply
to Arbitrate. After the second Query Adjust the Q value is increased to two. This has
the consequence that the last two bits of a new random number are loaded into the slot
counter. Since the generated random number is 0x2ADE the slot counter is loaded with
0x02. The state of the tag remains in the Arbitrate state since the Query Adjust command
did not load the slot counter with zero.

The next step is decrementing the slot counter until it equals zero to enter again the Reply
state. Therefore the easiest way would be decrementing the Q value with Query Adjust
commands until it equals zero. By this the tag would be in the Reply state at least after
two Query Adjust commands. The Query Adjust command is executable from the states
Arbitrate and Reply and decrements the Q value, not the slot counter.
The other method is the more fine grained modification of the slot counter by the Query
Reply command. Query Reply decrements the slot counter only when the tag is in the
Arbitrate state. If the tag is already in the Reply state the internal state changes to
Arbitrate and the slot counter is not modified. As a result of decrementing the slot counter
the command Query Reply can be executed 215 times in the worst case to reach a slot
counter loaded with zero. On the other hand the Query Adjust command can be executed
15 times until a slot counter of zero is reached. In this example in the worst case after 2Q

(Q = 2) = 4 Query Reply commands the tag reaches the Reply state and backscatters
again a random number. Since the slot counter is loaded with 0x02 just two Query Reply
commands are required to reach the Reply state. After the first Query Reply command the
slot counter is decremented to 0x01 and the tag stays in the Arbitrate state. At the second
Query Reply command the slot counter is decremented again and equals finally zero. The
state changes to Reply and a random number is backscattered.

For the next step towards the access commands the command Acknowledge is needed.
The Acknowledge command sends the random number which the tag backscattered when

28

Martin Zechleitner 2.7 Examples for a Communication Sequences

its state changed from Arbitrate to Reply. Whether this random number does not match
the tag falls back to the state Arbitrate. In case of a matching random number the tag
replies with the for an Acknowledge command defined response. This response depends on
the truncate from the Select command. The tag changes the internal state from Reply to
Acknowledged.

The last step for reaching the access commands is a Request Random Number command.
To get a valid command the sent random number has to be equal to the last sent random
number from the tag. The tag stays in the state Acknowledged whether the random number
does not match. Depending on the access password the tag enters the Open or Secured state.

Until now no data from the memory has been modified by the reader. Since the states
Open or Secured are reached the Read and Write commands are now executable by the tag.
Furthermore, the lock bits can be modified and the tag can be killed. All these commands
are listed at the tables 2.15 to 2.24.

For a read the addressed memory has to be available and the correct handle needs to be
sent to the tag to achieve a valid command. The tag backscatters the read data to the
interrogator only in case of the command was valid, the memory was accessible and the
memory was not locked.
The Write command needs a previous Request Random Number command. The data which
should be written to the memory has to be xor-ed with the responded random number from
the tag. Here also the handle has to match the tags handle, the memory must not be locked
and the memory has to be available.
The Read and Write commands do not change the state of the tag as long as the tag is in
the Open or Secured state.

To modify the lock bits the Lock command has to be sent with valid parameters. Therefore
the Lock command has to send the handle and a valid payload protected by a CRC-16
checksum to the tag. Whether all these requirements are met the tag modifies the lock bits
and responds to the reader.

The last command is the Kill command. To Kill a tag the sequence of Request Random
Number - Kill - Request Random Number - Kill has to be sent with valid parameters.
Therefore, the Request Random Number command and the Kill command send the handle
to the tag. Furthermore, the Kill command has to send the valid kill password xor-ed with
the random number the tag backscattered to the tag. After this procedure the tag responds
a second time to the reader, changes its internal state to Kill and will not interact with any
reader any more.

29

Chapter 3: System Overview

This chapter provides an overview of the ASIG project. The main challenge of the digital
part of the ASIG is the combination of both HF and UHF communication paths provided
by the NFC and EPC block in figure 3.1, respectively.

SYSTEM OVERVIEW

MEMORY

SENSOR

INTERFACE

SPI

W
IS

H
B

O
N

E
 B

U
S

EPC

UHF

HF

NFC

Figure 3.1: System overview

30

Martin Zechleitner 3.1 EPC

3.1 EPC

The EPC block is responsible for the UHF communication and interacts with the MEMORY
block, the SPI block and the SENSOR INTERFACE block. There is no direct interaction be-
tween the NFC and the EPC block because both protocols operate alternatively at different
frequencies.
The EPC block consists of a low power Reduced Instruction Set Computing (RISC) con-
troller with peripheral hardware units and a Read Only Memory (ROM). The purpose of
the peripheral hardware units is on one hand to support the RISC controller with peripheral
functions (e.g. interrupts).
On the other hand some operations can be implemented much more efficiently directly in
hardware rather than in firmware. The program memory for the RISC controller is located
in the ROM and consists of 2048 words with a word size of 16 bits.

The most important hardware unit is the EPC Digital Frontend (DFE). Here the incoming
data bits are collected. A desired amount of bits is stored in a send buffer and an interrupt
is generated for the firmware to load the data. For encoding several Special Function
Registers (SFRs) can configure the different settings for the encoding mode of the EPC
DFE. Overall the EPC DFE is the interface between the firmware and the incoming and
outgoing data. The EPC DFE uses the TIMER unit as counter for enumerating the amount
of incoming bits and for the encoding scheme.

The INTERRUPT CONTROLLER unit handles the hardware interrupts and the internal
halt signal for the RISC controller.

The purpose of the CRC Linear Feedback Shift Register (LFSR) unit is generating a 5 bit
CRC checksum, a 16 bit CRC checksum and a pseudo random number. These modes can
be switched by special function registers.

3.2 NFC

The NFC block is responsible for the ISO 15693 and ISO/IEC 14443 protocols. All details
used in this system can be seen at [Odobasic 2012].

3.3 Memory

There are two memory blocks in the system, the NVM and the RAM. The NVM is the tag
memory with the logical structure as defined in figure 2.7.
The RAM is used as temporary buffer for data occurring during the execution of the EPC
protocol.
For simplicity behavioral models of the RAM and NVM were used in the simulations.

31

Martin Zechleitner 3.4 SPI

3.3.1 NVM

Since the used model of the NVM is a behavioral model, the read and write time can be set
by the VHDL code. To get realistic simulation results the read time is set to 1µs and the
write time is set to 3.6ms. The NVM consists of 80 data words with a size of 16 bits each.
The NVM should be realized as Electrically Erasable Programmable Read Only Memory
(EEPROM).

3.3.2 RAM

Since the RISC controller has insufficient memory to save internally all the data required for
the EPC protocol, the RAM provides an additional data storage. The RAM consists of 80
words, of which five words are used by the firmware. Assuming the RAM to be much faster
than the NVM the read and write times are set to 1ns each.

3.4 SPI

The Serial Peripheral Interface (SPI) provides an interface for miscellaneous master or slave
SPI devices. By the wires SLCK (synchronous clock), MOSI (master out slave in), MISO
(master in slave out) and SS (slave select) the four wire bus enables a fast full duplex
communication [Leens 2009].

3.5 Sensor Interface

The SENSOR INTERFACE acts as bridge between the internal WISHBONE BUS and the
analog senor bus. The analog sensor is able to acquire data like temperature.

3.6 Wishbone Bus

The internal bus is realized as WISHBONE BUS. By this a multi master bus connects all
the above mentioned components. The used WISHBONE BUS is a simpler, modified version
of the Wishbone B4 [OpenCores 2010].

32

Chapter 4: Controller Evaluation

The starting point for this thesis was an existing implementation of an EPC capable
transponder Application-specific Integrated Circuit (ASIC) realized by a Finite State
Machine (FSM) controller.

One major drawback of the FSM-based approach is that the FSM became quite inflexible
in terms of maintenance and expandability. Therefore a firmware-based solution with a
programmable controller as substitution for the FSM is required.
Basically, there are two potential processor architectures available, namely a lightweight 8

bit Application-specific Instruction-set Processor (ASIP) and more powerful 16 bit ASIP.

In the following the EPC-FSM and the two potential controller approaches for a firmware-
based solution are compared and evaluated in detail in terms of area, code density and power
consumption.

4.1 FSM-based EPC Implementation

Since the EPC protocol is relatively complex, an implementation of the protocol in a
hardware ASIC exhibits also a certain complexity. The FSM ASIC realizes the EPC
protocol in the area of about 9000 Gate Equivalents (GE) according to [Heyszl 2007].

As mentioned above the main disadvantage of the hardware implementation is the inflexibil-
ity in terms of maintenance and expandability. In the design the FSM is the main controlling
unit for the whole transponder. The FSM connected to its subunits by a broad interface of
control and data lines. Thus an adoption of its underlying VHDL code including all side-
effects can be very difficult and affect more than just a single unit. In the worst case it
could result in a change of the complete design. Due to the complexity of the whole ASIC
an overview of the system is hard to manage.
A benefit of the hardware FSM ASIC is the parallel data processing, which enables the ASIC
to operate faster than any firmware solution.
Overall the hardware ASIC is very fast and small but a special purpose hardware is hard to
expand and maintain.

33

Martin Zechleitner 4.2 RISC Controller

For the further development and extensions of the ASIG project an easy adaptable ASIC is
needed. To fulfill this requirements the EPC standard is implemented on a RISC controller.

4.2 RISC Controller

A RISC controller is a small, fast and simple processor. To reach these benefits the in-
struction set is reduced to the necessary operations of a specific application. The reduced
instruction set allows a faster decoding procedure and additionally leads to a simpler Arith-
metic and Logic Unit (ALU). With the simplicity the hardware effort decreases and the
power consumption drops in comparison to a usual controller.

“The main feature of the RISC processor is its ability to support single cycle
operation, meaning that the instruction is fetched from the instruction memory
at the maximum speed of the memory. [Sakthikumaran et al. 2011]”

With the single cycle operations an instruction is executed in one clock cycle after loading the
code from the memory. Processors with no single cycle mechanism preload their instructions
usually in a pipeline. In case of a jump in the program code, the pipe content is not valid
anymore and the processor has to wait until new instructions are loaded into the pipe. This
is the main benefit of a single cycle RISC controller compared to a pipelining processor.

4.3 Analysis of the Applicable Controller

The analysis is in respect to the area of the ASIPs and their instruction sets. For the
comparison a sample code was implemented on both ASIPs. In this code the most important
operations for the EPC protocol were used. Furthermore the power, the coding efficiency,
the tooling chain, the maintenance, the flexibility and the reuse of the code were taken into
account. Both ASIPs are realized in a Harvard architecture.

“A microprocessor utilizing Harvard Architecture is disclosed with a data space
for data storage, an instruction space for instruction storage, and a common
space implemented as a high-speed on-chip RAM that functions as a continuous
extension of both the data space and the instruction space, for the simultaneous
and flexible storage of data and instructions. [Yasui and Shimazu 1991]”

4.3.1 8 Bit Controller

The 8 bit RISC controller has an 8 bit data path, a 16 bit instruction word and a register
based architecture. For storing data in the core 16 internal 8 bit registers are provided.
The synthesis of the 8 bit processor gives an area of about 2400 GE. Due to the reduced
instructions of the 8 bit ASIP some useful commands are missing in the instruction set.
Complex projects might get unmanageable since the 8 bit processor is programmed with a
reduced set of assembler instructions.

34

Martin Zechleitner 4.4 Summary

4.3.2 16 Bit Controller

The 16 bit RISC controller has a 16 bit data path, a 12 bit instruction word and a stack
based architecture. For storing data two internal 16 bit working registers and a configurable
data stack is provided. Since this ASIP is highly configurable the synthesis gives an area
ranging from 2000 to 6000 GE. The 16 bit controller can be programmed in both C and
assembler. This gives the benefit of a clearly arranged code also for complex projects. On
the other hand the C instructions and the assembler instructions are not as optimized as in
case of the 8 bit controller. Therefore some benefits like a single cycle load and save are lost.

4.4 Summary

Especially for the EPC protocol the actual state, the parameters from the Query and Select
command, the handle and the random number are often used for comparing and evaluating.
Therefore these data should be in an internal memory to increase the speed of the operations.

Due to the stack architecture of the 16 bit processor the internal memory is reduced to two
16 bit registers, which sums up to 32 bit. Compared to the 16 bit ASIP, the 8 bit ASIP has
16 internal registers with 8 bit each which result in 128 bit internal memory, thus four times
the memory of the 16 bit ASIP. Since the memory of the 16 bit controller is less than the
memory of the 8 bit controller, the 16 bit ASIP needs to swap out the data mentioned above.
This leads to an additional effort of swapping data out and loading data back in again.
The 8 bit controller has the benefit of more internal memory and is able to save a majority
of the EPC data internally.

“One significant advantage of register-based computation models is that reg-
ister scheduling algorithms can place temporary variables in registers instead
of memory-based variables to improve code efficiency. A common criticisms of
stack-based execution is that variables can’t be kept on the stack without a lot
of wasted stack manipulation. [Koopman and Jr. 1992]”

In respect to the area, the comparison is not directly possible since the 16 bit controller
can be configured in different variations. Only an 8 bit version of the denoted 16 bit
ASIP would be smaller than the 8 bit microcontroller. Any other configuration of the
16 bit ASIP is larger than the 8 bit ASIP in terms of area. Due to the doubled in-
ternal data path this result is predictable. The single cycle mechanism gives the 8 bit
controller an advantage to the 16 bit ASIP with regard to efficiency and power consumption.

The fact that the 8 bit RISC controller is faster than the 16 bit ASIP gives an benefit for
the 8 bit ASIP in respect of timing.

35

Martin Zechleitner 4.4 Summary

The efficiency of the code is higher in the 8 bit RISC controller since here few very fast
assembler commands are provided. On the other hand the 16 bit RISC controller uses the C
libraries with lots of overhead and in assembler a larger instruction set than the 8 bit ASIP.
The usability, tooling and maintenance is better with the C compatible 16 bit controller
since the high level language C provides predefined libraries and enables a compact
programming style. Concerning flexibility, the 16 bit controller is in advantage over the 8

bit controller, since the C code is more adaptive. The reuse factor is kind of the same for
both controllers.

Overall the 8 bit controller has benefits in area, power, timing and code efficiency. On
the other hand the tooling, the maintenance and flexibility are advantages for the 16 bit
controller.

Table 4.1 sums up the comparison of the two controllers.

Benchmark 8 bit Controller 16 bit Controller
Area ++ +
Power +
Timing ++ -

Code Efficiency ++ -
Tooling - ++

Performance Scalability ++
Firmware Maintenance - ++
Firmware Flexibility - ++
Hardware Flexibility ++

Reuse + +

Table 4.1: Comparison of the two controllers

The comparison of some typical commands of the EPC, like loading and storing data, show,
that the 8 bit ASIP needs less operations than the 16 bit controller. The 8 bit ASIP is very
efficient at the examination of a single bit because a dedicated command is provided. Since
the evaluated operations occur very often in the implementation of the EPC standard,
already a difference of one or two instructions for an operation has a consequence. This
affects on the one hand the overall speed of the firmware and by this the minimal clock
frequencies and minimal power consumption. On the other hand the critical timing of the
EPC protocol can be easier met with less instructions.

The above mentioned facts resulted to the choice of the 8 bit controller. This was a tradeoff
between usability and efficiency. The elected solution provides a lower usability with a benefit
in efficiency.

36

Chapter 5: RTL Hardware Design

In this chapter the hardware units are explained in detail. Furthermore the applied tech-
niques to reduce power consumption are explained. The hardware units are peripheral for
the ASIP in order to expand the processor in terms of functionality. The combination of the
hardware units and the ASIP can be seen as an application specific microcontroller with
special features like hardware interrupts a CRC unit and a random number generator.

5.1 Low Power Design Principles

To reduce the power consumption of a digital system specific low power design techniques
can be applied. In this thesis especially the methods of dynamically scaling the operating
frequency as well as gating the clocks of registers have been used.

Basically the power consumption can be separated into two categories: static power con-
sumption and dynamic power consumption.
The static power consumption is generated by the leakage of every single transistor and
is therefore dependent on the used technology. In case of a used operating voltage in the
sub threshold region the static power consumption increases since the transistors cannot be
disabled properly. [Soeser 2012]

The dynamic power consumption adds together out of the cross current during the tran-
sistor switches and the current for loading the load capacitors. Since the cross current is
much smaller than the load current for the load capacitors, the main formula for the power
consumption relates on the load current for the load capacitors. [Soeser 2012]

P = fCLK × CL × V 2
DD × α [Soeser 2012] (5.1)

In equation 5.1 fCLK stands for the clock frequency, V 2
DD represents the used operating

voltage, CL is the load capacitance and α is the activity factor. Since the voltage and the
capacitance of the used transistors is given by the used technology the frequency and the
activity factor can be decreased for saving power. This is done by the frequency scaling and
clock gating mechanism, described below.

37

Martin Zechleitner 5.1 Low Power Design Principles

5.1.1 Frequency scaling

The frequency scaling is realized by an integer divide of the clock signal. This generated
signal is the enable signal for the hardware units. According to the necessity of a high speed
module or a low speed module a different divided clock signal is used as enable signal for
the hardware units.
With the frequency scaling every unit has the same clock which avoids synchronization
problems.

5.1.2 Clock Gating

In the traditional VHDL design the system clock is connected to every register. Since the
input value of a register may not change every clock cycle, the clock should be gated.
By this only an enabled register changes the output data. In any other case the clock
pin of the register is set to logically zero, thus it does not work and consumes no power.
[Emnett and Biegel 2000]
The clock gating is a tool based mechanism which is added automatically by the Design
Compiler from Synopsys [Design Compiler].

“Clock signals that are passed through some gate other than buffer and inverters
are called gated clocks. These clock signals will be under the control of gated
logic. Clock gating is used to turn off clock to some sections of design to save
power.” [Sadrusham]

The local clock gating mechanism can be realized in two different designs, the latch
free clock gating, figure 5.1 and the latch based clock gating, figure 5.2. The simple
latch free clock gating uses an AND or OR gate to generate the gated clock. With this
design the enable signal must not change during a clock cycle to generate a stable gated clock.

In case of a non constant enable signal during one clock cycle the latch based clock gating
resolves the problem with the enable signal. The latch based clock gating uses a latch to
synchronize the enable signal with the clock. With the latch the enable signal is stored at
the positive edge of the clock. [Emnett and Biegel 2000]
To guarantee that the enable signal of the positive edge of the clock is used, the latch based
clock gating is applied in this work.

38

Martin Zechleitner 5.2 Overview

Figure 5.1: Latch free clock gating

Figure 5.2: Latch based clock gating

5.2 Overview

An overview of the implemented system is given at figure 5.3. On the top side of the internal
wishbone bus all peripheral hardware units are placed. The 8 bit controller is the core unit
which processes the data provided by the hardware units. On the left side of the illustration
the digital data stream from and to the analog part of the system is indicated. On the right
side the internal wishbone bus connects the EPC part to the whole ASIG (see 3.1).

39

Martin Zechleitner 5.2 Overview

R
X

 B
it

E
P

C

S
Y

S
T

E
M

R
X

 B
it

A
n

a
lo

g
 C

o
n

tr
o

l

SLAVE

SLAVE

D
e

c
o

d
e

 B
it
s

C
R

C
L

F
S

R

SLAVE

8
 B

it

C
o

n
tr

o
lle

r
MASTER

R
fE

n
v
e
lo

p
e

E
n

c
o

d
e

F
ra

m
e

s

D
e

c
o

d
e

F
ra

m
e

s

SLAVE

G
P

 T
im

e
r

SLAVE

In
te

rr
u

p
t

C
o

n
tr

o
lle

r

SLAVE

B
ri
d

g
e

SLAVE

S
la

v
e

 s
id

e

M
a

s
te

r
s
id

e

In
te

rn
a

l
W

is
h

b
o

n
e

 B
u

s

E
x
te

rn
a

l

W
is

h
b

o
n

e

B
u

s

E
P

C

D
F

E

A
n

a
lo

g

F
ro

n
te

n
d

R
fE

n
v
e
lo

p
e

T
X

 B
it

L
U

T

SLAVE

M
o
d
u
la

te
d

_
o
u
tp

u
t

Figure 5.3: EPC system overview

40

Martin Zechleitner 5.3 Component Description

5.3 Component Description

Every hardware unit depicted at figure 5.3 is described in detail below. The firmware code
of the 8 bit controller is declared in the next chapter.

5.3.1 EPC DFE

The EPC DFE module, depicted in figure 5.4, decodes all received data bits and encodes
all sent data. Special function registers, set from the 8 bit controller, control the EPC DFE.

The input data is delivered by Decode Bits in terms of decoded bits. These bits are collected
in a shift register which is reused for the sending mechanism. The decision how many bits
should be collected is made by the controller.

After the demanded amount of bits is received, a wake-up event for the ASIP is generated.
Since the controller does not immediately load the received data, the data is stored in
an 8 bit register until the next frame is decoded. The special case of a Query Reply, the
only command with less than 8 bits, is indicated with a special interrupt which is declared
below. By this procedure a wake-up event for the controller is generated when the output
register is filled up with already 4 bits.

For the encoding the ASIP sends the current encoding parameters to the EPC DFE. The
EPC DFE has a send buffer with 3x8 bit. Since the NVM and the RAM are built out of 16
bit blocks, two 8 bit buffers are needed for one block of data. The third 8 bit buffer ensures
that the EPC DFE unit does not run out of data to send.

Generally there are three counters in the EPC DFE: timer0, timer1 and the counter.
Timer1 is used for decoding because this counter has the ability of an external clock. The
external clock is needed since the input data is PIE encoded and has no fixed interval
thus. All the other counters are used for encoding, the major part of the EPC DFE. There
are several helpers to fulfill all the demanded functions like sending a preamble and the
different encoding schemes.

The link frequency is generated by counting the clock cycles with timer0 until a certain
value is reached. The calculation for the amount of required clock cycles is a formula based
on a Mat-Lab R© [MATLAB 2010] calculation, done in [Klamminger 2013]. In case of an
odd amount of needed clock cycles, an additional clock cycle is added to reach the desired
link frequency.

The timer1 counts the number of link frequency periods. For the different encoding
schemes, FM0, Miller2, Miller4, Miller8, the counter is used. This counter enumerates the

41

Martin Zechleitner 5.3 Component Description

RX Bits
Shift Register

S
 F

 R

 Wishbone bus

write

counter

read

config

event_o

reg read

nextBit

EPC DFE

SLAVE

Interrupt Event

clk

clk

clk

GP Timer

Buffer

Buffer_2

load_buffer

TX Bits

CRC LFSR

Encode Controller
Encode Logic

bit_s

bit_s

Serial_bit_o

Figure 5.4: EPC DFE

link frequency periods needed for the generation of a symbol of the different encoding
functions.

The extended preamble for encoded data is the same for FM0, Miller2, Miller4 and
Miller8. The standard preamble is hard-coded in the hardware since the FM0 preamble
includes an violation which cannot be created with the FM0 encoding scheme declared below.

For the encoding, an FM0 symbol duration equals the duration of one period of the link
frequency.
An FM0 encoded output signal can be represented by a zero, a one, the link frequency or
the negated link frequency for the duration of one symbol. The decision for the output
is a combination of the bit which has to be encoded and the status of the sending signal
(inverted or not inverted).

To encode a logically zero bit, the link frequency or the negated link frequency is sent.
The encoding of a logically one is realized by sending a one or zero for the whole symbol
duration. The status of the signal before the bit is encoded decides which of the two

42

Martin Zechleitner 5.3 Component Description

mentioned cases are chosen. At the transition of two bits the FM0 encoded signal has to
toggle. Since the preamble as well as the extended preamble is a constant sequence the first
bit after the preamble and every further bit is defined by this rules. An encoded dummy
one has to be sent at the end of every End-of-Signaling.

The symbol duration for the Miller encoding scheme depends on the modulation index. For
Miller2 two link frequency cycles result in one symbol duration. In Miller4 four link frequency
periods are used for one symbol duration. Miller8 uses eight link frequency periods for one
symbol.
For the encoding mechanism a signal toggles in the middle of an encoded bit because at
the Miller encoding a phase inversion can occur at the start of a symbol or in the middle of
a symbol. With the toggle signal it is known whether there is a transition of two bits or the
encoding is in the middle of a symbol. To encode the signal in Miller, the link frequency
has to be inverted at a transition of two logical zero bits.

Otherwise the link frequency stays the same at a transition of two bits. In the middle of a
bit the link frequency is inverted if the bit to encode is a logical one. In any other case the
link frequency, inverted or not inverted, remains the same for the encoded signal.
After an inversion of the link frequency the link frequency stays inverted until the next
inversion occurs which results again to a non-inverted link frequency. An encoded dummy
one has to be sent at the end of every End-of-Signaling.

There are several interrupt signals in the EPC DFE to wake up the controller.
Before a new command is sent, the EPC DFE gets a synchronous reset. After a synchronous
reset for the EPC DFE, the ASIP is woken up to save the random number because the
CRC registers will be used for calculating the CRC over the incoming bits.

Wake-up decode and wake-up encode are set in case of the decoding of a frame has finished
or the encoding needs more data. Since all commands except Query Reply are longer than
8 bit the decoder collects as default 8 bit and sends an interrupt to the ASIP. The firmware
decides depending on the received data after how many bits the decoder should generate
the next interrupt.

In the special case of a Query Reply an additional interrupt is generated since the 8 bit are
not reached to wake up the firmware. The hardware compares after 2 bits the received bits
against the Query Reply sequence. In case of a match the decode interrupt is set after the
whole 4 bits of the Query Reply command are received. In the other case the default 8 bit
data has to be collected before an interrupt is generated.

43

Martin Zechleitner 5.3 Component Description

For the wake-up encode signal a toggle value toggles at every 8 bit sent. A wake-up event
is generated when the toggle signal equals one. Since the initial value of the toggle signal is
zero, the first wake-up is generated after the first 8 bits were encoded.

For the encoding mechanism the first 16 bit data to encode are loaded from the firmware
into the shift register and the buffer2. When the EPC DFE wakes up the controller, the
data of the shift register has been encoded and the data from buffer2 is loaded into the shift
register. Both buffers, buffer and buffer2, are empty, so the controller can fill up the buffers.

From now on after each 16 bits sent the controller is woken up to refill buffer and buffer2.
While the EPC DFE generates the interrupt, still 8 bits are left in the shift register as a
buffer. With this procedure there is always data in the shift registers to ensure that the
EPC DFE delivers a continuous data stream.

The wake-up encode interrupt is also set in case of all the transmission has finished. This
interrupt is generated by internal hardware flags.

The last wake-up signal from the EPC DFE is for the Query command to change the CRC
unit. In case of a detected TRcal, which indicates a Query command, the ASIP needs to
be notified to change the settings of the CRC LSFR unit. The CRC calculation is set by
default to calculate a CRC16. In case of a received Query command the CRC consists of 5
bits and the CRC LSFR has to be notified thus.

5.3.2 Interrupt Controller

Because of the 8 bit ASIP does not support interrupts directly, a dedicated interrupt
controller unit was designed to handle wake-up events. The Interrupt mechanism consists
of two parts: the Interrupt Controller and the RISC Control.

The Interrupt Controller is connected with all the interrupt generating modules. Whether
an interrupt occurs, it will be saved in the Interrupt Controller. The Interrupt Controller
has a internal register with a capacity of eight interrupt sources. Each interrupt source can
be enabled or disabled individually via SFRs controlled by firmware. A wake-up signal is
sent to the RISC Control unit in case of an activated interrupt sources fires an interrupt
event. An interrupt which is not selected is ignored by the Interrupt Controller until it is
enabled by firmware.

An occurred interrupt has to be cleared by the firmware by means of SFRs. The Interrupt
Controller can handle four interrupts simultaneously. This feature is required when the 8

bit ASIP is woken up after executing an EPC command. In this case a new command can
be sent, a TRcal can be detected, the random number could be saved or a delimiter is sent.

44

Martin Zechleitner 5.3 Component Description

At every particular of the just mentioned possibilities an interrupt is generated to wake up
the ASIP.

Figure 5.5: Interrupt Controller

The RISC control interacts with the Interrupt Controller and the controller. The halt signal
of the ASIP is controlled by the RISC Control unit. In case of the controller is halted, the
RISC control waits for an interrupt from the Interrupt Controller. The controller sends a
request to halt to the RISC Control unit to wait for an interrupt.

45

Martin Zechleitner 5.3 Component Description

Figure 5.6: RISC Control

5.3.3 CRC LFSR

To generate a pseudo random number a linear feedback shift register is used. Since the
CRC16 and the PRNG needs a 16 bit shift register, these units were combined in the CRC
LFSR module.

In a linear feedback shift register the data is shifted through the registers every clock cycle.
As input for the first register the data of the output from the last register is provided.
Whether the polynomial of the LFSR is set for a register, the input data of a register is
xor-ed with the output bit of the LFSR.

In case of the polynomial parameter of a register is not set, the register shifts the data
forward. The complexity is created by the XOR function with the output. Every LFSR has
a period after which the generated pseudo random numbers are repeated. The period of a
LFSR is described as followed:

“It is well known that a primitive polynomial of degree d produces a periodic
sequence of distinct states of length (period) 2d − 1, whereas an irreducible
(but not primitive) polynomial of degree d produces 2d−1

p periodic sequences
of p distinct states each, where p is the period of the irreducible polynomial.”
[Udar and Kagaris 2007]

46

Martin Zechleitner 5.3 Component Description

The maximal period for a 16 bit LFSR is given with 216 − 1. With a primitive polyno-
mial 65535 pseudo random numbers can be generated before a random number occurs twice.

The polynomial of the LFSR can be set by the firmware to generate an application specific
LFSR. All calculated pseudo random numbers and CRC calculations are done in the CRC
LFSR unit. For the CRC calculation the EPC DFE forwards the data to the CRC LSFR
unit. The CRC LSFR unit calculates the CRC and compares the output to the results
defined in the standard. In case of a match of these values, the CRC LFSR unit sends the
ASIP a signal that indicates a valid CRC.

Since a LFSR is deterministic, the generated number cannot be classified as random
number, they are pseudo random numbers. The pseudo random numbers are generated in
between the CRC calculations.

Figure 5.7 shows the internal structure of the CRC LFSR. The main design looks like a
CRC16 en-/decoder. However the CRC LFSR has additionally an XOR and a multiplexer
at the data input of every register. This additional hardware enables the CRC LFSR to
switch between the different modes: CRC16, CRC5 and LFSR. Furthermore the polynomial
for the CRC and LSFR can be set individually since the multiplexer can select the XOR or
the predecessor signal as input of the register. In case of a CRC5 checksum just the first 5
bits of the CRC LFSR are valid.

The different settings for the possibilities of the CRC LFSR are set from the firmware, the
EPC DFE and the CRC LFSR unit. Therefore some additional hardware controls the CRC
LFSR to set the needed input values and to deliver the desired output.

47

Martin Zechleitner 5.3 Component Description

C
L

K

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

D
Q

S
E

T

C
R

C
 L

F
S

R
 O

U
T

P
R

E
S

E
T

D
A

T
A

P
O

L
Y

N
O

M

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

Figure 5.7: CRC LFSR Control

48

Martin Zechleitner 5.3 Component Description

5.3.4 General Purpose Timer

The General Purpose Timer provides two timer which are used at the EPC DFE. Each
timer can be configured as a single or a continuous counter. The clock of both timers can
be prescaled by the factor 2 to 256 in power of two steps. Furthermore Timer1 can count
an external event or the overflow of Timer0. The timers can be controlled by the ASIP with
SFRs and are hardwired to the EPC DFE.

5.3.5 Decode Bits

The unit Decode Bits is reused from the former implementation of [Heyszl 2007] since the
code is very efficient. Furthermore the decoding of a bit is quite timing critical, so Decode
Bits should be realized in hardware. Decode Bits counts the duration of the high phase and
the low phase of the data-0 sequence in clock cycles.
The values RTcal and TRcal which occur in the preamble are also determined in clock
cycles. By comparing the incoming data to the duration of the data-0 sequence and the
RTcal sequence, Decode Bits is able to estimate the value of a bit.

The delimiter is the first element of the preamble from the reader to the tag. To handle the
firmware properly, an interrupt is generated after every received delimiter.
In case of any wrong sent data from the reader, the firmware aborts the actual command
and waits for the next delimiter. With the delimiter interrupt the firmware is aware that a
new command has been sent. The purpose of the delimiter interrupt is to avoid the 8 bit
ASIP to reach any undesired state.

5.3.6 LUT

The look-up table (LUT) unit is required to calculate the operation 2x − 1 directly in
hardware. In consideration of the computational effort for this operation directly in firmware
(ASIP does not support barrel-shifter commands), a hardware LUT was chosen to implement
this functionality more efficiently.

5.3.7 Bridge

The hardware unit Bridge manages the access to the NVM and the RAM. Since these
components have a word size of 16 bit the Bridge translates the 2 times 8 bit values from
the controller to the required devices.

The Bridge provides an indirect addressing and a memory map mode. For the indirect
addressing the address has to be sent for every access. Since the read and especially the
write operations may take more time than a single cycle, the Bridge unit generates an
interrupt when the access has finished.

49

Martin Zechleitner 5.3 Component Description

5.3.8 Analog Control

The module Analog Control builds the interface between the digital and analog part of the
ASIC. For the EPC DFE the Analog Control switches the analog modulator and demodu-
lator on and off. The Analog Control units is controlled by the firmware via SFRs.

50

Chapter 6: Firmware

In this chapter the firmware of the 8 bit controller is explained. The general structure of the
code and the internal 16 registers is given. Also the handling of the different interrupts is
declared. To show how the firmware is programmed a full Read command is explained as an
example. At the end of this chapter the assembler code is analyzed.

6.1 General Structure

The firmware is written with a reduced instruction set of assembler commands. At the
beginning of the firmware file, constants are defined for the readability of the code. The
command decoding is the first programmed part of the firmware. Afterwards all commands
are implemented and in the last part of the firmware some helper functions are located.

The internal registers (16 x 8 bit) are used for calculating and storing the input data. To
save the actual EPC command, register r0 stores the command. Since the EPC state has
to be proven several times, the register r1 holds the state of the firmware. The registers r2
to r11 are registers with no specific purpose and are used as temporary registers during
the whole code. In the registers r12 and r13 the data from a Query command and the SE-
LECT command is stored. In the last two registers r14 and r15, the random number is saved.

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
r12 DR M TRext Q
r13 Target0 Target1 Target2 Target3 Error Select Session

Table 6.1: Register 12 and register 13

51

Martin Zechleitner 6.1 General Structure

6.1.1 Interrupts

The 8 bit controller can be halted by the hardware and woken up again by an interrupt.
Therefore several interrupts sources are provided:

EPC DFE, TRcal, Save RN, Delimiter, Bridge

All interrupts are generated by hardware units, namely by the EPC DFE, the Bridge and
Decode Bits, as described at section 5.3.

The interrupts for encoding are used for sending additional data to the EPC DFE unit or
for finishing the encoding procedure. One of the four possible interrupts to wake up the 8

bit ASIP after finishing a command is the decoding interrupt. This interrupt signals the
firmware that a new frame is ready to load.

Besides this, the other three interrupts are: the TRcal interrupt for changing the CRC
LSFR module to CRC5, the Save RN interrupt to save the random number before the CRC
is calculated and the Delimiter interrupt to be aware of a new command. To indicate a
finished read or write operation, an interrupt is generated from the Bridge.

6.1.2 Application Flow of a Command

In this section the decoding of a command is declared. Furthermore the flow of an executed
command is shown with the example of a Read command.

Decoding

The decoding of a command starts with a hardware interrupt since the ASIP is in the halt
state. For every command the Save RN interrupt is generated before the actual command
code is received. The generated random number needs to be saved because the CRC unit
has to calculate the CRC over all received bits.

Afterward the decoding unit of the EPC DFE is enabled. In the case of a TRcal interrupt,
the CRC unit is set to calculate the CRC5, else the CRC16 is calculated. The firmware
listens to a delimiter interrupt whether the execution of a command aborts although the
reader is still sending data. In this case only a new delimiter can wake up the ASIP to
decode a new command. After all these possible interrupts the controller gets into the halt
state and waits for the EPC DFE decoder to collect the incoming bits.

At the next wake-up from the hardware the new data is loaded from the shift register of
the EPC DFE. The loaded data can be a 2 bit, a 4 bit or an 8 bit command. Certain bits
of the data are compared to evaluate the command code. After the command decoding, a

52

Martin Zechleitner 6.1 General Structure

very fast conclusion whether a response should be sent or not is required. This is done in
the code for every command.

Execute Command

Roughly there are a few steps which are done for every command:

• Prove the exit states

• Load and format the data

• Evaluate the data, load additional data

• Change the internal data when required

• Send a response when required

• Wait for the next command

As an example for this steps, the sequence of a Read command is declared in detail below.

Prove the exit states

The read command proves first of all exit conditions since the long command code provides
enough computation time until the next received data is decoded by the EPC DFE. In the
states Ready, Arbitrate, Reply, Acknowledge and Killed the Read command is aborted.

Load the data

The received data consists of the data field membank inclusive the first the Extensible Bit
Vectors (EBV). Since the first 8 bits after the command code are no coherent data field,
the bits are separated by logical OR and AND functions. Furthermore, the separated data
is stored in different registers. There is no other effective way to handle this problem since
the decoding of a command takes a certain amount of time.

After this time the decoder in the EPC DFE unit might have already decoded more bits than
the first data field requires. In this case the decoder in the EPC DFE unit cannot deliver
only the first data field since additional bits are already added. To solve this problem the
bits are separated in firmware since the commands have no uniformly ordered data fields.
The separation in firmware means further to leave the frame size for the decoder in the
EPC DFE unit unchanged at the default value of 8. At the first possible time the offset
of the data is removed by ordering a certain amount of bits from the decoder in the EPC
DFE.

In the case of a Read command, after loading the first 8 bits the decoder is instructed to
deliver 2 bits to compensate the offset generated by the 2 bit data field membank. Every

53

Martin Zechleitner 6.1 General Structure

parameter of the Read command after the offset compensation is at least integral dividable
by 8 and the EPC DFE decoder can deliver 8 bit frames to the firmware.

Evaluate the data, load additional data

After loading the first EBV of the word pointer, the data has to be evaluated whether
another EVB is sent. Since the used memory is addressable with 7 bit, there is no need of an
additional EBV. Nevertheless the code supports up to two EBV values. The relevant EBV
is stored in r7 if there is only one EBV, otherwise r7 and r6 are used.
All the other data is loaded after the EBV, namely word count and handle. Before the CRC
is evaluated, the handle is loaded from the RAM and compared to the received handle value.
The command exits in case of a non-matching handle. After the handle the lock bits in the
NVM are evaluated. The lock bits are located at the address 0x4F, the last word of the
NVM. These lock bits are evaluated according to the readability of the requested memory
region.
The data loading and data evaluating sequences are often interleaved as described above.
This is done with the purpose of a faster response since the time t1 starts when the last bit
has been sent from the reader. Therefore all calculations which can be done during the data
is being received shortens the response time.
From now on also the Test Read command has the same code than the Read command.

The offset of the membank is added to the received word pointer. Now the physical address
of the data to read has been figured out. To achieve a valid Read command the CRC from
the command has to be checked. The CRC LFSR has been set at the beginning of the
command to the CRC16 mode to compute the CRC over the sent data. Assuming the sent
CRC to be valid, the CRC LSFR unit sends a CRC-OK signal.

Change the internal data when required

Since the Read command just reads data, no internal data change is required.

Send a response when required

In the valid Read command the first data word is loaded from the NVM. The parameters
of the encoder in the EPC DFE are set to the values which are stored in the register r12,
without the Q value. Now the loaded data is sent to the shift register and buffer2 of the
encoder in the EPC DFE unit. To start the encoder, the enable signal, load shift register
signal and the add header signal are set. All interrupts except the EPC DFE interrupt
are turned off. To be prepared for the following interrupt the next data of the NVM is
loaded. After this the firmware is halted to wait for the encoder to finish the preamble. The
generated interrupt is cleared and the read loop begins.

54

Martin Zechleitner 6.1 General Structure

The read loop starts by setting the state of the controller to halt because the first 16 bits
have not been encoded yet. At the wake-up the first 8 bit data has been encoded and 8 bits
are still in the buffer of EPC DFE. Since these 8 bit are already loaded into the internal
shift register of the encoder, the registers buffer and buffer2 can be filled up again. To
perform this the preloaded data is stored in the SFR of the buffers. Before the firmware is
set to halt again, the next data is loaded from the NVM. Whether the word counter, which
is decreased in every loop iteration, equals to zero, the read loop exits. In the other case of
a non-zero word counter the read loop starts again.

After finishing the loop the EPC DFE interrupt is cleared and the handle is loaded from
the RAM. Then the encode buffers get filled with the handle and the interrupt is set to
EPC DFE. The interrupt is cleared again and the controller is halted. After waking up the
controller, the interrupt has to be cleared and the parameter for the CRC and a flag to
signal a finished encoding are sent to the encoder. The ASIP is halted again to waits for the
CRC to be sent.

Wait for the next command

The interrupt is cleared and at the next wake-up the CRC has been encoded. Now the
decoder in the EPC DFE is activated for decoding the next command. The random number
generator is activated and the controller can wait now for the next command from the EPC
DFE.

55

Martin Zechleitner 6.2 Code Analysis

6.2 Code Analysis

In table 6.2 all used commands are listed with their absolute quantity and the percental
occurrence.
Figure 6.1 illustrates graphically the amount of the used commands. It can be seen that the
mov and st commands are nearly 50% of the whole firmware code. The store commands are
mostly used for controlling the hardware units by their SFRs. For the protocol adherence
the data has to be compared. To achieve the comparison the data has to be in the correct
format which is generated with the mov command. Furthermore the controlling of the
hardware is triggered by the mov command.

The machine code instructions for the firmware consist of 2055 lines of code. The hardware
is controlled by 538 commands affecting the SFRs, which equals to 26, 1% of the whole
firmware code.
These 538 SFR commands consist of: 202 commands for the Bridge, 209 commands for the
Interrupt Controller, 12 commands for the Look Up Table, 171 commands for the EPC
DFE and 55 commands for the CRC LFSR. This shows that the Bridge, the Interrupt
Controller and the EPC DFE are the most used hardware units.

Command Numeric occurrence Percental occurrence
add 33 1,61
and 111 5,40
call 108 5,26
jeq 169 8,22
jmp 122 5,94
jne 59 2,87
ld 126 6,13
mov 537 26,13
movc 0 0
not 11 0,53
or 40 1,95
ret 8 0,39
rol 69 3,36
seqb 8 0,39
seq 212 10,32
sl 0 0
slt 7 0,34
st 412 20,05
sub 17 0,83
xor 6 0,29

Table 6.2: Command analysis

56

Martin Zechleitner 6.3 Time Analysis

Figure 6.1: Command occurrence

6.3 Time Analysis

Here the processing time of a read cycle, as described in 6.1.2, is analyzed. In this example
16 bit are loaded from the NVM and backscattered to the interrogator. The tag has a clock
frequency of 2.4MHz and transmission values as follows:

Tari : 12.5µs

Data1 : 1.5× Tari

RTcal : 2.5× Tari

TRcal : 4× Tari

PW : 0.5

The clock period is given with the reciprocal value of clock frequency which results
in 0.416̇µs. Since the controller is enabled at every second clock cycle, an assembler
command is executed in 0.83̇µs. This would correspond to clock frequency of 1.2MHz.
In this example the divide ratio is zero, the encoding is set to Miller4 and TRext is activated.

57

Martin Zechleitner 6.3 Time Analysis

Figure 6.2: Time analyses for encoding 16 bit

Figure 6.2 shows the overall time which is needed to encode 16 bit, 399.36µs. Divided by
16, the time for encoding one bit in Miller4 with the above mentioned parameters takes
24.96µs. This gives an output bandwidth of 40.064 Kbit

sec and corresponds to a link frequency
of 160.256KHz. Since the Miller4 encoding is a very slow encoding scheme, the ASIP is
most of the time waiting for the EPC DFE to encode the data.

This can also be seen in figure 6.2. The backscattered data for this example can be seen at
r10 and r11 with the values 0x0D, 0x01. In the register r8 the length of the read data is
saved in words, register r7 holds the NMV address of the read data.
Figure 6.3 shows the time when the controller is busy during one iteration of the read loop.
As figure 6.2 shows, most of the time of a read iteration the controller is idling. The execution
of these 21 commands takes 16.64µs. Divided by 21, one command needs 0.79µs, as already
calculated above. During one read loop, where 16 bit are encoded, the ASIP is busy 4.16̇%

of the time, else it stays idle.

58

Martin Zechleitner 6.3 Time Analysis

Figure 6.3: Time analysis for the read loop

Command Response time [µs]
Query Reply 40.046

Query Adjust 34.71

Acknowledge 35.293

Request Random Number 24.017

Test Read 39.969

Read 39.989

Query 34.373

Table 6.3: Command response times

This example shows that the peripheral components can easily achieve the data rates re-
quired by the EPC standard. The bottleneck of the system is the response time for the first
response.
With the custom commands Test Read and Test Write 13 commands were implemented. To
achieve the minimal value for t1, the command with the maximal response time has to be
figured out. Not all commands send a response, so the response for 7 commands where a
response is sent is listed in 6.3. The times for Test Write, Write, Kill and Lock are not listed
since the interrogator waits anyway 20.000µs for a response.

59

Martin Zechleitner 6.3 Time Analysis

The command Query Reply determines the t1max with 40.046µs since it has the longest
response time. For every time beyond the 40.046µs for t1, the firmware is able to respond
to the interrogator.
The 2 bit command Query Reply with a payload of 4 bit lacks of calculation time during the
data is received. All the other commands have a longer payload providing more calculation
time. The response of the Read command is nearly as long as the Query Reply response
since the Read command is not optimized in respect of time. This is not needed because
the Query Reply command has the longest response time and any other time does not
influence the maximal value for t1.

The formula for t1max is shown in equation 2.1. In equation 6.2 the maximal value for the
time t1 is calculated for the values given from 6.1.

Tari = 12.5µs, FT = 7%, DR = 8

RTcal = 2.5× Tari = 31.25µs, TRcal = 4× Tari = 50µs

Tpri =
1

LF
=
TRcal

DR
=

50µs

8
= 6.25µs

(6.1)

t1max = max(RTcal, 10× Tpri × (1 + FT) + 2µs)

= max(31.25µs, 10× 6.25µs× (1 + 0.07) + 2µs)

= 68.875µs

(6.2)

The values Tari, RTcal, TRcal and DR define the time t1max. With any variation of these
values resulting in a t1max bigger than 40.046µs the firmware is able to respond fast enough
to fulfill the requirements of the EPC standard at a clock frequency of 2.4MHz.

60

Chapter 7: Simulation

In this chapter the simulation environment and the used tools are explained. The test bench
is introduced and an example for a read and a write sequence is given.

7.1 Simulation Environment and Test Bench

The VHDL code for the peripherals and the firmware code were simulated with Mentor
Graphics Questa Sim [QuestaSim]. Eclipse [EclipseSDK] was used as editor and a company
internal test bench was provided. The synthesis was done with the Synopsys Design Compiler
[Design Compiler].
To test the firmware and the peripherals a test bench was provided, done in another thesis
[Moritsch 2012]. The test bench is written in System Verilog and uses a Universal Verifica-
tion Methodology (UVM) model. The UVM enables the test bench to be easily extendable.
Furthermore, random tests can be applied to the tested device. The used test bench gen-
erates valid EPC commands and compares the answer from the tested units to an internal
scoreboard. Therefore the test bench needs to be aware of the content of the NVM to verify
commands like Read.
Since random tests might take a long time to get the right parameters incidentally, a dedi-
cated test had to be written. This test generates every command at least once and prolongs
the inventory round. To achieve the protocol adherence the test bench needs to know the
last sent random number, the last random number which led from the state Arbitrate to
Reply and the handle. All these data is casted and sent manually since a wrong value makes
the tested system fall back to a previous, not desired state.

61

Martin Zechleitner 7.1 Simulation Environment and Test Bench

Figure 7.1: All tested sequences

62

Martin Zechleitner 7.2 Read Example

In figure 7.1 the tested sequence is depicted. The tested system receives an Acknowledge
command after the inventory round. The response to the Acknowledge is set by the Select
command to the whole EPC data in the NVM. Therefore a long response can be seen at figure
7.1. After the valid Acknowledge the commands Test Write, Test Read, Request Random
Number, Write, Read, Lock and Kill are sent.

7.2 Read Example

In figure 7.2 the firmware signals from a Read sequence is depicted. At the time when the
test bench is still sending data, the firmware starts already working to get a faster response.
The activity of the firmware is higher at the receiving part than at the sending part. This
is caused by using Miller4 encoding and the fact that all comparison and evaluation has
already been done during the time the command was received. Other encoding schemes
like the fastest possible, FM0, would just scale the response phase. At figure 7.2 the long
idle times during the encoding scheme can be seen as precalculation whilst the command is
received.

Figure 7.3 shows a short sequence of the Read command in figure 7.2. Here the data from
the EPC DFE is loaded and new data is requested. The signal pc_o gives the line of the
hex code in the ROM. With a generated .lst file the instruction can be disassembled to see
the assembler code. To describe how the firmware works this short sequence is declared below:

The start is at the program counter value of 0x5D8 where the firmware is in the halt
routine. Here the firmware is halted and waits to be woken up. This wake-up happens when
the hardware has finished collecting the incoming data. In the following instructions from
0x5D9 to 0x5DA the generated interrupt is cleared. The instruction 0x5DB is the return
to the read sequence.

Back in the read sequence the collected data is stored and the next 8 bits are requested in
the instructions at the program counter 0x284 to 0x286. The firmware jumps again with
the instruction from program counter 0x287 to the halt routine.

In the halt routine the instructions from the program counter 0x5D3 to 0x5D6 select again
the valid interrupts which might have changed. This is necessary since the halt routine is
often called and the interrupt should not be edited every time before the routine is called.
Therefore the routine sets the interrupts by itself. In this case the setting of the interrupt
would not be necessary but to provide a safe general usage of the function the interrupts
are set in any case. The last instruction read at program counter 0x5D8 is the command to
halt the firmware to wait for the next incoming 8 bit data.

63

Martin Zechleitner 7.2 Read Example

Figure 7.2: The Read command

64

Martin Zechleitner 7.2 Read Example

Figure 7.3: The Read command in detail

65

Martin Zechleitner 7.3 Write Example

7.3 Write Example

In figure 7.4 the firmware signals for a Write command are depicted. The signal
rfEnvelope_i is the input signal of the simulated tag, ModulatedOutput_o is the output.
The huge gap between these two signals is caused by the simulated time for a write operation
of 16 bit to the NVM. Similar to the Read command the data is already computed after
the first 8 bits are received. The receiving sequence is similar to the sequence depicted in
figure 7.3.

After all data is received and the CRC16 is valid, the firmware configures the Bridge to write
to the NVM. The write data is forwarded to the Bridge and the firmware waits for the NVM
to finish the operation. Therefore the firmware halts itself and waits for an interrupt from
the Bridge. After the Bridge sends the wake-up signal to the firmware, the handle is loaded
from the RAM. Before the firmware waits for the next command, the handle with a CRC16
is backscattered.

66

Martin Zechleitner 7.3 Write Example

Figure 7.4: The Write command

67

Chapter 8: Synthesis

The project was synthesized based on a 130nm Complementary Metal Oxide Semi-
conductor (CMOS) fabrication technology with the Design Compiler from Synopsys
[Design Compiler]. Since the used synthesis environment only supported V HDL 87 code,
the whole hardware was synthesized in V HDL 87. The synthesis was done for an over-
constrained clock with the period of 300ns. A duty cycle of 50% was used. Therefore the
clock frequency results in 3.33̇MHz. The actual operating frequency of the system is given
with 2.4MHz which is covered by the synthesis with a 3.33̇MHz clock.

8.1 Area

Here the area results are given and analyzed. In general there is a difference between combi-
national area and noncombinational area. The combinational part is only sensitive to certain
signals while the noncombinational part contains registers which are sensitive to every clock
cycle. To reduce the activity of the noncombinational part clock gating was implemented,
as declared in 5.1.2. The results of the clock gating are listed in table 8.2.

Combinational area 25217.280231 µm2

Noncombinational area 23600.159870 µm2

Total cell area 48817.440102 µm2

Table 8.1: Synthesis result for the area

The area of chips are usually measured in gate equivalents (GE). This measurement method
implies the process technology and provides a process independent comparison in terms of
complexity thus [Feldhofer 2011]. To get the amount of gate equivalents the total cell area
is divided by the area of a 2 input NAND2 gate which corresponds to 5.76µm2. This results
in 8475.25 NAND2 gates or gate equivalents.

8.2 Clock gating

Since all noncombinational part is dependent on the clock, these cells should be gated to
reduce the power as mentioned in 5.1.2.

68

Martin Zechleitner 8.3 ASIG Synthesis

Number of Clock gating elements 55
Number of Gated registers 488 90.71% of all registers
Number of Ungated registers 50 9.29% of all registers
Total number of registers 538

Table 8.2: Synthesis result for the clock gated registers

Table 8.2 shows that most of the registers are gated. Since some processes like a clock
divider cannot be gated, it is nearly impossible to implement clock gating to all registers.
Furthermore the clock gating is only used at a register width bigger than four due to the
fact that it is not effective to use an additional latch for saving power for only one register.
The factor of four is an empirical value. By looking more into the clock gating issue, a
latch, which is used for clock gating, occupies 24.75µm2 whilst a flip-flop needs 37, 035µm2.
Besides this most of the registers are clock gated and save power thus.

8.3 ASIG Synthesis

The last step of the project was the integration of the EPC subsystem into the ASIG project.
Due to design decisions and availableness problems the NVM was replaced by a RAM.
Furthermore a pseudo ROM was added which enables the user to load new or modified
firmware into the processor. This data can be loaded for reasons of debugging or for further
projects as firmware code for the controller. The internal Wishbone bus was demangified
from 16 bit to 8 bit for the reason of simpleness. By this the hardware unit Bridge got
obsolete. Thereby the EPC firmware also had to be modified since some SFRs were aban-
doned. All these changes were done for the tape out of the ASIG test chip on July 31st, 2013.

Overall the synthesis results mentioned in section 8.1 are still valid since just minor changes
were done. Nevertheless the results of the ASIG project are listed below in the tables 8.3
and 8.4.

Combinational area 54134.400281 µm2

Noncombinational area 114606.398668 µm2

Total cell area 168740.798949 µm2

Table 8.3: Synthesis result for the area for the ASIG

To get the amount of gate equivalents the total cell area is again divided by the area of a 2

input NAND2 gate which corresponds to 5.76µm. This results in 29295.28 NAND2 gates
or gate equivalents.

Although the ROM was not synthesized for the results of table 8.1, the hardware can still
be compared. The in this thesis developed system holds 28,93% of all area of the digital

69

Martin Zechleitner 8.3 ASIG Synthesis

Number of Clock gating elements 218
Number of Gated registers 1879 96.11% of all registers
Number of Ungated registers 76 3.89% of all registers
Total number of registers 1955

Table 8.4: Synthesis result for the clock gated registers for the ASIG

part of the ASIG chip. In figure 8.1 the layout of the whole ASIG chip can be seen. This
layout is for the tape out at July 31st.

The analog part of the ASIG is documented in the work of Steffan Christoph in
[Steffan 2013], Phillip Greiner in [Greiner 2013] and Wiessflecker Marin [Wiessflecker 2013].
The digital part of the chip is shown in figure 8.2

70

Martin Zechleitner 8.3 ASIG Synthesis

Figure 8.1: The layout of the ASIG chip

71

Martin Zechleitner 8.3 ASIG Synthesis

Figure 8.2: The digital layout of the ASIG chip

72

Chapter 9: Conclusion

The aim of this project is the development of a flexible and modular system, implementing
the EPC Global Class-1 Generation-2 UHF RFID Standard. In comparison to the former
hardware based system the new system offers a flexible setup for different applications.

9.1 Summary and Results

The first step towards the project was analyzing code for a decision whether to use an
8 bit controller or a 16 bit controller. With the use of a simple firmware the controller
were analyzed. After the decision for the controller the main part of the work was started.
Thereby the first very simple version of the firmware was developed with the hardware units
of the old system which was based on a finite state machine. The idea behind this approach
was to keep the existing hardware setup and just replacing the finite state machine with
the processor. As it turned out the newly introduced controller also required a redesign of
the hardware units. Since the finite state machine had no limitations like 8 bit registers and
a sequential mode of operation in comparison to the controller. This demanded the data
and the communication to be formatted in a different way. Due to the newly introduced
controller system, dedicated hardware units had to be developed.

The development of the dedicated hardware units for the firmware and the realization
of the EPC global standard in firmware was the main challenge of this thesis. Since the
EPC standard is, compared to the NFC communication, a rather complex standard, the
development was laboriously.

The functionality of the overall system depends on the firmware which can be altered
flexibly in the form of a ROM mask. The drawback of the solution is the reduced data
throughput since the processor oriented architecture causes a lot of overhead. Overall an
expandable EPC Global Class-1 Generation-2 compatible platform was designed.

After the main task for the EPC was accomplished the integration into the ASIG project
was done. Therefore both systems should use the same processor since the ASIG tag only
communicates either with the EPC protocol or the NFC protocol. Some changes had to be
made in order to accomplish the EPC system compatible with the other system. A huge

73

Martin Zechleitner 9.2 Further Work

benefit during the development phase is the pseudo ROM where a firmware code can be
loaded into the chip.

9.2 Further Work

During the composition of this thesis the tape out was still in progress. By this the chip
has to be tested whether the implemented and simulated results can also be achieved with
the produced chip.

The pseudo ROM offers the opportunity to execute a different firmware with the same
hardware units. By this the ASIG test chip can be modified to execute a simpler, not EPC
conform protocol, or a even more advanced protocol as long as the hardware units support
these.

A new published version of the EPC standard might cause some changes in the firmware.
Since nearly all hardware units are designed as general purpose units, an adoption would
not be necessary. Just the Decode Bit unit and the EPC DFE unit are dedicated to the
EPC protocol version 1.0.9 and the implemented firmware.

For the next tape out the code of the firmware and the hardware units might be adopted
and extended in respect to future challenges.

74

Bibliography

[Chawla and Ha 2007] V. Chawla and Dong Sam Ha. An overview of passive RFID.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4342873, 2007. [online; ac-
cessed September 17, 2013].

[Design Compiler] Synopsis Design Compiler. http://www.synopsys.com.

[EclipseSDK] EclipseSDK. version 3.7.1. http://www.eclipse.org.

[Emnett and Biegel 2000] Frank Emnett and Mark Biegel. Power Reduction Through RTL
Clock Gating. http://www.aiec.com/Publications/snug2000.pdf, 2000. [online; accessed
September 17, 2013].

[EPCGlobal 2005] EPCGlobal. EPC Radio-Frequency Identity Protocols Class-
1 Generation-2 UHF RFID Protocol for Communications at 860 MHz - 960
MHz. http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_0_9-standard-
20050126.pdf, January 2005. [online; accessed September 17, 2013].

[EPCGlobal 2011] EPCGlobal. GS1 EPC Tag Data Standard 1.6.
http://www.gs1.org/gsmp/kc/epcglobal/tds/tds_1_6-RatifiedStd-20110922.pdf,
September 2011. [online; accessed September 17, 2013].

[Feldhofer 2011] Martin Feldhofer. Lecture notes VLSI-Design, 2011.

[Finkenzeller 2002] K. Finkenzeller. Rfid Handbuch. Hanser, 2002.

[Greiner 2013] Phillip Greiner. Design of an NFC and EPC-HF compatible Analog-Front-
End with Load-Regulator. Master’s thesis, TU Graz, 2013.

[Heyszl 2007] Johann Heyszl. System Research and RTL Design of a combined passive HF
/ UHF RFID Tag. Master’s thesis, TU Graz, 2007.

[Klamminger 2013] Michael Klamminger. Improving the energy–consumption of a passive
RFID–tag. Master’s thesis, Graz University of Technology, 2013.

[Koopman and Jr. 1992] Philip Koopman and Jr. A preliminary exploration of optimized
stack code generation. http://www.ece.cmu.edu/k̃oopman/stack_compiler/stack_co.pdf,
1992. [online; accessed September 17, 2013].

75

[Leens 2009] F. Leens. An Introduction to I2C and SPI Protocols.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4762946, 2009. [online;
accessed September 17, 2013].

[MATLAB 2010] MATLAB. version 7.10.0 (r2010a), 2010.

[Moritsch 2012] Michael Moritsch. Verification of a combined passive HF/UHF RFID Tag
with Universal Verification. Master’s thesis, TU Graz, 2012.

[Odobasic 2012] Dino Odobasic. Digital RFID Frontend for a Sensor Chip. Master’s thesis,
TU Graz, 2012.

[OpenCores 2010] OpenCores. Wishbone B4.
http://cdn.opencores.org/downloads/wbspec_b4.pdf, 2010. [online; accessed September
17, 2013].

[QuestaSim] Mentor Graphics QuestaSim. version 10.1a. http://www.mentor.com.

[Sadrusham] Nahi Jnanena Sadrusham. Clock Definitions. http://asic-
soc.blogspot.de/2009/01/clock-definitions.html. [online; accessed September 17,
2013].

[Sakthikumaran et al. 2011] S. Sakthikumaran, S. Salivahanan, and V.S.K.
Bhaaskaran. 16-bit RISC Processor Design for Convolution Application.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5972425, june 2011. [online;
accessed September 17, 2013].

[Soeser 2012] Peter Soeser. Skriptum und Unterlagen zur Vorlesung aus Integrierte Schal-
tungen, 2012. Version 1.1.4.

[Steffan 2013] Christoph Steffan. Concept and Design of an integrated dc/dc Voltagecon-
troller a for on-chip Charge Supply. Master’s thesis, TU Graz, 2013.

[Udar and Kagaris 2007] S. Udar and D. Kagaris. LFSR Reseeding with Irreducible Polyno-
mials. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4274869, july 2007.
[online; accessed September 17, 2013].

[Want 2006] R. Want. An Introduction to RFID Technology.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1593568, 2006. [online;
accessed September 17, 2013].

[Wiessflecker 2013] Martin Wiessflecker. Design of a Generic Low Voltage, Ultra-Low Power
Sensor Interface for Wirelessly Powered IC. PhD thesis, TU Graz, 2013.

[Yasui and Shimazu 1991] I. Yasui and Y. Shimazu. Microprocessor with Harvard Archi-
tecture. http://www.google.de/patents/US5034887.pdf, July 23 1991. [online; accessed
September 17, 2013].

76

	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	RFID Systems
	Motivation and Project Goals
	Thesis Outline

	EPC Global Class-1 Generation-2 UHF RFID Standard
	General
	Encoding
	Reader to Tag
	Tag to Reader

	Timing
	Memory
	States
	Commands
	Select Command
	Inventory Commands
	Access Commands
	Custom Commands

	Examples for a Communication Sequences

	System Overview
	EPC
	NFC
	Memory
	NVM
	RAM

	SPI
	Sensor Interface
	Wishbone Bus

	Controller Evaluation
	FSM-based EPC Implementation
	RISC Controller
	Analysis of the Applicable Controller
	8 Bit Controller
	16 Bit Controller

	Summary

	RTL Hardware Design
	Low Power Design Principles
	Frequency scaling
	Clock Gating

	Overview
	Component Description
	EPC DFE
	Interrupt Controller
	CRC LFSR
	General Purpose Timer
	Decode Bits
	LUT
	Bridge
	Analog Control

	Firmware
	General Structure
	Interrupts
	Application Flow of a Command

	Code Analysis
	Time Analysis

	Simulation
	Simulation Environment and Test Bench
	Read Example
	Write Example

	Synthesis
	Area
	Clock gating
	ASIG Synthesis

	Conclusion
	Summary and Results
	Further Work

	List of Abbreviations
	Bibliography

