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Abstract

Bilinear pairings are the fundamental operations for new cryptographic schemes
commonly referred to as pairing-based cryptography. Being based on elliptic-
curve cryptography, they provide an abundance of new protocols and schemes
such as identity-based encryption, which extend the portfolio of cryptographic
applications. However, computation of a bilinear pairing is generally complex and
costly. Consequently, efficient and fast algorithms and implementations are of
particular interest in order to make pairing-based cryptography applicable.

The main goal of this thesis is to build a hardware architecture implementing
a bilinear pairing algorithm, and to explore applicability for low-resource envi-
ronments such as embedded devices or smart cards. Smart cards are generally
resource-constrained environments with a scarce area and power budget, being
mainly used in interactive applications so that pairing computation time has to be
acceptably low.

This work focuses on a low-area hardware architecture to compute the so-called
ηT pairing based on supersingular elliptic curves on finite fields of characteristic
two. The proposed architecture uses a microcoded Application Specific Integrated
Processor (ASIP) with a minimal instruction set to implement the pairing algo-
rithm. Targeting a high security level of 128 bit requires the arithmetic unit to
perform finite-field operations with 1223 bit wide operands. In the given setup the
finite-field multiplication is the dominating operation. Therefore, efficient multi-
plication was especially focused in this thesis. This work investigates Karatsuba-
and digit-serial-based multiplier architectures, where the former group performs
iterative versions of the Karatsuba algorithm and the latter group applies different
digit sizes including the bit-serial case. In total, seven designs were subject to a
CMOS 180 nm standard-cell based Application-Specific Integrated Circuit (ASIC)
design flow in order to provide an evaluation based on cost figures of area, com-
putation time, power, and energy consumption.

The obtained results demonstrate that the computation of the bilinear ηT pair-
ing is feasible with small chip area of about 50 kGE and within several milliseconds.
The given results clearly indicate that pairing-based cryptography is ready for fu-
ture applications in resource-constrained environments such as smart cards and
embedded devices.

Keywords: Bilinear Pairing, ηT Pairing, Binary Finite Field, 128-bit Security
Level, Pairing-Based Cryptography, Identity-Based Encryption, ASIC, Hardware
Architecture, Iterative Karatsuba Multiplier, Digit-Serial Multiplier
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Kurzfassung

Bilineare Abbildungen sind die zentralen mathematischen Operationen in neuen
kryptographischen Verfahren. Diese abbildungsbasierten Verfahren erlauben es, ei-
ne Vielzahl von Protokollen und Schemata zu realisieren, und so, neue kryptogra-
phische Anwendungsgebiete, wie beispielsweise identitätsbasierte Verschlüsselung,
zu erschliessen. Da die Berechnung von bilinearen Abbildungen generell aufwändig
und kostspielig ist, sind effiziente Algorithmen und Implementationen von speziel-
lem Interesse um solche Verfahren praktisch umzusetzen.

Das wesentliche Ziel dieser Diplomarbeit ist es eine integrierte Schaltung zu
entwerfen, welche eine bilineare Abbildung berechnet, und die Anwendbarkeit von
bilinearen Abbildungen in ressourcenbeschränkten Umgebungen wie eingebette-
ten Systemen oder Chipkarten zu ermitteln. Chipkarten bieten generell nur wenig
Chipfläche und ein knappes Leistungsbudget, zudem muss die Berechnungsdauer
aufgrund vorwiegend interaktiver Anwendungen entsprechend kurz sein.

Diese Arbeit konzentriert sich auf eine flächenminimierte integrierte Schal-
tung um eine ηT Abbildung zu berechnen, welche auf supersingulären elliptischen
Kurven, definiert über endlichen Binärkörpern, basiert. Die entworfene Schaltung
nutzt einen anwendungsspezifischen integrierten Prozessor mit minimalem Befehls-
satz um eine solche Abbildung zu berechnen. Um Anwendungen auf hoher Si-
cherheitsstufe zu ermöglichen, ist es notwendig, Körperoperationen mit 1223-bit
Operanden durchzuführen. Auf die Implementation der modularen Multiplikation
wurde spezielle Aufmerksamkeit gelegt, da diese Operation die Systemeigenschaf-
ten maßgeblich beeinflusst. Im Speziellen wurden Multiplizierarchitekturen rea-
lisiert, die auf einer mehrfachiterativen Anwendung des Karatsuba-Algorithmus
bzw. digit- und bit-seriellen Multiplikation beruhen. Insgesamt wurden sieben ver-
schiedene Architekturen entworfen und in einem CMOS 180 nm standardzellenba-
sierten Entwurfsprozess entwickelt, wodurch eine konkrete Evaluierung basierend
auf Flächenbedarf, Berechnungsdauer, sowie Leistungs- und Energiebedarf gege-
ben werden kann.

Die Ergebnisse zeigen, dass eine bilineare ηT Abbildung mit einer Schaltungs-
größe von zirka 50 kGE und innerhalb weniger Millisekunden umsetzbar ist. Diese
Resultate weisen eindeutig darauf hin, dass abbildungsbasierte Kryptographiever-
fahren zukünftig in ressourcenarmen Umgebungen wie Chipkarten und eingebet-
teten Systemen anwendbar sind.

Stichwörter: Bilineare Abbildung, ηT Abbildung, 128 bit Sicherheitsniveau,
Binärkörper, abbildungsbasierte Kryptographie, identitätsbasierte
Verschlüsselung, Integrierte Schaltung, iterative Karatsubamultiplikation,
digit-serielle Multiplikation
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Chapter 1

Introduction

Cryptography is the science and discipline of information security. It provides
techniques for secure communication by means of cryptographic services such as
encryption and decryption. With the advent and widespread deployment of com-
puter technology, digital communication has changed many aspects in every day
life and introduced us to the so-called digital age. As our personal and economic
lives become increasingly dependent on digital communication technology, we are
in need of new approaches to build and maintain trust in digital communication
and transmitted data. Cryptography is able to provide protection of sensitive data
and authentication of remote entities we communicate with. Public-key crypto-
graphy has been available for several decades but has neither attained widespread
attention nor significant application in everyday communication. Main reasons
for this are that a traditional public-key based cryptosystem requires to acquire
and maintain public keys of entities we want to communicate with. In traditional
public-key cryptosystems both entities need to generate a private/public key pair
and exchange their public keys before they can exchange sensitive information.
Pairing-Based Cryptography (PBC) provides solutions to circumvent this limita-
tion by so-called bilinear pairings. Using bilinear pairings, it is possible to generate
a public key from a character string identifying a receiver—like an ordinary email
address. Using identification strings to derive public keys is the fundamental con-
cept of so called Identity-Based Encryption (IBE) schemes. In an identity-based
cryptosystem, the identification string may be any information which is publicly
known a priori to the sender. Hence, the sender does not need to obtain the public
key of the receiver but can generate it independently using the identification string
of the receiver. Moreover, IBE allows to encrypt messages using an identity-based
public key without the requirement that a corresponding private key has been gen-
erated before. This allows to generate public keys independently of any antecedent
action by the receiving entity. The ability to use simple character strings to gener-
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2 1. Introduction

ate public keys provides completely new ways to implement secure communication
schemes especially for large and dynamic user populations.

In general, information security is based on security services such as authenti-
cation, confidentiality, data-integrity, availability, and non-repudiation.

Authentication Entities entering secure communication need to identify each
other by means of authentication (entity authentication). Information trans-
mitted over a secure channel may also need to be authenticated to ensure its
origin (data authentication).

Confidentiality Sensitive information is only accessible to authorized entities.
This security service is enabled by the cryptographic primitives of encryption
and decryption.

Data-Integrity This service ensures that unauthorized data manipulation, or
loss of parts thereof can be recognized.

Availability Sensitive information can be demanded by the user and made ac-
cessible at any time.

Non-Repudiation Unauthorized entities may not successfully deny previous com-
mitments or actions.

To provide the aforementioned services, two types of cryptography are used,
namely symmetric cryptography and asymmetric cryptography, which we want to
discuss briefly in the following.

Symmetric-Key Cryptography In symmetric-key cryptography, the keys used
for encryption and decryption are based on a secret key known to all entities
taking part in the secure communication. Hence, systems of this type are also
called secret-key cryptography. Customary, we can differ two types of algorithms
in secret-key cryptography namely algorithms for stream ciphers and algorithms
for block ciphers. Stream ciphers encrypt a single bit or even a single byte at a
time allowing to process data streams of arbitrary length. Prominent examples for
stream ciphers are RC4 and A5 being used to secure GSM networks. Block ciphers
operate block-wise on plaintext and cipher text. Well-known examples of block
ciphers are the DEA and the Rijndael cipher, standardized as the Data Encryption
Standard (DES) and Advanced Encryption Standard (AES).

While secret-key cryptography offers high security and provides computation-
ally efficient implementations, they do not support the security services of au-
thentication and non-repudiation. Additionally, the key distribution of the shared
secret to the participating entities is problematic as a so-called secure channel is
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required to avoid eavesdropping adversaries to compromise the system. Deploying
a symmetric key system on a large scale using a single secret key does not provide
confidentiality between the participants and bears a high risk of key compromise.
To avoid this, each entity pair combination needs to be attributed with a distinct
secret key. Consequently, the number of required keys scales bad with the number
of participants in such a system. Furthermore, the set of keys needs to be managed
to provide means of changing a key in order to handle keys being compromised.
As such, a secret-key system exhibits several key-distribution problems especially
for large and dynamic user groups.

Asymmetric-Key Cryptography Modern cryptosystems are based on the as-
sumption that some computational problem is reasonably hard to compute while
at the same time being easy in case some secret information is known. Typical ex-
amples of computational problems, which are customarily used for cryptographic
applications, are the Integer Factorization Problem (IFP), the Discrete-Logarithm
Problem (DLP), and the Elliptic-Curve Discrete Logarithm Problem (ECDLP).
The popularity of elliptic-curve based cryptosystems is due to the fact that their
underlying mathematical problem is harder regarding the computational cost of
the most sophisticated algorithms to solve it. As the underlying problem is gen-
erally believed to be harder than the other applied problems, key sizes in an
ECDLP-based system can be reduced while maintaining an equivalent level of
security. Small key sizes are especially interesting in terms of low memory and
low bandwidth requirements, which is a considerable advantage of ECDLP-based
cryptosystems.

The basic idea of using different keys for encryption and decryption is the
basis of asymmetric-key cryptography, also called public-key cryptography, devised
by Whitfield Diffie and Martin Hellman in 1976. A concrete realization of such a
scheme was provided by Rivest, Shamir, and Adleman in 1978 by the RSA public-
key encryption system based on the discrete logarithm problem. In a public key
cryptosystem, two separate keys are considered for each communicating party
namely a private key and a public key which represent a so-called key pair. As
their names suggest, the private key is supposed to be exclusively known to the
respective party it belongs to while the public key is made publicly available. The
sender uses the public key of the receiver to encrypt a message to the receiver. In
order to do so, the public key of the receiver has to be available to the sender, and
the receiver must have generated a key pair. The receiver can then decrypt the
message using his private key.

For this scheme to work, the two entities need to exchange their keys prior to
secure communication. A solution to the problem of exchanging public keys over
an insecure channel was introduced by Diffie and Hellman by the so-called Diffie-
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Hellman key exchange protocol. However, if a malicious user is able to intercept
and manipulate the communication between two parties, it is possible to perform a
key-exchange sequence with both sides preventing any direct communication and
transparently manipulating any future interaction. In this way, an adversary can
get hold of sensitive information originating from both parties. Such a scenario is
commonly called a man in the middle attack and can be avoided if both parties
authenticate themselves to each other by entity authentication in the key exchange
phase. Hence, entity authentication is mandatory to maintain a secure public-key
cryptosystem. Entity authentication can be accomplished with involving a third
entity usually called trusted authority (TA) or certifying authority (CA). Using
so-called digital signature schemes, any entity may sign a message with its secret
key, producing a so-called signature or certificate. Certificates are issued by the TA
when an entity has proven its identity to the TA and its association to a public
key. Usually a physical verification step is applied by the TA to determine the
correctness of an entity to identity relation. This signature can then be checked
by other entities by verifying certificates, as the public key of the TA, which was
used to generate the certificate, is publicly available.

Involving a trusted third party, which issues certificates, allows to provide the
security service of entity authentication. However, keys and their attributed cer-
tificates may get compromised and hence, keys need to get revoked and their
certificates invalidated. In case of widespread deployment and dynamic user pop-
ulation of a cryptosystem, the issue of certificate management gets complex and
difficult to maintain. Certificates are usually valid only for a certain amount of
time and hence, need to get renewed. Also, the secret key of an entity may get
compromised which requires to revoke certificates and generate a new one. The
issue of certificate management is one major factor which complicates widespread
deployment of public-key cryptosystems.

1.1 Identity-Based Encryption

We want to start the following introduction to identity-based encryption by a
quote from Adi Shamir who devised the idea for such a scheme [50].

“An identity-based scheme resembles an ideal mail system: If you
know somebody’s name and address you can send him messages that
only he can read (...) It makes the cryptographic aspects of the commu-
nication almost transparent to the user, and it can be used effectively
even by laymen who know nothing about keys or protocols.”

- Adi Shamir
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In 2001, Boneh and Franklin introduced an implementation of an IBE scheme
using bilinear pairings based on elliptic curves. They defined the IBE-security-
model with a natural analogue of the Diffie-Hellman problem, hence referred to as
the bilinear Diffie-Hellman (BDH) problem. They define a set of four algorithms
to form a complete IBE system. Traditionally, these algorithms are called setup,
extraction, encryption, and decryption. The setup and extraction algorithms are
used to generate system parameters and calculate private keys respectively. The
system parameters generated in the setup step are maintained in a trusted author-
ity usually called the Private-Key Generator (PKG). These system parameters
create the whole IBE environment and contain a master secret key which is used
by the PKG to derive private keys from a user-identity string. It is vital that this
key is kept secret as it allows to generate private keys (cf. key escrow). Other
system parameters are made public. With these public parameters, a user can
derive public keys from an identity string (e.g., an email address) used to identify
entities. The derived public key is then used to encrypt a message. Hence, in
contrast to a traditional public-key scheme, in an IBE scheme the public key and
private key generation is decoupled. Upon reception of a message, the recipient
may obtain his private key from the PKG after authenticating his identity. After
successful authentication to the PKG, a private key according to the recipients
identity string and the system’s master key is calculated. With the private key,
the recipient may then decrypt the message.

Setup Initialization of all system parameters including the master secret that is
used by the PKG to generate private keys.

Encrypt Uses a public key which can be calculated by any user using the public
system parameters to encrypt a message for a given identification string.

Extraction Generation of a private key as a function of the system parameters,
the master secret, and an identification string.

Decrypt Encrypted information can be decrypted using a private key for a given
identification string calculated by the PKG using the master secret.

In general IBE systems provide the cryptographic service of confidentiality by
means of identity-based encryption. However, they do not provide the services
of integrity, availability, authentication, and non-repudiation. To provide these
services digital signatures based on a traditional public-key system can be used in
order to build a hybrid cryptosystem which unifies the strengths and advantages
from both technologies [13, 37].

Figure 1.1 illustrates a typical sequence of steps used to encrypt a message
in an IBE system. To encrypt a message, the sender requires the public system
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Figure 1.1: Encryption with an IBE system

parameters and an identity string which uniquely identifies the receiver. Using a so-
called bilinear pairing, the receiver’s public key can be calculated from the identity
string and the public system parameters. With this public key, the message is
encrypted. To decrypt the message, the receiver has to prove his identity to the
PKG by authentication in order to receive his private key. It should be noted that
after all private keys have been issued, the PKG instance is not required anymore
and can theoretically be shut down. However, changing the system parameters
allows to have short-lived keys which requires to maintain a PKG instance. Short-
lived keys are especially interesting as they allow to avoid the complex issue of
certificate management as given in traditional cryptosystems.

Key Escrow One notable property of IBE schemes is their inherent property
of key escrow. A common fact in IBE schemes is that the private-key genera-
tor has the ability to calculate private keys for any identity within the system.
Consequently, an IBE scheme does not provide the cryptographic service of non-
repudiation. Also it makes the system’s PKG a high value target for attackers. To
avoid the problem of key escrow, several methods were proposed, such as:

• Distributed PKG

• Certificate-Less Encryption

• Certificate-Based Encryption

For a more detailed discussion of these methods, we want to refer to [37]. Con-
versely, key escrow may be a desirable feature in a strictly hierarchical system
where an authorized third party requires to have ultimate access to keys in the
system. Thus, IBE-based systems allow to realize the legitimate need for large bod-
ies such as governments or international corporations to have access to encrypted
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communications within a given system. So far, traditional encryption systems do
not provide a technical solution to such use cases.

1.2 Motivation

Bilinear pairings are the key to realize a whole new set of protocols and schemes
commonly referred to as pairing-based cryptography. With schemes such as identity-
based encryption it is possible to build new systems and extend yet existing
ones. Prominent applications of bilinear pairings include identity-based encryp-
tion, three-party key exchange, short signature schemes, broadcast encryption,
and many others. Identity-based encryption allows to overcome one of the main
shortcomings in traditional public-key cryptosystems by addressing the key distri-
bution and management problem, which is of special concern in the case of large
and dynamic user populations.

1.3 Contributions and Global Context

• First low-area ASIC implementation of ηT pairing at 128 bit security level in
open literature

• Indicates applicability of pairing-based cryptography in resource-
constrained environments (standard-cell based UMC 180 nm ASIC design
flow)

• Various multiplier designs implemented offering trade-off decisions for future
design integration

• Low-area design exploration of large operand multiplication using iterative
Karatsuba algorithm, digit-serial, and bit-serial multipliers

• Smallest design compared to related work of 128-bit security ASIC imple-
mentations (Chapter 8)

1.4 Outlook

The fundamental concepts which are required to compute bilinear pairings are
given in Chapter 2, which briefly introduces to finite fields. Chapter 3 gives a short
introduction to elliptic curves with respect to elliptic-curve cryptography. Finite
fields and elliptic-curve operations are the operational building blocks to imple-
ment bilinear pairings based on elliptic curves. The concept of bilinear pairings
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and their basic properties as well as prominent pairing algorithms are covered
in Chapter 4. This chapter also describes the pairing algorithms used for the
hardware implementation in this thesis and further discusses their computational
complexity. Chapter 5 treats various multiplier architectures and presents an ap-
plication specific integrated processor used as a controlling block in the top-level
architecture implementing the ηT pairing. The presented architectures are basi-
cally designed according to the main objective of this thesis, which is to develop an
application-specific integrated circuit able to compute a bilinear pairing with low
requirements on chip area. Chapter 6 covers the description of the ASIC design
flow applied to obtain digital designs ready for fabrication. The results of the im-
plemented designs are presented in Chapter 7 discussing figures of area, power, and
energy consumption. We give a short overview on previous work of ASIC pairing
hardware accelerators at a security level of 128 bit in Chapter 8. Final remarks and
conclusions are drawn in Chapter 9. Possible topics for future work on this matter
are proposed and shortly described in Section 9.2. Pairing-based cryptography is
a relatively young field but yet already rich of protocols and applications based on
bilinear pairings. In Section A, we want to highlight some of the most prominent
applications and protocols based on bilinear pairings of today. Supplementary
material is provided in the appendix.



Chapter 2

Finite Fields

This chapter gives a basic introduction to finite fields providing the basis for
elliptic-curve cryptography. It especially focuses on finite fields of characteris-
tic two—also referred to as binary finite field. The binary finite field operations
presented in this chapter represent the basis in order to compute the ηT pairing
as presented in Chapter 4.

In general, arithmetic in finite fields provides the foundation for many crypto-
graphic systems used today. Operations in finite fields provide a way to construct
computationally hard problems such as the discrete logarithm problem. In cryptog-
raphy, such a problem needs to provide properties of a so-called trapdoor one-way
function which can be computed efficiently while the inversion is computationally
hard without knowledge of supplementary information such as a secret key. Fur-
thermore, finite fields allow to define operations based on elliptic-curve equations
where elements of a finite field represent the coordinates for the set of discrete
points residing on elliptic curve—fulfilling the elliptic-curve equation. Operations
based on elliptic-curve points can then be used to construct the elliptic-curve dis-
crete logarithm problem. In the context of this work, finite field operations are
used to calculate a bilinear pairing based on elliptic curves over binary finite fields
called the ηT pairing. The following sections give a short introduction on finite
fields, especially on binary finite fields in polynomial representation providing the
basis to compute the ηT pairing.

In abstract algebra, a finite field describes an algebraic structure with a finite
number of elements. A finite field is usually denoted by Fq or GF(q) for Galois field

in reference to Évariste Galois—the founder of finite field theory. The order of a
field is indicated by q which is the number of elements in the field. A finite field of
order q exists if q is of prime power. Consequently, we can categorize finite fields
by the form of q representing pn where p is a prime number and n is a positive
integer. Furthermore, p is called the characteristic of the field and n the extension

9
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of the field. Depending on field characteristic and the field extension we have finite
field categories of the following:

• Fp with n = 1 has a prime number of elements and hence is called prime
field

• Fpn with n > 1 is extended by m and hence is called extension field.

• Fpm·n with m,n > 1 denote a field of composite extension degree called
composite extension field.

• F2n is a special case of an extension field. Having a base of 2 it is called
binary extension field.

• F3n is a special case of an extension field called ternary extension field.

The pairing presented in this work is based on a binary finite extension field of
extension degree 1223 denoted as F21223 .

2.1 Properties

A field is an algebraic structure of a set F together with two operations, addition
(denoted by +) and multiplication (denoted by ·) both satisfying usual arithmetic
properties. These properties are given in the following:

• Associativity

– Additive: a+ (b+ c) = (a+ b) + c for all a, b, c ∈ Fq
– Multiplicative: a · (b · c) = (a · b) · c for all a, b, c ∈ Fq

• Commutativity

– Additive: a+ b = b+ a for all a, b ∈ Fq
– Multiplicative: a · b = b · a for all a, b ∈ Fq

• Identity element

– Additive: ea where a+ ea = a for all a ∈ Fq
– Multiplicative: em 6= ea where a · em = a for all a ∈ Fq

• Inversion element

– Additive: For any a ∈ Fq there exists an additive inverse element −a
such that a− a = ea
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– Multiplicative: For any a 6= ea ∈ Fq there exists a multiplicative inverse
element a−1 such that a · a−1 = em

• Distributivity

– (a+ b) · c = a · c+ b · c for all a, b, c ∈ Fq

Extension of fields Let K and L be finite fields. If there exists a field ho-
momorphism from K into L, the field L is called an extension field of K. This
extension field relation is denoted as L/K [13]. With a quadratic non-residue s in
the binary field, we can construct a basis 1, s to build an extension field. Hence,
the constructed field is called a quadratic extension binary field. A representation
of a quadratic extension binary field element has twice the size of an ordinary ex-
tension binary field element. Combining the quadratic non-residue s of the binary
field and a quadratic non-residue t of the quadratic extension field allows to build
the basis 1, s, t, st. Using this basis, we can represent a quartic extension binary
field element which has quadruple size compared to an ordinary extension binary
field element. The extension field Fq4 is represented using a tower of extensions
Fq2 = Fq[u]/(u2 + u + 1) and Fq4 = Fq2 [v]/(v2 + v + u) with the basis for Fq4
over Fq is {1, u, v, uv}. For the binary field, we can formulate a quadratic F22m

and quartic F24m extension field on the basis of (1, s, t, st) where s2 = s + 1 and
t2 = t+ s [5]. In the remainder of this thesis, operations using the field extension
are summarized as extension field arithmetic.

2.2 Binary Field Arithmetic

In the following, we describe the set of operations required to calculate the ηT
pairing in a binary finite extension field represented in polynomial representation.
The given operations provide the fundamental arithmetic for elliptic curve based
calculations and higher extension field arithmetic.

A binary extension field element in F2m is represented by polynomials of degree
less thanm where the coefficients of the polynomial are in the field F2. Equation 2.1
denotes a general definition for binary extension field elements [34].

F2m = a(x)|a(x) = am−1 · xm−1 + · · ·+ a1 · x+ a0, ai ∈ F2 (2.1)

Considering hardware implementation, the arithmetic in binary fields has the ad-
vantage that the operation of addition can be represented by a simple exclusive-or
operation so that no carry propagation issue occurs in contrast to arithmetic of
prime fields. As carry propagation usually contributes to the longest path delay in
an adder circuit, binary finite-field arithmetic provides fast implementations. Also
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field subtraction is equivalent to the addition operation which is also an advantage.
As we will see later in this section, also the squaring operation can be realized very
efficiently. The fact that these operations can be implemented efficiently is impor-
tant to implement a cost intensive computation as bilinear pairings. The set of
operations mandatory to calculate a pairing depends on the actual pairing and the
algorithmic description thereof. Early algorithms to compute the ηT pairing were
based on finite field operations such as calculating a finite field square root. More
recent versions of the ηT pairing were optimized so that square root calculation is
not required. As the computation of square roots introduces additional hardware
circuitry, the square-root free version was favored. So in order to implement the
ηT pairing, we discuss the following operations:

• Addition/Subtraction,

• Multiplication,

• Squaring,

• Reduction,

• Inversion.

In so-called polynomial representation, binary field elements correspond to poly-
nomials where the coefficients are given as binary elements. So binary polynomials
have coefficients of either 0 or 1 allowing to be represented by a simple bit string.
Consequently, the field F2m contains 2m binary polynomials where each polynomial
has a maximum degree of m − 1 which we can represent by bit strings of length
m.

Operations in higher extension degree as required for calculating the ηT pairing
can be calculated in the base extension field F2m . The algorithmic descriptions of
higher extension degree elements is given in Chapter 4.

2.2.1 Addition/Subtraction

Finite field addition of elements in polynomial representation correspond to an ad-
dition of polynomials where the coefficient arithmetic is performed modulo 2. Con-
sequently, we can add two binary field elements with a bit-independent exclusive-
or operation. Regarding a hardware implementation, a bit-wise XOR operation is
sufficient to obtain the modular sum of two finite field elements. Other than in
the case of prime field arithmetic, there is no carry propagation and no modular
reduction step involved. This makes the addition over binary fields very attractive
for hardware implementation.
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2.2.2 Multiplication

Multiplication in a binary finite field corresponds to a logical AND operation of
the multiplier coefficients and the multiplicand. To obtain a modular result mul-
tiplication of binary field elements is performed modulo an irreducible polynomial
f(x). The implementation of finite field arithmetic and further description is con-
tained in Chapter 5. For further reference on binary finite field multiplication we
want to refer to [25] and [34].

2.2.3 Squaring

Squaring a binary polynomial is a linear operation which can be implemented effi-
ciently. As the coefficients of a binary polynomial are powers of two, the squaring
operation can be performed by doubling the degree of each coefficient of a poly-
nomial. Given a binary polynomial of degree m− 1: a(x) = am−1 · xm−1 + am−2 ·
xm−2 + · · ·+ a1 · x1 + a0 we find the squared polynomial by

a(x)2 = am−1 · x2m−2 + am−2 · x2m−4 + · · ·+ a1 · x2 + a0. (2.2)

So the squaring operation can be realized by expanding the coefficients of a polyno-
mial and inserting elements with zero-valued coefficients according Equation 2.2.
For a hardware implementation, squaring is basically a matter of re-wiring the
signals representing the polynomial coefficients. Hence, a squaring operation can
be easily performed within one clock cycle and little area overhead. A modular
squaring also requires to perform a reduction step to obtain an element of the
given finite field. This reduction is performed modulo the irreducible polynomial
which defines the given finite field.

2.2.4 Inversion

Among the given set of finite field operations of addition, multiplication, and
squaring, the inversion is the most time-consuming one. Inversion is used to ob-
tain the multiplicative inverse of a non-zero finite field element. The multiplicative
inverse is the element a−1 so that a−1 · a ≡ 1 mod f(x) where a ∈ Fq. Inversion
algorithms can be categorized into two groups. The first group is based on the
extended Euclidean algorithm and its variants [25] and the second group are inver-
sion algorithms based on field multiplication. Typically the following algorithms
are considered for finite field inversion:

• Fermat’s little theorem,

• Itoh-Tsujii’s algorithm [28, 47],



14 2. Finite Fields

• Almost Inverse algorithm [24, 49].

As low area is a major design goal, we focus on field inversion by application
of Fermat’s little theorem as it allows us to calculate an inversion by applying
repeated multiplications and squarings. Hence, we need no additional hardware for
the inversion operation effectively minimizing area consumption. In the following,
we want to discuss Fermat’s little theorem and its application according to the
given finite field and reduction polynomial.

Fermat’s Little Theorem

The main advantage in using Fermat’s little theorem is that its application does
not require implementation of additional hardware. In fact, it allows to re-use
arithmetic of multiplication and squaring to calculate the inversion. While in-
version based on Fermat’s little theorem is not very fast, it provides considerable
advantages concerning circuit area. Low-area designs can make use of Fermat’s
little theorem to trade computation time for circuit area. For an algorithmic com-
putation where the number of inversions is low compared to other operations, it
may be advantageous to save circuit area by applying Fermat’s little theorem for
a better overall area-time trade-off. Another reason to avoid implementing a dis-
tinct inversion circuit is that it could potentially increase the critical path delay
and effectively decrease the performance of the whole circuit.

Fermat’s little theorem given in Equation 2.3 provides the basic formula to
calculate an inversion using field operations of multiplication and squaring.

a−1 = a2
m−2, a ∈ Fq (2.3)

There exist several ways to compute the exponentiation by 2m − 1 which we
want to discuss in the following. Given the case that we want to calculate xn, where
n is a positive integer, we could either make n − 1 consecutive multiplications or
multiply the squared partial results. To obtain x16, we would calculate x ·x, x2 ·x2,
x4 · x4, x8 · x8 and hence obtain x16 by only 4 multiplications. We can apply this
idea to general values of n using a method called binary exponentiation [32]. By
applying repeated multiplications and squarings to the non-zero field element a,
the finite field can be traversed much more efficiently to obtain the inverse. With
2m − 2 =

∑m−1
i=1 2i we can write Fermat’s little theorem as

a−1 = a
∑m−1

i=1 2i =
m−1∏
i=1

a2
i

(2.4)

to compute the inverse field element a−1 with m − 1 squarings and m − 2 multi-
plications. The simple square and multiply algorithm is very easy to implement
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but has performance drawbacks compared to the solution in Algorithm 1. For the
fixed reduction trinomial x1223 + x255 + 1 we can directly asses the computational
cost in terms of field multiplications and squarings for the inversion algorithm.
The finite field operations in the simple square and multiply algorithm are related
to the Hamming weight of 2m − 2 where m is 1223 as given by the irreducible
polynomial f(x). The binary representation of 2m − 2 is a 1223-bit wide number
where all bits, excluding the least significant bit, are set to 1. Applying the square
and multiply algorithm, we substitute each 1 in the representation of 2m − 2 by a
square and multiply operation and each 0 by a sole squaring operation. To obtain
the correct calculation sequence, the first square and multiply pair is not executed.
This approach gives an inversion cost of 1221 multiplications and 1222 squarings
for the given field size. Algorithm 1 gives an improved way to obtain an inversion
result using Fermat’s little theorem which is applicable if the extension degree m
is odd.

Algorithm 1 Inversion in F2m

Input: u ∈ F2m , u 6= 0,m is odd
Output: v = u−1 ∈ F2m .

1: U ← u2

2: V ← 1
3: x← (m− 1)/2
4: while x 6= 0 do
5: U ← U · U2x

6: if x is even then
7: x← x/2
8: else
9: V ← V · U

10: U ← U2

11: x← (x− 1)/2
12: end if
13: end while

Return V
Σ = (15M, 1222S)

As multiplications are costly operations we want to minimize them as far as
possible as the pairing computation is by itself a costly computation demanding
efficient implementation. Observing that the approach of Algorithm 1 in [25] re-
quires considerably less multiplications allows us to reduce the computational cost
for inversion in F2m . With the improved algorithm we can perform a F2m inversion
with just 15 multiplications and 1222 squarings.
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2.2.5 Modular Reduction

To obtain a modular result, operations of multiplication and squaring are per-
formed modulo an irreducible reduction polynomial f(x). Modular reduction can
be performed efficiently by a linear operation for certain types of sparse reduction
polynomials such as trinomials and pentanomials. Hence, the ANSI X9.62 and
X9.63 standards [2, 3] recommend using such reduction polynomials. Several fast
modular-reduction algorithms tailored to such polynomials are illustrated in [25].

In the following, we want to focus on modular reduction using the irreducible
polynomial as used to calculate the ηT pairing presented in Chapter 4. We will
illustrate how the specific property of this reduction polynomial can be used to
be implemented by a combinatorial network, allowing to reduce polynomials in a
single computation cycle. The ηT pairing is based on a binary finite field F21223

and a irreducible reduction trinomial f(x) = xm + xα + xβ = x1223 + x255 + 1.
Fast reduction by trinomials is possible if the second non-zero coefficient denoted
as xα satisfies the relation of 2α− 2 < m, where m is the order of the irreducible
polynomial. As the irreducible trinomial used to compute the ηT pairing fulfills
this condition, a fast reduction can be defined. The steps applied to reduce by the
given trinomial are illustrated in Figure 2.1 and described in the following:

f(x) = xm + xα + xβ︸ ︷︷ ︸
r(x)

. (2.5)

Let the finite field be constructed by a reduction polynomial of the form f(x) =
xm+xα+1 and let a(x) and b(x) be elements of GF(2m), where a(x) =

∑m−1
i=0 aix

i

and b(x) =
∑m−1

i=0 bix
i. Hence, the plain polynomial product c(x) = a(x) · b(x)

has degree 2m − 2 which needs to be reduced to the modular product c′(x) =
c(x) mod f(x) of degree m-1.

c(x) = c2m−2x
2m−2 + . . .+ c1x+ c0 (2.6)

= c2m−2x
2m−2 + . . .+ cm+1x

m+1 + cmx
m︸ ︷︷ ︸

cH(x)

+ cm−1x
m−1 + . . .+ c1x+ c0︸ ︷︷ ︸

cL(x)

= (c2m−2x
m−2 + . . .+ cm+1x

m + cm)xm + cL(x)

≡ (c2m−2x
m−2 + . . .+ cm) · r(x) + cL(x) mod f(x)

= (c2m−2x
m−2 + . . .+ cm︸ ︷︷ ︸

(1)

) · (xα + xβ︸︷︷︸
1

) + cL(x)

= (c2m−2x
m−2+α + . . .+ cmx

α︸ ︷︷ ︸
(2)

) + (c2m−2x
m−2 + . . .+ cm︸ ︷︷ ︸

(1)

) + cL(x)

In Equation 2.6, we apply Equation 2.5 once giving us two terms where cL(x)
is the lower part of the product which does not need to be further reduced and
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Figure 2.1: Fast reduction by trinomial f(x) = x1223 + x255 + 1

the second term (1) which exceeds degree xm and thus requires further reduction.
Consequently, we apply Equation 2.5 again reducing term (2) to obtain the fully
reduced result.

(2) = c2m−2x
m−2+α + . . .+ c2m−αx

m + c2m−α−1x
m−1 + . . .+ cmx

α

≡ (c2m−2x
α−2 + . . .+ c2m−α︸ ︷︷ ︸

(2H)

) · xm + c2m−α−1x
m−1 + . . .+ cmx

α︸ ︷︷ ︸
(2L)

= (c2m−2x
α−2 + . . .+ c2m−α) · (xα + 1)︸ ︷︷ ︸

r(x)

+(2L)

= (c2m−2x
2α−2 + . . .+ c2m−αx

α) + (c2m−2x
α−2 + . . .+ c2m−α) + (2L)

The reduced result c′(x) is obtained by summing up the terms obtained by
repeated reduction by the trinomial as given in Equation 2.7. In the binary finite
field, the addition operation is equivalent to an XOR operation. So in order to
reduce the product, we can use a combinatorial XOR network which allows to
perform reduction in a single step, i.e.,

c′(x) = cL(x)⊕ (1)⊕ (2L) · xα ⊕ (2H) · xα ⊕ (2H). (2.7)
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By summing up the overlapping coordinates of the partially reduced terms,
we can estimate the complexity of the reduction circuit in required XOR gates.
Adding the segments requires m + (m − α) + 2α XOR gates. Consulting the
standard-cell datasheet, we see that the 2-input XOR-gate standard cell of normal
driving strength requires nine cell units where the 2-input NAND standard cell of
normal driving strength requires 3 cell units. Normalizing for 2-input NAND gate
equivalents we obtain an estimated area of 2701× 3 = 8103 GE for the reduction
circuit.



Chapter 3

Elliptic Curves

This chapter introduces elliptic curves based on finite fields as a basis to compute
bilinear pairings. Special focus is given on supersingular elliptic curves which
provide the basis for the pairing which has been implemented in this thesis.

Elliptic curves are the enabler technology for an efficient implementation of
bilinear pairings. Elliptic-curve cryptography provides several types of curves,
different point-coordinate representations, and consequently also a large set of al-
gorithms and optimizations to perform elliptic-curve arithmetic. Bilinear pairings
can be calculated efficiently using elliptic-curve theory. Especially so-called su-
persingular elliptic curves play an important role in the context of pairing-based
cryptography. In the following, we want to briefly introduce elliptic curves and the
basic arithmetic on elliptic curves providing the basis for bilinear pairings based
on elliptic curves.

The introduction of elliptic curves to cryptography was proposed in 1985 by
Victor Miller [40] and 1987 by Neal Koblitz [33]. Since then, elliptic-curve cryp-
tography provided a wide area for research and found numerous applications. One
main reason is that elliptic-curve cryptography offers a higher level of security
per bit than other comparable asymmetric cryptographic primitives such as RSA.
Hence, elliptic-curve cryptography requires considerably smaller key sizes at the
same security level which in turn reduces cost figures. Being attractive for ap-
plications in low-resource environments such as smart cards, RFID tags, or even
sensor-node networks, elliptic-curve cryptography is still a very active research
area.

Elliptic curves are be defined over a finite set of points which are elements of
a finite field defined by an irreducible polynomial. As such, an elliptic curve E
is said to be defined over a finite field K which is denoted as E/K where K is
called the underlying field. The set of points of a curve form an associated Abelian
group which allows mathematical operations on that curve or set of points. The
set of points form a cyclic subgroup G on that curve. The fundamental equation

19
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to elliptic curves is the so-called Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the coefficients a1−6 are elements of K and x, y are the coordinates of a
point P on that curve where x, y ∈ K. The set of points on E over K is referred
to as K-rational points on E, denoted as E(K) and defined by

E(K) = {(x, y) ∈ K2 : y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0}U{∞}

where ∞ is called the point at infinity. In its projective form [X : Y : Z] three
coordinates are used to describe a point that satisfies the equation. By substi-
tuting X for X

Z
and Y for Y

Z
the equation can be transformed to its affine form.

To describe an elliptic-curve point in affine coordinate representation, only two
coordinate elements are required. Finite field elements satisfying this equation
represent points on the elliptic curve. Depending on the finite field characteristic,
the elliptic-curve equation can be simplified through a change of variables. For a
finite field K of characteristic two, we obtain two simplified Weierstraß equations
depending on the value of a1. For a1 6= 0 we obtain Equation 3.1 which is said to
be non-supersingular and for a1 = 0 we obtain Equation 3.2 which is said to be
supersingular with a, b, c ∈ K [25].

E : y2 + xy = x3 + ax2 + b (3.1)

E : y2 + cy = x3 + ax+ b (3.2)

Group Law Operations on points of an elliptic curve are performed according
to the group law of a curve E defined over a field K. The elementary operation is
the addition of two points residing on the curve giving another point also resides on
that curve. The point addition is performed according to the so-called chord-and-
tangent rule which can be demonstrated geometrically for elliptic curves defined
over real numbers R. The set of points on the curve and the addition operation
together with the element∞ form an Abelian group where∞ is the group’s neutral
element. The operations performed on this group are usually referred to as elliptic-
curve arithmetic and represent the basis of elliptic-curve cryptosystems. Based on
point addition, another operation called point doubling can be defined which also
applies a version of the chord-and-tangent rule. Given two points P = (x1, y1) and
Q = (x2, y2) residing on an elliptic curve E/K we may write the point addition
as P + Q = R denoting that the result is a third point R = (x3, y3). Doubling a
point P is denoted as 2 · P = R.

Group Order Given an elliptic curve defined over a field E/Fq, the number of
points on that curve is denoted as #E/Fq and referred to as the order of a curve
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E over Fq. Hasse’s theorem provides a way to define an interval for the order of a
curve.

Definition 1. Let p be the characteristic of Fq and t be the trace of E/Fq. An
elliptic curve E defined over Fq is called supersingular if p divides t where t is the
so-called trace of E over K.

The trace t of a curve is defined through Hasse’s theorem which states that for
a curve E/Fq the order of that curve #E/Fq = q+1−t where |t| ≤ 2

√
q. Since the

value of 2
√
q is small relative to q the number of points in E(Fq) is approximately

q [25].

3.1 Supersingular Curves

Supersingular elliptic curves have played a key role in the history of bilinear pair-
ings. Originally supersingular curves were introduced by Koblitz and Miller and
later avoided in cryptographic applications with the discovery of so-called MOV
attacks [38]. The reductions of the discrete-logarithm problem in [38] used the
fact that supersingular curves have a small embedding degree of k ≤ 6. These
attacks apply bilinear pairings to attack the discrete logarithm problem of super-
singular curves. Lately, with the advent of constructive applications of bilinear
pairings, supersingular curves are used again. Prominent examples of constructive
applications of pairing-based cryptography are given in Section A.

Definition 2. An elliptic curve E/Fq where q = pm with p being prime and m ∈ N
with #E(Fq) = q+ 1− t is called supersingular if and only if the greatest common
denominator of t and q is larger than 1 [18].

Supersingular curves offer a distortion map φ which maps a point P to another
point φ(P ). Ordinary curves with embedding degree k > 1 do not have distortion
maps. For supersingular curves a distortion map always exists. A distortion map
φ is used to transform elements of E(Fq) to E(Fqk)

φ : E(Fq[`]→ E(Fqk)[`]

Definition 3. Let n be a number prime to q. The smallest number k such that
n|qk − 1 is called the embedding degree with respect to n [13]. For supersingular
elliptic curves k is always small.

Definitions of supersingular elliptic curves over finite fields of Fp, F2m , and F3m

with corresponding embedding degree k [6]:

E/Fp : y2 = x3 + (1− b)x+ b, b ∈ 0, 1, N = p+ 1, k = 2;

E/F2 : y2 + y = x3 + x+ b, b ∈ 0, 1, N = 2m + 1± 2m+1/2, k = 4;

E/F3 : y2 = x3 − x+ b, b ∈ −1, 1, N = 3m + 1± 3(m+1)/2, k = 6;
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Availability of distortion maps is also important as they make the pairing input
elements linearly independent. With the input elements P and Q being linearly
independent, we obtain a strong non-degeneracy property which means that the
self pairing is not trivial. For cryptographic applications, pairings have to be
non-degenerate. Many protocols require a pairing of two inputs from the same
cyclic group to be non-degenerate. While distortion maps exist for supersingular
curves, they do not exist for ordinary elliptic curves. In Page et al. [43], compare
the efficiency of supersingular curves and ordinary elliptic curves in pairing-based
cryptosystems. One drawback of ordinary curves is the inavailability of distortion
maps. A distortion map transform elements of E(Fq) to E(Fqk) so that arithmetic
can be performed efficiently in E(Fq) and then mapped to E(Fqk). However, for
ordinary curves hash functions are used to take their values in E(Fqk) so that the
hashed point is defined over E(Fqk) where arithmetic is slower than on E(Fq) [13].
The inavailability of distortion maps on ordinary elliptic curves can be a problem
as some security proofs are based on the existence of distortion maps. So for a
protocol do be provable in these terms one must stick to supersingular curves [18].

Comparing supersingular curves with Barreto-Naehrig curves, which are also
applied for implementing bilinear pairings, shows that supersingular curves have
simpler curve arithmetic than Barreto-Naehrig curves and are more efficient due to
their efficient formulæ for point tripling if used over a ternary finite field. The field
arithmetic of supersingular curves generally benefits from a small characteristic
as carry propagation considerations are not necessary for small characteristics—
making supersingular curves better suited for implementations in hardware. The
embedding degree k of supersingular curves is generally small. The supersingular
curves over F2m and F3m have an embedding degree of 4 and 6 respectively. The
relatively low embedding degree requires to use a larger field size in the multiplica-
tive group Fqk to keep the security level.



Chapter 4

Bilinear Pairings

This chapter starts with an introduction to bilinear pairings, which are the key
component in pairing-based cryptography, and several applications thereof. Next,
we will discuss the properties of a bilinear pairing regarding a constructive cryp-
tographic application. We continue with a presentation of pairing algorithms for
identity-based encryption such as the Weil, Tate, and ηT pairing. Special focus
is given on the truncated eta or short ηT pairing as it is an optimized version of
the Tate pairing allowing efficient implementations in hardware. The description
of the ηT pairing also contains algorithmic descriptions and a short computational
analysis representing the basis for design considerations concerning the hardware
architectures given in Chapter 5.

4.1 Introduction

Pairing-based cryptography is based on mappings between two algebraic groups.
A so-called bilinear map or bilinear pairing allows to construct such a map between
two groups. Such a map is especially interesting in cryptography as it allows to
also map the computational problems attributed to these algebraic groups. So
if a problem definition is mapped to another usually easier problem in another
group, this effectively reduces the cryptographic strength of the former. This ap-
proach is usually referred to as reduction and was exploited in early cryptographic
applications of bilinear pairings. If the finite-field discrete logarithm problem is
computationally more feasible than its corresponding elliptic-curve discrete log-
arithm problem, bilinear pairings can be used to effectively reduce the security
level of a cryptosystems. Bilinear maps were introduced to cryptography in 1991
by Menezes, Okamoto and Vanstone [38] and 1994 by Frey and Rück [19] to reduce
the elliptic-curve discrete logarithm problem to a discrete logarithm problem in
the multiplicative group of a finite field (Figure 4.1). Until then no sub-exponential

23
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time algorithm was known for solving the elliptic-curve discrete logarithm prob-
lem. The so-called MOV-attack uses the Weil pairing to reduce the elliptic-curve
discrete logarithm problem to the logarithm problem in the multiplicative group of
an extension of the curve’s underlying finite field. For the class of supersingular el-
liptic curves this reduction provides probabilistic sub-exponential time algorithms
to solve the elliptic curve discrete logarithm problem. The first group is usually
referred to as gap group because the decisional Diffie-Hellman problem [9] gets
easier due to the reduction to a computationally weaker problem in the second
group. While the decisional Diffie-Hellman problem of the gap group is weakened
the computational Diffie-Hellman problem is not.

Public-Key cryptography 
introduced by 
Diffie and Hellman

Andre Weil introduces
Weil pairing for 
Jacobians of curves

1940 1958

John Tate introduces
Tate pairing based on 
Tate duality

Adi Shamir proposes 
idea for IBE schemes

1984

1976

ECDLP reductions by 
Menezes, Okamoto
and Vanstone using 
Weil pairing

1991

1994

Cryptanalytic application of 
Tate pairing over finite fields
by Frey and Rück

Boneh-Franklin introduce 
first IBE implementation

2001

2007, Barreto et al. introduce etaT pairing; 
Shirase et al. present etaT algorithms for 
arbitrary extension degrees

2007

Adikari et al. present ASIC
implementation of etaT pairing 
at 128-bit security level

2012-09

Figure 4.1: Historical timeline of bilinear pairings

A cryptographic pairing represents a bilinear map which maps two group ele-
ments to an element of a third group. Given that G1,G2,GT are groups of large
prime order q the map e can be denoted as

e : G1 ×G2 → GT . (4.1)

The groups G1 and G2 are generally additive groups and GT a multiplicative group.
In the following we will denote the generators of the additive groups as P and Q
respectively. In additive notation, we have a scalar multiple aP given as

aP =

a times︷ ︸︸ ︷
P + P + . . .+ P (4.2)

which can be used with another scalar multiple of a generator in G2 to be mapped
to an element of the additive group GT . Pairings are usually classified into different
types. We want to briefly give the classification as introduced in [20]. If two
elements of the same group are used to map to the target group GT , the pairing
is called symmetric or Type-I pairing. If the input groups differ G1 6= G2, the
pairing is called asymmetric. Asymmetric pairings are divided into pairings where
there exists an efficient distortion map (cf. homomorphism) φ : G2 → G2 (Type II
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Finite-Field Arithmetic

Elliptic-

Curve Arithmetic

Pairing

IBE

Figure 4.2: Abstraction layers for pairing-based cryptography

pairing) and where there is no such efficiently computable homomorphism between
G1 and G2 (Type III pairing):

e : G1 ×G2 → GT where G1 = G2. (4.3)

In the following, we generally consider Type II pairings which can be generalized
to Type I pairings if required (Equation 4.3).

Due to the bilinear property of pairings, new cryptographic schemes can be con-
structed which in turn extend the portfolio of cryptographic applications. Promi-
nent applications of pairing-based cryptosystems are

• Identity Based Encryption,

• Tripartite Key Exchange, and

• Short signatures.

Identity-based encryption was envisioned in 1984 by Adi Shamir [50] and instanti-
ated in 2001 by Boneh and Franklin [10]. Antoine Joux introduced the one-round
tripartite key-exchange protocol in [29]. Boneh, Lynn, and Shacham provided the
short signature schemes in [12]. Boneh, Gentry and Waters presented efficient
broadcast encryption systems in [11]. More detailed descriptions of pairing-based
protocols are presented in Section A. The pairing algorithms according to Weil and
Tate contain fairly complex mathematics. From an abstract perspective, the pair-
ing computation is based on finite fields and elliptic-curve operations and provides
a basis for pairing-based protocols such as IBE (Figure 4.2).

Security The security level of a pairing-based cryptosystem relies on the hard-
ness of two computational problems. First, the discrete logarithm problem in the
additive group E(Fq) of Fq-rational points on E (cf. computational elliptic-curve
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Diffie-Hellman problem, ECDHP). Second, the discrete logarithm problem in the
multiplicative group F∗

qk
(cf. finite-field Diffie-Hellman problem) which is usually

also referred to as MOV security. Both problems should be computationally in-
feasible for the overall system to be secure. The discrete logarithm problem on
elliptic curves can be solved using the Pollard rho algorithm [55]. The discrete
logarithm problem in finite fields can be solved using the index calculus attack.
The running time of the Pollard rho algorithm is O(

√
r) with r being the size

of the largest prime-order subgroup of E(Fq) [44]. The index calculus algorithm
has a sub-exponential complexity in the field size. In order to achieve a balanced
security level in both groups the extension field size qk needs to be significantly
larger than the r [18]. This ratio is expressed using the embedding degree, which
often is equal to the degree k of the extension field the pairing maps to, and the
parameter ρ = log(q)

log(r)
. The parameter ρ measures the size of the prime-order sub-

group on the curve r relative to the size of the base finite field q. Coppersmith’s
index calculus method solves the discrete logarithm problems in finite fields of
small characteristic [14]. As it improves solving the discrete logarithm problem
in fields of small characteristic the field sizes of small characteristic, fields need
to be increased accordingly [18]. Due to this fact, fields of characteristic two and
three require having larger field sizes than fields of larger prime characteristic to
obtain the same security level. The security of a pairing is usually considered by
the so-called MOV security. The MOV security of a pairing is equivalent to the
bit length of the smallest finite field into which the pairing algorithm embeds to
[22].

4.2 Properties

In order to be of practical value for cryptographic applications, a bilinear pairing
should have the properties of bilinearity and non-degeneracy, and should provide a
way for efficient (sub-polynomial) computation. In the following, we briefly discuss
the former two properties.

Bilinearity The bilinear property of a pairing algorithm is of fundamental im-
portance in order to build pairing-based cryptosystems. The pairing algorithm is
a bilinear operation which maps two elements of input groups G1 and G2 to an
element of an output group GT , where G1 and G2 are additive groups and GT is a
multiplicative group. A map e : G1×G2 → GT is called a bilinear map or pairing,
if it satisfies the following condition:

e(P +Q,R) = e(P,R) · e(Q,R) ∀P,Q ∈ G1;R ∈ G2 (4.4)

e(P,R + S) = e(P,R) · e(P, S) ∀P ∈ G1;R, S ∈ G2 (4.5)
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Usually, also the following notation is used in literature to define the bilinear
property: Given that ∀P,Q ∈ G1, ∀a, b ∈ Z∗q bilinearity holds if

e(aP, bQ) = e(P,Q)ab.

Non-degeneracy To be of practical use in the context of pairing cryptogra-
phy, a bilinear map should not be degenerate when the inputs (P ,Q) are linearly
dependent. In general, a pairing is called degenerate if it maps to the identity.

Definition 4. Let P ,Q be points of order m. Then P and Q are linearly indepen-
dent if there is no integer n so that P = nQ

A pairing is called non-degenerate if the following condition holds:

e(P,Q) 6= 1 ∀P ∈ G1;Q,S ∈ G2. (4.6)

Computability To be of practical value, pairings need to be computable effi-
ciently in sub-polynomial time. As bilinear pairings are generally complex and
hard to calculate this is a usual requirement for pairing implementations.

Miller’s Algorithm The basic algorithm to efficiently compute pairings was
introduced in 1986 by Victor Miller in an unpublished manuscript [39]. Probably
motivated by the intense research activity in the field of bilinear pairings, it was
officially published in 2004 [41]. The so called Miller algorithm is an extension
of the elliptic curve double-and-add operation which evaluates a pairing on an
algebraic curve. Preceding algorithmic solutions to evaluate such functions were
exponential in the size of the input where Miller’s algorithm is linear in the size of
the input [39]. Similar to the double-and-add algorithm, the Miller algorithm also
requires to loop over a certain number of iterations. Attempts to improve a pairing
algorithm generally focus on reducing the number of required Miller iterations. In
its standard version, it applies a double-and-add iteration on the bits of the prime
subgroup r using so-called line evaluation functions. In the case of supersingular
curves, the Hamming weight of r can be chosen arbitrarily, which allows to use
primes of low Hamming weight to improve the computation time. This algorithm
is the most integral part in pairing calculations.

Pairings provide a map between elliptic-curve subgroups and finite field sub-
groups. In a cryptographic context, pairing algorithms provide a map between
computational problem based on elliptic curves and computational problems based
on finite fields. As the embedding degree sets the finite-field size, it directly in-
fluences the security provided by a finite field or the hardness of the associated
problem. If the embedding degree is low, the finite field size is also low and the
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ECDLP provides lower security as it is more feasible to solve it. Hence elliptic
curves of low embedding degree are not suitable for cryptographic applications
requiring a high security. However, as the Miller algorithm pursues operations
on both groups a high embedding degree does not increase the security level for
the whole system as the smaller group remains the limiting factor for the overall
security level.

4.3 Weil Pairing

André Weil introduced the first bilinear pairing based on so-called Jacobians of
curves in 1940. The Weil pairing, named after André Weil, introduced a pairing
on points of finite order on elliptic curves which is bilinear, non-degenerate for
asymmetric arguments, and efficiently computable. The fact that it is efficiently
computable is due to Victor Miller who devised an algorithm for the evaluation
of algebraic curves in [39, 41] Given an elliptic curve E/K and r being an integer
prime to the characteristic of the field, we can write the Weil pairing as

er : E[r]× E[r]→ µr ⊂ K̄ (4.7)

where the result µr is the group of rth roots of unity in K̄ [53]. Where K̄ denotes
the algebraic closure of K, and E[r] the group of all r-torsion points of E. Con-
cerning cryptographic applications, the main drawback of the Weil pairing is that
it is degenerate if applied to the cyclic subgroup of order ` [13]. So a symmetric
Weil pairing W`(P, P ), where the same cyclic subgroup of order ` is used in both
groups, always results in 1. For more information on the Weil pairing and its
efficient calculation, we want to refer to [41].

4.4 Tate Pairing

The Tate pairing goes back to John Tate who introduced so-called Tate-duality
pairings. It was extended by Steven Lichtenbaum in 1969, as well as Gerhard Frey
and Hans-Georg Rück in 1994 [19]. Hence the Tate pairing is also referred to as
Tate-Lichtenbaum pairing. The Tate pairing describes the computation of a map
e which maps elements of Fq and Fqk to an element of the multiplicative group F∗

qk

(Equation 4.8).

e : E(Fq[r])× E(Fqk)[r]→ µr ⊂ F∗qk (4.8)

Computation of the Tate pairing is possible by application of Miller’s algo-
rithm [41] and the extensions due to [19]. The complexity of Miller’s algorithm is
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dominated by the number of iterations of its main loop. The number of iterations
depends on the size of the underlying finite field. The body of the main loop
consists of line evaluation functions in order to perform elliptic-curve operations.
We can divide the loop body into two sections where one section is executed in
every iteration (addition step) and the other section is executed if the ith bit of the
binary representation of r is set (doubling step). The two steps contain the elliptic-
curve point operation of point addition and point doubling respectively. While the
Tate pairing can be applied in various cryptographic schemes it is computationally
expensive. Consequently, numerous methods for faster pairing computation based
on the Tate pairing have been proposed in literature.

4.5 ηT Pairing

In the following, we want to present a pairing algorithm originally based on the
Tate pairing which allows to apply various algorithmic improvements. The so-
called η pairing was introduced by Barreto et al. to compute pairings using super-
singular curves [5]. Their approach generalizes the preceding results of Duursma-
Lee in [16] for computing the Tate pairing in characteristic three in order to use
their approach with elliptic and hyper-elliptic curves in characteristic two and
three. They define the η to provide non-degeneracy and bilinearity and obtain sig-
nificant improvements over the previous methods. They introduce the improved
version as ηT pairing. The results of their ηT pairing computation outperforms
the η pairing by a factor of two according to their experimental results [5]. In [8],
Beuchat et al. present a square-root free version of the ηT pairing which is espe-
cially interesting for hardware implementations as no circuitry needs to be spent
for square-root calculations. As such, this instance of the ηT pairing is particularly
interesting regarding a low-area hardware implementation. Algorithmic descrip-
tions of the ηT pairing are provided in finite fields of characteristic two and three.
In the following, we consider the ηT pairing based on binary finite fields as the
provide efficient implementations in hardware. For a more in-depth discussion on
evaluations between characteristic two and three see [8]. For the binary field case,
we denote the ηT pairing as:

ηT : E(F2m)[r]× E(F2m)[r]→ µr ⊂ F∗24m . (4.9)

Using a second exponentiation, it is possible to compute the modified Tate pair-
ing from the reduced ηT pairing [8]. The ηT pairing maps two elements of binary
elliptic-curve points to an element of a multiplicative subgroup. The pairing cal-
culation can be separated in two parts where the first part performs accumulative
multiplication using line-evaluation functions and the second part assures that the
final result is unique by an exponentiation step Figure 4.3. The ηT pairing can be



30 4. Bilinear Pairings

ηT (P,Q)

ηT (P,Q)M ∈ F∗
24m

Final
Exponentiation

P Q

ηT Pairing

Figure 4.3: Abstract view on ηT pairing

implemented efficiently as it requires a considerably lower number of Miller loop
iterations than other pairing algorithms. In the following, we want to present a
more detailed illustration on the ηT pairing and the algorithms to compute it.

4.5.1 ηT Pairing Algorithm

In the following, we want to introduce the preliminaries for the ηT pairing according
to [8]. Consider a supersingular curve E over F2m defined by

E : y2 + y = x3 + x+ b (4.10)

where b ∈ {0, 1} and m is an odd integer. Depending on the extension m we define
δ = b when m = 1, 7 mod 8 and δ = 1 − b else. The number of rational points
of the curve E over F2m is given with N = #E(F2m) = 2m + 1 + ν2(m+1)/2 where
ν = (−1)δ [6]. The embedding degree k is 4 as it is the least positive integer such
that 2km − 1 divides N . According to [5], we choose T = 2m − N and a prime r
(sometimes also denoted as `) dividing N . The ηT pairing is then defined as the
pairing of two points P and Q ∈ E(F2m)[r] as

ηT (P,Q) = fT ′,P ′(φ(Q)) (4.11)

where T ′ = −νT and P ′ = [−ν]P [8].
Non-linearity of the two input points is assured by applying a distortion map

φ given as φ(x, y) = (x+ s2, y + sx+ t) to satisfy the property of non-degeneracy
[6]. The distortion map is used to map points of E(F2m [r]) to E(F24m)[r] for all
(x, y) ∈ E(F2m)[r] [5]. The elements s and t of the distortion map are elements
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of F24m and satisfy the following equations s2 = s + 1 and t2 = t + s. With
this definition we can represent F24m as an extension field to F2m using the basis
(1, s, t, st) leading to Equation 4.12 [8]:

F24m = F2m [s, t] ∼= F2m [X, Y ]/(X2 +X + 1, Y 2 + Y +X). (4.12)

The function fT ′,P ′ in Equation 4.13 is an element of the function field of the curve
denoted as F2m(E). Which, according to [8], is given by

fT ′,P ′ : E(F24m)[r] −→ F∗24m (4.13)

φ(Q) 7−→

m−1
2∏
i=0

g[2i]P ′(φ(Q))2
m−1

2 −i

 lP ′(φ(Q)),

where:

- [2i]P ′ represents a point doubling formula given by

[2i]P ′ =
(
x2

2i

P ′ + i, y2
2i

P ′ + ix2
2i

P ′ + i+ τ(i)
)
.

- gV is a rational function defined over E(F24m)[r] for all V = (xV , yV ) ∈

E(F2m)[r] which corresponds to the doubling of V . Where the doubling
operation is defined with

gV (x, y) = x(x2V + 1) + y2V + y + b.

- lV is a rational function according to the addition of [2
m+1

2 ]V with [ν]V ,
defined for all V = (xV , yV ) ∈ E(F2m)[r]. lV is defined for all (x, y) ∈

E(F24m)[r] and given as following [8]:

lV (x, y) = x2V + (xV + α)(x+ α) + x+ yV + y + δ + 1+ (4.14)

(xV + x+ 1− α)s+ t,

where α = 0 if m ≡ 3 (mod 4), or α = 1 if m ≡ 1 (mod 4).

For further details on the computation of the ηT pairing, we want to refer to
the literature as in [5, 7, 8]. A derivation of the line evaluation functions used to
calculate the pairing is given in [8].

This algorithmic description presented in the following uses optimizations of
Shu et al. [52], who proposed a square-root free version of the ηT pairing, and also
applies a reversed-loop approach suggested in [5]. The reversed-loop approach
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improves the direct approach by eliminating one F2m multiplication [8]. As illus-
trated before, the algorithms apply tower field extensions which are indicated by
uppercase letters. Elements of tower field extensions are either elements of F22m

or F24m . Consequently, we can denote the elements of the applied tower field by

G = g0 + g1s where G ∈ F22m , (4.15)

G = g0 + g1s+ g2t+ g3st where G ∈ F24m . (4.16)

Algorithm 2 ηT pairing (reversed-loop approach, without square roots [8]); lower
case variables ∈ F2m ; L,G, F ∈ F24m

Input: P,Q ∈ F2m [`]
Output: ηT (P,Q) ∈ F∗24m

1: yP ← yP + δ̄ (δ̄ XOR)
2: xP ← xP

2 (1 S)
3: yP ← yP

2 (1 S)
4: yP ← yP + b (b XOR)
5: u← xP + 1 (1 XOR)
6: g1 ← u+ xQ (1 A)
7: g0 ← xP · xQ + yP + yQ + g1 (1 M, 3 A)
8: xQ ← xQ + 1 (1 XOR)
9: g2 ← x2P + xQ (1 S, 1 A)

10: G← g0 + g1s+ t
11: L← (g0 + g2) + (g1 + 1)s+ t (1 A, 1 XOR)
12: F ← L ·G (2 M, 1 S, 5 A, 2 XOR)

13: for i← 1 to m−1
2

do
14: F ← F 2 (4 S, 4 A)
15: xQ ← x4Q (2 S)
16: yQ ← y4Q (2 S)
17: xQ ← xQ + 1 (1 XOR)
18: yQ ← yQ + xQ (1 A)
19: g0 ← u · xQ + yP + yQ (1 M, 2 A)
20: g1 ← xP + xQ (1 A)

21: G← g0 + g1s+ t
22: F ← F ·G (6 M, 14 A)
23: end for

The generic cost formulæ for the ηT algorithm variants with and without square
roots are provided by Beuchat et al. [8] and are given in Table 4.1. The ηT pairing
algorithm without square roots introduces additional addition operations but does
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not change the computational cost in terms of costly multiplications. The signif-
icant advantage of the square-root free variant is that it allows to save chip area.
As the addition in binary finite fields can be implemented cheaply, and low-area is
a main design goal, we favor the square-root free variant to be used for a low-area
hardware implementation.

From the algorithmic description given in Algorithm 2, we obtain an upper
bound for memory consumption by a simple summation of memory costs to store
the temporary values without consideration of memory reuse. We find seven vari-
ables in F2m and three variables in F24m . Consequently, we find a worst-case
memory consumption of 19 words of size m when not considering optimizations of
memory usage .

Table 4.1: Comparison of computational cost for ηT pairing algorithms with and
without square roots

ηT pairing without ηT pairing with Final

square roots square roots Exponentiation

Additions 11m 10 + 17 · m−1
2

2m+ 53

XORs 5 + δ̄ + b+ m−1
2

3 + δ̄ + β + m+1
2

-

Multiplications 3 + 7 · m−1
2

3 + 7 · m−1
2

26

Squarings 4m 4m 2m+ 9

Square roots - m− 1 -

4.5.2 Final Exponentiation

To use the ηT pairing in cryptographic applications, we require the result to be
unique. However, the result of the ηT pairing is not uniquely defined and thus
needs to be transformed. The transformation to a unique result, is called final
exponentiation. To obtain a unique result the ηT pairing is raised to the Mth
power where M is defined by

M =
24m − 1

N
= (22m − 1)(2m + 1− ν2

m+1
2 ), (4.17)

where N is number of rational points of the curve E over F2m . To calculate the
final exponentiation, two algorithms for cases of ν = 1 and ν = −1 are proposed
in [8].

- Ronan et al. [48] propose an algorithm involving a single inversion of element
in F24m for the case that ν = 1.
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- Shu et al. [52] apply a two-step algorithm for the exponentiation in case
ν = −1. They propose raising to 22m − 1 first, which involves an inversion
in F22m , and secondly raising to (2m + 1 + 2

m+1
2 ).

The algorithm of Shu et al. contains an inversion in the quadratic extension field
where the version given by Ronan et al. requires an inversion of a quadratic
extension field element. As field inversion is generally a very costly operation, we
apply Shu et al.’s approach and avoid inversion in the quartic extension field.

Algorithm 3 Final exponentiation of the ηT pairing; mi ∈ F2m ; Ti, Vi,Wi, and
D ∈ F22m ; V and W ∈ F24m ; [8]

Input: U = u0 + u1s+ u2t+ u3st ∈ F∗24m
Output: V = UM ∈ F∗24m , with M = (22m + 1)(2m − ν2

m+1
2 + 1)

1: m0 ← u20;m1 ← u21;m2 ← u22;m3 ← u23 (4 S)
2: T0 ← (m0 +m1) +m1s (1 A)
3: T1 ← (m2 +m3) +m3s (1 A)
4: T2 ← m3 +m2s
5: T3 ← (u0 + u1s) · (u2 + u3s) (3 M, 4 A)
6: T4 ← T0 + T2 (2 A)

7: D ← T3 + T4 (2 A)
8: D ← D−1 (1 I, 3 M, 1 S, 2 A)

9: T5 ← T1 ·D (3 M, 4 A)
10: T6 ← T4 ·D (3 M, 4 A)
11: V0 ← T5 + T6 (2 A)
12: V1,W1 ← T5

13: W0 ← T6

14: V ← V0 + V1t
15: W ← W0 +W1t
16: V ← V 2m+1 (5 M, 2 S, 9 A)

17: for i← 1 to m+1
2

do (611 iterations)
18: W ← W 2 (4 S, 4 A)
19: end for

Return V ·W (9 M, 20 A)

Algorithm 3 illustrates the computations used to raise the ηT pairing to a unique
result. The algorithm contains several operations in field extensions. Algorithms
for arithmetic in the respective extension fields are presented in Section 4.5.3 and
4.5.4. From the algorithmic description given in Algorithm 3, we can again give an
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estimate on the upper bound memory consumption. The algorithm uses four vari-
ables in F2m , twelve variables in F22m , and two variables in F24m . Consequently, we
find a worst-case memory consumption of 36 words of size m without consideration
of memory optimizations.

4.5.3 Arithmetic over F22m

The variables used in Algorithm 2 are elements in F2m or field extensions thereof.
Base field operations in F2m can be calculated using ordinary binary field arith-
metic. The operations in extension fields are provided by algorithms according to
the field extension degree. In the following, we want to elaborate on the required
algorithms for quadratic field extensions F22m which are based on operations in
the base extension field F2m .

Multiplication To compute Algorithm 3, we require multiplication of elements
in F22m . Elements of the quadratic extension field are given as a0+a1s and b0+b1s
(see Equation 4.15) where s signifies the most-significant part. This allows efficient
implementation using the Karatsuba algorithm as illustrated in Algorithm 4 [31, 8].
Consequently, we can execute this F22m multiplication with modular multiplica-
tions and additions in the base extension field F2m at a cost of three multiplications
and four additions.

Algorithm 4 Multiplication in F22m (Karatsuba algorithm)

Input: A = a0 + a1s, B = b0 + b1s ∈ F22m

Output: C = A ·B ∈ F22m .
1: c0 ← a0 · b0 (1 M)
2: c1 ← a1 · b1 (1 M)
3: a01 ← a0 + a1 (1 A)
4: b01 ← b0 + b1 (1 A)
5: a01 ← a01 · b01 (1 M)
6: a01 ← a01 + c0 (1 A)
7: c0 ← c0 + c1 (1 A)

Return C = c0 + a01s
Σ = (3M, 4A)

We apply this type of multiplication at line 5, 9, and 10 of the final exponen-
tiation algorithm.

Inversion In final exponentiation, we need to build the denominator expression
U2
0 + U0U1 + U2

1 s to calculate the terms U22m−1 and U1−22m in order to invert the
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variable D ∈ F22m (see Line 8 of Algorithm 3). We calculate this using Algorithm 5
with three multiplications, one inversion, two additions, and one squaring in the
base field F2m .

Algorithm 5 Inversion of quadratic extension field element (u0 + u1s)
−1 [8]

Input: U = u0 + u1s ∈ F22m , U 6= 0
Output: V = U−1 = v0 + v1s ∈ F22m .

1: a0 ← u0 + u1 (1 A)
2: m0 ← u20 (1 S)
3: m1 ← a0 · u1 (1 M)
4: a1 ← m0 +m1 (1 A)
5: i0 ← a−11 (1 I)
6: v0 ← a0 · i0 (1 M)
7: v1 ← u1 · i0 (1 M)

Return v0 + v1s
Σ = (3M, 2A, 1S, 1I)

4.5.4 Arithmetic over F24m

The multiplication of L and G in F24m (Algorithm 2 Line 12) can basically be cal-
culated using the multiplication algorithm as given by Algorithm 7. Beuchat et
al. show how to significantly simplify this multiplication by exploiting the sparsity
of both operands. To do so, they transform the term (g0+g1s+t) ·((g0+g2)+(g1+
1)s+ t) using the formulæ in Equation 4.18 to another form which contains dupli-
cate sub-terms for squaring and addition. As a result, the redundant operations
are calculated only once which lowers computational cost:

(g0 + g1s+ t) · ((g0 + g2) + (g1 + 1)s+ t) (4.18)

= g0 · (g0 + g2) + g21 + g1 + (g0 + g1 · g2 + g21 + g1 + 1)s

+ (g2 + 1)t+ st.

The term g21 + g1 in Equation 4.18 is reused giving an overall cost for this opera-
tion of two XOR operations, two multiplications, and just five additions and one
squaring. The improved multiplication is given in Algorithm 6.

There are two ways to compute the term V 2m+1 in Algorithm 3 Line 16. The
first is to multiply V 2m with itself to obtain V 2m+1. This requires a full multipli-
cation over F24m and can be calculated with Algorithm 7. Beuchat et al. propose a
faster way to raise V to the power of 2m+1 requiring only five multiplications, two
squarings, and nine additions in the base extension field. The improved algorithm
is given in Algorithm 8.
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Algorithm 6 Simplified computation of (g0 + g1s+ t) · ((g0 + g2) + (g1 + 1)s+ t)
in F24m [8]

Input: U = g0 + g1s+ t ∈ F24m , V = (g0 + g2) + (g1 + 1)s+ t ∈ F24m

Output: W = U · V ∈ F24m .
1: s0 ← g21 (1 S)
2: a0 ← g0 + g2; (1 A)
3: a1 ← g1 + s0; (1 A)

4: m0 ← g0 · a0;m1 ← g1 · g2 (2 M)

5: w0 ← m0 + a1 (1 A)
6: w1 ← m1 + g0 + a1 + 1 (2 A, 1 XOR)
7: w2 ← g2 + 1 (1 XOR)
8: w3 ← 1

Return w0 + w1s+ w2t+ w3st
Σ = (2M, 5A, 1S, 2XOR)

The accumulative multiplication in Algorithm 2 Line 22 is calculated according
to Algorithm 9.

4.5.5 Computational Complexity

In the following, we consider the computational complexity for a computation
of the ηT pairing at a security level of 128 bits using the algorithms presented in
Algorithm 2 and Algorithm 3. The most significant factor is the parametrization of
the supersingular curve E and the finite field F2m over which the curve is defined.
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Algorithm 7 Multiplication in F24m [8]

Input: U = u0 + u1s+ u2t+ u3st ∈ F24m and V = v0 + v1s+ v2t+ v3st ∈ F24m

Output: W = U · V ∈ F24m .
1: a0 ← u0 + u1 (1 A)
2: a1 ← v0 + v1 (1 A)

3: a2 ← u0 + u2 (1 A)
4: a3 ← v0 + v2 (1 A)

5: a4 ← u1 + u3 (1 A)
6: a5 ← v1 + v3 (1 A)

7: a6 ← u2 + u3 (1 A)
8: a7 ← v2 + v3 (1 A)

9: a8 ← a0 + a6 (1 A)
10: a9 ← a1 + a7 (1 A)

11: m0 ← u0 · v0;m1 ← u1 · v1;m2 ← u2 · v2;m3 ← u3 · v3; (4 M)
12: m4 ← a0 · a1;m5 ← a2 · a3;m6 ← a4 · a5;m7 ← a6 · a7;m8 ← a8 · a9 (5 M)

13: a10 ← m0 +m1 (1 A)
14: a11 ← m0 +m4 (1 A)

15: w0 ← a10 +m2 +m7 (2 A)
16: w1 ← a11 +m3 +m7 (2 A)
17: w2 ← a10 +m5 +m6 (2 A)
18: w3 ← a11 +m5 +m8 (2 A)

Return W = w0 + w1s+ w2t+ w3st
Σ = (9M, 20A)
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Algorithm 8 Raising U to the power of 2m + 1 over F24m [8]

Input: U = u0 + u1s+ u2t+ u3st ∈ F24m

Output: V = U2m+1 ∈ F24m .
1: a0 ← u0 + u1 (1 A)
2: a1 ← u2 + u3 (1 A)

3: m0 ← a0 · a1;m1 ← u0 · u1;m2 ← u0 · u3 (3 M)
4: m3 ← u1 · u2;m4 ← u2 · u3 (2 M)

5: s0 ← a20; s1 ← a21 (2 S)
6: v3 ← m4 + s1 (1 A)
7: v2 ← m2 +m3 (1 A)

8: v1 ← v3 +m0 +m3 (2 A)
9: v0 ← m0 +m1 +m2 + s0 (3 A)

Return v0 + v1s+ v2t+ v3st
Σ = (5M, 9A, 2S)

Algorithm 9 Computation of (g0 + g1s+ t) · (f0 + f1s+ f2s+ f3st) in F24m [8]

Input: G = g0 + g1s+ t ∈ F24m , F = f0 + f1s+ f2t+ f3st ∈ F24m

Output: W = F ·G ∈ F24m .
1: a0 ← g0 + g1 (1 A)
2: a1 ← f0 + f1 (1 A)
3: a2 ← f2 + f3; (1 A)

4: m0 ← g0 · f0;m1 ← g1 · f1;m2 ← g0 · f2;m3 ← g1 · f3 (4 M)
5: m4 ← a0 · a1;m5 ← a0 · a2 (2 M)

6: w0 ← m0 +m1 + f3 (2 A)
7: w1 ← m0 +m4 + f2 + f3 (3 A)
8: w2 ← m2 +m3 + f0 + f2 (3 A)
9: w3 ← m2 +m5 + f1 + f3 (3 A)

Return w0 + w1s+ w2t+ w3st
Σ = (6M, 14A)
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The choice of an elliptic curve and the underlying finite field on which the
curve is defined on has direct influence on the characteristics of the pairing sys-
tem. Curve and field parameters affect the resulting security level of the pairing
and its computational complexity. The presented pairing algorithm is based on
supersingular curves defined over fields of characteristic two. As one design goal is
to implement a pairing at a 128-bit security level, an underlying binary field F21223

is used [21]. The applied field is constructed with the irreducible polynomial

f(x) = x1223 + x255 + 1. (4.19)

In the following, we want to discuss the parametrization of the ηT pairing
according to this field definition. We consider the supersingular elliptic curve

E : y2 + y = x3 + x, (4.20)

where the curve parameter b is zero. Using the finite field F21223 , we obtain m =
1223, and hence have m ≡ 7 (mod 8) giving δ = b = 0 [8]. The constant δ̄ is
obtained as δ̄ = 1− δ = 1. The number of rational points of E over F2m given by

N = #E(F2m) = 2m + 1 + ν 2(m+1)/2, (4.21)

where ν = (−1)δ = 1 [6]. With the given curve parameters we have N = 21223 +
1 + 2612. The embedding degree k for this curve is 4 as it is a supersingular curve
over a binary finite field, and k is the least positive integer such that N divides
2km − 1 = 24892 − 1. With the definition of the line evaluation function for the
addition of [2

m+1
2 ]V with [ν]V in Equation 4.14, we obtain α = 0 as m = 1223 ≡ 3

(mod 4).

Table 4.2: Field-operation cost of ηT pairing in F21223 considering finite field inver-
sion based on Fermat’s little theorem

Operation ηT without Final
Total

square roots Exponentiation

Additions 13453 2499 15952

XORs 617 - 617

Multiplications 4280 41 4321

Squarings 4892 3677 8579

The computational analysis of the ηT algorithm as given in Table 4.1 and Fig-
ure 4.4 served as a guideline for design decisions in the hardware implementation
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process. The XOR operation listed in Table 4.2 represents addition of a single
digit and is implemented with no extra computational cost in terms of compu-
tation cycles as it appended automatically on a preceeding computation. The
decomposition of the pairing algorithm into operations in the base extension field
together with evaluations of finite-field operation cost provided an important basis
for decisions on potential hardware implementations. As the addition, XOR, and
squaring operation is relatively cheap special focus was given to the field multi-
plication which was used to estimate the expected computation time of design
candidates. The decisions were made based on the design goal of a small and yet
reasonably fast hardware circuit which is able to compute the ηT pairing in less
than 400 ms.



Chapter 5

Hardware Architectures

Throughout this chapter, we present the implementation of seven application spe-
cific integrated circuits to compute the ηT pairing. The chapter starts with a brief
introduction to ASICs to motivate the presented implementations. In the following
sections, we will present the so-called front-end design for hardware architectures
designed to calculate a bilinear ηT pairing at a security level of 128 bits. Com-
puting a ηT pairing at a high security level requires to perform operations with
in a large finite field. As the multiplier performance dominates the overall system
performance, special effort was made to optimize the implementation of finite field
multiplication. Hence, Section 5.3 presents several multiplier architectures based
on Karatsuba’s algorithm and digit-serial multiplication. The presented hardware
architectures were tested and verified using a testbench setup which is presented
in Section 5.4. Finally the chapter concludes with a discussion the applied memory
configurations used throughout the designs. In general the presented implementa-
tions target application in resource-constrained environments such as smart cards,
embedded devices, or even RFID tags. All of which demand low-area and low-
power consumption while providing a reasonably short compuation time to be of
practicable value in interactive applications.

5.1 Introduction

Since the advent of semiconductor technology in the first half of the twentieth cen-
tury and integrated circuits in the late 1950s1, the number of hardware applications
has increased continuously. Digital hardware technology enabled the construction
and widespread deployment of computers and embedded devices introducing our
society to the so-called digital age. In the following decades, digital-hardware tech-

1Early integrated circuits were presented by Jack Kilby and Robert Noyce in 1958/59.

42
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nology has been subject to rapid technology changes as the demand for new and
improved hardware solutions has increased steadily.

The vast majority of hardware systems today is based on ASICs which are
virtually ubiquitous in today’s electronic devices. ASIC designs offer high perfor-
mance, low power consumption, and allow low-area designs tailored for a specific
application. Offering a high degree of freedom demands to execute a rather com-
plex design cycle to build a custom hardware circuit. The design cycle basically
consists of the so-called front-end and back-end design. Front-end design begins
with the definition and specification of a design task and ends with a descrip-
tion of a hardware circuit, usually by means of a Hardware Description Language
(HDL). With a so-called synthesizer, the hardware description provided in an
HDL can be transformed to a technology-dependent circuit description, usually
called a netlist, which describes instances of gates and their interconnections. In a
standard-cell based design, the transistor-level descriptions are abstracted to stan-
dard cells representing the building blocks of the netlist. Back-end design basically
consists of the tasks required to transform a netlist to a layout description ready
for fabrication by a semiconductor foundry. Another proponent of digital technol-
ogy is a reconfigurable-hardware device such as a Field Programmable Gate Array
(FPGA). FPGAs usually contain a pre-fabricated grid of configurable logic blocks,
connected with configurable switches. By configuring the contained logic blocks
and their interconnection, a functional circuit can be configured. The configura-
tion of an FPGA is usually called a bitstream which is synthesized from a circuit
description in HDL. Compared to ASIC designs, FPGA devices offer a short de-
sign cycle and provide fast and accurate functionality. This is because there is
no need for a back-end design phase as the physical circuit is already pre-built
and not subject to errors induced in back-end design or subsequent fabrication.
The main drawback of FPGA technology compared to ASIC technology is their
considerably bigger size and power consumption [36]. This is why ASIC designs
are generally better suited for applications in embedded devices where properties
of low-area and low-power consumption are crucial. The gap between ASIC and
FPGA designs is also due to the ratio of recurring to non-recurring costs regarding
product deployment. Compared to FPGAs, an ASIC deployment contains a high
amount of non-recurring design costs for implementation, verification, layout, and
initial fabrication runs for physical testing and measurement. On the other hand
the recurring costs in ASIC deployment are considerably lower in terms of cost per
chip given that a large number of chips is to be produced. So each deployment
scenario has a break-even point where the benefits from low recurring cost of an
ASIC strategy compensate the large amount of non-recurring ASIC-design costs.
So in general ASIC designs offer economic advantages if a hardware circuit is to
be produced and deployed in large quantities. As this work targets application in
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resource-constrained low-area low-power environments with large scale deployment
the effort in an ASIC design is well-founded due to the above reasons.

5.2 System Architecture

Performing a bilinear pairing with the ηT algorithm over the elliptic curve E(F21223)
mandates doing underlying binary finite-field operations. Due to the embedding
degree of the pairing finite-field calculations are performed in extension fields of
various extension degree. Beside the basic operations in the base-extension field
F2m also operations in a quadratic extension field F22m and in a quartic extension
field F24m are needed. The operations in the quadratic and quartic extension
field can be expressed using operations in the base-extension field. Thus realizing
a hardware architecture providing base-extension field operations is adequate to
calculate the ηT pairing.

The proposed system architecture to calculate the ηT pairing contains a control
unit which controls the execution of the finite-field operations, an arithmetic unit
which is capable of calculating base-extension finite-field operations, a random-
access memory to store the temporary values for the pairing computation, and
an instruction memory holding the instruction words for the instruction set sup-
ported by the control unit. The base-extension field at the targeted security level
is F21223 where elements are represented by 1223 bits. An operand size of this
dimension directly impacts the area complexity of the arithmetic unit. The pre-
sented control setup is designed to be flexible in regard to later redesigns of the
arithmetic unit or algorithms to calculate the pairing. Possible design changes
could include replacing parts of the arithmetic unit to reduce area consumption
or extending the instruction set to support additional instructions. Flexibility is
attained using a microcoded approach instead of classic finite-state based imple-
mentation. From a top-level perspective, a microcoded approach also satisfies the
rather irregular instruction sequence inherent in the ηT algorithms. Furthermore,
the pairing algorithm contains a large number of computational steps which are
hard to maintain if implemented as classic finite-state machine description. An-
other significant advantage of a microcoded approach is that it supports making
later changes at an algorithmic level. Using an assembler-like metacode to gen-
erate the microcode, simplifies resequencing or exchanging computational blocks
in algorithms or sub-algorithms. Last but not least, a microcode supports the
designer in terms of design verification as the instruction sequence and memory
allocation pattern is represented in a structured and concentrated way. Another
design decision is implementing handshaked signaling between the control unit and
the arithmetic unit. While introducing a small control latency, this makes the de-
sign more modular. As such, changing the implementation of the arithmetic unit
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does not require adapting the control if instruction latency changes. A simplified
system overview covering the main building block of the top-level architecture is
depicted in Figure 5.1.
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Figure 5.1: Top-level system architecture

Arithmetic on large operands naturally requires an arithmetic unit which is ca-
pable of processing large operands. Some arithmetic operations make an efficient
implementation difficult as their area scales quadratically with operand size. This
is why multiplier circuits usually dominate the area requirement of an arithmetic
unit. As this work targets on a low-area implementation, we need to cope espe-
cially with area requirements of arithmetic circuits processing large operands. A
classic approach to cope with large-scale problems is divide and conquer. One of
the early and famous proponent of this strategy is a multiplication algorithm by
A. Karatsuba [31] which splits the multiplication in smaller-sized multiplications
effectively reducing the computational cost. By computing large multiplications in
smaller steps it is possible to reduce the size of the arithmetic unit. The so-called
Karatsuba algorithm and its adaption for the given design problem is presented in
Section 5.3.2. Splitting the operands into smaller segments also affects the mem-
ory organization for storing temporary operand values. While segmentation allows
having area-efficient aspect ratios for SRAM macrocells it also affects the number
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of cycles attributed to read and write operations. Basically two memory configu-
rations are used for the designs presented in this work. The 77-bit architectures
split operands into 16 segments which introduce a latency of 16 cycles for memory
access of reading or writing an operand. Architectures based on a 153-bit interface
benefit from the lower number of operand segments effectively halving the number
of read/write cycles.

Operand memory is realized by two separate single-port SRAM macrocell
blocks. The memory-output ports are directly connected with the arithmetic unit.
This omits a multiplexer cross-over structure which would allow to access seg-
ments originating from the same memory block to execute an instruction. Such
a cross-over structure would also allow to read both memory blocks at each data
input of the arithmetic unit. The given implementation does not spend chip area
on such a multiplexer structure at the cost of a more complicated instruction
scheduling and allocation pattern. This restriction implies that instructions with
two operands require the operands to reside in disjunct memory blocks. Using
operand memory-input multiplexers, a result can be stored to each of the two
memory block where the respective destination is set by the destination address
provided in the instruction word.

Another area optimization was found by constraining the algorithmic flow so
that single-operand operations are only supported by one memory block. To save
a multiplexer structure, only one port of the arithmetic unit supports the squaring
operation. Clearly this limits the freedom for memory allocation and instruction
scheduling as squarings can only be performed by reading operands from one of
the two memory blocks. In the given implementation, the input port A of the
arithmetic unit provides the squaring functionality. The task finding an optimal
way to arrange the instructions and place the respective results for the given ar-
chitecture is not trivial. Nevertheless, the instruction sequence was optimized
towards this ideal condition. However, at some points it was not possible to find
an instruction sequence and memory allocation pattern which meets the given con-
straints. To solve such problems, one could apply compiler theory and formulate
the architectural constraints. This would allow to apply standard compiler tech-
niques to optimize the algorithmic description for the given architecture. While
this certainly would be an interesting encounter, it probably would take a signifi-
cant amount of time to build a compiler for a custom architecture. So in order to
solve situations where an operand does not reside in the required memory block,
we apply a simple copy operation of the desired operand. Copying can be realized
reusing the binary-field addition instruction where the other operand is containing
just zeros. This approach requires a clear instruction to ensure that a zero-valued
segment is available in the other operand memory block if needed. To clear a
memory segment, we use small multiplexers at the top-level data inputs before
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they get extended to the data widths of the respective operand memory. This
provides a way to set the macrocell inputs to zero and clear memory content.

The overall area requirement is dominated by the multiplier architecture and
memory for temporary variables. The actual memory required for storing tempo-
rary variables depends on the instruction scheduling of the algorithms to calculate
the pairing. A first upper bound analysis for the amount of temporary memory
required to compute the full pairing showed that a pairing computation is feasible
using 26 (31 798 bits) words where each has an operand width of 1223 bits. Instruc-
tion reordering and in-place execution in sub-algorithms provides an optimized
memory-consumption value of 18 words (22 014 bits). This includes memory re-
quirements for storing the point coordinates of the input points P and Q as well as
extra memory for calculations in higher extension fields required in sub-algorithms.

5.2.1 Pairing Algorithm

The ηT pairing consists of two main computational steps where one step computes
the pairing F and another step to raise the intermediate pairing value to the power
of M giving FM which ensures that the result is a unique value which can be used
in cryptographic applications. The second step is called final exponentiation. In
the following, we want to describe the first step.

The pairing algorithm given in Algorithm 2 consists of two major computational
blocks where the first is basically an initialization step and the second is the ac-
cumulative multiplication representing the so-called Miller iterations. The second
block is repeated 611 times and reuses the quartic extension-field element denoted
as F in each iteration. The initialization step transforms the elliptic curve points
P and Q to the elements L,G ∈ F24m which are then iteratively transformed to
the multiplicative element F ∈ F24m . Each of the contained sub-algorithms is ana-
lyzed regarding its memory consumption to find the amount of memory required to
implement the pairing in hardware. To analyze the data flow, each algorithm was
transformed to a signal flow graph which allows to find sequential dependencies
more easily. If a memory segment is read for the last time in the signal-flow graph,
its memory is available to be used by new segments. As a result, restructuring the
signal-flow graphs allows to reduce the memory footprint. Algorithmic representa-
tion as signal-flow graph also provided a good way to find a mapping of variables
to the operand memory-blocks (memory allocation) which reduces the number of
copy operations and allows to have variables in-place for loop constructions. After
restructuring the algorithms, we obtain a peak memory consumption of 15 words
located in Algorithm 9. The corresponding data flow used to implement the ηT
pairing is illustrated in Figure 5.2. The memory consumption of the main blocks
is indicated by the weighted arrows on the right in multiples of the word length
1223 bits.
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Figure 5.2: Data-flow graph for ηT pairing with memory-allocation sizes

The main loop in Algorithm 2 contains a squaring operation of F . To square F ,
we need to place all the base-field elements of F in the memory block which sup-
ports squaring. However, the operation F = F ·G requires the base-field elements
f0, f1 and f2, f3 to be located in distinct memory blocks for the addition operation
in Algorithm 9. So if squaring is only supported in one memory block, there has to
occur a copy operation at least four times per loop iteration. With 611 iterations
and four copy cycles, this gives 2444 copy operations for the implementation when
no such multiplexer is applied.

5.2.2 Final Exponentiation

To obtain a unique pairing result a so-called final exponentiation is performed.
The implementation of Algorithm 3 is structured in various sub-algorithms which
are used to calculate operations in quadratic and quartic extension fields. The
sub-algorithm given in Algorithm 7 is used to compute a product of two quartic
extension-field elements denoted as V and W in Algorithm 3. The implementa-
tion of this quartic extension-field multiplication uses 18 words to compute the
result. Other sub-algorithms in the final exponentiation are implemented with
less operand-memory utilization. As Algorithm 7 represents the maximum mem-
ory requirement of the pairing and final exponentiation calculation it determines
the memory size of the operand memory blocks. To store the temporary values,
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we use two operand memory-blocks each holding 9 words. Other sub-algorithms
of the final exponentiation and their cumulative memory footprints are given in
Figure 5.3 where the number of operand words is denoted by the weighted arrows
on the right.
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Figure 5.3: Data-flow graph for final exponentiation with memory-allocation sizes

5.2.3 Memory Allocation

Deciding on a hardware architecture means to consider various aspects like chip
area, processing speed, power consumption, and also usability at a higher ab-
straction level. Implementing an algorithmic description on a given arithmetic
unit means to formulate a sequence of operations according to the instruction set
of that arithmetic unit. While an algorithm is just a description of operations,
the respective implementation of an algorithm may have significant influences on
calculation time and memory requirements.

The given architecture has two independent memory blocks for intermediate
variables. The memory data outputs are connected directly to the data inputs
of the arithmetic unit—each operand input of the arithmetic unit has a distinct
memory block. Ideally the operands reside in disjunct memory blocks for each
operation of the arithmetic unit. Finding a memory-allocation pattern, which
provides this property, is not trivial. However, a pragmatic approach of trying to
match algorithmic sequences and connect them accordingly already provides satis-
factory results. For the case that this property does not hold and two operands of
an operation reside in the same operand memory block, a copy operation between
the memory blocks is required. For a optimal solution to this memory allocation
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problem, we may use a declarative programming language such as Prolog to de-
fine a set of pre- and post conditions as well as a constraint set describing the
data dependencies. Applying a cost function to this description would allow to
find an optimal or near-optimal solution. The given implementation was opti-
mized towards minimal copy operations and hence efficient memory usage where
the number of registers for intermediate values is reduced to save chip area.
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Figure 5.4: Operand-memory block organization of 77-bit architecture

5.2.4 Algorithmic Implementation

Designing an Application Specific Integrated Processor (ASIP) demands finding a
trade-off regarding instruction set complexity and corresponding architecture size.
A small instruction set may require a large number of instructions and possibly
increase computation time but certainly helps maintaining a small architecture
size. A complex instruction set may support a variety of instructions which helps
the algorithmic implementation but at the same time contains an overhead where
parts of the hardware architecture are only seldomly used and thus require more
area. The algorithms used to calculate the ηT pairing are selected to only require a
minimal amount of instructions, so that a minimal instruction-set processor with
low area requirement can be applied. It turns out that we can implement the
full pairing with just four elementary binary finite-field operations. The basic
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set contains addition, squaring, and multiplication. Addition and squaring can
be implemented very efficiently in one cycle and are dominated by read/write
cycles to access operands in memory. The base-field multiplication is the most
expensive elementary operation in terms of area and time. Hence, Section 5.3.1
focuses especially on an efficient implementation of this operation. The pairing
algorithms also require an ’add digit’ operation which is basically a XOR operation
on the least-significant bit of an operand. It is implemented as small combinatorial
circuit which can be enabled by setting a flag in the instruction word. As a
consequence, the implementation of this operation does not require additional
cycles or significant chip area. Regarding the control in the processor, the ’add
digit’ operation is a piggyback operation which is combined with the preceding
instruction by bit flag in the instruction word. The microcode mnemonics addd,
muld, and sqrd indicate the active ’add digit’ flag.

Table 5.1: Instruction latencies of 77-bit based architectures. Multiplication la-
tency is given for Karatsuba multiplier applying four iteration levels (K77)

Read Calc Write Overhead Total

add, addd 16 - 16 3 35

mul, muld - 134 16 3 152

sqr, sqrd 16 1 16 3 36

djnz, slc, clr - - - 1 1

Compared to classic cryptographic algorithms, the given pairing algorithm con-
tains many different computational steps to perform. To implement these compu-
tational steps and maintain flexibility for instruction sequence restructuring, we
use a microcode-controlled architecture. The instruction memory is implemented
as look-up table providing low-latency access to instruction words. Due to the fact
that the look-up table is realized by a combinatorial network, it requires only a
negligible amount of chip area. An instruction word, as stored in the instruction
memory, contains an opcode with flag bits, two operand address words, and a
result address:

Opcode Addr Operand A Addr Operand B Addr Result

4 bits 4 bits 4 bits 5 bits

The program memory for a full pairing calculation contains 234 instruction
words. Each instruction word consists of the operand code, addresses for the
operands, and a result address. The address widths used in the instruction word
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include additional bits which are not used in the final design. Minimal area re-
quirement of the program memory is obtained by using a hardwired combinatorial
network to store the program code. The final architectures do not address more
than 9 RAM words of full precision requiring just 4 address bits. However the
operand addressing widths comprise five bits. One reason is that the number of
required operand words was subject to several changes during the design phase so
that five bits were chosen to keep flexibility. Secondly, as the fifth address bits are
ineffective they get trimmed by the synthesizer for area efficiency, so there is no
drawback in terms of chip size and we can keep the signals for future use.

Table 5.2: Clock cycles of main subroutines

Arch Algorithm 2
Algorithm 3

A4 A3(Inv) 2xA4 V·W SqrW A7 A6

GeminiK153 626 887 349 26 924 470 133 96 085 533 838
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Final Exp

Pairing
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Computation Time Distribution in ηT Pairing Calculation

Figure 5.5: Time distribution of total pairing computation based on
GeminiK153 architecture

5.2.5 Instruction-Code Translator

The operations to be executed by the micro processor are stored in program mem-
ory. Each entry in the program memory represents an instruction to the controller
which may use the arithmetic unit to execute operations at certain memory ad-
dresses, set a loop counter to a certain value, or jump to another instruction to do
functional loops. For the given architecture, an instruction consists of an opcode,
on behalf of which the following bits of the instruction are interpreted. Basically,
there are three types of instructions based on the number of logical arguments they
take. Arithmetic instructions for multiplication and addition take three arguments
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Figure 5.6: Time distribution of final exponentiation based on GeminiK153 ar-
chitecture

to describe the memory locations of the two operands and the destination address
to store the result to. The squaring instruction requires just two arguments as
squaring is a single-input operation. Instructions as clr, slc, and djnz use only
one input argument where in the case of slc and djnz it is interpreted as inte-
ger describing a loop counter or instruction index while it represents a memory
location to be cleared for the clr instruction.

Listing 5.1: Metacode example for repeated squaring loop in final exponentiation
algorithm
# Set loop counter

slc 612

# Algorithm fb4sqr (w0+w1s+w2t+w3st )^2

sqr a0 b1 # w0^2

sqr a1 a1 # w1^2

sqr a5 b2 # w2^2

sqr a6 a6 # w3^2 (result w3)

add a1 b1 b1 # w1+w0

add a6 b1 a0 # w3+w0 (result w0)

add a1 b2 a1 # w1+w2 (result w1)

add a6 b2 a5 # w3+w2 (result w2)

# END Algorithm fb4sqr

# Decrement and jump if not zero

djnz -8

Obviously, that modification of an algorithmic description at machine-code
level is potentially error-prone and can get quite tedious as instructions are en-
coded in binary. This is why machine code is usually written and maintained
using so-called mnemonics and alphanumeric identifiers for addresses instead of
plain binary code. Mnemonics are easier to recall than binary codes and support
interpretation of an opcode. A simple translator program transforms the list of
mnemonics and address identifiers to actual machine code. Having an intermediate
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abstraction level enables the programmer to read the code more easily and spot
potential problems faster. Furthermore, architecture changes influencing the syn-
tax or semantic can be realized more easily as only the translator program needs to
be adapted to the new design. An example of this intermediate code is illustrated
in Listing 5.1 showing the mnemonics for addition, squaring, and looping as well
as identifiers for memory locations.

5.3 Arithmetic Unit

The computation of the ηT pairing is based on evaluating an elliptic curve defined
over a finite-field. Evaluating an elliptic-curve equation or performing point op-
erations on an elliptic curve is based on finite-field arithmetic. An elliptic-curve
point P can be represented by finite-field elements x, y ∈ F which satisfy the
elliptic-curve equation. Elliptic-curve operations are defined by finite-field arith-
metic which is applied to the finite-field elements defining points on the elliptic
curve. Basically, these finite-field operations represent the bottom abstraction
layer to calculate the pairing.

Gemini

K153

Digit-Serial MultiplierKaratsuba-based Multiplier

Gemini Architectures

Bit-Serial Multiplier

Gemini

K77

Gemini

LSD11

Gemini

LSD7

Gemini
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Gemini

LSB153

Gemini

LSB77

Figure 5.7: Overview on architectures

The operations in the base field are implemented in a unified arithmetic unit
which provides modular operations as addition/subtraction, squaring, and mul-
tiplication. The ηT pairing requires only one field-inversion operation which is
calculated in the final exponentiation. A field inversion can be realized by a com-
bination of modular multiplications and squarings applying Fermat’s little theo-
rem. Due to the fact that field inversion contributes only a negligible amount to
the total pairing computation time, a dedicated hardware for an inversion circuit
seems not very reasonable. If, however, a faster implementation is desired spend-
ing an additional inversion circuit can improve calculation time. In case dedicated
hardware for a faster field-inversion operation is desired, algorithms, for exam-
ple, based on Itoh-Tsuhii’s inversion algorithm [23, 28] are suitable for hardware
implementations.
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5.3.1 Multiplier Architectures

In many hardware cryptosystems multiplier performance and chip size contributed
to multiplication has utmost influence on overall system characteristics. For binary
finite fields, this is even more the case as addition, subtraction, and squaring can
be implemented efficiently. Calculating a finite-field inversion with Fermat’s little
theorem also contributes to the importance of an efficient multiplication.

• Two-step multiplication

• Interleaved multiplication

Finite-field operations require a reduction step which reduces a result to ob-
tain an element out of the finite set of field elements. The reduction operation is
directly linked to the irreducible polynomial which defines the given finite field.
Basically there are two types of modular multiplications namely two-step modular
multiplications and interleaved modular multiplications. Two-step modular multi-
plications consist of an ordinary binary multiplication step followed by a separate
reduction operation. While this approach may benefit from efficient standard mul-
tiplier architectures, it requires to hold an intermediate value of twice the operand
width to be passed to the reduction step. The second multiplication type integrates
the finite-field reduction into the multiplication.

A simple version of a finite-field characteristic-two multiplier in polynomial
basis can be realized by performing the following two steps. Let m be the size
of the multiplicand and multiplier polynomial both having a maximum degree of
m− 1. At first, we multiply the multiplicand for each degree zn of the multiplier,
where the multiplier coefficient is set to obtain the partial products. In polyno-
mial representation this can be realized by a simple shift operation. Secondly, we
accumulate the coefficients of the partial products according to each degree from
z0 to zm−1. The accumulation of coefficients is realized by a simple exclusive-or
conjunction as the applied field has characteristic two. Figure 5.8 illustrates a clas-
sic multiplication of two binary polynomials with multiplicand a and multiplier b.
The filled dots denote an AND gate and the gray vertical bars denote XOR gates.
The multiplicand and multiplier in this example have both degree m − 1 giving
an unreduced result of degree 2m− 1. Using Figure 5.8, we can estimate the gate
complexity of an unreduced m × m parallel multiplier in a binary field. Given
equal degrees m − 1 for the multiplier and the multiplicand, we find a quadratic
complexity based on the operand width.

(m− 1)2 XOR gates

m2 AND gates
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a · b0

a · b1

a · b2

a · b3

a · b4

c = a · b

z0z1z2z3z4

c0 · z0c1 · z1c2 · z2c3 · z3c4 · z4c5 · z5c6 · z6c7 · z7c8 · z8

Figure 5.8: Classic binary multiplication of two polynomials a and b

While the multiplier area for moderate or small operand widths m may still be
feasible, they are definitely out of reach for large operand sizes, especially if the
overall design goal is a low-area implementation. While scaling quadratically with
operand width, such multipliers are very fast and able to provide a result within
only one clock cycle.

• Parallel multipliers (fully combinatorial)

• Hybrid multipliers (digit-serial/bit-parallel) (MSD/LSD)

• Serial multipliers (bit serial) (MSB/LSB)

So for a smaller multiplier size, we need to reduce the number of bits calculated
in parallel. It is obvious that this results in a higher latency giving a slower multi-
plier. If paramount importance is given to low area, a fully serial multiplier with
high latency may provide a good result. However, for a low-area design it is cru-
cial to find a good balance between area and latency as overall computation time
has direct influence on energy consumption. To find a good balance between area
requirement, power consumption, and computation time, we investigate several
different multiplier architectures for further evaluation. These multiplier architec-
tures are discussed in the following sections.

5.3.2 Karatsuba-Based Multiplication

The Karatsuba algorithm is a fast multiplication algorithm introduced in 1962 by
Anatolli Alexeevitch Karatsuba. In its classic version, it computes a polynomial
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multiplication by three multiplications and two additions on polynomials halved
in length.

In general, multiplications are computationally more costly than additions
making the Karatsuba algorithm asymptotically faster than the schoolbook mul-
tiplication method as it requires less multiplication steps.

Classic multiplication or schoolbook multiplication consists of four multipli-
cations at operand length and three additions to sum up the partial products.
The classic multiplication has a computational complexity of O(n2) where n is the
number of digits of the operand. The following gives an example of the classic
binary schoolbook multiplication:

C = A ·B = (A1 · 2m + A0) · (B1 · 2m +B0)

= A1 ·B1 · 22m + (A1 ·B0 + A0 ·B1) · 2m + A0 ·B0

With multiplications being a costly operation, an algorithm with less multiplica-
tions provides computational advantages. Karatsuba’s algorithm does exactly this
by eliminating one multiplication.

Karatsuba multiplication Karatsuba’s algorithm is a so-called fast multipli-
cation algorithm which applies the concept of divide and conquer. It splits the
multiplication into sub-multiplications of smaller size and allows to reuse partial
products. In contrast to the classic multiplication, Karatsuba’s algorithm requires
just three multiplications, four additions, and two subtractions. As the addition
operation is generally less expensive than a multiplication, saving a multiplica-
tion for extra addition operations provides better performance. It turns out that
Karatsuba’s algorithm has a sub-quadratic complexity of O(n1.58) improving the
multiplication especially for large operands [31]:

C = A ·B = (A1 · 2m + A0) · (B1 · 2m +B0)

= A1 ·B1 · 22m

+ (A1 ·B1 + A0 ·B0 + (A1 − A0) · (B1 −B0)) · 2m
+ A0 ·B0.

While the original Karatsuba algorithm splits the operands in two segments, also
other versions of Karatsuba’s algorithm are available (e.g., splitting operands in
three segments) [42, 56]. In this work, we investigated two-way and the three-way
versions of Karatsuba multiplication and focused especially on the two-way version.
A short illustration and according formulæ for the three-way Karatsuba approach
is given in the appendix. The classic two-way version splits operands in two parts
at each recursion step. So for an operand of bit length m, a recursion step splits the



58 5. Hardware Architectures

operands in two m/2 bit segments. We observe that by application of Karatsuba’s
algorithm, the multiplication can effectively be performed on m/2 bit operands
instead of m bit operands. This allows to reduce the size of the multiplier. Usually
Karatsuba multiplication is applied to increase throughput by parallel instantiation
of smaller multipliers or sequential reuse of a smaller sized multiplier. In this thesis
we apply several recursion levels of Karatsuba’s algorithm in an iterative way.
The multiplier used to perform the core multiplication at the lowest recursion
level can be of arbitrary type. This work uses a fully combinatorial Karatsuba
multiplier architecture as core multiplier which is then used in an iterative version
of Karatsuba’s algorithm.

D1 = A1 ·B1 (5.1)

D0 = A0 ·B0 (5.2)

D0,1 = (A1 + A0) · (B1 +B0) (5.3)

With the number of recursion levels we can scale the size of the core multiplier.
In order to build a 1223×1223-bit multiplication we can apply a low number of
recursions and obtain a moderate reduction of the core multiplier size, or apply
more recursion levels and obtain an even smaller core multiplier.

As the given finite field size is of prime order, there is no integer divisor so
we pad the operands to obtain an integer which can be used as core-multiplier
operand width. Padding a single bit to apply the first recursion level, gives a core
multiplier operand width of 612 bits. Consequently, we have 306 bits at the second
and 153 bits at the third iteration level without any need to pad additional bits.
So by padding to 1224 bits we can split each operand into eight 153-bit segments.
This allows to use a considerably smaller core multiplier of 153-bit width. Applying
the algorithm again at the third level requires padding again which translates into
8+1 pad bits. At the fourth recursion level we again have to pad another bit
obtaining a core multiplier width of 77 bits. So for a four level iterative Karatsuba
application, we split 1232-bit operands into 16 segments of 77 bits each. Table 5.3
and Figure 5.10 show synthesizer results for area requirements of fully parallel
multipliers where ordinary refers to the binary multiplication as generated by the
synthesizer, binary refers to a parallel Karatsuba multiplication as proposed in [46],
and simple referring to a parallel Karatsuba multiplier with a small modification
as proposed in [45]. The simple multiplier uses the fact that when two operands of
odd width are split one partial product pair is computed with the halved operand
width rounded up and the other partial product pair is computed at the halved
operand width rounded down. In this case, one of three partial products (either
the product of the more significant segments or the product of the less significant
segments) can be calculated with a smaller multiplier circuit.
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Figure 5.9: Segmentation and combination of one Karatsuba iteration
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Figure 5.10: Area requirements of fully parallel multipliers

The area requirements of the parallel Karatsuba multipliers in Figure 5.10 show
that the core multiplier size can be reduced to about one third with each recur-
sion step halving the operands. Usually the top-level multiplication is performed
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Table 5.3: Synthesis result for fully parallel multipliers

Arch 612x612 306x306 153x153 77x77 39x39 20x20

Ordinary
mm2 26.5 7.1 1.18 0.29 0.08 0.02

kGE 2825 754 127 31 9 3

Binary
mm2 6.8 2.2 0.72 0.23 0.07 0.02

kGE 728 236 77 25 8 2

Simple
mm2 5.1 1.7 0.55 0.18 0.06 0.02

kGE 548 181 60 20 6 2

using parallel multiplier instances at lower width allowing to use simple multipli-
ers while maintaining computation speed and area requirement. To benefit from
Karatsuba’s algorithm area-wise, we perform the calculation of the partial prod-
ucts iteratively. Of course this implies a more complicated design and also infers
additional circuitry but it allows to reduce the top-level multiplier area requirement
significantly.

In the following, we want to describe a way to use an N -depth Karatsuba
multiplication iteratively. At first, we split the problem in two tasks, namely the
segmentation of the original operands and the combination of the partial products.
In the following, we refer to the first task as segmentation and to the latter as
combination task.
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Figure 5.11: Basic architecture for iterative Karatsuba multiplier

Operand segmentation defines which combinations of the multiplicand/multi-
plier segments are to be multiplied by the core multiplier. According to Karat-
suba’s equation, we find that there are partial products which result from multiply-
ing segments without prior addition with other segments (base segments) and that
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there are partial products resulting from multiplying a sum of certain segments.
The segment configuration of partial-product operands is obtained by executing
Karatsuba’s algorithm for the desired number of iterations and reordering the
final polynomials. The second task is to find the correct combination of the inter-
mediate partial products with respect to the result segments. Using polynomial
multiplication, we can derive the result segment locations for each partial prod-
uct. A partial product is passed to the combination circuit in three ways namely
as higher segment, as lower segment, and as cross-term segment which is the sum
of higher and lower segment. Each result segment is provided with a circuit which
allows to add one of the three partial product types to its current segment value.
Figure 5.11 illustrates an abstract view on the architecture and illustrates three
examples of different iteration levels for the applied approach.

To compute an N -step Karatsuba multiplication we have to apply Karatsuba’s
algorithm N times. In each step, we decompose each multiplication in to three
multiplications of halved operand width. So to compute a multiplication with an
N-step application of Karatsuba’s algorithm, 3N partial products each of operand
width dm/Ne need to be computed.

Two-step Iterative Karatsuba Multiplier (306-bit core)

The two-step iterative Karatsuba multiplier splits the operands in four segments
each of 306 bits. A full 1223×1223-bit multiplication is obtained by calculating
nine 306-bit multiplications. While this architecture would provide a low latency,
the area costs of 181 kGE for the parallel core multiplier are not practical for
low-area environments.

Three-step Iterative Karatsuba Multiplier (153-bit core)

The three-step Karatsuba iterative multiplier design (K153) uses a core multiplier
width of 153 bits. The 1223-bit operands are split into 23 = 8 segments each. To
obtain a 2446-bit product, 33 = 27 partial products need to be computed by the
core multiplier. The maximum segment accumulation depth is eight. To calculate
all partial products for a full multiplication, the corresponding operands, consist-
ing of either plain or accumulated segments, and the respective order in the result
has to be determined. The dependency graph in Figure 5.13 shows the 27 required
core-multiplier operands for the three-step Karatsuba case. The operands are sym-
metrical for multiplier and multiplicand. Segments, which are directly multiplied
by the core multiplier, are denoted as ai where i = 0 . . . 7. We call these segments
which do not need to be accumulated base segments. All the other core-multiplier
operands are built by accumulating a certain configuration of base segments where
either two, four, or eight segments are accumulated. The superscript index denotes
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the indices of the base segments which need to be accumulated to obtain the corre-
sponding core-multiplier operand. So the core multiplier operand a0123 is obtained
by accumulating the base segments a0, a1, a2, and a3. Figure 5.13 also illustrates
patterns we can use to reuse previously accumulated segments and save computa-
tion cycles. In order to accumulate operand segments, we need at least one 153-bit
register per operand port to keep the value of a segment to be added. The circuit
for segment accumulation (Figure 5.12) provides a path to pass segments directly
from the memory output to the core multiplier (base segments) and a path to
accumulate segments. As there is only one register per operand port involved,
several redundant read operations to the same segments are required. Using one
accumulation register per operand port, we obtain a core multiplier saturation of
about 65 % requiring 41 cycles.

PMXSelxS

PMXRegEnxS

PMXInSelxS

XOR

153

01

01

153

PMXRegA

RamAxD

PMXRegAxDP

PMXAxD

153

PMXInAxD

Operand segment
from memory

PMXOutAxD

To core multiplier
operand port

Figure 5.12: Segment-accumulation circuit using one accumulation register of 153-
bit Karatsuba-based multiplier

Introducing a second accumulation register to the accumulation circuit allows
to store and reuse intermediate results. As an example, the core multiplier operand
a0123 may be calculated by adding the previously accumulated operands a01 and a23

so that less redundant read cycles are necessary. With two accumulation registers
per operand port, we obtain a core-multiplier saturation of 93 % and can do a
multiplication in 29 cycles which is near to the theoretical minimum of 27 cycles.
While the two register approach may be more efficient in terms of computation
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Figure 5.13: Segment-accumulation map for the three-step Karatsuba multiplier
illustrating patterns to accumulate operands based on the eight 153-bit base seg-
ments.

time, it requires additional area and thus is not considered in further results in
favour of the four-step Karatsuba approach presented in the next section.

Table 5.4: Three-step iterative Karatsuba multiplier

Arch Partial Prod. Acc.Register Cycles Core Saturation

K153 27 1 41 65 %

K153 27 2 29 93 %

Four-step Iterative Karatsuba Multiplier (77-bit core)

The four-step Karatsuba iterative multiplier (K77) splits each of the 1223-bit
operands into 24 = 16 segments. To calculate a 1223×1223-bit multiplication,
the parallel core multiplier needs to compute 34 = 81 partial products. The max-
imum segment-accumulation depth for core-multiplier operands is 16. The core
multiplier can be significantly reduced in size consuming only 20 kGE. However,
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the large number of partial products and the higher accumulation depth require
more cycles to complete a multiplication. Also the combination circuit used to
accumulate the partial products to the corresponding result segments is more com-
plex and contains more multiplexer units. To compensate the larger number of
partial products additional accumulation registers are added. Using the circuit
in Figure 5.14, it is possible to save three intermediate results and traverse the
accumulation map with fewer cycles. Obtaining a core saturation of 61 % and 132
cycles per multiplication, we have a fair basis to compare the three-step approach
with the four-step approach as their core saturation is approximately the same.

Table 5.5: Four-step iterative Karatsuba multiplier

Arch Partial Prod. Acc.Register Cycles Core Saturation

K77 81 3 141 57 %

K77 81 3 132 61 %

As in the three-step Karatsuba approach, a segment-accumulation map was
used to find an efficient control pattern for segment accumulation. Based on
segment-accumulation patterns, which were presented in Figure 5.13, we use the
same strategy to extend these patterns to the four-step version. However, as
scheduling of segment accumulation is considerably more difficult in the four-step
version, an automated approach for segment accumulation was applied. Conse-
quently, we built a simulator in MATLAB implementing these patterns which
allowed to test large randomized sets of accumulation sequences. With this ap-
proach, we could reduce the number of accumulation steps and improve core-
multiplier saturation giving a more efficient multiplier. The simulator was then
extended to generate VHDL code of the Finite-State Machine (FSM) controlling
the four-step multiplier. The minimum obtained cycle count by the generator
was 132 states for the given three accumulation register approach. This reduced
multiplication latency by about 7 % resulting in 132 computation cycles.

The results for the Karatsuba-multiplier sizes demonstrate the fact that increas-
ing the recursion level allows to reduce the multiplier size. The fourfold recursive
multiplier (K77) consumes about 20 % less area than the threefold version (K153)
with respect to the result illustrated in Table 5.6 and Figure 5.23.
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Figure 5.14: Segment-accumulation circuit using three accumulation registers of
77-bit Karatsuba-based multiplier

Table 5.6: Comparison of Karatsuba-based multiplier archi-
tectures

Arch
Area in kilo gate equivalents

Tclk
cycles
mul

CoreMul Comba Non-Comb Total [ns]

K153 51 26 30 107 5 ns 41

K77 20 34 31 85 5 ns 132

LSD11 41 7 14 63 5 ns 112

LSD9 35 7 14 57 5 ns 136

LSD7 26 7 14 47 5 ns 177

LSB 4 7 14 25 5 ns 1223

a Excluding combinatorial area of CoreMul
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Figure 5.15: Arithmetic unit implementing four-step iterative Karatsuba multiplier
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5.3.3 Digit-Serial-Based Multiplication

Designing hardware for resource-constrained environments such as smart cards or
embedded devices mandates to balance area and computation time. Digit-serial
multiplier architectures allow to find a good balance by selecting a digit size.
Descriptions of hardware architectures for digit-serial modular multipliers were
first introduced by [54] and discussed further in [27] and [35]. The basic difference
to bit-serial multipliers is that d > 1 bit are processed in each computation cycle.
Hence, increasing digit size yields faster computation times compared to bit-serial
multipliers with reasonable increase in area. Digit-serial multipliers can generally
be divided in two subtypes namely those processing the multiplier from its most
significant to least significant bit and those processing the multiplier from its least
significant to its most significant bit. In the following, we refer to the first type as
MSD multiplier and to the latter type as LSD multiplier.

Digit-serial multiplier architectures have an interesting property of inherent
scalability. The digit size d allows to pick a corresponding trade-off between the
multiplier area consumption and its calculation time. The digit size defines the
number of segments the multiplier is partitioned in and also defines the number
of digit-wise multiplication steps necessary. With a digit size d an m × m bit
multiplication requires dm

d
e digit multiplications of m× d width.

Other than the two-step multipliers where multiplication and reduction is done
in two separate steps, digit multipliers allow to perform the modular reduction
in an interleaved manner where each digit multiplication result of length m +
d − 1 is reduced by d bits. For certain types of irreducible polynomials, the
reduction step can be performed in a single step. For this type of polynomials, we
can implement combinatorial networks for both the multiplication step and the
interleaved reduction step.

While it is theoretically possible to increase the digit size up to the multiplier
size, this may not always be of practical value. The reduction circuit is imple-
mented with an exclusive-or network combining the multiplicand A with d− 1 bit
defined by the irreducible polynomial. The propagation delay through this net-
work can be minimized by structuring the XOR-gates as a binary tree of height
dlog2(d)e which gives the maximum propagation delay of the XOR-gate delays in
the reduction circuit.

The algorithm for an LSD multiplier consists of three parts namely the digit
multiplication, the interleaved reduction, and a final reduction circuit as illustrated
in Algorithm 10 [35, 57].

For the pairing architecture, we consider a digit-serial GF(2m) multiplier as it
provides inherent scalability in terms of area and time complexity and allows to
do interleaved reduction so that the number of registers to store the product can
be reduced from 2m − 1 to m + d − 1 registers. However, we need an additional
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Algorithm 10 Least Significant Digit (LSD) Multiplier [35]

Input: A =
∑m−1

i=0 aiα
i with ai ∈ GF (2)

Output: C ∼= A ·B mod p(α) ∈ F2m−1 .
1: C ← 0
2: for i← 0 to dm

D
e − 1 do

3: C ← BiA+ C multiplier core
4: A← AαD mod p(α) interleaved reduction
5: end for

Return C = C mod p(α) final reduction

D +K − 2 DM − 1

K + 1

D − 1

C ← C mod p(α)

MD − 1

Figure 5.16: Example for a M=10, D=5 final reduction step exploiting reduction
trinomial properties [35]

register to hold the m− 1 bit multiplicand A in a shift register for the interleaved
reduction.

Integrating an LSD multiplier mandates to decide on the digit size to be ap-
plied. To minimize the integration overhead and avoid generation of extra macro
cells, the same infrastructure was used for the LSD multiplier architectures as with
the Karatsuba multiplier architecture with a 77-bit operand-segmentation width.
While we need to load the multiplicand to a distinct register A for interleaved
reduction, we do not need an additional register for the multiplier and can directly
read multiplier digits Bi from the SRAM data outputs. To avoid wasting compu-
tation cycles by digit sizes other than the prime factors of 77, which would result in
additional registers and surplus computation time, we choose from digit sizes of 11,
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7, or 1. With varying digit size, the multipliers differ in area complexity, latency,
and critical path. Figure 5.17 illustrates the block diagram of the LSD-multiplier
architecture using a digit size of 11 bit. Throughout the rest of this thesis digit
serial multipliers are denoted by LSD with their digit size appended. So we refer
to this multiplier as LSD11.

1 0

AReg

1223

Digit
Multiplication

0

CInSelxS
01

RAM B
WordASegSelxS BSegSelxS

4

BDigitxD

0 1 5 62 ... 4
BDigitxS

Interleaved
Reduction

RAM A
Word

Final
Reduction

AInSelxS

CReg

1223

1223 ResultxDO
1233 M+D-1

77 77

11

4

Figure 5.17: Block diagram of LSD11 multiplier

To reduce chip area requirements, we integrate the multiplier in the arithmetic
unit sharing the result register with other arithmetic modules. In Figure 5.18,
a simplified block diagram of the arithmetic unit is given. The result register
is shared between the addition, squaring, and multiplication circuits requiring a
multiplexer structure. Synthesis results for a range of clock periods constraints
is illustrated in Figure 5.19. Where Figure 5.19a provides synthesis results for the
Synopsys executables of compile and compile ultra to illustrate the difference
of their results. Througout this thesis, presented synthesizer results are generally
obtained by executing compile ultra -gate clock. The given results in Fig-
ure 5.19 illustrate the low-area region of the resulting circuits being operational
with a clock period of about 5 ns.

Bit-Serial Multiplication

The bit-serial multiplier is a special instance of the digit-serial multipliers with
digit size equal to one. As discussed in the description of the digit-serial mul-
tiplier, the latency of this multiplier is considerably high. With digit size one
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Figure 5.18: Arithmetic unit implementing LSD11 multiplier

(d = 1) and a field size of m = 1223 we obtain a latency of dm
d
e = 1223 cycles.

Although this prolongs the overall computation time of the system it reduces the
area requirement considerably as only a multiplication and reduction network of
depth one is necessary minimizing area consumption.
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Figure 5.19: Synthesis results of digit-serial multipliers
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Figure 5.20: Estimated area distribution of digit-serial multipliers

Discussion / Evaluation

With the set of multiplier architectures presented, we now want to discuss and eval-
uate their performance regarding circuit area and multiplier latency. Throughout
the evaluation of the architectural alternatives, we consider the following figures
of merit.

Circuit area expressed as mm2 or gate equivalents (GE). The circuit size is de-
pendent on the applied technology which defines the size of circuit elements
such as transistors and as a result standard cells. To quantify the complexity
of a circuit, the mm2 specification has to be accompanied with a technology
specification. The area figures in this work refer to 180 nm CMOS technology
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Figure 5.21: Synthesis result for bit-serial multiplier as a function of maximum
critical path delay

using UMC/Faraday standard-cell libraries. To have a technology indepen-
dent approximation of a circuit size, we also use gate equivalents. A gate
equivalent (GE) is a technology-specific area measure which refers to the area
of an elementary gate (usually the 2-input NAND gate) in that technology2.
With the help of gate equivalents, we can give numbers on the complexity
of a circuit independent of process technology.

Longest path delay or critical path. The inverse of this time period is the max-
imum operational frequency at which the given circuit can operate reliably.

Computation time or latency indicating the amount of clock cycles which are
required for the circuit to compute the result.

Digit-serial multiplier architectures are scalable in terms of their digit size. For
irreducible polynomials where D ≤ k, the interleaved reduction and final reduction
can be done in one cycle so that the latency is dm

D
e cycles. The area complexity

is dominated by the combinatorial circuits for reduction and multiplication (Fig-
ure 5.20).

Synthesis results for the implemented multiplier architectures are provided in
Figure 5.23 where the designs were constrained with a range of clock periods to

2UMC 180 nm: 1 GE ∼= 9.3744µm2
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Figure 5.22: Time decomposition of multiplier architectures

evaluate them according to their longest path delay and corresponding circuit size.
The results show that the Karatsuba-based multiplier architectures generally begin
to saturate at lower clock speeds compared to the other designs. The multiplier ar-
chitecture K153 contains a large parallel 153×153 bit core multiplier which makes
the circuit ramp up in circuit size earlier than the K77 multiplier containing a
77×77 bit core multiplier which is considerably smaller. In both Karatsuba-based
multipliers, the critical path of the longest signal propagation passes the parallel
core multiplier. In the K153 multiplier, 16 core multiplier cells contribute to the
critical path where in the K77 multiplier only 9 cells are part of the critical path.
The digit-serial based architectures of digit sizes eleven, nine, and seven show a
low-area region without significant area increase up to about 222 MHz. The area
size is proportional to the digit size as combinatorial networks for digit multi-
plication, interleaved reduction, and final reduction directly scale with digit size.
Consequently, the digit-serial multiplier with digit size seven consumes the lowest
amount of area with about 50 kGE. The third multiplier-architecture type is a
special case of the digit-serial multiplier where the digit size is one. The bit-serial
multiplier has the lowest area complexity due to low-depth combinatorial networks
for core multiplier and interleaved reduction. In contrast to the digit-serial type,
the bit-serial multiplier does not need a final reduction step as the excess bit is
already reduced by the interleaved reduction circuit. Due to the low combina-
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Figure 5.23: Area consumption of multiplier architectures

torial depth of the multiplicatio circuit in the bit-serial multiplier it contains a
shorter critical path end. Synthesis results show that the bit-serial multiplier is
operational with a clocking up to about 400 MHz without significant increase in
circuit size. Finally, the bit-serial multiplier consumes the least amount of area
consuming about 25 kGE. However, a latency of 1223 cycles per multiplication is
very high compared to the other multiplier designs. Figure 5.22 shows the com-
putation latency of the presented multiplier architectures including the associated
read and write cycles according to the corresponding memory configuration based
on either a 77-bit or a 153-bit interface.
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5.4 Functional Verification

Assuring that a design complies with its specification requires extensive testing.
Testing a design thoroughly at various design stages is important to avoid poten-
tially large costs to fix errors in later design stages. Functional design verification
was performed at the Register-Transfer Level (RTL) and at a post-layout level
with a back-annotated netlist. The test setup of testbench and testvectors is basi-
cally the same for both abstraction levels. A detailed description on the testbench
used to verify the implemented designs is given in Section 5.4.1.

5.4.1 Testbench

To test hardware models a so-called testbench is used that sets the inputs (stimuli)
and observes the outputs (actual response) of a Model Under Test (MUT). The
testbench uses so-called testvectors which describe the correct input and output
values of a circuit. Hence, a testvector contains an arbitrary number of input
to output pairs, where the output represents the expected response of a circuit
corresponding to a stimulus. In the given setup, the testvectors are generated
using a software reference model which serves as functional reference and provides
correct input to output pairs.

Testbench

Stimuli

Expected
Responses

Responses

Pass/Fail

DUT (chip level)

DUT (top level)

I/O Pads I/O Pads

Handshaking Handshaking
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re

Stimuli Expected
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Reference Model

Figure 5.24: Testbench configuration

Due to the large operand size in this high-security pairing architecture, func-
tional verification is prone to consume a considerable amount of time. For circuits
of comparably low complexity exhaustive testing with random values is certainly
an option as the total test time allowing to assume full functionality is usually
acceptable. For our pairing architecture, opting for exhaustive testing alone is
probably not a good decision as the large operand sizes result in an up-scaled total
testing time. As a consequence, we want to minimize testing time as much as pos-
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sible while maintaining good coverage of functionality. Our testvector set consists
of elementary function tests designed to cover the mathematical properties of a
finite field and an additional set of random elliptic-curve points to finite field pairs
serving as random test vectors.

Test-vector Sets

Verification of the design is based on a set of test vectors providing stimuli and
expected responses for the module under test. As the design is micro programmed,
test vectors are in general linked to a microprogram which implements a certain
input to output transformation. The microprogram is integrated as a hardcoded
Look-Up Table (LUT).

The top architecture is designed to calculate a full ηT pairing including final
exponentiation. Hence we have two elliptic-curve points as input and an F24m

element as output. The architecture basically allows read and write access to any
operand memory location. However, defining fixed memory locations for inputs
and outputs has certain benefits. On the one hand, fixed memory locations make
testing easier as subsequent algorithmic tasks can be tested without adapting to
new allocation patterns. On the other hand, fixed memory locations for stimuli and
results allows to drop hardware elements which would be necessary otherwise. As
an example, placing our result in a fixed memory block allows to avoid an output
multiplexer multiplexing the memory outputs to the top-level output signal.

The functional verification was done using Modelsim SE 6.4 by Mentor Graph-
ics. Simulating the RTL model calculating the full pairing is quite time consuming
as about 1.3× 106 cycles need to be simulated for a single pairing simulation. The
effective simulation time is a dependent on the amount of signals contained in the
waveform set of the simulator. So to avoid simulation runs taking many hours
to complete the simulator waveform sets were adapted according to the required
level of detail. Using waveform sets of different verbosity for circuit debugging
and algorithmic verification allowed to perform testruns in only a few hours. To
further reduce simulation time, another testvector set was constructed focusing on
testing the functionality of the ASIP using only a short sequence of instructions.
This testvector set basically tests arithmetic operations of addition, squaring, and
multiplication (ASM). The AMS micro program also covers implicit tests of other
instructions supported by the design such as loop functionality and memory clear-
ing.

• Stimuli: P,Q (4 words of 1223 bits)

• Expected Response: FM ∈ F24m (4 words of 1223 bits)

The memory locations of stimuli and actual results can be defined arbitrarily.
The respective locations are hardwired with constant definitions at compile time.
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After starting the processor by raising the start signal StartxSI, it begins to read
four words of 1223 bits to the memory locations a0, b1, b0, and b2. The address aN
refers to operand memory A where N is the operand word address. The address
bN references to operand memory block B using the same word-address scheme.
The given placement of the input words is obtained by memory allocation and
instruction scheduling optimized for the given architecture. The read and write
sequences are implemented using a four-phase handshaking protocol. To indicate
valid data ready at the input, the signal DataInReqxSI is set by the testbench.
The design may then read the input and store it to its operand memory and use
DataInAckxSO to notify acceptance of input data to the testbench. The testbench
then responds by reseting the request signal after which the design resets the
acknowledge signal. This completes one four-phase handshake cycle. This four-
phase handshaking protocol introduces extra latency as each control signal gets
restored to its initial value. Compared to a two-phase handshake protocol, the data
rate is effectively halved but has the advantage that it makes the communicating
systems more independent and allows to operate them at different clock speeds.
This assures that the producer and consumer system can be developed almost
independent from each other.

After reading the four input words, the processor automatically starts to com-
pute the pairing. When it has executed the microprogram, it signals its ready
state by raising ReadyxSO. The testbench then may initiate a read sequence by
following the output handshake sequence using the signals DataOutAckxSI and
DataOutReqxSO. The 4892-bit result is generally read from the memory locations
b2, b4, b8, and b6.

5.5 Memory Configuration

At an early design phase, the memory was implemented as behavioral model based
on registers. This behavioral memory model provides the same interface and char-
acteristic as a macrocell memory but at the same time offers a high degree of
flexibility when memory sizes are not yet fixed and still subject to change.

At a later point, the behavioral SRAM models were exchanged with SRAM
macrocells. Customarily a macrocell generator is used to generate appropriate
memory macrocells. In this work, a macrocell generator (Memaker FSA0A 2009
1.2.1) by Faraday Technologies of was used to evaluate and generate supported
macrocell configurations. The generated macrocell memories conform to UMC
180 nm 1P4M logic process design rules and can be incorporated with Faraday’s
180 nm standard cells. All macrocells were generated with an internal macrocell
power ring of 2µm and an output loading of 10 nF. The macrocells used in the final
designs are given in Table 5.7 for the two memory interfaces of 77 and 153 bits.
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Figure 5.25: Architectures based on memory configuration

To save chip area, we made use of the byte write feature provided by the
macrocell generator. Usually a memory block provides a write enable input which
is used to indicate that the current data inputs should be stored to the (syn-
chronous) RAM block at the following clock edge. With a byte write signal, we
can enable the respective byte of the data input. The memory generator allows
to generate byte write enabled memories and also defines the number of bits per
byte. For an efficient memory use, we set the bits per byte setting to an integer
divisor of the data width of the memory. As a result, the generated memory has
one byte enable signal for each byte. This allows to connect the data input directly
to the macrocell inputs and reduce the number of primary inputs at the chip level
to the number of bits per byte. Two macrocell memory configurations are used
for implementing the final designs. The data widths being 153 bits and 77 bits.
The first macrocell uses a byte size of nine bits which translates into a byte-enable
signal of length 153/9 = 17. The second macrocell is configured to have a byte size
of eleven bits and a byte-enable signal of seven bits. Table 5.7 gives a macrocell
configuration as number of words × bit/byte × number of bytes.

Table 5.7: Design options for operand memory configurations (based
on Faraday Memaker, UMC 180 nm).

Width RAM type Configuration Width Height Area Total

[bit] [µm] [µm] [kGE] [kGE]

153
Macrocell 72×9×9 333.96 189.04 6.72

12.91
Macrocell 72×9×8 304.20 189.04 6.19

77
Macrocella 144×11×7 1183.82 181.36 22.9 22.9

Macrocell 144×11×7 326.52 276.96 9.65 9.65

a Block muxed macrocell (SU-type) with wide aspect ratio
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To obtain a memory interface width of 153 bits, we combine two smaller sized
macrocells as bit widths exceeding 144 bits are not supported by the macrocell
generator. The two macrocells 9×9+8×9 = 153 are then wrapped in a new VHDL
entity building the actual memory interface of 153 bits. The first 77-bit macrocell
was not used in favor of the second 77-bit macrocell as it requires significantly less
area due to a better aspect ratio. The 77 bit configuration has an area per bit
ratio of 8.16 µm2

bit
where the 153 bit configuration has 10.95 µm2

bit
. So in the given

implementation the 77 bit memory has a better area per bit ratio than the 153 bit
memory as it consists of only one macrocell per operand memory block.

Every SRAM macrocell contains column decoders, row decoders, memory cells,
pre-charge amplifier, and sense amplifiers. While the column and row multiplexer
are generated according to the configuration passed to the macro generator, the
sense amplifiers are not. Practically the area of the sense amplifiers is dimensioned
to drive the capacitive load corresponding to a SRAM macrocell at maximum
height (i.e., the maximum number of words provided by the macrocell generator).
So the sense-amplifier area is constant for the whole range of words supported by
the generator. This means that sense-amplifier area dominates the macrocell area
for SRAM macrocells of low-word count. Internally, the words are organized as
horizontal rows and the bits are organized as vertical columns. So the word width
is proportional to the macrocell width and the number of words is proportional to
the macrocell height with a constant offset due to the sense amplifiers. Observing
the two macrocell configurations for the 77-bit interface we have the same bit
capacity and the same logical interface, but very different aspect ratios and area
requirements.
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(a) 72x9x8

(b) 144x11x7(c) 72x9x9

Figure 5.26: Internal view of SRAM macrocells illustrating different aspect ratios
as used in final ASIC implementations



Chapter 6

Design Flow

In this chapter, we want to discuss the major tasks of a digital semi-custom design
flow from a chip designer’s perspective regarding the architectures presented in
the previous chapter. We start by a discussion of the transition from a behavioral
description to a structural description and continue to discuss the final transition
to a physical description in order to complete an ASIC design cycle.

6.1 Introduction

In the following, we refer to design flow as a set of tasks required to transform
a system description at algorithmic level to a physical circuit description of the
system. The final description of a physical Very Large Scale Integration (VLSI)
circuit complies with functional, electrical, and design rules and is ready for phys-
ical production by a semiconductor foundry. A typical design flow is based on
a set of software tools often referred to as Electronic Design Automation (EDA)
tools. The collaborative set of these modular tools represent the so-called design
flow which supports the chip designer to design, simulate, and analyze a digital
hardware design. In contrast to a full-custom design flow where each cell is de-
signed individually, a semi-custom design flow reuses descriptions of elementary
cells commonly referred to as standard cells. A typical semi-custom design flow
consists of two parts namely a front-end part and a back-end part (Figure 6.1).

Front-End Design Back-End Design

Behavioral
Perspective

Structural
Perspective

Physical
Perspective

Figure 6.1: Abstract view on design flow
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6.2 Front-End Design

Front-end design refers to the tasks required to transform an algorithmic high-level
description or behavioral model to a gate-level circuit description. A gate-level
circuit description as provided by a front-end flow represents the basic input to a
back-end flow. The basis for a front-end flow is a behavioral model or algorith-
mic description which serves as reference for subsequent design steps. Usually, the
behavioral model is provided by a reference model in a high-level software program-
ming language. This reference model is also used as functional reference. Hence,
it is sometimes called a golden model as it is used to create correct value pairs de-
scribing the input to output relation of architectural blocks. For a cryptographic
hardware implementation, this may be a pair of plaintext and corresponding ci-
phertext and vice versa. Based on the reference model a hardware architecture
is designed and implemented by means of a hardware description language. This
work uses VHDL1 to implement the presented hardware architectures and also
to build testbenches to test the correct operation thereof. In an ASIC front-end
design flow, a so-called synthesizer is used to transform a hardware description
usually given as VHDL or Verilog code to a gate-level circuit description. The
synthesizer is able to recognize structural elements and patterns in the HDL code
to synthesize a circuit using standard cells. Standard cells are standardized units
which represent small generic subcircuits of units such as NAND gates, multiplex-
ers, or bistabiles. The gate-level netlist is a circuit description based on standard
cells and their logical interconnections.

6.2.1 Reference Model

Reference models are essential for implementing and verifying a hardware de-
sign. A reference model is usually implemented in a high-level software program-
ming language and used as functional reference providing so-called testvectors. A
testvector consists of a correct input/output value pair describing the expected
transformation of a stimulus (input) to an output (expected response). Hence, by
applying stimuli to a hardware design under test, the correct functionality can be
verified by comparing the actual output of the tested module with the expected
response in the testvector pair. Testing complex hardware designs requires to have
good coverage of the possible state space in a design to detect errors. A reference
model can be used to create large sets of testvectors and hence improve the chance
to detect errors in the design. Cryptographic hardware implementations naturally
benefit from the strong input to output dependency intrinsic in cryptographic al-
gorithms. In general, even single bit errors have a significant effect on the result

1Very High-Speed Hardware Description Language
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as cryptographic designs are highly deterministic and usually apply non-floating
number representations. Reference models can be implemented at various abstrac-
tion levels regarding to the actual hardware implementation. At low abstraction
levels, a cycle true reference model may allow to spot errors with great detail but
at the same time provide little flexibility as later changes require changing the
hardware and the reference model. On the other hand, high abstraction levels
may not provide enough granularity to identify errors quickly. For implementa-
tion of the given hardware architectures, basically two reference models were used.
The first being a reference model implemented in MATLAB modelling the op-
erations as provided by arithmetic units. The second being a bit true reference
model for the top-level implementation, which provides valid testvectors for test-
ing the design. The top-level reference model uses implementations of the RELIC
[4] library which can be built to support operations based on various finite fields
and elliptic curves. The implemented top-level hardware architecture is basically
a microcoded processor with instruction memory and operand memory. To test
this architecture, an algorithmic description corresponding to the algorithms im-
plemented with the reference model is applied. So the reference model and the
microcode of the processor architecture process the same sequence of operations.
The actual microcode of the microprocessor was generated from an assembler-like
metacode using a translator program (see Section 5.2.5) where the metacode is
an architecture-based transcription of the algorithm implemented in the software
reference model.

6.2.2 Modeling in HDL

Specification of digital hardware may use different abstraction levels for circuit
description such as low-level descriptions at gate-level up to a description at a
behavioral-level. The hardware description language VHDL is designed to allow
circuit descriptions at several abstraction levels. With VHDL, we can describe a
circuit in a way which can be further processed by a VHDL compiler for synthesis.
A VHDL compiler allows to synthesize an HDL description to a gate-level circuit
description which is represented by a so-called netlist. A netlist consists of a set
of standard cells and their interconnection according to the given circuit descrip-
tion. The synthesizer uses standard-cell descriptions from a standard-cell library
which is usually licensed from a standard-cell library vendor to build circuits. The
synthesis result represents a circuit which then can be assessed according to area
consumption of the contained standard cells and timing characteristics. VHDL
also provides functionality to build testbenches for design testing. The Design
Under Test (DUT) or MUT is simply instantiated in the testbench and connected
to signals providing stimuli and reading actual responses. The testbench uses
stimulus/expected response pairs provided by testvectors for testing. A detailed
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discussion of the implemented testbench and applied testvectors is given in Sec-
tion 5.4.1.

6.2.3 Synthesis

Synthesis in the given context is the transformation of a circuit description given
as HDL code to a gate-level netlist. The circuits presented in this work were syn-
thesized with a VHDL compiler by Synopsys (D-2010.03-SP1-1). The synthesizer’s
degree of freedom to build circuits can be defined by setting arbitrary constraints.
In general, the clock input of a circuit is constrained to ensure that the synthesis
result is guaranteed to work at an operational clock frequency. If the synthesizer
is not able to build a circuit conforming to a given clock constraint, it reports
this fact by a negative slack 2. A negative slack does not mean that the circuit is
dysfunctional rather it means that the minimum clock period needs to extended
by the absolute value of the negative slack. So if a circuit is constrained by a clock
period of 10 ns and the synthesis result is reported to have a negative slack of 1 ns,
the circuit is functional at a clock period of 11 ns. A positive slack indicates that
the minimum clock period can be reduced by the amount of slack given. Basically,
the synthesizer uses timing information of the standard cells in the circuit and
their respective driving strength to calculate the clock timing.

The synthesizer needs information on capacitive loads to determine the amount
of time a cell requires to drive its output properly. At a basic level, the specifica-
tions as provided in the standard-cell documentation is used. In case of a timing
violation due to high capacitive load on an output net the synthesizer may increase
the driving strength of a cell by using cell subtypes of increased driving strength.
A cell with more drive strength is able to drive outputs faster but also requires
more chip area as the cell’s internal transistors need to be larger in order to drive
higher currents. However, the synthesizer has no information about the actual cell
placement and according wire interconnections at this stage in the design flow. As
such, no accurate information on the capacitive load of a wire can be given. Gate
outputs with high fan-out (i.e., gates having a large number of downstream gate
inputs) have a high capacitive load due to the gate capacities of the downstream
gates. The capacitive load due to gate fan-out can be estimated using the infor-
mation inherently given in the synthesized netlist. However, the wire routing of
these signals and their parasitic capacitance is not known. Long and intersecting
wires contribute to parasitic capacity. This is why a layout benefits from routing
wires orthogonally in subsequent layers as it reduces the parasitic capacitance. As
a result, the metal-layer interconnections share a common orientation of either
horizontal or vertical where neighboring metal layers have an orthogonal orienta-

2Time difference between actual signal arrival time and required signal arrival time
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tion to minimize parasitic capacities. To estimate the capacitive load on a wire, a
synthesizer uses a so-called wire-load model. A wire-load model basically assumes
a given capacitive load corresponding to a certain fan-out numbers. As an exam-
ple, it may assume a capacitive load of 10 fF, 20 fF, 40 fF, and 60 fF for a fanout
below or equal to 1, 2, 4, and 10 respectively. As these assumptions may or may
not apply, different wire-load models are used for approximation. A designer may
configure the synthesizer to use a certain wire-load model. If no explicit directive
is given, the Synopsys synthesizer chooses a wire-load model automatically. The
synthesizer’s decision on which wire-load model is applied is usually based on the
number of gates within a certain block. Given the case that the synthesizer has
four different wire-load models A, B, C, and D available, it may pick one of these
models for block sizes of about 10, 20, 40, or 100 kGE. If there are interconnec-
tions between such design blocks where each is associated with a certain wire-load
model, the synthesizer has to decide which wire-load model to use. This decision
is made according to the mode of the wire load model (enclosed/unenclosed). In
enclosed mode, a sub-block inherits the wire load model from the block which fully
encloses the sub-block. So, as a consequence, the results obtained using wire-load
models can only give estimates on the actual wire load of an actual layout. This
is why the improvement of simulation models is subject to active development
in semiconductor industry. As an example, advanced simulations may use three
dimensional models instead of just considering horizontal intersections.

The results based on wire-load models differ naturally based on the actual na-
ture of a design. For instance, the modelling accuracy of a structure consisting
of shift registers with short wire interconnections may differ significantly from a
LUT or RAM structure with long interconnections. A high wire load may require
the synthesizer to use standard cells with increased transistor dimensions or du-
plicate a standard cell for parallel wiring in order do drive higher currents. High
wire-load estimations also increase the RC charge time and slows down the signal
propagation in the respective path.

As the Synopsys synthesizer software, is proprietary closed-source software the
true reasons when the synthesizer may decide to change the wire-load model are
obscure to the standard user. During synthetisation runs, we observed an inter-
esting effect of decreasing area results for increased timing constraints. This is
sort of atypical compared to normal synthesizer results. We attributed this to be
caused by wire-load model switching by the synthesizer as the wire-load model was
not explicitly set. This example demonstrates the potential variability of results
obtained by a synthesizer. The algorithms used for synthetization are designed
to detect structural patterns and perform according optimizations. If these algo-
rithms do not recognize the implicit pattern in a behavioral circuit description, the
synthesizer results may be sub-optimal. While automated synthesis helps manag-
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ing large circuits, it does not guarantee an optimum solution. Especially, if circuits
are described on a behavioral level many degrees of freedom in synthesis may lead
to a local minimum instead of a global optimum solution regarding a cost function
such as circuit size.

6.3 Back-End Design

In the following sections, we want to discuss the major steps required in the back-
end part of a standard-cell based digital design flow.

We refer to back-end design as the transformation of a gate-level circuit de-
scription to a detailed chip-layout description which is ready for fabrication. As
it is important to assure that the design is ready for fabrication (tape-out) and
that the produced chip actually works as specified several verification steps are
part of a typical back-end design flow. Prominent examples are design rule checks
(DRC), electrical rule checks (ERC), and layout versus schematic (LVS) checks.
The actual layout of a circuit, which contains placement and routing information,
is verified by a so called post-layout simulation. A standard-cell back-end flow
contains two important tasks. Namely finding an actual standard-cell placement
on the chip die and the actual wire routing of standard-cell interconnections. Both
of which need to support the timing and area specifications given for a design. The
algorithms for placement and routing apply heuristic methods which generally are
not determinisitic. So the placement algorithm may give different results based
on initializations by pin mapping, core-area aspect ratio, macrocell placement, or
certain optimization settings. Routing is basically initialized by preceding steps
in back-end flow as well as optimization settings. Consequently variations of the
initial setting may have significant effects on the final outcome of a back-end flow.

6.3.1 Floorplanning

Floorplanning is concerned with the coarse-grained organization of chip area. Ba-
sically, it contains the tasks of padframe configuration, placement of major circuit
blocks such as macrocells, dimensioning the chip-level power distribution network,
and the insertion of a so-called clock tree.

In the following, we want to shortly introduce the major steps of floorplanning.
The first task of floorplanning usually is to set up a padframe. The padframe
basically consists of input and output pads which provide an electrical interface
between off-chip circuitry and on-chip circuits. The pads itself are provided as
standard cells and allow configuration, as for instance, setting the output driving
strength. Usually the padframe is a closed structure of rectangular shape where
pad filler-cells are used to fill gaps between input/output pads. The pads are
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powered by a pad power ring which is integrated to pad cells and powered by pad
power cells. Assigning signals to the pads and placing the pads in the padframe
determines the pin diagram of a chip (e.g., Figure C.2). In the following steps, a
core area is defined where standard cells and macrocells may be placed. Between
the padframe and the core area, a core power-ring is placed to distribute core
supply rails of VCC and GND. The core power ring is powered by core power pads
located in the padframe and may be extended by power stripes or additional power
rings. At this stage, the floorplan is ready for standard-cell placement.

Figure 6.2: Example of a floorplan after macro cell and standard-cell placement.
Major VHDL entities are highlighted, (Instruction memory in green, core multi-
plier in yellow, and result registers in red).

Macrocells are usually placed manually and should be oriented with respect to
the location of their input/output signals. Placing large macro cells in corners has
advantages as the external macrocell power ring can be combined with the core
power ring to minimize the area spent on power distribution. Additional chip area
can be saved by overlaying power rings on multiple metal layers. The top metal
layer is usually thick compared to lower metal layers and hence suited for power
distribution. A possible overlayed configuration in a six metal layer process could
distribute the ground ned at layer six (vertical) and layer five (horizontal). The
power supply could be placed on layer four (vertical) and layer three (horizontal).
The adjacent layers of each net are connected with vias to close the rings. Over-
laying power rings allows to save a considerable amount of chip area but requires
more complicated routing of interconnections from core to pad cells as they may
block signal routing on lower metal layers.
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6.3.2 Standard-Cell Placement

In a semi-custom ASIC digital design flow, so-called standard cells are used as
logic building blocks at the lowest abstraction level. Standard cells are usually
supplied by a standard-cell library provider such as Faraday [15] which sells well-
defined and quality-assured descriptions thereof. Standard-cell libraries are usually
grouped into core cells and I/O cells. Examples of typical core cells are NAND
gates (ND), NOR gates (NR), Inverters (INV), Buffer cells (BUF), Multiplexers
(MUX), Tie-low/high cells (TIE0/1), and flip-flop cells. These standard cells are
small macros sharing a common cell height allowing to place them in standard cell
rows. The standard-cell rows are also used to provide power supplies to standard
cells. A standard-cell supply line either connects to the core VCC or core GND
net. To save chip area the VCC and GND lines are in interleaved order so standard
cells connecting from above and below share a common supply connection.

To interface the design to off-chip circuitry, I/O cells are used. Typical exam-
ples of I/O cells are I/O-pad cells with various driving strengths, power supply
pads for the pad power ring and core supply, pad corner cells, and pad filler-cells.
The I/O-cell supply net (3.3 V) is separated from the core supply net (1.8 V). The
I/O-cell supply is powered through pad power cells which connect to a pad power
ring which is integrated to I/O-cells. The core cells are powered through the core
power pads which connect to the core power ring usually located between the pad
ring and the core area.

Standard cells can be placed after defining the core area which contains the
standard-cell rows. The area as given by the synthesizer serves as a theoretical
minimum to place the design. Practically more area is required as power sup-
ply nets, buffer cells, and additional signal routing area contribute to the total
area consumption especially if the timing is constrained and cells of higher driving
strength consuming more area are needed. To accommodate extra area require-
ments in later design-flow steps, a certain amount of free area is budgeted when
placing the design. The ratio between yet unoccupied area and occupied area by
standard cells is expressed as placement density. A high density in the placement
step makes it more difficult to reach a design without violations in later steps. For
an average design starting with a density of about 70 % should leave enough area
for subsequent routing, timing optimizations, and re-routing without requiring
lengthy optimization iterations.

6.3.3 Signal Routing

Prior to detailed signal routing, a so-called trial routing algorithm is used as coarse
estimation to extract timing information. The trial routing algorithm is a fast
approximation for actual routing. It partitions the design in blocks and investigates
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if wiring between these blocks is possible. Congestion warnings indicate that a
block has consumed a certain amount of virtual wire connections to other blocks
and actual routing may be complicated. Congestion usually occurs in densely
placed regions with accordingly high wire interconnections. If a power stripe limits
the number of layers available for wire routing congestion warnings are likely to
occur. Figure 6.3 illustrates congestion warnings in the vicinity of the vertical
power stripes in the trial routed layout where congestion warnings are indicated
in red. Especially the power stripes on the left exhibit many congestion warnings.
The actual routing algorithm attempts to resolve congestion and does a detailed
routing which generally increases wire density. The detailed routing causes an
increased wiring visible on top-metal layer usage (vertically oriented wires in yellow
represent top-metal layer 6). The effects due to detailed routing is clearly visible
in the two layout stages given in Figure 6.3.

6.3.4 Post-Layout Simulation

Layout comprises the steps to transform a discrete schematic description to a
physical circuit description. Cell placement and wire routing fixes the physical
characteristics of a circuit. Regarding the physical characteristics, a designer is
usually interested in the amount of parasitic capacitances. If a wire net is charged
with too much capacitive load, signal transitions get malformed and can violate
timing constraints of setup and hold times. To verify that the circuit is still opera-
tional under the influences of parasitic effects, a post-layout simulation is applied.
A post-layout simulation is based on a circuit description which has been back-
annotated with information on parasitics which were introduced in the layout step.
The so-called back-annotated circuit is simulated by a simulator tool3 using a test-
bench similar to the circuit simulation at the RTL level. Adjusting the testbench

3In this work Modelsim SE 6.4 by Mentor Graphics was used for post-layout simulations

(a) Trial Routed (b) Routed

Figure 6.3: Signal-routing example
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clock timing (ATI timing) allows to confirm that the circuit is operational at a
given clock frequency.

The described post-layout simulation setup can be extended to extract node-
toggling activity informations to be passed to a power-analysis tool for power
analysis. A short discussion on power analysis is given in the following chapter.

6.3.5 Power Analysis

In the following, we want to focus on power-rail analysis, current density figures,
and power simulation all of which are based on stimuli-based post-layout simula-
tions.

Rail analysis is used to confirm that a circuit provides good power distribution
on its power rails of VCC and GND. This is vital for the correct functioning of a
circuit as the specified minimum or maximum supply specifications of the standard
cells must not be exceeded. Current density figures are important as excessive
current densities have negative effects on the expected lifetime of a semiconductor
circuit. Basically power simulation approximates a circuit’s power consumption
using node-toggling activities which were obtained by post-layout simulation of a
back-annotated circuit.

Power-Rail Analysis

A power-rail analysis provides the basis to ensure that standard cells are operated
within their specified supply ranges. Due to resistance of the conducting material
used for power distribution,a certain voltage drops across power-supply lines. This
voltage drop is called IR-drop as it is proportional to current I and resistance R
of the supply line. Reliable circuit design requires that these transient changes of
power and ground-supply net remain within tolerable limits in order to guarantee
that each cell is provided with its minimum supply voltage. To verify that the
power-distribution network is dimensioned well and provides connections of suf-
ficiently low resistance, a power-rail analysis is performed for the supply nets of
VCC and GND. A power analysis uses a certain node activity for simulation. One
way is using a global value of average node activity which is not very accurate and
just a rough estimation. Alternatively, we may use stimuli-based node activities
contained in a VCD file4 as can be obtained by post-layout simulation.

For stimuli-based power analysis, we use Cadence SoC Encounter and VCD
files by post-layout simulation runs in Modelsim by MentorGraphics. The applied
180 nm CMOS technology has a nominal supply voltage of 1.8 Volt (VCC) referred
to ground (GND). To obtain threshold values for the ground and supply net, we use

4Value-Change Dump, describes the logic level of each node for a certain simulated time



91 6. Design Flow

(a) IR drop GND (b) IR drop VCC (c) IR drop VCC (mult)

Figure 6.4: Power-rail analyses of Geminicore

the minimum supply voltage as specified in the standard-cell supply specifications.
We then divide this value by two and use the result voltage drop margin for ground
and supply rail respectively. As a result, we apply a maximum ground-rail voltage
of 0.09 V and a minimum supply-rail voltage of 1.71 V. The applied power-analysis
tool provides a graphical illustration of critical areas on the chip suffering from
insufficient power distribution. Figure 6.4 shows three examples, where the left
figure shows analysis of the ground net, the middle an analysis of the supply net,
and the right figure an analysis of the supply net during multiplication. IR drops
are indicated by a green to red colored gradient. The core-power pads located at
the middle left and right of the padframe exhibit only moderate IR drops. The
illustration on the right shows IR drop during active calculation where the bottom
area exhibits significant IR drop.

Based on the results on a power-rail analysis, a chip designer may extend or
reduce the power-distribution network in order to make the design more reliable
or efficient.

Current Density

Power analysis provides simulated current-flow values and hence power-density
values. Consideration of current density J = I

A
is important to conclude on thermal

power dissipation and electromigration effects both being proportional to current
density. Excessive current densities may cause conducting material to melt and as
a consequence destroy the circuit.

High current density also has another more subtle effect which is also detrimen-
tal to the correct functioning of a chip. Electromigration is the physical movement
of atoms due to a high amount of momentum caused by flowing electrons. This
atomic movement may cause gaps and pile ups in conducting material to an ex-
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tent potentially destroying the circuit due to short and open wire connections.
Consequently, electromigration effectively reduces the lifetime of a chip. Based on
fabrication specific process properties such as wire metal type (e.g., silver, copper,
or aluminium) and its conductivity as well as metal-layer thickness, a maximum
current density Jmax is defined for metal interconnections by the manufacturer.
Hence maximum current density values given in mA

µm2 are used as design guide-
lines for a certain temperature. To avoid the undesired effects caused by high
current densities, a chip designer tries to keep current densities sufficiently low
(J/Jmax < 1).

Actual results during back-end designs showed power-density violations in con-
nections of VCC-supply pads to VCC core power rings. These violations were
caused by near-by placed macro cells which over-strained the supply pad. Placing
the macro cells more distant to this pad and closer to other VCC-supply pads
helped to reduce the current density considerably. Observing that power-supply
pads have metal connects at several metal layers, a designer could apply multiple
power ring to power-pad connections using stacked or staggered vias next to the
power pad or even use additional power rings on other metal layers. Upper metal
layers should be preferred for distributing power as they are generally thicker and
have higher maximum current density specification. Of course spending another
power pad in the vicinity of an over-strained pad would also represent a viable
solution in case an additional supply pad is allocatable.

Layout area attributed to power distribution is clearly a main contributor to
chip size. Where the distribution network usually contains the elements such as
core power rings, power stripes, and macrocell power rings. In the light of area
attributed to power distribution, chip-size estimations solely based on the number
of gates lack important information. The amount of area required for power-
distribution varies with design as timing and power consumption (node activities)
are design-specific.

Power Simulation

Power consumption basically consists of static and dynamic power consumption.
As static power is negligible in CMOS circuits, dynamic power is significant. Dy-
namic power is due to the internal changes in standard cells and power due to the
capacitive load a standard-cell output has to drive in order to change the state of
its output. A basic model of dynamic power consumption is proportional to the
internal and parasitic capacitance, the number of node changes per time (α), and
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Figure 6.5: Power-analysis flow

the powered supply voltage (Equation 6.1).

P = Pdyn + Pstat

Pdyn = Pinternal + Pcap

= (Cinternal + Cload) · V 2
CC · f · α (6.1)

Table 6.1: Power dissipation obtained by stimuli-based power analysisa

in mW (results from unconstrained area layout with fclk=125 MHz)

Arch Total Internal Power Switching Power Leakage Power

K153 263.7 112.50 151.20 0.0114

K77 223.1 86.45 136.70 0.0070

LSD11 176.1 94.22 81.89 0.0060

LSD9 182.4 110.00 72.40 0.0090

LSD7 136.0 77.49 58.56 0.0070

LSB153 105.8 76.91 28.90 0.0084

LSB77 80.7 51.14 25.57 0.0048

a Extracting the electrical activity for a full pairing calculation would require
several hundred gigabytes of disk storage for each design. Hence the given
analysis is based on circuit activities within the first 30 Miller iterations. As
these iterations are highly regular and represent over 80 % of the total compu-
tation we regard them as representative and use them in place of an exhaustive
power analysis.

Active pad cells and especially output pad cells consume a lot of power. To
evaluate the power consumption of the core design, we limit power analysis to the
actual computation period and ignore the time for input and output handshaking
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where input/output pads are active. As the target application of this design is
integration to a system-on-chip or to a crypto-processor module where no such
I/O pads are required this approach provides more meaningful power figures. It
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Figure 6.6: Decomposition of power consumption

should be noted that the power-consumption figures are obtained by averaging
the simulated power consumption over a certain period of circuit simulation. To
get reasonable results, we first extract the toggle activities of the nodes contained
in a circuit based on actual stimuli provided by a pairing calculation. The toggle
activities are then stored in a so-called value-change dump (VCD) file. After layout
we extract the parasitics for back-annotating the circuit. Simulating the back-
annotated circuit using representative stimuli, allows to determine node activities
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in the circuit, which are then used to determine the circuit’s power consumption
in a power-analysis tool (see Figure 6.5). The results provide figures for static and
dynamic power consumption as well as leakage power (Table 6.1).

P = fcp · Ecp, Ecp = Pavg · Tcp (6.2)

Power analysis was simulated at 125 MHz and 1 MHz allowing to extrapolate power
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Figure 6.7: Energy consumption per pairing computation

consumption for other clock frequencies. Leakage-power results for the given de-
signs are between 0.0049 mW for GeminiLSB77 and 0.0113 mW for GeminiK153.
Compared to the power consumption due to internal and switching power, the
amount of leakage power is negligible. Leakage effects are independent of opera-
tional frequency so that we find almost identical values for the two simulation runs
with 125 MHz and 1 MHz clock speed respectively.

Another way to evaluate a design is considering energy per computation Ecp.
The relation of power to energy per computation is given in Equation 6.2, where
Tcp is the computation time. Figure 6.7 illustrates the energy consumption of the
implemented designs per pairing computation. The long computation time of the
bit-serial designs make them consume more energy compared to the other designs
making them less efficient in terms of energy consumption. Fast designs such as
GeminiK153 benefit from the short computation time exhibiting the lowest energy
consumption of all implemented designs.
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6.3.6 Layout Results

The actual layout was performed using Cadence SoC Encounter in several back-
end iterations. Snapshots of the post-placement and post-routing stage of the last
iteration is given in Figure 6.8 and Figure 6.9 respectively. The given layouts were
obtained by constraining the effective core area from both sides. The core area
of these designs was successivly reduced up to a point were the results started
to exhibit design violations. Further optimizing the designs by more back-end
iterations is certainly possible but is likely to get excessively time consuming and
complex as the optimisation problem for the algorithms get harder and occuring
violations need to be fixed.
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(a) Gemini K153 (b) Gemini K77

(c) Gemini LSD9 (d) Gemini LSD11

(e) Gemini LSB153 (f) Gemini LSD7

(g) Gemini LSB77

Figure 6.8: Standard-cell placement in back-end design flow
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(a) Gemini K153 (b) Gemini K77

(c) Gemini LSD9 (d) Gemini LSD11

(e) Gemini LSB153 (f) Gemini LSD7

(g) Gemini LSB77

Figure 6.9: Routing results in back-end design flow



Chapter 7

Results

In this chapter, we present the final results of the hardware designs described in
Chapter 5. The results are based on an ASIC-design flow using 180 nm CMOS
UMC technology and Faraday Technology standard cell libraries. For each de-
sign,we provide results according to area, computation time, power, and energy.
Finally, we conclude the chapter with an evaluation of the final results providing
a combined cost metric.

7.1 Computation Time

The main goal of this thesis was to design an ASIC-hardware architecture to cal-
culate a bilinear pairing. The primary design goal was to realize a design with
low area requirements. Secondary objectives were low computation time and low
power consumption. Design decisions were made so that the full pairing compu-
tation time does not exceed 400 ms to be applicable for systems involving human
interaction. The results presented in Table 7.1 demonstrate that the designs re-
main well below this design specification. As the input/output interfaces are small
compared to the amount of input and output data, a certain time is required
to write input and read results. Even though input/output interaction is hand-
shaked, which requires additional clock cycles, the amount of time attributed to
input/output is negligible compared to the actual pairing computation time.

7.2 Synthesis Results

Figure 7.1 and Figure 7.2 show the results of the synthesis runs performed for the
implemented designs. Each dot in these figures represents a synthesis and a corre-
sponding circuit result which is operational up to the given clock speed. At some
point the circuit’s longest propagation delay exceeds the given clock constraint.
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Table 7.1: Pairing computation time

Arch
w/o handshaking with handshaking

cycles ms† cycles ms†

K153 752 929 6.02 756 739 6.05

K77 1 612 620 12.90 1 615 758 12.93

LSD11 1 599 657 12.80 1 602 795 12.82

LSD9 1 202 313 9.62 1 206 123 9.65

LSD7 1 876 201 15.01 1 879 339 15.03

LSB153 5 899 240 47.19 5 903 050 47.22

LSB77 6 434 856 51.48 6 437 994 51.50

† TηT for Tclk = 8ns

In order to comply with the given clock constraint, the synthesizer begins to opti-
mize the circuit which in turn increases the circuit size, because driving strengths
of standard cells need to be increased. With the presented synthesis runs it was
possible to explore the circuit specific relation of clock constraint to circuit size
and adapt to clock timings providing a low-area circuit. Evaluating several designs
requires to define a basis upon which a fair evaluation is possible. To provide a fair
basis, we synthesized the circuits under a constant clock constraint, where they
do not exhibit steep area increase due to a demanding clock constraint. Based on
the synthesis results illustrated in Figure 7.2, a clock period of about 7 to 8 ns was
selected as basis for subsequent back-end design flows. To have some additional
timing budget in the back-end flow a stricter clock constraint was used for circuit
synthesis. This allows to reach the desired clock speed for all the final post-layout
designs with a high confidence that no extra timing optimizations are required
which tend to make a back-end flow iteration more difficult. As a consequence,
all the architectures arrive at a common post-layout clock period which helps to
provide a fair basis for evaluation of the implemented designs.

The synthesis results collected in Figure 7.2 show that the implemented de-
signs can be split in three groups based on their circuit size. The Karatsuba-based
pairing architectures (K153 and K77), the digit-serial based architectures (LSD11,
LSD9, and LSD7), and the bit-serial architectures (LSB153 and LSB77). Interest-
ingly, the digit-serial architecture with digit size eleven (LSD11) shows practically
the same area to clock constraint relation as the digit-serial architecture of digit
size nine (LSD9). The reason of this area equivalence is that these designs do not
share the same datapath width and contain different macrocell-memory configu-
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Figure 7.1: Synthesis results of pairing architectures

rations. In the given case, the area overhead introduced by the macrocell configu-
ration of design LSD9 cancels out the smaller multiplier size of LSD9 regarding to
LSD11. Another interesting fact is that the Karatsuba-based architectures tend
to ramp up earlier in circuit size then the digit-serial based architectures. The low
combinatorial depth in the digit-serial multipliers allow faster clocking.

Hardware design is generally subject to many trade-off decisions where diamet-
rical or opposing characteristics need to be balanced to obtain a satisfying solution.
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These trade-off situations allow to apply architecture transformations in order to
comply with design goals. Usually area and computation time are opposing de-
sign goals where it is considered optimal to minimize both of them. The relation
between area and computation time is customarily illustrated by a so-called AT
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Figure 7.3: Synthesis results over ηT computation time
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plot (Figure 7.3) where the area-time product is plotted. In an ideal case, a design
transformation allows to move the AT value of a design on an AT isoline where
the product of area and time is constant. The illustrated AT plot is based on an
8 ns clocking of each design to provide a fair comparison.

7.3 Area Requirements

Table 7.2 gives chip area results for the design flow stages of synthetization, gate-
count based layout, and effective chip area. Synthesis-based area figures represent
a theoretical minimum for actual chip area. Area results at the synthesis level are
based on the set of standard cells contained in a synthesized netlist. This area
figure merely represents the cumulative area of cells contained in the netlist. In
an actual back-end flow, standard cells are not placed edge-to-edge to maintain
an area margin for subsequent back-end tasks which need area to insert buffers,
change placement of standard cells, and to route signal wires for standard-cell
interconnection. Gate-count based area figures were obtained in back-end design

Table 7.2: Area consumption

Arch
Synthesis based Gate-count based Effective Area

mm2 kGE mm2 kGE mm2 kGE

K153 1.208 128.9 1.243 132.6 1.77 188.8

K77 0.983 104.9 1.030 109.8 2.10 223.9

LSD11 0.811 86.5 0.848 90.4 1.55 165.3

LSD9 0.813 86.8 0.848 90.4 1.36 144.7

LSD7 0.679 72.4 0.708 75.6 1.29 137.6

LSB153 0.532 56.7 0.560 59.8 0.96 102.2

LSB77 0.468 49.9 0.494 52.7 0.90 95.9

and are still a cumulative sum of standard-cell area contained in the design. The
gate-count was extracted post-layout and additionally contains area contributions
of buffers and area of standard cells with increased drive strength in order to satisfy
given timing constraints. Still this figure does not consider factors contributing to
effective chip-area consumption such as area between standard cells, area required
to route signal, or area attributed to power distribution such as power rings. The
effective area figure in Table 7.2 considers all of the actual area contributors in the
design—such as area for power distribution networks (core and macrocell power
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rings) and in general area required for signal routing which was not considered in
the previous figures. Of course the results given as effective area are subject to
change if more time is invested in back-end design iterations.

7.4 Power and Energy Consumption

Besides chip area, power and energy consumption figures directly influence the
applicability of a design to be used in resource-constrained environments. Power
consumption is relevant for integration in smart cards or RFID-enabled devices
which can only provide a certain amount of power. Energy consumption is to be
considered if integration to a battery-powered embedded device is desired. Basi-
cally, it is more sensible to use the energy figure to evaluate a circuit as it combines
the power consumption and computation time.

Table 7.3: Power and energy consumption

Arch
Average power consumption Energy per computation

mW @ 125 MHz mW @ 1 MHz mJ/ηT

K153 263.7 2.023 1.52

K77 223.1 1.808 2.93

LSD11 176.1 1.351 2.19

LSD9 182.4 1.603 1.87

LSD7 136.0 1.054 1.99

LSB153 105.8 0.819 4.78

LSB77 80.7 0.637 4.08

Table 7.3 holds average power and energy figures of the implemented architec-
tures. To allow extrapolation to other clock periods, two power simulation runs
were performed giving results for fclk = 125 MHz and fclk = 1 MHz. As the cir-
cuits are powered with 1.8 V, we can calculate the average current flow. In the fast
clocking scenario, architecture K153 and LSB77 draw about 145 mA and 45 mA
respectively. If operated at 1 MHz, the K153 architecture draws 1.12 mA and
the bit-serial LSB77 architecture 0.35 mA. Figure 7.4 gives the relation of average
power consumption to circuit size considering area based on gate-count figures
and on effective chip area. The results in Figure 7.4a indicate the linear relation
between the number of gates and their power consumption while the post-layout
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Figure 7.4: Area over power consumption

results used in Figure 7.4b deviate from this relation due to parasitic effects induced
through actual layout.

7.5 Evaluation

To evaluate the given designs, we want to consider their performance according
to all of the demanded design goals. Hence, we normalize the results obtained for
area consumption, power and time consumption to define a combined cost metric.
In the following, we present an evaluation based on a combined cost metric A·T·P
(area× time× power). As the product of power and time corresponds to the cost
in terms of energy, we may also regard it as area-energy cost metric. As this thesis
provides area figures based on gate-count and effective chip area, we therefore
present also combined cost results for each of them. The gate-count based results
are illustrated in Figure 7.5a and those based on effective chip area in Figure 7.5b.
While the A·T·P figure is quite similar for both value sets, it shows that the
architecture K153 turns out to be favored over the K77 design according to the
actual back-end area result. The bit-serial designs suffer from long computation
times corresponding to a high demand of energy making them less attractive.
Based on the overall cost metric, the designs K153, LSD9, and LSD7 provide a
good balance between area and energy consumption. Furthermore, imposing the
prime design goal of low area, the designs LSD9 and LSD7 are to be preferred as
efficient hardware architectures.
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Figure 7.5: Comprehensive comparison of implemented architectures based on
normalized values of area, ηT pairing computation time, and power consumption.
All designs are constrained with Tclk = 8 ns for a fair comparison. The product of
the normalized values is used as overall cost metric. A low A·T·P value signifies
low cost in terms of the considered design goals.
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Previous Work

In [5], Barreto et al. present general techniques for the efficient computation
of pairings on supersingular Abelian varieties and provide generalizations on the
results by Duursma and Lee in [16] for computing the Tate pairing on supersingular
elliptic curves over characteristic three fields. Based on these generalizations they
define the so-called eta or η pairing which is non-degenerate and bilinear. They
further improve this pairing and denote the improved version as ηT pairing which
outperforms their η approach by a factor of two according to their experimental
results [5].

Beuchat et al. propose several improvements of the ηT pairing algorithm in
characteristic two and characteristic three in [8]. They provide a square-root and
cube-root free version of the ηT pairing, for characteristic two and three fields
respectively. Furthermore their results improve the final exponentiation step by
simplifying the contained field-inversion operation.

Ghosh et al. presented the first implementation of the ηT pairing at 128-bit us-
ing supersingular curve in characteristic two [21]. They applied a Karatsuba-based
multiplier approach to calculate the ηT pairing on an FPGA platform. Applying
versions of one and two Karatsuba-steps they compute a base-field multiplication
with a serial use of 612 and 306-bit parallel core multipliers respectively. With
the latter approach, they compute a base-field multiplication with nine 306-bit
multiplications. Their design takes 15 167 slices and 54 681 LUTs on a Virtex 6
FPGA and computes a pairing within 190µs.

The recently presented results of Adikari et al. [1] propose a cryptoprocessor for
computing the ηT pairing on supersingular elliptic curves over F21223 . To perform
the field multiplications in F21223 they apply a Toeplitz-matrix vector-product based
approach and also give results for a Karastuba multiplication splitting segments
in two and three parts. They report an area consumption of 716 281 µm2 and a
calculation time for their two-way Karatsuba architecture with 80.6µsec. Their
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results of an ASIC-hardware architecture are based on best-case corner analysis
and consume about 500 000 GE being synthesized using a 65 nm TSMC library.

8.1 Hardware Accelerators

To give an overview on previous and concurrent work, Table 8.1 and Figure 8.1
provide a listing of ASIC implementations of bilinear pairings at a security level
of 128-bit. The designs presented in this work are listed with area based on gate
counts to provide a fair comparison. The figures given in Figure 8.1 provide AT
plot illustrations where Figure 8.1a gives the evaluated timing at 8 ns. Figure 8.1b
illustrates an AT-plot where the designs presented in this work are clocked with
high speed while keeping a low-area circuit size (see Figure 7.2). For this plot, the
following clock periods were applied: K77 at 7 ns, LSD11/9 at 4.5 ns, LSD7 at 4 ns,
and LSB153/77 at 3 ns.

Table 8.1: ASIC-hardware implementations of pairings at 128-bit security
level

Curve Pairing Tech. Freq. Area Time AT†

nm MHz kGE ms

Fan2009 [17] E(Fp) ate 130 204 183b 4.22 772

Fan2009 [17] E(Fp) R-ate 130 204 183 2.91 533

Kammler2009 [30] E(Fp) opt-ate 130 338 164c 15.8 2591

Kammler2009 [30] E(Fp) ate 130 338 164 22.8 3739

Kammler2009 [30] E(Fp) η 130 338 164 28.8 4723

Kammler2009 [30] E(Fp) Tate 130 338 164 34.4 5642

Adikari2012 [1]f E(F21223) ηT 65 500 473 0.08 38

Adikari2012 [1]f E(F21223) ηT 65 500 524 0.06 29

(A) K153 E(F21223) ηT 180 125 133 6.1 798

(B) K77 E(F21223) ηT 180 125 110 12.9 1430

(C) LSD11 E(F21223) ηT 180 125 91 12.8 1183

(D) LSD9 E(F21223) ηT 180 125 90 9.7 1350

(E) LSD7 E(F21223) ηT 180 125 76 15.0 1140

(F) LSB153 E(F21223) ηT 180 125 60 47.2 3111

(G) LSB77 E(F21223) ηT 180 125 53 51.5 2703

† Area-Time product (kGE × ms)
b Including 70 kGates for Register File and 25 kGates for controller and ROM.
c Includes 97 kGates core area and 67 kGates for data memories.
d 124-bit security level
f Results based on best-case corner analysis
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Conclusion

The computation of bilinear pairings is the central and computationally dominat-
ing part in a pairing-based cryptographic scheme. To benefit from the new set of
cryptographic schemes introduced by bilinear pairings, implementations applicable
in embedded devices such as mobile phones or smart cards are desired. Hence, ef-
ficient computation of pairings is of utmost importance for practical realizations of
pairing-based schemes to be applicable in resource-constrained environments. The
presented hardware architectures were designed to consume low chip area, as this is
a crucial figure for high-volume ASIC chip production and large scale deployment.
The implemented designs consume as little as 50 kGE and are able to compute a bi-
linear pairing within several milliseconds. Based on the hardware results presented
in this thesis, we can state that computation of cryptographic bilinear pairings is
possible with low chip area and within reasonably short computation time. With
these results, further integration to build a holistic and applicable cryptosystem
based on bilinear pairings is clearly feasible with respect to implementation cost.
In general, the presented results demonstrate that pairing-based cryptography is
ready for resource-constrained devices and encourages further research in this di-
rection.

9.1 Final Remarks

In the following, we want to address some notable aspects regarding the findings
of this thesis.

Synthesis and Post-Layout Area Figures In order to obtain meaningful
results for the designed hardware architectures, full ASIC-design flows were ex-
ecuted. This is necessary as it allows to estimate power consumption and more
importantly, area consumption after layout and timing is fixed. In addition to
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that, we can also give intermediate results at multiple design stages which is es-
pecially interesting for the area consumption figure as it illustrates the variance of
post-layout results compared to synthesis results. We now want to consider area
consumption figures at the following stages:

Synthesis: Area figure considers area consumed by standard cells and macro cells

Post-placement (gate-count): Extends synthesis results by additionally consider-
ing buffer and gate strengths in order to fulfill timing constraints, but does
generally not consider area for wiring nor area due to power distribution.

Post-layout (effective area): Extends post-placement area figure by considering
additional effects due to routing and placement and power distribution net-
work area due to power rings and power stripes.

Based on synthesis results, the four-step iterative Karatsuba design (GeminiK77)
consumes less area then its three-step counterpart (GeminiK153). However, the
smaller design at synthesis stage becomes effectively bigger in the post-layout re-
sults. Basically, the architecture based on the iterative four-step Karatsuba multi-
plier (GeminiK77) involves a high demand for signal routing, especially in the re-
sult register feedback structure. It contains many cells which are dispersed over the
chip area requiring widespread interconnections representing a significant routing
overhead. Another reason may be due to the fact that the contained signal paths
in this design are very wide compared to usual signal widths in hardware design.
Hence, the routing algorithms may not recognize these structures properly and fail
to find near-optimal routing. A similar situation is also observable for the designs
GeminiLSD11 and GeminiLSD9. While they have the same area consumption
regarding synthesis and gate-count figures, their effective chip area figures differ by
about 14 %. At first, we want to explain why these designs are of equal size at the
system level, while their contained multiplier architectures differ by about 6 kGE.
The reason is due to the different memory configuration where the GeminiLSD9
architecture contains a macrocell configuration which is less efficient in terms of
bit per area than the 77-bit datapath based GeminiLSD11 architecture. The
difference due to memory configuration is about 6 kGE (Table 5.7) which results in
an equalized area figure at the system level. The reason for the difference in post-
layout area is due to the large core multipliers and interleaved reduction circuits,
where in the GeminiLSD11 architecture, this structure is more complex. Again,
this results in more routing overhead which makes the GeminiLSD11 larger than
expected when considering the results of GeminiLSD9.

These observations clearly show that design evaluations limited to synthesis
results may lack important information to extrapolate to the effective chip area
consumption of a design. Intrinsic system parameters such as routing overhead
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due to wide signals contribute to the variability of the effective area consumption
results. Consequently, care should be taken when making estimations based on
synthesis results to conclude on effective chip area.

Datapath Width The presented designs are based on two datapath widths,
namely 77-bit and 153-bit. The width of the datapath determines how many bits
are computed per clock cycle. The amount of data which can be computed in a
given amount of time is referred to as throughput. For the given architectures a
wide datapath using a wide memory interface allows to reduce the number of I/O
operations to read from or write to the memory. For the architectures using a
77-bit memory interface we have at least 2 · d1223/77e = 32 read/write cycles per
operation. The architectures using memories with twice the interface width require
only half the number of cycles per operation which significantly improves overall
computation time. While widening the datapath allows to increase throughput
it also affects the size of operating units (e.g., multiplier size). Another point to
consider is that a wide datapath usually implies using wider memory interfaces
so that effects of macrocell configuration have to be considered. As discussed
in Section 5.5, a wide memory interface may have a detrimental effect on area
consumption, especially in the context of a low area design goal.

Custom Cryptoprocessor vs. General Purpose Processor To calculate
the ηT pairing we operate in a finite field of small characteristic. To comply with
the design goal of a pairing at 128-bit security level, base-field operations with
1223-bit operands are required. Furthermore, the pairing algorithm itself is rather
complex and mandates a large number of finite-field operations resulting a signifi-
cant computational load. A general purpose processor is generally not well suited
for this task as their usually small datapaths would require many intermediate
processing steps to process operands of the required dimension. Hence, the design
effort in an application-specific dedicated circuit is justified, if a pairing should be
calculated within reasonable amount of time and energy. Such circuits may then
be used as coprocessors to provide instruction set extensions to general purpose
processors or to construct high-level stand-alone pairing processors for embedded
devices such as smart cards.

9.2 Future Work

This section proposes potential candidates for future or complementary work re-
garding the presented results.
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Integration of Point Multiplication The implemented architectures are ca-
pable of performing finite-field operations in F21223 with a reduction polynomial
f(x) = x1223 + x255 + 1. This provides all the functionality to compute the ηT
pairing. However, for actual applications it may be advantageous to further ex-
tend the architecture. Extending the instruction set of the implemented ASIP
could provide the full feature set of an identity-based encryption system (possibly
including the trusted authority).

Generalizing the Iterative Karatsuba Multiplier Approach The presented
approach of an iterative Karatsuba multiplier has two scaling factors. The first
being the degree of iteration where we can downscale the multiplier area-wise due
to smaller core multiplier width. The second being the number of accumulation
registers in the operand accumulation circuit. Further work on the second scaling
factor could investigate the trade-off between area spent on registers in the accu-
mulation circuit and the corresponding reduction of multiplier latency to find a
potentially more efficient multiplier with higher core multiplier saturation. Gener-
alizing the iterative Karatsuba multiplier approach would allow to provide results
for a wider range of operand sizes and investigate the effects of accumulation regis-
ter size scaling. The current multiplier architecture could be used as basis to write
a generator for generic multiplier widths and accumulation circuits of generic size.

Optimizing Register Allocation Using a declarative programming language
such as Prolog could provide a register allocation pattern which minimizes the
computational overhead due to memory copy operations. In a similar approach
the memory footprint could also be optimized further.

Low-area Implementation of ηT Pairing in Characteristic Three The ηT
pairing can also be implemented using a ternary finite field. A ternary finite field
requires to spend two bits per finite-field element instead of one in the binary
finite field. While binary finite field arithmetic is basically more efficient to be
implemented in digital hardware the finite field size in the ternary case can be
reduced. Previous work as given in [8] suggest that there is a slight advantage for
ternary implementations. Considering the work in [51] which effectively lowers the
security level provided by the ternary field reduces the advantage of the ternary
version. As this work presents a low-area hardware implementation of the ηT
pairing in fields of characteristic two, a follow-up work could explore low-area
implementations based on the ηT pairing in characteristic three.
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Appendix A

Pairing Applications

In the following we present several applications for pairing-based cryptography
which benefit from the new cryptographic primitive available due to bilinear pair-
ings. The pairing operation in generally denoted as a function e(G1, G2) → G3

where the elements G1, G2, are elements of an additive and G3 is an element of a
multiplicative group.

A.1 Identity-Based Encryption

In response to Adi Shamir’s idea for an identity-based encryption (IBE) system
and quest for a way to implement such a system Boneh and Franklin proposed a so-
lution to implement such identity-based encryption systems using bilinear pairings
based on the Weil pairing. As such IBE is historically linked to bilinear pairings
and of major importance for new cryptographic schemes and applications. In
the following we want to illustrate the steps in the basic Boneh-Franklin IBE for
encryption and decryption based on and according to [10] [37].

Let G1 and GT be cyclic groups where G1 is a subgroup of an elliptic curve
E(Fq) and G2 is a subgroup of F∗

qk
. The private key generator (PKG) represents the

trusted authority and performs a parameter setup step which defines the master
secret key s and an elliptic curve generator point P . The master public key is
obtained by multiplying the elliptic curve point P with the master secret key s.

• Trusted Authority

– Private key: s ∈ Z∗q

– Public key: P, sP ∈ G1

• User
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121 A. Pairing Applications

– A user’s public key is derived from an identity string ID which is
mapped to an element in G1 using a cryptographic hash function1 H1,
defined as H1 : {0, 1}∗ → G1, such that the user’s public key QID is:
QID = H1(ID) ∈ G1

– A user’s private key corresponding to an identity ID is calculated using
the master private key s with: sQID ∈ G1

It should be noted here that the concept of identity strings is not limited to
strings which uniquely identify the recipient such as an email address, a phone
number, or a social security number. The identity string could also contain a role
description which attributes a role to the recipient. As an example, a sender could
encrypt messages to someone@hostpital.net|role=doctor. The PKG may then
require successful authentication according to a role description prior to trans-
mission of a private key. This technique makes it easy to implement so-called
role-based encryption.

For sending an encrypted message M ∈ {0, 1}n to a recipient of identity ID
the sender executes the following steps. Let H2 be a cryptographic hash function
to hash an element of GT to a string of length n so that H2 : GT → {1, 0}n.

1. Choose a random integer r ∈ Z∗p to multiply the generator point P giving
rP

2. Use identity ID of recipient to calculate the corresponding public key QID =
H1(ID). The public key sP of the trusted authority is then paired with rQID

and hashed to a string of length n. Ksnd = H2(e(rQID, sP ))

3. Assemble ciphertext C which consists of C1 = rP and C2 = M ⊕Ksnd such
that C = (C1, C2).

To decrypt the ciphertext C = (rP,M ⊕ H2(e(rQID, sP )) = (C1, C2) the re-
cipient executes:

1. Calculate Krcv = H2(e(sQID, C1)) where sQID is the private key of the
recipient.

2. Calculate M = C2 ⊕Krcv to obtain the plain text message M .

Due to the bilinearity of the pairing, Ksnd is equivalent to Krcv which reveals
the plaintext message M to the receiver.

Ksnd = H2(e(rQID, sP )) = H2(e(QID, P )rs) (A.1)

Krcv = H2(e(sQID, C1)) = H2(e(QID, P )sr) (A.2)

1see [10], IEEE 1363.3
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A.2 Tripartite Key Exchange

An early constructive application of bilinear pairings in cryptography is the one-
round tripartite Diffie-Hellman key exchange protocol of Joux [29] which is illus-
trated in Figure A.1. It is based on the so-called bilinear Diffie-Hellman problem
(BDH) which assumes that, given P , aP , bP , and cP , it is hard to compute
e(P, P )abc.

Choose random a

Compute
e(bP, cP )a = e(P, P )abc

Computes
e(aP, bP )c = e(P, P )abc

Computes
e(aP, cP )b = e(P, P )abc

C

A B
aP

aP

bP

bP

cP cP

Choose random b

Choose random c

Figure A.1: Tripartite one-round key exchange protocol

A.3 Signature Schemes

Identity-based signature schemes use four algorithms namely setup, extract, sign,
and verify, executed by the parties of the signer, verifier, and a trust author-
ity (TA). In [26] an efficient identity-based signature scheme is discussed based
on bilinear pairings. It also contains a discussion on the issue of key escrow in
identity-based signature schemes. The trusted authority has natural access to the
signers private key and thus can create signatures which are indistinguishable from
those of the authentic signer. Boneh, Lynn, and Shacham [12] propose a so-called
short signature scheme which is provable secure assuming random oracles and the
intractability of the computational Diffie-Hellman problem.



Appendix B

Signal-Flow Graphs / Operation
Scheduling

The algorithms were inspected closely to find an operand scheduling and memory
allocation pattern with a low memory footprint and good performance using in-
place execution whenever possible. For this examination the various algorithms
were transformed to signal-flow graphs, which allowed to find possible enhance-
ments, such as, relocating a variable to avoid a copy operation or reusing memory
locations to avoid unnecessary memory consumption for temporary variables.

To keep the total computation time low the operands should be located in
distinct operand-memory blocks for every execution to avoid a costly copy opera-
tion. While the architecture supports copying operands between the two operand-
memory blocks this practice is largely eliminated by reorganizing the instruction
sequence and memory allocation.

The signal-flow graphs given here indicate the operand memory-block associa-
tion with A and B. Input and output variables are also declared in conformance
to the main algorithms.
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Figure B.1: Example of a signal-flow graph calculating F ← F ·G of Algorithm 2



Appendix C

Geminicore

C.1 Layout

In an early design phase a back-end flow with the Karatsuba 77-bit multiplier was
exercised to evaluate post-layout results. The design was constrained by the area
provided by a standard miniASIC pad frame. Several steps were necessary to fit
the design to the pad frame. One of the first steps was reducing the clock period
to 9 ns which provided the smallest circuit. The VCC and GND core power rings
were downsized to 9µm width and overlayed to minimize area for the power supply.
Power rail analyses confirmed that safe VCC and GND supply levels are respected
using a clock period of 9 ns. Back-end tools were configured not to attempt concen-
trated module placement of standard cells. Still there were thousands of Design
Rule Violations (DRV) due to the imposed area constraint. To gain more core
area the input/output interface of the design was changed so that it requires less
input/output pads from a 11-bit to a 7-bit I/O interface. This allowed to remove
the bottom row of the pad ring and gain of about 15 % additional core area. The
area gain allowed to lower the number of DRVs significantly. Still many violations
occured and required further optimizations. Rerouting with Engineering Change
Order (ECO) options helped to fix some of the occurring violations. Practically
every optimization step in back-end design needed several repetitions and opti-
mizations. All in all it was a tedious task to obtain a layout solution which was
free of design rule and timing violations. The final layout is depicted in Figure C.1.
The design contains several large multiplexers and operates on signal widths of up
to 2448 bit which contribute to the design’s routing complexity which probably
contributed to a intense back-end flow. The dense routing at the top metal layer
as can be seen in the layout figure illustrate this fact.
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Figure C.1: Layout of Karatsuba 77-bit multiplier architecture

C.2 Datasheet

The chip is enclosed in an quad-flat no-leads (QFN) package which provides 56
pins. The given implementation does not use all of the package-provided pins so
that 32 pins require bonding wires to the landing pads. For a detailed pin diagram
and pin description see Figure C.2 and Table C.2.
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Table C.1: Electrical specifica-
tions

Core-Power Supply 1.8 V

Pad-Power Supply 3.3 V

Max. Clock Frequency 90 MHz †

† Based on post-layout simulation

C.2.1 Pinout and Pin Description

The pinout using a 7-bit input/output interface is given in Figure C.2. The pin
name prefix indicates the association of pins to the respective landing pads on the
chip die.

Figure C.2: Pin diagram of Geminicore

C.2.2 Input/Output Interface

The interface supports a four-phased handshake protocol (full handshake) for data
input and data output. Input handshaking signals are provided by DataInReqxSI

and DataInAckxSO for data request and data acknowledge respectively. The output
handshake interface is available by the pins DataOutReqxSO and DataOutAckxSI.
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Table C.2: Pin descriptions

Pin name Pin number Pin type Description

pad ClkxCI 48 Clock Clock network

pad ResetxRBI 6 Reset Reset network

pad StartxSI 5 Input Start signal

pad ReadyxSO 9 Output Ready signal

pad ModexSI 0 3 Input Mode select 0

pad ModexSI 1 4 Input Mode select 1

pad DataInxDI 0 2 I/O Data Input 0 (D/S)

pad DataInxDI 1 55 I/O Data Input 1 (D/S)

pad DataInxDI 2 54 I/O Data Input 2 (D/S)

pad DataInxDI 3 53 I/O Data Input 3 (D/S)

pad DataInxDI 4 52 I/O Data Input 4 (D/S)

pad DataInxDI 5 51 I/O Data Input 5 (D/S)

pad DataInxDI 6 47 I/O Data Input 6 (D/S)

pad ResultxDO 0 34 I/O Data Output 0 (D/S)

pad ResultxDO 1 33 I/O Data Output 1 (D/S)

pad ResultxDO 2 32 I/O Data Output 2 (D/S)

pad ResultxDO 3 31 I/O Data Output 3 (D/S)

pad ResultxDO 4 30 I/O Data Output 4 (D/S)

pad ResultxDO 5 13 I/O Data Output 5 (D/S)

pad ResultxDO 6 12 I/O Data Output 6 (D/S)

pad vcc c1 8 Power Core VCC supply

pad vcc c2 36 Power Core VCC supply

pad gnd c1 7 Power Core GND supply

pad gnd c2 35 Power Core GND supply

pad vcc p2 43 Power Pads VCC supply

pad gnd p2 56 Power Pads GND supply

pad DataInReqxSI 46 Input Input Request (HS)

pad DataInAckxSO 45 Output Input Acknowledge (HS)

pad ResultReqxSO 41 Output Output Request (HS)

pad ResultAckxSI 44 Input Output Acknowledge (HS)

pad TestModexTI 11 Input Enable TestMode

pad ScanEnxTI 10 Input Enable ScanMode

HS . . . Handshaking signal
D/S . . . Data port multiplexed with scan chain (input/output)
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Factor Graph
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Figure D.1: Factorization tree for 1224

To outline possible Karatsuba segmentations for the finite field operand sizes
of 1223 bit we illustrate the factorization of 1224 in Figure D.1. The factors are
represented by arrows connecting nodes where the segment size is given above the
number of segments. This graph allows to quickly examine possible segmentation
configuration. The factorization is given for 1224 as it is the next higher non-prime
number to the applied finite field size.
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Appendix E

Three-Way Karatsuba

Karatsuba’s algorithm usually splits operands in two segments each of halved
original operand size. It is also possible to split the operands in three segments
which results in sub-operand sizes of one third of the original operand size. In the
following example the segment width is denoted as k and the operand width is
given as m to illustrate a polynomial multiplication A ·B = C where the operand
polynomials are of degree m− 1 and the result polynomial C is of degree 2m− 2.
With this version of Karatsuba’s algorithm a k × k core multiplier can be used to
compute a m×m multiplication.

A0(x) = (ak−1 · xk−1 + . . .+ a0 · x0)
A1(x) = (a2k−1 · x2k−1 + . . .+ ak · xk)
A2(x) = (a3k−1 · x3k−1 + . . .+ a2k · x2k)

B0(x) = (bk−1 · xk−1 + . . .+ b0 · x0)
B1(x) = (b2k−1 · x2k−1 + . . .+ bk · xk)
B2(x) = (b3k−1 · x3k−1 + . . .+ b2k · x2k)

D0 = A0 ·B0

D1 = A1 ·B1

D2 = A2 ·B2

D0,1 = (A1 + A0) · (B1 +B0)

D1,2 = (A2 + A1) · (B2 +B1)

D0,2 = (A2 + A0) · (B2 +B0)
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D2

D1

x^{2m}x^{4m-2}

D2

D1
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D1D2
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D0
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D0

D0,2
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Figure E.1: Segmentation and combination for a one-step 3-way Karatsuba



Appendix F

ηT Pairing Cost in F2m and F3m

Table F.1 lists the finite-field operations to calculate the ηT pairing based on the
algorithms by [5], [16] and [8]. Originally the characteristic three field F3509 was
expected to have a security level of 128 bit. The findings by Shinohara et al. in
[51] show that the security level is actually 111 bit.

Table F.1: Comparing the finite field operations of ηT pairing in F2m and
F3m

Security level
Low Medium High

67 52 96 78 128 111

Field F2239 F397 F2557 F3239 F21223 F3509

ηT Pairing

Add 2629 2576 6127 6374 13453 13597

Mul 836 606 1949 1493 4280 3181

Squa 956 531 2228 1312 4892 2797

Inv 0 0 0 0 0 0

Fin.Exp.

Add 531 464 1167 890 2499 1700

Mul 26 73 26 73 26 73

Squa 487 294 1123 720 2455 1530

Inv 1 1 1 1 1 1

Total

Add 3160 3040 7294 7264 15952 15297

Mul 862 679 1975 1566 4306 3254

Squa 443 825 3351 2032 7347 4327

Inv 1 1 1 1 1 1

a In F3mthe squaring operation corresponds to a cubing operation.
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Appendix G

International Standards on
Identity-Based Cryptography

• IEEE P1363 Identity-Based Public Key Cryptography

– IEEE P1363.3 Standard for Identity-Based Cryptographic Techniques
using Pairings

• ISO/IEC 11770-3 Key Management / Mechanisms using asymmetric tech-
niques

• ISO/IEC 14888-2 Digital Signatures with appendix/Integer factorization based
mechanisms

• ISO/IEC 14888-3 Digital Signatures with appendix/Discrete Logarithm based
mechanisms
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Appendix H

Layout Results for Unconstrained
Area

134



135 H. Layout Results for Unconstrained Area

(a) Gemini K153 (b) Gemini K77

(c) Gemini LSD9 (d) Gemini LSD11

(e) Gemini LSB153 (f) Gemini LSD7

(g) Gemini LSB77

Figure H.1: Standard cell placement in back-end design flow (unconstrained area)



136 H. Layout Results for Unconstrained Area

(a) Gemini K153 (b) Gemini K77

(c) Gemini LSD9 (d) Gemini LSD11

(e) Gemini LSB153 (f) Gemini LSD7

(g) Gemini LSB77

Figure H.2: Routing results in back-end design flow (unconstrained area)
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