
Gernot Kapper, BSc

Development of a library for parallel
computation of physical problems and

its application to plasma physics

MASTER THESIS

For obtaining the academic degree
Diplom-Ingenieur

Master Programme of
 Technical Physics

Graz University of Technology

Supervisor

Ao. Univ.-Prof. Dipl.-Ing. Dr.phil. Martin Heyn

Co-Supervisor

Ass.-Prof. Dipl.-Ing. Dr.techn. Winfried Kernbichler

Institute of Theoretical and Computational Physics

Graz, January 2013

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Zusammenfassung

Die numerische Berechnung physikalischer Problemstellungen ist ein wichtiger
Bereich der theoretischen Physik. Trotz der hohen Verfügbarkeit von Rechen-
leistung moderner Computer können die Lösungsvorgänge komplexer Problem-
stellungen zeitaufwändige Prozesse sein. Aus diesem Grund müssen jene Lö-
sungsalgorithmen sowohl numerisch korrekt arbeiten, als auch die geforderten
Aufgaben in vertretbarer Zeit lösen können.

Diese Masterarbeit untersucht die Möglichkeiten der Parallelisierung physi-
kalischer Probleme mit Hilfe von Mehrkern-Prozessoren sowie Rechenclustern.
Dazu wird eine flexible Softwarebibliothek entwickelt, durch deren Einsatz neue
und bestehende Lösungsalgorithmen möglichst einfach parallelisiert werden kön-
nen. Um eine hohe Anpassungsfähigkeit an verschiedene Aufgaben zu gewähr-
leisten, wird diese Bibliothek nach Richtlinien der objekt-orientierten Program-
mierung in der Programmiersprache Fortran entwickelt. Diese Programmier-
sprache, welche seit Version 2003 objekt-orientierte Ansätze unterstützt, ist in
mathematischen und physikalischen Bereichen weit verbreitet.
Die erste physikalische Anwendung der entwickelten Bibliothek ist die Par-

allelisierung des bestehenden Programms NEO-2 des Instituts für theoretische
Physik - Computational Physics der Technischen Universität Graz, das zur Be-
rechnung von neoklassischem Transport in Plasmen verwendet wird. Dies soll
nicht nur als Test zur Stabilisierung der Bibliothek dienen, sondern vor allem
die gesteigerte Leistungsfähigkeit durch die Parallelisierung demonstrieren.

Abstract

The numerical computation of physical problems is an important domain of
theoretical physics. Despite the availability of high processing power in modern
computer systems, the computation of complex tasks can be a time consuming
process. In order to obtain the intended results in a reasonable amount of time,
the solving algorithms have to be numerically stable and have to deliver results
at reasonable expense.
This master thesis investigates the parallelization of physical problems by

the use of multi-core processors and computer clusters. Therefore, a flexible
software library to parallelize the computation of existing and new physical
problems is developed. In order to ensure the adaptability of the library to
many kinds of problems, it is implemented in an object-oriented way in the
programming language Fortran. This programming language, which supports
the object-oriented programming since Version 2003, is commonly used to solve
mathematical and physical problems.
The first physical problem to which the parallelization library is applied is

the code NEO-2 of the Institute of Theoretical and Computational Physics of
the Graz University of Technology. This code computes results which are used
to describe neoclassical transport in plasmas. The parallelization of NEO-2
is not only a test case of the implemented library, but also demonstrates that
parallelization of software allows to solve problems which could not be computed
before due to long calculation times.

iii

Contents

1 Computational physics 1
1.1 Introduction . 1
1.2 Parallel computation . 2

1.2.1 Introduction . 2
1.2.2 Software requirements 3
1.2.3 Hardware requirements 5

1.3 Computation models . 6
1.3.1 Introduction . 6
1.3.2 Message Passing Interface 8

1.4 Conclusion . 13

2 Analysis of the computational problem 15
2.1 Introduction . 15
2.2 Technical information of NEO-2 15
2.3 Work flow of NEO-2 . 16

2.3.1 Initialization part . 16
2.3.2 Core part . 18
2.3.3 Finalization part . 21

2.4 Conclusion . 21

3 Object-oriented analysis 23
3.1 Introduction . 23
3.2 Introduction to objects and classes 23

3.2.1 Class declaration . 23
3.2.2 Inheritance . 24

3.3 Analysis of the parallelization library 26
3.3.1 Definition of requirements 26

v

Contents

3.3.2 Definition of classes . 26
3.3.3 Class diagram of the library 31

4 Object-oriented design 33
4.1 Introduction . 33
4.2 Flow charts . 33

4.2.1 Scheduling process . 33
4.2.2 Client process . 35

4.3 System architecture . 36
4.3.1 Programming language 36
4.3.2 Tools for the implementation process 36

5 Implementation and testing 39
5.1 Introduction . 39
5.2 Numerical integration . 39

5.2.1 Problem analysis . 39
5.2.2 Adaption of the parallelization library 41
5.2.3 Testing . 43
5.2.4 Detailed runtime analysis by profiling 56

5.3 Matrix chain multiplication . 60
5.3.1 Problem analysis . 60
5.3.2 Adaption of the parallelization library 60
5.3.3 Testing . 65

6 Parallelization of NEO-2 73
6.1 Introduction . 73
6.2 Analysis of the computational problem 73
6.3 Adaption of the library . 76

6.3.1 Definition of the work units 76
6.3.2 Implementation . 78

6.4 Performance measurements . 79
6.4.1 Definition of the test case 79
6.4.2 Evaluation of the performance 79
6.4.3 Further analysis of the speedup 83
6.4.4 Conclusion of the performance analysis 84

vi

Contents

6.5 Verification of the results . 84

7 Use of the library 89
7.1 Introduction . 89
7.2 Technical information . 89

7.2.1 Compilation of the library 89
7.2.2 Source code . 90

7.3 Adaption to a specific problem 90
7.3.1 Work units . 90
7.3.2 Scheduler . 92

8 Conclusion and outlook 95

Acknowledgments 96

A Integration example 99
A.1 Main program . 99
A.2 Integration module . 101
A.3 Specialized work unit . 103
A.4 Adapted scheduler . 106

B NEO-2 configuration 109
B.1 Content of neo2.in . 109

References 113

vii

1 Computational physics

1.1 Introduction

In this master thesis a library for the parallel computation of physical problems
is developed in Fortran 2003. The first purpose of this library is the paralleliza-
tion of the code NEO-2. This demonstrates the benefits of parallel computation
and is also a test to stabilize the library. NEO-2 is a Drift Kinetic Equation
solver for neoclassical transport in plasmas based on the method of field line
tracing [1].

Since this library should not only be used for this special problem, it is imple-
mented in a generic object-oriented way, so that other physical problems can
be solved with little adaptions to the existing code. Therefore, the first part of
this work describes the development process of the library which is then applied
to plasma physics problems. The aim is to ensure a high degree of flexibility
for future applications. After this process it is possible to deliver results which
could not be computed so far in a sequential way. The parallelized code offers
higher performance by using multi-core processors or computer clusters.

The first chapters of this thesis describe the analysis process of the prob-
lem and the implementation of the parallelization library. In order to explain
the current solving mechanism of NEO-2, a short description of its working
principle is given in Chapter 2. In Chapter 6 the performance of NEO-2 after
the parallelization is analyzed. To ensure a straightforward implementation
for other problems and codes, a user’s manual of the parallelization library is
provided in Chapter 7.

1

1 Computational physics

1.2 Parallel computation

It is easier to pull a heavy chariot with many oxen,
then growing one giant ox [2,Translated from German].

This quote tells in a descriptive way the reason for developing parallel com-
puters instead of fabricating single-core processors with hundreds of Gigahertz.
Single-core machines have physical borders which limit the performance, e.g.,
the speed of light or issues of heat transport [2].

1.2.1 Introduction

During the last years a new branch called Computational Science has been
formed somewhere between theoretical and experimental physics, which can
also be noticed in the name of the Institute of Theoretical and Computational
Physics of the Graz University of Technology. The trend to have a large number
of standard PCs and using them as one parallel computer resulted in the use
of those distributed computers for complex tasks, for example SCAN (Super
Computers at Night). When using standard PCs as a cluster, a fast connection
between them for data transport has to be established. A common communica-
tion technique used by parallel algorithms is the Ethernet, while some just use
E-Mails for transmitting the data between the nodes. The generic rule is that
faster processors need faster connections [2].
A modern connection type between the nodes is called InfiniBand. This is a

high bandwidth with low latency interconnection method which makes RDMA
(Remote Direct Memory Access) between nodes possible. Beside the hardware,
the algorithms also have to be prepared for parallelization. Three sources exist
to gain parallelism [2, 3]:

• Physics
The independence of physical processes, for example two non-interacting
events.

• Mathematics
The independence of mathematical processes, for example the separation
of integration domains.

2

1.2 Parallel computation

• Programmatic
The independence of parts of the algorithm itself, for example loops with
independent iterations.

There exist some compilers which can automatically parallelize sequential
algorithms, but they are limited in their applicability. Therefore, the best
performance can only be achieved when the programmer develops the parallel
algorithm himself. One library to support the parallelization of a software is the
Message Passing Interface, which is described in a later section. To analyze the
change of the runtime of a parallelized code, Amdahl’s law should be considered
[2, 4].

1.2.2 Software requirements

Amdahl’s law implies that a program consists of two parts. The sequential part,
which is not parallelizable, and the parallel part. The general speedup can be
described by Equation (1.1) from the article of Sun and Chen [4].

SAmdahl =
1

(1− f) + f
n

(1.1)

f is the relative parallelizable part of the program and n the number of processes.
For a purely sequential program n = 1. In Figure 1.1 four different curves for f
are plotted against the number of clients. This shows the consequence of even
small sequential parts on the maximum speedup:

• f = 1 (red line)
This is the ideal behavior of the runtime of a code with no sequential
parts. In this case SAmdahl = n where the speedup is directly proportional
to the number of processes.

• f = 0.99 (blue line)
An interesting effect is seen, if just 1 percent of the code is not paralleliz-
able. This seems to be a very good condition, but the blue line shows a
saturation effect at about 256 cores. Therefore, running this code on many
thousands of cores will not result in a significantly higher performance.

3

1 Computational physics

Figure 1.1: Examples for the speedup by Amdahl’s law

• f = 0.95 (green line)
If only 5 percent of the code is not parallelizable, then the maximum
speedup will be 20.

• f = 0.50 (black line)
When f approaches 0.5 the maximal speedup will be two and the use of
a large amount of processors just results in a waste of energy.

As a result, there is a balance between the effort of parallelization and the
benefit of runtime speedup. This balance has to be optimized. The maximum
speedup can be calculated by taking the limit n → ∞ in Equation (1.1) to
obtain Equation (1.2) [4]. The resulting equation implies that the sequential
part of the program (1 − f) defines the value of saturation of the maximum
speedup. In Chapter 6 it is shown that the definition of f for an existing code
could be nontrivial.

lim
n→∞

1

(1− f) + f
n

=
1

1− f
(1.2)

4

1.2 Parallel computation

1.2.3 Hardware requirements

In the book of Gropp et al. [2] it is stated that software and hardware have
to be prepared for parallel computing. As mentioned before, the trend is to-
wards the connection of standard PCs to build a cluster and use them for daily
purposes, e.g., running office applications, while parallel computations run in
the background. This is the way the cluster of the Institute of Theoretical and
Computational Physics is managed. Several workstations are available for desk-
top applications and running parallel jobs in the background. Connected by
Ethernet, the data transmission between the nodes is not as fast as InfiniBand,
but adequate for most purposes.

In an early stage of the development of this master thesis only the local
multi-core processors were used, without transporting data over the network.
The available test system hardware was an Intel R©-i7 processor with four cores,
each one with two threads, realized with Hyper-Threading - Technology. The
article of Leng et al. [5] describes the influence of Hyper-Threading in computer
clusters. It is stated that the improvement of the performance is related to the
cluster configuration and strongly related to the kind of the code.

The Linux command lscpu delivers Program Output 1 on the test system.
The output means that the operating system gets the information that eight
CPUs are available, while four of them are real cores and the other four emu-
lated ones. In the next stage of development the used cores of the parallelization
library were spread over nodes connected by Ethernet. Additionally, for perfor-
mance tests of NEO-2 the Vienna Scientific Cluster - 2 has also been used.

Program Output 1 Hardware information of test system
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
CPU(s): 8
Thread(s) per core: 2
Core(s) per socket: 4
CPU socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 26
Stepping: 5
CPU MHz: 3066.824

5

1 Computational physics

1.3 Computation models

1.3.1 Introduction

There are two major ways to deal with the memory of the running processes in
a parallel environment [2].

• Shared-Memory-Application
This simple model allows every process of the parallel environment to
access the same memory space. Though it definitely has advantages that
processes can read results from other ones, unfortunately especially writ-
ing operations have to be coordinated very well. In such cases lock mech-
anisms to ensure that two or more processes are not trying to write to
the same variable in the memory at the same time are needed. Some
high level programming languages can hide these locks from the user. In
Figure 1.2 the concept of the model is shown. It has to be considered that
the processes have to run on the same physical machine to gain access to
the same memory. Because of the difficulty to build computers with more
than 20 to 30 processors this method has its definite limits [2].

One famous implementation of this model is OpenMP - not to be confused
with OpenMPI. OpenMP is an interface for shared-memory parallelism
for C, C++ and Fortran codes. A variation of the shared-memory model
is given, if processes have a local memory and can also access the shared
memory [2, 6].

Figure 1.2: Shared-memory model

6

1.3 Computation models

• Local-Memory-Application (Message Passing)
The case where every process has its own memory space in a parallel envi-
ronment is realized in a Message Passing system. This concept is shown in
Figure 1.3. The only way to share data between processes is sending and
receiving messages. That is where the name Message Passing comes from.
An important attribute of this model is that the transmission of data from
the local memory of one process to the local memory of another process
involves operations on both sides. That means that the sender has to call
the sending operation and the receiver has to call an appropriate receiving
operation. This model has the advantage that the programmer does not
have to care about independent variables for every process. Because of
the local memory approach there is no need for mechanisms that prevent
clients from writing to the same memory space. Otherwise, this type of
memory behavior has disadvantages when different clients need the same
data, which can happen for initial conditions of physical problems. The
handling of this case is discussed in Section 7.3. The most frequent rea-
son for software errors in shared-memory applications is the unintended
overwriting of memory space. This problem is prevented in the Message
Passing model because of the own memory of each process [2].

A specification for Message Passing is the Message Passing Interface, in
short MPI. The use of MPI makes it possible to bind processes running
on different physical machines through a network connection. This is
possible, because it does not matter if a send-receive-operation passes
data between two cores of a multi-core machine or two cores of different
nodes in the network. This is a significant advantage and can turn many
connected standard PCs into one supercomputer. The programmer does
not have to care about if communicating processes are located on the
same physical machine or not, because the required MPI commands are
the same [2, 7].

7

1 Computational physics

Figure 1.3: Message Passing model

Several other models exist, e.g., remote-memory operations. These oper-
ations make it possible to access the memory of a remote machine without
calling a method at the remote side. This method requires special hardware
and is therefore not described in detail in this thesis [2].

1.3.2 Message Passing Interface

The following sections contain basic information of the official MPI-2.2 report
from the Message Passing Interface Forum [7].

Introduction

It is important that MPI is a specification, not an implementation. The im-
plementation used for this master thesis is OpenMPI, which will be explained
later. The specification standard includes, e.g., point-to-point communication,
data types, collective operations, process groups, language bindings for Fortran,
C, C++, and parallel file I/O [8].
Communication between processes always has to take place if a part of the

address space of one process has to be copied to the address space of another
process. It has already been explained that such operations involve both pro-
cesses.

8

1.3 Computation models

Semantic terms

In order to introduce a few MPI methods, especially those for point-to-point
communication, a few semantic terms have to be explained. The MPI specifi-
cation defines blocking and non-blocking operations [7,Chapter 2]:

• Blocking operations
In order to send a message, the user has to pass the data which should
be transmitted to the sending method of MPI. A method is defined as
blocking, if it waits until the user’s data can be reused, e.g., overwritten
or deallocated, after the method returns to the main program. It is rel-
evant to know that this does not imply that the data have already been
transmitted to the receiver, they remain in a buffer until the receiver calls
an appropriate receive function.

• Non-blocking operations
A non-blocking method may finish before the user is allowed to modify
the data to be sent. This means that the method pushes the data into a
buffer while the main program continues. As a consequence, other MPI
methods are required to check if a current ongoing process has already
been finished. By non-blocking routines it is possible to write code which
offers good performance, because the program continues its execution
while sending a message.

In addition to blocking and non-blocking methods there are local and non-
local ones. Shortly explained, the finishing of a local procedure only depends on
the local executing processes and is not linked to an action of another process
[7,Chapter 2].

Point-to-point communication

In order to understand the mechanism of MPI, it is necessary to explain the
simplest form of Message Passing, the point-to-point communication. Every
data exchange between processes has to be fulfilled by message-operations.
The simplest kind of these operations are the basic send- and receive-methods
[7,Chapter 3].

9

1 Computational physics

When calling the standard sending operation MPI_SEND the following input
arguments have to be passed:

• Send buffer
The initial address in the memory of the data which should be sent. It
can be a single variable, an array, a pointer to an address in the memory
or a specially prepared buffer by a packing algorithm. The mentioned
packing algorithm is used in this thesis to transmit complex data types.

• Count
The number of elements in the send buffer, e.g., 1 for a scalar.

• Data type
The data type of the elements in the send buffer, e.g., MPI_INTEGER.

• Destination
The target of the message (called rank in the MPI specification) also has
to be passed. The standard send command is based on a point-to-point
mechanism, i.e., only one receiving rank is allowed. The rank is an unique
integer number starting with zero for the master process.

• Tag
To categorize the type of the message a user-defined integer, called tag,
has to be passed. The tag can be used to filter incoming messages or to
allocate space before receiving the data.

• Communicator
A communicator can be used to separate the parallel processes into groups.
The predefined communicator MPI_COMM_WORLD defines the set of all pro-
cesses.

The client process will start the receiving as soon as the associated MPI
receive method MPI_RECV is called with the same arguments as on the side of the
sender. Some constants, e.g., MPI_ANY_TAG or MPI_ANY_SOURCE, are defined for
disabling the tag- or the source-filtering. In such cases, the additional argument
of the receive method, called status, can be used to probe the tag or the source
of the message. It is important to understand that sending a message to a client

10

1.3 Computation models

will not cause an interruption on the receiving side. The message will wait in
a buffer and the programmer decides when it will be received by calling the
appropriate commands [7,Chapter 3].

Communication concepts

In addition to the transmitted data, every MPI message contains a description
of the sender, the receiver and the tag. In MPI it is possible to check if a
message is waiting to be delivered before actually receiving it. This operation
is called probing. After probing for a message with specific source, tag and data
type arguments, a following receive command, called with the same arguments,
receives exactly the message, which has been probed before. This can be used
to get the length of the message in order to allocate space before receiving it or
to perform other operations while waiting for a message. The process running
the master instance has rank zero. The rest of the nodes is enumerated from 1

to n− 1, where n is the number of nodes in the parallel environment [2, 7].

Data types

MPI supports basic data types of C and Fortran, like integers, doubles, charac-
ters, and some others. However, complex data types, e.g., structures, sometimes
also have to be transmitted. For this case a functionality, called derived data
type, exists to construct user-defined types [7,Chapter 4].
When analyzing NEO-2 it has been discovered, that there are structures

which contain allocatable arrays and matrices. This means that the number
of elements can change during the runtime. In this master thesis no satisfying
method has been found to use MPI derived data types with this requirements
of dynamically growing or shrinking arrays. Therefore, the MPI pack and
unpack routines have been studied to manage these requirements. The packing
mechanism provides functionality which is not provided by MPI otherwise, e.g.,
the sending of complex data structures or the development of libraries which
lie on top of MPI. Packing the data lets the user define the layout of the send
buffer of messages. The basic principle is that the sending operation gets split
into two single operations. One for the preparation of the buffer and another
one for the transmission of the packed buffer. If data is packed to a buffer,

11

1 Computational physics

instead of sending them directly, performance issues may arise. During this
work it has been observed that the pack algorithms offer good performance and
that they do not influence the program’s runtime significantly [7,Chapter 4].

One-sided communication

For point-to-point communication both, the sender and the receiver, have to call
appropriate methods. A noteworthy technology is the Remote Memory Access,
which needs actions on only one side of the transmission. This is a special form
of communication mechanism, which extends the usual functionality of point-
to-point communication methods. Remote Memory Access enables the sender
or the receiver to define all communication parameters of the transmission
process. That means the sender can define the memory address, where the
receiver should store the communicated data. All involved processes have to
create a so-called window in their memory. This window contains the data that
can be remotely changed. Three different communication calls are supported
[7,Chapter 11]:

• MPI_PUT

Put transfers data from the sender to the remote process. In such cases,
no action is needed at the receiving side.

• MPI_GET

This function is similar to the previous one, but works in the other direc-
tion. The method passes data from a remote process to the process which
called the function.

• MPI_ACCUMULATE

This combines the origin data of the calling process with the data of the
remote side, instead of overwriting them. This can be used for creating
sums or other mathematical operations involving many processes.

Before the data of the buffer can be accessed, a synchronization call has to be
performed. This synchronization call is a barrier-method, i.e., all clients have
to wait until the data have been updated and are ready to be accessed.

12

1.4 Conclusion

Additional features

This short summary of the first chapters of the official MPI report [7] and the
book of Gropp et al. [2] only gives an overview of the major features of MPI.
More features as explained here, like process grouping, collective operations,
profiling, file I/O, process topologies, dynamic creation of processes, are pro-
vided by MPI. However, since they are not needed to understand the working
principle of the library developed in this thesis, they are not explained in de-
tail. A short overview of some additional features is given in the following
paragraphs.
Collective operations can be broadcast-, scatter- or gather-processes. They

involve more than two ranks and support calculations like minimum and max-
imum queries. Virtual topologies bind ranks on a grid or some other sort
of structures. This can be understood as grouping mechanisms. As mentioned
above, debugging Message Passing applications is easier than debugging shared-
memory applications because of the local memory of each rank in Message
Passing systems. With profiling libraries, which are used in this thesis, send
and receive processes can be recorded. The recorded data can be converted to
figures which view the communication ways [2].
One feature, not included in the first revision of MPI but in the second, is the

dynamic creation and management of processes. Although there is a defined
number of initially created processes at the start of a MPI application, there
is support to create new processes during the runtime. MPI tries not to over-
rule the responsibilities of the operating system because it is a communication
specification and not a concept for process management. With the provided
commands it is possible to start new processes and to connect them with the
already existing ones for sending and receiving messages [7,Chapter 10].

1.4 Conclusion

The sequential part of a parallel program limits the maximum speedup. This
is shown by Amdahl’s law in Equation (1.1). There exist several other speedup
models based on Amdahl’s law, e.g., Gustafson’s law which implies that a larger
problem can be solved in the same time on a larger parallel environment [4].

13

1 Computational physics

Two different ways to deal with the memory in a parallel application are
the shared-memory approach and the Message Passing model. In the case of a
shared-memory-Application every process has access to the same memory. This
approach can cause software errors when two processes try to write to the same
memory space at the same time. In a Message Passing model every process has
its own memory space. The only way to exchange data is by passing messages
between the processes. This makes it easier to keep track of the data because
every sending and receiving operation can be recorded by a profiling tool. A
specification of the Message Passing model is the Message Passing Interface
(MPI) which is used in this master thesis.

14

2 Analysis of the computational
problem

2.1 Introduction

In order to analyze the generic problems of the parallelization of sequential
codes, the program NEO-2 is studied in this chapter. Based on the results
of this process, the requirements for the parallelization library are determined.
The concept is to develop a more general library and to integrate it then into
NEO-2. To parallelize NEO-2 directly would be a simpler option but that
would not be a sustainable way for future applications. The library should also
be used in codes developed to solve other physical problems. Therefore, the
parallelization of NEO-2 is one of the last steps performed in this work and it
is well-planned.

2.2 Technical information of NEO-2

NEO-2 is a program that has grown over the time to about 50,000 lines of code
(external libraries not included). As mentioned in Section 1.1, the program
is a solver for the Drift Kinetic Equation based on the method of field line
tracing. The code is written in the programming language Fortran. It follows
the Fortran 90 standard, but there still exist some parts written in Fortran 77.
The parallelization library to be developed has to be flexible enough so that
only minor code changes in NEO-2 have to be done because of the complexity
of the code.
Testing scenarios showed that NEO-2 is a memory consuming code. Various

program runs have been analyzed and a requirement of many Gigabytes of

15

2 Analysis of the computational problem

memory was found. The solving routines of NEO-2 are based on solving of
sparse linear systems of equations. This is done by using high performance
libraries like SuperLU or SuiteSparse [9, 10]. It has been shown that for this
special kind of problems SuiteSparse is the better choice resulting in shorter
runtimes [11]. Due to the fact that the libraries are written in the programming
language C, there exist wrapper functions to establish the communication to
the Fortran code.

2.3 Work flow of NEO-2

The code can be split into three major parts as shown in Figure 2.1. The
sequential work flow is indicated by the arrows between the yellow boxes. These
parts are described in the following sections.

Figure 2.1: Program parts of NEO-2

2.3.1 Initialization part

Operating principle

In this part the program computes a large amount of initial data. At first,
the parameters of a magnetic field line are calculated. Then, this field line is

16

2.3 Work flow of NEO-2

discretized in parts. These parts are called propagators which finally contain
all pertinent physical information for a given part along the field line. In order
to manage the data, the program creates linked lists of elements which are
connected by a tree structure. A schematic diagram of this data structure is
shown in Figure 2.2. In this figure it can be seen that field periods are children
of field lines. The field periods are again separated into propagators.

Figure 2.2: Data structure of NEO-2

Sequential parts on clusters

If a parallel code runs on a computer cluster the computing nodes may have
to be reserved before the program starts. In this case the reserved number of
cores during runtime remains the same whether there is a load or not. As a
consequence, the accounted amount of time can be calculated by Equation (2.1).
The time tcost is accounted by the cluster provider for doing the computation.
twall is the so-called wall clock time which represents the elapsed time during
the calculation. In contrast to tcost, the CPU time tCPU is only accounted if
there is a load on the processor.

tcost = n · twall (2.1)

If the accounting model of the cluster is based on this equation, then it does not

17

2 Analysis of the computational problem

matter if only one core calculates the initial data or if the same calculation is
done by every client at the same time. The computation of initial data on each
client at the same time has the advantage that packing and sending operations
of complex initial data can be avoided.
It has been determined that this initialization part of the code NEO-2 is not

parallelizable at reasonable expense.

2.3.2 Core part

Properties of propagators

In the core part the propagators are solved and joined together. Propagators
have algebraic group properties which are described in the book of Jänich [12].
It is stated that a group consists of a set G and an operation (∗). The following
axioms for the set and the operation have to be fulfilled:

• Associativity
(ab)c = a(bc) for all elements a, b, c ∈ G.

• Existence of a neutral element
There exists one element e ∈ G with ae = ea = a for all elements a ∈ G.

• Existence of an inverse element
For every element a ∈ G there exists one element a−1 ∈ G with aa−1 =

a−1a = e.

These group properties can be compared to the properties of propagators of
NEO-2. There exist a set of propagators P and a joining operation (∗) [13].
The operation is defined by Equation (2.2).

P1 ∗ P2 = P1,2 (2.2)

The associativity axiom is fulfilled because of Equation (2.3).

P1 ∗ (P2 ∗ P3) = (P1 ∗ P2) ∗ P3 (2.3)

There is no need for a neutral element in the computation process of NEO-2,
but it would be possible to define one [14]. Because of the fulfilled associa-

18

2.3 Work flow of NEO-2

tivity axiom and a non-commutative operation, the problem is, in some sense,
equivalent to a matrix chain multiplication.

Operating principle

In Figure 2.3 the linear work flow of NEO-2 is shown. Time proceeds from
top to bottom, where the dotted lines mark the borders of different program
states. Gray propagators have been prepared, which means that all information
required to solve them is given. The yellow boxes represent solved propagators,
which need more memory and are ready to be joined.

The first state of the program represents the state after the initial phase.
The number of propagators is known and every propagator contains all infor-
mation to be solved. Then, the program starts solving the first propagator.
This is highlighted by changing the color from gray to yellow at Propagator 1.
The algorithm detects no join-able propagators and continues solving the next
propagator, which is Propagator 2. At this point two neighboring elements
have been solved and can be joined to a new propagator object. For reasons of
clarity the new propagator gets the tag 1_2 to indicate its sources. Because of
the properties of algebraic groups the resulting propagator is a member of the
group and contains all relevant physical information of its origins. As a con-
sequence, the two parent objects are deallocated and the resulting propagator
is a new join-able object. Figure 2.3 also explains the built-in memory saving
mechanism of NEO-2. At every program state at most two fully computed
propagators exist in the memory.

Option for parallelization

As stated in the PhD thesis of Leitold [1] the core part of the program can be
parallelized. This can be explained by the associativity of the algebraic group:

((P1 ∗ P2) ∗ P3) ∗ P4︸ ︷︷ ︸
Sequential

= (P1 ∗ P2︸ ︷︷ ︸
Client 1

) ∗ (P3 ∗ P4︸ ︷︷ ︸
Client 2

)︸ ︷︷ ︸
Parallel

19

2 Analysis of the computational problem

Figure 2.3: Concept of solving and joining propagators

20

2.4 Conclusion

The joining of P1 and P2 can be done at the same time as the joining of P3

and P4. This parallelization concept is used in this thesis to parallelize NEO-2
and is described in Chapter 6.

2.3.3 Finalization part

The core part of the program continues until only one propagator is left. At
this point the code has to perform final sequential computations, e.g., closing
the magnetic field line by joining the last propagator with itself and writing the
results to files.

2.4 Conclusion

The core part of the program can be parallelized at reasonable expense because
of the associativity of the joining operation of propagators. The initial part
will be done on all clients at the same time to avoid the packing and sending of
the created complex data structure. The finalization part will only run on the
master process to summarize the results, e.g., to close the magnetic field line
and to write files which contain the physical results.

21

3 Object-oriented analysis

3.1 Introduction

NEO-2 has been analyzed in order to find an appropriate way to parallelize this
specific code. The library to be developed in this thesis is planned to be generic
and easily applicable to other codes. Therefore, the development process of the
parallelization library is based on the method of object-oriented programming.
The object-oriented programming is separated into different development

phases. It consists of an analysis phase, a design phase, and an implementation
phase [15].

3.2 Introduction to objects and classes

The object-oriented analysis (OOA) separates the problem into objects which
can communicate with each other. These objects can correspond to objects in
the real world (e.g. particles) or they can describe programmatic objects (e.g.
linked lists). They are created during the program’s runtime and are defined
by their state and functionality [15].

3.2.1 Class declaration

To create objects during the runtime (also called instances), classes have to be
defined. Classes define the structure and the behavior of the objects. A class
declaration consists of three parts [15]:

• Name
The class name is an unique identifier for the class.

23

3 Object-oriented analysis

• Attributes
The attributes represent the data of the class. The state of an object is
defined by the values of its attributes.

• Methods
The methods can access the attributes and are used to change them or to
interact with other objects. A method has only access to the attributes
of the object it is called from.

Example A class Particle may consist of the attributes Position, Velocity and
Mass. To change the position, the method move() is created. In Figure 3.1
the UML (Unified Modeling Language) class diagram of this example is shown.
The UML is a standard for designing software processes [16]. A class is denoted
by a rectangle with three sections. The first one denotes the class name, the
second one includes the attributes and the third one shows the methods. The
locks on the left side indicate if the attribute or the method can be accessed only
by methods of the same class (closed lock) or by all routines (open lock). This
can be used to force the user to call an appropriate method to change the value
of an attribute, instead of changing the variable directly. During the program’s
runtime many objects may exist with different values of their attributes.

Particle
Position
Velocity
Mass
move()

Figure 3.1: Example for a class Particle

3.2.2 Inheritance

An important feature of object-oriented programming is the possibility to in-
herit classes. The attributes and methods of the parent class are passed to
the children, which can have additional attributes and methods. In terms of
programming, subroutines accepting an object of the parent class as input ar-
gument, will also accept the children of the class. Therefore, it is possible to

24

3.2 Introduction to objects and classes

write common routines for generic classes which will also work for their children.
Those children can be specially designed for a problem [15].

Example To continue the example from above, the class Particle is inherited
to obtain the class ChargedParticle. This class inherits all attributes and meth-
ods of its parent and has the additional attribute Charge. In order to control
the new attribute, the method changePolarity() is added. To show that a child
class can also be a parent class, two additional classes (QuasiParticle and Vol-
umeParticle) are added. The class QuasiParticle gets a method to check the
validity of the Pauli principle and the class VolumeParticle gets a method to
check for a collision with another particle. In an UML class diagram the path
of inheritance is shown by an arrow pointing from the child to the parent. An
array containing elements of the class Particle, can also contain objects of the
classes ChargedParticle, QuasiParticle, and VolumeParticle. The UML class
diagram for this example is shown in Figure 3.2.

Particle
Position
Velocity
Mass
move()

ChargedParticle
Charge
changePolarity()

QuasiParticle
Spin
checkPauli()

VolumeParticle
Volume
checkCollisions()

Figure 3.2: Class diagram example with inheritance

25

3 Object-oriented analysis

3.3 Analysis of the parallelization library

3.3.1 Definition of requirements

The principles of the object-oriented analysis are used to analyze the require-
ments for the parallelization library to be developed. The key features are
defined by the following items:

• It should be possible to define work units, which process different tasks.

• One work unit should be responsible for exactly one task.

• The work units should be automatically distributed among different com-
pute nodes by a scheduler.

• The library should offer the possibility to adapt the behavior of the sched-
uler through inheritance of the standard scheduler.

• The communication with MPI should be hidden from user.

3.3.2 Definition of classes

The requirements of the library determine the necessary classes, which are
defined in the following sections.

Class Workunit

The class Workunit defines a computational task which can be processed sepa-
rately from other tasks. It should be suited for nearly every kind of problem.
Therefore, this class does not imply what the task should be or which data it
will contain. The class is defined as an abstract class, so it is not possible to
create objects of it during the program’s runtime. In order to create a work unit
object, the class has to be inherited to get a child class which is specific for the
problem. This child defines the task by overwriting the processing subroutine
of the generic work unit and contains the data used to solve the task by adding
attributes. The scheduler distributes work units among the clients and forces
them to run the specific processing routines.

26

3.3 Analysis of the parallelization library

The class Workunit is inherited from the class Packable. The principle of
packable classes is that they can pack and unpack themselves to get transmitted.
Work units contain data used to run the processing routine and data that
represent the results. Because of the problem independent approach, the user
has to define the data that are necessary for the work unit by defining the pack
routine. This offers the possibility to send the packed work unit to a client.
The provided unpack routine of the parent class Packable, which also has to be
overwritten by the user, rebuilds the work unit on the client.
In order to provide a dependency model, the class Workunit contains a list

of required work units. The scheduler only dispatches work units with fulfilled
dependencies, i.e., if all required work units have already been computed.

Example To explain the class Workunit an example of a simple numerical
integration is given. A function should be integrated between −1.0 and 1.0. In
order to create the integration task, the class Workunit is inherited to get a
child class which contains the function to be integrated and variables for the
definition of the integration domain and the accuracy of the calculation. The
new class is called SimpleIntegrate.
If the computation should be done on two clients, then two objects of the

class SimpleIntegrate have to be created. The first one does the integration
between −1.0 and 0.0 and the second one between 0.0 and 1.0. The scheduler
will distribute these two work units among different clients at the same time.
Thereby, the program doubles its performance, when neglecting the time of the
send and receive processes and other time consuming processes. After both
work units are processed, the results are summed up to get the solution of the
full problem.
This example is depicted by the UML class diagram in Figure 3.3. The

attributes a and b of the class SimpleIntegrate define the bounds of integration.
The number n is the number of iteration points in the integration domain.

Class MPIProvider

An important feature of the library to be developed in this thesis is to hide the
native MPI commands from the user by writing appropriate wrapper functions.

27

3 Object-oriented analysis

Workunit
ID
type
client
dependencies
pack()
unpack()
process()

SimpleIntegrate
a
b
n
result
pack()
unpack()
process()
integrate()

Figure 3.3: Example of inheritance of the class Workunit

The class MPIProvider is a layer between the main program and the MPI
implementation. It is defined as a singleton class, i.e., only one global object
instance is allowed. Through the use of a global singleton object, every program
part can run MPI commands by calling the subroutines of the MPIProvider.
If function arguments or the behavior of a specific MPI command changes in
future, e.g., due to updates, they only have to be adapted at one place in the
program. There is no need to check the whole source code in order to find the
places where the modified command has been used.

In addition to the wrapping of commands for MPI initializations, MPI send
and MPI receive commands, the class MPIProvider manages the buffers for
packing and unpacking of data. In Section 1.3.2 it is explained that the pack and
unpack routines of MPI can be used for sending complex data types. Therefore,
a buffer has to be prepared so that the data can be pushed into it and passed to
a client. There exist generic commands to push variables of common data types
into the buffer in order to make the packing of data simple for the user. Then,
the data in the buffer are sent by a native MPI send command. The client that
receives the message can identify from its tag that the message contains packed

28

3.3 Analysis of the parallelization library

data. To reconstruct the data on the client site, the class provides functions to
read data from the received buffer.
Another reason for wrapping the MPI commands by functions of this class

is the need to facilitate a monitoring option for every command. This is used
in this thesis for performance analysis by profiling, as described in Chapter 5.

Class Scheduler

The class Scheduler manages and distributes work units. This is a generic class
with some built-in functionality, but it can also be inherited by the user and
be adapted for special problems. The scheduler contains methods to create
work units and to add them to a list of waiting jobs. The main scheduling
function iterates trough this list and sends the work units to the clients, which
reconstruct and process the received work units. Three lists are used to manage
the work units:

• waitingWorkunits

Work units that have been added to the list and are waiting for a free
client or for fulfilling their dependencies.

• pendingWorkunits

Work units which have already been packed and sent to a client. A client
can only process one work unit at one time, so the maximum number of
elements in this list is the number of clients.

• processedWorkunits

Work units which have been processed on a client. If a client indicates
the completion of a work unit by a message, the scheduler moves this unit
from the list of pending work units to the list of processed work units.

Before the scheduler can start the distribution of work units, an initial signal
is sent to all processes. This signal triggers a special crafted work unit, called
initial work unit, on every client. This can be used to define tasks which create
initial conditions, e.g., global definitions needed by all following jobs. If all
clients have done this job, the iteration over the waiting work units starts.
The scheduler picks the current work unit from the list and depending on the

29

3 Object-oriented analysis

result of the dependency check, the work unit is either packed and sent or not
processed in this loop iteration.

When creating a work unit, it can be defined if it should run on a specific
client or not. This can be used for debugging purposes, but in most cases the
scheduler should decide on which client the work unit will run. If the desired
client is ready, which means that there are no pending work units of this client
in the list, the scheduler packs the work unit. This is done by calling the user-
defined pack routine. After this process, the work unit is sent to the client.
As soon as the client receives the work unit, the unit is rebuilt by the unpack
routine and processed by calling the user-defined processing method.

The distribution of the work units runs until all clients are loaded with tasks
or no more work units are left. In order to ensure a fair work distribution
between the clients, a load-balancing routine is provided. This routine can be
overwritten by the user because every kind of problem may need a different load-
balancing method. After running this routine, the scheduler waits for responses
of the clients. After handling all client responses, the iteration process over the
waiting work units starts again until all work units were moved from the list
of waiting work units to the list of processed work units. Then, the scheduler
executes an user-defined summarizing routine and quits the program.

Dispatcher

This class is a wrapper for the MPI send commands. Two children of this class
are defined:

• Command dispatcher
The command dispatcher is responsible for sending the command to pro-
cess the initial work unit and for sending a stop signal to the clients as
soon as all work units are completed. It is also used for sending messages
to indicate the completion of a work unit to the scheduler.

• Work unit dispatcher
The work unit dispatcher sends and receives work units and calls the
methods to rebuild and process them on the client.

30

3.3 Analysis of the parallelization library

Both dispatchers are inherited from the class Dispatcher. They differ in the
message tag, which is added to the envelope of the MPI message. With this
approach two communication channels between clients exist.

Receiver

Each receiver corresponds to one dispatcher, so there is one receiver for work
units and one for commands. One receiver listens for a message with a specific
tag and reacts on the type of the message. If a command receiver reads the
command to run the initial work unit, the appropriate method of the scheduler
is called. If the work unit receiver gets a work unit, it is rebuilt to its original
form and gets processed. This class is used for sending tasks from the scheduler
to the clients, for exchanging work units between the clients, and for sending
back processed work units to the scheduler.

3.3.3 Class diagram of the library

An UML class diagram has been created to show the relations between the
defined classes from the section above. The resulting diagram is shown in
Figure 3.4. For reasons of clarity, only important attributes and methods are
listed in the classes. It should be noted that a class diagram is independent of
the programming language, so it should be created before the implementation
process. However, changes of the designed classes and relations are common
during the implementation because of special features of the specific language
or because some functionality might not be implemented in the compiler of this
language.
In contrast to the example class diagram in Figure 3.2, new indication ele-

ments have been added, called associations. These elements indicate connec-
tions between classes, marked by lines between them. For example the class
MPIProvider can have zero or more schedulers, but exactly one scheduler be-
longs to one MPIProvider. The numbers which denote these quantities are
called multiplicities [16].

31

3 Object-oriented analysis

<<Singleton>>

MPIProvider
dispatchers
listeners
sendBuffer
recvBuffer
initMPI()
deinitMPI()
addToBuffer()
getFromBuffer()
sendTo()
receiveFrom()

<<Abstract>>

Scheduler
waitingWorkunits
pendingWorkunits
processedWorkunits
clientStates
schedule()
rebuildWorkunit()
loadBalance()
dynamicWorkunits()

<<Abstract>>

MPIListener
tag
doListen()

<<Abstract>>

MPIDispatcher
tag
doSend()

DataListener
tag
doListen()

CommandListener
tag
doListen()

DataDispatcher
tag
doSend()

CommandDispatcher
tag
doSend()

<<Abstract>>

WorkUnit
ID
type
client
dependencies
pack()
unpack()
process()

<<Abstract>>

Packable
ID
pack()
unpack()

<<Abstract>>

InitWorkUnit
type
pack()
unpack()
process()

1

0..1

11..* 1 1..*

1

0..*

Figure 3.4: Class diagram of the parallelization library

32

4 Object-oriented design

4.1 Introduction

While the analysis phase described in Chapter 3 is independent of the program-
ming language and the system architecture, in the object-oriented design phase
of this chapter they have to be considered. The analysis phase defines classes
and how they are related to each other, while the design phase determines how
the processes work, e.g., explained by flow charts. That includes the definition
of the programming language and the adaption to its special features [15].

4.2 Flow charts

This section contains two flow chart diagrams in order to explain the operation
principles of the scheduler and the clients.

4.2.1 Scheduling process

The flow chart of the scheduling process is shown in Figure 4.1. The main
loop iterates over the elements of the list of waiting work units. If the end of
this list is reached, the scheduler probes for responses of the clients and reacts
accordingly. If a work unit is packed and sent (which requires a free client
and fulfilled dependencies) the scheduler calls a non-blocking send routine. As
explained in Section 1.3, a non-blocking routine may return before the data are
sent and enables the scheduler to continue its work while the sending procedure
is running in the background.
If the end of the waiting-list is reached, the scheduler calls two user-defined

methods to adapt the scheduling process. One routine is provided to add new
work units and the other one is designed to balance the load between the clients.

33

4 Object-oriented design

Figure 4.1: Flow chart of the scheduler

34

4.2 Flow charts

Then, the scheduler probes for responses from the clients and after processing
them, the iteration process over the waiting work units starts again.

4.2.2 Client process

The client process consists of a loop which runs until the scheduler sends the
signal to quit. In this loop the client probes for messages and runs an appropri-
ate receiving function if a message is delivered. The decision which receiving
method to run is based on the message tag. The flow chart of this process is
shown in Figure 4.2.

Figure 4.2: Flow chart of a client process

35

4 Object-oriented design

4.3 System architecture

This section describes the programming language, the compiler, and some other
tools that were used during the development process.

4.3.1 Programming language

The decision to write the parallelization library in the programming language
Fortran 2003 was made due to the following facts:

• Fortran is a common programming language for solving scientific, espe-
cially numerical problems [17].

• The code NEO-2 is written in Fortran.

• The Fortran draft 2003 includes mechanisms for object-oriented program-
ming [17].

• MPI defines native language bindings for Fortran [7].

4.3.2 Tools for the implementation process

For managing and building the source code several tools were used. During
the development it has been discovered that despite of the many years between
2003 and 2012, there is still little support for Fortran 2003 in many tools.

Compiler

As compiler and linker mainly GFortran is used in this thesis. On the official
website of the compiler [18] it is noted that GFortran supports Fortran 2003
standards since version 4.6. Therefore, GFortran in version 4.6.2 and later was
used to build the library. This compiler is part of the Gnu Compiler Collection
(GCC). It is released under the Terms of the Gnu Public License (GPL) [19].
The license can be found online at [20].

It turned out that a good backward compatibility of the compiler makes
it possible to compile NEO-2 with the newest compiler version, while it was
compiled with version 4.4.5 of GFortran in the past. For testing purposes of

36

4.3 System architecture

the parallelized code NEO-2 on the Vienna Scientific Cluster - 2 (VSC-2), the
Fortran compiler Intel R© Composer XE 2013 were used [21].

MPI implementation

As already mentioned in Section 1.3, the MPI implementation used in this mas-
ter thesis is OpenMPI. The official website states that this is a high-performance
Message Passing library with full MPI-2 standards conformance. OpenMPI im-
plements features as thread safety, dynamic process spawning, 32- and 64-bit
versions, and more [8]. It is released under the New BSD-License, which can
be found online at [22].
Actually, some other high-performance implementations of MPI exist, e.g.,

MPICH2 [23]. The decision to use OpenMPI was mainly made due to the
fact that it was preinstalled on the development machines. It should be no
problem to replace the underlying MPI implementation, because the different
implementations have to fulfill the MPI standards. This replaceability is used
in this thesis when running NEO-2 on the VSC-2. On this system the library
MPICH2 can also be used [21].

Performance analysis

The software package MPE (MPI Parallel Environment) is part of the MPI im-
plementation MPICH2. It supports performance analysis of parallel programs
by profiling mechanisms [24]. Although it is included in MPICH2, it is also pos-
sible to use it in OpenMPI applications because of the same MPI specification.
Using this tool makes it possible to record all send- and receive-commands and
to get a graphical analysis of the communication processes between the clients.

Build system

When compiling Fortran sources, the compiler creates module-files. These files
are linked together to get an executable file. It can become a problem to use
standard make-files because of the order of the creation of the module-files.

Example If module A uses module B, the user has to ensure that the sources
of B get compiled before A. If the order is changed after the compilation and

37

4 Object-oriented design

the module-file of module B still exists, it can happen that the linking process
works, because the linker does not check the actuality of the module-files. This
can cause a situation in which the sources of B were changed but not recompiled,
because the compiler and the linker are using the older module-files. A more
detailed explanation of this problem including a solution by standard make-files
can be found in the appendix of the book of Metcalf et al. [17].

Therefore, the tool CMake for building, testing, and packing applications
with an automatic dependency check of source files is used in order to compile
the sources in the right order [25]. The release license of CMake can be obtained
online at [26]. Several tutorials are given on the official website to learn the
syntax and the handling of this build system.

Source revision control

The tool subversion is used to manage the source code of the library. Subversion
is an open-source version control system [27]. It is released under the terms
of the Apache License 2.0 [28]. During the development of the library, the
subversion server of the Graz University of Technology was used.

38

5 Implementation and testing

5.1 Introduction

This chapter describes the implementation of the parallelization library. In
order to test and stabilize the code, two test cases are created. The first one
continues the simple integration example of Section 3.3. The second one is a
more complex matrix chain multiplication, which is, in some sense, similar to
the joining process of propagators in NEO-2.

5.2 Numerical integration

A simple numerical integration can be done by approximating the function with
trapezoids [29]. While this case is suited for performance and stability checks of
the scheduling algorithm, it does not consider any dependencies between work
units, because the integration results of the subintervals can be combined in
any order and are, therefore, completely independent.

5.2.1 Problem analysis

The integration of a function is a good example for the parallelization of mathe-
matical and physical problems by splitting the whole problem into minor steps.
The test function, which should be integrated, is shown in Equation (5.1). The
formula depicts a normal distribution with a standard deviation σ = 1 and a
mean value x0 = 0.

y(x) =
1√
2π

exp

(
−x

2

2

)
(5.1)

39

5 Implementation and testing

Figure 5.1: Integration test function

Solving method

A simple solving method for the numerical integration of a function is the
trapezoid method of Equation (5.2) with the interval width h = b− a [29].∫ b

a

f(x)dx ≈ h

2
(f(a) + f(b)) (5.2)

The given formula approximates the interval between a and b with a trapezoid.
In order to obtain a more accurate result, the whole integration domain can
be split into subintervals. The integral of one subinterval can be approximated
by Equation (5.2). The single integration results are summed up to obtain the
full solution. An example of an equidistant separation into eight subintervals
is given in Figure 5.1.

Transition from sequential to parallel solution

A sequential code would compute the subintervals one by one and then sum
them up. In order to speed up the code, these subintervals can be computed on
different compute nodes at the same time. This requires a multi-core processor
or a computer cluster environment as described in Chapter 1.

40

5.2 Numerical integration

5.2.2 Adaption of the parallelization library

This section describes the parallelization of the example by using the developed
library as well as the personal experience during the implementation process of
the designed classes in Fortran 2003. In order to adapt the library to this kind
of problem, the class WuIntegrate is inherited from the class Workunit. In the
class diagram of Figure 5.2 it can be seen that this particular work unit contains
attributes to define the bounds of integration of one subinterval. To enable
the scheduler to rebuild a received work unit, the scheduler is also inherited
to obtain the class SimpleIntegrationScheduler. This class overwrites the
method of the generic scheduler to allocate an object of the class WuIntegrate.
The method summarize, which is supported for final tasks as soon as all work
units are completed, is also overwritten to sum up the integration results of the
subintervals.

Class diagram revision In the book of Metcalf et al. [17] it is suggested
that every class is encapsulated by its own module. In Fortran two modules
can not include each other. This would create a circular dependence during
compilation, i.e., the compiler would not know which module to compile first
and the compilation process would fail. This becomes a problem, if two classes
are related to each other, e.g., in the form of parent and child. If an attribute
of the parent class points to a child object, it is not possible for the child class
to have a pointer back to the parent object. A work-around for this situation
is to place both classes into the same module, but this would be a breach of
the principle of modular programming and is therefore not used in this thesis.
Another solution would be to use submodules. However, before the Fortran
draft 2003 was completed, there was no fully developed solution for submodules
available. Therefore, it was decided to postpone this feature and a technical
report was created later to describe this enhanced module features, instead of
delaying the release of the whole standard [17, 30].

In the case of the parallelization library an issue of the type described above
exists between the modules for the scheduler and the work units. In the UML
class diagram of the library in Figure 3.4 it can be seen that a work unit
belongs exactly to one scheduler, but one scheduler can have many work units.

41

5 Implementation and testing

MPIProvider
dispatchers
listeners
sendBuffer
recvBuffer
initMPI()
deinitMPI()
addToBuffer()
getFromBuffer()
sendTo()
receiveFrom()

Workunit
ID
type
client
dependencies
pack()
unpack()
process()

Scheduler
clientStates
schedule()
rebuildWorkunit()
loadBalance()
dynamicWorkunits()

WuIntegrate
a
b
n
result
pack()
unpack()
process()

SimpleIntegrationScheduler

allocateSpecific()
summarize()

1

1

1

0..*

Figure 5.2: Class diagram of numerical integration test case

42

5.2 Numerical integration

Therefore, the work units behave in some sense like children of the scheduler.
At the time of the development of the parallelization library of this thesis the
compiler GFortran did not support submodules [18]. Hence, a revision of the
class relations, which were determined in the object-oriented analysis phase,
was unavoidable.

The principle of the parallelization library is that a work unit has access to
already processed work units in order to use their results for further compu-
tations. This requires the work units to gain access to the three lists of work
units of the scheduler. This in turn causes a circular dependence because work
units and scheduler have to be able to access each other.
To avoid this situation the three lists of work units are moved from the

scheduler to the class MPIProvider. This enables both, the scheduler and the
work units, to access these lists without creating a circular dependency. There
is no explicit necessity for this in the integration example, however, it will be
necessary for performing a matrix chain multiplication in another example.

5.2.3 Testing

As a test case, the program should integrate the function of Equation (5.1) from
a = −4.0 to b = 4.0. To ensure a longer runtime of the program the number of
sampling points in the interval between a and b is set to n = 2 · 109.

Sequential code

The test of correctness of a sequential algorithm can simply be performed by
checking the results. In contrast to a sequential code, in a parallel program the
results as well as the runtime have to be considered [2].

Timing-function The MPI implementation provides an internal method to
measure the time difference between two calls of a timing-function MPI_WTIME.
This functionality makes it possible to record the time required for running a
local method on one client. In order to do a more accurate runtime measurement
for parallel algorithms, additional measurement tools are required. They are
introduced by the use of MPE, which is described in Section 5.2.4. The runtime

43

5 Implementation and testing

interpretation has to be done in a careful way because other processes running
on the same machine, e.g., from other users, may falsify the program’s runtime.

The trapezoid formula used in this test case only consumes little processing
power and the tests were performed when the workstations were almost unused.
More accurate results can be obtained by running the code on a cluster with
reserved processing power and time. If the sequential integration code is run,
Program Output 2 is obtained.

Program Output 2 Simple integration test with sequential program
Integration from a = -4.000 to b = 4.000 with n = 2.0e9 sampling points.
Result = 0.999937

Runtime analysis

Complete runtime: 66.866 s
Scheduler runtime: 0.000 s

The output of the program gives the result of the calculation and the total
runtime of the program. The runtime for the scheduler is zero, because the
program ran in sequential mode, where no scheduler was needed. The result of
the integration is verified by the command quadl of the software MATLAB R©

[31]: ∫ 4

−4

1√
2π

exp

(
−x

2

2

)
dx

Test case
≈ 0.999937

MATLAB
≈ 0.999937

Several program runs delivered nearly the same runtimes, which are shown
in Table 5.1. Therefore, it can be assumed that the runtimes are reliable. In
order to calculate the speedup of the parallel code, a reference time is defined
by Equation (5.4). The error is derived by the standard error, given in Equa-
tion (5.5) from the book of Bartsch [29]. The calculated reference time of the
sequential code is stated in Equation (5.3).

tseq = (67.06± 0.15) s (5.3)

44

5.2 Numerical integration

Table 5.1: Runtime of sequential code

n Measurement number
t Program runtime

n t /s

1 66.87
2 67.64
3 66.96
4 67.02
5 66.83

tseq = t =
1

N

N∑
i=1

ti (5.4)

∆tseq =

√√√√ 1

N(N − 1)

N∑
i=1

(ti − t)2 (5.5)

Parallel code

As shown in Figure 5.1, the integral is divided into eight subintervals, i.e., eight
work units are required to compute the whole problem. These work units are
shown in Table 5.2. Each work unit contains different integration domains,
defined by awu and bwu. In order to obtain the same accuracy from the parallel
code as from the sequential code, the number of sampling points n = 2 · 109 is
divided by the number of subintervals. The tasks for creating new work units
and specializing the scheduler are described in more detail in Chapter 7.

The scheduler dispatches these work units to the clients until every client is
loaded with one job. If a client completes a work unit, it automatically gets the
next one from the scheduler. Ideally, all clients get the same number of jobs, but
this depends on the processing time of different work units and the processing
power of the clients. As soon as all of the work units are processed, the scheduler
runs the user-defined summarize-routine to compute the full solution of the
problem.

45

5 Implementation and testing

Table 5.2: Work units for parallel integration

wu Number of work unit
awu Left bound of integration
bwu Right bound of integration
nwu Sampling points of work unit

wu awu bwu nwu

1 -4.0 -3.0 2.5 · 108

2 -3.0 -2.0 2.5 · 108

3 -2.0 -1.0 2.5 · 108

4 -1.0 0.0 2.5 · 108

5 0.0 1.0 2.5 · 108

6 1.0 2.0 2.5 · 108

7 2.0 3.0 2.5 · 108

8 3.0 4.0 2.5 · 108

One client In order to test the developed scheduler, the program is started
in parallel mode on a total number of two processes, i.e., one for the scheduler
and one for the client. In this case, the ideal runtime would be the same as
for the sequential code. This implies that the processing time of the scheduler,
the send- and receive-commands of MPI, the packing processes, and other time
consuming processes, are negligible. The result of this test case can be seen in
Program Output 3. The runtime is nearly the same as for the sequential code
and therefore, not significantly affected by the scheduling process.
Two different performance analysis sections can be seen in the program out-

put of the library. The first one is created by the scheduler and represents
the mean time between two processed work units of each client. The second
detailed performance analysis is generated by each client and shows more de-
tailed information about the processing of the work units. It can be seen that
eight work units have been processed by Client 1. In order to exchange pro-
cessed work units between the clients, the library provides a special transmission
work unit. It is called DataRequester and forces the client which received the
DataRequester to send the requested work unit to a particular client.

46

5.2 Numerical integration

In this example there is no need to exchange data between clients, because the
integration results of the subintervals do not depend on each other, therefore,
the number of data requester objects is zero.

Program Output 3 Simple integration test of parallel program (1 client)
Program launched by:
mpiexec -np 2 ./SimpleIntegration

Subinterval width: 1.000
Scheduler: All workunits are prepared! Count = 8

Integration from -4.000 to -3.000 with 2.5e8 sampling points on client 1. Result = 0.001318
Integration from -3.000 to -2.000 with 2.5e8 sampling points on client 1. Result = 0.021400
Integration from -2.000 to -1.000 with 2.5e8 sampling points on client 1. Result = 0.135905
Integration from -1.000 to 0.000 with 2.5e8 sampling points on client 1. Result = 0.341345
Integration from 0.000 to 1.000 with 2.5e8 sampling points on client 1. Result = 0.341345
Integration from 1.000 to 2.000 with 2.5e8 sampling points on client 1. Result = 0.135905
Integration from 2.000 to 3.000 with 2.5e8 sampling points on client 1. Result = 0.021400
Integration from 3.000 to 4.000 with 2.5e8 sampling points on client 1. Result = 0.001318

Scheduler needed 67.090 s for processing all workunits.
Scheduler spent 67.090 s for waiting.
Balanced workunits: 0

The integration result is 0.999937
Scheduler: All jobs are done!

----- PERFORMANCE ANALYSIS (Scheduler) -----
Client MeanTime [s]

1 8.292

----- PERFORMANCE ANALYSIS (Client) -----
Client Workunits Time[s] Total[s] DataRequesters Time[s] Packtime[s]
1 on faepop43 8 8.386 67.090 0 NaN NaN

Runtime analysis

Complete runtime: 67.124 s
Scheduler runtime: 67.122 s
Time before scheduling: 0.002 s
Time after scheduling: 0.000 s

Two clients In order to achieve a higher performance, the code has to run on
more than two processes. The output of the parallel program with two working
clients is shown in Program Output 4. It was started with a total number of
three processes, i.e., one for the scheduler and two for the clients.
In this program output it can be seen that the eight work units, each repre-

senting one subinterval of the function, are distributed among the Clients 1 and
2. The scheduler chose automatically which work unit to run on which client.
The integration subinterval from −4.0 to −3.0 was sent to Client 1. Almost at

47

5 Implementation and testing

Program Output 4 Simple integration test of parallel program (2 clients)
Program launched by:
mpiexec -np 3 ./SimpleIntegration

Subinterval width: 1.000
Scheduler: All workunits are prepared! Count = 8

Integration from -4.000 to -3.000 with 2.5e8 sampling points on client 1. Result = 0.001318
Integration from -3.000 to -2.000 with 2.5e8 sampling points on client 2. Result = 0.021400
Integration from -2.000 to -1.000 with 2.5e8 sampling points on client 2. Result = 0.135905
Integration from -1.000 to 0.000 with 2.5e8 sampling points on client 1. Result = 0.341345
Integration from 0.000 to 1.000 with 2.5e8 sampling points on client 2. Result = 0.341345
Integration from 1.000 to 2.000 with 2.5e8 sampling points on client 1. Result = 0.135905
Integration from 2.000 to 3.000 with 2.5e8 sampling points on client 2. Result = 0.021400
Integration from 3.000 to 4.000 with 2.5e8 sampling points on client 1. Result = 0.001318

Scheduler needed 33.742 s for processing all workunits.
Scheduler spent 33.741 s for waiting.
Balanced workunits: 0

The integration result is 0.999937
Scheduler: All jobs are done!

----- PERFORMANCE ANALYSIS (Scheduler) -----
Client MeanTime [s]

1 7.317
2 7.357

----- PERFORMANCE ANALYSIS (Client) -----
Client Workunits Time[s] Total[s] DataRequesters Time[s] Packtime[s]
1 on faepop43 4 8.365 33.459 0 NaN NaN
2 on faepop43 4 8.435 33.741 0 NaN NaN

Runtime analysis

Complete runtime: 33.825 s
Scheduler runtime: 33.820 s
Time before scheduling: 0.005 s
Time after scheduling: 0.000 s

48

5.2 Numerical integration

Figure 5.3: Principle of work unit distribution among the clients

the same time, the work unit for the subinterval from −3.0 to −2.0 was sent
to Client 2. Apparently, Client 2 processed its work unit faster than Client 1,
which can be caused by multiple reasons, so the next subinterval from −2.0 to
−1.0 was also sent to Client 2. Figure 5.3 shows the principle of the scheduling
process of this example.
The reason for different computation time of work units can be client- or

work unit-dependent:

• Client-dependent
The MPI-based implementation of this work is not limited to multi-core
processors. It can also be used with different workstations connected via
the network. Therefore, clients do not have to be equal machines. In such
cases, a client with less processing power may need more computation
time for a particular work unit, than another one. The scheduler of the

49

5 Implementation and testing

parallelization library provides some load-balancing mechanisms to react
accordingly to clients with different processing power and distributes less
work units to slower clients.

• Work unit-dependent
The jobs done by the work units are not specified by the library and the
scheduler does not care what a particular work unit does compute on a
client. Therefore, two work units can represent completely different tasks,
which could take a different amount of time to process. Another reason
for different computation time arises if the work units should indeed per-
form the same task but are called with different parameters, e.g., in this
integration example all work units integrate other parts of a function.

In Program Output 4 it can also be seen that the program roughly needs
half the time as the sequential code. The reference time of the sequential code
can be found in Equation (5.3). This proves that the scheduler is fast enough
to provide both clients each time with enough input. The complete runtime of
the code is trun = 33.825 s, which can be split into three parts.

• Before scheduling
This time is needed by the initial phase of the code, here 0.005 s.

• Scheduler runtime
This time is needed until all work units are processed, here 33.820 s.

• After scheduling
This time is needed for the finalization phase of the code, here 0.000 s.

Performance evolution on one compute node

In this section the evolution of the program’s performance when the number
of clients is increased is analyzed. In the former program tests the number of
work units was eight. While this is a good number to understand the operation
principle of the scheduler, it is too small to enable the scheduler to distribute
the work units in an effective way to a larger number of clients. If there are
less work units than clients, a situation may arise where some clients do not get
any work unit to process. Therefore, the number of subintervals is increased to

50

5.2 Numerical integration

100 for the following test cases. The runtimes of the program as a function of
the number of clients are shown in Table 5.3.

Table 5.3: Run time measurement of integration example on multi-core machine

n Number of clients
tn Program runtime of n-th run
tpar Mean runtime, Equation (5.4)
∆tpar Standard error of mean runtime, Equation (5.5)
Sideal Ideal speedup of Amdahl’s law, Equation (5.6)
Scalc Calculated speedup of the program, Equation (5.7)
∆Scalc Error propagation of the calculated speedup, Equation (5.9)

n t1 /s t2 /s t3 /s tpar /s ∆tpar /s Sideal Scalc ∆Scalc

1 66.87 67.89 66.87 67.21 0.59 1.00 1.00 0.01
2 34.12 33.54 33.51 33.72 0.34 2.00 1.99 0.03
3 22.81 22.76 22.77 22.78 0.03 3.00 2.94 0.01
4 20.30 20.03 19.73 20.02 0.29 4.00 3.35 0.04
8 13.67 15.08 13.82 14.19 0.77 8.00 4.73 0.26
16 13.60 13.46 13.21 13.42 0.20 16.00 5.00 0.08

All runtime measurements were performed three times. The mean runtime is
calculated by Equation (5.4), the standard error by Equation (5.5). The ideal
speedup by Amdahl’s law (Equation (5.6)) is obtained if the program has no
sequential parts (f = 1), as explained in Section 1.2.2.

Sideal = n (5.6)

The calculated speedup of the program (Equation (5.7)) can simply be eval-
uated by the ratio of the runtime of the parallel code to the runtime of the
sequential code.

Scalc =
tseq
tpar

(5.7)

In order to evaluate the error of the calculated runtime speedup, the error

51

5 Implementation and testing

propagation of independent variables is used (Equation (5.9)) [29].

∆Scalc =

√(
dScalc

dtpar
∆tpar

)2

+

(
dScalc

dtseq
∆tseq

)2

(5.8)

=

√(
tseq
t2par

∆tpar

)2

+

(
∆tseq
tpar

)2

(5.9)

Figure 5.4 shows a graphical depiction of the measured runtimes against the
number of clients. The ideal and calculated speedups are plotted against the
number of clients in Figure 5.5. Due to the linear behavior of Equation (5.6),
the ideal runtime is represented by the red straight line. The blue curve, which
represents the calculated speedup of the program, shows nearly ideal behavior
at a lower number of clients, but shows a saturation effect at a higher number.
Since the number of physical cores of the processor of the test machine is four,
which can be seen in the hardware information of the test machine in Section
1.2.3, this effect can be interpreted as arriving at the hardware limits. The
reason for a breach of the performance already at a number of four clients is
that the total number of processes on the machine is five, because there has
to be one extra process for the scheduler. Therefore, five processes have to be
distributed among four cores, which causes performance issues.

Performance evolution on a computer cluster

The result of the test on one machine shows that the hardware specifications,
e.g., the number of physical cores, limit the maximum speedup of the program.
In order to avoid such limits and to run the code on more than four clients, the
computer cluster of the Institute of Theoretical and Computational Physics of
the Graz University of Technology is used. As explained in Section 1.2.3 this
cluster consists of workstations connected by Ethernet and enables the users
to run parallel tasks. Therefore, an additional argument to the run command
mpiexec of the MPI-based program has to be passed [32]:

mpiexec -np 9 --machinefile machinefile ./SimpleIntegration

The content of the user-defined file machinefile defines the compute nodes
on which the code should run. The option max_slots defines the maximum

52

5.2 Numerical integration

Figure 5.4: Mean runtime plotted against number of clients on one compute node

Figure 5.5: Speedup of the program against number of clients on one compute node

53

5 Implementation and testing

number of cores per compute node. This allows to write the machine-file in a
form to avoid the hardware limits. The file is processed from top to bottom,
which means that in the case of a total number of 9 processes, 4 processes are
distributed to Client 1, 4 processes to Client 2, and 1 process to Client 3:

Client1 max_slots=4

Client2 max_slots=4

Client3 max_slots=4

In the following test case five compute nodes were used. Due to the option
for the maximum number of slots per node, no computer ran more than four
processes. The program runtimes as a function of the number of clients are
shown in Table 5.4. The graphical evaluations can be seen in Figure 5.6 and
Figure 5.7. In contrast to the test case on one compute node with the limit
of four physical cores, the graphical analysis of this test case shows a good
evolution of the speedup with an increasing number of clients.

Table 5.4: Run time measurement of integration example on cluster

n Number of clients
tn Program runtime of n-th run
tpar Mean runtime, Equation (5.4)
∆tpar Standard error of mean runtime, Equation (5.5)
Sideal Ideal speedup of Amdahl’s law, Equation (5.6)
Scalc Calculated speedup of the program, Equation (5.7)
∆Scalc Error propagation of the calculated speedup, Equation (5.9)

n t1 /s t2 /s t3 /s tpar /s ∆tpar /s Sideal Scalc ∆Scalc

1 66.87 67.89 66.87 67.21 0.59 1.00 1.00 0.01
2 34.13 33.99 34.48 34.20 0.25 2.00 1.97 0.02
4 17.32 16.86 17.38 17.19 0.28 4.00 3.91 0.07
8 8.80 8.77 8.87 8.81 0.06 8.00 7.63 0.05
16 4.96 4.78 4.89 4.88 0.10 16.00 13.80 0.26

54

5.2 Numerical integration

Figure 5.6: Mean runtime against number of clients on a computer cluster

Figure 5.7: Speedup against number of clients on a computer cluster

55

5 Implementation and testing

5.2.4 Detailed runtime analysis by profiling

Profiling library

The performance measurements of the test cases above do only involve the total
runtime of the code. In order to get more detailed timing information, the
profiling tool MPE (MPI Parallel Environment) is used. This library, which
is described in Chapter 4, supports the measurement of local operations on a
particular client as well as the record of send- and receive-operations between
processes [24].
While it is possible to exchange the native MPI commands to equal com-

mands of MPE with profiling mechanisms, in the parallelization library of this
thesis another option is used to enable the profiling mechanism and to leave the
native MPI commands untouched. As described in Chapter 3, the major MPI
commands are wrapped by methods of the class MPIProvider. This allows to
add code to these methods to activate MPE profiling. For this issue a new class
MPELog was created for calling MPE commands.

Graphical analysis

The profiling tool creates a file which contains all timing information of all
involved processes of the parallel code. The program jumpshot, which is in-
cluded in MPE, converts this file into a graph. The integration of MPE into
the methods of the class MPIProvider makes it possible to record send- and
receive-processes as well as local operations like the processing of work units.
For such purposes user-defined events can be defined in MPE [2].

One client The evaluated profile data of the numerical integration code with
one working client can be seen Figure 5.8. The horizontal axis represents the
time component. The vertical axis indicate the processes which are numbered
by the MPI scheme, starting with zero for the master process. The client ranks
are displayed on the left side of the graphical diagram. The first row, which
represents the scheduler, is mostly black. This indicates that the scheduler
is waiting for messages from the clients most of the time and therefore, has
enough capacities for dealing with more clients. The processing of work units is

56

5.2 Numerical integration

Figure 5.8: MPE profile of integration example with 1 client and 1 scheduler

Figure 5.9: Zoomed view of Figure 5.8 to depict a communication process

marked by green blocks. The white arrows indicate Message Passing between
the processes. It seems that the arrows point in both directions but a zoom to
a smaller time scale shows that they are two separate ones, each pointing in
the opposite direction. The client is loaded with work each time, therefore, the
parallel program with one client is as fast as the sequential one.

Figure 5.9 shows a zoomed area of about 0.5 ms of Figure 5.8. It depicts
the communication process between scheduler and client. As soon as the green
block of Client 1 ends, the work unit has been processed completely. The
following red rectangle indicates the call of the sending method of MPI, which
tells the scheduler that the work unit is completed. The receiving process of the
scheduler is shown by the blue block in the first row. If the message is received

57

5 Implementation and testing

from the scheduler it starts its iteration process over the waiting work units and
searches the next job for the client, as shown in the flow chart of the scheduler
in Figure 4.1. This process is indicated by the gray block. During this process
the scheduler is busy and will not respond to other messages. Messages sent in
this time are buffered by the MPI implementation and received if the scheduler
calls a receiving method of MPI. If the appropriate work unit for the client is
found, it is packed and sent, which is again marked by a red rectangle. The
small blue vertical line indicates the fast receiving process of the working client,
followed by the start of the processing of the received work unit. The analysis of
such diagrams delivers information about the working principle of the developed
parallelization library and proves that the code behaves as expected.

Eight clients Figure 5.10 shows the MPE diagram of the parallel code running
on eight clients. It can be seen that no visible gaps between the processing
operations of the work units exist. Therefore, the scheduler is fast enough to
load the clients with work each time. At the end of the time scale it can be
seen that not all clients finish at the same time. The reason is the different
computation time of the last work units. If the mean computation time of
one work unit is much smaller than the whole program’s runtime, this is not
significant. The scheduler tries to dispatch the work units in an effective way,
but it can not predict its duration. However, if work units need too much
computation time in contrast to the whole runtime, the user should modify the
work units.

Figure 5.11 shows that Client 4 tells the scheduler when its last work unit is
completed. After summarizing the results, the scheduler tells all clients to stop
and the MPI master process quits as soon as the last process exits.

58

5.2 Numerical integration

Figure 5.10: MPE profile of integration example with 8 clients and 1 scheduler

Figure 5.11: MPE profile of the end of the scheduling process

59

5 Implementation and testing

5.3 Matrix chain multiplication

The matrix multiplication fulfills the algebraic group properties. The multipli-
cation of two matrices of one set results in a new matrix, which is again an
element of the same set [12]. This is similar to the joining of two propaga-
tors within NEO-2 and is therefore used as another simplified test case for the
library.

5.3.1 Problem analysis

In contrast to the numerical integration test case, there are a few significant
differences:

• The integrity of the order of the matrices has to be preserved, because the
results of the multiplications can not be combined in an arbitrary order.

• Scheduler and clients have to deal with a large amount of required memory,
because large matrices can be simulated.

• Because of the associativity law, the results of multiplications can be
required by other multiplication processes. Therefore, data between the
clients have to be exchanged.

• In order to simulate the NEO-2 problem, at first the matrices have to
be created on the clients. This simulates the solving of the propagators
before they can be joined. If the computation of two neighboring matrices
is accomplished, then the scheduler should react accordingly and create
a work unit to join them.

5.3.2 Adaption of the parallelization library

Work units

The UML class diagram of this problem is depicted in Figure 5.12. One work
unit represents the task of multiplying two matrices. This special work unit
is called WuMatrixMultiplication. In order to preserve the sequence of the
resulting matrices, another work unit, called MergeWorkunit, is created. It

60

5.3 Matrix chain multiplication

MPIProvider
dispatchers
listeners
sendBuffer
recvBuffer
initMPI()
deinitMPI()
addToBuffer()
getFromBuffer()
sendTo()
receiveFrom()

Workunit
ID
type
client
dependencies
pack()
unpack()
process()

Scheduler
clientStates
schedule()
rebuildWorkunit()
loadBalance()
dynamicWorkunits()

MCMScheduler

allocateSpecific()
summarize()

MergeWorkunit
leftNeighbor
rightNeighbor
resultID
isMerged
pack()
unpack()
setNeighbors()

DataRequester
destination
whichID
pack()
unpack()
process()

WuMatrixMultiplication
idx1
idx2
result
pack()
unpack()
process()
getMatrix()

1

1

1

0..*

Figure 5.12: Class diagram of parallel matrix chain multiplication

61

5 Implementation and testing

is the parent class of WuMatrixMultiplication and provides attributes and
methods to indicate its neighboring matrices to the left and to the right.

Scheduler

The main issue when developing a scheduler for this kind of problem is not
the multiplication itself, which can simply be done by the intrinsic Fortran
function matmul. It is rather the correct joining of the single matrices. In the
former integration test case, the scheduler could distribute the work units in an
arbitrary order. The results were simple scalars, which had to be summed up
at the end to obtain the full solution. Therefore, the order of the work units
was trivial and the clients did not have to exchange processed work units. For
the data transmission between clients, the already described special work unit
DataRequester is used.
Because of the associativity of the matrix multiplication, the solving process

can be visualized by a tree structure. In the case of eight matrices to be
multiplied, the principle of the joining processes of the matrices look like shown
in Figure 5.13. According to the propagator example of Figure 2.3, the gray
matrices are not solved yet and the yellow matrices are ready to be joined.
Work units are indicated by the blue structures.

In the first row of the figure, the matrix elements are computed by the Work
units 1 to 8. In the second row, it can be seen that each of the following work
units require results of other ones. Because of the generic design of the scheduler,
the user has to create all work units to solve the whole problem. However, a
new scheduler can be inherited from the generic scheduler to create work units
automatically. The special scheduler of this problem is called MCMScheduler

(MCM = Matrix Chain Multiplication). The method dynamicWorkunits of
the generic scheduler is overwritten to create new work units during the solving
process in order to react on different client performances.

Parallel solving on two clients

One possible principle of solving the matrix chain multiplication on two clients
is shown in Figure 5.14. Both clients are computing until they have one matrix
left. At the end of the whole process it comes to the point, where the situation

62

5.3 Matrix chain multiplication

Figure 5.13: Solution of the matrix chain multiplication problem by a tree structure

arises in which one client has to send its last work unit to another remaining
client. The scheduler has information about which work units were processed
on which client, therefore, it detects if work units have to be exchanged between
clients to continue the solving process. As explained in Section 5.2.3, a work unit
of the type DataRequester can be created by the scheduler for transmitting
work units between the clients. The DataRequester is sent to Client 2 and
initiates the sending process of Work unit 15 to Client 1. Work unit 15 contains
the matrix which is required by Work unit 16 on Client 1 to compute the last
multiplication. This transmission process is indicated by the red arrow. As soon
as Client 1 receives the already processed work unit, it is unpacked and stored
locally for further computations. Each work unit contains an attribute which
describes the state of the work unit (processed or unprocessed) for such cases.
Most of the work units which are received from the scheduler are unprocessed
ones and work units exchanged between clients are processed ones.

63

5 Implementation and testing

Figure 5.14: Solution of the matrix chain multiplication problem on two clients

64

5.3 Matrix chain multiplication

5.3.3 Testing

For testing purposes, matrices with different dimensions to be multiplied are
created by the test program. Due to this approach two advantages are achieved:

• Different computation time per work unit
The multiplication process of two large matrices takes longer than the
multiplication of two small matrices. This is a contrast to the numerical
integration example where the computation times of the work units were
very similar.

• Integrity check of multiplication order
Two matrices can only be multiplied if the number of columns of the left
matrix equals the number of rows of the right one [12]. A violation causes
the intrinsic matrix multiplication routine of Fortran to crash, which is
an useful method to check the correctness of the multiplication order.

Investigation of a slow scheduler

This section describes the operation principle of the specialized scheduler for
this kind of problem. As depicted in Figure 5.12 it is inherited from the generic
scheduler. If the program starts, it builds the whole multiplication tree, as
can be seen in Figure 5.14, at first, without solving the matrices. This ensures
the correct multiplication order for the further solving process and enables the
scheduler to distribute parts of the solution tree equally to all processes.
Various test scenarios of this scheduler delivered MPE diagrams as depicted

in Figure 5.15. It can be seen that during the runtime of the code, the scheduler
reacts too slow to clients requesting new work units. This causes the clients to
wait longer for a work unit than it takes to compute them. The waiting time
for new jobs of the clients is marked by yellow blocks.
A waiting client is not useful in a parallel environment, therefore, the sched-

uler has to be optimized. One optimization step is to exchange the standard
send-command of MPI, which is blocking, to the non-blocking version. The
difference between blocking and non-blocking methods is explained in Section
1.3.2. Due to this exchange, the scheduler can continue its iteration process
while a work unit is sent to a client.

65

5 Implementation and testing

Figure 5.15: MPE diagram of a slow scheduler

Simulation of long computation

Compared to the mean time of the solving and joining of propagators, the
simulated matrix multiplications are too fast to simulate NEO-2. In order to
simulate work units which require more computation time, a random sleep is
added to the processing routine. While this only simulates faster and slower
work units, it does not consider faster and slower clients. Therefore, an addi-
tional random number for each client is created at the program start to simulate
its processing power. These values can be configured by a configuration file to
test the program with different values. The matrix multiplication itself is kept
in the program because it can be used to check for the correct multiplication
order.

The program runtime of a simulated long computation against the number
of cores is plotted in Figure 5.16. The speedup of the code is shown in Figure
5.17. It can be seen that the speedup does not result in the ideal speedup with
increasing number of clients. The text box in the diagram gives information
about the runtime properties of the test program. It can be seen that 1000
matrices with dimensions between 400x400 and 800x800 of random double pre-
cision numbers were multiplied. The property for the maximum chunk size
indicates that the scheduler was allowed to bind at maximum eight work units

66

5.3 Matrix chain multiplication

Figure 5.16: Program runtime of matrix chain multiplication example plotted
against the number of clients

Figure 5.17: Speedup of matrix chain multiplication example plotted against the
number of clients

67

5 Implementation and testing

Figure 5.18: MPE diagram with no load-balancing enabled

to one package before sending them. This decreases the number of communica-
tion processes but increases the mean time for processing the work units. The
simulated mean time for multiplying two matrices was set to 5 seconds and the
creation time for a matrix to 15 seconds.

An example MPE diagram of the scheduler is shown in Figure 5.18. It can
be seen clearly that clients with different processing power and work units
with different computation times cause many clients to wait (black areas in the
diagram). Therefore, a load-balancing routine is developed and added to the
scheduler, which detects free clients and sends work units to them which were
intended for other clients.

Load-balancing algorithm

The load-balancing routine checks after every scheduler iteration, if there are
no jobs left for a certain client. If such a situation is detected, the scheduler
moves one work unit, which was indented to be solved on a particular client
to a free client. This process makes it more complicated to obtain the correct
multiplication order, however, it has positive influence on the runtime, which
is evident from the nearly ideal speedup curve in Figures 5.19 and 5.20.

A change of the structure of the created multiplication tree by the scheduler

68

5.3 Matrix chain multiplication

Figure 5.19: Program runtime with load-balancing of matrix chain multiplication
example plotted against the number of clients

Figure 5.20: Speedup with load-balancing of matrix chain multiplication example
plotted against the number of clients

69

5 Implementation and testing

Figure 5.21: Ideal case of the matrix chain multiplication problem on three clients

leads to more communication processes between the clients. An ideal solving
work flow is depicted by Figure 5.21. For the clarity only matrices, not the
work units, are shown. As can be seen, the optimal behavior of the program
running on three clients is that only two communication processes are needed.
This requires the clients to have the same performance as well as work units
with the same computation time.

A more realistic case is shown in Figure 5.22. Client 1 is simulated to be
slower and thus, the scheduler links the work unit to solve the Matrices 3
and 4 to Client 3, which is faster. As can be seen the whole process gets
more complicated than the ideal case and one communication process more is
necessary.
The significant difference between the schedulers with and without load-

balancing is shown by the MPE diagrams of the Figures 5.18 and 5.23. If
load-balancing is enabled, all clients are loaded with work, but there are more
transmission processes between the clients required as explained with the help
of Figure 5.22. This can be easily observed because there exists a large num-
ber of sending operations at the end of the program (red blocks), however, the
program speedup is close to the ideal behavior, which justifies the use of the
load-balancing algorithm.

70

5.3 Matrix chain multiplication

Figure 5.22: Load-balanced case of the matrix chain multiplication problem on three
clients

Figure 5.23: MPE diagram of the same problem as in Figure 5.18 with enabled
load-balancing

71

6 Parallelization of NEO-2

6.1 Introduction

This chapter describes the first real physical problem to which the paralleliza-
tion library is applied. This is the parallelization of NEO-2. As described in
Chapter 5 the required tasks to adapt the library to a special problem are to
identify work units and to adapt the scheduler. Two different program tests
have to be done after the parallelization. The first one is to verify the correct-
ness of the results of the parallelized code with the help of reference values and
the second one is to evaluate the program’s runtime.

6.2 Analysis of the computational problem

The integration of the library into NEO-2 has to be well-planned in order not
to corrupt an algorithm, e.g., due to logical errors which cause the code to pro-
duce wrong results after the parallelization. The operation principle of NEO-2
has already been explained in Chapter 2. Therefore, the sequential and par-
allel parts are already defined. For reasons of clarity Figure 2.3 of Chapter 2
describing the solving and joining of propagators is shown again in Figure 6.1.

An adapted parallelized form, according to the mechanism acquired during
the development of the matrix chain multiplication example, is depicted in Fig-
ure 6.2. As can be seen, for the parallel solution of the NEO-2 problem, all
clients process the same initial data. As soon as these initial data have been
computed, each client has all physical information to solve all the propaga-
tors. In order to obtain an increase of performance, all clients process different
propagators.

73

6 Parallelization of NEO-2

Figure 6.1: Concept of solving and joining propagators

74

6.2 Analysis of the computational problem

Figure 6.2: Concept of solving and joining propagators on two clients

75

6 Parallelization of NEO-2

6.3 Adaption of the library

The parallelization library can be adapted to parallelize NEO-2 in the same
way as the matrix chain multiplication, because of the similarity between those
problems. At first, the work units have to be defined to separate the problem
into sub-problems. Two new work units are required to solve the problem:

• One to compute a propagator and to store it locally,

• and another one to join two neighboring, already computed, propagators
in order to create a resulting propagator which has all relevant physical
information of its origins.

6.3.1 Definition of the work units

The approach is to design work units, which call methods of NEO-2 instead of
moving functionalities of NEO-2 into the work units. Thereby, it is possible to
reduce code changes in the complex code of NEO-2. The two required work
units have to be developed just to call appropriate functions of NEO-2 and to
provide logistical functionality in order to store the resulting propagators. This
approach makes it possible to run the code in both, sequential and parallel
mode after the parallelization, because the base of NEO-2 is not changed.
The UML class diagram for this problem is shown in Figure 6.3. Both new

work units (Neo2SolvePropagator, Neo2JoinPropagators) have exactly one
propagator as result. The main issue is to pack and unpack the resulting prop-
agators. In order to stay within the object-oriented concept, a third work unit
acting as a parent class of all further classes which have to pack and unpack
propagators is created. This parent class Neo2GenericWorkunit provides fea-
tures which are required by the children classes:

• The storage of the resulting propagator,

• and the appropriate packing and unpacking algorithms.

The work unit Neo2SolvePropagator is designed to compute all propaga-
tors with tags between the attributes prop_tag_start and prop_tag_end. It
is required that these propagators belong to the same field period in order to

76

6.3 Adaption of the library

MPIProvider
dispatchers
listeners
sendBuffer
recvBuffer
initMPI()
deinitMPI()
addToBuffer()
getFromBuffer()
sendTo()
receiveFrom()

Workunit
ID
type
client
dependencies
pack()
unpack()
process()

Scheduler
clientStates
schedule()
rebuildWorkunit()
loadBalance()
dynamicWorkunits()

Neo2Scheduler

allocateSpecific()
summarize()

MergeWorkunit
leftNeighbor
rightNeighbor
resultID
isMerged
pack()
unpack()
setNeighbors()

Neo2GenericWorkunit
propagator_res
packPropagator()
unpackPropagator()

Neo2SolvePropagator
prop_tag_start
prop_tag_end
pack()
unpack()
process()

Neo2JoinPropagators
fieldperiod1_uid
fieldperiod2_uid
pack()
unpack()
process()

1

1

1

0..*

Figure 6.3: UML class diagram of parallel NEO-2

77

6 Parallelization of NEO-2

Figure 6.4: Principle of the initial data structure of NEO-2

simplify the joining process. All neighboring work units are joined automat-
ically by NEO-2 during this process, therefore, each work unit only has one
propagator as result. The work unit Neo2JoinPropagators joins the resulting
work units of Neo2SolvePropagator of two neighboring field periods. The re-
sult is a new propagator which can again be joined with a neighboring one. The
data structure of NEO-2, which has been analyzed in Chapter 2, is shown in
Figure 6.4 again.
The load-balancing and the method to dynamically create new work units

of the code for the matrix chain multiplication can be used because of the
similarity between the problems. By comparing the right neighbor of one
propagator with the left neighbor of another propagator, the scheduler eval-
uates the propagators ability to be joined and creates a work unit of the type
Neo2JoinPropagators.

6.3.2 Implementation

The package NEO-2 provides a standard make-file for different compilers to
build an executable file. In order to compile NEO-2 with the library, which is
written to fulfill the Fortran 2003 standard, the GFortran part of the standard
make-file was converted to a CMake file. The build system CMake is described
in Chapter 4. To ensure backward compatibility, all parallelized parts of the
program can be disabled by two compiler directives. These have been defined

78

6.4 Performance measurements

during the implementation process:

• MPI_SUPPORT

Enables the compilation and activation of all parallel parts.

• MPE_SUPPORT

Enables the compilation of the classes for MPE profiling.

If the code is compiled using the standard make-file, these directives are disabled
and, therefore, the code runs in sequential mode.

6.4 Performance measurements

The parallel version of NEO-2 is tested on the Vienna Scientific Cluster - 2
(VSC-2). The official website of the cluster provider [21] states that among
others, the compilers GFortran and Intel R© Composer are provided. Because
of a GFortran version which does not provide Fortran 2003 yet, the compiler
Intel R© Composer XE 2013 was used to compile the code. NEO-2 uses some
external libraries which also have to be compiled on the cluster to ensure good
performance.

6.4.1 Definition of the test case

In order to reproduce the runtime tests of this section, a test case is defined in
Table 6.1. The full configuration file neo2.in, which is read by NEO-2 as soon
as the program is started, is printed in Appendix B.

Table 6.1: NEO-2 test case

Parameter Value

Device W7-X
Collisionality ν∗ 5.58 · 10−4

6.4.2 Evaluation of the performance

The parallelized NEO-2 is the first test case in which the sequential part of
a program has significant influence on the runtime, therefore, three different

79

6 Parallelization of NEO-2

runtimes have to be measured. The measurement of these time values is already
provided by the parallelization library, as described in Section 5.2.3:

• Total runtime

• Sequential runtime (Time before scheduling)

• Parallel runtime (Scheduler runtime)

The performance analysis of the parallelized NEO-2 on 32 cores is given in
Program Output 5. As can be seen, the number of data requester objects on
the processing nodes varies because of the load-balancing algorithm. The time
to send a processed propagator is about one millisecond, while the packing
time is significantly smaller because the output of the packing times shows zero
seconds. Therefore, it is assumed that the send- and pack-methods of the MPI
implementation offer very good performance.
Plotting the different runtime values against the number of clients results in

Figure 6.5. The error bars are based on the investigation of the calculated errors
of the runtime measurements in the integration example (Table 5.3). When
evaluating the behavior of the sequential runtime while the number of clients
is increased, it can be seen that the time for the sequential part also increases,
although expected to be constant. For further evaluation of this effect, Figure
6.6 has been created to show that the sequential runtime increases sharply
between 8 and 16 processes. Since it is only possible to reserve whole compute
nodes on VSC-2, there were no data points recorded between 8 and 16 processes
[33].
In order to give an explanation for this behavior, the hardware specifications

of VSC-2 have to be considered. Each node consists of 2 multi-core processors
with 8 physical cores each [21]. In Figure 6.6 it can be seen that the sequential
runtime increases when the number of clients equals the number of physical
cores of one single multi-core processor. Therefore, it is assumed that this
indicates a hardware issue. In the paper of Diamond et al. [34] it is stated
that memory bottlenecks may occur in multi-core machines if algorithms or
source codes are not optimally optimized for such environments. Since the
computation process of the propagators uses external libraries, this issue is not
easy to resolve and not further investigated in this thesis.

80

6.4 Performance measurements

Program Output 5 NEO-2 test run on VSC-2 with 32 processing cores (with
simplified compute node names)
Scheduler needed 364.672 s for processing all workunits.
Scheduler spent 364.494 s for waiting.
Balanced workunits: 25

----- PERFORMANCE ANALYSIS (Client) -----
Client Workunits Time[s] Total[s] DataRequesters Time[s] Packtime[s]
1 on Node2 39 8.985 350.407 1 0.001 0.000
5 on Node2 42 8.595 360.986 3 0.001 0.000
2 on Node2 32 11.190 358.073 3 0.001 0.000
3 on Node2 30 11.588 347.647 2 0.001 0.000
4 on Node2 38 9.289 352.980 2 0.001 0.000
6 on Node2 38 9.362 355.756 2 0.001 0.000
7 on Node2 30 11.855 355.652 2 0.001 0.000
9 on Node2 24 14.970 359.280 2 0.001 0.000

10 on Node2 28 12.965 363.024 2 0.001 0.000
11 on Node2 28 12.599 352.761 1 0.001 0.000
12 on Node2 26 13.358 347.316 1 0.001 0.000
13 on Node2 28 12.484 349.559 1 0.001 0.000
18 on Node1 30 12.007 360.202 2 0.000 0.000
14 on Node2 36 10.019 360.682 3 0.001 0.000
16 on Node1 32 11.105 355.361 2 0.001 0.000
15 on Node2 44 8.024 353.059 2 0.001 0.000
17 on Node1 28 12.671 354.794 1 0.001 0.000
19 on Node1 28 12.737 356.649 2 0.001 0.000
8 on Node2 28 12.601 352.818 1 0.001 0.000

20 on Node1 26 13.540 352.034 1 0.001 0.000
21 on Node1 34 10.588 359.977 3 0.001 0.000
22 on Node1 30 11.901 357.034 2 0.001 0.000
24 on Node1 32 11.244 359.815 1 0.001 0.000
28 on Node1 28 12.538 351.052 1 0.001 0.000
23 on Node1 26 13.654 355.015 1 0.001 0.000
25 on Node1 24 14.961 359.068 1 0.001 0.000
26 on Node1 30 12.035 361.060 1 0.001 0.000
27 on Node1 24 14.441 346.582 1 0.001 0.000
29 on Node1 38 9.310 353.768 4 0.001 0.000
30 on Node1 38 9.224 350.530 2 0.001 0.000
31 on Node1 34 10.278 349.466 3 0.001 0.000

Runtime analysis

Complete runtime: 1286.769 s
Scheduler runtime: 374.586 s
Time before scheduling: 912.183 s
Time after scheduling: 0.001 s

81

6 Parallelization of NEO-2

Figure 6.5: Total, parallel and sequential runtimes of a NEO-2 test case

Figure 6.6: Sequential runtime of a NEO-2 test case

82

6.4 Performance measurements

6.4.3 Further analysis of the speedup

The evolution of the program’s speedup is shown in Figure 6.7. The calculated
speedup is evaluated by the ratio of the runtime of a single client to the runtime
of many clients as expressed in Formula (5.4). The uncertainties are calculated
by the propagation of uncertainty as in Equation (5.9) in Section 5.2.3. In order
to compare the calculated speedup curve to Amdahl’s law, a non-linear fit with
the fit function of Equation (1.1) is performed. Amdahl’s law is designed to
describe problems with constant f [4], therefore, the fit in Figure 6.7 does not
perfectly fit the curve because of the varying sequential runtime.

Figure 6.7: Calculated speedup of a NEO-2 test case and fitted speedup by Amdahl’s
law

The result of the non-linear fit is

f = (0.83± 0.01),

which states that about 17 percent of this test case of NEO-2 are not paralleliz-

83

6 Parallelization of NEO-2

able. Using Equation (1.2) delivers the following result:

Smax = lim
n→∞

1

(1− f) + f
n

=
1

1− f
= (5.9± 0.4) (6.1)

The uncertainty of 0.4 is evaluated by the propagation of uncertainty from the
book of Bartsch [29]:

∆Smax =

√(
dSmax

df

)2

=

∣∣∣∣ ∆f

(1− f)2

∣∣∣∣ = 0.4 (6.2)

6.4.4 Conclusion of the performance analysis

The parallelization of this test case for NEO-2 is a success, because the code
shows a good speedup evaluation on a computer cluster. The non-linear fit of
Figure 6.7 delivers an estimation for the maximum speedup Smax = (5.9± 0.4),
which means that the code can run about 5 to 6 times faster than the sequential
version at maximum. This limit is caused by the sequential part of the code
(about 17 percent), which has significant influence on Amdahl’s law. In Figure
6.7 it also can be seen that the maximum speedup is nearly reached with 32

processing cores, therefore, it would make no sense to run the code on a higher
number than 32 cores. Such a case would just lead to a waste of energy without
a win of performance.
However, these performance analysis refers to one special configuration of

NEO-2 (W7-X device, collisionality ν∗ = 5.58 · 10−4) and the values for the
relative parallel part f and the maximum speedup Smax may change radically
for other configurations and other collisionalities.

6.5 Verification of the results

A plasma which is confined by a toroidal magnetic field, e.g., a Tokamak or
a Stellarator, looses energy and particles due to transport phenomena. In ad-
dition to classical transport because of collisions, the neoclassical transport
considers the toroidal geometry of the confinement. Instead of computing the
exact orbits of the particles which gyrate around the magnetic field lines, in

84

6.5 Verification of the results

the neoclassical theory the drift of the guiding center perpendicular to the field
lines is investigated. The magnetic mirror effect causes trapped particles in so-
called banana-orbits, which have high influence on the diffusivity of the plasma
[35].
In order to ensure that an algorithm does not become corrupted due to the

parallelization, the results produced by the parallel code have to be verified
by comparison with reference values of the sequential code. In the paper of
Beidler et al. [36] it is stated that three mono-energetic transport coefficients
are required to describe the neoclassical transport in a plasma which is confined
by a Stellarator:

• D11 for the description of the radial transport.

• D33 for the description of the parallel transport.

• D31 for the description of the bootstrap current.

These coefficients can be obtained by the results of NEO-2 and are plotted
against the collisionality ν∗. The collisionality parameter and the device can
be set as input argument to NEO-2 by configuration files.
To reproduce the plots of the mentioned paper [36], the mono-energetic trans-

port coefficients have been computed for collisionalities between ν∗ = 10−5 and
ν∗ = 102 for a W7-X device. The results are shown in Figures 6.8, 6.9, and
6.10. The results from the parallel runs are the same as those stated in the
paper [36], however, they were computed in a shorter time.

85

6 Parallelization of NEO-2

Figure 6.8: Normalized mono-energetic radial transport coefficient as a function of
the collisionality

Figure 6.9: Normalized mono-energetic parallel transport coefficient as a function
of the collisionality

86

6.5 Verification of the results

Figure 6.10: Normalized mono-energetic bootstrap current coefficient as a function
of the collisionality

87

7 Use of the library

7.1 Introduction

In order to ease the use of the library for more complex tasks, this chapter
provides a manual for adapting the library to solve different problems. In
Appendix A the commented source code of the numerical integration example
is given to improve the clarity of the integration process of the library to existing
code.

7.2 Technical information

This section provides some technical information to compile the library and its
example programs.

7.2.1 Compilation of the library

As already mentioned, the library implementation fulfills the Fortran 2003 stan-
dard. Therefore, during the development of this work the compiler GFortran
in version 4.6 and later was used to have support for the newest standards.
However, the test machine with the operating system Debian Linux 6.0 only
provided version 4.4.5 of GFortran [37]. It is not possible to link the preinstalled
MPI module of the test system to Fortran 2003 code, because the compiler com-
plains about a version conflict of the module files.
A solution to this issue is to install the newest release of OpenMPI locally on

the test machine. OpenMPI can be obtained from its official website [8]. This
package can be compiled with GFortran version 4.6 to obtain a module-file
which can be linked to the Fortran 2003 code of the library.

89

7 Use of the library

7.2.2 Source code

Due to steady further development of the library and its code size, the source
code is not added to the printed form of this thesis. The developed library,
including the example programs, is located on the server of the Institute of
Theoretical and Computational Physics of the Graz University of Technology.
The compilation process creates a library, which has to be linked to the program
to be parallelized.

In order not to overfill this chapter, the full source code of the integration
example is found in the Appendix A. The documented source files for the main
program, the module-file for the numerical integration, the specialized work
unit, and the specialized scheduler are provided.

7.3 Adaption to a specific problem

The parallelization library provides a generic work unit with an empty process-
ing method. In order to define the task of a work unit, it has to be inherited
and adapted, as explained in the former test cases about numerical integration
and matrix multiplications in Chapter 5.

7.3.1 Work units

First of all, the problem to be parallelized has to be separated into work units.
As stated in Section 1.2.1, there are three major options to parallelize code:

• Physical options

• Mathematical options

• Programmatic options

The questions of the following sections help to find the necessary information
to design effective new work units.

90

7.3 Adaption to a specific problem

Which job should be fulfilled by the work unit?

As already mentioned, the problem has to be separated into smaller sub-problems,
which can be solved independently from each other. The smaller the sub-
problems, the more flexible the scheduler can distribute them. However, in
the case of too small units, the clients may compute them in shorter time than
the scheduler needs for an iteration process over all work units. This causes
longer waiting times for the clients, as evaluated by the simulation of a slow
scheduler in Section 5.3.3. Otherwise, in a situation with only a few work units
and many clients, the scheduler may not be able to provide jobs to all clients.

Example In the testing scenarios work units have been created which inte-
grate parts of functions, multiply matrices, or send and receive other work
units.

Which data does the work unit need to process?

This task defines the input arguments of the work unit to process its job. In
the parallelization library all clients run the same executable file, which makes
it possible to run commands to compute initial conditions before the clients
begin to wait for scheduler commands. These initial data are available on all
processes without the need of an initial work unit to compute them.
The packing and unpacking processes of work units are rather a programmatic

problem than a physical or mathematical one. It should be considered that some
data structures may cause issues when being packed, e.g., linked lists because
of their pointers. The pointer addresses are only valid in the memory of the
client defining it, therefore, it can not be packed and sent to another client like
an integer number. One possible solution to transmit a linked list is to convert
it into an array and to rebuild it into a linked list on the receiving side.
Due to an attribute for required work units, it is possible to define depen-

dencies. However, the scheduler has to wait for all work units to be processed
until a particular one, which depends on the others, can be sent to a client.
This may cause a situation in which clients have to wait several iteration cy-
cles of the scheduler to receive new work units because of an ineffective set of
dependencies.

91

7 Use of the library

Example A work unit to integrate a part of a function requires parameters
which define the integration domain and the function to be integrated.

Does the work unit require data from other, already processed, work
units?

The predefined work unit DataRequester enables the clients to exchange data.
However, depending on the kind of problem, the user has to create these objects
accordingly to solve the problem. Therefore, the scheduler is inherited and
adapted as described later in Section 7.3.2.

Example The problem of exchanging work units between clients can be ex-
plained by the matrix chain multiplication test case. Assuming that one work
unit multiplies two matrices and stores the resulting matrix locally, a follow-
ing work unit requires this resulting matrix to process the next result. This
situation is depicted in Figure 5.14.

Which results does the work unit have?

The result of the sub-problem represented by a work unit can be a set of vari-
ables (new attributes of the inherited class), which are stored on the client until
the scheduler requests them. The parallelization library provides a special kind
of predefined work unit, called send-back work unit. If the send-back attribute
of a generic work unit is set to the value true, the client is forced to send back
the processed work unit to the scheduler instead of storing it locally.

Example This is a comfortable way for problems such as the integration test
case. In such problems there is no need to exchange data between clients,
because the results of the work units can be combined in an arbitrary order.
The summarization process is done by the scheduler as soon as all units are
completed.

7.3.2 Scheduler

If the work units required to solve the parallel part of the problem are designed,
the next task is to define how they are distributed among the clients. The

92

7.3 Adaption to a specific problem

implemented library of this master thesis provides a generic scheduler which is
designed to be adapted to obtain a scheduler specialized to the kind of problem.
Similar to the design process of new work units there are a few questions to be
answered to design a new scheduler.

Are initial conditions required on each client?

Most of the physical problems need initial conditions which have to be equal
for all the clients. A possible solution for this kind of problem is to compute
all required initial data on the master process and then broadcast them to all
clients. Though, this method seems to be a clean way to solve this problem, it
has the disadvantage that the clients will just wait and may waste resources.
Another disadvantage of this method occurs when a large amount of initial data
is needed, this may cause the transmission process to take more time than the
calculation itself.
Therefore, instead of computing the initial data on the master process and

sending them to the waiting clients, all clients can compute them at the same
time. This method is used to parallelize NEO-2 as described in Chapter 6.

Example Before the parallelized NEO-2 can start the distribution of the prop-
agators among the clients of the parallel environment, a large amount of initial
data has to be computed to obtain the total number and the structures of the
propagators.

Are dynamically created work units required?

The scheduler of the library supports the dynamic creation of new work units
during the scheduling process. After each iteration process, which is depicted
in Figure 4.1, the scheduler calls a method which has to be overwritten in the
inherited scheduler class to create new tasks. These new work units have to be
added to the list of waiting work units, so that the new work unit is taken into
account by the scheduler at the next iteration over this list.

Example The dynamic creation of work units is needed to solve the matrix
chain multiplication in the pertinent example. In contrast to the integration

93

7 Use of the library

example, where all work units were defined before the scheduling process was
started, the different ways to get the results of a chain multiplication cause
the need for appropriate reactions on client responses to keep the solving pro-
cess working. Before running the program it is not possible to predict which
client will actually compute which work units because of the load-balancing
mechanism.

Is a summarization process needed after all jobs are done?

The summarizing routine is called after the completion of the scheduling process
on all processes. It may be used to print results on the master process or to
free memory on the clients.

Example This function is used to sum up the results of the different subinter-
vals of the integration example.

94

8 Conclusion and outlook

The aims of this master thesis, which were the development of a flexible library
to solve physical problems by parallel computation and the parallelization of
NEO-2 as a first physical purpose of the library, have been fulfilled. To ensure
the adaptability of the developed library to many kinds of physical problems
it is designed in an object-oriented way and implemented to fulfill the Fortran
2003 standard. The use of MPI (Message Passing Interface) allows to run the
parallel code on multi-core systems as well as on computer clusters.
The test scenarios of the parallelized NEO-2 yielded better performance than

the sequential code. However, only known physical results were computed up
to now, in order to verify the program’s integrity by comparison to reference
values.

The developed parallelization library was designed to be easily further devel-
oped to ensure its application in future projects.

95

Acknowledgments

Some persons supported me during the work on this master thesis and I would
like to thank them.

I am very grateful to Ao.Univ.-Prof. Dipl.-Ing. Dr.phil. Martin Heyn for
the possibility to write this master thesis at the Institute of Theoretical and
Computational Physics.

Special thanks to Ass.Prof. Dipl.-Ing. Dr.techn. Winfried Kernbichler for the
helpful support during the last year and for listening to all kinds of problems.

I would like to thank all members of the Plasma Physics Division, especially
Andreas F. Martitsch for many helpful discussions.

Many thanks to Andreas Hirczy who always supplied me with the latest software
versions of the used tools.

I am very grateful to Günter Krois for forcing me to have some coffee breaks
and for the true friendship since the beginning of this study.

Thanks to all of my friends and colleagues with whom I worked closely during
the last years.

This work could not have been written without the endless support of my
mother Emmy, my father Franz, my sister Tanja, and my girlfriend Annemarie.
Thank you very much for being here for me and for listening to me when I tried
to explain some “interesting” physical stuff.

97

A Integration example

A.1 Main program

1 !> Demonstration program for numerical integration
program simpleintegrate

3 ! Module for generic scheduler of the parallelization library
use scheduler_module

5 ! Module for numerical integration
use integrate_module

7 ! Module for specialized work unit to integrate a subinterval
use wuIntegrate_module

9 ! Module for specialized scheduler to distribute the new work units
use simpleIntScheduler_module

11

implicit none
13

! Declaration of a new work unit
15 class(wuIntegrate), pointer :: wu

! Declaration of the new scheduler
17 type(simpleIntScheduler) :: sched

! Some local variables
19 integer :: k, NumOfWUs, n_wu

double precision :: a_wu, b_wu, step
21

! Initialize MPI (mpro is the singleton name of the MPIProvider)
23 call mpro%init()

! Initialize the integration module
25 call initIntegrationModule()

27 ! Evaluate if program runs in parallel mode
if (mpro%getNumProcs() == 1) then

29 ! Normal sequential program execution
! Call integration-routine of integration module

31 call integrate()
else

33 ! Parallel program execution
! Initialize the new scheduler

35 call sched%init()

37

99

A Integration example

! Define the number of work units
39 NumOfWUs = subintervals

41 ! Define attributes of first work unit
a_wu = a

43 step = (b-a) / NumOfWUs
b_wu = a + step

45 n_wu = n/NumOfWUs

47 ! Only the master process (rank = 0) prepares the work units
if (mpro%getRank() == 0) then

49

! Print information
51 write (*,"(A, F10.6)") "Subinterval width: ", step

53 ! Call initial work units
call sched%prepare()

55

! Create the work units for integrating the subintervals
57 do k = 1, NumOfWUs

59 ! Allocate and initialize new work unit
nullify(wu)

61 allocate(wu)
call wu%init()

63

! Assign attributes to work unit
65 wu%a_wu = a_wu

wu%b_wu = b_wu
67 wu%n_wu = n_wu

69 ! Activate sendBack to receive the result directly on the scheduler
wu%sendBack = .true.

71

! Add the prepared work unit to the waiting list
73 call sched%addWorkunit(wu)

75 ! Step to the next subinterval
a_wu = a_wu + step

77 b_wu = b_wu + step
end do

79 end if

81 ! Call the scheduling method of the library
call sched%schedule()

83 ! De-initialize the scheduler
call sched%deinit()

85 end if
! Close all connections by the use of the MPIProvider

87 call mpro%deinit()
end program simpleintegrate

100

A.2 Integration module

A.2 Integration module

!> Module for numerical integration routines
2 module integrate_module

! Use the MPIProvider
4 use mpiprovider_module

6 implicit none

8 ! Define parameters for the integration
double precision, parameter :: pi = 3.141592653 !> PI definition for the test function

10 double precision :: a = -4 !> Left border of full problem (Default = -4)
double precision :: b = +4 !> Right border of full problem (Default = +4)

12 integer :: n = nint(1e6) !> Number sampling points (Default = 1e6)
integer :: subintervals = 8 !> Number of subintervals (work units)

14 double precision :: res !> Result of integration

16 ! Define elements of name-list for configuration file
namelist / nmlIntegrate / a, b, n, subintervals

18

contains
20

! Initialize the module
22 subroutine initIntegrationModule()

integer :: f = 50
24 integer :: stat

26 ! Open name-list file
open(f, file="intconfig.txt", status=’old’, action=’read’, iostat = stat)

28

if (stat == 0) then
30 ! Read input arguments to program (a, b, n, subintervals)

read(f, nml=nmlIntegrate)
32 close(f)

else
34 write (*,*) "No configuration file for simple integration module found, using defaults"

end if
36

end subroutine initIntegrationModule
38

!> Test function to integrate
40 function fun(x) result(y)

double precision :: x
42 double precision :: y

double precision :: sig, x0
44

! Definition of the function to integrate (here normal distribution)
46 x0 = 0

sig = 1
48 y = 1.0 / (sig * sqrt(2*pi)) * exp(-1.0/2.0 * ((x - x0)/(sig))**2)

101

A Integration example

50 !y = 2*x
!y = x**2

52 end function fun

54 !> Numerical integration routine with trapezoid method
subroutine integrate()

56 integer :: k
double precision :: h, x

58

! Compute interval width
60 h = (b-a)/n

62 ! Start at the left bound of integration
x = a

64

! Set the result to zero
66 res = 0

68 do k = 1,n
! Evaluate the trapezoid formula

70 res = res + h * fun((x + x + h)/2)
! Step to the next sampling point

72 x = x + h
end do

74

! Write results to program output
76 write (*,"(A, F10.6, A, F10.6, A, I12, A, I3, A, F10.6)") "Integration from ", a, " to", b,

" with ", n,&
" points on client ", mpro%getRank(), ". Result = ", res

78

end subroutine integrate
80

end module integrate_module

102

A.3 Specialized work unit

A.3 Specialized work unit

1 !> Module for the inherited workunit wuIntegrate
module wuIntegrate_module

3 ! Use generic work unit from the parallelization library
use genericWorkunit_module

5 ! Use the MPIProvider
use mpiprovider_module

7 ! Use the numerical integration module
use integrate_module

9

implicit none
11

!> Child class wuIntegrate of genericWorkunit
13 type, extends(genericworkunit) :: wuIntegrate

! Attributes
15 double precision :: a_wu, b_wu !> Bounds of integration per work unit

integer :: n_wu !> Number of sampling points per work unit
17 double precision :: res !> Integration result per work unit

contains
19

! Methods
21 procedure :: pack => pack_wuIntegrate !> Method to pack the work unit

procedure :: unpack => unpack_wuIntegrate !> Method to unpack the work unit
23 procedure :: init => init_wuIntegrate !> Method to initialize the work unit

procedure :: process => process_wuIntegrate !> Method to process the work unit
25 procedure :: print => print_wuIntegrate !> Method to print the work unit

27 end type wuIntegrate

29 contains

31 !> The initial method of the work unit
subroutine init_wuIntegrate(this)

33 class(wuIntegrate) :: this

35 ! The type is required to rebuild the work unit by the specialized scheduler
this%type = "wuIntegrate"

37

!> Call the initial-routine of the scheduler of parent class
39 call this%genericworkunit%init()

end subroutine init_wuIntegrate
41

!> Defines the job of the work unit, in this case, the integration process
43 subroutine process_wuIntegrate(this)

class(wuIntegrate) :: this
45

! Set the values of the module for the integration to the values of the current work unit
47 a = this%a_wu

b = this%b_wu
49 n = this%n_wu

103

A Integration example

51 ! Call the integration routine of the integration module
call integrate()

53

! Store the result locally
55 this%res = res

57 ! Indicate that the work unit is processed
this%isProcessed = .true.

59 end subroutine process_wuIntegrate

61 !> Pack attributes
subroutine pack_wuIntegrate(this)

63 class(wuIntegrate) :: this

65 ! Call pack from parent work unit to store logistical data
call this%genericworkunit%pack()

67

! Call generic add-methods of MPIProvider to push the attributes into the send buffer
69 call mpro%packBuffer%add(this%a_wu)

call mpro%packBuffer%add(this%b_wu)
71 call mpro%packBuffer%add(this%n_wu)

73 ! If processed, then add the result
if (this%isProcessed) then

75 call mpro%packBuffer%add(this%res)
end if

77 end subroutine pack_wuIntegrate

79 !> Unpack attributes
subroutine unpack_wuIntegrate(this)

81 class(wuIntegrate) :: this

83 ! Call unpack of parent work unit to restore the work unit type and other logistical data
call this%genericworkunit%unpack()

85

! Read attributes from buffer in the same order as they were packed
87 call mpro%packBuffer%get(this%a_wu)

call mpro%packBuffer%get(this%b_wu)
89 call mpro%packBuffer%get(this%n_wu)

91 ! If processed, then read the result
if (this%isProcessed) then

93 call mpro%packBuffer%get(this%res)
else

95

end if
97 end subroutine unpack_wuIntegrate

99 !> Print work unit information
subroutine print_wuIntegrate(this)

104

A.3 Specialized work unit

101 class(wuIntegrate) :: this

103 write (*,*) "wuIntegrate: ", this%uid, this%a_wu, this%b_wu, this%n_wu, this%res
end subroutine print_wuIntegrate

105

end module wuIntegrate_module

105

A Integration example

A.4 Adapted scheduler

!> Module for the specialized scheduler
2 module simpleIntScheduler_module

! Use the generic scheduler of the library
4 use scheduler_module

! Use the specialized work unit
6 use wuIntegrate_module

8 implicit none

10 !> Class SimpleIntScheduler (Inherited from generic Scheduler)
type, extends(scheduler) :: simpleIntScheduler

12 ! Attributes
! No additional attributes required in this test case

14 contains
! Methods

16 procedure :: allocateSpecific => allocateSpecific_simpleIntScheduler !> Method to help
rebuilding the work unit

procedure :: summarize => summarize_simpleIntScheduler !> Method to summarize the results
18 end type simpleIntScheduler

20 contains

22 !> Overwritten function of the generic scheduler to allocate new work units
function allocateSpecific_simpleIntScheduler(this, wuType) result(res)

24 class(simpleIntScheduler) :: this
character(len=maxStrLen) :: wuType

26 class(workunit), pointer :: res

28 ! The generic scheduler does not know the new work units and can not call the appropriate
allocate-method.

! Therefore, this method has to be provided.
30

! Evaluate the type of the received work unit, allocate the specialized work unit, and
return it to the generic scheduler

32 nullify(res)
select case (wutype)

34 case ("wuIntegrate")
allocate(wuIntegrate :: res)

36 end select
end function allocateSpecific_simpleIntScheduler

38

!> Overwritten function of the generic scheduler to summarize the results
40 subroutine summarize_simpleIntScheduler(this)

class(simpleIntScheduler) :: this
42 double precision :: res

class(workunit), pointer :: selectWU => null()
44

! Only the master process summarizes the results, which it received due to the sendBack -
work units

106

A.4 Adapted scheduler

46 if (mpro%getRank() .eq. 0) then
! Initialize result

48 res = 0

50 ! Rewind list of processed work units to the start
call mpro%storage%processedWorkunits%rewind()

52

! Iterate over all processed work units
54 do while (associated(mpro%storage%processedWorkunits%currentElement))

! Select current work unit
56 selectWU => mpro%storage%processedWorkunits%getCurrent()

select type (wu => selectWU)
58 ! Evaluate its type in order to have access to the attributes of the inherited work

unit
type is (wuIntegrate)

60 ! Sum up the integration results
res = res + wu%res

62 end select

64 ! Go to the next processed work unit
call mpro%storage%processedWorkunits%gotoNext()

66 end do

68 ! Print the result to the program output
write (*,*) "The integration result is ", res

70 end if
end subroutine summarize_simpleIntScheduler

72

end module simpleIntScheduler_module

107

B NEO-2 configuration

B.1 Content of neo2.in
! This is the input file for neo2
! overwritten data from default file neo2.def
!
&settings

phimi=0.d0 ! beginning of period
nstep=960 ! number of integration steps per period
nperiod=1000 ! number of periods
mag_nperiod_min=150 ! minimum number of periods
mag_save_memory=0 ! saving memory
rbeg= 210d0 ! starting R
proptag_begin=0 !1184 ! 0 take first from fieldline, otherwise begin
proptag_final=0 !1184 ! 0 take last from fieldline, otherwise end
mag_magfield=1 ! 0 homogeneous, 1 normal
magnetic_device = 1 ! 0 Tokamak, 1 W7-AS
mag_coordinates = 1 ! 0 cylindrical, 1 Boozer
boozer_s = 0.25d0
boozer_theta_beg = 0.0d0
boozer_phi_beg = 0.0d0
mag_start_special=0 ! 0 original, 1 abs max, 2 abs min, 3 proptag_begin
mag_cycle_ripples=1 ! 0: old behaviour, 1: cycle through
mag_close_fieldline=2 ! 1: close fieldline artificially 0: do not
aiota_tokamak=0.35145
eta_part_global = -1
eta_part_globalfac = 3.0d0
eta_part_globalfac_p = 3.0d0
eta_part_globalfac_t = 3.0d0
eta_part_trapped = 0
eta_alpha_p = 4.0d0
eta_alpha_t = 2.0d0
solver_talk = 0 ! 0: silent, 1: talks
mag_symmetric = .false. ! .true.
mag_symmetric_shorten = .false. ! .true.
mag_dbhat_min = 5d-2

/

&collision
conl_over_mfp = 1d-3 ! collisionality parameter
lag = 4 ! number of Laguerre polynomials

109

B NEO-2 configuration

leg = 3 ! number of Legendre polynomials
legmax = 0 ! maximum number of Legendre polynomials
z_eff = 1.d0 ! effective charge
isw_lorentz = 1 ! switch

/

! remarks about binsplit
!
! phi_split_mode 1: halfstep, 2: automatic
! phi_place_mode 1: only one point between automatic phi’s
! 2: odd number of points between automatic phi’s
! according to hphi * hphi_mult
!
! bin_split_mode 0: no binary split for eta
! original eta used (higher eta_part necessary)
! 1: binary split is done
! bsfunc_modelfunc 1: Gauss
! 2: prop to exp(-|x-x0|/sqrt(2)/sigma)
! 3: prop to 1/(|x-x0|^2+\sigma^2)
! mag_local_sigma 0: compute sigma for eta-placement (old)
! 1: add 2 local sigma-values within ripple

&binsplit
eta_s_lim = 1.2d1
eta_part = 20
lambda_equi = 0 ! 0/1
phi_split_mode = 2 ! [1/2]
phi_place_mode = 2 ! [1/2]
phi_split_min = 3 ! [1/3/5]
max_solver_try = 30 ! how often the solver tries on error 3
hphi_mult = 1.0d0 ! 1.0d0 or a little bit more
bin_split_mode = 1 ! [0/1]
bsfunc_message = 0 ! 0/1
bsfunc_modelfunc = 1 ! 1/2/3
bsfunc_modelfunc_num = 2 !
bsfunc_local_err = 1.0d-2 ! 3.0d-2
bsfunc_min_distance = 0.0d0 !
bsfunc_max_index = 300 !
bsfunc_max_splitlevel = 30 !
bsfunc_sigma_mult = 1.618033988749895d0
bsfunc_sigma_min = 1.0d-20 !
bsfunc_local_solver = 4 ! [0/1/2/3/4]
mag_local_sigma = 0 ! [0/1]
bsfunc_divide = 0! 7 !0 ! [0/1]
mag_ripple_contribution = 2 ! [1/2] 2 new sigma formula
boundary_dist_limit_factor = 1d-2
bsfunc_local_shield_factor = 10.0d0
bsfunc_shield = .true.
sigma_shield_factor = 5.0d0
split_inflection_points = .true.

/

110

B.1 Content of neo2.in

&propagator
prop_diagphys = 0 ! 0/1
prop_overwrite = 1 ! 0/1
prop_diagnostic = 0 ! 0/1/2/3
prop_binary = 0 ! 0/1
prop_timing = 0 ! 0/1
prop_join_ends = 1 ! 0/1
prop_fluxsplitmode = 1 ! 0/1/2
mag_talk = .FALSE. ! .TRUE. / .FALSE.
mag_infotalk = .FALSE. ! .TRUE. / .FALSE.
hphi_lim = 1.0d-6
prop_write = 0
prop_reconstruct = 0
prop_ripple_plot = 0

/

! settings for plotting
&plotting

plot_gauss = 0 ! plotting of gauss function in flint [0/1]
plot_prop = 0 ! plotting of propagator info in flint [0/1]

/

111

References

[1] G.O. Leitold. Computation of neoclassical transport coefficients and gen-
eralized Spitzer function in toroidal fusion plasmas. PhD thesis, Graz
University of Technology, 2010.

[2] W. Gropp, E. Lusk, and A. Skjellum. MPI - Eine Einführung. Oldenbourg,
2007.

[3] J. Liu, J. Wu, S.P. Kini, P. Wyckoff, and D.K. Panda. High performance
RDMA-based MPI implementation over InfiniBand. International Journal
of Parallel Programming, 32(3):167–198, 2004.

[4] X.H. Sun and Y. Chen. Reevaluating Amdahl’s law in the multicore era.
Journal of Parallel and Distributed Computing, 70(2):183–188, 2010.

[5] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi, and R. Rooholamini. An em-
pirical study of hyper-threading in high performance computing clusters.
Linux HPC Revolution, 2002.

[6] OpenMP Architecture Review Board. OpenMP Application Program Inter-
face. Technical report, Version 3.1, July 2011. URL http://www.openmp.
org/mp-documents/OpenMP3.1.pdf.

[7] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard. Technical report, Version 2.2, September 2009. URL http:
//www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.

[8] The Open MPI Project. Open MPI: Open Source High Performance Com-
puting. Website, 2012. Available online at http://www.open-mpi.org;
visited on 24. July 2012.

[9] University of Florida. SuiteSparse: A Suite of Sparse matrix packages.
Website, 2012. Available online at http://www.cise.ufl.edu/research/
sparse/SuiteSparse; visited on 9. December 2012.

[10] Computational Research Division. SuperLU. Website, 2012. Available
online at http://crd-legacy.lbl.gov/~xiaoye/SuperLU/; visited on 9.
December 2012.

113

References

[11] A.F. Martitsch. Development of a conservative finite difference scheme
for head transport problems in magnetized plasmas. Master’s thesis, Graz
University of Technology, 2012.

[12] K. Jänich. Lineare Algebra. Springer, 2003.

[13] W. Kernbichler, S.V. Kasilov, and G.O. Leitold. DKE Solver NEO-2: Field
Line Tracing Revisited. Conference proceedings, 2004.

[14] W. Kernbichler. Private communication, 2012.

[15] W. Küchlin and A. Weber. Einführung in die Informatik: Objektorientiert
mit Java. Springer, 2005.

[16] Object Management Group, Inc. (OMG). OMG Unified Model-
ing Language (OMG UML), Infrastructure. Technical report, Ver-
sion 2.4.1, August 2011. URL http://www.omg.org/spec/UML/2.4.1/
Infrastructure.

[17] M. Metcalf, J.K. Reid, and M. Cohen. fortran 95/2003 Explained, volume
416. Oxford University Press New York, 2004.

[18] Gnu Project. GFortran - GCC Wiki. Website, 2012. Available online at
http://gcc.gnu.org/wiki/GFortran; visited on 23. July 2012.

[19] Gnu Project. GCC Development Mission Statement. Website, 1999. Avail-
able online at http://gcc.gnu.org/gccmission.html; visited on 24. July
2012.

[20] Free Software Foundation Inc. GNU General Public License. Website,
2007. Available online at http://www.gnu.org/licenses/gpl-3.0.txt;
visited on 24. July 2012.

[21] VSC - Vienna Scientific Cluster c/o Vienna University of Technology. VSC-
2. Website, 2012. Available online at http://vsc.ac.at/about-vsc/
vsc-pool/vsc-2/; visited on 5. December 2012.

[22] The Open MPI Project. Open MPI License. Website, 2011. Available on-
line at http://www.open-mpi.org/community/license.php; visited on
24. July 2012.

[23] Argonne National Laboratory. MPICH2: High-performance and Widely
Portable MPI. Website, 2012. Available online at http://www.mcs.anl.
gov/research/projects/mpich2/; visited on 12. November 2012.

114

References

[24] Argonne National Laboratory. Performance Visualization for Parallel Pro-
grams. Website, 2012. Available online at http://www.mcs.anl.gov/
research/projects/perfvis/; visited on 12. November 2012.

[25] Kitware, Inc., Insight Software Consortium. CMake - Cross Platform Make
- About. Website, 2012. Available online at http://www.cmake.org/
cmake/project/about.html; visited on 24. July 2012.

[26] Kitware, Inc., Insight Software Consortium. CMake - License. Web-
site, 2012. Available online at http://www.cmake.org/cmake/project/
license.html; visited on 24. July 2012.

[27] Apache Software Foundation. Apache Subversion. Website, 2011. Available
online at http://subversion.apache.org; visited on 24. July 2012.

[28] Apache Software Foundation. Apache License Version 2.0. Website, 2004.
Available online at http://www.apache.org/licenses/LICENSE-2.0.
txt; visited on 24. July 2012.

[29] H.J. Bartsch. Taschenbuch mathematischer Formeln. Hanser Verlag, 2007.

[30] ISO/IEC JTC1/SC22. Information technology - programming languages
- fortran - enhanced module facilities. Technical report, 2004. URL ftp:
//ftp.nag.co.uk/sc22wg5/N1601-N1650/N1602.pdf.

[31] The MathWorks, Inc. Numerically evaluate integral, adaptive Lobatto
quadrature - MATLAB - MathWorks Deutschland. Website, 2013. Avail-
able online at http://www.mathworks.de/de/help/matlab/ref/quadl.
html; visited on 23. January 2013.

[32] The Open MPI Project. mpiexec(1) man page (version 1.4.5). Website,
2012. Available online at http://www.open-mpi.org/doc/v1.4/man1/
mpiexec.1.php; visited on 23. January 2013.

[33] VSC - Vienna Scientific Cluster c/o Vienna University of Technol-
ogy. doku:vsc2 - VSCWiki. Website, 2012. Available online
at https://wiki.zserv.tuwien.ac.at/doku.php?id=doku:vsc2&rev=
1350477581; visited on 15. January 2013.

[34] J. Diamond, M. Burtscher, J.D. McCalpin, B.D. Kim, S.W. Keckler, and
J.C. Browne. Evaluation and optimization of multicore performance bottle-
necks in supercomputing applications. In Performance Analysis of Systems
and Software (ISPASS), 2011 IEEE International Symposium on, pages
32–43. IEEE, 2011.

115

References

[35] A. Dinklage, T. Klinger, G. Marx, and L. Schweikhard. Plasma Physics:
Confinement, Transport and Collective Effects, volume 670. Springer, 2005.

[36] C.D. Beidler, K. Allmaier, M.Y. Isaev, S.V. Kasilov, W. Kernbichler, G.O.
Leitold, H. Maaßberg, D.R. Mikkelsen, S. Murakami, M. Schmidt, et al.
Benchmarking of the mono-energetic transport coefficients—results from
the International Collaboration on Neoclassical Transport in Stellarators
(ICNTS). Nuclear Fusion, 51(7):076001, 2011.

[37] SPI Inc. Debian – Details of package gfortran in squeeze. Website,
2013. Available online at http://packages.debian.org/en/squeeze/
gfortran; visited on 2. January 2013.

116

