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Kurzfassung

Der Inhalt dieser Arbeit ist die Entwicklung einer Methodik zur automatischen Überprü-
fung von Registerzugriffen in digitalen integrierten Schaltungen. Diese kann in mehreren
Implementierungsstadien verwendet werden. Das Hauptaugenmerk liegt hierbei auf der
Verifikation der Schaltung vor der Produktion, wobei hier Register Transfer Ebene und
Gatterebene zwei unterschiedliche Entwicklungsstufen darstellen. Ausgehend von einer
Spezifikation der Register in einem Tabellenformat werden zum einen Bedingungen für
eine formale Verifikation und zum anderen ein Registermodell und passende Sequenzen
für die Benutzung in einer Universal Verification Methodology (UVM) Testbench erzeugt.
Diese beiden Ansätze werden in Hinblick auf mehrere Metriken (Art der gefundenen Feh-
ler, Anzahl der gefundenen Fehler, Komplexität der Methodik, Laufzeit der Analysen,
Wiederverwendbarkeit etc.) analysiert und verglichen. Dies geschieht durch den Test mit
mehreren Prüfimplementierungen und einer tatsächlich in der Entwicklung befindlichen
Schaltung. Zusätzlich werden noch eXtensible Markup Language (XML) basierte Register-
beschreibungen für die Laborverifikation mit grafischen Benutzeroberflächen am Personal
Computer (PC) beziehungsweise Visual Basic for Applications (VBA) Quellcode für die
Nutzung in Routinen in automatisierten Chip-Testern erzeugt.



Abstract

The topic of this thesis is the comparison, selection and development of a methodology
for automated register access verification in different implementation stages of digital in-
tegrated circuits. The main focus is on the pre-silicon verification (verification before
production), where the register transfer layer implementation and the netlist (post syn-
thesis as well as post place-and-route) are seen as the different implementation stages.
Starting from a high-level register specification in a spreadsheet program the properties
for a formal analysis using model checking as well as a register model for the use in
a Universal Verification Methodology (UVM) testbench are generated utilizing a meta-
modeling flow. The two methodologies are analyzed and compared in respect to certain
metrics (e.g. number of bugs found, run time, kinds of bugs, re-usability etc.) by applying
them to two test designs and ultimately to a real world design. Additionally, eXtensible
Markup Language (XML) based register descriptions are generated for the use in labora-
tory verification with graphical user interfaces on a Personal Computer (PC) as well as
Visual Basic for Applications (VBA) source code for the use in test routines in automated
chip testers.
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Chapter 1

Introduction

This thesis is about the development of a design verification flow, which utilizes known and
new methodologies for an automated register access verification in digital integrated cir-
cuits. These established methodologies are the Universal Verification Methodology (UVM)
and formal verification (model checking) using System Verilog Assertions (SVA).
The automation is supported by a framework for code generation, which was developed at
Infineon and is called MetaGen, with which it is possible to generate the register tests from
a high level description written in a spreadsheet program. The description is usually not
written by the designer himself/herself, but by the concept engineer or application engi-
neer, who is typically not familiar with the exact implementation in Hardware Description
Language (HDL) code, but specifies the behavior of the bits in the registers. From the
high level description other useful files can be generated, e.g. for the automatic Integrated
Circuit (IC) testers or automated laboratory equipment. So there is a single source file
from which the tests for several implementation stages of the design can be generated.
This method is also called ’single source approach’). The thesis was written in the context
of automotive integrated circuits, but is applicable to most other applications as well, as
the methodologies used are generally usable for digital integrated circuit designs. Some
other fields of design like microcontrollers, which have a lot more registers, would even
benefit more from this approach.

1.1 Motivation

Digital designs tend to grow more and more complex. The well known law of Moore shows
this increasing complexity over time with the amount of transistors that can be packed
into a single chip. According to this law the complexity of ICs doubles within approx-
imately 18 months. The graphic in Fig. 1.1 shows this for microprocessors, but this is
true for almost all designs. With increasing complexity it gets harder to fully verify the

15
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Figure 1.1: Moore’s law for transistors in Intel R© microprocessors, data is taken from the
40th anniversary of Moore’s law from Intel [30]

correctness of such a design. Even to this day designs are often verified using functional
directed tests. Such a test covers exactly one special sequence of settings for a Design Un-
der Test (DUT). This might be acceptable to prove one of the typical use cases right, but
leaves aside possibly infinite numbers of signal combinations and sequences, that might
show design bugs. It is of course possible to write lots of tests for different situations, but
this is a lot of work and it still won’t be enough to get a good test coverage.
Typically the way to be sure the code is working as expected is to prove it correct mathe-
matically using formal verification. The problem with this approach is that it would take
much too long to check a complete design. A typical in-between solution would be to
check the systems behavior with several random stimuli applied to the DUT. This will
usually cover lots of cases one has possibly not thought about in the design phase. This
thesis does not focus on a complete verification of a system but only the subset of register
accesses via an interface, so that the part of the system is small enough to also try formal
verification on it.



CHAPTER 1. INTRODUCTION 17

The increasing complexity mentioned above is also visible in the increasing amount of reg-
isters in an IC. What is special about the registers is that they will look similar because of
the interface for access. The behavior of bits can also be expressed quite well, for example
read-only, write-only, read-write or similar. This makes it possible to create a model and
tests from a high-level description. With the result of this thesis it will be possible to
create a push-button solution for register tests.

1.2 Objectives

The main objective of this thesis is to create a register access verification flow that can
be used throughout the design and verification process of an IC. The pre-silicon flow
(pre-silicon refers to the time before the fabrication of the IC starts; this includes design,
verification and layout) has to be integrated as a sub-flow to the existing digital design flow
and the silicon verification part of the flow needs to be usable in the typical verification
environment in the laboratory (which is explained in further details in chapter 7.2).
The construction of the design sub-flow has to be done based on the results of the eval-
uation of two different verification approaches: Functional and constrained random veri-
fication using the UVM and formal verification using SVA with the Incisive Formal Veri-
fier (IFV). The resulting methodology is chosen by comparing these methodologies using
different metrics like implementation effort, number and kind of bugs found and run-time
of the tests.

1.3 Outline

The thesis is split into several parts explaining the tools and methodologies used, as well
as the pre-silicon verification part and the laboratory verification part.
The first part is an introduction to MetaGen, because most of the code generation and
automation in this flow is based on it. It is essential to understand the way this works to
get a feeling for the effort that has to be put into a special part of the verification and
why some coding is done in a rather simple way with longer code instead of using highly
sophisticated class hierarchies.
The second part is a rather detailed explanation of the UVM, because this methodology
has just been released (version 1.0p1 came out in February 2011) and thus it is new to
most people.
The next part focuses on formal verification. It has a short introduction on what formal
verification is and how it works in general and the way it is used in hardware verification.
Following the explanation of the methodologies a comparison is made by using them on
designs with different complexity and evaluating the results based on several metrics.
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With this the pre-silicon part is finished and the laboratory verification is shown as the
next part. Finally a conclusion about the results is given, followed by the current state
and what might be future extensions to this flow.



Chapter 2

Theoretical Background

2.1 Introduction to the Verification of VLSI Designs

This chapter is meant to give an introduction to what verification is, a short description
of different terms used in integrated circuits testing and to the different ways of verifying
digital integrated circuits.

2.1.1 Validation, Verification, Characterization, Qualification, Certifi-
cation

Validation

There are two often cited definitions for validation, the first one is quite formal, the second
one is simple yet easy to remember. The definition according to the Institute of Electrical
and Electronics Engineers (IEEE): “Confirmation by examination and provisions of objec-
tive evidence that the particular requirements for a specific intended use are fulfilled.” The
definition according to Barry Boehm [16, pg. 75]: “Are we building the right system?” So
validation is about finding out if the system fits for the intended use. The correctness of
the implementation of the system is not of concern, but only the specification is of interest.
As later on in a design all test-cases, measurement setups and other means of testing and
verification are based on checks against the specification an error in this will most likely
not be found by these methods as long as it is consistent within itself.

Verification

For verification there are also two definitions from the same institutions and people. The
definition of verification according to the IEEE: “Confirmation by examination and provi-
sions of objective evidence that specified requirements have been fulfilled.” The definition
according to Barry Boehm [16, pg. 75]: “Are we building the system right?” Verifica-

19
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tion is about finding out if the implemented system fulfills the requirements as denoted
in the specification. Sometimes implicit requirements have to be verified too, as they are
dependent on the implementation (e.g. special buffer full/empty conditions). An addi-
tional problem arises from this verification against the specification - the human factor
[12, pg. 6ff]. The designer reads a specification and implements the design according to his
interpretation of the specification - and will afterwards verify against his interpretation!

Characterization

The characterization of an integrated circuit is the process of evaluating all necessary elec-
trical parameters in different operating conditions (temperature ranges, supply voltages
etc.). The minimum, typical and maximum ratings for the parameters in the specification
are found with this extensive evaluation method. These parameters include for example
voltages, currents, timings and EMC behavior. The evaluations are done on wafer level
as well as on packaged devices.

Qualification

The process of qualifying an integrated circuit is reliability testing. This is done on a large
amount of samples to collect useful statistical information and these tests include special
stress tests and processes like aging to predict the average lifetime of chips. Faster aging is
simulated by applying high temperatures on the IC over a longer period of time. There are
several different qualification standards for different applications. For integrated circuits in
automotive applications, the field I am currently working in, this is the “AEC-Q100 Stress
Test Qualification For Integrated Circuits”. This standard defines the requirements for the
lots (e.g. they should be from non-consecutive wafers and not be assembled consecutively),
the required size of samples, pre- and post-stress test requirements, failure conditions and
all other parameters influencing the tests itself and the statistical results as well as the
measurement setups and equipment. It provides a qualification flow, guidelines for re-
qualifications and the set of tests needed for a certain device. These tests include latch-
up tests, Electromagnetic Compatibility (EMC) tests and Electrostatic Discharge (ESD)
tests, but also package tests (e.g. solder ball shear tests for Ball Grid Array (BGA)
packages), special tests for devices containing memories (Random Access Memory (RAM),
Read Only Memory (ROM), Electrically Erasable Programmable Read Only Memory
(EEPROM), flash etc.) and many others.

Certification

The definition of certification according to the glossary of the ISO 9000 standard is: “For-
mal procedure by which an accredited or authorized person or agency assesses and verifies
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(and attests in writing by issuing a certificate) the attributes, characteristics, quality,
qualification, status of individuals or organizations, goods or services, procedures or pro-
cesses, events or situations, in accordance with established requirements or standards.”
This means that for getting an attest of compliance to a certain standard (e.g. an in-
terface standard like Universal Serial Bus (USB), Local Interconnect Network (LIN) or
Controller Area Network (CAN), but also a functional safety standard like ISO 26262) a
procedure called certification has to be performed by an authorized institution (usually a
company or an university institute that has received this authorization from the issuer of
the standard in some way).

2.1.2 Pre-Silicon Verification of VLSI designs

Code Coverage, Dead Code Analysis, Functional Coverage

The following subsections describe the details of two coverage metrics - code coverage and
functional coverage. Both measure what amount of the design has been checked, but in
very different ways. Code coverage checks what amount of the code has been seen and used
in the verification. It can be done automatically and yields a result of what percentage
of the code has been covered by the current verification tests and which parts of the code
were never executed[12, pg. 46]. Functional Coverage measures what percentage of the
design functionality according to the specification has been executed in the verification.
This can not be done automatically, as it is needed to specify what contributes to the
functional coverage in which way [12, pg. 55].
Code Coverage
The following information is based on [12, pg. 46-54], which is also well worth a look
as it shows examples and gives some additional background information, which would go
beyond the scope of this thesis.
Statement Coverage
Statement coverage shows how many lines were executed and which were and which were
not executed. Usually this is the more important information. Most current simulation
environments provide means of browsing through the source code with the coverage infor-
mation visible. Not all lines will be executed in a normal design (e.g. default statements).
Statement coverage only shows that a certain line was executed, not why and how it got
there.
Path Coverage
Path coverage shows if every possible path through the code was taken (and which ones
were taken/not taken). This means that it checks if every possible combination of entering
if or else branches or cases has been observed (not that every expression in the conditions
has been used to trigger it). If a piece of code with its conditions was depicted as a tree,
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one hundred percent path coverage would mean that every path through this tree has been
taken at least once.
Expression Coverage
Expression coverage checks which of possibly several expressions were used to enter the
if/else/case branch. Path coverage will show that a branch has been used, expression cov-
erage that the branch was entered in all possible ways (and which entry conditions were
never met).
Finite State Machine (FSM) Coverage
A finite state machine is usually coded as a switch-case statement. Verifying that each
state has been used means verifying that each case has been used. The second part of
FSM checking is to verify whether all possible state transitions have been seen.
In addition the the checks mentioned above, which run with a dynamic verification, also
automated static checks for some of these items exist. These are formal methods that
abstract the design to a state transition model (these will be explained in more detail
in the chapter about formal verification) and on this reachability of certain code can be
checked (dead code analysis), as well as the reachability of FSM states and some other
properties. These checks prove that there is a way to reach the code or states, but not
necessarily the one intended by the designer.
Functional Coverage
The in-detail description of the following coverage types as well as some examples and
background information can be found in [12, pg. 55-61]. Functional coverage can (almost
always) only be defined manually. A number of specification items get mapped to a num-
ber of coverage items (not necessarily the same number), where the occurrence of these
items in a simulation is noted. What this occurrence means has to be defined manually
too, as it can be quite complex, e.g. it can just be the occurrence of a “fault”-signal on an
output port of the design, but also a failure bit set within a reply frame in a bus protocol
as a reaction to a bad checksum.
Item Coverage
Item coverage is a measure for different events, states and transactions that occurred from,
to or within the design. For example data transfers to and from the design are always
monitored. This may be a lot of different communication items, but that a readout of a
diagnosis value showed e.g. an over-temperature situation would be a relevant item that
one wants to have been seen in some verification. If this occurs it is known that the design
can flag the over-temperature. If a lot of constrained random tests are done this kind of
coverage can be even more interesting, as the outcome of a test can vary within certain
limits. It can then be monitored that buffer overflow situations, all different command
types of a certain command set and so on have been seen while running a big set of veri-
fication tests. Also for a non-random test suite this might be interesting, as many items



CHAPTER 2. THEORETICAL BACKGROUND 23

can be defined on a higher level already (e.g. in concept phase) and the completeness of
the test suite in respect to the set of possible states can be measured.
Cross Coverage
Cross coverage specifies the combined occurrence of two or more items. Often it will not
be sufficient to know that one event happened, but it is needed to know that this happened
while something other was also true, e.g. that this over-temperature diagnosis bit was set
while an output driver was on.
Transition Coverage
Transition coverage specifies the sequence of items that occurred. Often it is interesting
that a certain design behavior shows in a certain sequence or is stimulated in a certain
sequence.
Cross coverage and transition coverage operate on the same items as item coverage and
can be found also in post-processing of the data. Most dedicated verification languages
feature ways to specify them and also have it checked while the simulations are running.

Formal Verification

The term formal verification in the context of Very Large Scale Integrated Circuit (VLSI)
development refers to two types of verification, which are equivalence checking and model
checking. The first one is an automatic proof of the equivalence between designs in different
abstractions(usually RTL versus gate-level netlist) or description languages(e.g. design
written in Very High Speed Integrated Circuit Hardware Description Language (VHDL)
compared to a rewritten version of it in SystemVerilog). This is present in all digital
design flows nowadays, especially because it requires nearly no additional effort (only a
few scripts). The second one is an automated way of proofing logically that a design meets
some specified requirements. This requires quite some additional effort, as the model (high
level specification) has to be written manually. This is done using properties specified in
a certain language in addition to the normal design(examples for these languages are
Property Specification Language (PSL) and SVA). Model checking is explained in detail
in chapter 2.4.

Functional Verification

The aim of functional verification is to prove the correct operation of a module or system
in a certain operating mode. The tests are done simulating the design in the way it would
be operated in the real application. Parts of the system that are not part of the design
are modeled in an adequate degree of complexity to be close to the real behavior without
trading in too much simulation time (e.g. for mixed signal systems the analog parts are
modeled for the digital simulation). Certain operating conditions can be achieved easier
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in the simulation, where the model of the environment is easily controllable, than in the
verification of the fabricated IC in the laboratory.
Directed Testing
For directed testing a scenario is run step by step. Everything is deterministic, the points
in time when some signal is set is known, as well as the time and reaction of the system.
Tests are usually built in a way that a signal is set, after a certain wait time an output is
checked and so on. Checks for different operation speeds or communication speeds have to
be explicitly specified. A full verification suit of directed tests usually features one typical
use case test and additional tests with settings that have been identified to be corner cases
for this design. The immediate drawback is that corner cases that have not been identified
as such will usually not be tested. If functional coverage is collected, it is only used to
check the completeness of the verification (i.e. has a needed test been forgotten?).
Constrained Random Verification (Coverage Driven Verification)
Constrained random simulation also follows some real sequences. The difference to directed
testing is that parts of this sequence are randomized, for example random data can be
sent to random addresses via the communication bus and so on. To keep this within
a meaningful range all randomized variables have some constraints set that define the
limits within which the values can be. Randomization adds the problem that the state
cannot be checked like in direct testing, as at the time of writing the test the state of
the design at a certain point in time is not known. This is the reason, that a different
kind of pass/fail checks have to be used. This verification makes a vast use of functional
coverage. Transaction items are collected and evaluated within a certain module (called
“scoreboard”), which evaluates if a certain item is showing the correct behavior of the
system in regard to other items it has received before or at the same time and also if the
content of the item itself is correct (e.g. a data transfer with a checksum). This means
that the scoreboard contains some kind of high-level model of the design. Running a test
several times with a different random seed will most likely produce different results, this
means that the information about the functional coverage (and also code coverage) is used
to judge if the verification is done.

2.1.3 Laboratory Verification and Productive Testing of VLSI Designs

Scan Test

The scan test is used to find production defects in the logic of the IC. It is also used by
the failure analysis department to locate defects that showed up during the lifetime of a
chip. For example long time drift and aging can lead to problems on ICs that were not
visible at production time. Instead of normal flip-flops with just a D input special scan
flip-flops are used, which feature an additional input used for scan. All the flip-flops that
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should be scan-able are chained up into one ore more chains by connecting the data out
pin (either the normal Q pin or sometimes a dedicated scan-out pin) with the scan in pin
of the next one to form a shift register. Using an (usually external) clock the current state
of all registers can now be shifted out, a pattern can be applied at the first flip-flop, shifted
into the design and then by doing one clock cycle with D instead of scan-in selected as
the input the combinatorial logic between the flip-flops produces the next data, which is
then shifted out. These patterns, called input and output vectors, are pre-calculated and
the output can be compared against this to find defects. The scan test is very common
among VLSI designs, as it can be implemented nearly automatically, the drawback is an
increased amount of area for the flip-flops. For more information on scan test please refer
to [32, pg. 324f].

Automated Test Equipment

In principle every automated measurement device is called Automated Test Equipment
(ATE), but the focus in this subsection is especially on the ones used for integrated circuit
testing, often called chip testers. These very complex devices are used in the automated
verification and characterization of ICs as well as in the test and trimming of devices in
the production. The already mentioned scan tests are performed and also other functional
checks and trim procedures (to get rid of process variation dependent deviations of analog
values) and other device initializations like erasing Non Volatile Memories (NVMs). The
ATE can be used in different states of the chip production, e.g. on the wafer or the final
bonded and packaged device. This depends on different needs, for example trim values
that are sensitive to the package stress should be set after packaging.

Other Laboratory Equipment

The verification and characterization done in the laboratory is usually accomplished by
using a wide variety of different measurement equipment. Apart from the well known volt-
age/current sources, voltmeters, ampere-meters, waveform-generators and oscilloscopes
an increasing number of automated measurement equipment is used in combination with
these other devices. The verification Printed Circuit Boards (PCBs) are often controlled
by a microcontroller or Field Programmable Gate Array (FPGA) for automated mea-
surements. The National Instruments PCI eXtensions for Instrumentation (PXI) system
is another example of an automated measurement equipment for the laboratory. It is a
special Windows-PC with various measurement and stimulus cards that can be used to
read or force values and the measurement automation is programmed in LabVIEW (a
graphical programming language developed by National Instruments).
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2.2 MetaGen

A rather new methodology (for hardware development) originating from the software
development domain is the so called "Meta-Modeling". Using a meta-model and data
that fills this model with information textual output e.g. source code can be generated
instead of typing it manually. This code can be virtually anything: C++, Java, Pascal or
any other type of programming language, Hypertext Markup Language (HTML), XML,
LATEX,VHDL, Verilog, plain text or anything else that can be expressed using text (also
graphics might be expressed as text, e.g. Scalable Vector Graphics (SVGs) are described
using a syntax similar to XML).
So how is that possible? A meta-model usually is represented as some kind of class
hierarchy. This is typically modeled using Unified Modeling Language (UML) or a similar
high-level modeling language. See 2.2.1 for more information about such models. This
model represents the structure of data. Data itself is filled into the structure from a
spreadsheet source using an import filter that generates instances of the classes defined
in the model and populates them with this information.A template engine is then used
to fill a language-specific (language in the meaning of programming language or other file
format language) template with information read from this filled data model. See 2.2.2
for a deeper insight into templates and template engines.
MetaGen is a framework for generating the whole meta-modeling infrastructure. It was

Meta-Model
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Filled Data Model
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Template 
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Template 
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Testbench
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Figure 2.1: Meta-modeling flow for generating HW design files and documentation files

developed by the design support and methodology department of Infineon in Munich [25].
MetaGen provides everything necessary to create meta-models and importers for the model
data and write templates and exporters for different formats. Additionally it features a
library, which already includes lots of predefined importers, exporters and templates.
Another special part of MetaGen is that it includes a predefined data model for hardware
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modules, already featuring ports, bus interfaces, registers, memories and other components
that are needed to define and generate HDL code. This model was created even some time
before MetaGen itself and is called the Essence Data Model. It is the model that is used
as the base from which all the register models, assertions and VBA code in this thesis is
generated. The data input to this model is a predefined Excel workbook standardized by
the digital design community at the Infineon development center in Graz. It includes the
information necessary for typical applications in the automotive chip design.

2.2.1 Data Models

A data model represents the hierarchy and dependencies of classes of a given system. This
is best explained using an example. This example will be used throughout this chapter
to clarify what a simple meta-flow looks like. As this thesis is about the verification of
HDL code, the data model will be the definition of a hardware (HW) module. It should
include the things needed in order to generate a simple VHDL entity or Verilog module (to
keep it simple only ports are used, additional parameters like generics are left out). The
corresponding model is shown in figure 2.2. The root class is a module and it has a name

1

*

Module

Name : string [1]

Port

Name : string [1]

Direction : DirectionMode [1]

DoxyDescription : string [1]

Type

Vector : bool [1] = false

Size : int [1]

Left : int [1]

Right : int [1]

<<enum>>

DirectionMode

IN : DirectionMode

OUT : DirectionMode

INOUT : DirectionMode

Figure 2.2: Simple data model for a module

(which will be the entity/module name). It can have an infinite numbers of ports. Every
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port has a name, a direction which is defined by the enumeration visible in the figure and
a description which will be used for code documentation. Every port has exactly one type
object, which defines if it is a vector type (this is not really needed, as this could be seen
from the size, but the template will be easier to understand), the size of this port and the
left and right indices of the vector.
After the modeling of the data structure has been done data itself is needed. The module
specification is written in Excel (Excel is a commonly used tool to write specifications like
pin lists, register maps and so on throughout the industry). Most important is that the
input has to obey a well defined structure or syntax in order to serve as a data source.
A short demonstration sheet is given in figure 2.3. A productive module often has more
than hundred ports, this simple model would also work for such long lists. Now everything

Figure 2.3: An Excel sheet with data for filling the data model

is ready to combine data with the model. In order to do so, an import filter capable of
reading the Excel sheet has to be written. This has to be done only once as long as the
input file structure is not changed. This is a good reason to set up standardized sheets
for a special purpose, so the extra effort of writing the importer has to be done only one
time.
In this flow this is done using the Python scripting language. As the model itself is simple
and small so is the importer:

1 class module_xls2xml :
2 def __init__( s e l f ,∗∗ args ) :
3 s e l f . __dict__ . update ( args )
4 # do abor t i f s e v e r i t y error
5 s e l f . Api . s e t S ev e r i t yEx i t ( " e r r o r " )
6 # g e t in s tance o f x l s input p l u g i n
7 xls_in = s e l f . Api . get Input ( " x l s_in " ,0 )
8 # unmarshal input p l u g i n i f r e qu i r ed
9 i f xls_in . workBook == None :

10 xls_in . unmarshal ( )
11 # g e t unmarshaled workBook from p l u g i n
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12 workBook = xls_in . workBook
13 # c a l l convers ion member func t i on
14 s e l f . readXLS ( s e l f . dataInput , workBook )
15
16 def readXLS ( s e l f , Module , workBook ) :
17 sheet_cnt = 0
18 for shee t in workBook . sh e e t s ( ) :
19 sheet_cnt = sheet_cnt + 1
20 i f sheet_cnt == 1 :
21 for row in range ( shee t . nrows ) :
22 l ine_type = s t r ( shee t . c e l l ( row , 0 ) . va lue ) . s t r i p ( )
23 i f l ine_type == "ModuleName" :
24 Module . setName ( shee t . c e l l ( row , 1 ) . va lue )
25 e l i f l ine_type == " Port " :
26 Port = Module . addPort ( )
27 Port . setName ( shee t . c e l l ( row , 1 ) . va lue )
28 Port . s e tD i r e c t i o n ( shee t . c e l l ( row , 2 ) . va lue )
29 d e s c r i p t i o n = s t r ( shee t . c e l l ( row , 7 ) . va lue )
30 d e s c r i p t i o n = de s c r i p t i o n . r ep l a c e ( " \ r \n " , " ; " )
31 Port . setDoxyDescr ipt ion ( d e s c r i p t i o n )
32 pType = Port . createType ( )
33 pType . se tVector ( shee t . c e l l ( row , 3 ) . va lue )
34 pType . s e t S i z e ( shee t . c e l l ( row , 4 ) . va lue )
35 pType . s e tL e f t ( shee t . c e l l ( row , 5 ) . va lue )
36 pType . se tRight ( shee t . c e l l ( row , 6 ) . va lue )
37 else :
38 s e l f . Logger . warn ( "Unknown l i n e kind : "+s t r ( l ine_type

) )
39 else :
40 s e l f . Logger . warn ( "More than one shee t i s not a l lowed " )

Listing 2.1: Importer code

The code itself should be rather self-explanatory. It iterates through the rows of the sheet
and uses functions defined by the data model to fill the model with data using access
functions like setName or setSize.
Now the model and data are combined. This is stored in an XML file, an excerpt is given
here:

1 <?xml version=" 1 .0 " encoding="UTF−8" ?>
2 <Module>
3 <Name>
4 my_module
5 </Name>
6 <Port>
7 <Int_Class_ID>
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8 514899624
9 </Int_Class_ID>

10 <Name>
11 c l k
12 </Name>
13 <Di r e c t i on>
14 in
15 </Di r e c t i on>
16 <Type>
17 <Int_Class_ID>
18 514899696
19 </Int_Class_ID>
20 <Vector>
21 Fal se
22 </Vector>
23 <S i z e>
24 1
25 </ S i z e>
26 <Le f t>
27 0
28 </Le f t>
29 <Right>
30 0
31 </Right>
32 </Type>
33 <DoxyDescr ipt ion>
34 Clock
35 </DoxyDescr ipt ion>
36 </Port>
37 . . .
38 </Module>

Listing 2.2: XML code of the filled data model

2.2.2 Templates

Now the filled model can be used to generate various files. This is done by writing tem-
plates for the different file types needed. A template in this context is a file filled with
partially fixed text and text taken from the filled model and controlled generation of text
depending on information from the model. For this example the Mako template engine
[10] is used. It uses Python for special transformations and simple Python like-statements
for simpler actions. Templates can call sub-templates, so some can be written as function
libraries and can be reused.
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The simple "top" template for the VHDL entity generator looks like this:

1 <%namespace name=" vhdl " f i l e=" vhdl_templates .mako" import=" ∗ "/>\
2 ${vhdl . Ent ity ( dataInput ) }

Listing 2.3: Top template for the entity generator

The ${vhdl.Entity(dataInput)} prints data returned from the sub-template "Entity", which
is defined in the vhdl namespace (the template functions in the vhdl_templates.mako file
are all defined in this namespace) and it gets the data input as argument. The data input
in this case is the filled data model as Python object hierarchy.
The interesting part is defined in the sub-template:

1 <%def name=" Entity (Module ) ">\
2 l i b r a r y i e e e ;
3 use i e e e . std_logic_1164 . a l l ;
4
5 en t i t y ${Module . getName ( ) } i s
6 ${Port (Module . getPorts ( ) ) }\
7 end ${Module . getName ( ) } ;
8
9 </%def>\

10 <%def name=" Port ( Ports ) ">\
11 % i f l en ( Ports ) > 0 :
12 port (
13 <%
14 max_len = 0
15 for p l c in Ports :
16 i f l en ( p l c . getName ( ) ) > max_len :
17 max_len = len ( p l c . getName ( ) )
18 %>\
19 % for Port in Ports :
20 $ {( Port . getName ( ) ) . l j u s t (max_len ) } : $ {( s t r ( Port . g e tD i r e c t i on ( ) ) ) . l j u s t

(5 ) } \
21 % i f Port . getType ( ) . getVector ( ) :
22 % i f ( Port . getType ( ) . g e tLe f t ( ) − Port . getType ( ) . getRight ( ) ) + 1 != Port .

getType ( ) . g e tS i z e ( ) :
23 <% print "ERROR: S i z e and Le f t /Right do not match " %>\
24 % end i f
25 std_ulog ic_vector ( \${Port . getType ( ) . g e tLe f t ( ) } downto \${Port . getType ( ) .

getRight ( ) }) \
26 % else :
27 s td_ulog ic \
28 % end i f
29 % i f Port == Ports [ −1 ] :
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30 \
31 % else :
32 ; \
33 % end i f
34 −−! ${Port . getDoxyDescr ipt ion ( ) }
35 % endfor
36 ) ;
37 % end i f
38 </%def>\

Listing 2.4: sub-template for the entity generator

This simple template generates the following entity definition:

1 l ibrary i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3
4 entity my_module i s
5 port (
6 c l k : in s td_ulog ic ; −−! Clock
7 reset_n : in s td_ulog ic ; −−! r e s e t
8 my_scalar_output1 : out s td_ulog ic ; −−! s c a l a r output por t
9 my_scalar_output2 : out s td_ulog ic ; −−! another s c a l a r output por t

10 my_scalar_input1 : in s td_ulog ic ; −−! s c a l a r input por t
11 my_scalar_input2 : in s td_ulog ic ; −−! another s c a l a r input por t
12 my_vector_output : out std_ulog ic_vector ( 4 downto 1) ; −−! a v e c t o r

output
13 my_vector_input : in std_ulog ic_vector ( 3 downto 0) −−! a v e c t o r

input
14 ) ;
15 end my_module ;

Listing 2.5: VHDL entity generated from the template

Just by writing an additional template it is now also possible to create a testbench, which
instantiates the entity and creates sources for every port without having to create a new
input file or model.
It should be clear now how easy it is using the meta-modeling approach to create code
automatically for different applications. For the case that a quite dedicated and standard-
ized meta-model already exists the effort is even reduced much further. Exporters from
this format are always independent of the input source style (the Excel table or else) and
are reusable for everyone who works with this model. This is exactly what the Essence
data model is used for. The code generation examples in the UVM and formal verification
chapters are based on it.
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2.3 Universal Verification Methodology

The Universal Verification Methodology (UVM) is a new verification methodology and
features a SystemVerilog library to implement test environments according to it in Sys-
temVerilog directly and via Direct Programming Interface (DPI) also in SystemC and
similar HDLs. The UVM is based on the Open Verification Methodology (OVM) version
2.2.1, which has been used for several years. The UVM extends the OVM with new fea-
tures, the most interesting one for this thesis is the register layer. In the OVM register
tests needed additional packages like the RegMem package from Cadence. Another big
advantage of the UVM is that it is supported by all of the big tool vendors like Cadence,
Mentor Graphics and Synopsys. The OVM was not supported by all vendors and there
was the Verification Methodology Manual (VMM) as competing methodology as well as
several other ones. The VMM defined a register layer (called RAL - register abstraction
layer) which served as the base for the UVM register layer.

2.3.1 Basic Verification Environment

This chapter serves as an introduction to the structure of a UVM test environment and the
components it typically includes. Some are not always required or are sometimes implicitly
included in special classes. This is very similar to the OVM environment structure, but will
still be explained here, as understanding this structure is essential for understanding how
the methodology works, how parts of this can be generated and how easily components
can be exchanged with other components without having to adapt the whole testbench.
In figure 2.4 an overview of the core structure of a testbench is given. The components in
this will be explained in detail in the following sections.

A main aim of the UVM (and also OVM) is to improve Verification Intellectual Prop-
erty (VIP) reuse. This is a reason why this structure might seem a bit complicated com-
pared to a typical testbench written in plain VHDL/Verilog style or in Tool Command
Language (Tcl). It might also seem strange at first that the verification environment is
instantiated in the test and not the other way around. This is also due to the reusability
approach. This will be explained further in 2.3.1.

Environment

As mentioned in [20, pg. 66] the environment includes the main methodology components
like the agents (which include the monitor, driver and sequencer) and the scoreboard, but
it can also include environments, which allows building hierarchical verification environ-
ments. It does not include the tests, but is instantiated in the tests. In [3, pg. 4f] it
is stated, that the main purpose of the environment is to "model behavior by generat-
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testbench_top (module)

my_test : uvm_test

my_env : uvm_env

Scoreboard

my_agent_ifc1 : uvm_agent

my_sequencer_a : uvm_sequencer

my_driver_ifc1 :
uvm_driver

my_monitor_ifc1 : 
uvm_monitor

DUTIFC1 IFC2

my_agent_ifc2 : uvm_agent

my_sequencer_b : uvm_sequencer

my_driver_ifc2 :
uvm_driver

my_monitor_ifc2 : 
uvm_monitor

Figure 2.4: Structure of a UVM testbench

ing constrained-random traffic, monitoring DUT responses, checking the validity of the
protocol activity, and collecting coverage".

Agent

The agent works as container for interface specific components that logically belong to-
gether (e.g. a CAN driver and its sequencer and a CAN monitor) and can be reused as
this bundle in other environments. It can be stored in VIP repositories to facilitate reuse
[3, pg. 2]. It does not need to include a driver. If only a monitor is used it is a passive
component that only reads the bus. This should rather be done by building a configurable
agent that uses configurations to decide if the driver should be instantiated(see [20, pg.
14]). The agent itself has not much functionality other than deciding this active/passive
state and instantiating and creating the connections between its contained components.
These include the real functionality and are explained in detail in the following sections.
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Monitor
A monitor is a component that reads data on an interface. It, thus, has to be able to de-
code the specific protocols at least on the data link layer. Further information processing
might happen in an upper layer of the hierarchy, e.g. the scoreboard or a custom decoder
component in between, but for passing typical transaction items (i.e. sequence items) it
usually does the full decoding for this. A monitor does not drive signals so all the ports in
the interface connecting to the DUT are inputs. If it is connected to a scoreboard it uses
an analysis export to send data via a Transaction Level Modeling (TLM) channel to it.
For coverage driven verification (what the OVM/UVM standard is about) the monitor is
also used to check coverage. It is not the only Verification Component (VC) that checks
coverage though. It is mentioned in 2.3.2 that the register model defines its own cover-
groups and coverage constraints for functional coverage. As this is not directly used in
this thesis for more information about coverage driven/coverage based verification a short
introduction can be found in [3, pg. 1], for further information refer to [8, pg. 235ff] or
[12, pg. 55ff].
Driver
A driver is the VC responsible for communication with the DUT. It drives the signals
and in some cases also reads them. This backward path is used for protocols like the
Serial Peripheral Interface (SPI). A driver receives items from a sequencer (which is also
part of the agent and will be covered in the next section) via a TLM port and transforms
this abstract item into a hardware access to the DUT via a virtual interface (a virtual
interface is an instance of a normal SystemVerilog interface that only exists at runtime,
as it is created in an object context).
Sequencer
A sequencer takes items from a sequence (usually generated in the test) and passes them
to the driver. This can be done in pull-mode (the driver requests the item from the se-
quencer) or in push-mode (the sequencer pushes the item into the driver). Sometimes
the sequencer is a simple typedef that adapts a uvm_sequencer base class to the used
sequence_item type. It can also handle the randomization of items and other functions.
See [3, pg. 3] for more information on this topic.

Sequence

A sequence is a structured series of data called sequence items that are sent to the se-
quencer for use in the driver. It can describe directed tests as series of predefined trans-
actions or generate constrained random data. It is separated from the hardware specific
representation of data (which is created by the driver from these items) and can be reused
for testing the same data sequences on different interfaces connecting to a DUT without
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having to change anything but the hardware-specific part (i.e. the driver or the whole
agent). Figure 2.5 shows this communication from the sequence to the DUT. For more
detailed information refer to [20, pg. 177ff].

Sequence

seq_item

seq_item

seq_item

seq_item

seq_item

seq_item

seq_item

seq_item

Sequencer Driver DUT
TLM TLM I

F
C

I
F
C

Test Agent Testbench

seq_item seq_item

Figure 2.5: A UVM transaction from sequence to DUT

Test

The test is the object, whose execution gets called in the top testbench module using
run_test(), but it is not explicitly instantiated. Although they can be defined in the
testbench, it is better to define the tests in separate files and include them in the testbench
file. The command line argument +UVM_TESTNAME=class_name_of_test_to_run
chooses the test and executes it in this testbench. This way it is easier to use such
automatic tests if e.g. overall coverage is checked and collected with another program like
the Verisity vManager [29] or similar software or self written verification scripts. The test
instantiates the sequences and the environment. In this way the same test can be done
using different environmental setups e.g. other interfaces or differently connected interface
for a new version or different configuration of the DUT.

2.3.2 Register Model

The UVM register model is based on the VMM Register Abstraction Layer (RAL) [5].
It describes the registers (and memories) in a class hierarchy. Parts of the following
explanations of the register modeling can be used in a similar way for modeling memories,
but as this is not in the scope of this thesis it will be omitted. For further information
on how to model memories refer to [20] and [3] and for tutorials and code examples the
Mentor Graphics OVM/UVM cookbook in the verification academy [26] is recommended,
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note that registration with a company email address is needed for access to this. In the
following sections the basic building blocks of the register model will be explained, but the
focus is on the register types used in this thesis (there are some more ways of modeling
the registers). In fig. 2.6 an example testbench using the register model can be seen.

testbench_top (module)

my_test : uvm_test

my_env : uvm_env

my_agent : uvm_agent

DUTIFC

RegModel

RegModel
Ref

Reg. Sequence RegModel
Ref

Reg. Sequence RegModel
Ref

Reg. Sequence RegModel
Ref

Sequencer 
<-> 

RegModel
connection

my_monitor : 
uvm_monitor

my_driver :
uvm_driver

my_sequencer : 
uvm_sequencer

Figure 2.6: Example of a UVM testbench using a register model

Bitfield

The bitfield is the smallest element of the register model, and registers consist of these
bitfields. It describes a set of bits that logically belong together. The base class is
uvm_reg_field, which normally is not subclassed, but used the way it is. For special
purposes it might help deriving an own class from this, e.g. for implementing special
access policies like config-once [3, pg. 93]. A bitfield can be configured with the following
parameters [2, pg. 548]:

• size: the size in bits
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• lsb_pos: the position of the LSB of this field in the containing register

• access: a string selecting a predefined access type (see [3, pg. 89f])

• volatile: the volatility of the field

• reset: the reset value (standard: power-on-reset value, but several resets possible)

• has_reset: defines if the field has a reset

• is_rand: activate/deactivate randomization (should be set to 1)

• individually_accessible: defines if the field is accessible individually in the register

The access policy is one of the essential settings for automated access checking. It defines
how the bits should behave on read and write operations. The most common types are
"RO" (read-only), "RW" (read-write) and "WO" (write-only). The UVM defines several
other types, see [3, pg. 89f] for a list of the predefined policies. These policies can be
extended to match user needs. A typical application would be a field that is read-only as
long as a special bit is not set (guarded field).

Register

A register is the element grouping a number of bitfields and configuring them (with the
settings mentioned in 2.3.2). The register class is derived from uvm_reg and filled with
the design specific information. This means that the bitfields get declared and then con-
structed via the factory in the build phase (the UVM uses a design pattern called "factory"
defined by the Gang Of Four to provide reconfigurability without having to alter the test-
bench code [39]). In this register class custom cover groups and coverage settings can
also be defined. Some coverage can be collected automatically (by passing arguments like
UVM_CVR_FIELD_VALS in the constructor of the class, see [20, pg. 142] for more).
For this thesis custom cover items will not be used, the predefined register sequences
already include checking the information needed for general access verification.

Register Block

A register block, derived from uvm_reg_block, declares the registers and constructs them
via the factory. It also handles the mapping from different interfaces to the registers.
The interface mappings can have different base addresses, byte widths and endianess and
the register can be mapped into these interfaces on different addresses and with possibly
different access types (read-write, read-only or write-only). The HDL path needed for
backdoor access (see section 2.3.3) is also specified here (optionally, only needed if it is
used, which is the case for some sequences used in this thesis). This is a possible top level
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of the register model, but blocks may also be included in blocks. When instantiating the
model in the testbench a check if the parent is null is used to see if it is really a top level
block. See figure 2.7 for an example structure of a register model.

top_block : uvm_reg_block

my_reg1 : uvm_reg

uvm_reg_field reg1_field1

uvm_reg_field reg1_field2

uvm_reg_field reg1_field3

my_reg2 : uvm_reg

uvm_reg_field reg2_field1

uvm_reg_field reg2_field2

uvm_reg_field reg2_field3

ifc2_mappingifc1_mapping

Figure 2.7: Example structure of a register model

2.3.3 Using the Register Model

This section is about the usage of a register model after it has been created like described
in the previous sections. The model itself gets instantiated in the test, as it can be seen
in figure 2.6. After connecting it to the sequencer in the agent for the used bus interface
the driver can access the registers in the DUT like it would be done on the real IC, as
described in 2.3.3. The alternative to accessing a register in a device in a testbench, which
does not take simulation time (in the meaning of simulator time steps) because it bypasses
the normal communication and directly writes into the signals is called backdoor access,
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described in 2.3.3. After successfully connecting everything register sequences can be used
to drive the signals. These sequences can be custom ones utilizing the register model to
e.g. create directed tests (maybe a chip startup sequence) or also constrained random
testing or mixed ones, like starting up the chip normally, then switching to constrained
random values sent to the DUT. The UVM also predefines some sequences that perform
the checks that are most commonly done on designs.

Access Types and Functions

As mentioned, there are two major ways of accessing any device in a testbench - a normal
access via an interface and a backdoor access.
Frontdoor Access
A frontdoor access is the method used to communicate to the chip after production. Data
is written to or read from the device via an interface like a LIN, SPI, CAN or any other
one suitable for the design. This can not happen in zero time, as data will be transferred
in one or more clock cycles. For the pre-silicon verification this means that this will take
simulation time, but reflects a real access in the best way. It is essential to check this kind
of access to detect interface design errors as well as errors in the registers.
Backdoor Access
A backdoor access is an access that bypasses the real interface communication and thus can
be done in zero simulation time. This of course does not reflect how the real communication
works, but is a good tool to see what data arrived in a register after accessing it via the
frontdoor or writing known data into a register and check what arrives on the interface
after a read access. In SystemVerilog such an access is quite easy, as signals can be accessed
from the outside of the module by specifying the hierarchical path to it in a fashion like
dut.module1.submodule1.signal. In the register model these paths can be specified to
allow the predefined sequences to use it. The frontdoor access is independent of the actual
position of the register in the hierarchy of the design as the access works via the interface,
but the backdoor path changes if the register is moved between blocks. For automatically
generating the backdoor path it is thus needed to know the whole system structure. The
good thing for the solution in this thesis is that the Essence data model is capable of
describing the whole design with hierarchies and registers. As this meta-modeling flow is
a new approach in design used at Infineon Graz only for a year now not everything has
been moved to a full description via a meta model, so the backdoor paths get specified
manually for now, but this will be changed to automatic generation later.
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Register Sequences

Sequences are used as a high-level interface independent description of data to be sent over
an interface (or via backdoor). For the register sequences these use the register model to
create fixed or random data fitting to these registers. For extensive testing of the design
quite a lot of sequences will be needed, some of them as directed tests for checking the
defined behavior and some as randomized sequences to check the handling of correct and
possibly faulty settings. Using randomized sequences results in automatically checking the
design’s behavior on lots of different register accesses, some maybe not considered while
designing, without having to explicitly specify hundreds of sequences. This randomization
can of course be constrained to take only a special set of values or values in a specified
range or similar, but one has to keep in mind not to constrain too much or possibly faulty
stimuli might not be generated. The UVM already specifies some sequences that check
part of the design and use the register model’s constraints like access type and bit width to
automatically drive signals and compare the results to the mirror (a modeling of register
data predicting what will have to happen to the bits according to their specification).
Built-In Sequences
The UVM has predefined sequences for several types of register and memory accesses. As
it is not in the scope of this thesis the memory part will be omitted, see [3, pg. 129f]
for information on this. For the register sequences there are some that work on a single
register and according ones that do the same for all registers in the model. The first
sequence, that should be run is the reset value checking sequence (which is only defined
for the whole model) that verifies the "hard" reset values (set in the model) after a reset of
the DUT. It is called uvm_reg_hw_reset_seq. The full list is available in [3, pg. 129f].
Custom Sequences
Custom sequences can be used for directed tests (e.g. sending two operands and check-
ing the correct result of a multiplier) but also for random stimulus or general register
tests that are not covered by the default sequences. It is done by deriving a class from
uvm_sequence and creating a reference to the register model there. In the body task func-
tions like reg_model.REG_NAME.write or reg_model.REG_NAME.read can be used to
communicate with the DUT and still have the mirror check the behavior. The bus ad-
dresses of the registers are also not needed in the test as the access functions are working
on the register model and get the address from there. This means that a change in the
register addresses has no influence on the sequence and thus reusability is better and it is
more robust against design/concept changes. Backdoor access can also be used in custom
sequences, but it has the problem with the dependency on the design hierarchy (and nam-
ings), which makes it weak against the design/concept changes, but allows better insight
into the DUT.



CHAPTER 2. THEORETICAL BACKGROUND 42

Extending Bitfield Behavior

There exist a lot of predefined behaviors, as can be seen in [3, pg. 89f], but for a typical
design the point at which none of those fits for some bitfields will be reached soon. There
are virtually infinite possibilities for behaviors, so there is a mechanism to implement cus-
tom ones. One example would be a bit "valid" that gets set after an Analog to Digital
Converter (ADC) finishes the conversion and places the measured value in a register. No
description fits the "set by design" behavior which that is. It would be very hard to gen-
erally specify this without losing the ability to check this bit. But with knowledge of the
design one is able to tell that this bit will be set in an amount of clock cycles after another
bit (the "start conversion" bit) was set. Another quite usual behavior is the guarded field,
which is only accessible for write operations after a special guard bit has been set. To
enable such a behavior two ways are possible [3, pg. 92f]:

• Derive a custom class from uvm_reg_field in which the methods for pre/post read
and write are extended.

• Create a custom callback method.

As such bitfield behaviors might be quite usual in the designs one is working with it is
best to create a library for such special bitfields to enable reuse.

2.4 Formal Verification

Formal verification is a term that has been around for more than 30 years [8]. Its use is
quite common in software development nowadays, for example the Microsoft SLAM and
Static Driver Verifier (SDV) [15] [24], where formal methods are used for static verification
of driver code written for Microsoft Windows. There are also operating system kernels that
claim to have been fully verified using formal methods [22]. For hardware development
formal verification has been in use for some time too. The most typical and widely
used formal verification type in hardware design verification today is equivalence checking
(starting by the late 1990s [8, pg. 174]), i.e. checking two implementation stages (or
designs) against each other for logic equivalence. This can be for example the comparison
of RTL code and gate level netlist, the comparison of two netlists after a small fix has been
made in one of them or the comparison of a design written in one HDL to the same design
after moving it to a different language [12, pg. 9f]. The logic equivalence check has become
an integral part of today’s design implementation and verification flows. The second one,
which is in the focus of this thesis, is called model checking. The usage of model checking
has increased in the last years, but it originates from the 1980s. In 1981 Emerson and
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Clarke independently developed temporal model checking, also Queille and Sifakis did this
in 1982 [21]. The focus of this approach was on finite state machines and transitions and
it utilized Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) [7, pg. 16,
314f] respectively. Details on these are given in the following sections.

2.4.1 Introduction to Formal Verification

Ideas

The basic idea behind all types of formal verification is to use a mathematical proof for
the correctness of a system. To do so, it is needed to abstract the given system from C
code or HDL code or any other type of implementation (also netlists etc.) to a formal
representation. In software this is typically a boolean representation (see [24] for a an
approach with an incrementally refined boolean model in software), for hardware this is a
state transition structure (Kripke structure). For equivalence checking now just another
system abstracted in the same way is needed to check against (and probably a rule set
that defines the equivalence of certain structures). For model checking, which is the main
topic in this thesis, this is not enough. A formal specification of the system, referred
to properties, is needed additionally. These properties define the behavior of the system
using sequential statements (sequences), implications and time invariant expressions. The
properties are then asserted in certain conditions (e.g. reset, system running, special
operation mode). The formal verification tool uses this specification to check the abstract
model for correctness. This already shows a potential problem - the results of the formal
verification will only be as good as the properties. It is one of the reasons to automatically
create the properties from the specification itself in this thesis, as this reduces the risk
of human errors in generating them (anyone who has ever written formal assertions for a
system, no matter if hardware or software, knows what a complex task this can be even
for simple behavior and thus it is likely to be error prone).

BDD Solvers

A binary decision diagram is a directed, acyclic graph, that is a representation of if-else
decisions. To obtain such a graph from a Boolean expression the If-then-else Normal
Form (INF) needs to be obtained. Boolean expressions are commonly written either
in Disjunctive Normal Form (DNF) or Conjunctive Normal Form (CNF), but it can be
proved, that any Boolean expression can be written in INF by using the Shannon expansion
[6, pg. 8f]. The result can be represented as a tree (called decision tree). The nodes of
this tree represent the decisions, the leaves (terminal nodes) are the constants 0 or 1.
An example for the boolean expression t = (x1 ∨ x2) ∧ (x3 ∨ x4) is given in figure 2.8.
If the number of subexpressions in this expression (or tree) is reduced by combining the
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Figure 2.8: Decision Tree for t = (x1 ∨ x2) ∧ (x3 ∨ x4)

equal subexpressions the result is the binary decision diagram. For the given example
the resulting Binary Decision Diagram (BDD) is given in figure 2.9. The BDDs used
for calculations are often special types: Ordered Binary Decision Diagram (OBDD) or
Reduced Ordered Binary Decision Diagram (ROBDD) [6, pg. 12], where ordered means
that the variables are used in a certain order through all paths of the graph and reduced
means that all nodes are unique (no two nodes of the same variable have the same then
and else path) and no redundant tests (then and else path are the same) are used. One
major use case is in formal verification [6, pg. 29]. For ROBDDs efficient algorithms
for logical operations on these exist [6, pg. 12] and their nature also implicates that the
diagram for two equivalent boolean functions has the same nodes (and is thus the same
ROBDD)[6, pg. 13]. With this the benefit of these diagrams in equivalence checking is
obvious. For model checking it is checked if for a model M and a set of properties P :
M ` P (M satisfies P ), where those properties are typically specified in CTL (see 2.4.2)
and both the model and the properties can be brought into the form of an OBDD.

SAT Solvers

Satisfiability (SAT) solvers work based on the boolean satisfiability problem. This problem
describes the following [23, pg. 157]: There exists a formula ϕ (in our case the property
or its inversion); the satisfiability problem on this is the question if a variable assignment
on ϕ exists, which lets it evaluate to true. If it exists ϕ is satisfiable else it is unsatisfiable.
This problem is a known NP-complete problem. NP complete means nondeterministic-
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Figure 2.9: Binary Decision Diagram for t = (x1 ∨ x2) ∧ (x3 ∨ x4)

polynomial complete and is a complexity class for problems typically used in informatics.
Polynomial problems can be solved in polynomial time (a polynomial function of the input
size), for NP-complete problems a given solution can be verified in polynomial time, but
finding this solution might take a lot more time. The NP-complete class is a subclass of
NP problems, if any of these could be proven to be solved in polynomial time all would
be solvable in polynomial time.
So why care for an algorithm, that will take virtually forever to solve? In practical use,
there are lots of additional constraints for certain problems. In hardware everything is
finite sized, e.g. memory can not grow in run time and has its size defined by design.
There are several other simplifications that can also be applied to hardware problems.
For ϕ, which is a boolean formula, the typical representation is the conjunctive normal
form (CNF). Most SAT algorithms are built up following a similar scheme (see [27]),
with which the algorithms search through the state space, trying all variable settings and
deducing satisfiability or unsatisfiability from it. SAT based model checking is able to
handle very large designs (a lot larger than BDD based) in a very efficient way, but it
can usually not provide completeness (it is bound by the length of the counterexample).
It is often fast at discovering bugs [13]. This was very well visible when doing the tests
with the formal approach, where finding the bugs often took only minutes but proving the
correctness took hours or never finished due to reaching the state space exploration limit.
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FV in Hardware Verification

As mentioned before, this thesis is about hardware verification. Though formal verification
of hardware and software share some ideas, special solutions have been found for the
problems in HW verification.

2.4.2 Static Code Analysis

The term static code analysis already implies that there is no real simulation running, i.e.
the code does not get executed. It is rather checked in a static state. For equivalence
this stays static. For model checking, the start of the state space exploration is this first
point in time. The exploration runs on the abstracted model, not the code. From this
starting point, the formal static checker tries to find a way to a state, that proves a given
assertion wrong. The structure representing this abstract model and the logic types used
to disprove the assertion in formal hardware verification will be explained in the following
subsections.

Kripke Structure

The abstract representation of the RTL code is, as mentioned above, a state-transition
model, usually a Kripke structure. It can be seen as a kind of finite state automaton.
According to [36, pg. 45], a Kripke structure K for a finite set of variables is defined as
K = (I,S,R,L), where I is a set of initial states, S is the (finite) set of all states, R is a
transition relation (a collection of all possible state transitions si → sj within this model)
and L is a label function, that maps each state to a set of variables. In figure 2.10 an
example of such a structure is shown. It has the following attributes:

• I = s0 (it starts in state s0, denoted in this figure by a double circle)

• S = (s0, s1, s2, s3)

• R = {(s0, s1), (s1, s2), (s2, s1), (s2, s3), (s3, s3)}

• L = {(s0, {a, b}), (s1, {a}), (s2, {a, b}), (s3, {b})}.

In some model checking papers and approaches the Kripke structures will not look exactly
like the one described here, but have some extensions for modal-µ-calculus or use different
definitions (e.g. labeled transition systems with actions) of these, but those can be brought
into the form of a Kripke structure again.
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Figure 2.10: Representation of a Kripke structure with I = s0, |S| = 4

Temporal Logics

Temporal logics are needed to describe the behavior of reactive systems, as their correct
behavior also depends on their states and state transitions over time and in certain con-
ditions. There are basically two kinds of temporal logics: linear ones (one future) and
branching ones (many futures). The ideas of one and many futures originate from philo-
sophical theories, which go back to Aristotle and the modern interpretation of them was
founded by Arthur Norman Prior ([38] and they prove to be very useful for describing cer-
tain aspects of system behavior. The two main operators working on both the linear and
branching times are the eventually (♦) and the always (�) operator. Eventually describes
that at some point in the future the given formula must be true 1. Always describes that
the given formula must be true from now on, forever and on all paths.
Linear Temporal Logic
Linear temporal logic is a propositional temporal logic, where for each moment in time
only a single possible following state exists. This is a linear representation of time (only
one possible future) [7, pg.229f]. LTL uses atomic propositions, basically the same as the
state labels (see also 2.4.2), the standard boolean functions (and, or, not, ...) and addi-
tionally the two timing operators next (©) and until (

⋃
). Next holds, if the formula it is

used on holds in the next step, until uses two formulas as input and holds, if the first one
holds until the second one holds. With the until timing operator the always and eventually
operators can be created(where ϕ denotes an LTL-formula) [7, pg. 232]: ♦ϕ = true

⋃
ϕ

and �ϕ = ¬♦¬ϕ (where ¬ denotes the negation)
The first one uses true as formula until ϕ is active, which will hold (be true) until the
occurrence of ϕ, which means that eventually ϕ will be true. The second one states that
the inversion of ϕ will be never seen in the future, which means ϕ must hold from now on
until forever, which is the definition of always.

1Remark for German native speakers, as this is a common false friend: this word translates to “irgend-
wann” rather than to “eventuell”
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Computation Tree Logic
In contrary to LTL Computation Tree Logic (CTL) is a branching time logic, which means
that for every point in time several possible successor states can exist [7, pg. 313ff]. The
operators used to express CTL formulae are the two timing operators next (©) and until
(
⋃
), just like in the LTL, and additionally ∃ and ∀, which have a similar meaning as in

normal mathematical functions (“a path exists” and “for all paths”) and boolean operators
(∨, ∧ etc.). The always and eventually operators can be derived similarly to LTL [7, pg.
317f]. In other literature (as e.g. in [15]) the operators are defined as A (“for all paths”),
E (“a path exists”), G (“globally”), F (“eventually”), U (“until”) and X (“in the next
tick”), which can obviously be mapped onto the ones mentioned already.
If certain initial conditions for the starting state are given a search through the tree fol-
lowing this state can be performed to prove a condition specified by these operators. With
this typical system behavior requirements can be specified and proven with suitable tree
search algorithms, for example AG¬(read ∧ write) specifies that read and write should
never occur at the same time or AG(read → X(bus_read_ack)) specifies that one cycle
after a read a bus acknowledge signal has to be set.

2.4.3 Assertion Based Verification

Assertion based verification has been used for a long time already. About every software
developer has used the assert(false) statement already to force a program to stop on en-
tering unwanted states. The same assert statement is available in all common hardware
description languages. The statement itself does nothing else than checking the boolean
expression inside the parenthesis and terminating the program or simulation if it evalu-
ates to false. Usually a message can also be attached to tell what happened. Forcing a
program/simulation to stop or at least show an error message that can not be overlooked
while executing a normal run of the software or RTL code helps finding errors even if the
software or simulation test was not intended to show this. In software as well as in hard-
ware these assertions are not just used in the assert(false) style, but for real verification
purposes a term gets asserted that checks for example the size of a buffer that should
never overflow: assert(buffer != full). Of course buffer and full would have to be defined
in a meaningful way to check against them, full would be the maximum capacity of the
buffer and buffer the current size. This assertion would be placed in the code just before
the additional item is inserted. This is just a simple way to do it. In my experience in
software I have always seen assertions as part of the code, so they are placed directly inside
the functions. For hardware it is also possible to just insert an assertion statement some-
where inside a process. As an assertion is obviously not synthesizable it will be removed
upon synthesis and is only present in RTL. The approach used in hardware is typically to
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create at least a second process (surrounded by pragmas to hide it from the synthesizer)
which reads the signals of the real hardware process and raises assertions accordingly. For
designs nowadays, where the use of Intellectual Property (IP) blocks, which are often even
purchased from external companies like ARM, is increasing and the assertions inside a
module or entity are shipped with the module and can help to prohibit wrong usage of a
design block. Looking into such a design it can be very confusing to see mixtures of code
and assertions, so it is another approach to separate the RTL code from the assertions. In
the following subsection about SystemVerilog assertions this approach will be shown. The
assertion style shown below is really the simplest way to do it. Focusing on hardware a
lot of additional assertion functionality has been developed to satisfy the needs to express
time dependent behavior, so called sequences. As the style of modeling the special hard-
ware functionality depends on the used assertion language (e.g. SystemVerilog assertions,
PSL) this will also be covered in the next subsection.
Assertions have two main fields of application: as assertions running with the simulation
in a directed or constrained random test (functional verification) and as the specification
language for formal verification.

SystemVerilog Assertions

SystemVerilog is an extension of the Verilog hardware description language. Because of the
big amount of new functionalities that it adds it might already be considered to be a new
language. The improvements are in the hardware description itself, which are for example
the always block definitions for combinatorial, flip flop and latch processes (always_comb,
always_ff, always_latch) which allow additional checks on these and implicit sensitivity
list generation, interfaces to connect modules, removal of restrictions on port signal types
(Verilog could not handle complex types as module ports) and several others. The by far
biggest extensions in SystemVerilog are for verification purposes. It adds a whole object-
oriented (non-synthisizable) part used for example in the OVM and UVM methodologies.
It also adds a native way to express assertions in even very complex ways. It also provides
a mechanism to separate the RTL code from the assertions using a so called bind file. For
the following subsections the background information was mostly taken from [34], which
is also recommended for further reading. Some of the knowledge about this topic was
acquired in training courses, but should be mentioned in the book as well.
Separation of Code and Assertions
As it can be confusing or at least cumbersome to have a mixture of code and assertions
inside the same module and as the RTL code shipped by IP vendors can be write protected
a way exists to separate them. For the automatic generation approach of this thesis it is
also easier (and looks nicer) to create a full stand alone file (although it would be possible
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to mix manual and generated code). On a side note: For VHDL users that want to use
SystemVerilog assertions for their code this solution is also the way to combine these two.
The idea behind the bind file is to add the assertions to the code (into the module) without
having it really visibly combined for the user. For this approach, three files are needed:
a module definition (the RTL code), an assertion module definition (the sequences, prop-
erties and assertions) and a bind file. To illustrate this, the SPI-multiplier DUT already
shown in the UVM chapter is used. The DUT looks like this:

1 module d_spi_mult ip l i e r ( input reset_n , input c lk , input csn , input sck ,
input mosi , output miso ) ;

Listing 2.6: SPI multiplier DUT

The SVA file for this, be aware that this module has only got inputs! The assertions watch
and check the design, but they must not drive any signal.

1 module prop_d_spi_multipl ier ( input reset_n , input c lk , input csn , input sck ,
input mosi , input miso ) ;

Listing 2.7: SPI multiplier SVA module

The bind file, which uses automatic name connections of the ports (wildcard .* connec-
tion) to bind the input ports of both designs together:

1 bind d_spi_mult ip l i e r prop_d_spi_multipl ier prop_d_spi_mult ipl ier_inst ( . ∗ ) ;

Listing 2.8: SPI multiplier bind file

After creating this, an instance of the SVA module is attached to the DUT as it is depicted
in figure 2.11. It is like an instantiation of the assertion module inside the design, but

DUT

SVA_DUT
Bind

DUT<->SVA

SVA_

DUT_

Inst

Figure 2.11: Using a bind file assertions can be added to a DUT

without having to touch the design code itself. This also means that internal signals of
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the design can be fed into the assertion module using ports (see also [19] for examples on
this).
Sequences
Sequences are a way to describe the time dependent behavior of hardware systems. With a
sequence definition a pattern is described, which is searched for when using the sequence.
It can not pass or fail, only match or not match. As soon as the first expression of the
sequence evaluates to true an evaluation attempt is started, waiting for the next sequence
expressions to happen. If the first expression stays true or gets true again later another
evaluation attempt is started and may be running in parallel to the first one. A typical use
would be to describe a handshake protocol: if the signal REQ goes high, the signal ACK
has to be set within 1 to 5 clock cycles and the data transfer will start in the next clock
cycle (indicated by DATA_EN ) and take 3 clock cycles. See figure 2.12 for a graphical
representation of this. To describe this, a sequence in SystemVerilog could look like this
(leaving out REQ and ACK duration check for ease of reading):

1 sequence handshake_seq ;
2 REQ ##[1:5] ACK ##1 DATA_EN[ ∗ 3 ] ;
3 endsequence : handshake_seq

Listing 2.9: Handshake sequence example for figure 2.12

As one can imagine from this definition and especially the possibility that ACK can be
set within a timeframe greater than one clock cycle there are several different ACK-
REQ-DATA_EN sequences that match this description. While this is helpful to describe
consecutive events that may slightly vary it can also introduce unwanted matches, as one
may have not thought about this when writing the sequence. This may in the best case
produce a wrong fail of an assertion, which can be checked and found. The worst case is
that the design is buggy, but the sequence (or the whole assertion, there are also other
possibilities to make mistakes outside of the sequence context) allows this behavior and
a real error is overlooked. A little more detail about passes/fails and possible problems
with them is given in the assertion subsection.
A look at the figure might raise the question why the signals get their value before the

rising clock edges. This is used to avoid reading issues for people seeing sequences the first
time. In reality sequence values are sampled one time step before the rising clock edge.
This is done to prevent race conditions between the test and design. A flow diagram of
the SystemVerilog scheduling is shown in figure 2.13 and the activities for code/assertion
evaluation are marked there. The figure is a simplified version of the flow diagram given in
[1, pg. 137] with additional annotations for the sampling and evaluation of design informa-
tion/assertions. For more and in my opinion better explained information on scheduling
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Figure 2.12: An example of a typical handshake protocol, two different ways that would
both be valid for the defined sequence (there are more valid possibilities), green lines show
where the sequence is running, a green arrow where the sequence is successfully finished
and red arrows where a sequence checking run is stopped due to a mismatch

and regions in SystemVerilog [18] is recommended for further reading. With regard to the
work in this thesis, it is important to understand the fact of the shifted sampling point for
being able to read the diagrams in the right way. A signal change at the rising clock edge
will be seen at the next rising edge, so a worst-case delay of one clock cycle is possible.
Sequences can also describe time behavior, that can be in an undisclosed future using

the expression $. An example sequence looking like this is shown in the following listing.

1 sequence open_seq ;
2 REQ ##[1:$ ] ACK ##1 DATA_EN[ ∗ 3 ] ;
3 endsequence : open_seq

Listing 2.10: Sequence using an open ended timing

This sequence states: After a request, eventually, but at minimum one clock cycle later,
an acknowledge signal is set followed by a data enable that lasts for three cycles. As
nice as this might seem at first one problem comes with that: No matter if assertions for
simulations or formal verification are used, if a sequence defined this way is used it might
not finish until the end of simulation or state space exploration. This will result in a fail
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for this test, as the sequence never finished or a pass for this test if it is defined that this
sequence should never happen. The main operators for sequences shall be shown here in
short (for a complete list refer to [1] or [34]):

Table 2.1: Sequence operators

Sequence Name Description

##x wait x clock cycles (can be any number >= 0)
[x:y] the expression before takes x to y cycles (y >= x)
*x the expression takes x cycles
[x:$] the expression takes x to infinite cycles
[=x] a number of x (possibly nonconsecutive) repetitions has to

happen
[->x] jump to repetition number x (for nonconsecutive events)

The operations mentioned above are for one sequence. There are also operators to combine
sequences in different ways like or and and operations, intersubsections and several other.
With those combinations it is possible to specify e.g. different subbranches in a protocol or
other complex behaviors of a system. Writing a complex sequence is not a very good idea
- it is hard to read and find out which sequence patterns emerge from this and it is hard
to debug. It is better to define small, simple sequences and combine them in upper-layer
sequences using the special operators or normal wait timings (the wait operation ##0 is
used to connect two sequences directly together).
Properties
A property represents a specification of some behavior of a system. It consists of boolean
expressions, sequences and other properties. The result of a property is either true or
false, but it is not evaluated on its own. This has to be done by using it in an assertion,
assumption or coverage definition (more on these topics in the next subsection). A property
can be one of the following seven types [1, pg. 278]:

• Sequence

• Negation

• Disjunction

• Conjunction

• If ... Else
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• Implication

• Instantiation

A sequence type property is either an instantiation of a defined sequence or an in-place
sequence definition. This property type evaluates to true if there is at least one sequence
match, otherwise it is false.

1 property prop_sequence ;
2 @(posedge c l k )
3 REQ ##[1:5] ACK ##1 DATA_EN[ ∗ 3 ] ;
4 endproperty : prop_sequence

Listing 2.11: Sequence type property

The negation is the inversion of a property. If a defined property evaluates to true the
negated property is false and vice versa. It can be seen as a logical not operator.

1 property prop_negation ;
2 @(posedge c l k )
3 not ( other_property ) ;
4 endproperty : prop_negation

Listing 2.12: Negation type property

A disjunction is an or-ing of two properties. It works like a logical or: if at least one
sub-property evaluates to true the whole property is true, else it is false.

1 property prop_dis junct ion ;
2 @(posedge c l k )
3 property1 or property2 ;
4 endproperty : prop_dis junct ion

Listing 2.13: Disjunction type property

A conjunction is an and of two properties. It works like a logical and: if both sub-
properties evaluate to true the whole property is true, else it is false.

1 property prop_conjunction ;
2 @(posedge c l k )
3 property1 and property2 ;
4 endproperty : prop_conjunction

Listing 2.14: Conjunction type property
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An if ... else property works like the typical if else clause: an expression (property or
sequence) is checked and depending on the result the property in the if or else branch is
evaluated. The result of the whole property is the result of the evaluated branch. It is also
possible to leave out the else, in this case the property evaluates to false if the condition
is false (and the nonexistent else path would be taken).

1 property prop_i f_e l se ;
2 @(posedge c l k )
3 i f ( property1 )
4 property2 ;
5 else
6 property3 ;
7 endproperty : prop_i f_e l se

Listing 2.15: If ... else type property

A property can be used to describe implications and those consist of two main parts: an
antecedent and a consequent. These two are connected by an implication operator, which
is depicted by |-> or |=>. The difference between these operators is that the first one
means the implication has to hold in the same clock cycle, the second one is for the delay
of one cycle which would be the same as writing x |-> ##1 y. However since it happens
quite often in synchronous systems that the reaction to a signal is seen one clock cycle
later this abbreviation is quite useful.

1 property prop_impl_immediate ;
2 @(posedge c l k )
3 prop_antecedent |−> prop_consequent ;
4 endproperty : prop_impl_immediate
5
6 property prop_impl_delayed ;
7 @(posedge c l k )
8 prop_antecedent |=> prop_consequent ;
9 endproperty : prop_impl_delayed

Listing 2.16: Implication type property

An instantiation type property is nothing else than instantiating another property inside
this one.
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1 property prop_ins tant i a t i on ;
2 @(posedge c l k )
3 instance_of_another_property ;
4 endproperty : p rop_ins tant i a t i on

Listing 2.17: Instantiation type property

Properties and sequences can be clocked (see above example: @(posedge clk)), but it
should rather be left to the uppermost property to define the clock and handle the dis-
abling of the assertion. As a typical property that works at the clock edge has the defined
behavior for the active system, most likely the reset state is very different (usually a static
value) from this and the assertion would surely fail in such a situation. This is why the
construct disable iff disable_condition is used do disable assertions under certain condi-
tions. This can be also other states than reset (the design might have additional states
like standby-modes, where the design is not active, but keeps the values of the registers
that were set when it was sent to standby). The deactivation of assertions can be done in
several ways, but for this use case (reset vs. normal operation) it is quite a comfortable
and safe way to do it.

1 property prop_clocked_disable ;
2 @(posedge c l k ) disable i f f ( r e s e t )
3 REQ ##[1:5] ACK ##1 DATA_EN[ ∗ 3 ] ;
4 endproperty : prop_clocked_disable
5
6 property prop_reset ;
7 $ rose ( r e s e t ) |−> (REQ == 0) && (ACK == 0) && (DATA_EN == 0) ;
8 endproperty : prop_reset

Listing 2.18: Clocked property that can be disabled for reset

The iff is not a typo, it stands for "if and only if" (the same as in mathematics and
logic equivalence). It means, that the condition before the iff only gets evaluated if the
expression after the iff clause is true, otherwise the whole block underlying the expression
is not executed. If the right hand side expression is true then the value of the expression
before the iff determines the execution of the block.
Assertions, Assumptions, Coverage
As mentioned above, a property itself is passive. To activate it, it needs to be used within
an assertion, assumption or coverage block.

• Assert: check that a property holds

• Assume: assumptions for characteristics of the environment (used for formal verifi-
cation)
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• Cover: check if this condition was seen in a simulation run (functional coverage)

A property with an assertion can look like this:

1 property prop_handshake ;
2 @(posedge c l k ) disable i f f ( r e s e t )
3 REQ |−> ##[1:5] ACK ##1 DATA_EN[ ∗ 3 ] ;
4 endproperty : prop_clocked_disable
5
6 a s s e r t property ( prop_handshake ) $ i n f o ( " Handshake ok " ) else $e r r o r ( "

Handshake f a i l e d " ) ;

Listing 2.19: Assertion for a defined property

The informational messages (the action block, can be used for more than just messages,
e.g. error counters) can be omitted. The property does not have to be specified before-
hand, it can also be done inline:

1 a s s e r t property ( @(posedge c l k ) disable i f f ( r e s e t )
2 REQ |−> ##[1:5] ACK ##1 DATA_EN[ ∗ 3 ] )
3 $ i n f o ( " Handshake ok " ) else $e r r o r ( " Handshake f a i l e d " ) ;

Listing 2.20: Assertion using an inline property

The assume statement looks the same, but without the action block at the end, so:

4 assume property ( @(posedge c l k ) disable i f f ( r e s e t )
5 REQ |−> ##[1:5] ACK ##1 DATA_EN[ ∗ 3 ] ) ;

Listing 2.21: Assume using an inline property

The assume statement could be used to tell the formal solver that the signals REQ, ACK
and DATA_EN behave like already specified. This can be used to model restrictions
on input combinations, sequences or the like. Typical examples are to specify that two
inputs are never (or always) active at the same time or that certain vector inputs are
inside a range smaller than their possible bit combinations. This can help the solver rule
out special cases and thus speed it up (can shrink the possible state space of the inputs)
and it removes cases that would fail because the restrictions are defined outside the tested
module. Special care has to be taken not to over-constrain a block, otherwise possible
faults might be missed. When moving up one layer in the hierarchy the assumptions of
the module inputs become assertions for this upper layer block.

The last standard statement is the cover statement. It is used to monitor design be-
havior and check for occurrences of special states, signal combinations, settings etc. It has
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a possible action statement that can be used to increment a counter or set a flag shows
a special setting was seen. This is used to measure functional coverage of a design. As
functional coverage, in contrary to code coverage, statement coverage and path coverage,
can not be done automatically cover statements are used to measure it. SystemVerilog
offers other ways of measuring functional coverage too, which are used in combination with
constrained random values. Covergroups can be defined to count occurrences of different
values, put them into special bins to aggregate events inside defined ranges etc. The whole
topic of functional coverage is quite a big field, actively being researched at the moment
and lots of different tools already offer different means of measuring coverage. It would
be a far too big topic to cover in this thesis, especially as it is not directly needed in
here due to the ways the registers are tested, but nearly every verification book mostly
focuses on this nowadays, for example [12] and [8]. Another book by Janick Bergeron [11]
features SystemVerilog code examples instead of examples in e and is highly recommended
for starting off with these topics.
Assertion Usage in Simulation Versus Formal Verification
Assertions and assumptions can be used in both formal verification and simulation. As-
sumptions are somewhat different for simulations than for formal analysis. For the analysis
it is just a hypothesis to prove the assertions. There is no check if they hold. For simulation
it can happen that assumed properties fail. It has to be a checked if they hold and a fail
is reported (a tool following the IEEE-1800 standard has to do this), but a success is not
needed to be reported (decision left to tool vendor). Assertions can be used the same way
in simulation and formal analysis, the difference is how the DUT is stimulated to reach a
certain state. For simulation this is some sort of testbench, usually with a testscript that
might either be a directed test or a constrained random one like an OVM/UVM test.
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Figure 2.13: The scheduling algorithm for SystemVerilog (with special attention to asser-
tions)



Chapter 3

State of the Art

This chapter gives some insight into related research and literature with the aim of com-
paring constrained random simulation to formal property verification or with the aim of
bundling them into a useful flow with the tests divided into the ones that are the most
suitable for a certain verification methodology.

3.1 General

These publications and articles are focusing on a design as a whole, not specifically register
accesses, which is a special sub-area in digital integrated circuit design and verification.
In figure 2 in [31] a typical functional partitioning is shown, which already gives a hint
that register verification can benefit from both functional and formal verification. Still
this figure is only an option, as it shows bus protocols as typical simulative use case, but
in [9, pg. 822] it is stated, that formal verification proved most useful for verifying the
compliance to bus protocols. This already shows a problem in assessing the use cases
for the methodologies, as, depending on the field of expertise the verified designs were
done in, the results what it can be used for may vary greatly. The best statement to
this might already be in [9, pg. 819], where it is stated that verification is “not an exact
science”. Also the few papers that actually compare the verification methodologies and
not only start from the “well known use cases” or focus on only one of the methodologies
in detail were written several years apart, in which time formal property verification as
well as constrained random simulation took a huge leap forward, e.g. the SVAs and the
UVM were introduced in this time. Both methodologies are currently still under heavy
development.

60
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3.2 Detailed Analysis

In the following subsections several papers are presented and analyzed in more detail. In
the first two parts papers focusing on one of the verification methodologies are presented
(simulative verification including constrained random simulations and formal property
verification) and in the third section papers about combined approaches and coverage
improvements with these combinations are considered.

3.2.1 Simulation Specific

The following papers focus on simulation based verification like directed tests and con-
strained random verification.

The first work is [33] and focuses on the software-development intense process of cre-
ating a simulation testbench and means to ease the limitations of the reusability of test-
benches. In the introduction it is already stated that currently the most widely used
verification technique is still simulation with either directed or random stimulus and as
the paper is from 2012 this is quite an up-to-date information. This also corresponds to
my own experience. They state that in order to perform simulation based verification a
testbench and tests have to be created, where the testbench instantiates and stimulates
the DUT and also collects the responses. They also state that the biggest amount of time
and costs in development are due to verification, which is a problem for more and more
complex designs, because this also increases the verification effort dramatically. Possible
ways presented as the current solutions for this are the reuse of verification components
and raising the level of abstraction. The problem with reuse is that for a long time the
components have been written in different description languages, which are often only
supported by one tool vendor (however the UVM addresses exactly this problem, but is
not mentioned in this paper) and VIP bought from external suppliers needs to be adapted.
The alternative, raising the abstraction level, is compared to the development digital in-
tegrated circuit design itself has gone through on the way from transistor level to RTL
descriptions. On the verification side this means aspect- and object-oriented languages
with built-in support of functional coverage collection mechanisms and similar functions.
As an additional approach they introduce model driven engineering. In this approach the
system is specified as model, which can be described in different levels of abstraction. This
abstract modeling is used in combination with code generation and is the same idea as
MetaGen, which is the tool used for this thesis. They present a process and tool-set that
consists of several meta-models and generators for the e testbench language. The ideas
behind it are explained in more detail, which is aspect-oriented programming that can be
used in e, as well as an overview of the development of model-driven engineering and the
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way this is used. It means starting to create a model, which is done here by using UML
(also for a meta-model in MetaGen this is done in UML). The authors use some addi-
tional functionality developed before to generate the final e models. The next part is an
evaluation of testbench structures and the problems with the rather bad modularization
in e testbenches. After this they start the development of their testbench model, which
is created in a way that it is able to handle the common testbench structures like agents
(see 2.3.1), clocks, signals, scoreboards and many others. The following chapter consists
of explanations on how the next steps to generating the code work, which is of less interest
for this thesis, as the generation workflow is already defined by MetaGen here. The final
outcome in comparison to manually written testbenches showed that the meta-modeling
approach can give a huge benefit and sometimes even create better code regarding certain
metrics. This experience can be shared with the one using MetaGen, as it drastically im-
proved the effort to benefit ratio for UVM testbenches by using VIPGen, the meta-model
for UVM, and this is also the reason to use code generation in this thesis.

The paper by Zhou et al. [42] deals with functional verification with a verification
environment created using the object-oriented part of the SystemVerilog language. It uses
the approach also used in UVM, OVM and similar methodologies applying constrained
random stimuli, layering the verification environment in different abstractions to create
reusable verification blocks, using scoreboards to check the resulting DUT responses and
the coverage functionality of SystemVerilog to collect functional coverage. The introduc-
tion to the paper starts with the current simulation based verification methodologies,
where UVM is still missing as the successor of OVM and VMM. In the following chap-
ter the important parts of the test environment methodology are explained a bit further.
This is the object-oriented programming approach, the layered abstraction, which facil-
itates easy maintenance and reusability of the test environment, assertions for dynamic
simulations, constrained random stimulus generation and the functional coverage analysis.
The verification environment is then set up according to the layered approach, which is
similar to the UVM approach. The results satisfy as all the functional coverage points
and cross-coverage derived from the requirements are hit several times by the random
simulation.

The paper “Functional Coverage Driven Verification for TAU-MVBC” [41] by Aihong
Yao et al. also works on a predecessor of UVM, namely VMM. It already includes a lot of
the current verification environment ideas and is also based on constrained random stim-
ulus generation and functional coverage measurement. The design verified in this paper is
a message sender/receiver and analyzer in a railroad environment. In the beginning they
analyze the major possibilities for verification, which is formal property checking and dy-
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namic verification. Formal verification is not seen as an option, as the design complexity is
too big for it. The constrained random verification based on the VMM is chosen including
assertions for dynamic verification. They set up their verification goals by using functional
coverage targets derived from the general specification and the detailed design specifica-
tion. After setting up the test environment, which is layered into test, scenario, functional,
command and signal layer, the scoreboard is created to check the DUT responses as well
as the assertions, that run alongside the simulation and check signal states, that are hard
to describe and check in the scoreboard. For the analysis of the results code coverage
and functional coverage is measured. The results show that sometimes the tests have to
be adapted to reach good code coverage but it can be achieved as well as the functional
coverage, which should not be a problem in most cases, as special tests are written for
most of the items.

3.2.2 Formal Verification Specific

The following papers focus on formal property checking and how it can be introduced
into the verification flows, as well as what impact this can have and how to measure the
coverage in this case.

The first paper is about formal verification used in a practical environment for a
networking multiplexer IC [40]. They start off by comparing the currently available verifi-
cation solutions that could cope with the increasing complexity of designs, which are simu-
lation oriented ones like the coverage driven, constrained random approaches with layered
testbenches (as described in the section about simulation based verification), automatic
property checkers and improved coverage techniques as well as formal and semi-formal
ones like symbolic model checking, simulation-model checking combinations for partial
state space exploration (see also [28] which is covered in the next section on combined
techniques) and theorem proving at high abstraction levels. The presented way is via
model checking with a commercial tool done on a subset of the modules in the design.
The reason for using the approach on submodules is the state explosion, which is the main
problem for model checking (as mentioned in most of the papers presented here). The
design should still be reduced or abstracted to cover bigger subunits and speed up the
proofing runtime as well as lower the amount of memory used. The abstraction can be
done in a way that if the proof holds on the abstraction it also holds on the original design,
if not then it has to be checked where the problem comes from (abstraction or design),
see also the next paper for this. The sub-block used for the test is one that is hard to
simulate and depending on the abstractions and the property the reachable state space is
between 1012 and 1020, which already shows a great variation. When they were carrying
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out the verification and bugs were found they tried to answer the question, how likely a
simulative approach would have reached this. As a directed simulation approach would
not hit this without an explicit check on this certain bug a random approach was used
for comparison, where even a less hidden bug would take over 24000 input patterns to be
found with a probability of 99.99%.

Another paper on this topic, written by Singhal and Aggarwal (the authors of the
paper [37], covered in the combined methodology section), is presented in [4]. In con-
trary to the other paper this one does not have the aim to show how to add some formal
verification to the flow and measure the coverage to merge it with simulation coverage,
but to replace bigger parts of the simulation with end-to-end formal verification and shift
simulation to only toplevel or bigger and more complex modules. Using formal verifica-
tion for such a task already raises a complexity problem, which is often overcome with
some automatically and some manually applied abstractions. It is referred to their pre-
vious paper [37] with the information that formal coverage can be gathered very similar
to the simulation based coverage and it can also be used to evaluate the usefulness of
the abstractions. For the full end-to-end formal verification the most important checkers
are the concurrent assertions that are using the inputs and outputs of the module and
check them against some abstract reference model. The biggest problem is the complexity
due to the cone of influence and the possible state space. This has to be addressed by
abstractions. These abstractions should not reduce the design behavior top keep them
sound. By proving something correct on this abstraction it is also proven correct on the
original design. For a counterexample it has to be checked, whether it is real or due to
the abstraction. The example abstraction techniques mentioned are cut-points, where a
net is cut open and can take any value, counter abstraction, where big counters are re-
duced, symmetric data-types, where a reduction of symmetric checks can be done, data
independence, where data is only forwarded, stored and used for comparison with other
data and so the behavior is independent from it and tagging, where a part of the system
is abstracted with respect to a tag. It should also be mentioned here that cut-points were
also used in this thesis to reduce the complexity introduced by a communication interface
in the real-world design used for testing the methodology. The simulation based coverage
metrics can be used in a similar way in formal verification by using the number of cycles
of the bound model checker and checking if the code part was executed within these cy-
cles, which has the same meaning as if in a simulation the line of code or statement was
executed. The end-to-end verification can now be done in a similar flow as the simulative
one by running the proof and checking the coverage afterwards and if the coverage is not
over the predefined threshold the checkers have to be improved and another proof run
done, else the verification is finished. Their verification of a test design using abstraction
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and coverage measurement as described resulted in 15 bugs in RTL, the coverage results
are near to one hundred percent. They also tried a run without abstractions but limited
to the same run-time as the abstracted and the results were close to zero percent, which
means that the abstraction gives a really huge benefit. Without this the use of end-to-end
formal verification instead of simulation would not have been possible.

The paper “Strategies for Mainstream Usage of Formal Verification” by Raj S. Mitra
discusses the possible ways to implement formal verification within a productive environ-
ment [35]. The introduction shows some overview of the current state of formal verifica-
tion, but less on the technical and algorithm side, but the acceptance in companies and
the use in real world projects rather than academic research or test designs. The general
problem of formal property verification is a low acceptance of the engineering community
even though the tools have progressed by a lot in the last years, which might be due to
problems also addressed in some papers here like how to plan formal verification effort
and measure it with coverage metrics to use it in a real project schedule. The paper wants
to address these challenges in a verification process and propose ways and possibilities
for how and where to add model checking in this process. The start is an explanation of
a current (simulation based) verification flow and the problems that come with this. A
simulative verification, be it directed or constrained random, can never really be complete.
The specification points are covered and more depending on the project schedule. The
whole verification process is then compared to a productive process, where statistical in-
spection techniques are used to optimize the process and not to find all defects. Simulative
verification has currently another target, which is finding bugs, even though it is just the
same as the statistical inspection, which already shows its problem. The solution to this
could be formal property checking, but it has acceptance problems also due to some big
changes in how verification is done, how the checks are written and how everything can
be planned (or not planned). The first problem is that assertions for model checking often
have to be different from assertions for simulation, so they do not increase the number of
state elements. The limitation to smaller modules is a problem mentioned in nearly all the
papers, it also adds the problem of having to add quite some constraints to these smaller
modules and a lot of effort has to be put into debugging these in the startup phase of the
verification. The limit in complexity can also lead to the problem that a module can just
not be verified, which is not known from a simulation based verification (where there is al-
ways some way to test its function, at least with a few patterns). Also the missing metrics
for progress in formal verification are a problem, but as seen in other papers this is already
being addressed. After the drawbacks of formal verification the paper is continued with its
benefits. The completeness, which is a benefit always mentioned, is put into perspective
here, as due to the real-world tool limitations this is not possible and the design has to
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be constrained heavily to make it provable, which in turn makes it incomplete again. The
possibility for complete verification only holds for very small designs. The benefit formal
verification still has compared to simulation is that, even if it also might not be able to
find all bugs, it is able to find them faster and due to not needing a testbench also with less
initial effort than simulation and possibly also in early states of the design. The question
raised in this paper is also who the formal verification user is - is it the verification engineer
or the design engineer? They consider three different use-cases to answer this question.
The first use-case is the designer, who writes the white-box assertions to check his module
before handing it over. The second one is automated formal verification, where predefined
assertions (e.g. for standard interface protocols) and built-in checks of the formal tools
(like state reachability, dead code, combinatorial loops etc.) are used already in the early
design phases. This can also be done for special checks on system level, e.g. connectivity
checks, which can easily be done even on such a high level as it is like a little module with
a small amount of state elements that is left if all submodules are blackboxed. Another
automated use is bug-hunting with semi-formal technologies. The next use-case is the
deep formal verification, where end-to-end assertions are written (see the previous paper),
which is also able to find corner-cases, but it is the most difficult method that also needs
experts for it. So the benefit of formal verification is not finding more bugs, but doing it
faster, which is also what should be pointed out to people that say that simulation could
have found that bug too. This is also what the paper continues with: strategies on how to
employ formal verification in a team, how to make the transition as easy as possible and
how to show people the benefits. These proposals are using assertion based simulation
before using real formal verification to get used to the way this is done, using automatic
methods that can easily be implemented with nearly no additional effort and already prove
helpful, creating reusable assertion packages for standard protocols, checking connectivity,
setting up a central expert team, getting designers to write whitebox assertions and using
semi-formal methods.

3.2.3 Formal Verification - Simulation Combinations

One paper taken into account [9], originating from 2002, is a comparison of directed testing,
constrained random simulation, called pseudo-random testing in the paper, and property
checking. At the time the paper was published the first constrained random methodologies
emerged, which are also the ancestors of the UVM, but most verification at that time was
done using directed testing. The three methodologies were not introduced at the same
point in time in this project, which might make the comparison a bit harder, but were
compared in the end based on several bug types rather than on different metrics as it will
be done in this thesis. The results show the biggest amount of bugs were detected by the
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random stimulus methodology. Formal property verification worked, as mentioned, best
on bus protocols. The drawbacks found for formal verification were an excessive runtime
for certain test points and, due to this, also a problem with finding livelock or deadlock
bugs. Registers and accesses were not an explicit category, but bus protocol checks could
be seen as something very similar to the register access tests. The result on these method-
ologies is that all of them have their strengths in different areas, only random tests could
be translated back to directed tests, which would result in a huge amount of these, or also
to properties, but time and resource limitations make this unfeasible.

The next comparison from 2007 already focuses on formal property checking and con-
strained random simulation, leaving out directed tests as an own method [31]. It starts
with listing some benefits of constrained random verification, especially the possibility to
do black box testing. For formal verification it is nearly impossible to write a test without
knowledge of the design itself, thus making it a whitebox test. The next drawback for
model checking is the practical limitation to module level verification. After the general
view on some typical system modules a case study is presented, where both methodologies
are compared. Unfortunately they were also not introduced at the same time, but random
simulation a long time before formal verification, which makes the comparison on caught
bugs a bit unfair, but it shows that after reaching the plateau of detected bugs over several
weeks (usually this is a criterion for a tape-out) the formal verification was able to uncover
additional bugs.

In [28], a paper from 2008, the aim is setting up a test-suite using a special verification
plan language that uses both formal property checking and simulation to achieve a high
coverage in a small number of simulation cycles. After a practical test on a test design
the conclusion is that formal verification only works on a limited cone of influence (e.g.
module level test and assumed port behavior), but that it is very good at targeting com-
plex corner cases, which is hard for directed and constrained random verification. The
results also show that a combination of formal verification and simulation provides the
best results, with formal verification as a tool to also find complex corner-cases, which are
hard to hit by just using random simulation.

Another paper focusing on the combined use of formal property verification and simula-
tion to improve coverage considerations is [14]. Already in the introduction the restriction
to module level is mentioned. As their methodology is for early design stages this is clear
(the top-level is created in a later design phase in a bottom-up design implementation,
which is the standard in most design flows), but it is also helpful for restricting the cone
of influence. The methodology itself is an automatic way of generating (simple) formal
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properties to find out if a hole in the code coverage is due to real unreachability (e.g.
default statements or else paths are often unreachable, as they are only safety statements
which should never be triggered in a normal operation case) or if it is due to a hole in the
verification. The way to do this is automated starting from just the coverage reports rather
than having to parse the full code or having the need for additional manual changes to
be done to the code and also without having to recompile the code for every item, which
are a few of the problems with similar methodologies in related work. Their approach
starts by identifying an uncovered part of the code (it works for line, expression and also
toggle coverage) using the coverage report of a standard coverage collection tool. From
this the condition that would be necessary to reach this code fragment can be found. Us-
ing temporal induction it is tried to prove that this part of the code is unreachable. One
property for the start of the induction is created and one for the next step (the step from
n to n+1) and they are asserted and checked with a normal formal prove engine. If the
code is not unreachable the properties will fail and then it has to be checked (manually)
why this part of the code was not covered. The experimental results were obtained from
the verification of a micro-controller and showed, that this combination of simulation with
automatically generated properties improves the possibility of finding real coverage holes
and with this bugs in the design or testbench a lot. The number of uncovered statements
that were filtered out with this methodology by formally proving their unreachability is
over ninety percent for both statement and branch coverage and nearly seventy percent
for (focused) expression coverage, which means a huge reduction in the manual work.

The paper by Casaubieilh et al. is about the functional verification of a processor
[17]. This is done using techniques to verify the VHDL specification and the circuit level.
The design is modeled in different abstraction levels, starting with a C simulator, then a
behavioral VHDL model followed by a structural VHDL model and finally the transistor
level circuit. This style of modeling in the layers is quite common for processor devel-
opment, where the C model can also be used as a simulator for the software developers,
only the behavioral VHDL model is usually not synthesizable, which it is here. Before
their simulation based verification starts, designers check their block (some basic module
level functional tests, but not a real verification) and the real verification is then done at
the toplevel. The paper features different approaches of doing so, one is a normal VHDL
testbench including VHDL models, the other is a hardware emulation on an FPGA. As
only the simulative and formal verification are of concern for this thesis the emulation will
not be considered any further. The simulative verification is based on generating certain
test vectors with a special tool and applying them to the DUT (the C and VHDL model).
Code coverage was collected to find missing cases. For proving sequential properties for-
mal property checking was used. For the reduction of complexity (it is mentioned again
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here that formal property checking is very limited by the circuit complexity) an additional
in-house tool was used. The mentioned findings with formal verification were due to as-
sumptions of the outside of the module not being accurate enough. The conclusion (for
the non-emulation part) is that the use of simulations with accompanying formal verifica-
tion works well, especially as their methodology can be used at early stages in the design
already.

The paper by Singhal et al. [37] is the next one to combine simulation and formal
verification by means of collecting coverage. It is also mentioned that formal verification
is now in a state, where it can complement simulation and also replace it for certain tasks.
The introduction shows again some figures that point out that most of the effort in a design
is in verification and that this is still mostly simulation based. To have formal verification
as a signoff tool for tapeout it is required that formal verification can be planned and the
progress can be measured and combined with simulative coverage results. The aim of the
work described in this paper is to integrate the sub-block verifications done with formal
means (as formal cannot be used on toplevel or complex modules) with the simulative ones.
After the following overview of the design and verification flow it is concluded that it is
necessary to use a tracking metric to take corrective actions early enough. For simulation
this is typically code coverage, especially line coverage. Lines that are not covered need to
be checked manually for the reason, i.e. if they are really unreachable or a problem exists
(a step into the direction of partially automating this is given, as mentioned, in [14]). Prob-
lems and missed bugs in formal verification in a real productive use are, according to this
paper, often bad constraints, too many constraints or because bound model checking was
used (which is the most common way in current formal engines) and did not go through
far enough to uncover the bug. For model checking the same metrics can be applied to
judge if it is complete, just with a slight variation in how they are measured to make sense.
For bound model checking it can be used if it can be reached in a certain number of cycles.
The conclusion of the paper is that the best verification flow is a combination of formal and
simulative verification, especially as it can be possible to merge their coverage information.

3.3 Conclusion

The presented papers show an overview of the current state of verification in real-world
use and the different approaches and ideas on how to integrate new ideas into todays veri-
fication environments. The amount of simulation based papers is not too high, as most of
the field has been covered already a long time ago and also it is easy to understand how
it works and also the new ideas, at least from the idea of the tests behind it, are easy to
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grasp. The big change for simulative environments is the shift to more complex System-on-
Chip (SoC) designs and the need to handle the even more complex testbenches and tests
and an overwhelming amount of possible interdependencies between modules to achieve
the set code coverage and also functional coverage targets. The way to address this is the
development of reusable verification IP and the use of constrained random stimulus gener-
ation. The need for these led to the development of the layered verification environments
present in most flows and methodologies currently used, which provide easier maintain-
ability and sometimes even the reusability of full testbenches due to smart configuration
capabilities. It also led to a new way of coverage driven verification, as the use of random
stimuli creates a problem with predicting the outcome like in a directed test, where it
worked by setting one signal and comparing the outputs to known values. The new way
is to define what input signals fulfill a certain required state and which output signals (or
also internal signals) show a certain state or function and also the sequence between those
shows that a certain functionality has been seen. These functional coverage items must be
collected somehow and compared to what they should be, which only works for random
signals by having some kind of abstract model of the DUT, which is commonly known
as scoreboard in all the methodologies. The benefit of the simulative approaches is that
the verification can be planned, as there is nothing that cannot be verified in some way
(maybe not in an exhaustive way but at least with a set of patterns) and also tracked by
code- and functional coverage metrics. Also the hardware development industry is rather
conservative when it comes to the implementation of new and different methodologies and
it takes a long time until something new is accepted. The formal verification approach also
has some problems still, especially the inability to handle bigger modules and toplevels
still makes a simulative approach for parts of the system verification necessary.

The papers on formal property verification show some comparisons to the simulative
approach and try to work out the benefits model checking has over simulation and how to
approach the apparent drawbacks of this verification methodology. They are also meant
as a guide on how to deploy formal verification within a productive environment, which
already shows that the acceptance is still low. Formal property verification still has some
problems that were either not solved up to now or it still has a bad reputation due to lim-
itations of early tools (which are already solved or eased, but it is not tried again). The
most important one and therefore always mentioned is the limited complexity of designs
that can be handled with it. This shifts the use away from a full-chip verification towards
a module level approach. Certain tricks still provide a possibility to verify at least some
things on toplevel, like e.g. connectivity. The problem with the complexity has two direct
effects, one is the runtime, as even for not overly complex designs it is often quite high,
the other one is the problem that a design or module might just not be verifiable with
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property checking. The latter one is a big problem for deploying it in a project, as it makes
it impossible to really plan it. Also the runtime problem creates a problem in planning,
as it is hard to estimate it upfront, especially if not so much experience has been made
with this kind of verification. A way to bypass these two problems or ease the problem
is abstraction. Parts of the design are replaced by some model of it or are constrained
to have a certain behavior so different properties merge into one. There are automated
ways to abstract some parts of the design, but the most effective ones are usually manual
abstractions. There are a few common ways of abstraction mentioned in one of the papers,
the most important part is that the abstraction should be done in a way that the abstract
model does not reduce the design’s behavior (i.e. it can add states but not remove them,
like e.g. cutting a connection open and allowing it to assume any value instead of only a
discreet set of values). This makes sure that a property that holds on the model will hold
on the actual design too and only for a failing property it has to be checked if the design
fails or if it is a problem in the model. Another problem is a metric that is needed to trace
the verification status. For simulation code coverage is a widely accepted way to do so and
also functional coverage is used more and more. For formal property checking no widely
used standard exists. Some of the papers provide ideas on how to trace a similar kind of
coverage to measure it, which is now also starting to be used in various tools. Another
problem of model checking is the unclear situation on who should be responsible for the
verification. For certain properties to be specified in a way that all corner cases can be
found knowledge of the design is needed, which makes it a whitebox verification. This
should typically be handled by a designer rather than a verification engineer. Writing the
properties in a way that can be handled by the prover tool with the least possible effort
requires quite some knowledge about this very special kind of verification and often also
the tool behind it, which might better be done by a central expert group. The real benefit
of formal property checking is not finding all the bugs, as simulation will also uncover
these given enough time. The real benefit is that it is able to find bugs faster and with
less effort for the verification environment, which makes it possible to use it already in the
beginning of the design phase.

The third section of papers are approaches on how to combine simulative verification
methodologies with formal property checking to create a verification suite that combines
the best parts of the particular approach and tries to minimize the problems of weaknesses
of one methodology through the help of the other one. The combination of the verifica-
tion methodologies is also a good way to start using formal property checking within a
productive environment, as it can be introduced step by step by increasing portions of
verification done using model checking, as soon as the verification and design engineers
get more familiar with it. For the simulations constrained random should be used in
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combination with functional coverage for toplevel and complex modules, smaller modules
should be done using formal methods. The papers also feature comparisons of directed
tests, constrained random simulations and formal verification on different designs with an
amount of bugs and what kind of bugs these were (grouped into rough categories). The
problem with these comparisons is that for all of them the introduction was done at dif-
ferent times in the project and thus not directly compared on the same bugs. One result
was that after reaching a situation where no bugs were found with simulations for a longer
time the introduction of formal property verification uncovered additional bugs. These
were special corner cases that would not necessarily have been seen in the application use,
but still would have slipped through unrecognized. The papers also offer some ideas on
how to combine the methodologies, one idea is for example a testplan language capable
of combining them in a way that minimizes the number of simulation cycles. Another
one is to use formal property checking to automate the manual check of code coverage
holes, where normally every statement that is not covered has to be checked if it is really
unreachable or has just not been hit. The approach extracts these holes from the coverage
reports and creates properties that check the reachability, which reduces a big amount
of holes and just a few are left for manual inspection. If formal verification is used in
addition to simulation a way has to be found to specify the coverage of formal verification
in a similar manner as the code coverage for simulation. Some proposals are made on
how to do it in a very similar way that has the benefit that the results can be merged
easily. Another benefit of the combination is that formal property checking can be done
without testbenches, which allows an early use in the project before the complex random
testbenches are set up and also some of the checkers can be reused along simulation.



Chapter 4

Flow Design

In the following sections an overview of the currently existing flow is given, followed by
the additions and changes to it and finally the concept of the UVM based flow and the
model checking based flow.

4.1 Current Design and Verification Flow

The current design flow starts with the design entry and setup, in which settings for the
modules and dependency analysis are prepared and the design itself is created (by writing
HDL code). After this the RTL design is simulated. The standard environment is mainly
set up for directed tests. As this flow was already set up a longer time ago constrained
random simulation is not directly integrated. If the RTL design is verified it is also the
input to the formal verification, which is only a logic equivalence check (see 7.1.3) for
comparison with the synthesized and the routed netlist in the original flow. If the design
is not verified correctly an iteration back to the design entry is done and the bugs are
fixed. If the full design is verified it is synthesized and after this placed and routed. The
simplified flow overview is given in figure 4.1.

4.2 Flow Extension

As MetaGen is not part of the current flow an extension was needed for its integration.
It would normally be part of the design entry phase, but as it is currently an unofficial
addition it has to be seen as extra part. It gets inputs from and has outputs to the design
entry, as the information about ports, registers and the system structure are now entered
into the (filled) meta-model, passed to MetaGen and in there to predefined generators to
generate code which would normally be written manually in the design entry phase. This
generated code often features the possibility to add or extend it with manually written
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Figure 4.1: A simplified overview of the currently used design flow

code, so this has a connection to the manual coding and is not just stand-alone as e.g.
the scripts. The information stored in the meta-model is now used to create the UVM
testbench using VIPGen (semi-automated process), as well as the register model, which is
mostly an automated process, and the property file and the bind-file for model checking.
Manual extensions to assertions and also new assertions can be added into the generated
property file easily. As the formal verification in the flow is up to now only the automated
equivalence check, model checking has to be added as a new substate of the flow. In figure
4.2 the new flow can be seen. It features new stand-alone states as well as additions to
the current states. Model checking has a transition back to the design entry just like
verification, as an uncovered bug will have to be fixed in the RTL code.

4.3 UVM

This section describes the prerequisites to create a register model according to the UVM
standard and the ideas on how to solve problems arising due to missing information in the
Essence meta-model and how the result should be used within a UVM testbench generated
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Figure 4.2: A simplified overview of the new design flow using meta modeling and code
generation

using VIPGen.

4.3.1 Automatic Generation of the Model and Tests

To enable the creation of a push-button solution for register tests the model has to be
generated automatically from a high level description. The framework behind the gener-
ation is MetaGen, as described in chapter 2.2. The standard tests can be done using the
predefined sequences for reset value verification, bit-bash test and also frontdoor/back-
door access tests. This reduces the needed work to the generation of the register model
according to the UVM standard. Additional custom register sequences can be generated
using VIPGen, as they are just standard sequences using the register model to access the
registers of the DUT.

Parameters Needed

Analyzing the register model as defined by the UVM standard results in several parameters
that are needed to express the organization and behavior of the DUT registers. Of course
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the names of the registers and bitfields should be known, especially for the registers, as
those are used directly in the register sequences. The lengths of the bitfields and their
position in a register are also needed, as well as the access policy and the register reset
values. For automatically including the mappings some information about the interface(s)
is also needed, like the bytewidth and offset and the register addresses for the interface
and which ones are to be mapped to which interface. The Essence data model is capable
of storing and providing the information on the register structure as well as the interface
to register mapping. For the register model with additional custom register classes used
in this thesis to provide easy-to-use multi-view registers (i.e. registers that change their
content or the representation of their content depending on other bits or signals in the
system) some information is needed that describes the currently selected view and also a
way to store the selection and representation. The multi-view register is a register type
that is already available in the Essence model, but there is no way to store the selector -
view pairs. As a result an extension to the Essence meta-model is needed. The extension
is an additional meta-model that is referenced from a class in another meta-model. This
is possible for every class in the Essence meta-model and in this special case every object
of type multi-view register has a link to an object structure of type multi-view extension.
The multi-view extension needs to hold the information on the selected view and the
selection signals. A typical situation is that a register has two views, which are selected
by one bit in another register (e.g. a lock bit that switches a register between read-only
and read-write or a test-mode bit that makes a register accessible if it is set). But this
restriction is not always applicable, in principle there can be many views selected by a
combination of several signals. There are different ways to address this topic, the way
chosen for this thesis is the following: A multi-view register has a number of views. If a
view is not really existing in-between it has to be modeled as an empty register still. As
a selection value a number of bitfields have to be passed and their combination (the first
one is used as least significant bit or bits for multi-bit fields and so on) is a new number
that defines the index. The result of 2numBits − 1 has to be greater than or equal to the
number of views. The model is shown in figure 4.3.

Register Model Structure

The register model can be structured in various ways. The way chosen for this is to
have a register block as the topmost container. Within this container the registers could
be directly present. It is an easy way to represent the model in case all registers are
present in one module. As soon as the design contains several modules, which all can
fulfill independent tasks and thus have registers with independent functions, it is more
modular and also readable if the registers for the certain module are structured as an own
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mvregext

Name : string

DepField

RegName : string [1]

FieldName : string [1]

IsInMultiView : bool [1] = false

MultiViewName : string [0..1]

DepListing

Name : string [1]

1..*

1..*

Figure 4.3: Multi-view register extension

register block and bound into the parent block. An overview of the register model file is
given in 4.4.

The multi-view register has to be a special register class. An include file is needed
to provide classes for registers with special functions. The multi-view register is just one
possibility, others might be added there as well, like registers with dependencies between
each other (e.g. start calculation bit and result register). The multi-view register consists
of an array of register references as well as of a list of index selection bitfield references.
The bitfields are part of other registers, so these other registers are instantiated and the
addresses of the bitfields passed to the selection array in the build phase. The registers
representing the views of the multi-view register also have to be instantiated and the
addresses passed to the view array.

Another problem of the Essence model is the missing possibility to express all access
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Figure 4.4: Register model file structure

types specified by the UVM. The solution to this is an extension that holds a string
representing the access type, as this is an easy, but nonetheless efficient way to do it and
also easily expandable. The meta-model is shown in 4.5.

4.4 Assertion Generation

The second practical task for this thesis was to develop a possibility to automatically
generate assertions for formal verification from a high level specification. The assertions
should be able to check the behavior of a register bitfield with a predefined access type
when accessing it. The meta-models for the multi-view register type extension and the
access type are the same as for the UVM so that the files for both methodologies can be
created from the same (filled) meta-model. As the formal analysis works best on smaller
designs it is recommended to do it on module level rather than on system level. Depending
on the complexity of the access interface it might also take long to explore the whole state
space, which can result in long run-times. This is why it is better to use formal verification
or using another method to verify the interface itself and do the formal verification with
the internal bus as register access medium. Usually the interface to the outside world is a
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regext

Name : string [1]

AccessType

FieldAccessKind : string [1]

1..*

Figure 4.5: Register access type extension

more complex, less pin using and thus serialized one, whereas the internal one is typically
a parallel bus with a data width of the size of the full bit width of the registers or a
multiple of one byte.

If the assertion file is not bound into the module containing the registers (e.g. because
it is used on top level), the HDL path to these is required. For every bitfield a definition is
created, which has to be filled out by the user. The problem of finding this path is that a
system model with known (and standardized) generated signal names would be needed to
trace it through the hierarchy. This way, and this is a possible extension for the future, it
could be generated, but only for Verilog/SystemVerilog. As soon as a language boundary
is encountered (e.g. crossing to VHDL) there is no standard on how to access the signals.
Every tool vendor has a solution for this, but everyone of these is different. If the design
is tested on module level the problem does not exist, as internal signals can be fed into
the assertion block (see [19]).

As the formal proof sees all possible ways a signal can be set at any time another
problem emerges. Usually registers like ADC measurement values are called read-only
fields. In reality they are not totally read-only, but can be written internally. So the
read-only access type is only valid as the view from outside. For a register test with the
UVM this is not necessarily a problem, as it can be decided when to look at the field.
There are two possibilities to solve this: declare read-only as usable only for fields that
stay with their reset values forever and define new bitfield access types for those that are
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internally updated but externally read-only or define read-only registers in a way that a
write access on them has no effect ( in SVA this means to check if $stable(register) is true
after a write access). As the term read-only and the use of it also for measurement values
and similar bitfields is very common and it is hard to get every system-level engineer to
use the read-only access type in a rather unintuitive way for him/her the second option
was selected.

4.4.1 Property File

The property file is divided into several subsections. The general partitioning in this file
is that one property module for every design module with accessible registers is created.
This module is bound into the design module using the bind file, which is explained in
further detail in the next section. The property module definition starts with all ports,
which means all input and output ports of the original design are defined as inputs (a
property module is always passive) and additional inputs are created for every bitfield.
Then the definition part is present, which is needed to assign the reset, clock and bus
signals to the macros used in the properties. This also includes access sequence definitions
to distinguish between read and write accesses. This part has to be completed manually
as the generators and models do not know about these signals and sequences. Afterwards
the bitfield size, position and bus address are defined, which can be done automatically,
as all the needed information is present in the meta-model. After this the assertions for
every bitfield are placed, starting with the reset value assertion and followed by all the
assertions needed for a certain access type of a bitfield. These assertions rely on the
predefined macros (filled out manually as mentioned before) and are fully generated. The
only assertions that need manual adaptations are default read and write assertions for
unknown access types. A graphical overview is given in 4.6.

4.4.2 Bind File

The problem with the toplevel verification of VHDL or mixed-language designs has to be
solved by an approach using one property module per design module with user-accessible
registers to allow access to the register signals. All of the inputs and outputs of the design
module are fed into the property module to have all signals possibly needed available for
the interface protocol, reset and clock definition and also for the manually added module
assertions. The connections of the design module ports to the property module ports is
automatically generated for the bind-file. For every bitfield a way to connect the data
used in the assertion to the real design signal must be present and it is not possible to
do this automatically for now. It can be done if a generator is used to create the register
definitions in the design and the signal names follow a certain rule, which was not the case



CHAPTER 4. FLOW DESIGN 81

Figure 4.6: The structure of the property files

when the thesis was done. As a solution to make the manual connection as simple and
fast as possible (and also easily expendable for the automatic connections if the names are
known) an input port is created for every bitfield. This way full signals, parts of vectors,
sub-elements of structs or records and so on can be passed into the assertion module.
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Implementation

5.1 UVM Implementation

This section contains a step-by-step explanation of the implementation by showing the
workflow on a sample design. The simple example used here is the same shown in the
formal verification part and is the least complex methodology evaluation design. It is a
multiplier with an SPI interface and six registers: a control register with a start bit and
a finished bit, two registers for the operands with 28 bits and two result registers for the
high and low part of the result with 28 bits each (the result of a multiplication of two
n-bit values can take up to 2*n bits). See figure 5.1 for a graphical representation of the
registers. It also features an additional testmode register, which has no real functionality
in this design, but is meant to show the functionality of the custom multi-view register
type. There are five different access modes: "read-write", "read-write, cleared by design",
"read-only, set by design" and "read-only, set by design, cleared on read" and "read only".

5.1.1 Starting in Excel

The flow for the UVM register model generation starts at the high level description of the
registers in Excel typically done by the concept engineer. An excerpt can be seen in figure
5.2. The needed parameters (bitwidths, access types, reset values etc.) can be set in this
standardized sheet. The register bitwidths in this sheet are greater than the ones really
used in the design. This is due to a restriction to several predefined bitwidths of the sheet,
which will be changed in a later revision of the Excel workbook. Looking at the figure it
should be rather self explanatory. The workbook and importer for it were not created by
me for this thesis, but were already available from another department. Due to certain
restrictions and slow performance of the workbook due to macros this step was skipped
for most of our projects and the data model was filled directly via the Essence component
builder graphical user interface (a special GUI for the Essence data model).

82
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SPI Multiplier
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Figure 5.1: The registers of the SPI multiplier

5.1.2 Filling the Data Model

This Excel sheet is now read in and fed into the data model, like in the example in 2.2.1,
by using an importer written in Python and the Essence data model. See figure 5.3 for a
screenshot of the Essence component builder that shows the filled model.

5.1.3 Generation of Register Model With Mako Templates

As the register descriptions are now in the Essence data model from which the register
model is generated, it is robust against structural changes in the Excel sheet, so only the
importer needs to be adapted. The templates for the register model are split into several
sub-templates to keep the templates more readable and reusable. One template is the
main template calling the main routines of the sub-templates in the order specified in the
UVM design chapter. In the case of this simple example no system description is available
(one-module-design), so only one main register block is present and one for the multi-view
registers (as the multi-view registers consist of possibly several sub-registers and an index
register it is combined into a register block for the ease of use). The main block template
(which utilizes sub-templates) is shown as an example in the code listing below. This
template is also called from a higher level template, which calls the templates for register
instantiations, multi-view register instantiations as well as this one.
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Figure 5.2: Excel description of registers of the SPI multiplier

1 <%def name=" generateBlock (RegMemSets , I n t e r f a c e s , dataInput ) ">\
2 <%
3 MVBlocks = [ ]
4 for RegMemItem in RegMemSets :
5 for Reg i s t e r in RegMemItem . getRegMemElements ( ) :
6 i f Reg i s t e r . _getType ( ) == " Reg i s t e r " :
7 i f l en ( Reg i s t e r . ge tReg i s te rViews ( ) ) > 1 :
8 MVBlocks . append ( Reg i s t e r )
9

10 %>
11 class ${dataInput . getName ( ) }_top_block extends uvm_reg_block ;
12
13 ‘ uvm_object_utils ( ${ dataInput . getName ( ) }_top_block )
14
15 % for RegMemItem in RegMemSets :
16 ${ Reg i s t e r s (RegMemItem . getRegMemElements ( ) ) }\
17 % endfor
18
19
20 % for i f c in I n t e r f a c e s :
21 uvm_reg_map ${ i f c . getName ( ) }_map;
22 % endfor
23
24 func t i on new ( s t r i n g name = " ${dataInput . getName ( ) }_top_block " ) ;
25 super . new(name , bui ld_coverage (UVM_CVR_ADDR_MAP) ) ;
26 endfunct ion
27
28 v i r t u a l f unc t i on void bu i ld ( ) ;



CHAPTER 5. IMPLEMENTATION 85

Figure 5.3: The filled data model represented in the Essence component builder

29 uvm_reg_field v i ew_se l e c t_ f i e l d s [ $ ] ;
30
31 % for RegMemItem in RegMemSets :
32 ${ Reg i s t e rCon f i g s (RegMemItem . getRegMemElements ( ) ) }
33 % endfor
34
35 % for Reg i s t e r in MVBlocks :
36 <% BlockClassStr = "d_" + Reg i s t e r . getName ( ) . lower ( ) + " _block " %>\
37 <%
38 i f l en ( Reg i s t e r . ge tExtens ions ( ) ) >0:
39 theDependencyList = Reg i s t e r . ge tExtens ions ( ) . pop ( ) . getLocat ionRef ( ) .

getDepFie lds ( )
40 else :
41 dataInput . Logger . c r i t i c a l ( " : No mult iv iew extens i on s e t f o r MV−Reg " +

Reg i s t e r . getName ( ) )
42 %>\
43 % for dep f ld in theDependencyList :
44 v i ew_se l e c t_ f i e l d s . push_back ( ${ dep f ld . getRegName ( ) . upper ( ) }_REG. ${ dep f ld

. getFieldName ( ) . upper ( ) }) ;
45 % endfor
46 ${ Reg i s t e r . getName ( ) . upper ( ) }_BLK = ${BlockClassStr } : : type_id : : c r e a t e ( " $

{ Reg i s t e r . getName ( ) . upper ( ) }_BLK" , , get_full_name ( ) ) ;
47 ${ Reg i s t e r . getName ( ) . upper ( ) }_BLK. con f i gu r e ( th i s , " " , v i ew_se l e c t_ f i e l d s

) ;
48 ${ Reg i s t e r . getName ( ) . upper ( ) }_BLK. bu i ld ( ) ;
49 % endfor
50
51 % for i n t e r f a c e in I n t e r f a c e s :
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52 ${ Inter faceMappings ( i n t e r f a c e ) }\
53 % endfor
54
55 % for Reg i s t e r in MVBlocks :
56 ${ Reg i s t e r . getName ( ) . upper ( ) }_BLK. lock_model ( ) ;
57 % endfor
58
59 t h i s . default_map = ${ I n t e r f a c e s [ 0 ] . getName ( ) }_map;
60 add_hdl_path ( " dut " , "RTL" ) ;
61 lock_model ( ) ;
62 endfunct ion
63
64 endc l a s s : ${ dataInput . getName ( ) }_top_block
65 </%def>\

Listing 5.1: Template for the uvm_reg_block class for a module

5.1.4 Overview of the Generated Verification Environment

The verification environment, which includes the testbench, test, environment and agent,
is generated using a different template set and data model, which are not part of this
thesis. For this simple kind of testbench it would not be much work to create it manually
though. As an example the generated class definition of the control register is given in
the listing below, followed by an example of the register block, for which the template was
given in the section before:

1 c l a s s d_ctrl_reg extends uvm_reg ;
2
3 ‘uvm_register_cb ( d_ctrl_reg , uvm_reg_cbs )
4 ‘uvm_set_super_type ( d_ctrl_reg , uvm_reg)
5 ‘uvm_object_uti l s ( d_ctrl_reg )
6
7 rand uvm_reg_field STARTCALCULATION;
8 rand uvm_reg_field CALCULATIONFINISHED;
9

10 v i r t u a l function void bu i ld ( ) ;
11 STARTCALCULATION = uvm_reg_field : : type_id : : c r e a t e ( "STARTCALCULATION" ) ;
12 STARTCALCULATION. con f i gu r e ( th i s , 1 , 0 , "RW" , 0 , 0 , 1 , 1 , 0) ;
13 CALCULATIONFINISHED = uvm_reg_field : : type_id : : c r e a t e ( "

CALCULATIONFINISHED" ) ;
14 CALCULATIONFINISHED. con f i gu r e ( th i s , 1 , 1 , "RO" , 0 , 0 , 1 , 1 , 0) ;
15
16 endfunction : bu i ld
17
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18 function new( input s t r i n g name=" d_ctrl_reg " ) ;
19 super . new(name , 28 , bui ld_coverage (UVM_CVR_FIELD_VALS) ) ;
20 endfunction : new
21
22 endc l a s s : d_ctrl_reg

Listing 5.2: SystemVerilog class of the control register

1 c l a s s sp imul t ip l i e r_top_block extends uvm_reg_block ;
2
3 ‘uvm_object_uti l s ( sp imul t ip l i e r_top_block )
4
5 rand d_ctrl_reg CTRL_REG;
6 rand d_op1_reg OP1_REG;
7 rand d_op2_reg OP2_REG;
8 rand d_result_low_reg RESULT_LOW_REG;
9 rand d_result_high_reg RESULT_HIGH_REG;

10 d_multiview_block MULTIVIEW_BLK;
11
12
13 uvm_reg_map spi_ifc_map ;
14
15 function new ( s t r i n g name = " sp imul t ip l i e r_top_block " ) ;
16 super . new(name , bui ld_coverage (UVM_CVR_ADDR_MAP) ) ;
17 endfunction
18
19 v i r t u a l function void bu i ld ( ) ;
20 uvm_reg_field v i ew_se l e c t_ f i e l d s [ $ ] ;
21
22 t h i s .CTRL_REG = d_ctrl_reg : : type_id : : c r e a t e ( "CTRL_REG" , nu l l ,

get_full_name ( ) ) ;
23 t h i s .CTRL_REG. con f i gu r e ( th i s , nu l l , " d_ctrl_reg " ) ;
24 t h i s .CTRL_REG. bu i ld ( ) ;
25 t h i s .OP1_REG = d_op1_reg : : type_id : : c r e a t e ( "OP1_REG" , nu l l , get_full_name

( ) ) ;
26 t h i s .OP1_REG. con f i gu r e ( th i s , nu l l , " d_op1_reg " ) ;
27 t h i s .OP1_REG. bu i ld ( ) ;
28 t h i s .OP2_REG = d_op2_reg : : type_id : : c r e a t e ( "OP2_REG" , nu l l , get_full_name

( ) ) ;
29 t h i s .OP2_REG. con f i gu r e ( th i s , nu l l , " d_op2_reg " ) ;
30 t h i s .OP2_REG. bu i ld ( ) ;
31 t h i s .RESULT_LOW_REG = d_result_low_reg : : type_id : : c r e a t e ( "RESULT_LOW_REG"

, nu l l , get_full_name ( ) ) ;
32 t h i s .RESULT_LOW_REG. con f i gu r e ( th i s , nu l l , " d_result_low_reg " ) ;
33 t h i s .RESULT_LOW_REG. bu i ld ( ) ;
34 t h i s .RESULT_HIGH_REG = d_result_high_reg : : type_id : : c r e a t e ( "

RESULT_HIGH_REG" , nu l l , get_full_name ( ) ) ;
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35 t h i s .RESULT_HIGH_REG. con f i gu r e ( th i s , nu l l , " d_result_high_reg " ) ;
36 t h i s .RESULT_HIGH_REG. bu i ld ( ) ;
37
38
39 v i ew_se l e c t_ f i e l d s . push_back (CTRL_REG.ACTIVATETM) ;
40 MULTIVIEW_BLK = d_multiview_block : : type_id : : c r e a t e ( "MULTIVIEW_BLK" , ,

get_full_name ( ) ) ;
41 MULTIVIEW_BLK. con f i gu r e ( th i s , " " , v i ew_se l e c t_ f i e l d s ) ;
42 MULTIVIEW_BLK. bu i ld ( ) ;
43
44 t h i s . spi_ifc_map = create_map ( . name( " spi_ifc_map " ) , . base_addr (0 ) , .

n_bytes (4 ) , . endian (UVM_LITTLE_ENDIAN) ) ;
45 t h i s . spi_ifc_map . add_reg (CTRL_REG, 0∗4 , "RW" , 0 , nu l l ) ;
46 t h i s . spi_ifc_map . add_reg (OP1_REG, 1∗4 , "RW" , 0 , nu l l ) ;
47 t h i s . spi_ifc_map . add_reg (OP2_REG, 2∗4 , "RW" , 0 , nu l l ) ;
48 t h i s . spi_ifc_map . add_reg (RESULT_LOW_REG, 3∗4 , "RO" , 0 , nu l l ) ;
49 t h i s . spi_ifc_map . add_reg (RESULT_HIGH_REG, 4∗4 , "RO" , 0 , nu l l ) ;
50 MULTIVIEW_BLK. mappings . push_back (MULTIVIEW_BLK. create_map ( . name( "

MULTIVIEW_spi_ifc_map" ) , . base_addr (0 ) , . n_bytes (4 ) , . endian (
UVM_LITTLE_ENDIAN) ) ) ;

51 t h i s . spi_ifc_map . add_submap(MULTIVIEW_BLK. mappings [ $ ] , 5∗4) ;
52
53 t h i s . default_map = spi_ifc_map ;
54
55 MULTIVIEW_BLK. lock_model ( ) ;
56
57 add_hdl_path ( " dut " , "RTL" ) ;
58 lock_model ( ) ;
59 endfunction
60
61 endc l a s s : sp imul t ip l i e r_top_block

Listing 5.3: SystemVerilog class of the register block generated using the template shown
before

5.2 Formal Verification Implementation

For the example the SPI multiplier is used, just like in the UVM section. The register
definition can be found in figure 5.1.

5.2.1 Starting in Excel

The high level specification in Excel is the same as the one for UVM and an example
picture can be seen in figure 5.2.
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5.2.2 Generating Assertion Files

The way to use the assertion generator is now creating a separated assertion file and using
a bind file to connect it to the RTL module, which in turn requires defining a header with
the inputs. This is done automatically, if the interface definition of the module is available
in the model. For the SPI multiplier it looks like this:

1 module prop_d_spimultipl ier_wrapper ( input reset_n , input c lk , input csn ,
input sck , input mosi , input miso ) ;

Listing 5.4: Property module definition

The design itself was originally modeled to have a SystemVerilog interface on top level,
which can be connected to the virtual interfaces in UVM. For the formal analysis with IFV
interfaces are not allowed on top, as well as for synthesis (and some other tools). This is
why a simple wrapper was created, which just connects the interface ports to normal I/O
ports. The most important signals used in the assertions are then created automatically,
but as mentioned before HDL paths have to be entered manually for now.

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 Define s i g n a l or opera t ion
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
4 ‘define __reset_ ( reset_n == 0 )
5 ‘define __clk_ ( c l k )
6
7 // Transact ion f i e l d s , en te r HDL path
8 ‘define __transaction_done_ ( d_spi_multipl ier_wrapper . dut . spi_done

)
9 ‘define __transaction_type_ ( d_spi_multipl ier_wrapper . dut . wr i t e )

10 ‘define __transaction_address_ ( d_spi_multipl ier_wrapper . dut . address )
11 ‘define __transaction_write_data_ (__upper , __lower ) (

d_spi_multipl ier_wrapper . dut . data [ ‘‘__upper : ‘ ‘__lower ] )
12 ‘define __transaction_read_data_ (__upper , __lower ) (

d_spi_multipl ier_wrapper . dut . bus_data_out [ ‘‘__upper : ‘ ‘__lower ] )
13
14 ‘define __transaction_read_ ( 0 )
15 ‘define __transaction_write_ ( 1 )

Listing 5.5: Clock reset and main transaction signal definitions first version

Reset and clock are needed for the reset property, the clocking of the assertions and the
disable statement. The transaction should be defined in a generic way, so that it fits most
applications. It is to be noticed that instead of an HDL path also an expression combining
several signals can be used, a simple example is the way the active low reset_n is converted
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to an active high signal for the assertions in this code snippet. The field transaction_done
should point to a signal or a combination of those that show the completion of the data
transfer. The type of the transaction is either a write or a read transaction. There has
to be a signal or a combination that show the kind of access. For example an Altera
AvalonT M bus uses the signals read_n and write_n to distinguish between the requests,
SPI frames are often defined to have the MSB or LSB as a read_n/write bit. The whole
transaction type has to resolve to some value, that can be compared to the values defined
in the transaction read and transaction write fields. Those can be changed if needed.
The transaction address field is the representation of the register address accessed by the
interface. The two macros for transaction write data and transaction read data are used
to point to the input data (write) and the output data (read).
As it turned out when testing more complex designs it makes life a lot easier to change
these one-point-in-time checks to sequences. More complex bus protocols can be described
much easier then. All assertions have to be changed from using && as logic connector to
and which is a sequence connector (see [34] for more information on sequence connectors).

16 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
17 Define s i g n a l or opera t ion
18 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
19 ‘define __reset_ ( re se t_n i == 0 )
20 ‘define __clk_ ( c lk_i )
21
22 // Transact ion f i e l d s , en te r p r o t o c o l sequences
23 ‘define __trans_read_done_ ( ! c h i p s e l e c t ##1 ch i p s e l e c t && ( read_n

==0) && (write_n==1) ##1 ! c h i p s e l e c t )
24 ‘define __trans_write_done_ ( ! c h i p s e l e c t ##1 ch i p s e l e c t && ( read_n

==1) && (write_n==0) ##1 ! c h i p s e l e c t )
25
26 ‘define __transaction_address_ ( ( ( address ) ) )
27 ‘define __transaction_address_check_ ( __field_addr ) ( ( 1 ’ b1 ##1 (

‘__transaction_address_ == ‘‘__f ie ld_addr ) ) )
28
29 ‘define __transaction_write_data_ (__upper , __lower ) ( ( wr i tedata [

‘‘__upper : ‘ ‘__lower ] ) )
30 ‘define __transaction_read_data_ (__upper , __lower ) ( ( readdata [

‘‘__upper : ‘ ‘__lower ] ) )

Listing 5.6: New definitions which support sequences for protocol decoding

The HDL paths for the bitfields shown in the following code snippet only works for
pure Verilog (or SystemVerilog or mixed) designs, but not for VHDL designs or designs
that mix VHDL and Verilog/SystemVerilog. As soon as such language borders are present
usually a solution adapted to the simulator is needed. In the case of this thesis the Ca-
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dence Incisive simulator was used. For this simulator a feature called ncmirror is needed.
It maps an internal signal to another signal (usually one in the testbench for directed/con-
strained random tests or the assertion file for formal verification). Similar solutions exist
for Mentor Graphics QuestaSim and other simulators. Due to a still unknown problem in
the Incisive Enterprise Verifier (IEV) setup in our flow the ncmirror signals do not work
in formal verification. The workaround is to bind an assertion module into each module
containing (user-accessible) registers and adding the register signals as additional ports
in the SVA module (as described in the chapter about the bind mechanism). An addi-
tional advantage of this approach is that a test for each module as separate unit can be
done easily as well as a top level test by binding all modules into the full design. If the
register instantiation within the design has been done by generators also the additional
SVA-module ports for the registers can be generated and also automatically connected in
the bind file.

1 // ////////////////////////////////////////////////////////////////////////
2 // F i e l d s
3 // ////////////////////////////////////////////////////////////////////////
4
5 ‘define __ctr l_star tca l cu la t ion_ ( d_spi_multipl ier_wrapper . dut .

s t a r t_ca l c u l a t i o n )
6 ‘define __ctr l_ca l cu la t i on f in i shed_ ( d_spi_multipl ier_wrapper . dut .

c a l c u l a t i o n_ f i n i s h ed )
7 . . .
8 ‘define __multiview_normalmode_view_some_ro_value_ (

d_spi_multipl ier_wrapper . dut . tm_reg )
9 ‘define __multiview_testmode_view_some_rw_value_ (

d_spi_multipl ier_wrapper . dut . tm_reg )

Listing 5.7: Field definitions - for mixed language designs the paths are replaced by input
signals

Subsequently all code is automatically generated, with the only exception that for un-
known access types two standard properties for read and write are generated, that have
to be filled by the user. To know the position of every field, the register address, bitfield
bit position inside the register and size are needed (known from meta-model and thus
automatically generated). The position and size values are used to calculate the left and
right arguments for the transaction_write_data and transaction_read_data macros.

1 // ////////////////////////////////////////////////////////////////////////
2 // F i e l d addre s se s and p o s i t i o n s
3 // ////////////////////////////////////////////////////////////////////////
4
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5 ‘define __ctr l_startca lcu lat ion_address_ ( 0 )
6 ‘define __ctr l_startca lcu lat ion_pos_ ( 0 )
7 ‘define __ctr l_star tca l cu la t i on_s i ze_ ( 1 )

Listing 5.8: Field positioning is automatically generated from the model

The first property is the reset property. The delay at the beginning ( ##1 ) is needed,
because the function $rose(reset_n) looks into the past. If it would be the very first cy-
cle the past would be undefined, so waiting one cycle is the safe way to check this. The
$rose(signal) function checks if there was a transition from 0 to 1 from the last cycle to the
current and if so it returns true (respectively 1, as SystemVerilog does not know boolean
data types).

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 Reset
3 Check r e g i s t e r v a l u e s a f t e r r e s e t
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
5
6 d_spi_mult ip l i e r_regs_reset_values :
7 a s s e r t property ( @(posedge ‘__clk_ )
8 ##1 $rose ( ‘__reset_ ) |−>
9 ( ‘__ct r l_s ta r t ca l cu l a t i on_ == 0) &&

10 ( ‘__ct r l_ca l cu l a t i on f i n i shed_ == 0) &&
11 ( ‘__ctrl_activatetm_ == 0) &&
12 ( ‘__op1_operand1_ == 0) &&
13 ( ‘__op2_operand2_ == 0) &&
14 ( ‘__result_low_resultlow_ == 0) &&
15 ( ‘__result_high_resulthigh_ == 0) &&
16 ( ‘__multiview_normalmode_view_some_ro_value_ == 0) &&
17 ( ‘__multiview_testmode_view_some_rw_value_ == 0)
18 ) ;

Listing 5.9: The reset property

If a bitfield with an undefined access behavior is encountered then standard assertion
stubs are generated. Note that UVM standard accesses are predefined, others have to be
added. These stubs consist of standard write and read accesses and have to be completed
manually by the user. To prevent forgetting to add the correct access definitions for these
fields the assertions are generated in a way that they will always fail (the consequent is
always false).

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 Proper t i e s f o r f i e l d S t a r t C a l c u l a t i o n
3
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4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
5 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 a s s e r t i o n s tub f o r f i e l d S t a r t C a l c u l a t i o n
7 a s s e r t i o n s f o r read / wr i t e acces s
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
9 reg i s t e r_acce s s_rwcd_ct r l_s ta r t ca l cu l a t i on_wr i t t en :

10 a s s e r t property ( @(posedge ‘__clk_ ) disable i f f ( ‘__reset_ )
11 ( ( ‘__trans_write_done_ ) and ( ‘__transaction_address_check_ (

‘__ctr l_star tca l cu la t ion_addres s_ ) ) ) |−>
12 0
13 ) ;
14
15 reg i s t e r_acce s s_rwcd_ct r l_s ta r t ca l cu la t i on_read :
16 a s s e r t property ( @(posedge ‘__clk_ ) disable i f f ( ‘__reset_ )
17 ( ( ‘__trans_read_done_ ) and ( ‘__transaction_address_check_ (

‘__ctr l_star tca l cu la t ion_addres s_ ) ) ) |−>
18 0
19 ) ;

Listing 5.10: Default properties for undefined access types

The next code example shows a typical read-write field assertion set consisting of a
check if the value is written from the bus into the bitfield, a check that the read access
to the field does not change it (if a field is updated by the design too this will fail, so a
different access type has to be defined for this) and a check that data of the bitfield is
actually transferred to the bus. Code examples for all different predefined access types
can be found in the appended CD in the assertion file for the SimpleBus Regpack, as this
features one field for every access type.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 Proper t i e s f o r read−wr i t e f i e l d ActivateTM
3
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
5 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 bus data i s w r i t t e n to rw f i e l d ActivateTM a f t e r wr i t e
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 reg i s ter_access_rw_ctr l_act ivatetm_writ ten :
9 a s s e r t property ( @(posedge ‘__clk_ ) disable i f f ( ‘__reset_ )

10 ( ( ‘__trans_write_done_ ) and ( ‘__transaction_address_check_ (
‘__ctrl_activatetm_address_ ) ) ) |−>

11 ( ‘__ctrl_activatetm_ == $past ( ‘__transaction_write_data_ ( (
‘__ctrl_activatetm_size_+‘__ctrl_activatetm_pos_ )−1,
‘__ctrl_activatetm_pos_ ) ) )

12 ) ;
13
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14 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 data o f read−wr i t e r e g i s t e r ActivateTM
16 does not change wi th a read opera t ion on i t
17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
18 reg i ster_access_rw_ctr l_act ivatetm_stable_read :
19 a s s e r t property ( @(posedge ‘__clk_ ) disable i f f ( ‘__reset_ )
20 ( ( ‘__trans_read_done_ ) and ( ‘__transaction_address_check_ (

‘__ctrl_activatetm_address_ ) ) ) |−>
21 ( $ s t ab l e ( ‘__ctrl_activatetm_ ) )
22 ) ;
23
24 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 data o f read−wr i t e r e g i s t e r ActivateTM
26 i s t r a n s f e r r e d to data−out r e g i s t e r ( or bus i f c )
27 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
28 reg ister_access_rw_ctr l_act ivatetm_read :
29 a s s e r t property ( @(posedge ‘__clk_ ) disable i f f ( ‘__reset_ )
30 ( ( ‘__trans_read_done_ ) and ( ‘__transaction_address_check_ (

‘__ctrl_activatetm_address_ ) ) ) |−>
31 ( ‘__transaction_read_data_ ( ( ‘__ctrl_activatetm_size_+

‘__ctrl_activatetm_pos_ )−1, ‘__ctrl_activatetm_pos_ ) == $past (
‘__ctrl_activatetm_ ) )

32 ) ;

Listing 5.11: Properties for a read-write bitfield

5.2.3 Usage

The generators can generate the bind file with all module bindings and automatic port
connections for all inputs and outputs of the module under test to the property module.
The ports for the bitfields are prepared in the property module but not connected in
the bind file, because this can not be done automatically with the current development
flow (future use of a standardized register generator will make this manual step obsolete).
The property module is generated too, the bus protocol definition with the read and
write sequences, read-data and write-data bitfields etc. have to be specified manually as
the bus protocol can be different between designs (otherwise it is only copy and paste
anyhow). Another manual task is writing the Tcl file needed to initialize the design, set
pin constraints and set it into the desired state before the formal verification starts. This
is usually completely different for all designs, so this will not be automated. After this the
tool can be invoked supplying the design files, the property file, the Tcl file, the bind file
and the desired parameters for the model checking runs (like effort, possible tool specific
settings etc.).
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5.2.4 Overview of the Generated Verification Environment

In this section a short version of the generated files for the SPI multiplier DUT is pre-
sented. The bind file for the SPI multiplier looks like this:

1 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // Pro jec t : SPIMu l t i p l i e r
3 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 // Autogenerated r e g i s t e r acces s a s s e r t i o n bind f i l e
5 // Generator by :
6 // Michael Langre i t e r
7 // IFAT DCGR ATV PTS
8 // XXXXXXXXXXXXXXXXXX@infineon. com
9 // +43−XXXXX−XXXX

10 // Copyright In f ineon Techno log ies Austr ia AG 2012
11 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 bind d_spimult ip l ier_wrapper prop_d_spimultipl ier_wrapper

prop_d_spimult ipl ier_wrapper_inst (
13 //−−−−−− s p i _ i f c
14 //−−−−−− Sideband
15 . reset_n_i ( reset_n_i ) ,
16 . c lk_i ( c lk_i ) ,
17 . csn_i ( csn_i ) ,
18 . sck_i ( sck_i ) ,
19 . mosi_i ( mosi_i ) ,
20 . miso_i (miso_o ) ,
21
22 . c t r l_ s t a r t c a l c u l a t i o n_ i ( dut . s t a r t_ca l c u l a t i o n ) ,
23 . c t r l_ c a l c u l a t i o n f i n i s h e d_ i ( dut . c a l c u l a t i o n_ f i n i s h ed ) ,
24 . c t r l_act ivatetm_i ( dut . activate_tm ) ,
25 . op1_operand1_i ( dut . operand1 ) ,
26 . op2_operand2_i ( dut . operand2 ) ,
27 . resu l t_low_resu l t low_i ( dut . r e s u l t [ 2 7 : 0 ] ) ,
28 . r e su l t_h igh_resu l th igh_i ( dut . r e s u l t [ 5 5 : 2 8 ] ) ,
29 . multiview_some_rw_value_i ( dut . tm_reg )
30
31 ) ;

Listing 5.12: Generated bind file with manual bitfield connections

The first part (under “Sideband”) is created and connected automatically. The ports below
that are created automatically, but have to be connected manually, as the bitfield signal
names cannot always be known. It could only be known if the bitfields are generated,
which is now already done for some designs.
The property file has already been presented step by step in the example section 5.2.



Chapter 6

Practical Results

This chapter first shows the different VLSI designs used for testing the two methodologies.
The first two are very simple designs intended mainly for checking the implementation of
the automatically generated (and as needed manually improved) testbenches and asser-
tions. The last one is a real design with much higher complexity and it has additional chal-
lenges like mixed languages (VHDL, Verilog, SystemVerilog) and Design for Test (DFT)
functionality. The results of the tests on the three designs are then compared regarding to
different metrics important in chip development: The effort of setting up the tests and the
reusability of these, the coverage in terms of how much of the designs behavior regarding
the registers is observed, the time needed to get results from these tests and of course
the number and types of bugs found on these designs. One of the two simple designs also
includes the possibility to inject faults to see the reaction of the verification environment.

6.1 The Designs Used for Testing

6.1.1 SPI Multiplier

The SPI multiplier test design is a small module with a simple functionality. It features
a serial peripheral interface to access the registers and it calculates the product of two
register values and stores the result in two additional registers (as the multiplication of
two n-bit values needs up to 2*n-bit for the result). A block diagram can be seen in figure
6.1. There are no measures for synchronization taken within this design. Usually, the
SPI clock is asynchronous to the internal clock and therefore typically the chipselect is
synchronized with a simple synchronizer consisting of two flip-flops to create a signal that
triggers the safe transfer of data from the shift register within the SPI clock domain to a
register in the system clock domain. In addition there are no DFT implementations (like
a scan-shell) added to keep the design as simple as possible for the tests.

96
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Figure 6.1: Block diagram and register overview of the SPI multiplier test design

6.1.2 SimpleBus Register Pack

This module is designed to incorporate every standard bitfield access as defined by the
UVM. Communication is done via a very simple parallel bus, which is similar to several
on-chip buses and buses used in FPGA based SoC designs. The bus features a chipselect
signal, a write/read-not signal, address and input and output data lines (input and output
are separate signals). There is no real functionality in this design other than the register
accesses and the additional option to control faults that are injected into certain bitfields
from the outside (via the sequence for the UVM test or the Tcl script used for Formal
Verification (FV)). This is used to prove that the UVM and the FV based methodology are
able to identify all errors in the standard access behaviors. In figure 6.2 a block diagram
is given.

6.1.3 Lithium Ion Battery Balancing IC

The last design is a real world design. It is the digital part of a mixed signal IC, which
is used to measure and balance lithium ion battery cells. Balancing means evening out
differences between the batteries caused by manufacturing and aging by discharging them
or redistributing charge between the batteries. One IC is able to handle up to twelve cells,
the next twelve are then done by another one. The communication can be done via an
SPI interface (direct communication to one IC) or a second interface (called Inter Block
Communication Bus (IBCB)), which was designed to meet the special requirements of
communication between the ICs along the stack of batteries. This design also includes
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Figure 6.2: Block diagram and register overview of the register pack test design with a
simple parallel bus and a fault injection mechanism

synchronization mechanisms, as well as DFT features. The system including connectivity
and registers is already modeled according to the Essence data model. As the final tests of
the methodologies were done this design was already in production and it is now already
available in silicon in our laboratory. This design proved to be quite problematic for
the FV to handle it on toplevel, which also lead to a few adaptations to the assertion
templates and the overall assertion distribution in the modules. The serial interface,
which is additionally secured against transmission errors by a checksum, is too complex
for the formal engine to get through to the registers within an acceptable amount of time.
This lead to the need to cut open certain connections within the design to directly access
the on-chip bus for driving data to the registers. As the design is also written in mixed
languages (Verilog, SystemVerilog, but mostly VHDL), it was not possible to bind all
assertions into the toplevel and probe into the modules to read the register values. Due
to the existing model of the design it was quite easy to change the generators to create
one register assertion module per internal module and create a bind file that binds every
property file to the correct design file. A simplified block diagram is given in figure 6.3.

6.2 Metrics for Comparison

6.2.1 Effort and Reusability

Effort and reusability are two very important characteristics of a methodology, particularly
with regard to its use within a productive environment. If no dedicated verification depart-
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Figure 6.3: Diagram of the blocks important for this thesis including the binding hierar-
chy for the assertion modules and the cutpoint for access to the internal bus for formal
verification

ment, or dedicated verification engineers within the department, is present the designer
has to take the additional step of doing the verification alongside the design. According
to literature the ratio of the amount of time spent on verifying to the amount spent on
doing the RTL design should be at least 60:40, better even higher. As it is hard to reach
even this, the methodology should not take away time needed for the design and also
writing tests for other topics than the register access verification. To facilitate this as
much as possible, automatic code generation was used. But aside from generated code
for the special purpose of the register accesses, it is also interesting if these generated
verification environments can be directly used for other verification too. The first com-
parison on effort, if we put aside the possibility to generate the code, is definitly won
by the formal verification using SystemVerilog assertions. A simple assertion file can be
written, bound into the needed module and activated within just a few minutes. There is
no testbench needed, no dedicated stimuli elements and no check elements. The assertion
modules created with this thesis are bound into each module and can be immediately
extended with additional assertions for various checks, not only ones that are related to
register access checking (all input and output ports, as well as the register signals are
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fed into the assertion module by default). As the signals representing the bitfields of the
registers can not always be found automatically this has to be done manually in the bind
file in this thesis. In comparison a UVM testbench needs quite an overwhelming amount
of boilerplate code to fulfill just a simple verification task, but as the verification tasks get
more complex the amount of code does not rise in such an amount anymore. The code
needed for a task like the register access verification alone is still a lot larger than for the
formal verification. On the other hand having set up this testbench for the registers it
can be used for other verification tasks too. As automatic code generation is available for
this thesis setting up such a minimal testbench requires quite little effort. If no automatic
code generation is available the configuration mechanisms within the UVM also allow to
quickly reuse a testbench for other designs like the verification of a slightly varied chip or
a different test setup with just some options, that may even be passed from the command
line to the simulator (for more details on the configuration mechanism of the UVM refer
to [3], [20] and [26]). For the register verification, what has to be done manually is to
create all needed agents for the different interfaces, through which the registers can be
accessed and that should be checked for correctness. These agents will anyhow be needed
for other functional tests on the system. If standard interfaces are used, it is possible to
even buy agents as VIP in case the project timeline does not allow developing an own one
or an existing agent could be used, if the IP repository of the company also provides VIP.

6.2.2 Coverage

If a property is proven in formal verification the full logic cone that is influencing the
(boolean) value of this property starting from the input pins is checked, but only on
its influence on the outcome of the boolean statement under test. If this cone of logic
increases due to verifying a big module or even verifying a toplevel design this will lead to
excessive runtimes or even make it impossible to prove the assertion within normal time
and memory limits. This problem is known as the state space explosion problem (see [34,
pg. 569ff]). When trying the assertion based methodology on the full blown design on
toplevel this happened. To still get some information out of it, the first reduction was
to bypass the real (serial) interface to the chip and directly use the parallel on-chip bus.
With this at least some assertions could be proven, some failed (no real design fails, but
fails on the specified access type, more on this in the subchapter about the type of bugs)
but still a third set did not finish at all. This was due to the fact that th state space was
explored within the allowed limit, which means that some of the possible coverage is lost.
It is very simple to add an assertion that checks the register contents also outside of the
transaction scope, so it can be checked, that there is no side-effect of a read/write to
another register or other design influences.
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A UVM testbench also checks the interface, because it is needed for the frontdoor access
to the registers and in combination with the backdoor access a possible change of the value
on the way to the register can be detected. Even though the whole way from the inputs
to the register is used it is not checked in all states. It is only checked in the very few
states that actually are present within this simulation run, if there are influences in certain
failure states of the design they will only be seen if it is simulated with this state present.
As UVM is based on using randomization whenever possible a useful random seed value
and a lot of runs make it possible to see this behavior. The more the randomization is
used, the more the verification shifts to real coverage driven verification, which demands
mechanisms to collect coverage to be implemented and is able to give a feedback about
the functional coverage of the verification. A different mindset concerning stimulation and
checking is required than with the normal directed simulation approach, which is why lots
of designers/verification engineers fear to take the step away from the directed tests.

6.2.3 Runtime

The test designs were chosen in a way, that, if the assumptions are correct, a difference
should be visible, because the difference would strongly increase with the complexity of
the design. It is not too easy to really specify the complexity of the designs in a number,
which is normally used in VLSI designs. The number of Gate Equivalents (GEs) can be
misleading, as it shows a size which will increase for a larger design, but this does not
automatically mean that there are more interconnects and dependencies in the system. A
cryptographic algorithm or some other design with a big datapath can have an equal or
even a lot higher number of NAND2 equivalents, but still be a lot simpler than a controller,
just because everything exists several hundred times in parallel. But still increasing size
of a similar kind of design can at least point the direction of the complexity. The Lines
of Code (LoC) can be used as a measure as well, as this is, following a normal coding
style, also reducing the impact of the same parallelized modules being instantiated in the
design. The number of registers available to the user might also show something about the
complexity, as the more settings can be done for a design, the more complex it will most
likely be, but still this could be misleading for the same reasons as the normal gate count
and the same applies to the lines of code and other metrics. For every kind of verification
a problem can be constructed, that will be hard to solve and thus take a long time, so
the most common way of expressing a designs complexity, which is the number of gate
equivalents, will be used here. The runtime of the verification of a design strongly depends
on its complexity. It might not just be the runtime for the single tests that are longer,
but also the number of tests, as more and more interdependencies have to be checked. For
this special verification task of the register access verification, the runtime of the UVM
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verification will be dependent on the interface (amount of time for a frame, one or more
bus accesses for a read command, etc.) but mainly on the number of registers and the
number of bits in these registers. For formal verification a lot more influence on a bit
is seen, as the full cone of logic driving the bitfield is checked. A more complex design
will add a lot of additional states to the register’s behavior in most cases, which increases
the runtime quite extensively. This influence can already be seen for most designs if the
formal verification of a module is done and in comparison a verification on the top level
of the design.

6.2.4 Number and Type of Bugs

The kinds of bugs this methodology has to find are well known. It is the target to
uncover wrong bitfield behavior on a read or write access to it. But the results can
also prove, that some additional bugs might be uncovered using either one or the other
verification methodology. Sometimes both can produce the same results, but for one
requires substantially more effort to set it up. The number of predefined bitfield access
types defined by the UVM is the number of behavior sets for which the effect of an access
is defined and where a violation has to be found. Parts of these behavior sets are shared
between the different bitfield types, e.g. w1s and w1src share the “write one to set” part
and rc and w1src share the “read clears all” part. Additionally own access types can be
defined by adding these types to the generators and for formal verification also to the
templates and for UVM to a register package, that is imported in the register model. The
types of bugs, that will be used as a metric here, are all the predefined access behaviors
as “must-have” and additional sources of error affecting these bitfields (so not on custom
behavior).

6.3 UVM Results

The UVM worked as expected on the SPI multiplier design. The time consumed for
the reset and bitbash test is about one minute. As the design is quite simple and was
adapted to fit to the needs of verifying this methodology, this was working out quite well
as expected. For the testbench an agent was needed for the interface, as well as quite some
(for this first design manually written, as the generators for this did not exist at that time)
boiler-plate testbench code. The register model was already generated from the Essence
description.
The SimpleBus register pack was designed to test all correct and incorrect behaviors for all
register access types predefined by the UVM. For a certain set of registers, there are some
topics, that have to be kept in mind: Predefined access sequences do not check if a write-
only bitfield type (wo, wo1, woc, wos etc.) is readable, so the result of a read operation



CHAPTER 6. PRACTICAL RESULTS 103

on these is undefined - which might not be wanted. Usually these bitfield types are used
for strobe signal generation and thus can anyhow not be read back afterwards (as a strobe
only lasts for one clock cycle), but if it is meant for something else, e.g. setting a counter
value that is then internally decremented and should not be readable, this has to be kept
in mind and a user defined access check sequence is needed. If a write/read on one bitfield
has an (unwanted) effect on another there will be no error flagged if they do not share the
same register address. Formal verification can find such paths by adding an assertion that
checks if outside of the bitfield access (transaction done and correct address) the value
is stable. This assertion is not automatically generated with the generator framework in
this thesis, as in most designs the registers have different internal accesses in addition to
the external accesses (via the interface), which are used to change the value outside of the
transaction context (e.g. updating an ADC value, setting diagnosis flags and so on).
The tests on this design were done with one fault per test, so a read fault was introduced
into register 0, a full bitbash sequence was run, a write fault was introduced in register 0,
a full bitbash sequence done and so forth for all registers. This sums up to fifty separate
register test runs (25 registers with a separate read and write test). The run was done
in graphical simulation mode (batch-mode usually speeds it up a little additionally) and
took two minutes. As expected the faults were found and all other registers were found
to be acting according to the specification. The testbench for this design was already
automatically generated with the Metagen based tool created by the Infineon Design
Enabling and Services group. The agent was quite easy to fill out, as this bus protocol is
really simple. The register2bus adapter is a very short sequence item transformation and
the register model was generated using the generators created for this thesis. This kept
the effort really low, the setup of the whole testbench with the model took less time than
writing the design itself.
The final test was done using a real life design. It has about 80 register with all together
about 400 bitfields in them. The register verification run on the design took about 15
minutes.

6.4 Formal Results

The formal run on the SPI multiplier is not noticeably slower than on the UVM. While
developing the methodology and always testing it on the design and vice versa the formal
verification already uncovered small design flaws and it verified the register accesses suc-
cessfully. Setting everything up was done quite quickly, as only a few HDL path mappings
needed to be done and the controlling Tcl file was also just a few lines driving the reset
and starting the proving run from this point. Even the serial interface used for the design
did not create any problems, because it was done in a very basic way.
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The SimpleBus register pack was verified in the same way as with the UVM by creating
one read or write fault, verifying the whole design, creating another fault and doing it
again and so forth. These all in all fifty runs already showed the runtime difference be-
tween the formal verification and the directed method. The verification, which was done
in batch mode (without any graphical environment starting up), took about twenty three
minutes. As the design was created in a very simplistic way, only providing the register
accesses and fault injection mechanism and no real functionality, there were no additional
bugs uncovered. The effort for setting up the verification was not too high, the startup
script was about the same as for the SPI multiplier, the mappings via bind file could be
done quickly due to the way the register names were chosen and defining the bus protocol
was fairly easy due to the simplicity of the interface.
The verification of the actual design was already expected to be very troublesome and it
turned out to really be that way. The first methodology based on Verilog with the possi-
bility of mappings via HDL paths could not be directly used, as the design was partially
written in VHDL. As a result the simulator specific command nc_mirror was used, which
turned out not to be working, even though it should have according to the documentation.
After being able to map all bitfields correctly by rewriting the assertion generator to create
one assertion module for every module with a bus connection and a bind file to bind them
into the corresponding module the formal verifier was still not able to prove or disprove
any given assertion except for the reset assertions. All bus transfer dependent assertions
were explored with the highest default setting for proving effort. Explored means that the
state space was checked up to a certain limit without finding a counterexample or getting
through the whole space to prove the assertion correct. It was apparent that the problem
was to access the registers through the serial interface, which also has special commands
and a checksum and not just plain address and data fields, that are written to/read from
the registers. One possibility would be to use assumptions to model the data transfers.
This can be quite challenging and due to the additional logic in the design, where also
some arbitration is done for accessing the on-chip bus, the confidence in having success
with this to make the checks work was rather small. So instead of modeling the serial
interface and the second interface to access the internal bus the design was cut at some
point in the arbiter, where the parallel internal bus could be driven. This approach already
yielded a useful result, where, of 230 assertions all together, one third already passed and
one third failed and only one third was still explored. The assertions were reduced to
this number, as for similar fields only one was checked. Still this took more than seven
hours. A way to speed up the verification is to do only a module verification instead of
verifying all modules combined. This is the recommended way for formal verification, but
this means that the real influences on some register contents might not be seen, as they
reside within other modules. For these signals assumptions can be made at the module
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boundary, but this does not mean that the design will behave this way, as the assumption
could be wrong. The failing assertions originate from some simple problems. First of all,
some registers were declared as read-only registers. In most cases, like for this design, the
registers will only be read-only to the interface, but can still be changing, as they represent
ADC values, error flags, diagnosis bits and similar information. The formal verification
found these mismatches, whereas the UVM did not see them. Some fields should not be
affected by a readout so it is checked, if the value at readout and one cycle later is the
same (stable-read assertions). The formal verifier also found the combination where this
is not true, as it can happen that the next cycle after readout is exactly where a new ADC
value or similar is set in the register. To bypass problems like these a custom bitfield is
needed, which has some access type like e.g. “rosd” (read-only set-by-design). These need
an extended version of the stable read command, which adds the exception of data transfer
from a certain place in the design. As this is totally application specific and there exist
virtually infinite possibilities of different combinations, it is hardly possible to predefine
such behaviors. If such a type is used more often it is possible to extend the generator
with default assertions for this special access type. If only a few special bitfields are used
and the results of the verification run are checked these can be seen by looking at the
counter examples of the failed assertions. The methodology will in this case flag more fails
than really exist, but this is the safer way than to suppress (possibly real) fails.

6.5 Comparison

As both methodologies have been analyzed separately it is time to compare them in respect
to the metrics defined at the beginning of the chapter. A first overview and comparison of
the designs focusing on the possible measures of complexity and the resulting verification
runtimes is given in table 6.1.

Table 6.1: Comparison of the two verification methodologies
on designs of different complexity in respect to runtime

Design LoC GE #Bitfields Runtime UVM Runtime FV

d_spi_multiplier 212 6.5k 8 1 min 2 min
d_simplebus_regpack (50 runs) 598 10k 25 2 min 23 min
Balancing IC 38.5k 53k 400 15 min >7 hours

In the next sections all used metrics are compared in more detail. For each section a
table with a summary of the results in a simple form is presented. This is a rating system



CHAPTER 6. PRACTICAL RESULTS 106

ranging from +++ to - - -, the base to which the two methodologies are compared to are
the typical verification systems with directed tests and simple stimuli mechanisms, which
are still used widely nowadays, be it Tcl based or VHDL/Verilog based testbenches with
simple control scripts. The meaning of each rating can be seen in table 6.2.

Table 6.2: Comparison system

Rating Sign

Very good +++
Good ++
Slightly Better +
Neutral o
Slightly Worse -
Bad - -
Very Bad - - -

6.5.1 Comparison of Effort and Reusability

The effort of writing a UVM testbench manually is very high. Even implementing only the
really necessary classes (and functions and tasks within them) requires effort and not even
a single test sequence is done then. Creating the register model additionally would raise the
effort even more if it is done manually, depending on the number of registers and bitfields in
the design of course. The generators ease this problems to some extent. The UVM register
model was already created in a way that makes it easily generable, in the meantime there
are tools available from the different Electronic Design Automation (EDA) vendors, that
can generate a UVM register model from widely used register and IP definitions like IP-
XACT. For generating the whole UVM testbench a few commercial products already exist,
if nothing similar to MetaGen is available at a company this might be an option to speed
up this process. As soon as this needed boilerplate code is done it is quite easy and fast
to extend this minimal testbench for all different tests and settings, which can then be
used for the verification of the whole digital implementation (currently attempts are also
made at some EDA vendors and companies to transfer the UVM methodology into the
analog/mixed-signal domain, which might then make this usable for the whole pre-silicon
verification of the IC). As UVM facilitates reuse and the creation of verification IP, parts of
the testbench can be reused in other projects or often also bought from external suppliers.
The effort of setting up formal verification is quite low. For module tests setting up
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the bind file and a simple property module definition along with a simple startup script
usually written in Tcl is enough to start adding assertions for different aspects of the
module’s behavior. Also reusing existing module assertions is possible if the module is
placed within another one, if assumptions were used to specify the behavior of the module
input ports these can be turned into assertions in this case (most formal verification tools
can do this automatically). Reusing every assertion withing the toplevel of the chip will
not be possible for most designs, as the state space for some will be too big. The behavior
specified by these assertions might have to be checked by other means of verification. The
generated assertions and bind file can directly be used with just a few manual adaptions
(connections of the bitfield signals to the assertion bitfield signals) and an application
specific startup Tcl script. Other assertions for the module behavior that have nothing to
do with the registers, can also be added here with no extra effort.

Table 6.3: Comparison of the two verification methodologies
in respect to (initial) effort and reusability

Methodology Effort Reusability

UVM - - - +++
Formal ++ ++

6.5.2 Comparison of Coverage

In the register verification with UVM only the accesses and changes to the registers within
the limited time of the access itself is checked. Interdependencies between bitfields in dif-
ferent registers will not be seen. If they are needed, this can be modeled with a custom
bitfield type. Unwanted interdependencies (some signal erroneously triggers another one,
that sets the bit) might not be found. Of course some additional sequences can be writ-
ten, that can at least ease this problem by setting every field, checking every other field,
resetting the device, setting the next field and so on. This still might not find some special
kinds of bugs, for example if it is a dependency of multiple other fields. An access will
not only check what happens to a field, it also implicitly checks the interface which is
used to communicate with the design. Bugs in this interface could be uncovered this way.
Using frontdoor/backdoor access sequences also helps to rule out or find the dependence
of a data change within the interface. The complexity of the interface will not have a big
impact for most designs.
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Formal verification sees every possible path to change the bitfield at any given time.
If there is some interdependency that could create an error it will be found, as long as
it can be found within the state space exploration limits that were set. Every influence
within the cone of logic pointing to the monitored expression will be seen, so it covers all
influences at all times. This will often lead to an explosion of the possible states, especially
for bigger modules or even toplevel verification. Only verifying it on module level on the
other hand will not show all possible influences. In order to be able to check it also on
toplevel some trade-offs might be necessary, like bypassing more complex interfaces (as it
was needed with the balancing IC design). A formal verification of the interface module
alone should then be done separately.

Table 6.4: Comparison of the two verification methodologies
in respect to coverage

Methodology Coverage

UVM +
Formal +++

6.5.3 Comparison of Runtime

Running the register access tests, and reset value tests, with UVM takes only a short
time, even for a real design this stays in an acceptable time frame. The values for the
different designs can be seen in table 6.1. The increase of time needed to run the basic
register access test suite is mostly depending on the interface complexity, which is not a
big impact on the test designs, as the interfaces on these are quite simple, and the number
of bitfields and bits, as for everyone of these a write one/zero and read cycle has to be
performed. The complexity of the design itself has a lower impact on the runtime, only
certain constructs that slow down the simulator itself will of course add to the needed real
time (but those will also affect the formal verification run). For formal verification the
time needed for small designs is quite low, this is also true for most modules or submodules
of full designs. The coverage of such a verification is already a lot higher than the one
of a directed/constrained random approach. As soon as the design becomes quite large
the state space gets too big for the formal verification to handle all assertions and for
others it takes very long. The full design used in this thesis is an automotive application
specific IC and these are typically smaller designs compared to others in different areas of
chip design like microcontrollers or signal processing applications. For those applications
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a toplevel formal verification will be impossible in most cases, so using a module level
formal verification will often be the only possibility for those.

Table 6.5: Comparison of the two verification methodologies
in respect to runtime

Methodology Runtime

UVM o
Formal - - -

6.5.4 Comparison of Number and Type of Bugs

UVM is able to find bugs that happen within an access or within two accesses, if the register
is read again. There is no permanent update and check of the register contents if it is not
done by a manually created sequence. For backdoor access enabled the current state of
the registers could be monitored without doing a real access. But this will not prove that
a certain situation can never occur. By randomizing accesses to the registers (best create
read/write, address and data randomized within some constrained limits) additionally
to the predefined linear checking sequence, the possibility to see some state, that was
not thought of, can be increased. Problems with the access via the interface, especially
interface decoding or arbitration problems in multi-master systems, can be visible in this
verification too, as well as problems and differences for register accesses through different
interfaces of the design. Simple access violations within the access could be found, as the
checks on all register access types with the SimpleBus register pack test design succeeded,
which includes one of every bitfield type. Formal verification traces all possible influences
on the asserted condition, which is a register access check in this case, and is thus able
to find also well hidden bugs that do not have to be related to the access itself. In the
tests it was possible to uncover behaviors like a signal change one clock cycle after the
read access, which was checked against in the assertion to make sure a read access does
not alter data of certain register types. For this certain case it was not a problem of the
design, but a too restrictive definition of the access type for this register, as some internal
diagnose flag could well be set just in the cycle after the read, but also at any other time.
Interface related fails might not be seen in the full design, as the interface might have to
be bypassed if it is too complex. Problems with the register accesses through different
interfaces will not be uncovered by this kind of verification then. If the interfaces and
the bus arbiter are formally verified separately this should be no problem. In case a bug
is found it is not always easy to understand how the design reached this state, as it is
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not operated in the way it is operated in the system. This is something the verification
engineer has to get used to in the beginning, as it is very different from normal verification.
On the other hand this is exactly why it often uncovers bugs or problematic states that
have not been considered in the specification or design phase. The bad part of this is
that the specification of the internal conditions with sequences can be quite complex and
hard to understand when reading them, so additional possible sequences could have been
defined without wanting it (especially when using more complex sequence combinations),
which can lead to unwanted assertion fails (which can be traced back and corrected then),
but even worse to passing assertions even though an unwanted state was present.

Table 6.6: Comparison of the two verification methodologies
in respect to bugs

Methodology Number/Types of Bugs

UVM ++
Formal +++

6.6 Conclusion

UVM is useful to see the design in a real operating condition, where checks on the register
access behavior can be done quickly and on different interfaces with very little additional
effort and by using randomization of the register transaction items the possibility to un-
cover bugs not visible with the predefined access sequences increases too. The testbench
with all the agents, register model and other UVM classes can be used for all the other
verification on the design too, which means that the additional effort of creating it pays
off later.
Formal verification has the big advantage that all influences on the asserted expression at
all times are analyzed. The correctness of the assertions is the most important part. As
more complex assertions using connected sequences can become hard to understand quite
quickly it is hard to assure the correctness, especially because the proof is done on the
design outside of a normal use-case. Fails due to this might not be a problematic issue,
as those fails will anyhow be analyzed further. A test that passes even though the design
behaves incorrectly (but it behaves correctly in regards to the assertions!) is a very big
problem, as this might then slip through the whole verification if no other means of test-
ing this are included. A testbench for simulating the design in a functional way is often
recommended. For the register access types defined by the UVM the assertions automati-
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cally generated by the generators written for this thesis have been verified to be working,
the critical part in this thesis is the manual definition of the bus access sequence. As the
design gets more complex the time needed for the prove that the design acts according to
the assertions increases significantly. One way to address this is to use formal verification
for overnight and weekend runs or split up the design and do verification on module level.
Setting up the formal verification can be done quickly, as the needs are just the bind file
(or bind command passed via command line), the assertion module and a small Tcl script
for the verification startup and settings. For the register verification the bitfield input
ports need to be connected manually, which can be a little bit more work, but all in all
it can be set up quickly and adding assertions for other behavior than register accesses is
no more effort than just writing the assertions (all module ports are already fed into the
property module). Altogether it seems to be the best approach for a real-life project to
use both kinds of verification. A testbench for normal simulation will always be needed,
so setting up the UVM testbench is no extra effort, especially if some verification IP is
already present. This allows to do some quick tests on the design and also see, that for
a passing assertion no real functional bug is slipping through. The formal verification for
the register accesses, and other parts of the design behavior, can be set up quickly and be
run overnights and over weekends for a very thorough analysis.



Chapter 7

Post RTL Verification

7.1 Post Synthesis Verification

The verification methodologies were only described for RTL code up to now. But this
is only a high level format of description, the system does not necessarily have to be the
same after starting the backend processing. Parts of the system might get optimized, some
timings or intermediate states might produce unexpected results and so on. This chapter is
focusing on the possibilities to ensure correct functionality of the register access behavior
in the final system for tape-out. This includes all steps starting from the synthesized
netlist on to the back-annotated netlist extracted from the final digital layout.

7.1.1 Verifying the Synthesized Netlist

UVM

If only frontdoor access is used it is very easy - just replace the instantiation of the RTL
design by the instantiation of the netlist. As the access is done via the interface everything
has to work just like with the RTL design, otherwise the synthesis result differs from the
desired one. If backdoor access is used more effort is required to adapt the testbench. UVM
already offers the possibility to add different HDL paths for different design abstractions.
These are selected by passing the kind-argument in the set_hdl_path function family. The
synthesis will change the names of module instances and depending on the settings even
flatten out hierarchies, thus it is not possible to give a general solution for this problem,
but knowing the settings and the tool the HDL path names are generated according to a
certain scheme, which could be used to determine the paths automatically. The alternative
is to search through the netlist and derive the paths from this manually.
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Formal Verification

In most cases the formal verification using SystemVerilog assertions is done by binding a
property specification into a module, which uses the input and output ports of the design
module as inputs, to check the correct behavior of the design. When doing synthesis the
ports of a module are typically left with the same names afterwards, so if the mechanism
of renaming the modules is known (same as for the UVM backdoor accesses) the bindings
could be adapted easily. The problem for the formal verification approach used in this
thesis is that register values have to be monitored and they are not always visible on ports
of modules, but rather as a bunch of flip-flops or similar within a module. As those are
replaced by standard cells every bit turns into a submodule and the bit-widths are usually
optimized. This makes it very hard to reconnect everything in an automated or semi-
automated way and manual adaption of the connections would be a very painful process.
The possibilities to adapt this are thus very dependent on the way the design itself is done.

7.1.2 Verifying the Back-Annotated Netlist

With regard to the back-annotated netlist the main differences to the netlist after synthesis
are the clocktree, the additional buffers and the available timing information for minimum,
maximum and typical timing. There is no real functional difference, except for fails due to
timing violations, which should be found by the Static Timing Analysis (STA), the netlist
still consists of the standard cells and the hierarchy of the netlist is about the same as
before. This means, that the same problems for the verification methodology exist as for
the verification of the netlist after synthesis. For UVM with frontdoor access it is still easy,
for backdoor access and for formal verification the problem of the renamed or removed
signals exists and the means of solving these problems are the same as the ones for the
post-synthesis verification.

7.1.3 Alternative: LEC

As it became clear in the previous sections the verification of the design at some point in
the flow after synthesis can be a very problematic if it is needed to observe internal signals
of the design. After processing the RTL design, because optimization might combine
signals or delete duplicate signals, it is not sure if the names of the signals have changed
or if the signals still exist or if the bitwidths are still the same etc. So it would be very
helpful to have the possibility to check the design in RTL and then just make sure the
design stays the same. This is exactly what the Logic Equivalence Check (LEC) does. Two
designs can be compared for equivalence, this can be a comparison of RTL to a netlist,
a netlist to another netlist or RTL code in one hardware description language to code in
another one. The LEC is a formal method, which abstracts the design similar to the ways
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shown in chapter 2.4 to receive a description independent system representation. Certain
features of optimization steps can be found and are not seen as nonequivalent points (e.g.
inverted equivalent logic). Using the tool is very easy and can be automated, so it is
included in most VLSI design flows nowadays. The possibility to check netlists against
each other is also used for doing an Engineering Change Order (ECO). An ECO is a
change to the design that is done by reconnecting the cells. As this only influences the
metal masks, this is cheaper and can be processed quickly, if wafers processed up to this
state are available. To fix small bugs often spare cells, a set of different standard cells, are
added to the design. If a bug is found in verification after tapeout a fix can be applied to
RTL code. This is then synthesized and the original netlist of the design and the new one
are compared with the LEC. The nonequivalent points are the changes to the design, this
is what needs to be reconnected.

7.2 Silicon Tests

The last part of the thesis was to provide means for aiding the verification of the design
in the laboratory. According to the needs of the laboratory staff no automated access
tests were created, but rather register representations for use with the already existing
systems. In the laboratory mainly two different verification settings are present: The first
one is a setup using a verification PCB controlled by a microcontroller or FPGA, which
is operated by a Graphical User Interface (GUI) running on a PC. The second one is an
automated chip tester, which is configured using an Excel workbook with integrated VBA
code.

7.2.1 VBA for Tester

As mentioned earlier, for the automated chip tester VBA is used to define the measurement
and evaluation process. The access to the registers of the chip is needed to set the device
in to the desired states, activate test modes, read measurement and diagnose values and
so on. This access is done via the interface that was typically also used in the pre-
silicon verification with UVM for the frontdoor access, like e.g. SPI, LIN, CAN. The
definition of the available registers, the bitfields they include, the meaning of the values for
certain enumerated states, range checks and the functions merging this information into a
command that can be passed to the interface handling class are generated from the Essence
model also used for design and pre-silicon verification purposes. The generators have been
written in a way to create Visual Basic code similar to the one that was manually written
before, to make the transition to the new system easier. The test routines are written
already before the chip arrives to the laboratory, normally even before tape-out. Changes
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to the register mapping can now be done without having to manually adapt the register
control code anymore.

7.2.2 XML for LabView GUI

The verification boards used for the normal laboratory verification are directly controlled
by a microcontroller or an FPGA, which is then controlled by a GUI on the PC, which is
typically written in C++ or LabView. Already some years ago I defined an XML based
format for describing registers, which defined the address, bitfields, decodings (i.e. the
meaning of a certain value, e.g. “0 - valve closed” and “1 - valve open”) and read and
write access. This is used up to now as well in the C++ GUIs as in the LabView GUIs
in combination with a tree view to represent it graphically, and has proven to be very
helpful. The XML description of these registers was done manually up to now. With the
introduction of MetaGen and the modeling of the system it became possible to generate
this. The format has been kept similar to the one used now, but if the need for additional
information in it is present it is easy to extend it.



Chapter 8

Conclusion

This chapter is meant to provide some information on the current state of the methodology,
which parts of the thesis are currently in use and how they are used, as well as some outlook
on possible extensions and improvements (especially ones that are only practicable if a
larger part of the design is modeled and generated) and on how it might be integrated
into the existing flow.

8.1 State

The generators have been finished and are usable with certain manual adaptations, e.g.
bitfield connections, backdoor paths. This automation already lowers the effort substan-
tially. The only prerequisite is a suitable modeling of the registers and the interface (I/O
ports). For existing projects this may be an usually comparably small additional effort, for
new projects this modeling is already standard and thus no extra effort has to be spent for
this part in a project. The pre-silicon verification methodologies have been compared with
focus on register accesses, but most of the results can also be applied to other functionality
too. The results were already anticipated, as some literature and also personal experience
pointed to this. As the comparisons of formal verification with model checking and dy-
namic tests with directed tests and/or constrained random verification found were quite a
few years old, it was interesting to see how this has changed. The formal verification tools,
and also the hardware they are running on, have improved over the years. Formally veri-
fying a design on toplevel is quite a challenge due to the state explosion problem. Finding
an error in the design with formal verification is usually fast, but proving correctness can
take a very long time, this is typical for SAT solvers [13].
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8.2 Current Usage

While the work on the thesis was still ongoing and the register model generation for UVM
was already finished the central design services group created a generator for the register
model using mine as a reference, but with certain features kept more general. This in-
cluded especially the extended register access definitions (the general ones already present
in the data model were mapped on predefined ones, but this does not cover all UVM types)
and the change of the currently selected view of multi-view registers, which has to be done
manually. The defined selection with the multiview extension for the data model in the
thesis has a benefit for the assertion generation and for the register model it is adapted to
the typical use in our department. In general the official generators should be preferred if
possible, as dedicated support and improvements are available. For future projects using
UVM testbenches the official generators will be used, but custom bitfield classes created
in the thesis can be used for special access behavior.
The formal verification, i.e. property file and bind file generation, will be tested in some
future projects to see how helpful it proves, as the property and bind file can be used for
all sorts of formal verification and also for assertions for dynamic simulations.
The generators for the XML register representation for the laboratory measurements and
the VBA source code for the chip testers are already in use for several projects. These
generators prove very useful also outside of the context of automated register access ver-
ification, and because lots of settings and test functions can only be accessed via the
registers, this was already in practical use long before this thesis was finished. Especially
the VBA register classes have saved a lot of time, because without any additional work
apart from the design modeling this now generates about seven thousand lines of code for
a typical project, which would have to be handwritten otherwise.

8.3 Outlook

With the increasing use of modeling for the designs the direct usability of the generators
created in this thesis improves, but even more possibilities to automate the process of the
register model and property and bind file generation are present. It has been mentioned
in several chapters of the thesis, that more modeling and generator use (especially the
use of standardized generators) could make manual adaptations obsolete or at least keep
them at a minimum. This thesis and the generators originating from it now only target
register access behavior checks, which are only a small part of the system functionality.
Verification for other parts of the design that are structured in some regular pattern might
also be included in future versions of the property file for formal verification and sequences
and scoreboards for the verification using UVM.
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