

Freistehende stählerne Masten für Mobilfunknetze

D-5-44/2014

Hanmehmet Emin Tolga Institut für Stahlbau Technische Universität Graz

TECHNISCHE UNIVERSITÄT GRAZ 2050 Institut für Stahlbau

Institutsvorstand Univ. Prof. Dipl. -Ing. Dr.techn. Harald Unterweger

FREISTEHENDE STÄHLERNE MASTEN FÜR MOBILFUNKNETZE

MASTERARBEIT

zur Erlangung des Akademischen Grades

Diplom –Ingenieur (Dipl. –Ing.)

der Studienrichtung Bauingenieurwissenschaften -Konstruktiver Ingenieurbau

eingereicht von

BSc. Emin T. HANMEHMET

Matrikelnr: 0231072

Studien ID: F 066 465

Betreuer: Univ. Prof. Dr.techn. Dipl.-Ing. Harald Unterweger Mitbetreuender Assistent:Dipl. –Ing. Bmst. Andreas Kampleitner

Graz, im September 2014

Inhaltsverzeichnis

Ε	ides	sta	ttliche Erklärung	. 3
D	anks	sag	ung	. 4
Z	usan	nm	enfassung	. 5
A	bstra	act		. 6
0	Ei	inle	eitung	. 7
1.	. Aı	nal	yse ausgeführter Masten	. 8
	1.1	\	Vorgehensweise	. 8
	1.2	(Gittermasten	. 8
	1.	2.1	Analyse der wesentlichen geometrischen Parameter	. 8
	a)) {	Schlankheit des Mastes	12
	b)	, ,	Verjüngung des Mastes mit zunehmender Höhe	14
	c)	•	Diagonalenneigungen	19
	d)	, ,	Verwendete Rohrquerschnitte	20
	1.	2.2	2 Zusammenfassung	21
	1.3	I	Rohrmasten	24
	1.	3.1	Analyse der wesentlichen geometrischen Parameter	24
	a)) :	Schlankheit des Mastes	28
	b)	, ,	Verjüngung des Mastes mit zunehmender Höhe	30
	c)	'	Verwendete Rohrquerschnitte	34
	1.	3.2	Z Zusammenfassung	34
S	chluí	ßfo	lgerung für Masten	37
2.	. В	ere	chnungsmodelle bei Masten	39
	2.1	/	Allgemein	39
	2.2	(Grenzzustände für die Auslegung der Masten	41
	2.2.	1	Allgemeines	41
	2.2.	2	Eigengewichte der Antennen und Tragkonstruktion	42
	2.2.	3	Statische Windlasten	42
	2.2.	4	Teilsicherheitsfaktoren seitens der Einwirkungen	44
	Zus	am	menfassung für Handymasten	45

2.3 Gre	nzkriterien für statische Windersatzlasten	46
2.3.1	Dynamische Wirkung des Windes	46
2.3.2	Statische Ersatzlast Methode für Gittermasten	51
2.4. Stat	ische Windbelastung	53
2.4.1	Geländekategorie und Geländeparameter	53
2.4.2	Statische Windbelastung für Gittermasten	57
2.5 Be	eiwert \emph{k} für den effektiven Schlankheitsgrad bei Gittermasten	61
2.6	Statische Windbelastung für Rohrmasten	63
2.6.1	Aerodynamischer Beiwert für Einbauten und Antennenausrüstung	en 67
Anhang 1		68
Zusammens	stellung ausgeführter Handymasten	68
A.1 We	sentliche geometrische Parameter	69
A.1.1	Gittermasten	69
A.1.2	Rohrmasten	88
Anhang 2		104
Überprüfung	des Grenzkriteriums für die Windbelastung	104
	erprüfung der Holme und Diagonalen, welche inerkritischem / überkritischem Bereich sind	
A.2.1	Windkraftbeiwerte für einzelne Tragwerke	105
A.2.2.	Kontrolle der Bedingungen für die Anwendung der statischen Ersatzlast - Methode	
Anhang 3		150
Vereinfachte	er statischer Windlastansatz für Gittermasten	150
A.3 Bere	echnung der Windlasten auf Holme	151
Literaturverz	reichnis	154
Normen		156

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommen Stellen als solche kenntlich gemacht habe.

Graz, am	
	(Unterschrift)
STATUTORY DECLARATION	
I declare that I have authored this th	esis independently, that I have not used other
	I have explicitly marked all material which has
been quoted either literally or by cor	ntent from the used sources.

Emin T. Hanmehmet Matrikelnr: 0231072 Studien ID: F 066 465

date

Freistehende stählerne Masten für Mobilfunknetze Masterarbeit

(signature)

Danksagung

Ich möchte mich an dieser Stelle bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben. Ganz besonders möchte ich mich bei Herrn Univ.-Prof. Dr.techn. Dipl.-Ing. Harald Unterweger für die Möglichkeit bedanken, diese Arbeit an seinem Institut durchführen zu können.

Ein besonderer Dank gilt außerdem Herrn Dipl.-Ing. BSc. Bmstr. Andreas Kampleitner vor allem für seine kostbare Zeit, seine Aufmerksamkeit, seine hilfreichen Ratschläge bei fachlichen Unklarheiten und bei Korrekturen. Ohne seine Hilfe wäre diese Arbeit nicht in der vorliegenden Form möglich gewesen.

Der größte und bersonders herzliche Dank gilt an meine liebe Verlobte Nuray, die die Höhen und Tiefen bei der Abfassung dieser Arbeit miterleben musste jedoch mich stets moralisch unterstützt hat.

Ein besonderer Dank gilt schließlich an meine liebe Mutter, die mich auf meinem bisherigen Lebensweg stets unterstütz hat und immer für mich da war.

Zusammenfassung

Die vorliegende Arbeit behandelt die Auslegung und Bemessung von in Österreich stationierten Telekommunikationsmasten. Auf Basis von 18 Gittermasten und 15 Rohrmasten, welche von der Firma Telekom Austria A1 bereits ausgeführt wurden, erfolgte eine Analyse der konstruktiven Abmessungen und der verwendeten Querschnitte. Das Ergebnis der Untersuchungen war die Darstellung der wesentlichen geometrischen Konstruktionsparameter in anschaulichen Diagrammen. Diese Ergebnisse können für die erste Annahme der konstruktiven Abmessungen bei Auslegung eines Mastes für übliche Höhen (12-48 m) verwendet werden.

Im zweiten Teil erfolgte eine Aufbereitung der maßgebenden Einwirkungen für Handymasten. Diese bestehen hauptsächlich aus dem Eigengewicht der Konstruktion und der Aufbauten (Antennen) sowie der Windlast. In der Masterarbeit wird ein vereinfachter Windlastansatz für Handymasten vorgestellt, welcher auf den aktuell in Österreich gültigen Europäischen Normen Eurocode 1991-1-4 (Eurocode 1: Einwirkungen auf Tragwerke, Teil 1-4: Allgemeine Einwirkungen – Windlasten) und 1993-3-1 (Eurocode 3: Bemessung und Konstruktion von Stahlbauten, Teil 3-1: Türme, Maste und Schornsteine –Türme Maste) basiert.

Zuletzt erfolgte eine Untersuchung der ausgeführten Masten hinsichtlich eines Grenzkriteriums um festzustellen, ob eine Annahme der dynamischen Windeinwirkung als rein statische Ersatzlast zulässig ist.

Ziel der Arbeit ist es einem Konstrukteur mit wenig Erfahrungswerten auf dem Gebiet der Mastauslegung als Bemessungsbehelf für die Konstruktionen zu dienen. Mit den gezeigten Diagrammen können die Mastabmessungen rasch und einfach festgelegt werden. Mit dem vereinfachten Windlastansatz ist eine statische Bemessung ohne den Einsatz von aufwendigen Softwarelösungen möglich. Somit vereint diese Masterarbeit die aktuelle Normung mit aufbereiteten Ergebnissen der Analyse ausgeführter Masten und bietet einen groben Überblick über die Konstruktion von Rohr- und Gittermasten.

Abstract

The main topic of the following master thesis ist dimensioning of telecommunication masts stationed in Austria. Based on 18 latticed masts and 15 tubing masts, which are already implemented by the company called Telekom Austria A1, an analysis was made of the constructional dimensions and the used sections. The result of the research was the representation of the substantial geometrical construction parameters in descriptive diagrams. These results can be used for the first acceptance of the constructional dimensions during design of a mast for usual heights (12-48 m).

In the second part took a preparation of the relevant effects for cell phone masts place. These consist mainly of the own weight of the construction and superstructures (antennas) as well as the wind load. The master thesis introduces a simplified wind load for cell phone masts, which is valid in Austria based to the European standards Eurocode 1991-1-4 (Eurocode 1: Effects on wing units, part of 1-4: General effects - wind loads) and 1993-3-1 (Eurocode 3: Calculation and construction of steel structures, part of 3-1: Towers, masts and chimneys - towers of masts).

At last a research of the implemented masts with regard to limiting criterion took place to see whether an acceptance of the dynamic wind effect is permissible as purely static substitute load.

The goal of this master thesis is to give a technical designer with few experiences in this field an aid for the calculations of constructions. With the shown diagrams the mast dimensions can be specified rapidly and simply. A static calculation without using complex software solutions is possible by using a simplified wind load. The following master thesis combines the current engineering standards with prepared results of the analysis of implemented masts and offers a rough overview of the construction of tubing and latticed masts.

TU

0 Einleitung

Moderne Mobilkommunikationssysteme haben heutzutage eine sehr große

Bedeutung. Für die Errichtung von Mobilnetze werden spezielle Konstruktionen

(Masten), auf welche Antennenaufbauten montiert sind, verwendet. Bei der Telekom

Austria A1 werden für die Mobilfunknetze am häufigsten 2 Typen von Masten

verwendet: Gittermasten und Rohrmasten.

Bei der Telekom Austria A1 werden am häufigsten 3 stielige Gittermasten

verwendet. Die maximale Höhe von 3 stieligen Gittermasten kann bis zu 50 m

betragen. Die Konstruktionen von diesen Gittermasten bestehen aus standardisierten

Sektionen welche 6 m lang sind. Diese Sektionen können in Form einer Pyramide

oder prismatisch sein.

Die Konstruktionen von Rohrmasten bestehen aus Rohrprofile. Die Länge von

jeder Sektion beträgt 6 m.

Die wesentlichen Punkte dieser Arbeit sind:

a) Analyse ausgeführter Handymasten

- Darstellung der wesentlichen geometrischen Konstruktionsparameter

für Gitter- und Rohrmasten (z.B. Abstände der Holme bei Gittermasten,

Rohrdurchmesser in Abhängigkeit der Masthöhe).

b) Aufbereitung der maßgebenden Einwirkungen für Handymasten.

- Vereinfachter Windlastansatz

c) Grenzkriterien, sodass die Windbelastung als statische Ersatzlast

angesetzt werden kann

1. ANALYSE AUSGEFÜHRTER MASTEN

1.1 Vorgehensweise

Es wurde die Analyse geometrischer Konstruktionsparameter für 18 Gittermasten und 15 Rohrmasten durchgeführt. Die Ergebnisse werden in Form von Tabellen und Diagrammen dargestellt.

1.2 Gittermasten

1.2.1 Analyse der wesentlichen geometrischen Parameter

Für alle Gittermasten (von Mast Nr.1 bis Mast Nr.18) wurden die geometrischen Parameter und Verhältnisse in der Tabelle 1 dargestellt.

Die Verhältnisse der geometrischen Parameter a_i/D_u und H_i/H_{ges} (siehe Bild 1) sind der Tabelle 1 zu entnehmen. Zur Veranschaulichung wurden diese Werte in Bild 4 für alle Gittermasten grafisch dargestellt. Die folgenden Bilder 5 bis 10 zeigen die vorher genannten Verhältnisse für je drei Masten derselben Höhe H_{ges} .

Außerdem wurde für jeden untersuchten Gittermast, basierend auf ausgeführten Werten, die Tabelle 2 erstellt, in welcher Antennenaufbauten sowie auch die Parameter für Antennenaufbauten (Name, Anzahl, Abmessungen, Gewicht) zu sehen sind. In dieser Tabelle sind auch die Standorte, Basisgeschwindigkeiten und Basisgeschwindigkeitsdruckwerte angegeben.

Nachfolgend zeigt Bild 1 die wesentlichen Bezeichnungen der Parameter für Gittermasten, sowie sie in der vorliegenden Arbeit weiterführend verwendet werden, am Beispiel eines aus 4 Sektionen bestehenden Mastes.

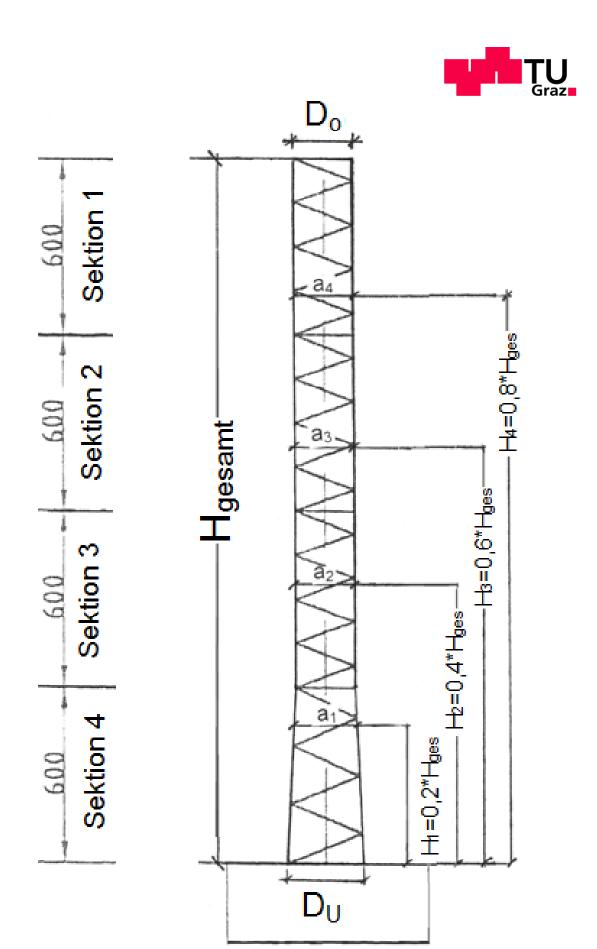


Bild 1 Wesentliche Bezeichnung geometrischer Konstruktionsparameter für Gittermasten

																				Ц,
7	1 '4/ 1 'ges	21		8′0			8′0			8′0			8′0			8,0			8,0	
7	1 3/ 1 ges	20		9′0			9′0			9′0			9′0			9′0			9′0	
7	2/ ges	19		0,4			0,4			0,4			0,4			0,4			0,4	
7	11/11ges	18		0,2			0,2			0,2			0,2			0,2			0,2	
7	U u/ I ges	17	1/22	1/13	1/12	1/13	1/14	1/12	1/12	1/16	1/14	1/16	1/15	1/14	1/18	1/16	1/13	1/16	1/12	1/12
٥, ٥	υο/ υ _υ	16	0,432	0,329	0,45	0,432	0,388	0,506	0,407	0,513	0,442	0,516	0,559	0,514	0,727	0,76	0,613	0,227	0,727	0,76
٠, د	α4/ C u	15	0,481	0,386	0,45	0,546	0,388	0,506	0,43	0,513	0,442	0,613	0,559	0,514	0,836	0,76	0,613	0,381	608'0	0,76
	a3/ U _u	14	0,61	685'0	0,472	659'0	0,486	905'0	0,572	0,513	0,497	0,613	0,559	0,514	0,864	92'0	0,613	985'0	0,864	0,76
٥/ د	a2/ U _u	13	0,741	0,692	0,648	0,773	0,657	0,654	0,714	0,606	0,665	0,613	0,647	0,676	0,864	92'0	69'0	69'0	0,864	0,76
۲ ر	a1/ Uu	12	0,876	0,846	0,824	0,886	0,829	0,826	0,857	0,804	0,829	908'0	0,735	0,838	0,891	0,815	0,845	0,845	0,918	0,856
Do	(mm)	11	096	1200	1800	096	1140	1800	1200	1140	1140	096	1140	1140	096	1140	1140	300	096	1140
a ₄	(ww)	10	1068	1408	1800	1212	1140	1800	1268	1140	1140	1140	1140	1140	1104	1140	1140	203	1068	1140
a ₃	(mm)	6	1356	1968	1889	1464	1428	1800	1688	1140	1283	1140	1140	1140	1140	1140	1140	707	1140	1140
a ₂	(mm)	8	1644	2528	2592,9	1716	1932	2327	2107	1346	1715	1140	1320	1500	1140	1140	1283	911	1140	1140
a ₁	(mm)	2	1944	3087	3296,5	1968	2436	2942,2	2528	1788	2140	1500	1500	1860	1176	1223	1571	1115	1212	1284
$H_4(m)$	0,8 H _{ges}	9		38,4			33,6			28,8			24			19,2			14,4	
H ₃ (m)	0,6 H _{ges}	5		28,8			25,2			21,6			18			14,4			10,8	
H ₂ (m)	0,4 H _{ges}	4		19,2			16,8			14,4			12			9'6			7,2	
H ₁ (m)	0,2 H _{ges}	3		9'6			8,4			7,2			9			4,8			3,6	
D _u	(mm)	7	2220	3650	4000	2220	2940	3560	2950	2222	2580	1860	2040	2220	1320	1500	1860	1140	1500	1500
	nges .	1		48 m			42 m			36 m			30 m			24 m			18 m	
	IVIDS L IVI		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18

Tabelle 1.

Geometrische Werte für Gittermasten

		_	_	_				_				_	,		_							_
q _{bo}	kN/m^2	0,46	0,24	7,0	0,46	0,26	0,26	000	0,28	0,31	0,28	ć	0,29	0,19	0,26	0,26	0,29	0,19	0,29	0,26	0,2	0,29
V _{b,0}	m/s	27	19,4	,	77	20,4	20,4	,	21,3	22,2	21,3	,	21,b	17,6	20	20,4	21,5	17,6	21,5	20,4	18	21,6
Standort	Standort	Gänserndorf	Birkfeld	2,47	Wien	Graz - Seiersberg	Stübing	201121000000000000000000000000000000000	wertmannstatten	Fürstenfeld	Leutschach		Gnas	Wörthersee	Millstatt	Zettling	Gleisdorf	Klagenfurt	Hofstätten a.d. Raab	Graz	Völkermarkt	Sebersdorf
Ahmessungen (H × R × T)	Abiliessurgen (II A B A 1)	3 x (1415/323/86 mm);1x(1302/155/49 mm)	6 x (1415/323/86 mm)	3x(2574/303/99 mm); 3x(1296/262/199 mm)	3x(2256/262/99 mm)	3 x (2574/259/99 mm); 3 x (2580/262/99)	3 x (1302/155/49 mm)	3x(2574/259/99 mm); 3x(2580/262/99	$1 \times (1302/155/49 \mathrm{mm})$	6x(2574/259/99 mm); 3x(1302/155/49 mm)	3x(2574/303/99 mm); 6x(0,662/155/55 mm)	3x(2574/303/99 mm); 3x(1302/155/49 mm)	3x(0,662/155/55 mm)	3x(2574/259/99 mm); 3x(1302/155/49 mm)	3x(2574/259/99 mm); 3x(1302/155/49 mm)	3x(2574/259/99 mm); 3x(2580/262/116 mm)	3x(2574/303/99 mm);3x(1296/262/116 mm)	3x(2574/303/99 mm);3x(2580/262/116	3x(2574/303/99 mm); 3x(1302/155/99 mm) Hofstätten a.d. Raab	3x(1302/155/49 mm)	3x(1302/155/49 mm); 3x(0,662/155/55 mm)	3x(2574/259/99 mm)
Gewicht	Gewich	3x0,18 kN + 1x0,075 kN	6x0,18kN		3X U, 2U KN +3X U, 11 KN +3X U, 16 KN	3 × 0, 16 kN + 3 × 0, 19 kN	3 x 0,075 kN	M. 1750 0 . M. 105 0 C . M. 175 0 C	3 X U, 16KN + 3 X U, 19KN + U, U/5KN	6 x 0, 14 kN +3 x 0,075 kN	3x0,20kN+6x0,05kN	14.170 O.C. 14.1700 O.C. 14.100 O.C.	3XU, ZUKIN +3XU, U/ 5KIN +3XU, U5KIN	3x0,16 kN + 3x0,075 kN	3x0,16 kN + 3x0,075 kN	3x0,16 kN + 3x0,19kN	3x0,20kn + 3x0,11kn	3x0,20 kN + 3x0,19kN	3x0,20 kn + 3x0,075 kn	3x0,075kN	3x0,075kN + 3x0,05kN	3x0,14kN
Antennenaufhau	Altellielladibad	3 x K80010622 LTE, 1x K742212 UMTS	6 x K80010622 LTE	7000E V. C C0000EV. C 0000000V. C	3 X K&UUIU669, 3 X K/39622, 3 X K/39635	3 x K80010306 LTE, 3 x K739636 GSM	3 x K742215 UMTS	7,000,000 b. 1,000,000 c. 771,01,000,000 c.	3 X K80010310 LIE, 3 X K /39650 G5MI, 1 X K /42215	6 x K 80010306, 3xK742212	3xK80010669, 6xK742211	***************************************	3XK8UU1U669, 3XK/42215, 3XK/42211	3xK80010306v02 LTE,3xK742212 UMTS,	3xK80010306v02 LTE,3xK742212 UMTS,	3xK80010306v02, 3xK739624	3xK80010669, 3xK739632	3xK80010669, 3xK739630	3xK80010669, 3xK742215	3xK742215	3xK742215, 3xK742211	3×K80010306
Do	(mm)	096	1200	7000	TROO	096	1140	1800	TROO	1200	1140	7	1140	096	1140	1140	096	1140	1140	300	096	1140
Dn	(mm)	2220	3650	4000	4000	2220	2940	00.10	3560		2220	0010	25&U	1860	2040	2220	1320	1500	1860	1320	1320	1500
H _{ges}	(m)		Ş	46			77	74	!		96	2			30			24			18	
Mast	Nr.	1	2	r	Υ	4	2	Ų	٥	7	8	٥	ת	10	11	12	13	14	15	16	17	18

Tabelle 2.Antennenaufbauten für Gittermasten

Emin T. Hanmehmet Matrikelnr: 0231072 Studien ID: F 066 465 Freistehende stählerne Masten für Mobilfunknetze Masterarbeit

a) Schlankheit des Mastes

Bild 2 zeigt die Abhängigkeit der Basisabmessung D_u von der Masthöhe H_{ges} . Es wurden je drei Masten einer Höhe untersucht. Somit kann eine obere Grenzgerade (Empfehlung für GK II) und eine untere Grenzgerade (GK III) als Schlußfolgerung der Untersuchung der 18 Gittermasten erstellt werden.

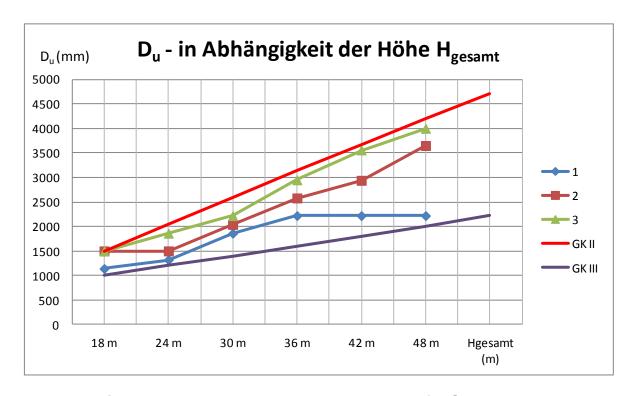
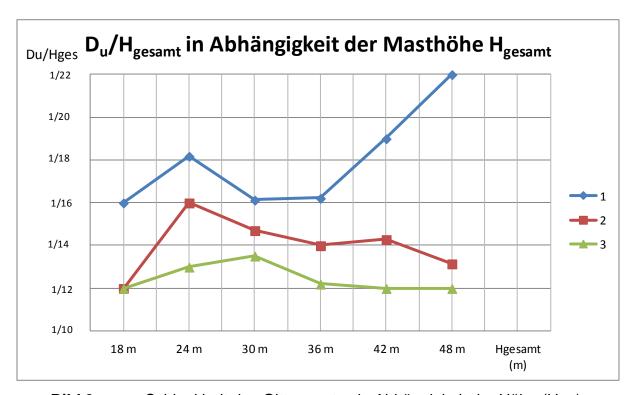



Bild 2 Verhältnis zwischen Du und H_{ges} für Gittermasten

Der nachfolgenden Abbildung 3 können die Schlankheiten der untersuchten Gittermasten entnommen werden. Es liegen wieder drei Kurven für je drei gleiche Masthöhen vor.

 $\textbf{Bild 3} \qquad \qquad \text{Schlankheit des Gittermastes in Abhängigkeit der H\"{o}he (H_{ges}) }$

Wie im Bild 2 zu sehen ist, steigt mit zunehmender Höhe (H_{ges}) die untere Sektionsbreite (D_u). Für Gittermasten H_{ges} = 18 m (niedrigste untersuchte Höhe für Gittermasten) ist $D_{u,min}$ =1140 mm und $D_{u,max}$ =1500 mm, für Gittermasten H_{ges} = 48 m (größte untersuchte Höhe) ist $D_{u,min}$ =2220 mm und $D_{u,max}$ =4000 mm.

Im Bild 3 sind die Änderungen der Verhältnisse D_u / H_{ges} in Abhängigkeit der Höhe des Gittermastes (H_{ges}) zu sehen. Für 18 Gittermasten welche eine H_{ges} von 18 m bis 48 m aufweisen sind die Verhältnisse für D_u / H_{ges} zwischen 1/12 und 1/16 (H_{ges} =18 m) und D_u / H_{ges} zwischen 1/16 und 1/22 (H_{ges} =48 m).

Diese Ergebnisse können für die erste Annahme der Konstruktion des 3 stieligen Gittermastes für eine Höhe zwischen 18 m und 48 m verwendet werden.

b) Verjüngung des Mastes mit zunehmender Höhe

Im Bild 4 sind die Verhältnisse zwischen H_i/H_{ges} in Abhängigkeit von a_i/D_u für Gittermasten H_{ges} = 18 – 48 m (Tabelle 1, Mast Nr. 1-18) zu sehen.

In den Bildern 5 bis 10 sind die Verhältnisse zwischen H_i/H_{ges} und a_i/D_u für jede analysierte Masthöhe (drei Masten pro Höhe) einzeln angegeben.

Die Projektierung der Konstruktion des Gittermastes wird im Allgemeinen in Form eines Pyramidenstumpfes entworfen. Das heißt, die Breite (a_i) des Gittermastes verjüngt sich mit zunehmender Höhe (H_i) . Um das Verhältnis a_i/D_u untersuchen zu können, in Abhängigkeit des Verhältnisses H_i/H_{ges} darzustellen, wurde für jeden Gittermast eine Grafik (siehe Bilder 5 – 10) erstellt.

Diese Werte ai/Du wurden für alle 18 untersuchten Gittermasten in den Höhen $0.2~H_{ges},~0.4~H_{ges},~0.6~H_{ges}$ und $0.8~H_{ges}$ bestimmt. Die Auswertungen haben gezeigt, dass die Verhätlnisse a_i/D_u sich wie folgt ändert:

So wie aus dem Bild 4 ersichtlich ist variiert für $H_i/H_{ges}=0.2$ das Verhältnis $a_i/D_u=$ von 0,735 bis 0,876. Für $H_i/H_{ges}=0.4$ variiert das Verhältnis $a_i/D_u=$ von 0,613 bis 0,864. Für $H_i/H_{ges}=0.6$ variiert das Verhältnis $a_i/D_u=$ von 0,472 bis 0,864. Für $H_i/H_{ges}=0.8$ variiert das Verhältnis $a_i/D_u=$ von 0,381 bis 0,836. Für $H_i/H_{ges}=1$ variiert das Verhältnis $a_i/D_u=$ von 0,227 bis 0,76.

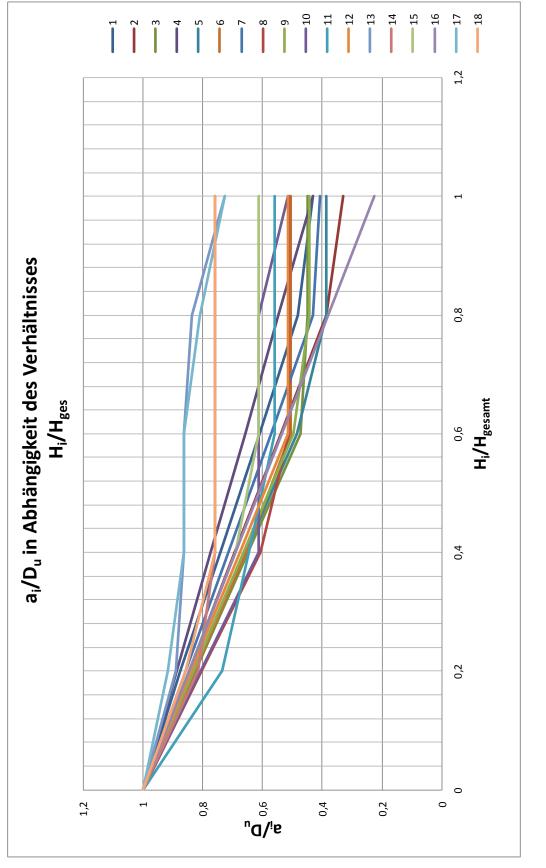
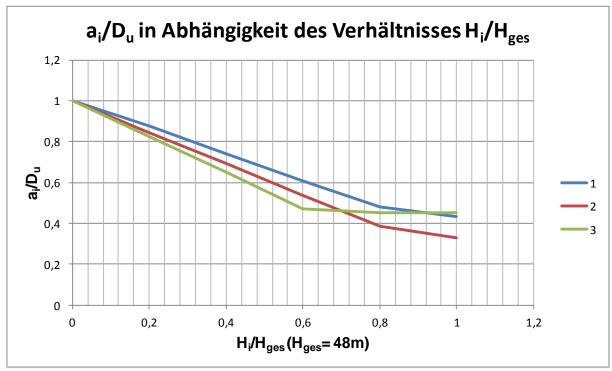
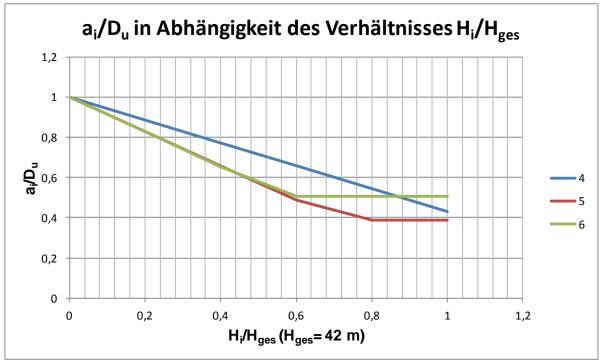
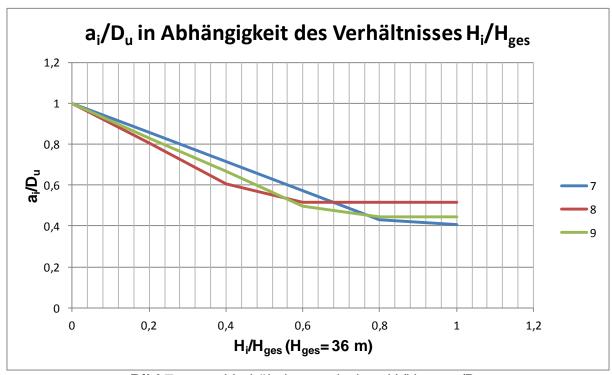
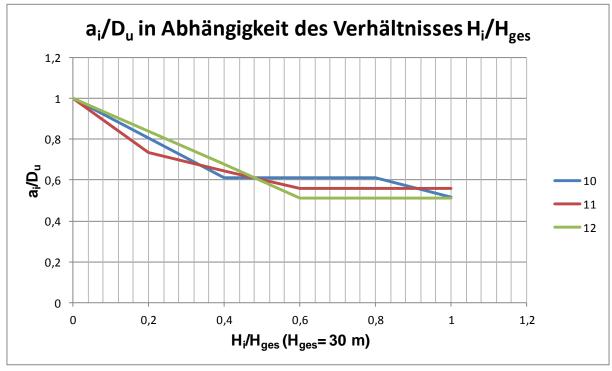


Bild 4 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u

Die Ergebniskurven a_i/D_u in Abhängigkeit der Verhältnisse H_i/H_{ges} der 18 untersuchten Masten aus Bild 4 werden auf den nachfolgenden Bilder 5-10 einzeln gruppiert nach den jeweiligen Gesamthöhen dargestellt.


Bild 5 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u (Tab.1 Mast Nr.1, 2, 3, H_{ges}=48 m)


Bild 6 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u (Tab.1 Mast Nr.4, 5, 6, H_{ges}=42 m)

Emin T. Hanmehmet Matrikelnr: 0231072 Studien ID: F 066 465 Freistehende stählerne Masten für Mobilfunknetze Masterarbeit

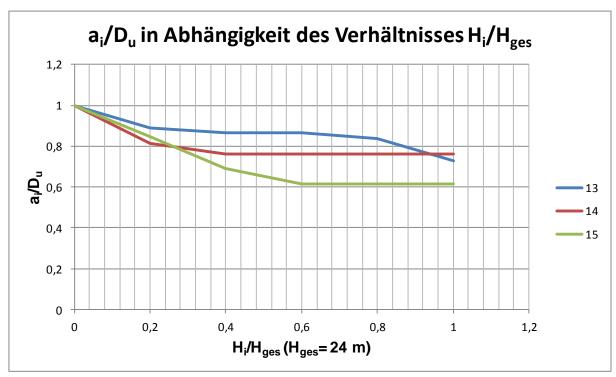


Bild 7 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u (Tab.1 Mast Nr. 7, 8, 9, H_{ges} =36 m)

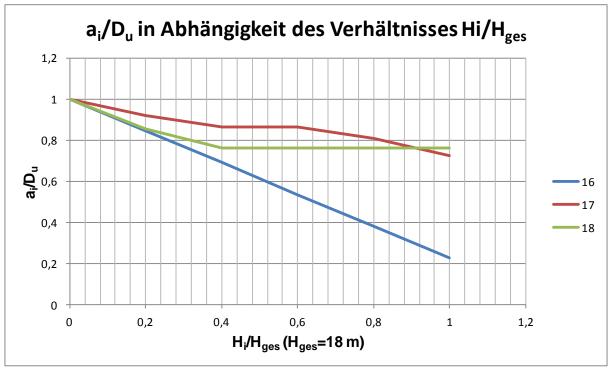


Bild 8 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u (Tab.1 Mast Nr.10, 11, 12, H_{ges} =30 m)

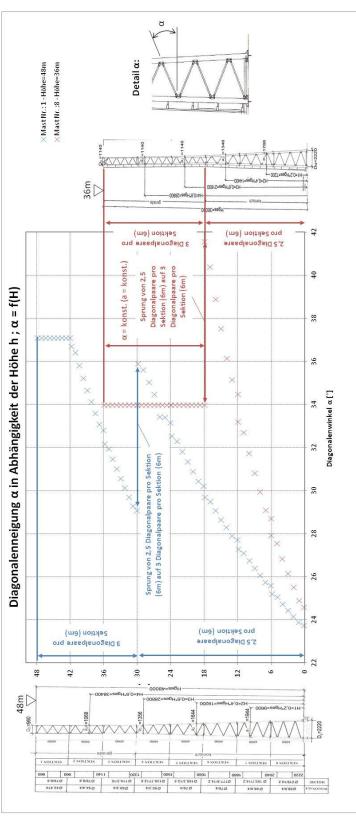

Bild 9 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u (Tab.1 Mast Nr.13, 14, 15, H_{ges} =24 m)

Bild 10 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u (Tab.1 Mast Nr.16, 17, 18 H_{ges} =18 m)

c) Diagonalenneigungen

Bild 11 Diagonalenneigung α in Abhängigkeit der Höhe h; $\alpha = f(H)$

Bei den Gittermastkonstruktionen ändert sich die Diagonalenneigung mit zunehmender Höhe aufgrund der schmäler werdenden Abmessung a_i . In Bild 11 ist eine Grafik der Diagonalenneigung in Abhängigkeit der Höhe zweier Gittermasten zu sehen. Das Bild 11 wurde für die Gittermasten 1 mit H_{ges} =48 m und 8 mit H_{ges} =36m erstellt.

Die vertikalen Bereiche der Grafik zeigen die Sektionen mit paralellen Holmen hier bleibt die Diagonalenneigung konstant über diesen Bereich.

Die veränderlichen Bereiche der Diagonalenneigung gehören zu pyramidenartigen Sektionen, wo die Diagonalenneigung in Abhängigkeit der Höhe variiert. So wie aus dem Bild 11 ersichtlich variiert die Diagonalenneigung α zwischen 24° - 37°.

Um die Diagonalenneigung in einem annähernd gleich bleibenden Rahmen zu halten, werden in breiteren Sektionen 2,5 Diagonalenpaare pro 6 m angeordnet, während es bei schmaleren Breiten (kleiner rund 1100 mm) 3 Diagonalenpaare pro Sektion gibt. Dieser Übergang äußert sich im Diagramm als plötzlicher Sprung in der Neigung (Mast mit H_{ges} = 48 m bei H_i = 30 m und a_i = 1068 mm und bei Mast mit H_{ges} = 36 m bei H_i =18 m und a_i =1140 mm).

d) Verwendete Rohrquerschnitte

Die verwendeten Rohrquerschnitte der untersuchten Gittermasten sind im Anhang A.1.1 (siehe Bilder A.1 – A.18) aufgelistet. Die Analyse der strukturcharakteristischen und konstruktiven Elemente der Gittermasten zeigen, dass folgende Rohrquerschnitte verwendet werden:

Für Holme variieren folgende Rohrdurchmesser: von maximal Ø219 mm bis minimal Ø38 mm.

Die Wandstärke der Holme beträgt bei der oberen Sektion H_{ges} =18 m maximal 5,6 mm und bei der unteren Sektion H_{ges} =18 m maximal 6,3 mm.

Die Wandstärke der Holme beträgt bei der oberen Sektion H_{ges} =48 m maximal 8,6 mm und bei der unteren Sektion H_{ges} =48 m maximal 14,2 mm.

21

Für Diagonale variieren folgende Rohrdurchmesser: von maximal Ø88,9 mm

bis minimal Ø38 mm.

Die Wandstärke der Diagonalen beträgt bei der oberen Sektion Haes=18 m

maximal 2,6 mm und bei der unteren Sektion H_{aes}=18 m maximal 2,8 mm.

Die Wandstärke der Diagonalen beträgt bei oberen sowohl auch bei unteren

Sektionen H_{qes}=48 m maximal 4,0 mm.

Die endgültige Bestimmung der Rohrdimension für Holme und Diagonale erfolgt

nach statischen und konstruktiven Gesichtspunkten.

1.2.2 Zusammenfassung

Für die untere Sektionsbreite sind folgende Faktoren entscheidend:

Die vorhandene Grundfläche, die Wünsche vom Auftraggeber (Anzahl der

Antennen, Aufbauten etc.) und die bevorzugte Materialliste vom Auftragnehmer.

Unter Berücksichtigung der oben genannten Faktoren und der vorherrschenden

Windbelastung wird die statische Berechnung erstellt.

In der Tabelle 1 sind Struktur und geometrische Werte für Gittermasten

angegeben.

Der Untersuchung von 3-stieligen Gittermasten wurden 18 bereitsgebaute

Ausführungen zugrunde gelegt, welche in Abhängigkeit von Hgesamten 18 m, 24 m,

30 m, 36 m, 42 m und 48 m gruppiert wurden. Für jede Gruppe wurden 3

Gittermasten mit gleicher Höhe, Ober und unterschiedlichen Parameter Du und Do

ausgewählt (siehe Bild 1). Hierbei ist Du die untere Sektionsbreite und Do die obere

Sektionsbreite. Die Auswahl der untersuchten Masten basiert auf häufig verwendeten

Abmessungen in der Praxis.

Die Untersuchung wurde für 3-stieliege Gittermasten mit kreisförmigen Profilen

durchgeführt.

Studien ID: F 066 465

In Tabelle 1 sind die Ergebnisse dieser Untersuchung zusammengestellt. Als wichtigsten Kenngrößen wurden die Breiten (a_1 , a_2 , a_3 und a_4) auf verschiedene Höhen des Mastes ($0.2H_{ges}$, $0.4H_{ges}$, $0.6H_{ges}$ und $0.8H_{ges}$) bezogen. Desweiteren wurden auch die Verhältnisse a_i/D_u , D_o/D_u , H_i/H_{ges} für jeden Gittermast berechnet. Als Ergebnis dieser Analysen wurden Grafiken (siehe Bilder 4 – 11) erstellt.

In Tabelle 2 finden sich für alle untersuchten Gittermasten Informationen bezüglich Anntennenaufbauten, welche auf den jeweiligen Gittermast montiert sind. In dieser Tabelle sind die Abmessungen, Stückanzahl und Gewichte der Antennen sowie die Standorte und zugehörige Böengeschwindigkeiten und Böengeschwindigkeitsdruckwerte zusammengefasst.

Als Schlußfolgerung der durchgeführten Analyse der wesentlichen stielige Gittermasten geometrischen Parameter für 3folgendes kann zusammengefasst werden:

Min. Höhe: H_{qes}= 18 m (darunter finden Rohrmasten Anwendung)

Max. Höhe: H_{qes}= 48 m

 $D_u/H_{ges} = 1/12 \text{ (für } H_{ges} = 18 \text{ m)} - D_u/H_{ges} = 1/22 \text{ (für } H_{ges} = 48 \text{ m)}$

Verlauf: D_{u.min} für H_{ges}=48 m: 2220 mm

 $D_{u,max}$ für H_{ges} =48 m: 4000 mm

 $D_{u,min}$ für H_{ges} =18 m: 1320 mm

 $D_{u,max}$ für H_{ges} =18 m: 1500 mm

Für Gittermasten wurden folgende Strukturwerte zusammengefasst:

Wie in der Tabelle 1 und den Bildern A.1 – A.18 im Anhang A-1.1 zu sehen ist, können die Hauptparameter für Gittermasten wie folgt zusammengefasst werden:

- 1. Alle Sektionen sind 6 m hoch
- 2. Die Bedingungen von D_u/H_{qes} beträgt 1/12 1/22
- Die untere Sektionsbreite D_u ist nicht ausschließlich von H_{ges} Abhängig, sie variiert in Abhängigkeit der vorherrschenden Windbelastung und der Aufbaute
 - Gittermasten die eine Höhe von 48 m haben, können sowohl eine D_u von 4 m als auch eine D_u von 2,220 m haben. Ähnliches gilt auch für Gittermasten mit einer Höhe von 42 m und 36 m
- 4. Wie aus dem Bild 1 und der Tabelle 3 ersichtlich, kann die untere Sektionsbreite D_u bei H_{ges} =48 m bis zu 4 m erreichen
- 5. Bei Gittermasten mit einer Höhe zwischen 18 und 30 m varriiert die untere Sektionsbreite D_u zwischen 1,5 m 2,22 m
- Gittermasten unter 18 m werden für den Mobilfunk nicht verwendet
- Generell werden in dem Mobilfunk 3- Stielige Gittermastkonstruktionen für Höhen von 18 m bis 48 m verwendet, darunter finden die Rohrmasten Anwendung

1.3 Rohrmasten

1.3.1 Analyse der wesentlichen geometrischen Parameter

Für alle Rohrmasten (von Mast Nr.1 bis Mast Nr.15) wurden die geometrische Parameter und Verhältnisse in der Tabelle 3 dargestellt.

Die Verhältnisse der geometrischen Parameter a_i/D_u und H_i/H_{ges} (siehe Bild 12) sind der Tabelle 3 zu entnehmen. Zur Veranschaulichung wurden diese Werte in Bild 15 für alle Rohrmasten grafisch dargestellt. Die folgenden Bilder 16-20 zeigen die vorher genannten Verhältnisse für je drei Masten derselben Höhe.

Außerdem wurde für jeden untersuchten Rohrmast, basierend auf Werte ausgeführter Masten, die Tabelle 4 erstellt, in welcher Antennenaufbauten sowie auch die Parameter für Antennenaufbauten (Name, Anzahl, Abmessungen, Gewicht) zu sehen sind. In dieser Tabelle sind auch die Standorte, Basisgeschwindigkeiten und Basisgeschwindigkeitsdruckwerte angegeben.

Bild 12 zeigt die wesentlichen Bezeichnungen der Parameter für Rohrmasten, sowie sie in der vorliegenden Arbeit weiterführend verwendet werden. Als Beispiel dient ein aus fünf Sektionen bestehender Rohrmast.

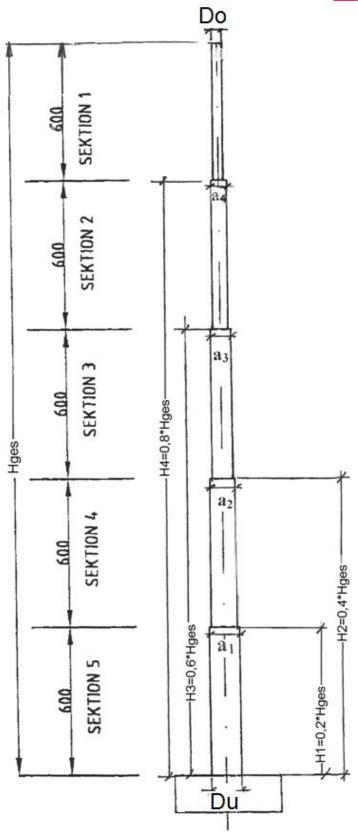


Bild 12 Wesentliche Bezeichnung geometrischer Konstruktionsparameter für Rohrmasten

[Π4/ Πges	22		0,8			8,0			8,0			8,0			8,0	
]	es n4/	2															
7	і пз/ пвез	21		9′0			9′0			9′0			9′0			9,0	
ח/ ח	П2/ Пges	70		0,4			0,4			0,4			0,4			0,4	
7/ 1	П1/ Пges	19		0,2			0,2			0,2			0,2			0,2	
7/	Uu∕ ⊓ges	18	1/42	1/35	1/31	1/39	1/35	1/29	1/39	1/29	1/28	1/39	1/32	1/30	1/37	1/30	1/26
0/ 0	Uo' Uu Uu' ⊓ges	17	0,282	0,32	0,276	0,253	0,282	0,318	0,316	0,397	0,282	0,422	0,436	0,529	0,597	9'0	902'0
٥/ د	44/ U _u	16	0,47	0,45	0,39	0,424	0,374	0,45	0,32	0,397	0,28	0,422	0,436	0,529	0,597	9'0	0,706 0,706 0,706
0/ 0	d₃/ U _u	15	0,65	9'0	0,522	9'0	0,53	9'0	0,53	95'0	0,53	90,706	0,726	0,749	0,597	9'0	0,706
ر/ د	d2/ ∪u	14	0,823	8′0	969'0	8′0	90,706	8'0	0,749	0,75	0,71	90,706	0,726	0,749	1	1	1
0/ 0	α ₁ / υ _υ	13	1	1	0,87	1	1	1	1	1	1	1	1	1	1	1	1
ט, ט	Uu/ Uu	12		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1			1	1	1	1	1	1	1	1	1
D _o	(mm)	11	244	244 323 323		193	244	323	193	323	244	193	244	323	193	244	323
a ₄	(mm)	10	406	457	457	323	323	457	193	323	244	193	244	323	193	244	323
a ₃	(mm)	6	559	610	610	457	457	610	323	457	457	323	406	457	193	244	323
a ₂	(mm)	8	711	813	813	610	610	813	457	610	610	323	406	457	323	406	457
a_1	(mm)	7	864	1016	1016	762	864	1016	610	813	864	457	559	610	323	406	457
H ₄ (m)	0,8 H _{ges}	9		28,8			24			19,2			14,4			9'6	
H ₃ (m)	0,6 H _{ges}	5		21,6			18			14,4			10,8			7,2	
H ₂ (m)	0,4 H _{ges}	4		14,4			12			9'6			7,2			4,8	
H ₁ (m)	0,2 H _{ges} 0,4 H _{ges} 0,6 H _{ges} 0,8 H _{ges}	3		7,2			9			4,8			3,6			2,4	
D _u	(mm)	2	864	1016	1168	762	864	1016	610	813	864	457	559	610	323	406	457
2	Uges	1		36 m	-		30 m	-		24 m			18 m			12 m	
+ J C P V	VIDSE INF.		1	2	3	4	2	9	7	8	6	10	11	12	13	14	15

Tabelle 3.

Struktur und geometrische Werte für Rohrmasten

Mast	H	Du	ο°	Antonnonulfhair	td:iwig	(T \ a \ H) assaultssamdv	Ctandort	V _{b,0}	q _{bo}
Nr.	(m)	(mm)	(mm)				orange.	s/w	kN/m²
1		864	096	3 x K 742 215 v01 UMTS	3 x 0,085 kN	3 × (1314 / 155 / 70 mm)	Graz	20,4	0,26
2	36	1016	1200	2xK80010669GSM/LTE, 3xK742212 UMTS	$2 \times 0.016 \text{ kN} + 3 \times 0.075 \text{ kN}$	2 x (2574 / 259 / 99 mm) + 3 x (1302 / 155 / 69 mm)	Klagenfurt	17,6	0,19
3		1168	1800	3 x CMA BDLL/6520/E0-8 LTE	3 x 0,22 kN	3 x (1298 / 403 / 146 mm)	Villach	17,6	0,19
4		762	193	3 × K 800 106 69 GSM/LTE, 3 × K742 212	3 x 0,016 kN + 3 x 0,075 kN	3 x (2574 / 259 / 99 mm) + 3 x (1302 / 155 / 69 mm)	Völkermarkt	18	0,2
2	30	864	244	4 × K 800 106 69 GSM/LTE, 3 × K742 212	$4 \times 0.016 \text{ kN} + 3 \times 0.075 \text{ kN}$	4 x (2574 / 259 / 99 mm) + 3 x (1302 / 155 / 69 mm)	Hausmannstätten	20,4	0,26
9		1016	323	6 x PW-65-18-XW2-R	6 x 0,1 kN	6 x (1219 / 167 / 89,5 mm)	Graz	20,4	0,26
7		610	193	GSM 1800 3 x K739496, 2 x K741989 UMTS 3xK739636	$3 \times 0,06 \text{ kN} + 2 \times 0,075 \text{ kN}$	3 x (1302 / 155 / 49 mm) + 2 (1302 / 155 / 69 mm)	Graz	20,4	0,26
8	24	813	323	3 x K80010669 GSM900/LTE	3 × 0,2 kN	3 x (2574 / 303 / 99 mm)	St.Martin am Wöllmißberg	21,1	0,28
6		864	244	3 x K 800 106 22 v01 LTE	3 x 0,15 kN	3 x (1471 / 275 / 86 mm)	Villach	17,6	0,19
10		457	193	6 x PW-65-18-XW2-R LTE	$6 \times 0.1 \text{ kN}$	6 x (1219 / 167 / 89,5 mm)	Graz	20,4	0,26
11	18	559	244	6 x CMA L-6520-E0-8	6 × 0,08 kN	6 x (1298 / 196 / 122 mm)	Klagenfurt	17,6	0,19
12		610	323	6 x PW-65-18-XW2-R LTE	6 × 0,1 kN	6 x (1219 / 167 / 89,5 mm)	Wolfsberg	18	0,2
13		323	193	1 × K 742 271	$1 \times 0.26 \mathrm{kN}$	1 x (1933 / 261 / 146 mm)	Pöllauberg	17,6	0,19
14	12	406	244	3 x K 742 212 UMTS	3 x 0,075 kN	3 x (1302 / 155 / 69 mm)	Kalsdorf	20,4	0,26
15		457	323	3 x PW-65-18-XXW2-R LTE, 3 x K 742 212 UMTS	$3 \times 0,17 \text{ kN} + 3 \times 0,075 \text{ kN}$	3 x (1209 / 343 / 89 mm) +3 x (1302 / 155 / 69 mm)	Graz	20,4	0,26

 Tabelle 4
 Antennenaufbauten für Rohrmasten

a) Schlankheit des Mastes

Bild 13 zeigt die Abhängigkeit der Basisabmessung D_u von der Masthöhe H_{ges}. Es wurden je drei Masten einer Höhe 12 m, 18m, 24m, 30m, 36m) untersucht. Damit können zwei einhüllende Geraden gezogen werden, wobei die obere Grenzgerade als Empfehlung für die Geländekategorie II und die untere Grenzgerade als Empfehlung für die Geländekategorie III angesehen werden kann. Als Basis zur Erstellung dieses Diagrammes diente die Analyse von 15 ausgeführten Rohrmasten.

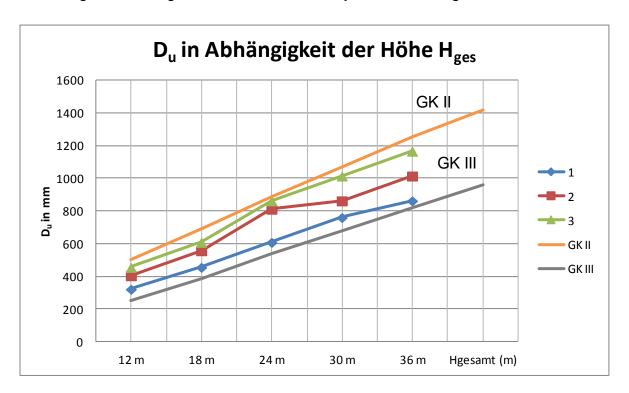
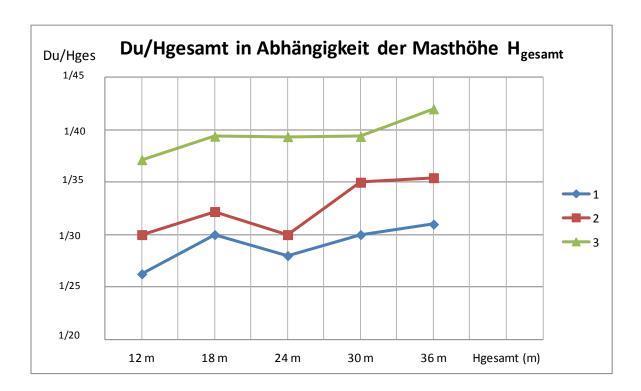



Bild 13 Schlankheit des Rohrmastes in Abhängigkeit der Höhe (H_{qes})

Der nachfolgenden Abbildung 14 können die Schlankheiten der untersuchten Rohrmasten entnommen werden. Es liegen drei Kurven für je drei gleiche Masthöhen vor; hohe, mittlere und geringe Schlankheit.

Bild 14 Verhältnis zwischen D_u und H_{ges} für Rohrmasten

Wie im Bild 13 zu sehen ist, steigt mit zunehmender Höhe (H_{ges}) die untere Sektionsbreite (D_u). Für Rohrmasten $H_{ges}=12$ m (niedrigste untersuchte Höhe für Rohrmasten) ist $D_{u,min}=323$ mm und $D_{u,max}=457$ mm. Für Rohrmasten $H_{ges}=36$ m (größte untersuchte Höhe) ist $D_{u,min}=864$ mm und $D_{u,max}=1168$ mm.

Im Bild 14 sind die Änderungen der Verhältnisse D_u / H_{ges} in Abhängigkeit der Höhe des Rohrmastes (H_{ges}) zu sehen. Für 15 Rohrmasten welche eine H_{ges} von 12 m bis 36 m aufweisen sind die kleinsten Verhältnisse für D_u/H_{ges} =1/26 (H_{ges} =12 m) und die maximalen Verhältnisse für D_u/H_{ges} =1/42 (H_{ges} =36 m).

Diese Ergebnisse können für die erste Annahme der Konstruktion des Rohrmastes für eine Höhe zwischen 12 m und 36 m verwendet werden.

b) Verjüngung des Mastes mit zunehmender Höhe

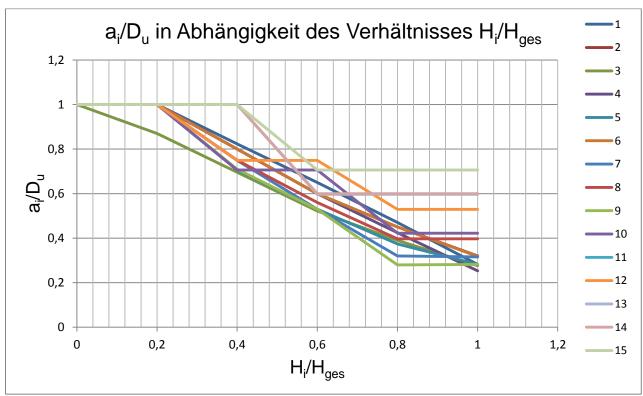
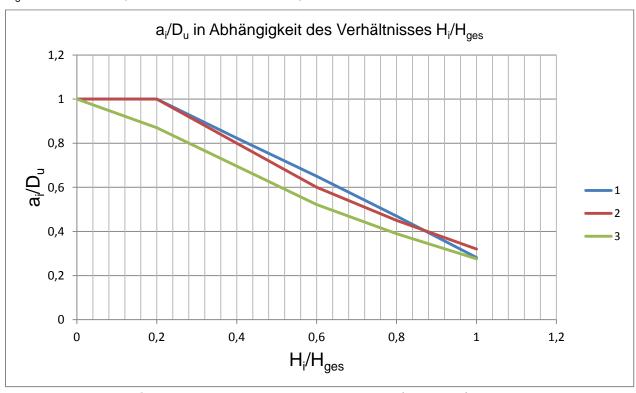
Im Bild 15 sind die Verhältnisse zwischen H_i/H_{ges} in Abhängigkeit von a_i/D_u für Rohrmasten H_{ges} = 12 – 36 m (Tabelle 3, Mast Nr. 1-15) zu sehen.

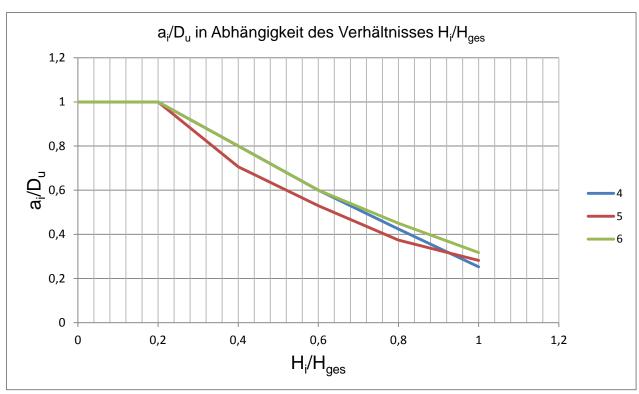
In den Bildern 16 bis 20 sind die Verhältnisse zwischen H_i/H_{ges} und a_i/D_u für jede analysierte Masthöhe (drei Masten pro Höhe) einzeln angegeben.

Die Konstruktion eines Rohrmastes erfolgt meist aus zusammengeflanschten Rohrschüssen deren Dimension mit zunehmender Höhe abnimmt. Das heißt die Breite a_i des Rohrmastes verringert sich mit zunehmender Höhe H_i . Um das Verhältnis a_i/D_u in Abhängigkeit der Höhe H_i/H_{ges} darzustellen, wurde für jeden Rohrmast eine Grafik (siehe Bilder 16 – 20) erstellt.

Diese Werte a_i/D_u wurden für alle 15 untersuchten Rohrmasten in den Höhen 0,2 H_{ges}, 0,4 H_{ges}, 0,6 H_{ges} und 0,8 H_{ges} bestimmt. Die Auswertungen haben gezeigt, dass die Verhätlnis a_i/D_u sich wie folgt ändert:

So wie aus dem Bild 15 ersichtlich variiert für $H_i/H_{ges}=0.2$ das Verhältnis $a_i/D_u=$ von 0,87 bis 1. Für $H_i/H_{ges}=0.4$ variiert das Verhältnis $a_i/D_u=$ von 0,706 bis 1. Für $H_i/H_{ges}=0.6$ variiert das Verhältnis $a_i/D_u=$ von 0,53 bis 0,75. Für $H_i/H_{ges}=0.8$ variiert das Verhältnis $a_i/D_u=$ von 0,28 bis 0,706. Für $H_i/H_{ges}=1$ variiert das Verhältnis $a_i/D_u=$ von 0,253 bis 0,706.


Bild 15 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u

Im Bild 15 sind die Verhältnisse zwischen $H_i/H_{ges}=f(a_i/D_u)$ für Rohrmasten $H_{ges}=12-36$ m (Tabelle 3, Mast Nr. 1-15) zu sehen.

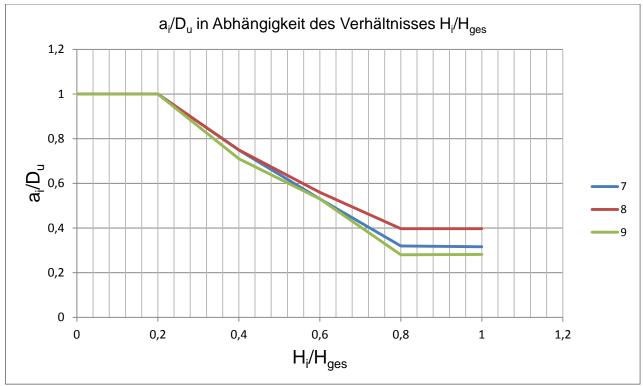


Bild 16 Verhältnisse zwischen $H_i/H_{ges} = a_i/D_u$ (Tab.3 Mast Nr.1, 2, 3, H_{ges} =36 m)

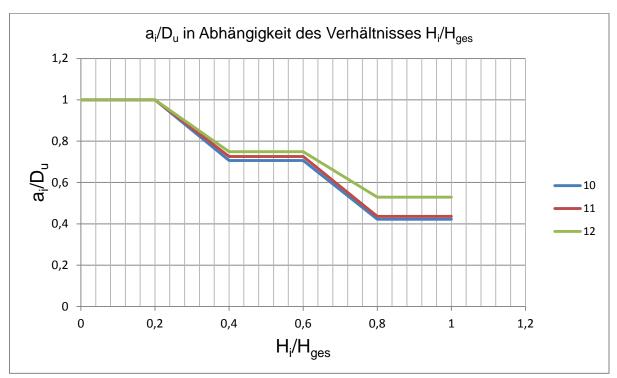


Bild 17 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u (Tab.3 Mast Nr.4, 5, 6, H_{ges}=30 m)

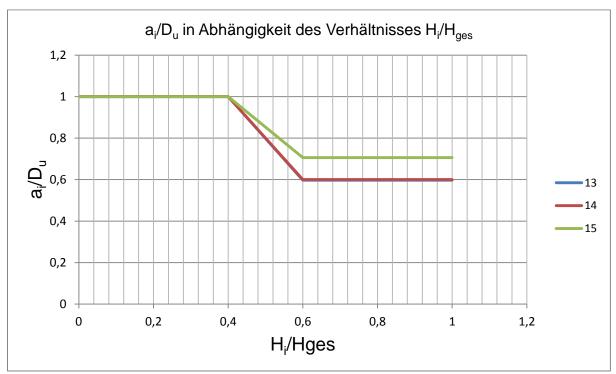


Bild 18 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u (Tab.3 Mast Nr.7, 8, 9, H_{ges} =24 m)

Bild 19 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u (Tab.3 Mast Nr.10, 11, 12, H_{ges} =18 m)

Bild 20 Verhältnisse zwischen H_i/H_{ges} - a_i/D_u (Tab.3 Mast Nr.13, 14, 15, H_{ges} =12 m)

TU

c) Verwendete Rohrquerschnitte

Die verwendeten Rohrdimensionen der untersuchten Rohrmasten sind im Anhang A.1.2 (siehe Bilder A.19 – A.33) zu sehen. Die Analyse der konstruktiven Elemente der 15 Rohrmasten zeigen, dass folgende Rohrquerschnitte ausgeführt wurden:

Die Rohrquerschnitte varieren von maximal Ø1168 mm (untere Sektion bei H_{ges} =36 m) bis minimale Ø323 mm (obere Sektion bei H_{ges} =12 m).

Die endgültige Bestimmung der Rohrdurchmesser für Rohrmasten werden durch statische Berechnung bestimmt.

1.3.2 Zusammenfassung

In der Tabelle 3 sind Struktur und geometrische Werte für Rohrmasten angegeben.

Die Analyse von Rohrmasten erfolgte auf Basis von 15 Masten, welche in Abhängigkeit von $H_{ges} = 12$ m, 18 m, 24 m, 30 m und 36 m gruppiert wurden. Innerhalb jeder Gruppe wurden 3 Rohrmasten mit gleicher Höhe, aber unterschiedlichen Parameter D_u und D_o untersucht. Hierbei ist D_u der untere Sektionsdurchmesser und D_o ist der obere Sektionsdurchmesser. Die Auswahl der untersuchten Masten basiert auf häufig verwendeten Abmessungen in der Praxis.

Die Untersuchung wurde für Rohrmasten bestehend aus Rohrprofile durchgeführt.

In der Tabelle 3 sind die Ergebnisse dieser Untersuchung, mit den diversen Breiten (a_1 , a_2 , a_3 und a_4) und in verschiedenen Höhen des Mastes ($0.2H_{ges}$, $0.4H_{ges}$, $0.6H_{ges}$ und $0.8H_{ges}$) zu sehen. Es werden auch die Verhältnisse a_i/D_u , D_o/D_u , H_i/H_{ges} für jeden Rohrmast angegeben. Anhand dieser Werte wurden die Grafiken in den Bilder 15-20 erstellt.

Es wurde eine weitere Tabelle 4 für alle untersuchten Rohrmasten erstellt, die die Informationen bezüglich Anntennenaufbauten, welche auf jedem Rohrmast montiert sind, wiedergibt. In dieser Tabelle sind die Abmessungen, Stückanzahl, Gewichte, Standorte und dazugehörige Böengeschwindigkeiten, Böengeschwindigkeitsdruckwerte zu sehen.

Aufgrund der durchgeführten Analyse der 15 Rorhmasten können folgende Schlußfolgerungen für Rohrmasten zusammengefasst werden:

Die Grenzparameter für Rohrmasten sind unten angegeben:

Min. Höhe: H_{qes}=12 m

Max. Höhe: H_{ges}=36 m (darüber finden Gittermasten Anwendung)

 $D_u/H_{gesamt} = 1/26$ für $H_{ges}=12$ m – 1/42 für $H_{ges}=36$ m)

Verlauf: D_{u,min} für H_{ges}=36 m: 864 mm

 $D_{u,max}$ für H_{ges} =36 m: 1168 mm

 $D_{u,min}$ für H_{ges} =12 m: 323 mm

 $D_{u,max}$ für H_{ges} =12 m: 457 mm

Für Rohrmasten wurden folgende Strukturwerte zusammengefasst:

Wie in der Tabelle 3 und den Bildern A.19 – A.33 im Anhang (A.1.2) zu sehen ist, können die Hauptparameter für Rohrmasten wie folgt zusammengefasst werden:

- 1. Alle Sektionen sind 6 m hoch
- 2. Die Bedingungen von D_u/H_{ges} beträgt 1/26 1/42
- 3. Rohrmasten über einer Höhe von 36 m werden für den Mobilfunk nicht bevorzugt. Für größeren Höhen werden Gittermasten verwendet
- 4. Die untere Sektionsbreite D_u ist nicht ausschlißlich von H_{gesamt} abhängig, sie variiert in Abhängigkeit der vorherschenden Windbelastung und den Aufbauten
- 5. Bei Rohrmasten mit einer Höhe zwischen H_{ges} =12 m und H_{ges} =36 m variiert die untere Sektionsbreite D_u zwischen 323 mm und 1168 mm. Die Wandstärke variiert zwischen 3,2 mm und 14,2 mm.

Für die untere Sektionsbreite sind folgende Faktoren entscheidend:

Die vorhandene Grundfläche, die Wünsche vom Auftraggeber (Anzahl der Antennen, Aufbauten etc.), und der bevorzugten Materialliste vom Auftragnehmer.Unter Berücksichtigung der oben genannten Faktoren sowie dem Wind, wird die statische Berechnung erstellt.

Schlußfolgerung für Masten

TU

1. Bei der durchgeführten Analyse konnten die maximalen und minimalen

Struktur und Geometriewerte für 3 stielige Gittermasten und Rohrmasten bestimmt

werden.

2. Die dargestellte Grafiken ai/Du in Abhängigkeit der Höhe Hi/Hges für 18

untersuchten Gittermasten, können für Vorbemessung verwendet werden. Die

dargestellte Grafiken dienen als Bemessungsbehilfe für die Annahme der

Bemessungen D_u mit Berücksichtigung der geometrischen Parameter (H_i/H_{ges}, a_i/D_u)

der Konstruktionen (siehe Bilder 4 – 10).

3. Laut Grafik, in Bild 2, mit bekannter Höhe des Gittermastes, kann die untere

Sektionsbreite D_u in Abhängigkeit der Höhe H_{ges} bestimmt werden.

4. Gemäß dem Bild 11 kann die Diagonalenneigung in Abhängigkeit der Höhe

des Gittermastes bestimmt werden. So wie aus dem Bild 11 ersichtlich, variiert für

Gittermasten H_{ges}=48 m und H_{ges}=36 m die Diagonalenneigung α zwischen 24°-37°.

5. Die dargestellte Grafiken ai/Du in Abhängigkeit der Höhe Hi/Haes für 15

untersuchten Rohrmasten können für Vorbemessung verwendet werden. Die

dargestellte Grafiken dienen als Bemessungsbehilfe für die Annahme der

Bemessungen D_u mit Berücksichtigung der geometrischen Parameter (H_i/H_{ges}, a_i/D_u)

der Konstruktionen (siehe Bilder 15 – 20).

6. Laut Grafik, in Bild 13, mit bekannter Höhe des Rohrmastes, kann die untere

Sektionsbreite D_u in Abhängigkeit der Höhe H_{ges} bestimmt werden.

7. Es wurde die Kontrolle der Bedingungen für die Anwendung von statischen

Ersatzlastmethode für folgende Gittermasten H_{qes}=48 m (Mast Nr.1), H_{qes}=48 m

(Mast Nr.2), H_{qes}=48 m (Mast Nr.3), H_{qes}=36 m (Mast Nr.9) und H_{qes}=24 m (Mast Nr.

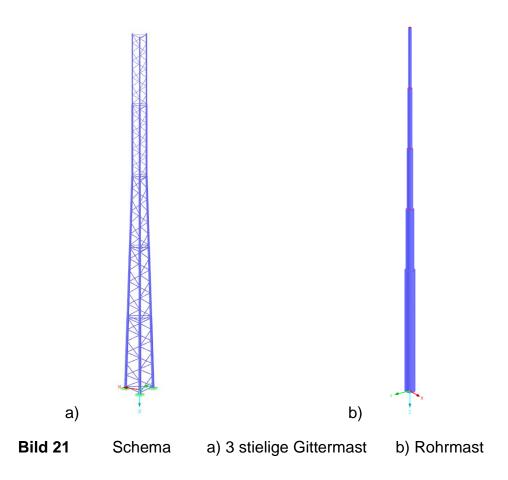
13) durchgeführt.

Emin T. Hanmehmet Matrikelnr: 0231072 Studien ID: F 066 465

8. Das Ergebnis der Kriterien für Gittermast H_{ges} =48 m mit D_u =2220 mm beträgt 0,283<1. Das Ergebnis der Kriterien für Gittermast H_{ges} =48 m mit D_u =3650 mm beträgt 0,225<1. Das Ergebnis der Kriterien für Gittermast H_{ges} =48 m mit D_u =4000 mm beträgt 0,215<1. Das Ergebnis der Kriterien für Gittermast H_{ges} =36 m mit D_u =2580 mm beträgt 0,138<1. Das Ergebnis der Kriterien für Gittermast H_{ges} =24 m mit D_u =1320 mm beträgt 0,084<1.

Diese Kontrollen haben gezeigt, dass bei den Berechnungen von untersuchten Gittermasten bis zu einer Höhe H_{ges} =48 m eine volldynamische Windlastberechnung nicht notwendig ist. Windlastberechnung kann mit Verwendung von statischer Windlast durchgeführt werden.

- 9. Es wurde die Analyse der Holme und Diagonalen mit Berücksichtigung von überkritischen / unterkritischen Bereichen gemacht.
- 10. Die Grafiken auf dem Bild A.2.2 A.2.7 können für die Bestimmung der überkritischen / unterkritischen Bereiche für Holme und Diagonale des Gittermastes verwendet werden.
- 11. Es wurde die Berechnung des Kraftbeiwertes c_f mit Berücksichtigung allen Aufbauten (Leiter, Kabel) sowie konstruktive Elemente (Holme, Diagonale) siehe Tabelle A.2.2 A.2.11 gemacht.



2. BERECHNUNGSMODELLE BEI MASTEN

2.1 Allgemein

Der Zweck der Untersuchung ist die Auswertung der relativen Leistung im Vergleich zu deren Antennenmasthöhe und Antennenkonstruktionen. Die Länge des Mastes ist variable bis zu 48 m. Laut ÖNORM B 1991-1-4 Eurocode 1: Einwirkungen auf Tragwerke Teil 1-4: Allgemeine Einwirkungen – Windlasten, nach Anhang A maximale Basiswindgeschwindigkeit ist $v_{b,0}=28,3$ m/s. Im Allgemeinen werden in Österreich im Mobilkommunikationsbereich zwei Typen von Masten verwendet:

- a) 3-stielige Gittermasten
- b) Rohrmasten

Emin T. Hanmehmet Matrikelnr: 0231072 Studien ID: F 066 465 Freistehende stählerne Masten für Mobilfunknetze Masterarbeit

Für die Mobilfunktechnik kommen auch Rohrmasten zum Einsatz, die entsprechend dem Stand der Technik einfach auszurüsten sind. Die Antennen können direkt an der tragenden Stahlkonstruktion befestigt werden. Die Kräfte, die auf einem Mast wirken, werden vom Fundament aufgenommen und in den Baugrund abgeleitet.

Die Gittermasten werden im Allgemeinen als dreieckige und viereckige gestaltet. Es werden im Allgemeinen von der Telekom Austria A1 3-Stielige Gittermasten bis zu einer Höhe von 48 m bevorzugt.

Die ÖNORM EN 1991-1-4:2011 gilt für Gebäude und Ingenieurtechnische Bauwerke mit einer Höhe bis 200 m und Brücken mit einer Spannweite bis zu 200 m, vorausgesetzt sie erfüllen die Abgrenzungskriterien hinsichtlich dynamischer Wirkungen.

Diese Norm dient zur Bestimmung der charakteristischen Windlasten auf Bauwerke an Land, sowie zur Bestimmung der Windlasten für Gittermasten mit parallelen Eckstielen und Rohrmasten deren Bauteile und Anbauten.

Diese Norm enthält keine Hinweise zu Windlasten auf Fachwerke und Türme mit nicht parallelen Eckstielen und Windlasten auf abgespannte Masten und abgespannte Kamine.

ÖNORM EN 1993-3-1 ist ein Teil der Berechnung der Windlasten nur für konische Gittermasten und Abspannseile.

Das Ziel ist eine rein statische Berechnung sowie die Bestimmung der einwirkenden Kräfte auf die Tragwerke mitunter ständige und veränderliche Belastungen. Anschließend danach wird eine Berechnung nach ULS und SLS durchgeführt.

2.2 Grenzzustände für die Auslegung der Masten

2.2.1 Allgemeines

Für die Berechnung der Stahlmasten (Gittermasten und Rohrmasten) werden ständige und veränderliche Einwirkungen berücksichtigt. Die statische Berechnung besteht aus 2 Stufen:

- a) ULS (Ultimate Limit State)
- b) SLS (Servicibiality Limit State)

a) ULS (Ultimate Limit State) - Grenzzustände der Tragfähigkeiten

ULS auf Deutsch bedeutet die Berechnung nach Grenzzustand der Tragfigkeiten. In dieser Berechnung werden folgende Kombinationen der Belastungen berücksichtigt: -ständige Einwirkungen + veränderliche Einwirkungen. Zu den ständigen Einwirkungen zählen das Eigengewicht und die Aufbauten. Diese Belastungen werden mit einem Kombinationsbeiwert (siehe Tabelle 6) welcher aus der ÖNORM zu entnehmen ist multipliziert.

Das Ziel der ULS ist die Bestimmung von Berechnungskräften der Holme und Diagonalen bei Gittermasten und der Rohrquerschnitten bei Rohrmasten. Die Spannungen in Querschnitten dürfen nicht die maximale Spannung des Materials (Stahl) überschreiten.

Die Stabilitätsnachweise der Einzelmaste, Knicklängen dürfen nach Euler Fälle berücksichtigt werden.

b) SLS (Servicibiality Limit State) – Grenzzustände der Gebrauchstauglichkeit

Die maximalen Auslenkungen und Verdrehungen, Laut ÖNORM EN 1993-3-1, sind in der Regel für die charakteristische Lastkombination auf das Tragwerk und die Anbauten zu bestimmen.

Die Auslenkungen und Verdrehungen von Masten sollen, falls notwendig, nach Theorie II. Ordnung berechnet werden (siehe EN 1993-1-1).

Emin T. Hanmehmet Matrikelnr: 0231072 Studien ID: F 066 465

Die maximale Verformung (u_{max}) des Mastes trifft am obersten Punkt. Die Grenzkriterien basiert nach DIN 4131 und der maximale Verdrehungswinkel von der Hauptachse muss $\alpha << 5^{\circ}$ sein. Verformungen brauchen in der Regel nur den Gebrauchstauglichkeitsanforderungen zu genügen.

Die Gebrauchstauglichkeitskriterien sind vom Kunden in der Projektausschreibung zu definieren (ÖNORM EN 1993-3-1 Anhang B).

2.2.2 Eigengewichte der Antennen und Tragkonstruktion

Eigenlast einer Antenne wird aus Antennendatenblatt entnommen [18,19]. Zu den ständigen Einwirkungen zählen die Eigenlasten der gesamten Konstruktion. Für die Festlegung der Eigenlasten ist die ÖNORM EN 1991-1-1 anzuwenden.

Für die Tragwerksplanung von Masten gelten die Grundlagen in EN 1990. Die Eigenlast des Antennenträgers setzt sich aus dem Eigengewicht der Stahlkonstruktion, dem Gewicht der Anbauteile wie Steigleiter, Kabelhochführung. Diese Lasten werden aus den entsprechenden Normen gerechnet.

Die Berechnung des Eigengewichtes erfolgt von der Statik Programme. Zur Berücksichtigung der Befestigung und Verbindungsteile wird ein Zuschlag von 10% angesetzt. Eigenlast der Kabel wird als 0,1 kN/m angenommen und für den Leiter 0,05 kN/m inkl. Schellen [15]. Mannlast nach ÖNORM B/EN 1991-1-1: 1,0 kN.

2.2.3 Statische Windlasten

Windlasten sind zeitlich veränderliche Lasten, die das Bauwerk aufgrund natürlich vorkommender Luftturbulenzen zu Schwingungen anregen. Die durch die Schwingungen hervorgerufenen Auslenkungen des Mastkopfes bewegen sich auf einer nahezu elliptischen Bahn. Dabei kann die Amplitude der Auslenkung sowohl in Windrichtung, als auch senkrecht dazu liegen. Windlasten werden deshalb

Emin T. Hanmehmet Matrikelnr: 0231072 Studien ID: F 066 465

entsprechend ihrer Richtung unterteilt in Windlasten Windrichtung sowie Windbelastung quer zur Windrichtung.

Windlasten, die das Bauwerk durch natürliche Turbulenzen in der ankommenden Luftströmung und Ablösevorgängen am Bauwerk zu Schwingungen anregen.

Die Windlast ist von der zeitlich und räumlich veränderlichen Windgeschwindigkeit abhängig. Aus dieser zeitlichen Abhängigkeit resultiert eine dynamische Wirkung der Windlast.

Statt einer volldynamischen Berechnung wird eine statische Ersatzlast eingeführt, die durch Multiplikation mit einem den dynamischen Einfluss berücksichtigenden Faktor (Böenreaktionsfaktor) gleich große Beanspruchungen erzeugt. Diese statische Ersatzlast wird auch als statische Referenzlast bezeichnet und als "... statistisch über einen bestimmten Zeitraum gemittelte Windlast.." [8] definiert (Bild 22).

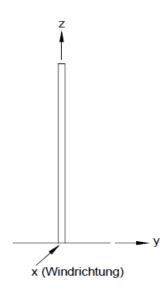


Bild 22 Richtungsdefinitionen

Windlastermittlung zur Berücksichtigung der Schwingungswirkung auf das 5-Sekunden-Mittel. Antennentragwerke aus Stahl zählen jedoch in der Regel zu den schwingungsanfälligen Konstruktionen. Für diese Fälle wird in der Normen auf die verwiesen.

Für die Windlastberechnung werden in Österreich folgende Normen verwendet. Die zu treffenden Annahmen zur Windbelastung sind in der ÖNORM B 1991-1-4 (2006) (Eurocode 1) Erwirkungen auf Tragwerke, Teil 1-4; ÖNORM EN 1991-1-4:(2013) (D) (Eurocode 1) Erwirkungen auf Tragwerke, Teil 1-4 und in der EN 1993-3-1 (Eurocode 3): Bemessung und Konstruktion von Stahlbauten. Teil 3-1: Türme, Maste und Schornsteine, (2005).

In Eurocode 3, Teil 3-1, Anhang A werden Teilsicherheitsbeiwerte für ständige und veränderliche Einwirkungen je nach Zuverlässigkeitsklasse der Türme und Masten angegeben (Tabellen 5 und 6).

2.2.4 Teilsicherheitsfaktoren seitens der Einwirkungen

Die Zuverlässigkeitsklassen und Teilsicherheitsbeiwerte sind in den nachfolgenden Tabellen (siehe Tabelle 5 und 6) angegeben.

Tabelle 5 Zuverlässigkeitsklasse (ÖNORM EN 1993-3-1;A)

Zuverlässigkeitsklasse			
3	Türme und Maste, die an städtischen Standorten errichtet werden oder dort,wo ihr Versagen zu Verletzten oder Toten führen kann; Türme und Maste für wichtige zentrale Telekommunikationsanlagen; andere bedeutende Bauwerke, bei denen die Versagensfolgen sehr hoch sein können		
2	Alle Türme und Maste, die nicht zu Klasse 1 oder 3 gehören		
1	Türme und Maste, die auf unbewohnten Gebieten stehen; Türme und Maste, durch deren Versagen wahrscheinlich keine Verletzungen entstehen		

Tabelle 6

Teilsicherheitsbeiwerte (ÖNORM EN 1993-3-1;A)

Wirkungen de	r Zuverlässigkeitsklasse	Ständige	Veränderliche	
Einwirkung	Zuveriassigkeitskiasse	Einwirkungen	Einwirkungen	
	3	1.2	1.6	
ungünstig	2	1.1	1.4	
	1	1.0	1.2	
günstig	Alle Zuverlässigkeitsklassen	1.0	0.0	
Außergewöhnliche Situationen		1.0	1.0	

Basisgeschwindigkeitswerte und Basisgeschwindigkeitsdruck sind abhängig von der Seehöhe des Ortschaftes. Grundwerte von Basisgeschwindigkeit $v_{b,0}$ (m/s) und Basisgeschwindigkeitsdruck $q_{b,0}$ (kN/m²) sind in der ÖNORM B 1991-1-4 Anhang A gegeben.

Zusammenfassung für Handymasten

Für die Berechnung der Masten nach ULS laut ÖNORM EN 1993-3-1;A werden am meisten folgende Sicherheitsbeiwerte verwendet (siehe Tabelle 5 und 6):

Bebautes Gebiet:

Ungünstig: $\gamma_G = 1,2$, $\gamma_O = 1,6$

Unbebautes Gebiet:

Ungünstig $\gamma_G = 1.0$ $\gamma_Q = 1.2$

Günstig: $\gamma_G = 1.0$ $\gamma_O = 0$

(für alle Gebiete)

Für die Berechnung der Masten nach SLS laut ÖNORM EN 1993-3-1 werden folgende Sicherheitsbeiwerte empfohlen: $\gamma_G=\gamma_Q=1,0$ (ungünstig)

2.3 Grenzkriterien für statische Windersatzlasten

2.3.1 Dynamische Wirkung des Windes

Insbesondere sind Rohrmasten für die Auswirkungen von Windlasten anfällig. Bei Windlasten welche auf Strukturen des Rohrmastes wirken, bestehen Gefahren.

Einige wichtige Windeffekte auf Antennenmaste können wir nach [9] definieren. Winderregte Schwingungen sind ein sehr anspruchsvolles und breites Gebiet. Eine ausführliche Behandlung durchzuführen ist hier nicht möglich. Es wird auf die entsprechende Literatur verwiesen. Mögliche Effekte sind: Böen, Wirbelablösung und Puffern.

Böen -Turbulenter Wind mit örtlich und zeitlich variabler Windgeschwindigkeit.

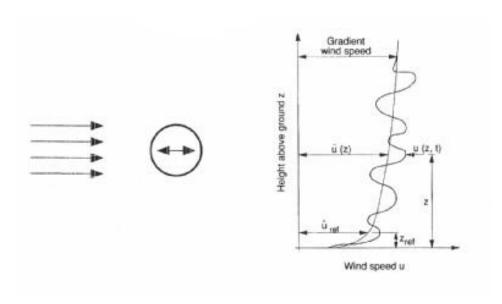
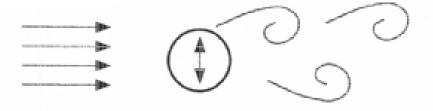



Bild 23 Stochastische Einwirkungen in Windrichtung [9]

Wirbelablösung - Wirbel links und rechts lösen sich nicht gleichzeitig ab. Wenn der zeitliche Abstand der Wirbelablösungen gleich der Schwingzeit des Bauwerks ist, herrscht Resonanzanregung.

Bild 24 Periodische Einwirkungen quer zur Windrichtung [9]

Kritische Windgeschwindigkeit nach Formel [9] ist:

$$u_{crit} = \frac{f_c d}{S}$$

Worin:

- f_c Eigenfrequenz des Bauwerks quer zur Windrichtung
- d Durchmesser des Bauwerkes
- S Strouhalzahl (für Kreisquerschnitte = 0.2)

Puffern -An einen Hindernis abgelöste Wirbel treffen auf das Bauwerk.

Bild 25 Periodische Einwirkungen in Windrichtung [9]

Für die Analyse von Grenzkräften, so dass rein statische Berechnung für die Rohrmasten ermöglichen, gelten:

Wirbelerregte Querschwingungen treten auf, wenn sich Wirbel alternierend von gegenüberliegenden Seiten einer Bauwerksstruktur ablösen.

Hierdurch entsteht eine alternierende Belastung quer zum Wind. Das Bauwerk kann zu Schwingungen angeregt werden, wenn die Frequenz der Wirbelablösung gleich einer Bauwerkseigenfrequenz ist. Diese Bedingung ist erfüllt, wenn die Windgeschwindigkeit der kritischen Windgeschwindigkeit, die v_{crit} entspricht. Üblicherweise ist die kritische Windgeschwindigkeit eine häufig auftretende Geschwindigkeit, so dass die Ermüdungsbeanspruchung und die damit verbundene Anzahl der Spannungsschwingspiele bemessungsrelevant werden kann (ÖNORM EN 1991-1-4 2011-05-15 Anhang E).

Wirbelerregte Querschwingungen sind zu untersuchen, wenn das Verhältnis der größten zur kleinsten Bauwerkabmessung in der Ebene senkrecht zur Windrichtung den Wert 6 überschreitet.

Laut ÖNORM B 1991-1-4, Anhang C (C.1) Wirbelinduzierte Querschwingungen brauchen nicht untersucht werden, wenn:

$$v_{crit.i} > 1,25 v_m$$

Dabei ist:

 v_{criti} die kritische Windgeschwindigkeit für die i. Eigenform

v_m die mittlere 10-Minuten Windgeschwindigkeit amQuerschnittsbereich, an dem Wirbelerregung auftritt.

Laut ÖNORM EN 1991-1-4, nach Formel 4.3 kann die mittlere Windgeschwindigkeit $\nu_{\scriptscriptstyle m}(z)$ in der Höhe z über Grund welche hängt von der Geländerauhigkeit, der Topographie und der Basisgeschwindigkeit $\nu_{\scriptscriptstyle b}$ ab berechnet werden.

$$V_m(z) = c_e(z) * c_0(z) * V_b$$

Dabei sind:

 $c_e(z)$ Rauhigkeitsbeiwert nach Abschnitt 4.3.2 lt. Önorm EN 1991-1-4

 $c_0(z)$ Topographiebeiwert nach Abschnitt 4.3.3 lt. Önorm EN 1991-1-4

Die Basisgeschwindigkeit v_b in Formel (4.1) EN 1991-1-4; 2005 D errechnet sich aus:

$$V_b = C_{dir} C_{season} V_{b,0}$$

$$v_b = v_{b,0}$$
 (It. ÖNORM B 1991-1-4)

Worin:

c_{dir} Richtungsfaktor der empfohlenen werte werden c_{dir} =1.0

c_{season} Jahreszeitenbeiwert, empfohlenen werte werden c_{season} =1.0

v_{b.0} Grundwert der Basisgeschwindigkeit, die

(ÖNORM B 1991-1-4 Anhang A Tabelle A.1)

Die kritische Windgeschwindigkeit einer Biegeschwingungsform i ist definiert als die Windgeschwindigkeit, bei der die Frequenz der Wirbelablösung gleich der Eigenfrequenz (Schwingungsform i) des Tragwerks bzw. des Bauteils ist. Sie wird gemäß ÖNORM B 1991-1-4; Anhang C, Formel C.2 wie unten berechnet.

$$v_{crit,i} = \frac{b * n_{i,y}}{St}$$

Dabei ist:

b maßgebende Breite des Querschnitts im Bereich der Wirbelerregung und an dem die maximale modale Auslenkung der Bauwerksstruktur (oder eines Teilbereichs) auftritt; bei Kreiszylindern ist die maßgebende Breite gleich dem äußeren Durchmesser.

St die Strouhalzahl für Kreiszylinder und alle Reynolds-Zahlen St=0,18

n_{i,y} Eigenfrequenz der i-ten Schwingungsform für Schwingungen quer zur Windrichtung, Näherungsgleichungen für n1,y werden wie unten berechnet

Für auskragende Systeme kann eine vereinfache Gleichung zur Berechnung der Grundbiegeeigenfrequenz n₁ von kreiszylindrische Querschnitte des Systems verwendet werden: (ÖNORM EN 1991-1-4;D Formel F.3, F.4)

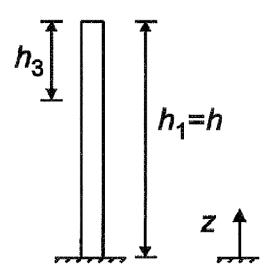
$$n_{i,y} = \frac{\mathcal{E}_1 b}{{h_{eff}}^2} \sqrt{\frac{W_s}{W_t}}$$
 [Hz]

mit:

$$h_{eff} = h_1 + \frac{h_2}{3}$$

Dabei ist:

b der oberen Durchmesser des Kreisquerschnittes (m)


h_{eff} die effektive Höhe (m)

W_s das Gewicht der Bauwerksteile, die zur Biegesteifigkeit des Rohrmastes

beitragen

W_t das Gesamtgewicht des Rohrmastes

 ε_1 1000 für Stahlrohrmaste

Anmerkung: h₃=h₁/3; h₃- ist die oberer Drittel des Rohrmastes

Bild 26 Abmessungen bei Rohrmasten

2.3.2 Statische Ersatzlast Methode für Gittermasten

Der Einfluss böenerregter Schwingungen darf bei freistehenden Gittermasten mit einer statischen Ersatzlast erfasst werden.

Mit einer statischen Vorgehensweise wird die dynamische Windwirkung nur näherungsweise berücksichtigt, EN 1993-3-1 sieht deshalb wie unten die Einhaltung eines emprischen Abgrenzungskriteriums vor.

$$\frac{7m_T}{\rho_S c_{fT} A_T \sqrt{d_B \tau_o}} \left(\frac{5}{6} - \frac{h_T}{H}\right)^2 < 1$$

Hierhin ist $c_{f,T}$ A_T die Summe des Windwiderstandes (Produkt aus Kraftbeiwert und Fläche), summiert über alle einzelnen Abschnitte, wobei mit der

Summation an der Mastspitze zu beginnen ist und $c_{f,T}$ A_T gerade kleiner als ein Drittel des Widerstandes für den gesamten Mast sein muss. Ist N die Gesamtzahl aller Abschnitte, in die der Turm unterteilt wurde, und i die laufende Nummer des Abschnittes mit i=1 an der Turmspitze, so muss gelten:

$$c_{f,T} A_T = \sum_{i=1}^n c_{f,i} * A_{S,i} \le \frac{1}{3} \sum_{i=1}^N c_{f,i} * A_{S,i}$$
 [21]

Bei i=n ist die Summer gerade noch kleiner als Gesamtwindwiderstand.

Die übrigen Variablen sind:

 ρ_s Dichte des Werkstoffs der Konstruktion (in kg/m³)

 m_T Gesamtmasse der Abschnitte i im Bereich von $c_{f,t}$ (in kg), einschließlich aller Anbauten.

h Turmhöhe (in m)

 $h_{\scriptscriptstyle T}$ Gesamthöhe der Abschnitte i im Bereich von $c_{\scriptscriptstyle f,_{\scriptscriptstyle t}}$ jedoch nicht größer als H/3 (in m)

- τ_o Volumen-/Widerstandskonstante, anzusetzen mit 0,001 m
- d_B Tiefe in Windrichtung, anzusetzen mit:
 - 0,75 x Basisbreite für dreigurtige Maste (in m)
 - Basisbreite d für rechtwinklige Gittermaste (in m)
- As die Summe der auf die betrachtete Seite projizierten Flächen der Stäbe und Knotenbleche $A=\sum d_i\,\lambda_i$

Die Kontrolle der Kriterien, für die Anwendung statischer Ersatzlast Methode, wurde für folgende Gittermasten H_{ges} =48 m (Mast Nr.1), H_{ges} =48 m (Mast Nr.2), H_{ges} =48 m (Mast Nr.3), H_{ges} =36 m (Mast Nr.9) und H_{ges} =24 m (Mast Nr. 13) durchgeführt.

Das Ergebnis der Kriterien für Gittermast H_{ges} =48 m mit D_u =2220 mm beträgt 0,283<1 (maßgebend: Schlankester untersuchter Mast).

Das Ergebnis der Kriterien für Gittermast H_{ges} =48 m mit D_u =3650 mm beträgt 0,225<1.

Das Ergebnis der Kriterien für Gittermast H_{ges} =48 m mit D_u =4000 mm beträgt 0,215<1.

Das Ergebnis der Kriterien für Gittermast H_{ges} =36 m mit D_u =2580 mm beträgt 0,138<1.

Das Ergebnis der Kriterien für Gittermast H_{ges} =24 m mit D_u =1320 mm beträgt 0,084<1.

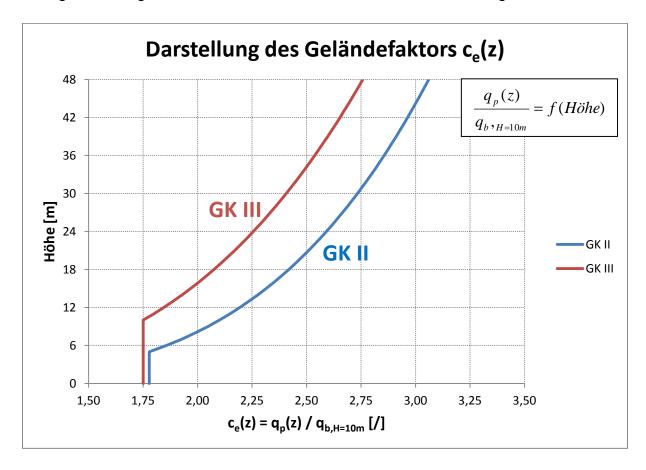
Diese Kontrollen haben gezeigt, dass für die Berechnung von Gittermasten mit Windbelastung bis zu einer Höhe H_{ges}=48m die Ersatzlast Methode angewendet werden darf.

Die detallierte Ergebnisse dieser Berechnungen sind im Anhang A.2.2 angegeben.

2.4. Statische Windbelastung

2.4.1 Geländekategorie und Geländeparameter

Böengeschwindigkeitsdruck: $q_p(z) = C_e(z) q_b$


q_p (z) -Böengeschwindigkeitsdruck in der Bezugshöhe z_e

q_b=q_{b,H=10m} -Spitzengeschwindigkeitsdruck (ÖNORM B 1991-1-4 Anhang A)

c_e(z) -Geländefaktor gemäß Tabelle 7 (ÖNORM B 1991-1-4 Tabelle 1)

$$\frac{q_{_{p}}(z)}{q_{_{b}}} = \frac{q_{_{p}}(z)}{q_{_{b}},_{_{H=10m}}} = c_{_{e}}(z) = f(H\ddot{o}he) \quad \text{Bild} \quad 28 \quad \text{zeigt} \quad \text{der} \quad \text{Verh\"{a}ltnis\"{a}nderung} \quad \text{von}$$

Böengeschwindigkeitsdruck und Geländefaktor für die Geländekategorien II und III.

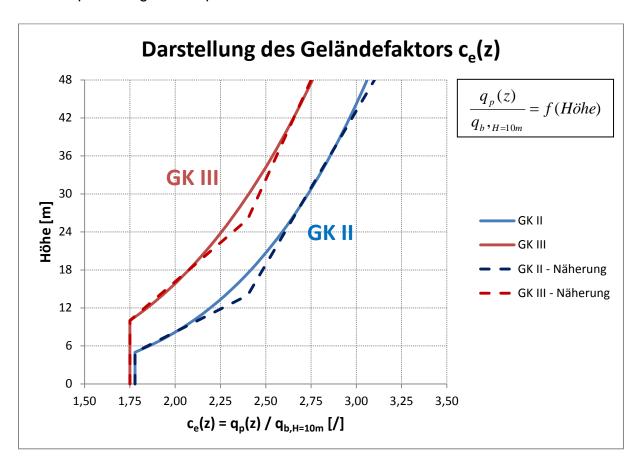


Bild 27 Darstellung der Geländefaktor $\frac{q_p(z)}{q_{b,H=10m}} = f(H\ddot{o}he)$

In der Abbildung 27 und 28 sind die Werte für Geländefaktor $C_{\rm e}(z)$ welche mit der Formel It. der Tabelle 7 für Geländekategorien II und III berechnet wurde.

Abbildung 28 zeigt vereinfachte lineare Verläufe für Geländekategorien II und III als trapezförmiges Windprofil über die Höhe.

Bild 28 Vereinfachte lineare Darstellung der Geländefaktor $\frac{q_p(z)}{q_{b,H=10m}} = f(H\ddot{o}he)$

Tabelle 7 Geländekategorien und Geländeparameter nach ÖNORM B 1991-1-4

O alifa dallada assaila	Geländefaktor	$C^{2}(\mathbf{r})_{-}q_{m} q_{m}$	Turbulenz- intensität	Z _{min}
Geländekategorie	$C_{e}(z) = \frac{q_{p}(z)}{q_{b}}$	$\mathbf{C_r}^2 (\mathbf{z}) = \frac{q_m}{q_b} = \frac{q_m}{q_{b.0}}$	I _v (z)	m
II	$2.1 \left(\frac{z}{10}\right)^{0.24}$	$\left(\frac{z}{10}\right)^{0.3}$	$0.18 \left(\frac{z}{10}\right)^{-0.15}$	5
III	$1.75 \left(\frac{z}{10}\right)^{0.29}$	$0.593 \left(\frac{z}{10}\right)^{0.42}$	$0.29 \left(\frac{z}{10}\right)^{-0.21}$	10

C_r -Rauhigkeitsbeiwert,

q_p -Spitzengeschwindigkeitsdruck,

 q_m -mittlerer Geschwindigekeitsdruck (10-min-Mittel), wobei: $q_m(z)=C_r^2(z)^*q_b$

q_b=q_{b,0} -Referenzwert des Geschwindigekeitsdruckes

(10-min-Mittel in 10 m Höhe, Geländekategorie II und III),

 $I_{\nu}(z)$ -Turbulenzintensität

z_{min} -minimale Höhe, bis zu der das jeweilige Profil gilt; darunter ist der

Wert für z_{min} zu nehmen

 $z_{\rm m}$ Höhe bei der sich die Stielprojektion geneigter Stiele schneidet

Tabelle 8 Geländekategorien und Geländeparameter (EN 1991-1-4;2005D Tabelle 4.1)

	Geländekategorie		in	Z _{min}	in
		m		m	
0	See, Küstengebiete, die der offenen See ausgesetzt sind	0.003		1	
I	een oder Gebiete mit niedriger Vegetation und ohne		0.01		
	Hindernisse	0.01		1	
	Gebiete mit niedriger Vegetation wie Gras und einzelne	Э			
II	Hindernisse (Bäume, Gebäude) mit Abständen von min.	0.0	5	2	
	20facher Hindernishöhe				
	Gebiete mit gleichmäßiger Vegetation oder Bebauung oder	n weniger als der 20-		5	
III	mit einzelnen Objekten mit Abständen von weniger als der 20-				
	fachen Hindernishöhen (z.B. Dörfer, vorstädtische Bebauung,				
	Waldgebiete)				
IV	Gebiete, in denen mindestens 15 % der Oberfläche mit	1.0 10		10	
	Gebäuden mit einer mittleren Höhe größer als 15 bebaut sind			10	
	Die Geländekategorien sind in Anhang A.1 illustriert.				

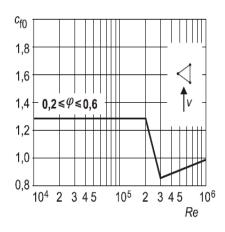
Geländekategorien 0 (Küstengebiete) und 1 (ohne Hindernisse) treten in Österreich nicht auf.

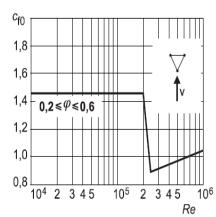
2.4.2 Statische Windbelastung für Gittermasten

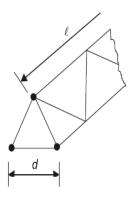
Statische Windlast für Gittermast nach ÖNORM EN 1991-1-4 wird wie folgt berechnet:

$$W=C_sC_d C_f q_p \qquad (kN/m^2)$$

Für Gittermasten mit quadratischem oder gleichseitigem, dreieckigem Querschnitt ergibt sich der Gesamt Kraftbeiwert c_f für Gitter wie unten:


$$C_f = C_{f.0} \psi_{\lambda}$$


Worin:


c_{f,0} Grundkraftbeiwert für Gitter mit unendlicher Schlankheit

Reynoldszahl aufgrund des mittleren Stabdurchmessers b

 ψ_{λ} Abminderungsfaktor zur Berücksichtigung der Schlankheit λ , die mit λ und der Breite b = d nach Bild 29 berechnet wird.

Bild 29 Grundkraftbeiwert C_{f,0} für ein **r**äumliches Fachwerk aus Profilen mit kreisförmigem Querschnitt

Der Völligkeitsgrad φ ist wie folgt definiert:

$$\varphi = \frac{A}{A_c}$$

Worin:

A die Summe der auf die betrachtete Seite projizierten Flächen der Stäbe und Knotenbleche $A=\sum b_i \, \lambda_i \, + \sum_k A_{gk}$

 A_c die senkrechte Projektion der von den Umrandungen der Konstruktion eingeschlossenen Fläche $A_c=d$ λ

- λ Länge des Fachwerks
- d Breite des Fachwerks

 b_i , λ_i die Projektion der Breite und Länge des Einzelstabes i

 A_{gk} Fläche des knotenbleches k

Der gesamte Windkraftbeiwert

$$C_f = C_{f,S} + C_{f,A}$$

Dabei ist

- $c_{f,S}$ der Windkraftbeiwert ohne Anbauten, ermittelt unter Verwendung des Völligkeitsgrades φ für das Bauwerk ohne Anbauten
- c_{f,A} der Windkraftbeiwert für die Außenbauten

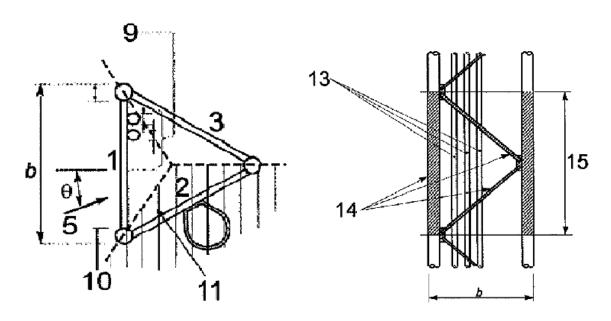


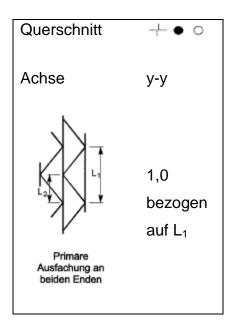
Bild 30 a) Gittermast mit dreieckigem Querschnitt

b) Einzelnes Modul

Die Ansichtsfläche 1 gilt als Windangriffsfläche für $-60^{\circ} \le \theta \le 60^{\circ}$. Eine Externe Leiter sollte als individuelles Objekt behandelt werden. (ÖNORM EN 1993-3-1; Bild B.2.1)

- 1 Ansichtsfläche 1
- 2 Ansichtsfläche 2
- 3 Ansichtsfläche 3
- 5 Wind
- 9 Außenanbauten inklusive Sprossenleitern usw.
- 10 Eckstiel
- 11 Der Ansichtsfläche 2 zugeordnete Außenanbauten
- 13 Außenanbauten in der Projektionsfläche
- 14 Tragende Bauteile in der Projektionsfläche
- 15 Höhe des Moduls (h)

Wenn die Projektionsflächen der Außenanbauten nicht mehr als 10% der Bauteilprojektionsflächen ausmachen, dann können sie der Projektionsfläche der tragende Bauteile zugeschlagen werden (EN 1993-3-1:2006 D).


Die maximale Windlast auf den Gittermast in Windrichtung ist nach ÖNORM EN 1991-1-4, zu bestimmen unter Verwendung von Windkraftbeiwerte.

2.5 Beiwert k für den effektiven Schlankheitsgrad bei Gittermasten

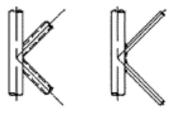
Zur Bestimmung des effektiven Schlankheitsgrades eines druckbeanspruchten Bauteils darf der Beiwert *k* abhängig von der konstruktiven Ausbildung laut ÖNORM EN 1993-3-1 (G2) wie unten bestimmt werden.

Für die Holme des Gittermastes der untersuchten Bauform (nach Tabelle G1 ÖNORM EN 1993-3-1) gilt: Knicklastbeiwert k=1,0 bezogen auf L₁ (siehe Bild 31).

Bild 31 Holme – Diagonale – (nach Tabelle G1 ÖNORM EN 1993-3-1)

Für die Diagonale gilt:

k Ist unter Berücksichtigung der Füllanordnung (siehe Bild unten) und der Anschlüsse der Füllstäbe an die Gurtstäbe zu bestimmen. Typisches Anordnung primärer Füllstäbe (parallel oder verjüngend). Einfaches Fachwerk $L_{di} = L_{d}$


Bild 32 Einfaches Fachwerk – (nach Tabelle G1 ÖNORM EN 1993-3-1)

Emin T. Hanmehmet Matrikelnr: 0231072 Studien ID: F 066 465

Liegen keine weiteren Informationen vor, so ist in der Regel der Beiwert k aus der Tabelle zu entnehmen. Für direkt verschweißte Rohre und Stangen in Fachwerkebene und aus der Fachwerkebene k = 0,7.

Für alle andere arten der Befestigungen von Diagonalen muss die Tabelle G2 in ÖNORM EN 1993-3-1 genauer untersucht werden.

Bild 33 Direkt verschweißte Rohre und Stangen – (nach Tabelle G2 ÖNORM EN 1993-3-1)

Emin T. Hanmehmet Matrikelnr: 0231072 Studien ID: F 066 465

2.6 Statische Windbelastung für Rohrmasten

Bei der Berechnung der Antennenmasten wird die Windlast auf die Rohrlänge angewendet. In diesem Fall ist die Bezugsfläche Referenzwert A_{ref} (m^2) in Formel statt Rohrdurchmesser D_{ref} (m) einzusetzen und Windlast in kN/m an den Antennenmast anzuwenden. In diesem Fall wird die statische Ersatzlast Windlastbelastung auf Antennenmast nach dieser Formel berechnet:

$$W_{(z,i)}=C_sC_d \Sigma C_f q_p D_{ref}$$
 (kN/m)

W(z,i) Linienlast im Bereich H_i abhängig von z_i

C_sC_d Strukturbeiwert (EN 1991-1-4:2005 D) C_sC_d=1 (ÖNORM B 1991-4, 4.4)

D_{ref} ist der Referenzdurchmesser des Antennenrohrmastes (m)

Summe der Koeffizienten der Gesamtwindkraftbeiwerte mit der entsprechenden Bezugsfläche für zylindrische Querschnitte ist

$$\Sigma c_{\text{f}} = C_{\text{pe}} \; C_{\text{f}}$$

Der Außendruckbeiwerte cpe für zylindrische Querschnitte ist

$$c_{ne} = c_{no} \psi_{\lambda a}$$

Dabei ist:

 C_{po} Außendruckbeiwert eines Zylinders mit unendlicher Schlankheit λ

gemäß dem Bild 34

 $\Psi_{\lambda a}$ Abminderungsfaktor zur Berücksichtigung der Umströmung der Enden eines Kreiszylinders

In Bild 34 ist der Außendruckbeiwert C_{po} für verschiedene Reynoldszahlen in Abhängigkeit des Winkels α über dem halben Umfang dargestellt.

Der Abminderungsfaktor zur Berücksichtigung der Schlankheit $\psi_{\scriptscriptstyle{\lambda a}}$ ist:

$$\psi_{\lambda a} = 1 \qquad \qquad \text{für} \qquad 0^{\circ} \leq \alpha \leq \alpha_{\min}$$

$$c_{\text{p0}}$$

$$1$$

$$0 \qquad \alpha_{\min} \qquad \alpha_{\text{A}}$$

$$c_{\text{pe}} = \psi_{\lambda \alpha} \cdot c_{\text{p0}}$$

$$0 \qquad \alpha_{\text{A}} \qquad \alpha_{\text{pe}} = \psi_{\lambda} \cdot c_{\text{p0,h}}$$

$$0 \qquad \alpha_{\text{p0}} \qquad \alpha$$

Bild 34 Druckverteilung über einen unendlich schlanken, zylindrischen Querschnitt

Für Kreiszylinder Querschnitte nach Bild 34 und Tabelle 9 α_{\min} = 85 0 .

Außendruckbeiwert abhängig von desen Reynoldszahl Re Diese ist wie folgt definiert

$$R_e = \frac{b \, v_p(z_e)}{v}$$

Worin:

b Durchmesser für zylindrische Querschnitte

 ν kinematische Zähigkeit der Luft ($\nu = 15*10^{-6} \text{ m}^2/\text{s}$)

 $v_p(z_e)$ Böenwindgeschwindigkeit in der Höhe z_e

$$v_p = \sqrt{\frac{2}{\rho} * q_p}$$

Gemäß dem Bild 34 und Tabelle 9 wird für $0^{\circ} \le \alpha \le \alpha_{min}$ max $C_{po} = 1$ und $\psi_{\lambda a} = 1$ angewendet. Dementsprechend für zylindrische Querschnitte wird max. $C_{pe} = 1$ definiert.

Der Kraftbeiwert C_f eines endlichen kreisrunden Zylinder ist:

$$C_f = C_{f,0} \psi_{\lambda}$$

Worin:

C_{f.0} Grundkraftbeiwert eines Zylinders mit unendlicher Schlankheit (Bild 35)

 ψ_{λ} Abminderungsfaktor zur Berücksichtigung der Schlankheit

- k ist äquivalente Rauigkeit, für verzinkter Stahl k=0.2 (nach Tabelle 7.13 ÖNORM EN 1991-1-4:2005 D)
- b Kreiszylinders Durchmessers

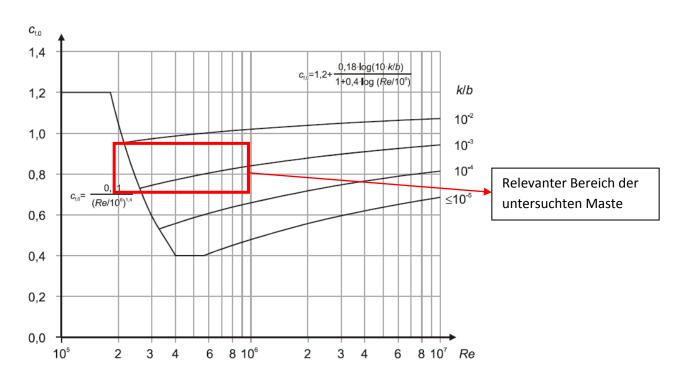
Nach Tabelle 9 für $\alpha_{min} = 85^{\circ}$ Typische Werte für R_e ist $5*10^{\circ}$.

Tabelle 9 Typische Werte für $R_{\rm e}$, $\alpha_{\rm min}$, $C_{\rm p0.min}$, $\alpha_{\rm A}$ und $C_{\rm p0,\,h}$ für unendlich schlanke, kreisrunde, zylindrische Querschnitte

Re	$lpha_{ m min}$	C _{p0.min}	$\alpha_{\scriptscriptstyle A}$	C _{p0, h}
5 10 ⁵	85	-2.2	135	-0.4
2 10 ⁶	80	-1.9	120	-0.7
10 ⁷	75	-1.5	105	-0.8

Dabei ist:

 α_{\min} Lage des minimalen Druckes in (°)


C_{p0.min} Wert des minimalen druckbeiwertes

 $\alpha_{\scriptscriptstyle A}$ Lage der ablöselinie in (°)

C_{p0, h} Heckdruckbeiwert

Der äquivalente Rauhigkeitsbeiwert k für verzinkter Stahl ist: k=0,2 mm (ÖNORM EN 1991-1-4, Tabelle 7.13)

Bild 35 Grundkraftbeiwert C_{f.0} von kreisrunden Zylindern mit unendlicher Schlankheit für verschiedene bezogene Rauigkeiten **k/b**

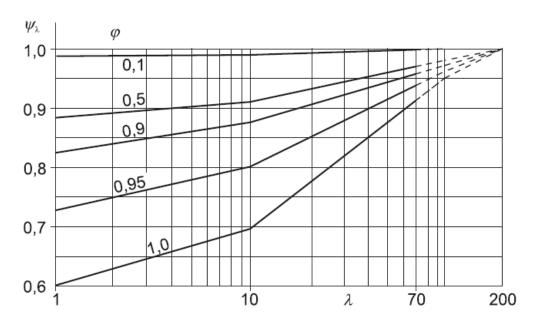


Bild 36 Abminderungsfaktor ψ_{λ} in Abhängigkeit der effektiven Schlankheit λ und für verschiedene Völligkeitsgrade φ .

Für Kreiszylinder Völligkeitsgrade φ =1

Für Kreiszylinder: Für $\lambda \ge 50$ m, $\lambda = 0.7$ λ/b oder $\lambda = 70$, der kleinere Wert ist maßgebend; Für $\lambda < 15$ m, $\lambda = \lambda/b$ oder $\lambda = 70$, der kleinere Wert ist maßgebend. Nach Ermittlung von λ Wert kann die ψ_{λ} aus dem Bild 36 entnommen.

2.6.1 Aerodynamischer Beiwert für Einbauten und Antennenausrüstungen

Antennentragwerke sind meist über große Bereiche mehr oder minder dicht mit Antennen aller Art belegt, auch sind Podeste, Leitern, Kabelleitern mit Kabeln vorhanden. Was Podeste und Bühnen anbelangt, wird man deren Windlast separat berechnen und der Windlast der Mast- oder Turmkonstruktion überlagern. Leitern und Kabeln liegen bei Fachwerkstrukturen i.A. in geringem Abstand von den Wänden entfernt und werden dann sinnvoller Weise in die Projektionsfläche einbezogen. Es ist auch möglich die auf sie entfallende Windlast getrennt zu überlagern (was stets auf der sicheren Seite liegt). Für die Belegung von Rohrmantelmasten mit Kabeln und Leitern enthält DIN 4131 Anhang A, c_f-Ansätze [1].

Eine externe Leiter sollte als individuelles Objekt behandelt werden (ÖNORM EN 1993-3-1: 2006 Anhang D).

ANHANG 1
ZUSAMMENSTELLUNG AUSGEFÜHRTER
HANDYMASTEN

Emin T. Hanmehmet Matrikelnr: 0231072 Studien ID: F 066 465

A.1 Wesentliche geometrische Parameter

A.1.1 Gittermasten

Die Abbildungen A.1 bis A.18 zeigen die Übersichtspläne der 18- im Hauptteil der vorliegenden Arbeit untersuchten Gittermaste. Pro gleicher Masthöhe wurden jeweils drei Masten analysiert:

H_{ges}=48 m: Mast 1 – Bild A.1

Mast 2 - Bild A.2

Mast 3 - Bild A.3

H_{ges}=42 m: Mast 4 – Bild A.4

Mast 5 – Bild A.5

Mast 6 - Bild A.6

 H_{ges} =36 m: Mast 7 – Bild A.7

Mast 8 - Bild A.8

Mast 9 - Bild A.9

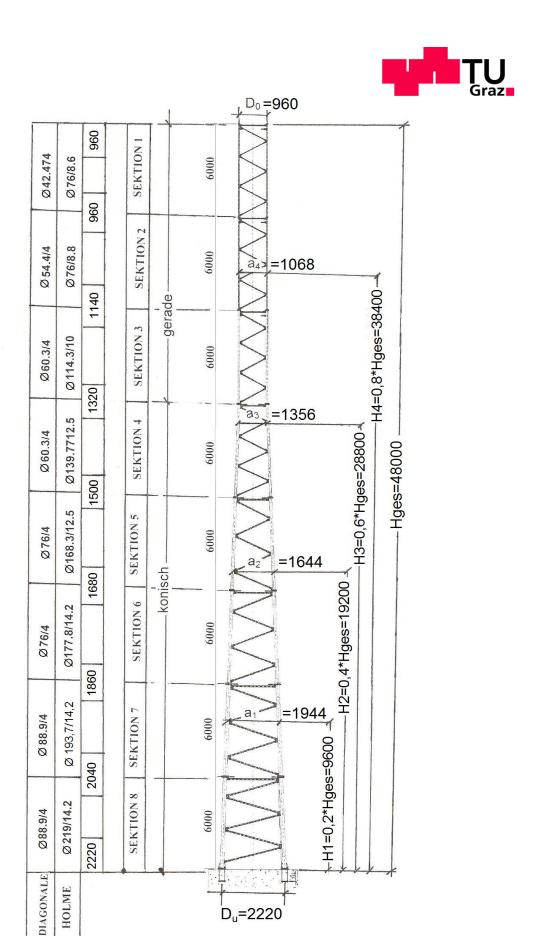
 H_{aes} =30 m: Mast 10 – Bild A.10

Mast 11 - Bild A.11

Mast 12 – Bild A.12

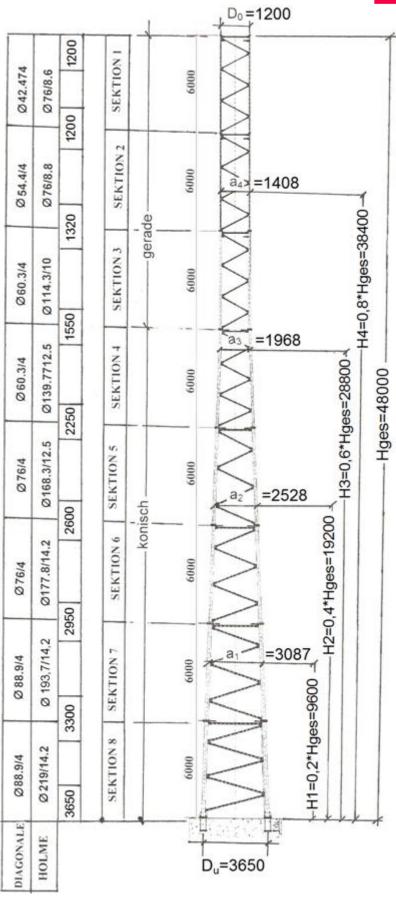
H_{ges}=24 m: Mast 13 – Bild A.13

Mast 14 – Bild A.14


Mast 15 - Bild A.15

H_{ges}=18 m: Mast 16 – Bild A.16

Mast 17 – Bild A.17


Mast 18 – Bild A.18

Die wesentlichen geometrischen Parameter der 18 untersuchten Gittermaste sind in Tabelle 1 zusammengestellt.

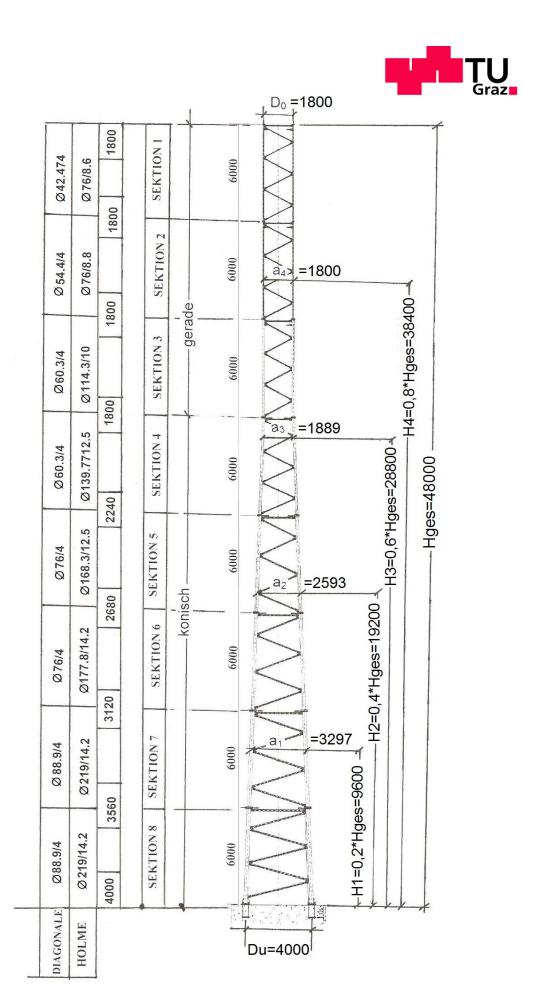


Bild A.1 Gittermast Nr. 1 H_{ges}=48 m (Tabelle 1)

Bild A.2. Gittermast Nr.2 H_{ges}=48 m (Tabelle 1)

Bild A.3 Gittermast Nr.3 H_{ges}=48 m (Tabelle 1)

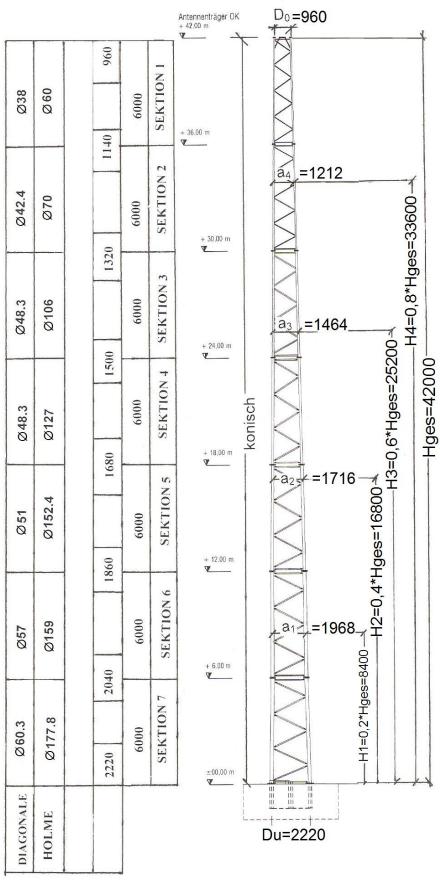
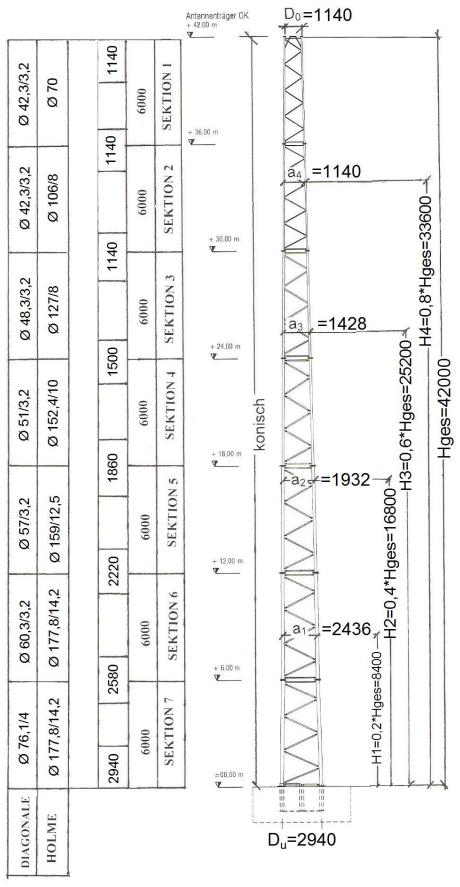
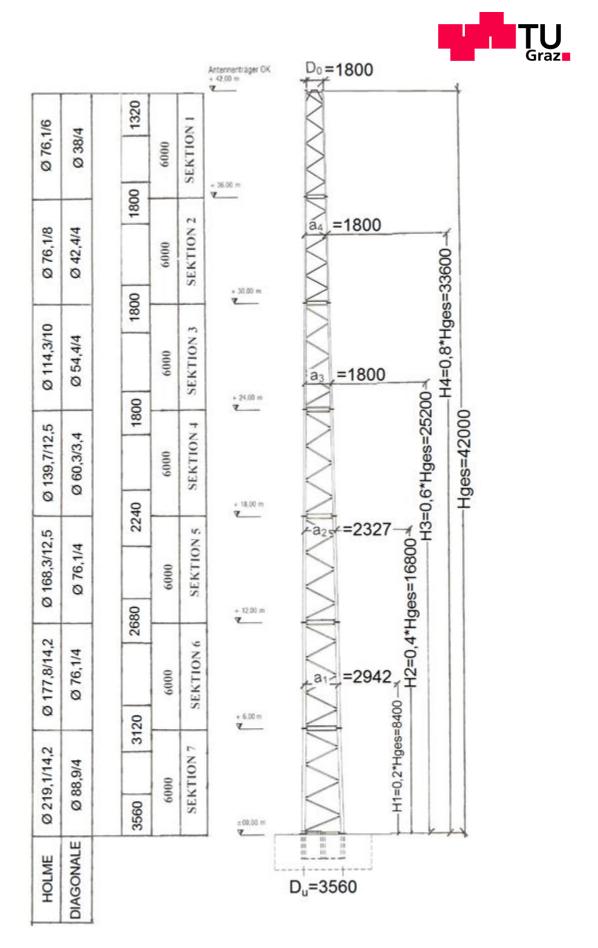
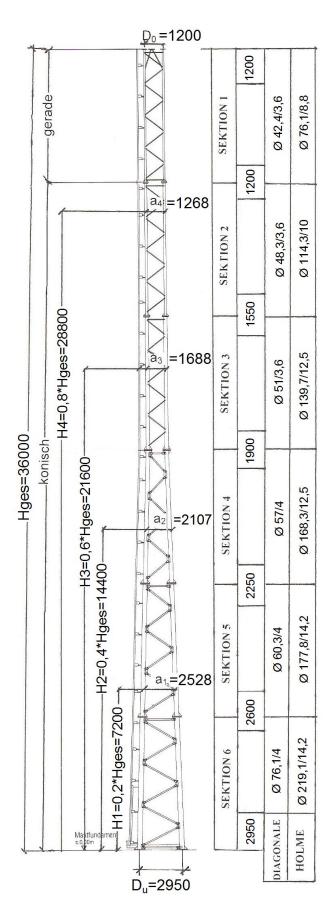
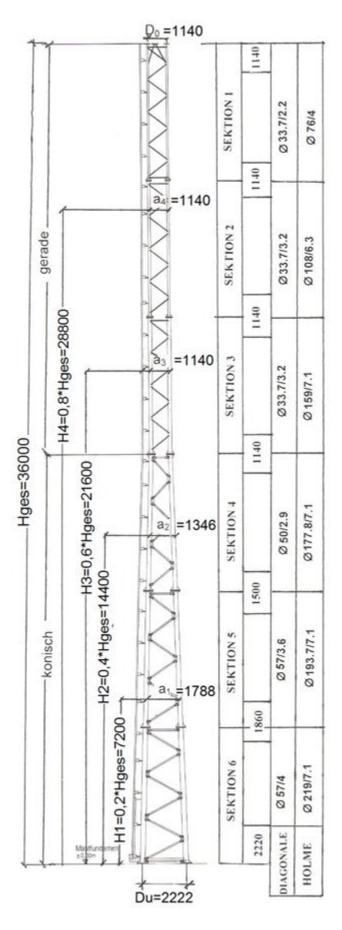
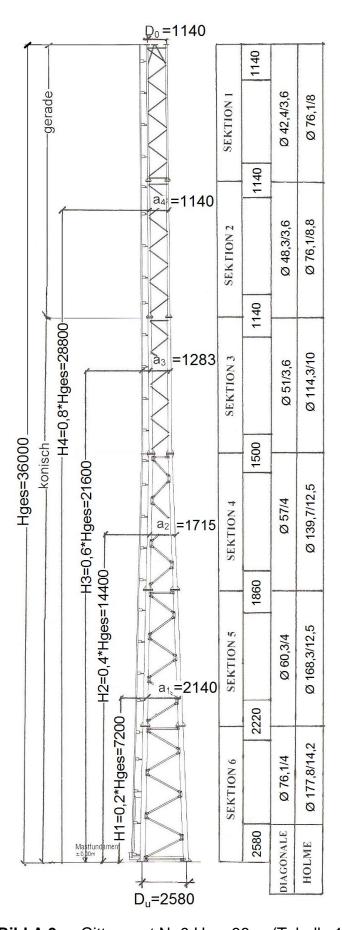



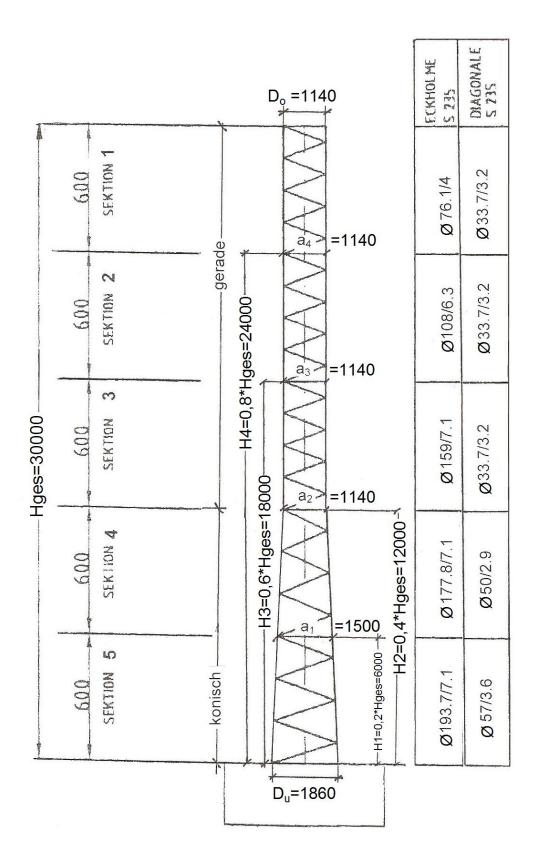
Bild A.4 Gittermast Nr.4 H_{ges}=42 m (Tabelle 1)

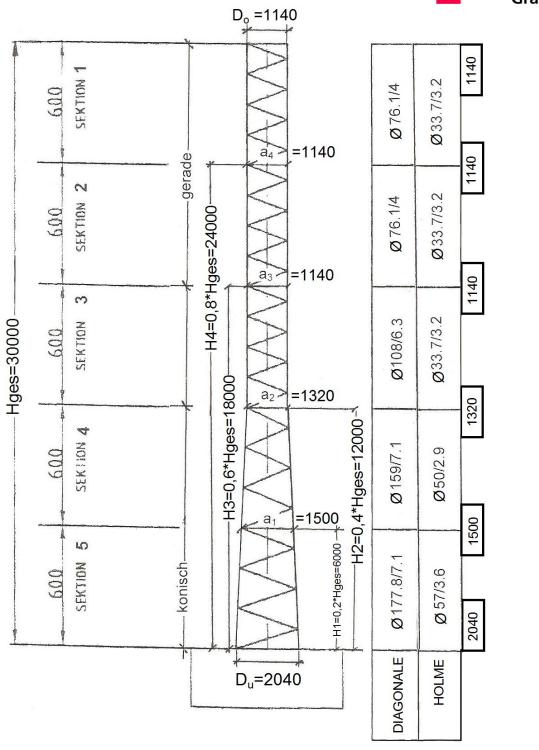
Bild A.5 Gittermast Nr.5 H_{ges}=42 m (Tabelle 1)

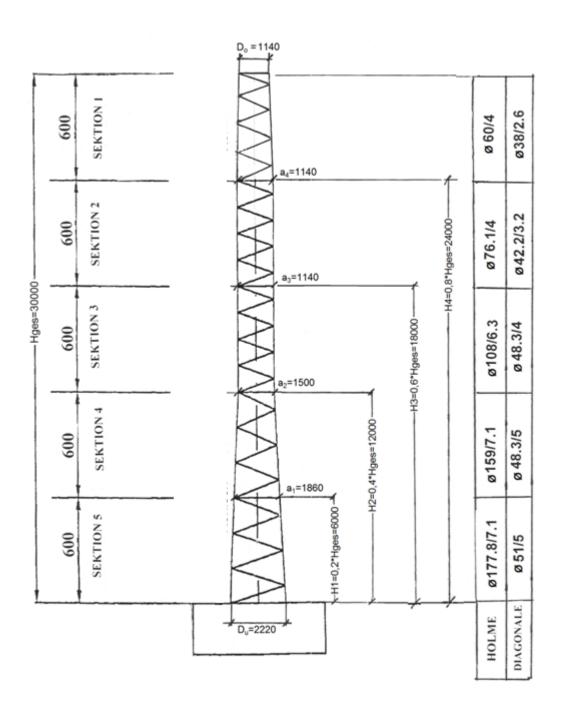



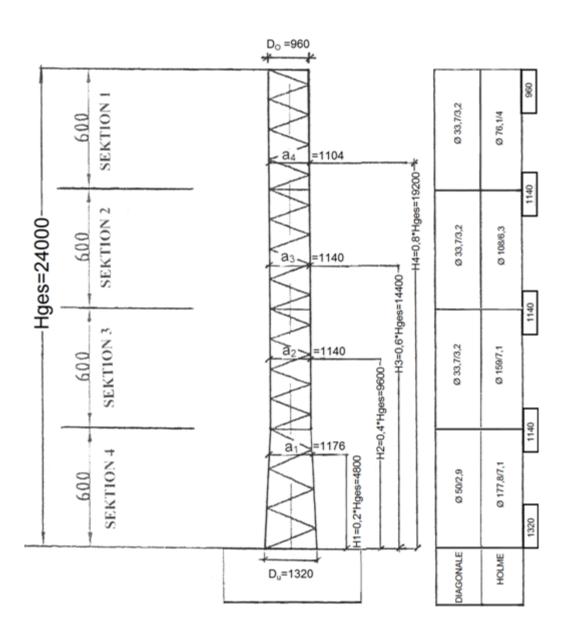

Bild A.6 Gittermast Nr.6 H_{ges}=42 m (Tabelle 1)


Bild A.7 Gittermast Nr.7 H_{ges}=36 m (Tabelle 1)


Bild A.8 Gittermast Nr.8 H_{ges}=36 m (Tabelle 1)


Bild A.9 Gittermast Nr.9 H_{ges}=36 m (Tabelle 1)


Bild A.10 Gittermast Nr.10 H_{ges}=30 m (Tabelle 1)


Bild A.11 Gittermast Nr.11 H_{ges}=30 m (Tabelle 1)

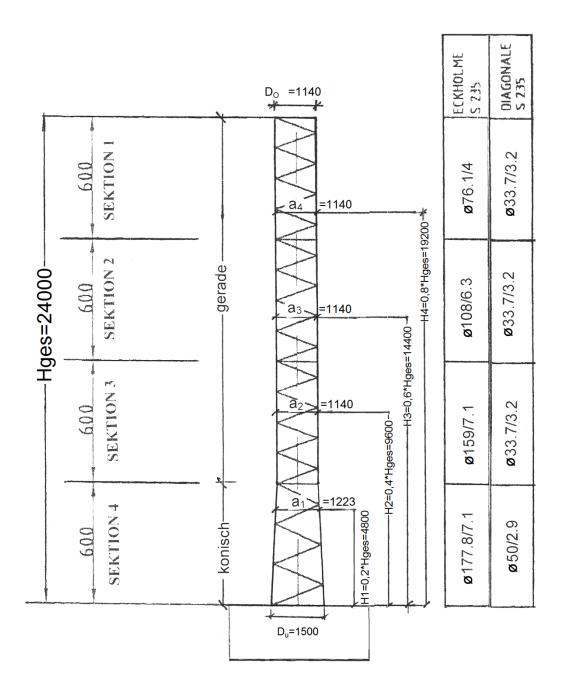
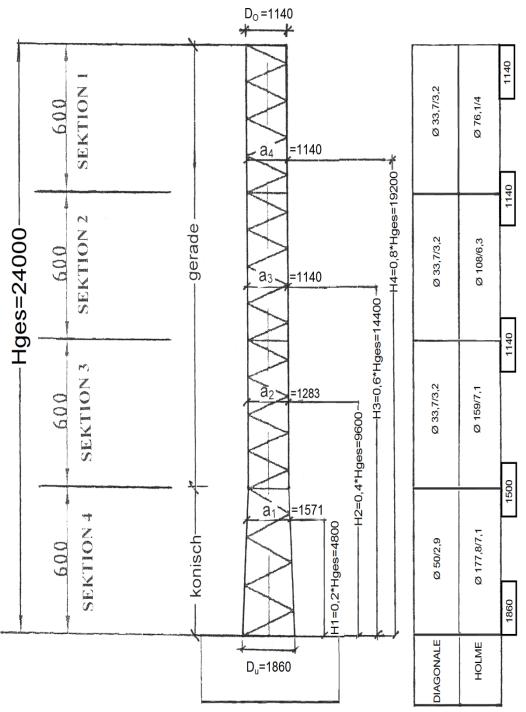
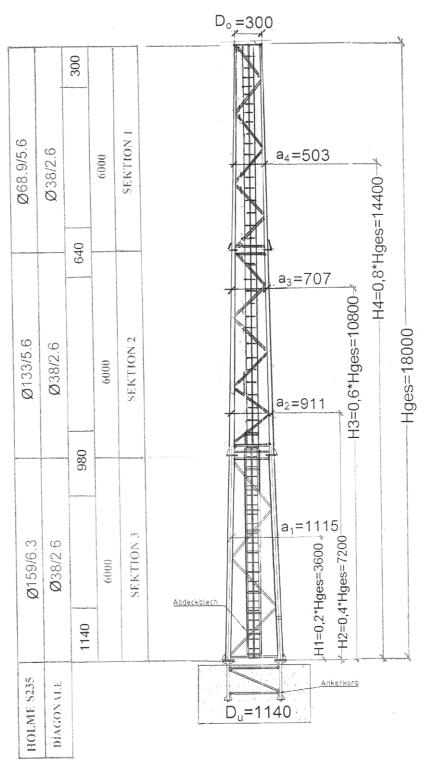
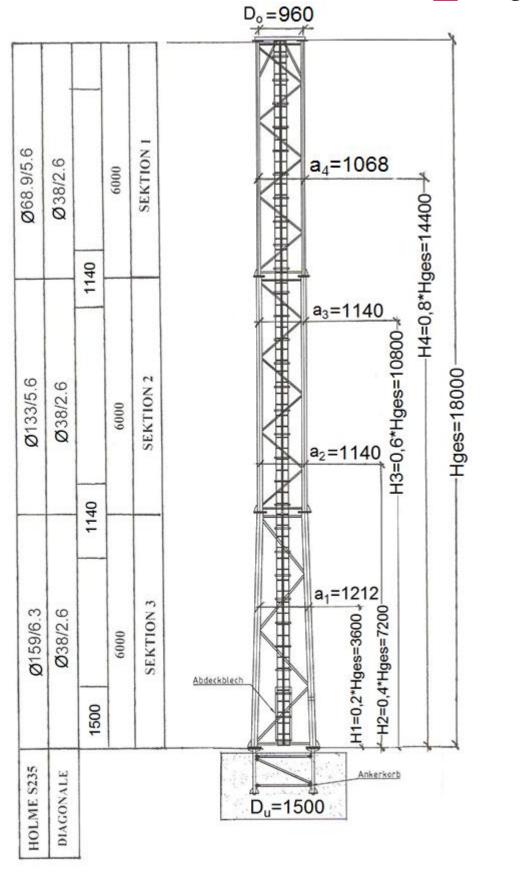

Bild A.12 Gittermast Nr.12 H_{ges}=30 m (Tabelle 1)

Bild A.13 Gittermast Nr.13 H_{ges}=24 m (Tabelle 1)

Bild A.14 Gittermast Nr.14 H_{ges}=24 m (Tabelle 1)


Bild A.15 Gittermast Nr.15 H_{ges}=24 m (Tabelle 1)

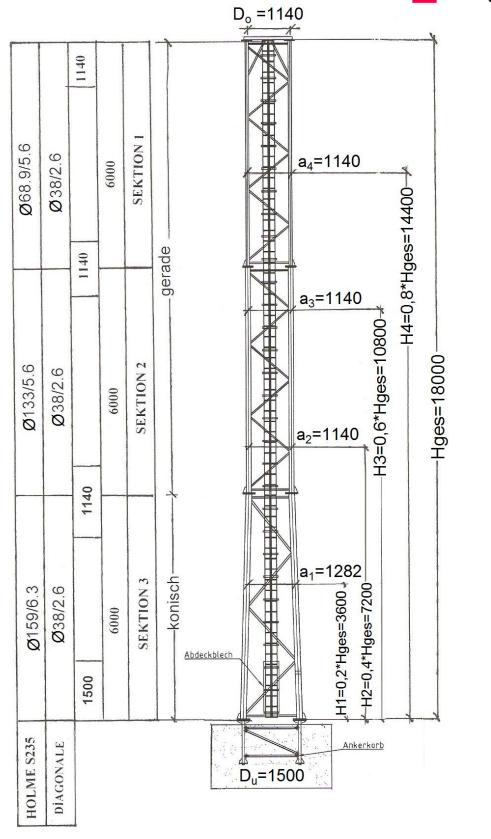

Bild A.16 Gittermast Nr.16 H_{ges}=18 m (Tabelle 1)

Bild A.17 Gittermast Nr.17 H_{ges}=18 m (Tabelle 1)

Bild A.18 Gittermast Nr.18 H_{ges}=18 m (Tabelle 1)

A.1.2 Rohrmasten

Die Abbildungen A.19 bis A.33 zeigen die Übersichtspläne der 15- im Hauptteil der vorliegenden Arbeit untersuchten Rohrmasten. Pro gleicher Masthöhe wurden jeweils drei Masten analysiert:

 H_{ges} =36 m: Mast 1 – Bild A.19

Mast 2 - Bild A.20

Mast 3 - Bild A.21

 H_{ges} =30 m: Mast 4 – Bild A.22

Mast 5 - Bild A.23

Mast 6 - Bild A.24

H_{qes}=24 m: Mast 7 – Bild A.25

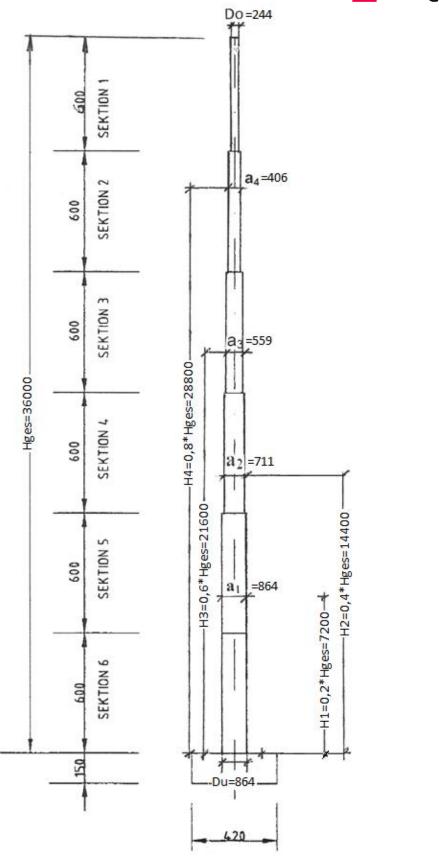
Mast 8 – Bild A.26

Mast 9 - Bild A.27

H_{ges}=18 m: Mast 10 – Bild A.28

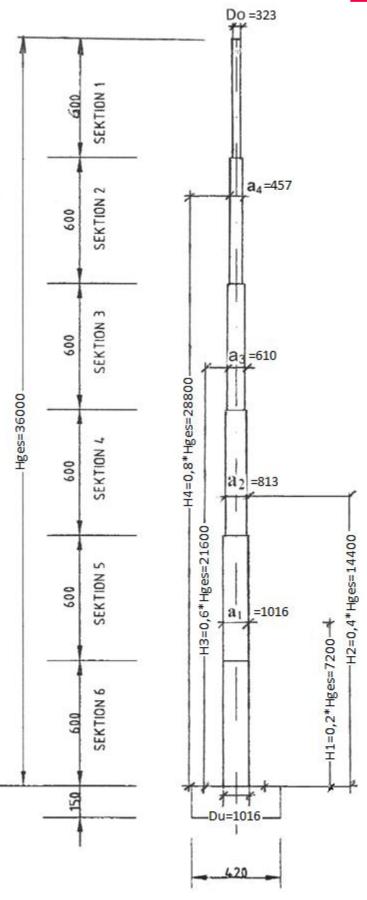
Mast 11 - Bild A.29

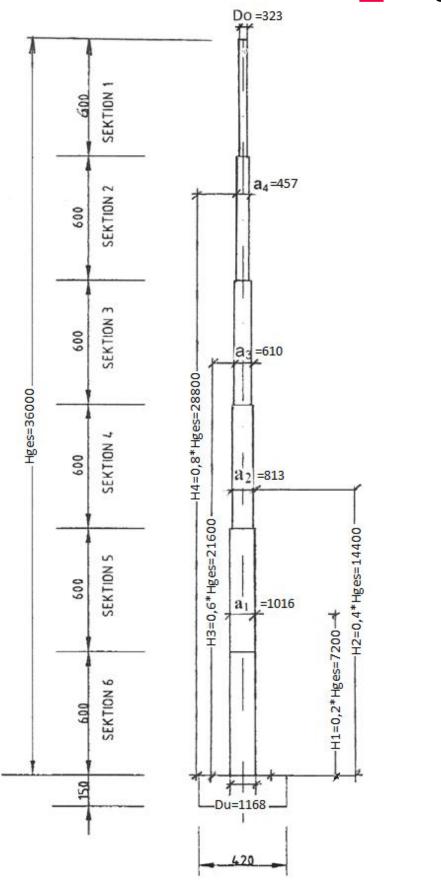
Mast 12 - Bild A.30

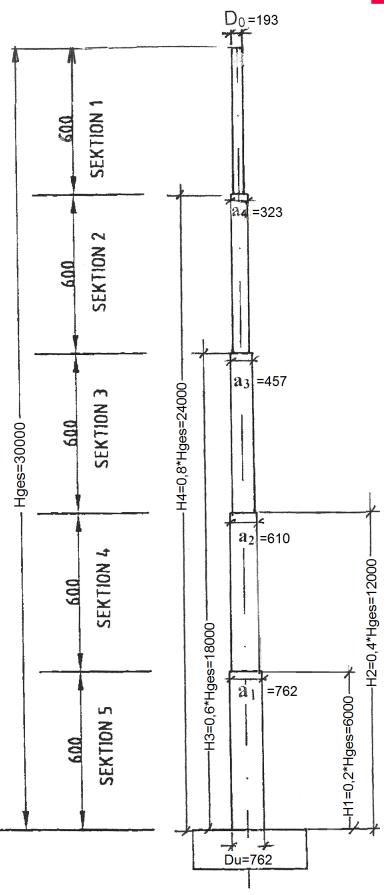

H_{qes}=12 m: Mast 13 – Bild A.31

Mast 14 – Bild A.32

Mast 15 - Bild A.33


Die wesentlichen geometrischen Parameter der 15 untersuchten Rohrmasten sind in Tabelle 3 zusammengestellt.


Bild A.19 Rohrmast Nr.1 H_{ges}=36 m (Tabelle 3)


Bild A.20 Rohrmast Nr.2 H_{ges}=36 m (Tabelle 3)

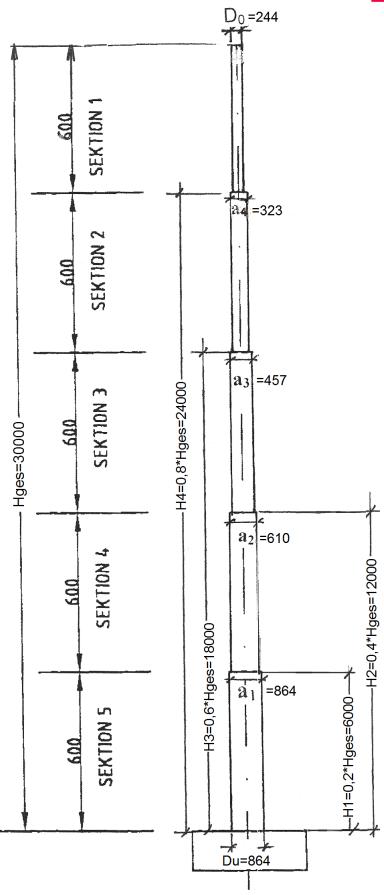

Bild A.21 Rohrmast Nr.3 H_{ges}=36 m (Tabelle 3)

Bild A.22 Rohrmast Nr.4 H_{ges}=30 m (Tabelle 3)

Bild A.23 Rohrmast Nr.5 H_{ges}=30m (Tabelle 3)

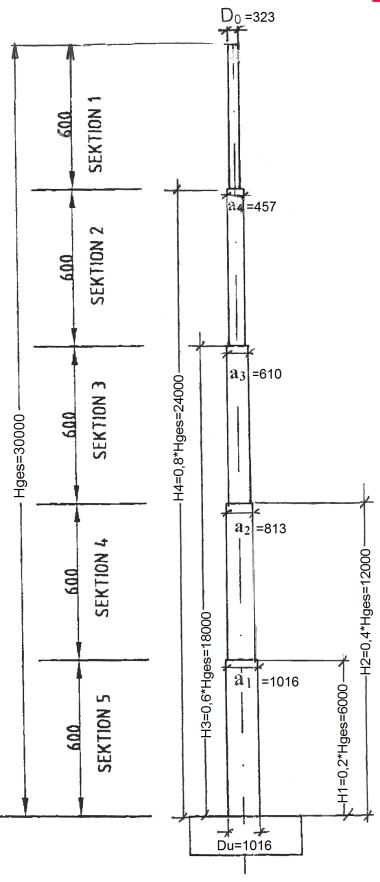
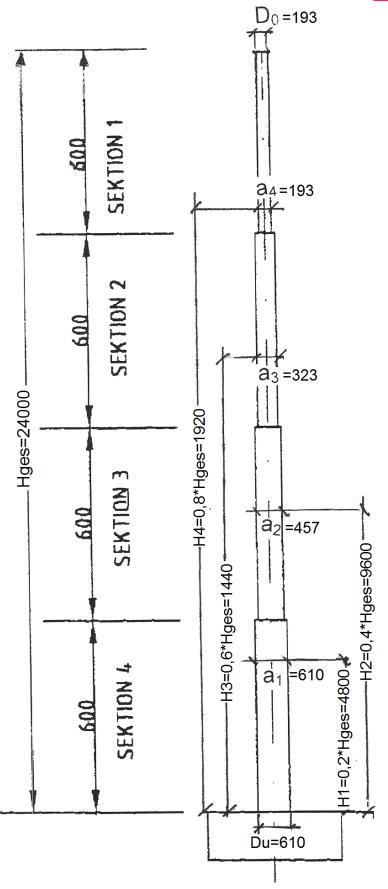



Bild A.24 Rohrmast Nr.6 H_{ges}=30m (Tabelle 3)

Bild A.25 Rohrmast Nr.7 H_{ges}=24m (Tabelle 3)

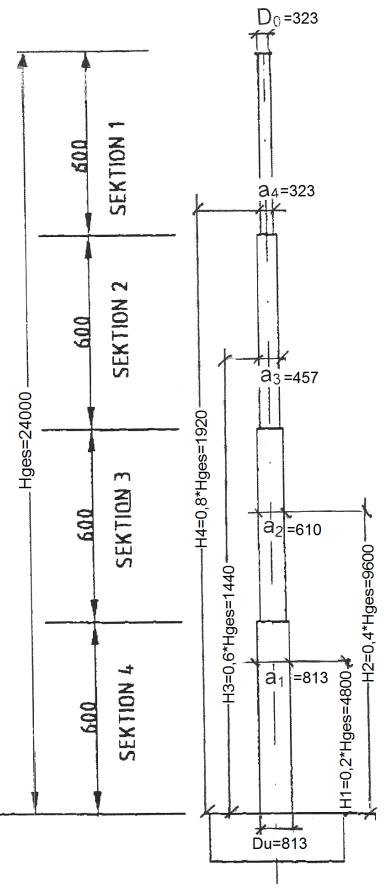
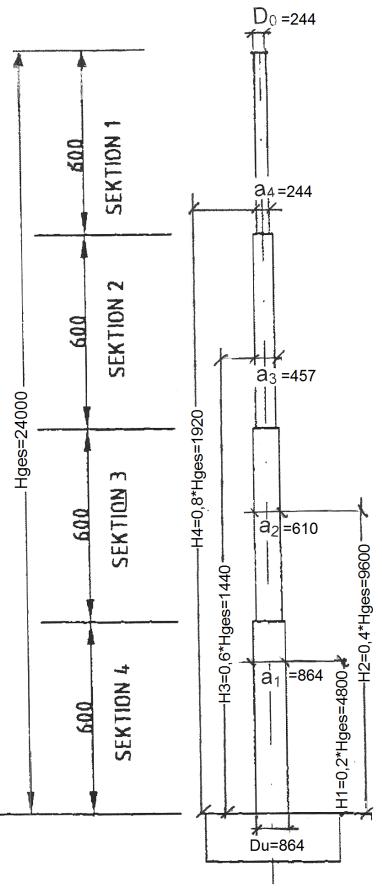
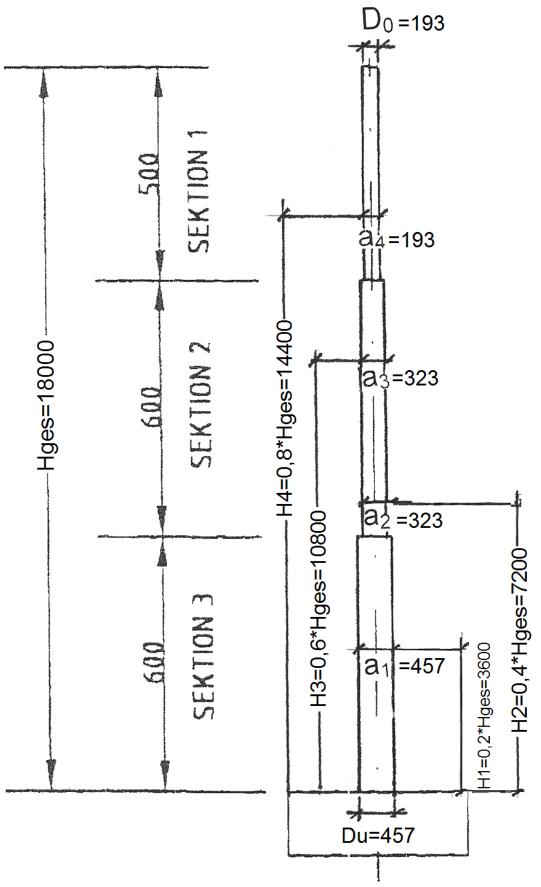
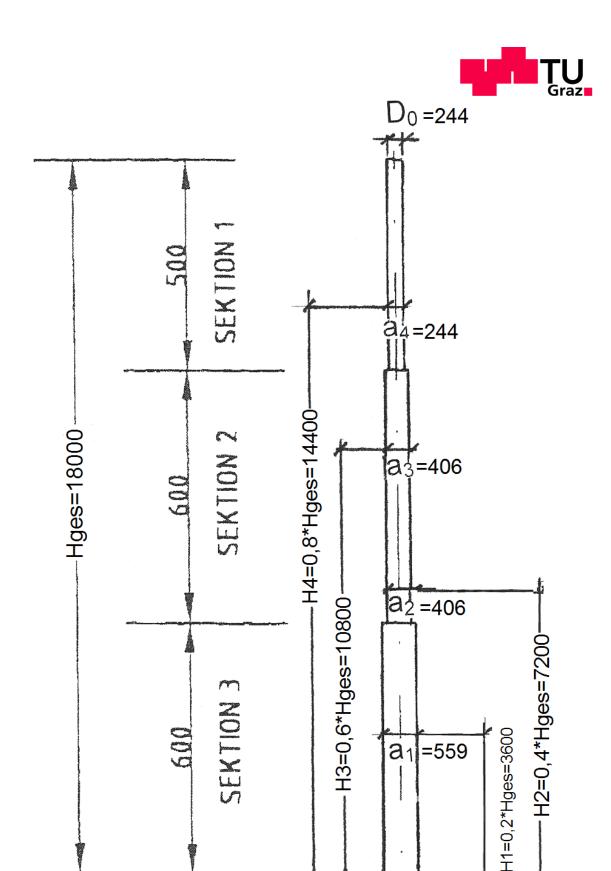
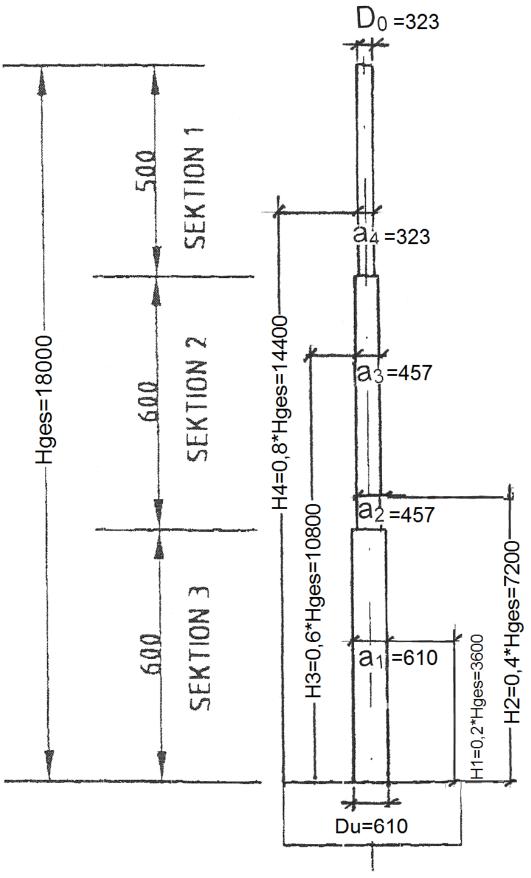
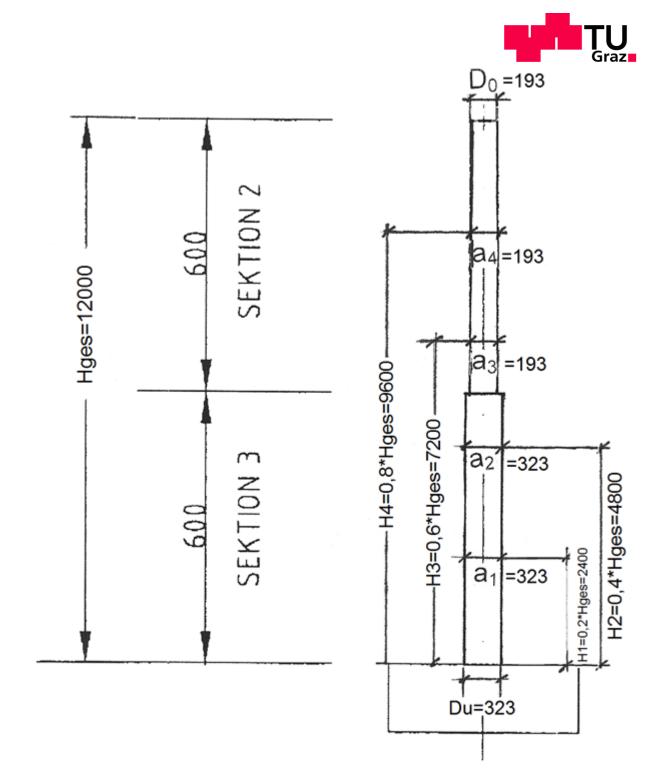



Bild A.26 Rohrmast Nr.8 H_{ges}=24m (Tabelle 3)

Bild A.27 Rohrmast Nr.9 H_{ges}=24m (Tabelle 3)


Bild A.28 Rohrmast Nr.10 H_{ges}=18m (Tabelle 3)


Bild A.29 Rohrmast Nr.11 H_{ges}=18m (Tabelle 3)

Du=559

Bild A.30 Rohrmast Nr.12 H_{ges}=18m (Tabelle 3)

Bild A.31 Rohrmast Nr.13 H_{ges}=12m (Tabelle 3)

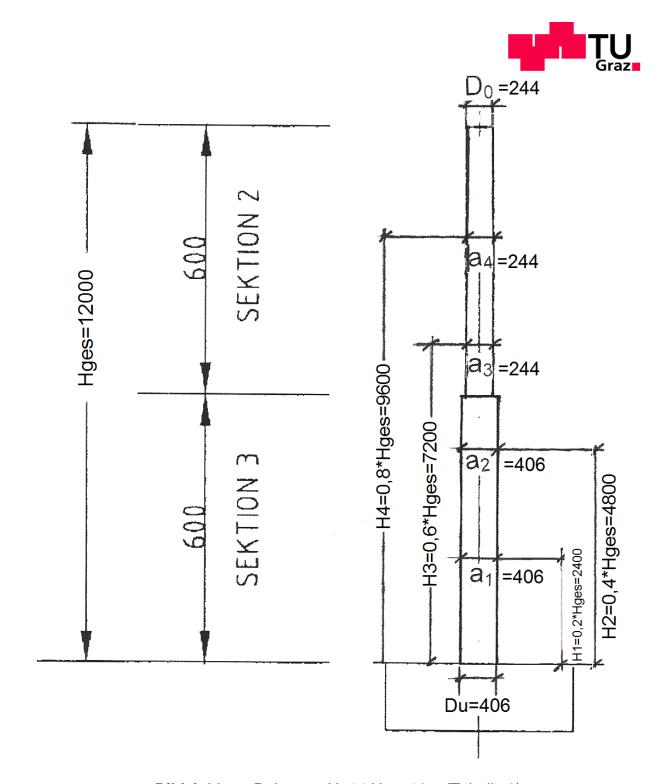


Bild A.32 Rohrmast Nr.14 H_{ges}=12m (Tabelle 3)

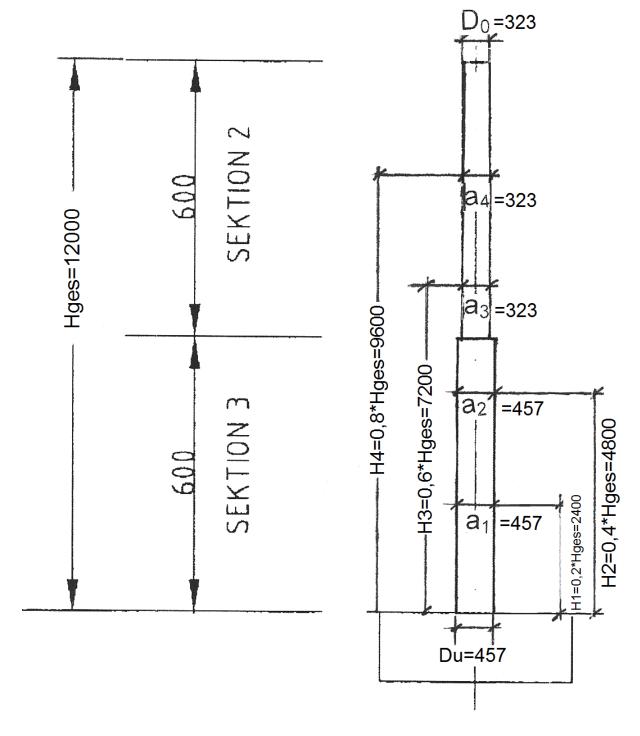
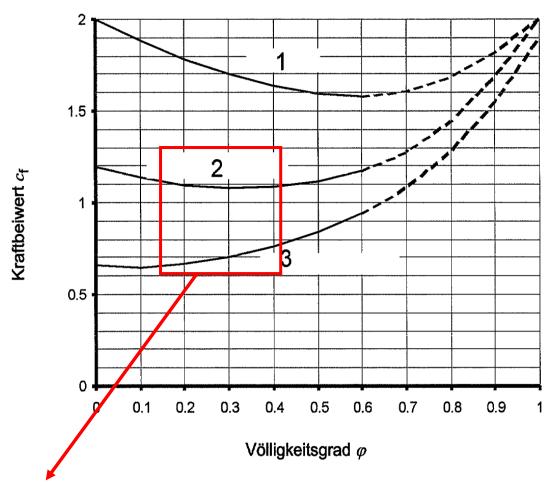


Bild A.33 Rohrmast Nr.15 H_{ges}=12m (Tabelle 3)


ANHANG 2 ÜBERPRÜFUNG DES GRENZKRITERIUMS FÜR DIE WINDBELASTUNG

A.2 Überprüfung der Holme und Diagonalen, welche in unterkritischem / überkritischem Bereich sind.

A.2.1 Windkraftbeiwerte für einzelne Tragwerke

Werte für Windkraftbeiwerte c_f für einzelne Tragwerke, die aus Bauteilen mit sowohl kantigen als auch kreisförmigen Querschnitten, sind zu bestimmen mit: (ÖNORM EN 1993-3-1: Bild B.2.5)

Für untersuchte Gittermaste relevanter Bereich: Konservative Empfehlung:

- kreisförmig unterkritisch c_f=1,1
- kreisförmig überkritisch c_f=0,8
- 1 Kantige Profile
- 2 Kreisförmige Profile (unterkritisch)
- 3 Kreisförmige Profile (überkritisch)

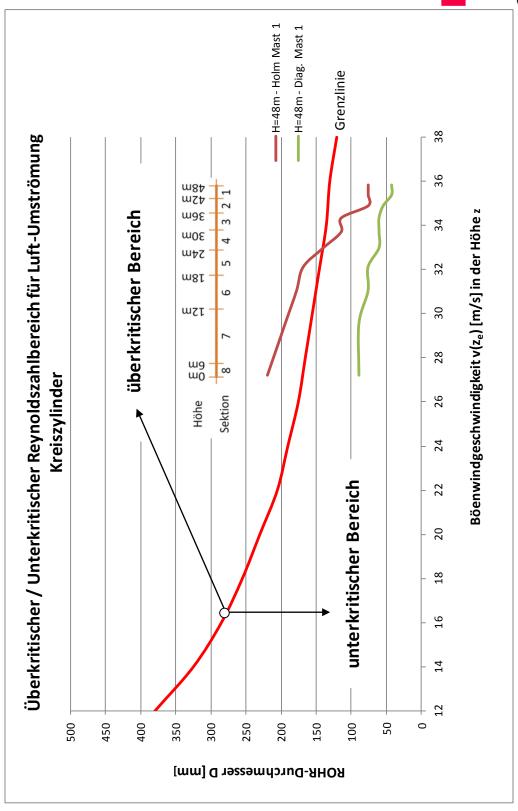
Bild A.2.1 Kraftbeiwert c_f für einzelne Tragwerke

Überkritischer / Unterkritischer Reynoldszahlbereich für Luft-Umströmung Kreiszylindrischequerschnitte (Holme, Diagonale) des Gittermastes

In der Tabelle A.2.1 sind für verschiedene Rohrdurchmesser D (mm) und Böenwindgeschwindigkeit v (m/s) die Grenzen von unterkritischen (grau) und überkritischen (weiß) Bereichen aufgelistet.

Re =	D * v(z _e) / v	[/]	mit:			v =	1,50E-05	[m²/s]	Kinematisch	e Zähigkeit d	er Luft			
	3,00E+05	[/]				ρ=	1,25	kg/m³	Dichte der L	uft				
				ÖNORM EN 1	991 1-4:2005	- Abschnitt 7.	9 Kreiszylind	der, Seite 69						
				Re≤	3,00E+05	[/]	unter	kritisch						
				Re >	3,00E+05	[/]	überl	kritisch						
D [mm]	v(z _e) [m/s]													
	12	14	16	18	20	22	24	26	28	30	32	34	36	38
35	2,80E+04	3,27E+04	3,73E+04	4,20E+04	4,67E+04	5,13E+04	5,60E+04	6,07E+04	6,53E+04	7,00E+04	7,47E+04	7,93E+04	8,40E+04	8,87E+04
40 45	3,20E+04	3,73E+04 4.20E+04	4,27E+04	4,80E+04	5,33E+04 6,00E+04	5,87E+04	6,40E+04	6,93E+04 7.80E+04	7,47E+04	8,00E+04	8,53E+04	9,07E+04 1,02E+05	9,60E+04 1.08E+05	1,01E+05
45 50	3,60E+04 4,00E+04	4,20E+04 4,67E+04	4,80E+04 5,33E+04	5,40E+04 6,00E+04	6,67E+04	6,60E+04 7,33E+04	7,20E+04 8,00E+04	8,67E+04	8,40E+04 9,33E+04	9,00E+04 1,00E+05	9,60E+04 1,07E+05	1,02E+05 1,13E+05	1,08E+05 1,20E+05	1,14E+05 1,27E+05
55	4,00E+04 4.40F+04	5.13E+04	5.87F+04	6.60E+04	7.33E+04	8.07F+04	8.80E+04	9.53E+04	1.03E+05	1,00E+05	1,07E+05	1,13E+05	1,20E+05	1,27E+05
60	4,80E+04	5,60E+04	6,40E+04	7,20E+04	8,00E+04	8,80E+04	9,60E+04	1,04E+05	1,12E+05	1,20E+05	1,28E+05	1,36E+05	1,44E+05	1,52E+05
65	5,20E+04	6,07E+04	6,93E+04	7,80E+04	8,67E+04	9,53E+04	1,04E+05	1,13E+05	1,21E+05	1,30E+05	1,39E+05	1,47E+05	1,56E+05	1,65E+05
70	5,60E+04	6,53E+04	7,47E+04	8,40E+04	9,33E+04	1,03E+05	1,12E+05	1,21E+05	1,31E+05	1,40E+05	1,49E+05	1,59E+05	1,68E+05	1,77E+05
75	6,00E+04	7,00E+04	8,00E+04	9,00E+04	1,00E+05	1,10E+05	1,20E+05	1,30E+05	1,40E+05	1,50E+05	1,60E+05	1,70E+05	1,80E+05	1,90E+05
80	6,40E+04	7,47E+04	8,53E+04	9,60E+04	1,07E+05	1,17E+05	1,28E+05	1,39E+05	1,49E+05	1,60E+05	1,71E+05	1,81E+05	1,92E+05	2,03E+05
85 90	6,80E+04 7.20E+04	7,93E+04 8,40E+04	9,07E+04 9,60E+04	1,02E+05 1,08E+05	1,13E+05 1,20E+05	1,25E+05 1,32E+05	1,36E+05 1,44E+05	1,47E+05 1,56E+05	1,59E+05 1,68E+05	1,70E+05 1,80E+05	1,81E+05 1,92E+05	1,93E+05 2.04E+05	2,04E+05 2,16E+05	2,15E+05 2,28E+05
90	7,20E+04 7.60E+04	8,40E+04 8,87E+04	9,60E+04 1,01E+05	1,08E+05 1,14E+05	1,20E+05 1,27E+05	1,32E+05 1,39E+05	1,44E+05 1,52E+05	1,56E+05 1,65E+05	1,68E+05 1,77E+05	1,80E+05 1.90E+05	1,92E+05 2,03E+05	2,04E+05 2,15E+05	2,16E+05 2,28E+05	2,28E+05 2,41E+05
100	8.00E+04	9.33E+04	1,01E+05	1,20E+05	1,33E+05	1,47E+05	1,60E+05	1,03E+05	1,77E+05	2.00E+05	2,03E+05	2,13E+05 2.27E+05	2,40E+05	2,53E+05
105	8,40E+04	9,80E+04	1,12E+05	1,26E+05	1,40E+05	1,54E+05	1,68E+05	1,82E+05	1,96E+05	2,10E+05	2,24E+05	2,38E+05	2,52E+05	2,66E+05
110	8,80E+04	1,03E+05	1,17E+05	1,32E+05	1,47E+05	1,61E+05	1,76E+05	1,91E+05	2,05E+05	2,20E+05	2,35E+05	2,49E+05	2,64E+05	2,79E+05
115	9,20E+04	1,07E+05	1,23E+05	1,38E+05	1,53E+05	1,69E+05	1,84E+05	1,99E+05	2,15E+05	2,30E+05	2,45E+05	2,61E+05	2,76E+05	2,91E+05
120	9,60E+04	1,12E+05	1,28E+05	1,44E+05	1,60E+05	1,76E+05	1,92E+05	2,08E+05	2,24E+05	2,40E+05	2,56E+05	2,72E+05	2,88E+05	3,04E+05
125	1,00E+05	1,17E+05	1,33E+05	1,50E+05	1,67E+05	1,83E+05	2,00E+05	2,17E+05	2,33E+05	2,50E+05	2,67E+05	2,83E+05	3,00E+05	3,17E+05
130 135	1,04E+05 1.08E+05	1,21E+05 1,26E+05	1,39E+05 1,44E+05	1,56E+05 1,62E+05	1,73E+05 1,80E+05	1,91E+05 1,98E+05	2,08E+05 2,16E+05	2,25E+05 2,34E+05	2,43E+05 2,52E+05	2,60E+05 2.70E+05	2,77E+05 2,88E+05	2,95E+05 3.06E+05	3,12E+05 3,24E+05	3,29E+05 3,42E+05
140	1,08E+05 1,12E+05	1,26E+05 1,31E+05	1,44E+05 1,49E+05	1,62E+05 1,68E+05	1,80E+05 1,87E+05	2,05E+05	2,16E+05 2.24E+05	2,34E+05 2,43E+05	2,52E+05 2,61E+05	2,70E+05 2,80E+05	2,88E+05 2,99E+05	3,06E+05 3,17E+05	3,24E+05 3,36E+05	3,42E+05 3,55E+05
145	1,16E+05	1,35E+05	1,55E+05	1,74E+05	1,93E+05	2,13E+05	2,32E+05	2,51E+05	2,71E+05	2,90E+05	3,09E+05	3,29E+05	3,48E+05	3,67E+05
150	1,20E+05	1,40E+05	1,60E+05	1,80E+05	2,00E+05	2,20E+05	2,40E+05	2,60E+05	2,80E+05	3,00E+05	3,20E+05	3,40E+05	3,60E+05	3,80E+05
155	1,24E+05	1,45E+05	1,65E+05	1,86E+05	2,07E+05	2,27E+05	2,48E+05	2,69E+05	2,89E+05	3,10E+05	3,31E+05	3,51E+05	3,72E+05	3,93E+05
160	1,28E+05	1,49E+05	1,71E+05	1,92E+05	2,13E+05	2,35E+05	2,56E+05	2,77E+05	2,99E+05	3,20E+05	3,41E+05	3,63E+05	3,84E+05	4,05E+05
165	1,32E+05	1,54E+05	1,76E+05	1,98E+05	2,20E+05	2,42E+05	2,64E+05	2,86E+05	3,08E+05	3,30E+05	3,52E+05	3,74E+05	3,96E+05	4,18E+05
170	1,36E+05	1,59E+05	1,81E+05	2,04E+05	2,27E+05	2,49E+05	2,72E+05	2,95E+05	3,17E+05	3,40E+05	3,63E+05	3,85E+05	4,08E+05	4,31E+05
175 180	1,40E+05 1,44E+05	1,63E+05 1,68E+05	1,87E+05 1,92E+05	2,10E+05 2,16E+05	2,33E+05 2,40E+05	2,57E+05 2,64E+05	2,80E+05 2.88F+05	3,03E+05 3.12E+05	3,27E+05 3,36E+05	3,50E+05	3,73E+05 3,84E+05	3,97E+05	4,20E+05 4,32E+05	4,43E+05
185	1,44E+05	1,73E+05	1,92E+05	2,10E+05 2,22E+05	2,40E+05 2,47E+05	2,71E+05	2,96E+05	3,12E+05	3,45E+05	3,60E+05 3,70E+05	3,95E+05	4,08E+05 4,19E+05	4,32E+05 4,44E+05	4,56E+05 4,69E+05
190	1,52E+05	1,77E+05	2,03E+05	2,28E+05	2,53E+05	2,79E+05	3,04E+05	3,29E+05	3,55E+05	3,80E+05	4,05E+05	4,31E+05	4,56E+05	4,81E+05
195	1,56E+05	1,82E+05	2,08E+05	2,34E+05	2,60E+05	2,86E+05	3,12E+05	3,38E+05	3,64E+05	3,90E+05	4,16E+05	4,42E+05	4,68E+05	4,94E+05
200	1,60E+05	1,87E+05	2,13E+05	2,40E+05	2,67E+05	2,93E+05	3,20E+05	3,47E+05	3,73E+05	4,00E+05	4,27E+05	4,53E+05	4,80E+05	5,07E+05
205	1,64E+05	1,91E+05	2,19E+05	2,46E+05	2,73E+05	3,01E+05	3,28E+05	3,55E+05	3,83E+05	4,10E+05	4,37E+05	4,65E+05	4,92E+05	5,19E+05
210	1,68E+05	1,96E+05	2,24E+05	2,52E+05	2,80E+05	3,08E+05	3,36E+05	3,64E+05	3,92E+05	4,20E+05	4,48E+05	4,76E+05	5,04E+05	5,32E+05
215 220	1,72E+05 1.76E+05	2,01E+05 2,05E+05	2,29E+05 2,35E+05	2,58E+05 2,64E+05	2,87E+05 2,93E+05	3,15E+05 3,23E+05	3,44E+05 3,52E+05	3,73E+05 3,81E+05	4,01E+05 4,11E+05	4,30E+05 4,40E+05	4,59E+05 4,69E+05	4,87E+05 4,99E+05	5,16E+05 5,28E+05	5,45E+05 5,57E+05
225	1,76E+05	2,10E+05	2,40E+05	2,70E+05	3,00E+05	3,30E+05	3,60E+05	3,90E+05	4,11E+05 4,20E+05	4,40E+05	4,80E+05	5,10E+05	5,40E+05	5,70E+05
230	1,80E+05	2,15E+05	2,45E+05	2,76E+05	3,00E+05	3,37E+05	3,68E+05	3,99E+05	4,20E+05	4,60E+05	4,91E+05	5,21E+05	5,52E+05	5,83E+05
235	1,88E+05	2,19E+05	2,51E+05	2,82E+05	3,13E+05	3,45E+05	3,76E+05	4,07E+05	4,39E+05	4,70E+05	5,01E+05	5,33E+05	5,64E+05	5,95E+05
240	1,92E+05	2,24E+05	2,56E+05	2,88E+05	3,20E+05	3,52E+05	3,84E+05	4,16E+05	4,48E+05	4,80E+05	5,12E+05	5,44E+05	5,76E+05	6,08E+05
245	1,96E+05	2,29E+05	2,61E+05	2,94E+05	3,27E+05	3,59E+05	3,92E+05	4,25E+05	4,57E+05	4,90E+05	5,23E+05	5,55E+05	5,88E+05	6,21E+05
250	2,00E+05	2,33E+05	2,67E+05	3,00E+05	3,33E+05	3,67E+05	4,00E+05	4,33E+05	4,67E+05	5,00E+05	5,33E+05	5,67E+05	6,00E+05	6,33E+05
255 260	2,04E+05	2,38E+05 2.43E+05	2,72E+05 2.77E+05	3,06E+05	3,40E+05	3,74E+05	4,08E+05	4,42E+05	4,76E+05	5,10E+05	5,44E+05	5,78E+05	6,12E+05	6,46E+05
260 265	2,08E+05 2,12E+05	2,43E+05 2,47E+05	2,77E+05 2,83E+05	3,12E+05 3,18E+05	3,47E+05 3,53E+05	3,81E+05 3,89E+05	4,16E+05 4,24E+05	4,51E+05 4,59E+05	4,85E+05 4,95E+05	5,20E+05 5,30E+05	5,55E+05 5,65E+05	5,89E+05 6,01E+05	6,24E+05 6,36E+05	6,59E+05 6,71E+05
270	2,12E+05 2,16E+05	2,47E+05 2,52E+05	2,88E+05	3,24E+05	3,60E+05	3,96E+05	4,24E+05 4,32E+05	4,59E+05	5,04E+05	5,40E+05	5,76E+05	6,12E+05	6,48E+05	6,84E+05
275	2,20E+05	2,57E+05	2,93E+05	3,30E+05	3,67E+05	4,03E+05	4,40E+05	4,77E+05	5,13E+05	5,50E+05	5,87E+05	6,23E+05	6,60E+05	6,97E+05
280	2,24E+05	2,61E+05	2,99E+05	3,36E+05	3,73E+05	4,11E+05	4,48E+05	4,85E+05	5,23E+05	5,60E+05	5,97E+05	6,35E+05	6,72E+05	7,09E+05
285	2,28E+05	2,66E+05	3,04E+05	3,42E+05	3,80E+05	4,18E+05	4,56E+05	4,94E+05	5,32E+05	5,70E+05	6,08E+05	6,46E+05	6,84E+05	7,22E+05
290	2,32E+05	2,71E+05	3,09E+05	3,48E+05	3,87E+05	4,25E+05	4,64E+05	5,03E+05	5,41E+05	5,80E+05	6,19E+05	6,57E+05	6,96E+05	7,35E+05
295	2,36E+05	2,75E+05	3,15E+05	3,54E+05	3,93E+05	4,33E+05	4,72E+05	5,11E+05	5,51E+05	5,90E+05	6,29E+05	6,69E+05	7,08E+05	7,47E+05
300 305	2,40E+05 2,44E+05	2,80E+05 2,85E+05	3,20E+05 3,25E+05	3,60E+05 3,66E+05	4,00E+05 4,07E+05	4,40E+05 4,47E+05	4,80E+05 4,88E+05	5,20E+05 5,29E+05	5,60E+05 5,69E+05	6,00E+05 6,10E+05	6,40E+05	6,80E+05 6,91E+05	7,20E+05 7,32E+05	7,60E+05 7,73E+05
305	2,44E+05 2,48E+05	2,85E+05 2,89E+05	3,25E+05 3,31E+05	3,66E+05 3,72E+05	4,07E+05 4,13E+05	4,47E+05 4,55E+05	4,88E+05 4,96E+05	5,29E+05 5.37E+05	5,69E+05 5,79E+05	6,10E+05 6,20E+05	6,51E+05 6,61E+05	6,91E+05 7,03E+05	7,32E+05 7,44E+05	7,73E+05 7,85E+05
315	2,48E+05	2,89E+05	3,36E+05	3,72E+05	4,13E+05 4,20E+05	4,62E+05	5,04E+05	5,46E+05	5,88E+05	6,30E+05	6,72E+05	7,03E+05	7,56E+05	7,83E+05
320	2,56E+05	2,99E+05	3,41E+05	3,84E+05	4,27E+05	4,69E+05	5,12E+05	5,55E+05	5,97E+05	6,40E+05	6,83E+05	7,25E+05	7,68E+05	8,11E+05
325	2,60E+05	3,03E+05	3,47E+05	3,90E+05	4,33E+05	4,77E+05	5,20E+05	5,63E+05	6,07E+05	6,50E+05	6,93E+05	7,37E+05	7,80E+05	8,23E+05
330	2,64E+05	3,08E+05	3,52E+05	3,96E+05	4,40E+05	4,84E+05	5,28E+05	5,72E+05	6,16E+05	6,60E+05	7,04E+05	7,48E+05	7,92E+05	8,36E+05
335	2,68E+05	3,13E+05	3,57E+05	4,02E+05	4,47E+05	4,91E+05	5,36E+05	5,81E+05	6,25E+05	6,70E+05	7,15E+05	7,59E+05	8,04E+05	8,49E+05

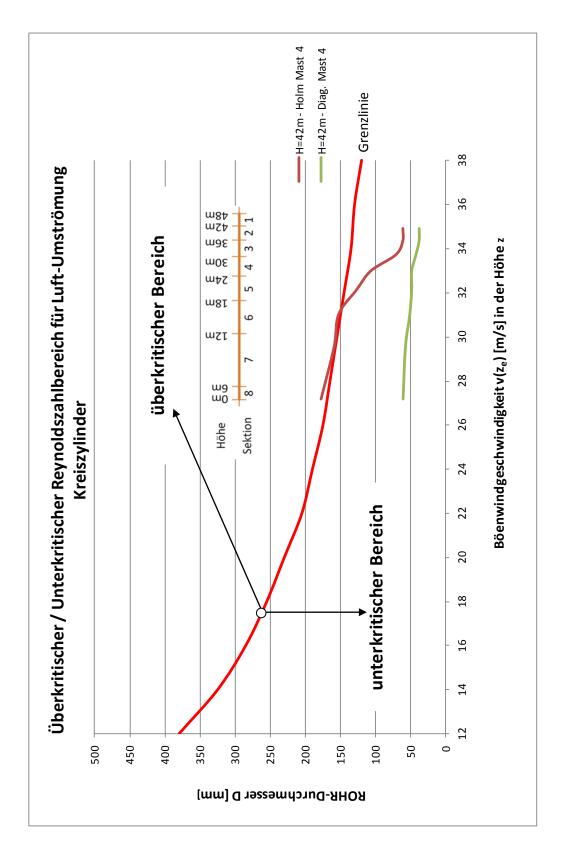
Tabelle A.2.1 Überkritischer / Unterkritischer Reynoldszahlbereich für Luft-Umströmung Kreiszylinder - f(D,v)


Für die Bestimmung der Holme und Diagonalen, welche in unterkritischem / überkritischem Bereich sind, wurden folgende Diagramme für Gittermasten H_{ges} =48 m, H_{ges} =36 m und H_{ges} =24 m erstellt.

Für einige Gittermasten wurden Grafiken erstellt, welche bei überkritischer / unterkritischer Reynoldszahlbereich für Luft-Umströmung Kreiszylindrischequerschnitte (Holme, Diagonale) zeigen.

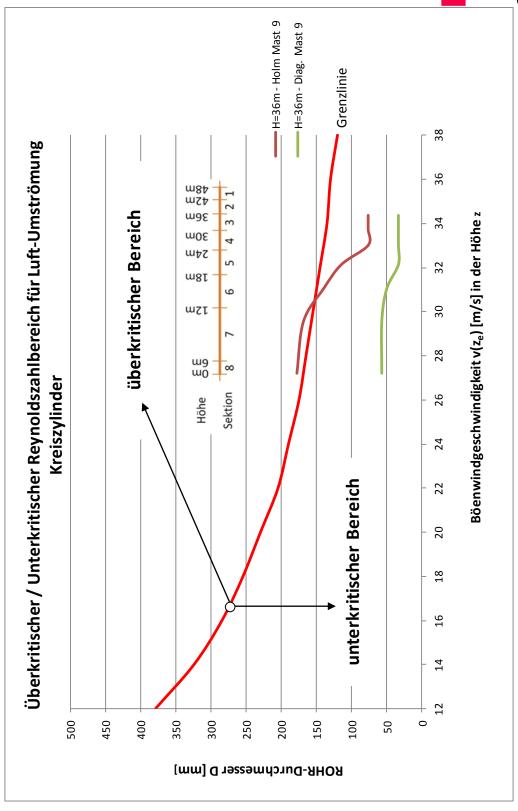
Das Bild A.2.2 zeigt die Verhältnisse der Böenwindgeschwindigkeit und Rohrdurchmesser für Holme und Diagonale für Gittermast H_{ges}=48 m (Tabelle 1, Mast Nr.1). Die horizontale Achse zeigt die Böengeschwindigkeit in der Höhe z in m/s. Die vertikale Achse zeigt die Rohrdurchmesser D in mm. Die Diagonalen befinden sich im unterkritischen Bereich für die gesamte Höhe des Gittermastes.

Die rote Linie ist eine Grenzlinie zwischen überkritischem und unterkritischem Bereich. So wie aus dem Bild A.2.2 ersichtlich, befinden sich alle Diagonalprofile im unterkrischen Bereich für die gesamte Höhe des Gittermastes. Die Holme des Gittermastes zwischen 0 m und 24 m Höhe befinden sich im überkritischen Bereich und erst nach 24 m Höhe befinden sich die Holme im unterkritischen Bereich. Die Holme des Gittermastes überschneiden sich mit der Grenzlinie bei 24 m Höhe.


Bild A.2.2 Überkritischer / unterkritischer Reynoldszahlbereich für Luft-Umströmung Kreiszylinder (Tabelle Nr.1, Mast Nr.1)

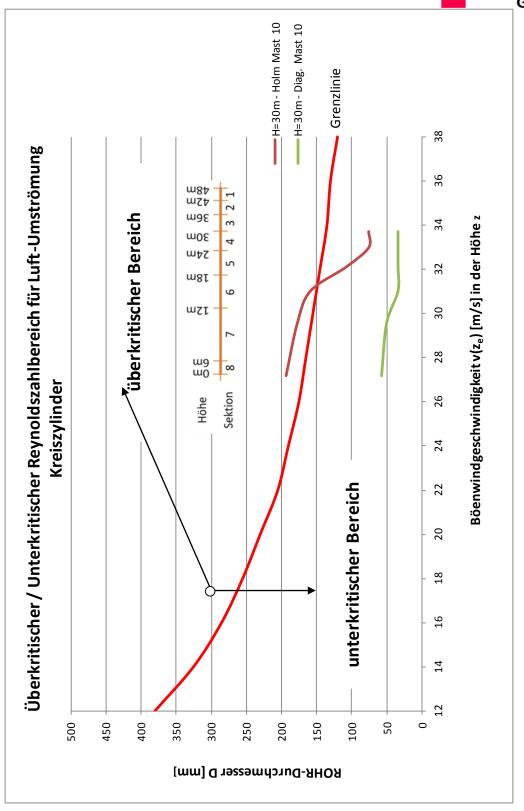
Das Bild A.2.3 zeigt die Verhältnisse der Böenwindgeschwindigkeit und Rohrdurchmesser für Holme und Diagonale für Gittermast H_{ges}=42 m (Tabelle 1, Mast Nr.4). Die horizontale Achse zeigt die Böengeschwindigkeit in der Höhe z in m/s. Die vertikale Achse zeigt die Rohrdurchmesser D in mm. Die Diagonalen befinden sich im unterkritischen Bereich für die gesamte Höhe des Gittermastes.

Die rote Linie ist eine Grenzlinie zwischen überkritischem und unterkritischem Bereich. So wie aus dem Bild A.2.3 ersichtlich, befinden sich alle Diagonalprofile im unterkrischen Bereich für die gesamte Höhe des Gittermastes. Die Holme des Gittermastes zwischen 0 m bis 18 m Höhe befinden sich im überkritischen Bereich und erst nach 18 m Höhe befinden sich die Holme im unterkritischen Bereich. Die Holme des Gittermastes überschneiden sich mit der Grenzlinie bei 18 m Höhe.


Bild A.2.3 Überkritischer / unterkritischer Reynoldszahlbereich für Luft-Umströmung Kreiszylinder (Tabelle Nr.1, Mast Nr.4)

Das Bild A.2.4 zeigt die Verhältnisse der Böenwindgeschwindigkeit und Rohrdurchmesser für Holme und Diagonale für Gittermast H_{ges}=36 m (Tabelle 1, Mast Nr.9). Die horizontale Achse zeigt die Böengeschwindigkeit in der Höhe z in m/s. Die vertikale Achse zeigt die Rohrdurchmesser D in mm. Die Diagonalen befinden sich im unterkritischen Bereich für die gesamte Höhe des Gittermastes.

Die rote Linie ist eine Grenzlinie zwischen überkritischem und unterkritischem Bereich. So wie aus dem Bild A.2.4 ersichtlich, befinden sich alle Diagonalprofile im unterkrischen Bereich für die gesamte Höhe des Gittermastes.Die Holme des Gittermastes zwischen 0 m bis 12 m Höhe befinden sich im überkritischen Bereich und erst nach 12 m Höhe befinden sich die Holme im unterkritischen Bereich. Die Holme des Gittermastes überschneiden sich mit der Grenzlinie bei 12 m Höhe.


Bild A.2.4 Überkritischer / unterkritischer Reynoldszahlbereich für Luft-Umströmung Kreiszylinder (Tabelle Nr.1, Mast Nr.9)

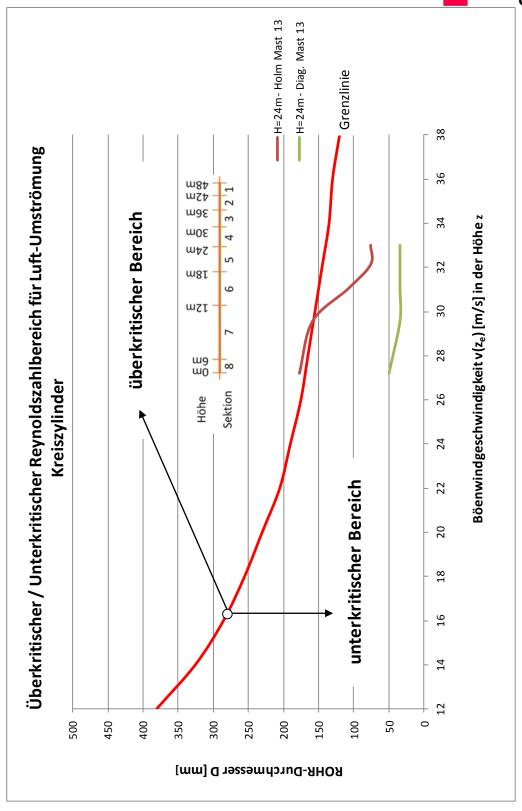
Das Bild A.2.5 zeigt die Verhältnisse der Böenwindgeschwindigkeit und Rohrdurchmesser für Holme und Diagonale für Gittermast H_{ges}=30 m (Tabelle 1, Mast Nr.10). Die horizontale Achse zeigt die Böengeschwindigkeit in der Höhe z in m/s. Die vertikale Achse zeigt die Rohrdurchmesser D in mm. Die Diagonalen befinden sich im unterkritischen Bereich für die gesamte Höhe des Gittermastes.

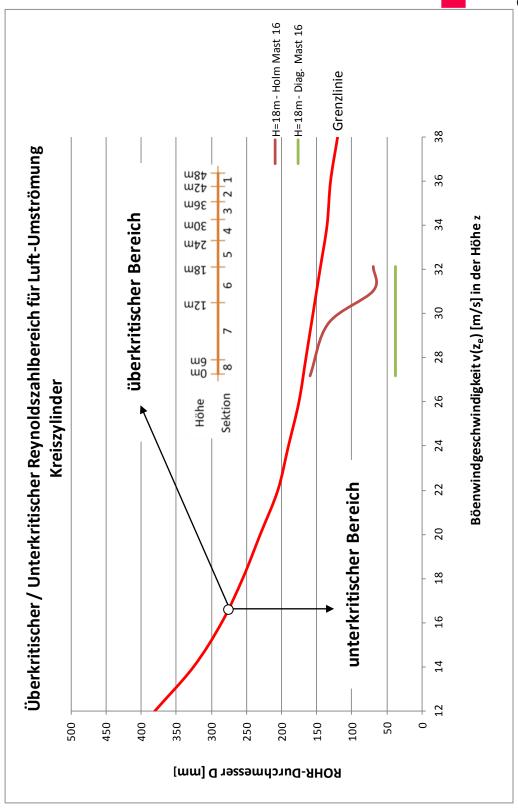
Die rote Linie ist eine Grenzlinie zwischen überkritischem und unterkritischem Bereich. So wie aus dem Bild A.2.5 ersichtlich, befinden sich alle Diagonalprofile im unterkrischen Bereich für die gesamte Höhe des Gittermastes. Die Holme des Gittermastes zwischen 0 m bis 17 m Höhe befinden sich im überkritischen Bereich und erst nach 17 m Höhe befinden sich die Holme im unterkritischen Bereich. Die Holme des Gittermastes überschneiden sich mit der Grenzlinie bei 17 m Höhe.

Bild A.2.5 Überkritischer / unterkritischer Reynoldszahlbereich für Luft-Umströmung Kreiszylinder (Tabelle Nr.1, Mast Nr.10)

Das Bild A.2.6 zeigt die Verhältnisse der Böenwindgeschwindigkeit und Rohrdurchmesser für Holme und Diagonale für Gittermast H_{ges}=24 m (Tabelle 1, Mast Nr.13). Die horizontale Achse zeigt die Böengeschwindigkeit in der Höhe z in m/s. Die vertikale Achse zeigt die Rohrdurchmesser D in mm. Die Diagonalen befinden sich im unterkritischen Bereich für die gesamte Höhe des Gittermastes.

Die rote Linie ist eine Grenzlinie zwischen überkritischem und unterkritischem Bereich. So wie aus dem Bild A.2.6 ersichtlich, befinden sich alle Diagonalprofile im unterkrischen Bereich für die gesamte Höhe des Gittermastes. Die Holme des Gittermastes zwischen 0 m bis 10 m Höhe befinden sich im überkritischen Bereich und erst nach 10 m Höhe befinden sich die Holme im unterkritischen Bereich. Die Holme des Gittermastes überschneiden sich mit der Grenzlinie bei 10 m Höhe.




Bild A.2.6 Überkritischer / unterkritischer Reynoldszahlbereich für Luft-Umströmung Kreiszylinder (Tabelle Nr.1, Mast Nr.13)

Das Bild A.2.7 zeigt die Verhältnisse der Böenwindgeschwindigkeit und Rohrdurchmesser für Holme und Diagonale für Gittermast H_{ges}=18 m (Tabelle 1, Mast Nr.16). Die horizontale Achse zeigt die Böengeschwindigkeit in der Höhe z in m/s. Die vertikale Achse zeigt die Rohrdurchmesser D in mm. Die Diagonalen befinden sich im unterkritischen Bereich für die gesamte Höhe des Gittermastes.

Die rote Linie ist eine Grenzlinie zwischen überkritischem und unterkritischem Bereich. So wie aus dem Bild A.2.7 ersichtlich, befinden sich alle Diagonale und Holme im unterkrischen Bereich für die gesamte Höhe des Gittermastes.

Bild A.2.7 Überkritischer / unterkritischer Reynoldszahlbereich für Luft-Umströmung Kreiszylinder (Tabelle Nr.1, Mast Nr.16)

A.2.2. Kontrolle der Bedingungen für die Anwendung der statischen

Ersatzlast - Methode

Die Kontrolle der Kriterien, für die Anwendung statischer Ersatzlast Methode, wurde für folgende Gittermasten H_{qes}=48 m (Mast Nr.1), H_{qes}=48 m (Mast Nr.2),

warde ful loigende Officiniasten riges-40 m (Mast M.1), riges-40 m (Mast M.2),

 H_{ges} =48 m (Mast Nr.3), H_{ges} =36 m (Mast Nr.9) und H_{ges} =24 m (Mast Nr.13)

durchgeführt.

Für jeden Gittermast wurde kraftbeiwert c_f berechnet und in Tabelaren Form

dargestellt. Für Holme und Diagonale wurden diese Kraftbeiwerte unter

Berücksichtigung der unterkritische / überkritische Zustände getrennt berechnet. Für

die Berechnung des Kraftbeiwertes cf jedes Gittermastes wurden auch Aufstiegsleiter

und Kabel berücksichtigt. Die Ergebnisse dieser Berechnungen wurden in Form einer

Tabelle dargestellt.

Nach der Berechnung des Kraftbeiwertes c_f wurde die Kontrolle der

Bedingungen für die Anwendung statischer Ersatzlast Methode durchgeführt. Diese

Berechnungen wurden für jeden Gittermast nach den Tabellen dargestellt.

Die Ergebnisse für diese Gittermasten haben bestätigt, dass die Möglichkeit

für die Anwendung der Bedingungen und für Anwendung statischer Ersatzlast

Methode möglich ist.

Nach folgenden Seiten werden die Ergebnisse für den cf Kraftbeiwert sowie

auch die Berechnung der Kontrolle der Bedingungen für die Anwendung statischer

Ersatzlast Methode für jeden oben gezeigten Gittermast angegeben.

Emin T. Hanmehmet Matrikelnr: 0231072 Freistehende stählerne Masten für Mobilfunknetze Masterarbeit 119

			_					_			_
Σ Cf,i Ai	(18+19)	20	8,60	8,75	9,45	9,82	9,51	69'6	10,12	11,46	66,77
C _{f,T} A _{T+}	C _{f,A*} A	19	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	57,68
C _{f,T} A _T		18	1,3882	1,54	2,2422	2,6051	2,29559	2,48004	2,90992	4,2489	19,70995
C _{f,} A _D	Diag.	17	0,385	0,517	999'0	0,6867	0,79059	0,88614	1,11792	2,0881	-
C _{f,} A _H	Holme	16	1,0032	1,023	1,5762	1,9184	1,505	1,5939	1,792	2,1608	-
ې	Diagonale	15	1,1	1,1	1,11	1,09	1,095	1,094	1,096	1,099	•
C _{c,su}	Holme	14	-	-	-	-	0,7	69'0	7,0	0,74	-
ۍ ځو	Holme	13	1,1	1,1	1,11	1,09	-	•	•	•	-
A\ _T A=	ф	12	0,219	0,222	0,273	0,284	0,301	0,294	90£'0	0,377	0,296
4	m^2	11	5,76	6,3	7,38	8,46	9,54	10,62	11,7	12,78	72,54
Α _τ	m ²	10	1,262	1,4	2,02	2,4	2,87	3,12	3,58	4,82	21,472
Ą	m^2	6	0,912	0,93	1,42	1,76	2,15	2,31	2,56	2,92	-
ď	m ²	8	0,35	0,47	9'0	69'0	0,722	0,81	1,02	1,9	•
ШŢ	kg	2	203	218	372	253	682	820	976	1064	-
± E	kg	9	171,6	174,6	319	495	614	745	830	961	•
m _{dt}	kg	2	31,5	43,5	53	28	67,5	75,3	1,96	103	-
Holme		4	76/8,6	76/8,8	114,3/10	139,7/12,5	168,3/12,5	177,8/14,2	193,7/14,2	319/14,2	-
Diag.		3	42,4/4	54,4/4	60,3/4	60,3/4	76/4	76/4	78,9/4	88,9/4	
ئـ	(m)	2	12	12,2	12,4	12,6	12,8	13	13,2	13,4	•
ت	(m)	1	8,3	8,7	9,63	10,05	9,5	10,6	7 11,44	12,22	٠
ης. Ktiou	l ƏS		-	7	3	4	2	9	7	8	\bowtie

 $\Sigma C_{f,i} A_i = C_{f,T} A_T + C_{f,A}^* A_L$

Tabelle A.2.2 Gittermast: H_{ges} =48 m; D_u =2220 mm; (Tabelle 1. Mast Nr. 1)

In der Tabelle A.2.2 sind 8 Sektionen angegeben wobei jede Sektion 6 m hoch

ist.

In der Spalte 1 sind die Längen der Diagonalen (L_d) und in der Spalte 2 die

Längen der Holme (L_h) in m angegeben.

In der Spalte 3 sind die Rohrdurchmesser und deren Wandstärken (mm) für

Diagonale angegeben. In der Spalte 4 sind die Rohrdurchmesser und deren

Wandstärken (mm) für Holme angegeben.

In der Spalte 5 (m_{dt}) sind die Querschnittsgewichte für Diagonalen in kg

angegeben. In der Spalte 6 (mHt) sind die Querschnittsgewichte für Holme in kg

angegeben.

In der Spalte 7 sind die Gesamtquerschnittsgewichte für Holme und Diagonale

aus den Spalten 5 und 6 (m_T=m_{dt}+m_{Ht}) zusammen addiert angegeben.

In der Spalte 8 sind die Querschnittsflächen (A_d) für Diagonalen in m²

angegeben. In der Spalte 9 sind die Querschnittsflächen (A_H) für Holme in m²

angegeben. In der Spalte 10 sind die Gesamtquerschnittsfläche für Holme und

Diagonale aus den Spalten 8 und 9 (A_T=A_d+A_H) zusammen addiert angegeben.

In der Spalte 11 sind die senkrechten Projektionen der von den Umrandungen

der Konstruktion eingeschlossenen Fläche (m²) $A = \frac{a_I + a_{II}}{2} * h$ angegeben.

In der Spalte 12 sind die Völligkeitsgrade für alle Sektionen des Gittermastes

angegeben ($\Phi = A_T/A$).

In der Spalte 13 und 14 sind die unterkritischen und überkritischen Beiwerte

c_{f,c} und c_{c,su} für Holme des Gittermastes angegeben.

In der Spalte 15 sind die unterkritischen Beiwerte cf,c für Diagonale des

Gittermastes angegeben.

In der Spalte 16 wurden die Querschnittsflächen für Holme (A_H) mit Beiwert c_f

multipliziert (unterkritisch / überkritisch) angegeben.

Masterarbeit

In der Spalte 17 wurden die Querschnittsflächen für Diagonale (A_D) mit Beiwert c_f multipliziert (unterkritisch / überkritisch) angegeben.

In der Spalte 18 ist die Summe der Spalten 16 und 17: $c_fA_H + c_fA_D = c_{f,T}A_T$ angegeben.

In der Spalte 19 sind die Gesamtsummen der Σcf_i , A_i mit Berücksichtigung der Leiter- und Kabelbeiwertes Σcf_i , A_i = $c_{f,T}A_T$ + $c_{f,A}$ * $A_{L,K}$ angegeben.

Die Berechnungen für $c_{f,A}*A_{L,K}$ werden in der nachfolgenden Tabelle A.2.3 angegeben.

m Z	12	323	338	492	673	802	940	1046	1184	8629
m _T (kg)	11	203	218	372	553	682	820	926	1064	4838
m _{L,K} (kg)	10	120	120	120	120	120	120	120	120	960
C _{f,T} A _{T+}	6	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	57,68
C _{f,A,Leiter} A _{leiter} *KA,Leiter	8	1,21	1,21	1,21	1,21	1,21	1,21	1,21	1,21	89'6
C _{f,A,Kabel} A _{kabel} *K _{A,Kab}	7	6	9	6	9	9	9	9	9	48,00
A _{leiter} (m²)	9	0,756	0,756	0,756	0,756	0,756	0,756	0,756	0,756	6,05
K _{A,Leiter} A _{kabel} (m²/A _{leiter} (m²)	2	3	3	3	3	3	3	3	3	24
KA,Leiter	4	0,8	8'0	8'0	8'0	8'0	8'0	8'0	8'0	-
C fA,Leiter	3	2	2	2	2	2	2	2	7	-
Ка, каре I	2	1	1	1	1	1	1	1	1	-
C _{fA,Kabel}	1	2	2	2	2	2	2	2	2	-
Sektion Nr.:		-	2	3	4	2	9	7	80	\sim

c_{f,A,Kabel} 2,00 [] Gesamtkraftbeiwert für die Antennenkabel [EN 1993-3-1:2006; (B.6)] K_{A,Kabel} 1,00 [] Abminderungsbeiwert für die Antennenkabel [EN 1993-3-1:2006; (B.6)]

2,00 [] Gesamtkraftbeiwert für die Fallschutzleiter [EN 1993-3-1:2006; (B.6)]

G_{f,A,Leiter} K_{A,Leiter}

0,80 [] Abminderungsbeiwert für die Fallschutzleiter [EN 1993-3-1:2006; (B.6)]

Tabelle A.2.3 Gittermast: H_{ges} =48 m; D_u =2220 mm; (Tabelle 1. Mast Nr.1): Zur Berechnung von Leiter und Kabel

In der Tabelle A.2.3 sind 8 Sektionen angegeben wobei jede Sektion 6m hoch

ist.

In der Spalte 1 sind die Gesamtkraftbeiwerte c_{f,A,Kabel} für die Antennenkabel

angegeben.

In der Spalte 2 sind die Abminderungsbeiwerte K_{A,Kabel} für die Antennenkabel

angegeben.

In der Spalte 3 sind die Gesamtkraftbeiwerte cf.A,Leiter für die Fallschutzleiter

angegeben.

In der Spalte 4 sind die Abminderungsbeiwerte K_{A.Leiter} für die Fallschutzleiter

angegeben.

In der Spalte 5 sind die Kabelflächen (A_{Kabel}) in m² angegeben.

In der Spalte 6 sind die Leiterflächen (A_{Leiter}) in m² angegeben.

In der Spalte 7 sind die Werte für Kabel: c_{f,A,Kabel}* A_{Kabel}* K_{A,Kabel} angegeben.

In der Spalte 8 sind die Werte für Leiter: $c_{f,A,Leiter}^* A_{Leiter}^* K_{A,Leiter}$ angegeben.

In der Spalte 9 sind die Gesamtsummen der Σcfi, Ai mit Berücksichtigung der

Leiter- und Kabelbeiwertes $\Sigma cf_{i,A_i} = c_{f,T}A_T + c_{f,A} A_{L,K}$ angegeben. (Siehe Tabelle A.2.2)

In der Spalte 10 sind die Gewichte der Leiter und Kabel (m_{L.K}) in kg

angegeben.

In der Spalte 11 sind die Gesamtquerschnittsgewichte für Holme und

Diagonale ($m_T=m_{dt}+m_{Ht}$) angegeben (Siehe Tabelle A.2.2).

In der Spalte 12 sind die Gesamtgewichte (inklusive Diagonale, Holme, Leiter

und Kabel) für jede Sektion des Gittermastes angegeben.

Emin T. Hanmehmet Matrikelnr: 0231072 Freistehende stählerne Masten für Mobilfunknetze Masterarbeit 124

Die statische Ersatzlast - Methode darf erst dann angewendet werden falls folgende Bedingungen erfüllt werden:

$$\frac{7 \cdot m_T}{7850 \cdot \mathrm{C}_{_{\mathrm{f,T}}} \, \mathrm{A}_{_{\mathrm{T}}} \cdot \sqrt{d_{_B} \tau_{_o}}} \left(\frac{5}{6} - \frac{h_T}{h}\right)^2 < 1$$

Kontrolle der Bedingungen für statische Ersatzlasten für Gittermast H_{ges} =48 m; D_u = 2220 mm; (Tabelle 1. Mast Nr.1)

$$C_{f,T} A_T = 8,60 < \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{77,39}{3} = 25,79$$
 1 Sektion

$$C_{f,T} A_T = 8,60 + 8,75 = 17,35 < \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{77,39}{3} = 25,79$$
 2 Sektion

Abbrechen:

$$C_{f,T} A_T = 17,35 + 9,45 = 26,8 > \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{77,39}{3} = 25,79$$
 3 Sektion

$$d_B = 0.75 \cdot D_u = 0.75 \cdot 2.22 = 1.665$$
;

$$au_0 = 0.001; h_T = 12m; h = 48m: rac{h_T}{h} = rac{12}{48} = 0.25$$

$$\frac{7 \cdot m_T}{7850 \cdot 17,36 \cdot \sqrt{d_R \tau_o}} \left(\frac{5}{6} - \frac{12}{48}\right)^2 = \frac{7 \cdot (203 + 218 + 240)}{7850 \cdot 17,36 \cdot \sqrt{1.665 \cdot 0.001}} (0.83 - 0.25)^2 = \mathbf{0.283 < 1}$$

Σ C _{f,i} A _i	(18+19)	20	8,55	8,72	9,13	9,82	08'6	10,02	10,58	11,06	89'22
C _{f,T} A _{T+}	Cf,A*A	19	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	57,68
C _{f,T} A _T		18	1,33824	1,513	1,92496	2,61347	2,59002	2,80862	3,36885	3,84742	20,00458
C _{f,} A _D	Diag	17	0,42624	0,583	0,70196	0,85347	1,1253	1,28402	1,65834	1,84482	1
C _{f,} A _H	Holme	16	0,912	66'0	1,223	1,76	1,46472	1,5246	1,71051	2,0026	-
ې	Diagonale	15	1,11	1,1	1,09	1,09	1,1	1,09	1,11	1,11	
C _{c,sup}	Holme	14	-	-	-	•	0,68	99'0	79'0	99'0	
ۍ ژ	Holme	13	1,11	1,1	1,09	1,09	-	-	-	-	-
A\ _T A=	Ф	12	0,189	0,198	0,216	0,224	0,219	0,209	0,215	0,22	0,214
4	m ²	11	6,84	7,38	8,61	11,325	14,475	16,65	18,75	20,94	104,97
Ā	m^2	10	1,296	1,46	1,867	2,543	3,177	3,488	4,047	4,607	22,49
Ą.	m ²	9	0,912	0,93	1,223	1,76	2,154	2,31	2,553	2,945	
A	m ²	8	0,384	6,53	0,644	0,783	1,023	1,178	1,494	1,662	-
μ	kg	7	206,428	223,8	378,74	265,5	710,566	855,05	972,12	1117,08	-
ŧ	kg	6	172	175	320	495	615	745	831	096	•
m _{dt}	kg	2	34,428	48,8	58,74	2,17	992'26	110,05	141,12	157,08	-
Holme		4	76/8,6	8'8/9/	114,3/10	139,7/12,5	168,3/15,5	177,8/14,2	193,7/14,2 141,12	219/14,2	
Diag.		3	42,4/4	54,4/4	60,3/4	60,3/4	76/4	76/4	88,9/4	88,9/4	
٦	(m)	2	12	12,2	12,4	12,6	12,8	13	13,2	13,4	
Ld	(m)	1	9,06	9,76	10,68	13	13,46	15,5	16,8	18,7	
ktion Vr.:	es		7	2	3	4	2	9	7	8	∇

 $\Sigma C_{f,i} A_i = C_{f,T} A_T + C_{f,A}^* A_{L,}$

Tabelle A.2.4 Gittermast: H_{ges} =48 m; D_u = 3650 mm; (Tabelle1. Mast Nr.2)

TU

In der Tabelle A.2.4 sind 8 Sektionen angegeben wobei jede Sektion 6m hoch

ist.

In der Spalte 1 sind die Längen der Diagonalen (L_d) und in der Spalte 2 die

Längen der Holme (L_h) angegeben.

In der Spalte 3 sind die Rohrdurchmesser und deren Wandstärken (mm) für

Diagonale angegeben. In der Spalte 4 sind die Rohrdurchmesser und deren

Wandstärken (mm) für Holme angegeben.

In der Spalte 5 (m_{dt}) sind die Querschnittsgewichte für Diagonalen in kg

angegeben. In der Spalte 6 (mHt) sind die Querschnittsgewichte für Holme in kg

angegeben.

In der Spalte 7 sind die Gesamtguerschnittsgewichte für Holme und Diagonale

aus den Spalten 5 und 6 (m_T=m_{dt}+m_{Ht}) zusammen addiert angegeben.

In der Spalte 8 sind die Querschnittsflächen (A_d) für Diagonalen in m²

angegeben. In der Spalte 9 sind die Querschnittsflächen (AH) für Holme in m2

angegeben. In der Spalte 10 sind die Gesamtquerschnittsfläche für Holme und

Diagonale aus den Spalten 8 und 9 (A_T=A_d+A_H) zusammen addiert angegeben.

In der Spalte 11 sind die senkrechten Projektionen der von den Umrandungen

der Konstruktion eingeschlossenen Fläche (m²) A=6 m * a_i angegeben.

In der Spalte 12 sind die Völligkeitsgrade für alle Sektionen des Gittermastes

angegeben ($\Phi = A_T/A$).

In der Spalte 13 und 14 sind die unterkritischen und überkritischen Beiwerte

c_{f,c} und c_{c,su} für Holme des Gittermastes angegeben.

In der Spalte 15 sind die unterkritische beiwerte cf,c für Diagonale des

Gittermastes angegeben.

In der Spalte 16 wurden die Querschnittsflächen für Holme (A_H) mit Beiwert c_f

multipliziert (unterkritisch / überkritisch) angegeben.

In der Spalte 17 wurden die Querschnittsflächen für Diagonale (A_D) mit Beiwert c_f multipliziert (unterkritisch / überkritisch) angegeben.

In der Spalte 18 ist die Summe der Spalten 16 und 17: $c_fA_H + c_fA_D = c_{f,T}A_T$ angegeben.

In der Spalte 19 sind die Gesamtsummen der Σcf_i , A_i mit Berücksichtigung der Leiter- und Kabelbeiwertes Σcf_i , A_i = $c_{f,T}A_T$ + $c_{f,A}$ * $A_{L,K}$ angegeben.

Die Berechnungen für $c_{f,A}*A_{L,K}$ werden in der nachfolgenden Tabelle A.2.5 angegeben.

Sektion Mr.:	C _{fA,Kabel}	Ка,каре I	CfA,Leiter	KA,Leiter	K _{A,Leiter} A _{kabel} (m²)A _{leiter} (m²)	A _{leiter} (m²)	Cf,A,Kabel Akabel *KA,Kab	Cf,A,Leiter Aleiter *KA,Leiter	C _{f,T} A _{T +} C _{f,A*} A	m _{L,K} (kg)	m _T (kg)	ωZ
	1	2	3	4	2	9	7	8	6	10	11	12
1	2	1	2	0,8	3	0,756	9	1,21	7,21	120	206,428	326,428
2	2	1	2	8'0	3	0,756	9	1,21	7,21	120	223,8	343,8
3	2	1	2	8'0	3	0,756	9	1,21	7,21	120	378,74	498,74
4	2	1	2	8'0	3	0,756	9	1,21	7,21	120	565,5	685,5
2	2	1	2	8'0	3	0,756	9	1,21	7,21	120	710,566	830,566
9	2	1	2	8'0	3	0,756	9	1,21	7,21	120	855,05	975,05
7	2	1	2	8'0	3	952'0	9	1,21	7,21	120	972,12	1092,12
8	2	1	2	8'0	3	952'0	9	1,21	7,21	120	1117,08	1237,08
\sum		•	•	•	24	6,05	48,00	89'6	57,68	096	5029,3	5.989,3

1,00 [] Abminderungsbeiwert für die Antennenkabel [EN 1993-3-1:2006; (B.6)] 2,00 [] Gesamtkraftbeiwert für die Antennenkabel [EN 1993-3-1:2006; (B.6)]

0,80 [] Abminderungsbeiwert für die Fallschutzleiter [EN 1993-3-1:2006; (B.6)] 2,00 [] Gesamtkraftbeiwert für die Fallschutzleiter [EN 1993-3-1:2006; (B.6)] G,A,Kabel KA,Kabel G,A,Leiter

Tabelle A.2.5 Gittermast: H_{ges} =48 m; D_u = 3650 mm; (Tabelle 1. Mast Nr. 2) Zur Berechnung von Leiter und Kabel

In der Tabelle A.2.5 sind 8 Sektionen angegeben wobei jede Sektion 6 m hoch

ist.

In der Spalte 1 sind die Gesamtkraftbeiwerte c_{f,A,Kabel} für die Antennenkabel

angegeben.

In der Spalte 2 sind die Abminderungsbeiwerte K_{A,Kabel} für die Antennenkabel

angegeben.

In der Spalte 3 sind die Gesamtkraftbeiwerte c_{f.A.Leiter} für die Fallschutzleiter

angegeben.

In der Spalte 4 sind die Abminderungsbeiwerte K_{A,Leiter} für die Fallschutzleiter

angegeben.

In der Spalte 5 sind die Kabelflächen (A_{Kabel}) in m² angegeben.

In der Spalte 6 sind die Leiterflächen (A_{Leiter}) in m² angegeben.

In der Spalte 7 sind die werte für Kabel: c_{f,A,Kabel}* A_{Kabel}* K_{A,Kabel} angegeben.

In der Spalte 8 sind die werte für Leiter: $c_{f,A,Leiter}^* A_{Leiter}^* K_{A,Leiter}$ angegeben.

In der Spalte 9 sind die Gesamtsummen der Σcf_i,A_i mit Berücksichtigung der

Leiter- und Kabelbeiwertes Σcf_i , $A_i = c_{f,T}A_T + c_{f,A} * A_{L,K}$ angegeben. (Siehe Tabelle A.2.4)

In der Spalte 10 sind die Gewichte der Leiter und Kabel (m_{L.K}) in kg

angegeben.

In der Spalte 11 sind die Gesamtquerschnittsgewichte für Holme und

Diagonale ($m_T=m_{dt}+m_{Ht}$) angegeben (Siehe Tabelle A.2.4).

In der Spalte 12 sind die Gesamtgewichte (inklusive Diagonale, Holme, Leiter

und Kabel) für jede Sektion des Gittermastes angegeben.

Kontrolle der Bedingungen für statische Ersatzlasten für Gittermast H=48 m; D_u = 3650 mm; (Tabelle 1. Mast Nr.: 2)

$$C_{f,T} A_T = 8,55 < \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{77,68}{3} = 25,89$$

1 Sektion

$$C_{f,T} A_T = 8,55 + 8,72 = 17,27 < \frac{1}{3} \sum_{i}^{N} C_{f,i} A_i = \frac{77,68}{3} = 25,89$$

2 Sektion

Abbrechen:

$$C_{f,T} A_T = 17,27 + 9,13 = 26,4 > \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{77,68}{3} = 25,89$$

3 Sektion

$$d_B = 0.75 \cdot D_u = 0.75 \cdot 3,65 = 2,738$$
 ;

$$\tau_0 = 0.001;$$

$$n_T = 12m$$
; $h = 48m$

$$au_0 = 0.001;$$
 $h_T = 12 m;$ $h = 48 m:$ $\frac{h_T}{h} = \frac{12}{48} = 0.25$

$$\frac{7 \cdot m_T}{7850 \cdot 17,27 \cdot \sqrt{d_B \tau_o}} \left(\frac{5}{6} - \frac{12}{48}\right)^2 = \frac{7 \cdot (206,428 + 223,8 + 240)}{7850 \cdot 17,27 \cdot \sqrt{2,738 \cdot 0.001}} (0.83 - 0.25)^2 = \mathbf{0.225 < 1}$$

Σ C _{f,i} A _i	(18+19)	20	8,81	9,00	9,51	10,00	9,65	9,95	10,67	10,92	78,51
C _{f,T} A _{T+}	C f,A* A	19	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	57,68
C _{f,T} A _T		18	1,602	1,785	2,302	2,79	2,445	2,736	3,459	3,708	20,83
C_{f,A_D}	Diag	17	0,5824	0,7571	0,8066	0,9152	1,0994	1,3026	1,6775	1,914	-
C _{f,} A _H	Holme	16	1,0192	1,0283	1,49548	1,8744	1,3455	1,43325	1,781	1,794	•
	Diagonale	15	1,12	1,13	1,09	1,1	1,08	1,09	1,1	1,1	-
	Holme	14	•	-		•	9,0	9,0	9,0	0,65	•
ب	Holme	13	1,12	1,13	1,09	1,1	•	•			
A\ _T A=	:Ф	12	0,132	0,146	0,195	0,209	0,209	0,195	0,213	0,198	0,193
4	m^2	11	10,8	10,8	10,8	12,1	14,8	17,4	20	22,7	119
Α	m^2	10	1,4	1,6	2,1	2,5	3,1	3,4	4,3	4,5	23
₹	m^2	6	0,91	0,91	1,372	1,704	2,07	2,205	2,74	2,76	
Ą	m^2	8	0,52	0,67	0,74	0,832	1,018	1,195	1,525	1,74	•
Ę	kg	7	218	233	376	559	690	822	1040	1067	-
¥	kg	9	172	172	308	483	262	710	968	903	•
m _{dt}	kg	9	46,7	61,5	9'29	75,9	95,1	112	143	164	•
Holme		4	76/8,6	76/8,8	114,3/10	139,7/12,5	168,3/12,5	177,8/14,2	219/14,2	219/14,2	
Diag.		3	42,4/ 4	54,4/ 4	60,3/ 4	60,3/ 4	76/4	76/4	88,9/ 4	88,9/ 4	
ئـ	(m)	2	12	12	12	12,2	12,3	12,4	12,5	12,6	
۲	(m)	1	12,3	12,3	12,3	13,8	13,4	15,7	17	19,5	
ektion	S		1	2	ဗ	4	2	9	7	80	\boxtimes

 $\Sigma C_{f,i} A_i = C_{f,T} A_T + C_{f,A}^* A_{L,}$

Tabelle A.2.6 Gittermast: H_{ges} =48 m; D_u = 4000 mm; (Tabelle 1. Mast Nr. 3):

In der Tabelle A.2.6 sind 8 Sektionen angegeben wobei jede Sektion 6 m hoch ist.

In der Spalte 1 sind die Längen der Diagonalen (L_d) und in der Spalte 2 die Längen der Holme (L_h) in mangegeben.

In der Spalte 3 sind die Rohrdurchmesser und deren Wandstärken (mm) für Diagonale angegeben. In der Spalte 4 sind die Rohrdurchmesser und deren Wandstärken (mm) für Holme angegeben.

In der Spalte 5 (m_{dt}) sind die Querschnittsgewichte für Diagonalen in kg angegeben. In der Spalte 6 (m_{Ht}) sind die Querschnittsgewichte für Holme in kg angegeben.

In der Spalte 7 sind die Gesamtquerschnittsgewichte für Holme und Diagonale aus den Spalten 5 und 6 ($m_T=m_{dt}+m_{Ht}$) zusammen addiert angegeben.

In der Spalte 8 sind die Querschnittsflächen (A_d) für Diagonalen in m^2 angegeben. In der Spalte 9 sind die Querschnittsflächen (A_H) für Holme in m^2 angegeben. In der Spalte 10 sind die Gesamtquerschnittsfläche für Holme und Diagonale aus den Spalten 8 und 9 $(A_T=A_d+A_H)$ zusammen addiert angegeben.

In der Spalte 11 sind die senkrechten Projektionen der von den Umrandungen der Konstruktion eingeschlossenen Fläche (m²) A=6 m * a_i angegeben.

In der Spalte 12 sind die Völligkeitsgrade für alle Sektionen des Gittermastes angegeben (Φ =A_T/A).

In der Spalte 13 und 14 sind die unterkritischen und überkritischen Beiwerte $c_{f,c}$ und $c_{c,su}$ für Holme des Gittermastes angegeben.

In der Spalte 15 sind die unterkritische beiwerte $c_{\text{f,c}}$ für Diagonale des Gittermastes angegeben.

In der Spalte 16 wurden die Querschnittsflächen für Holme (A_H) mit Beiwert c_f multipliziert (unterkritisch / überkritisch) angegeben.

In der Spalte 17 wurden die Querschnittsflächen für Diagonale (A_D) mit Beiwert c_f multipliziert (unterkritisch / überkritisch) angegeben.

In der Spalte 18 ist die Summe der Spalten 16 und 17: $c_fA_H + c_fA_D = c_{f,T}A_T$ angegeben.

In der Spalte 19 sind die Gesamtsummen der Σcf_i , A_i mit Berücksichtigung der Leiter- und Kabelbeiwertes Σcf_i , A_i = $c_{f,T}A_T$ + $c_{f,A}$ * $A_{L,K}$ angegeben.

Die Berechnungen für $c_{f,A}{}^*A_{L,K}$ werden in der nachfolgenden Tabelle A.2.7 angegeben.

Σm	12	338	353	496	629	810	942	1160	1187	5965
m _T (kg)	11	218	233	376	559	069	822	1040	1067	5005
m _{L,K} (kg)	10	120	120	120	120	120	120	120	120	096
C _{f,T} A _{T+}	6	7,21	7,21	7,21	7,21	7,21	7,21	7,21	7,21	57,68
Cf,A,Leiter Aleiter *KA,Leiter	8	1,21	1,21	1,21	1,21	1,21	1,21	1,21	1,21	89'6
C _{f,A,Kabel} A _{kabel} *K _{A,Kab}	7	9	9	9	9	9	9	9	9	48,00
A _{leiter} (m²)	9	0,756	0,756	0,756	0,756	0,756	0,756	0,756	0,756	6,05
A _{kabel} (m²/A _{leiter} (m²)	2	3	3	3	3	3	3	3	3	24
K _{A,Leiter}	4	8'0	8'0	8'0	8'0	8'0	8'0	8'0	8'0	-
G fA,Leiter	3	2	2	2	2	2	2	2	2	•
K _{A,Kabel}	2	1	1	-	1	1	-	-	-	•
G _{fA,Kabe} I	1	2	2	2	2	2	2	2	2	•
Sektion Nr.:		1	2	က	4	2	9	7	∞	\bowtie

2,00 [] Gesamtkraftbeiwert für die Antennenkabel [EN 1993-3-1:2006; (B.6)]
1,00 [] Abminderungsbeiwert für die Antennenkabel [EN 1993-3-1:2006; (B.6)]

G, A, Leiter 2,00 [] Gesamtkraftbeiwert für die Fallschutzleiter [EN 1993-3-1:2006; (B.6)]

0,80 [] Abminderungsbeiwert für die Fallschutzleiter [EN 1993-3-1:2006; (B.6)]

Tabelle A.2.7 Gittermast: H_{ges} =48 m; D_u = 4000 mm; (Tabelle 1. Mast Nr. 3) : Zur Berechnung von Leiter und Kabel

In der Tabelle A.2.7 sind 8 Sektionen angegeben wobei jede Sektion 6m hoch ist.

In der Spalte 1 sind die Gesamtkraftbeiwerte $c_{f,A,Kabel}$ für die Antennenkabel angegeben.

In der Spalte 2 sind die Abminderungsbeiwerte $K_{A,Kabel}$ für die Antennenkabel angegeben.

In der Spalte 3 sind die Gesamtkraftbeiwerte $c_{f,A,Leiter}$ für die Fallschutzleiter angegeben.

In der Spalte 4 sind die Abminderungsbeiwerte $K_{A,Leiter}$ für die Fallschutzleiter angegeben.

In der Spalte 5 sind die Kabelflächen (A_{Kabel}) in m² angegeben.

In der Spalte 6 sind die Leiterflächen (A_{Leiter}) in m² angegeben.

In der Spalte 7 sind die werte für Kabel: $c_{f,A,Kabel}^* A_{Kabel}^* K_{A,Kabel}$ angegeben.

In der Spalte 8 sind die werte für Leiter: c_{f,A,Leiter}* A_{Leiter}* K_{A,Leiter} angegeben.

In der Spalte 9 sind die Gesamtsummen der $\Sigma cf_i, A_i$ mit Berücksichtigung der Leiter- und Kabelbeiwertes $\Sigma cf_i, A_i = c_{f,T}A_T + c_{f,A}*A_{L,K}$ angegeben. (Siehe Tabelle A.2.6)

In der Spalte 10 sind die Gewichte der Leiter und Kabel $(m_{L,K})$ in kg angegeben.

In der Spalte 11 sind die Gesamtquerschnittsgewichte für Holme und Diagonale ($m_T=m_{dt}+m_{Ht}$) angegeben (Siehe Tabelle A.2.6).

In der Spalte 12 sind die Gesamtgewichte (inklusive Diagonale, Holme, Leiter und Kabel) für jede Sektion des Gittermastes angegeben.

Kontrolle der Bedingungen für statische Ersatzlasten für Gittermast H=48 m; $D_u = 4000$ mm; (Tabelle 1. Mast Nr.: 3)

$$C_{f,T} A_T = 8.81 < \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{78.51}{3} = 26.17$$
 1 Sektion

$$C_{f,T} A_T = 8.81 + 9.00 = 17.81 < \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{78.51}{3} = 26.17$$
 2 Sektion

Abbrechen:

$$C_{f,T} A_T = 17.81 + 9.51 = 27.32 > \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{78.51}{3} = 26.17$$
 3 Sektion

$$d_B = 0.75 \cdot D_u = 0.75 \cdot 4.0 = 3.0$$
;

$$\tau_0 = 0.001;$$
 $h_T = 12m;$ $h = 48m:$ $\frac{h_T}{h} = \frac{12}{48} = 0.25$

$$\frac{7 \cdot m_T}{7850 \cdot 17.81 \cdot \sqrt{d_B \tau_o}} \left(\frac{5}{6} - \frac{h_T}{h}\right)^2 = \frac{7 \cdot (218 + 233 + 240)}{7850 \cdot 17.81 \cdot \sqrt{3 \cdot 0.001}} (0.83 - \frac{12}{48})^2 = \mathbf{0.215 < 1}$$

Σ C _{r,i} A _i	(18+19)	20	8,61	8,65	86'6	62'6	95'6	10,89	26,87
C _{f,T} A _T	+ C f,A* A	19	7,21	7,21	7,21	7,21	7,21	7,21	43,26
C _{f,T} A _T		18	1,39749	1,4377	2,16648	2,57894	2,35122	3,6826	13,61443
C _{f,} A _D	Diag	17	0,38406	0,4334	96999'0	0,71613	0,92662	2,1146	•
Cf, AH	Holme	16	1,01343	1,0043	1,50012	1,86281	1,4246	1,568	
ې	Diagonale	15	1,11	1,1	1,08	1,09	1,07	1,09	
$\mathbf{C}_{c,sup}$	Holme	14	-	-	-	-	89'0	2'0	-
Ç	Holme	13	1,11	1,1	1,08	1,09	٠		
A\ _T A=	Ф	12	0,184	0,191	0,253	0,234	0,242	0,295	0,242
4	m ²	11	6,84	6,84	7,92	10,08	12,24	14,16	58,08
Ατ	m ²	10	1,259	1,307	2,006	2,366	2,96	4,18	14,078
Ą	m ²	9	0,913	0,913	1,389	1,709	2,095	2,24	
Α	m ₂	8	0,346	0,394	0,617	0,657	998'0	1,94	-
m	kg	7	112,94	117,84	898	537,6	2'099	833,4	-
Ĕ	kg	9	85,2	85,2	312,3	483,4	298	722	-
E at	kg	5	27,74	32,64	50,78	54,2	62,7	111,4	
Holme		4	76,1/8	76,1/8,8	114,/10	139/12,5	168,3/12,5	177,8/14,2	
Diag.		3	42,4/3,6	48,3/3,6	51/3,6	57/4	60,3/4	76,1/4	
Ļ	(m)	2	12	12	12,15	12,3	12,45	12,6	
٦٩	(m)	1	8,16	8,16	12,1	11,5	14,3	15,7	'
ktion Vr.:	es es		1	2	3	4	2	9	\sim

 $\Sigma C_{f,i} A_i = C_{f,T} A_T + C_{f,A}^* A_{L,i}$

Tabelle A.2.8 Gittermast: H_{ges} =36 m; D_u = 2580 mm; (Tabelle 1. Mast Nr. 9)

In der Tabelle A.2.8 sind 6 Sektionen angegeben wobei jede Sektion 6 m hoch ist.

In der Spalte 1 sind die Längen der Diagonalen (L_d) und in der Spalte 2 die Längen der Holme (L_h) in m angegeben.

In der Spalte 3 sind die Rohrdurchmesser und deren Wandstärken (mm) für Diagonale angegeben. In der Spalte 4 sind die Rohrdurchmesser und deren Wandstärken (mm) für Holme angegeben.

In der Spalte 5 (m_{dt}) sind die Querschnittsgewichte für Diagonalen in kg angegeben. In der Spalte 6 (m_{Ht}) sind die Querschnittsgewichte für Holme in kg angegeben.

In der Spalte 7 sind die Gesamtquerschnittsgewichte für Holme und Diagonale aus den Spalten 5 und 6 ($m_T=m_{dt}+m_{Ht}$) zusammen addiert angegeben.

In der Spalte 8 sind die Querschnittsflächen (A_d) für Diagonalen in m^2 angegeben. In der Spalte 9 sind die Querschnittsflächen (A_H) für Holme in m^2 angegeben. In der Spalte 10 sind die Gesamtquerschnittsfläche für Holme und Diagonale aus den Spalten 8 und 9 $(A_T=A_d+A_H)$ zusammen addiert angegeben.

In der Spalte 11 sind die senkrechten Projektionen der von den Umrandungen der Konstruktion eingeschlossenen Fläche (m²) A=6 m * a_i angegeben.

In der Spalte 12 sind die Völligkeitsgrade für alle Sektionen des Gittermastes angegeben (Φ =A_T/A).

In der Spalte 13 und 14 sind die unterkritischen und überkritischen Beiwerte $c_{\text{f,c}}$ und $c_{\text{c,su}}$ für Holme des Gittermastes angegeben.

In der Spalte 15 sind die unterkritische beiwerte $c_{f,c}$ für Diagonale des Gittermastes angegeben.

In der Spalte 16 wurden die Querschnittsflächen für Holme (A_H) mit Beiwert c_f multipliziert (unterkritisch / überkritisch) angegeben.

In der Spalte 17 wurden die Querschnittsflächen für Diagonale (A_D) mit Beiwert c_f multipliziert (unterkritisch / überkritisch) angegeben.

In der Spalte 18 ist die Summe der Spalten 16 und 17: $c_fA_H + c_fA_D = c_{f,T}A_T$ angegeben.

In der Spalte 19 sind die Gesamtsummen der Σcf_i , A_i mit Berücksichtigung der Leiter- und Kabelbeiwertes Σcf_i , A_i = $c_{f,T}A_T$ + $c_{f,A}$ * $A_{L,K}$ angegeben.

Die Berechnungen für $c_{f,A}{}^*A_{L,K}$ werden in der nachfolgenden Tabelle A.2.9 angegeben.

m Z	12	232,94	297,84	483	9'229	780,7	953,4	3405,48
m _T (kg)	11	112,94	177,84	363	537,6	660,7	833,4	2685,48
m _{L,K} (kg)	10	120	120	120	120	120	120	720
C _{f,T} A _{T+} C _{f,A*} A	6	7,21	7,21	7,21	7,21	7,21	7,21	43,26
Cf,A,Leiter Aleiter *KA,Leiter	8	1,21	1,21	1,21	1,21	1,21	1,21	7,26
C _{f,A,Kabel} A _{kabel} *K _{A,Kab}	7	6	9	9	9	9	9	36,00
A _{leiter} (m²)	9	0,756	0,756	0,756	0,756	0,756	0,756	4,54
K _{A,Leiter} A _{kabel} (m²)A _{leiter} (m²)	2	3	8	8	8	8	8	18
KA,Leiter	4	8'0	8'0	8'0	8'0	8'0	8'0	-
C fA,Leiter	3	2	7	2	2	2	2	-
К А, Каре I	2	1	1	1	1	1	1	-
C _{fA,Kabel}	1	2	2	2	2	2	2	-
Sektion Nr.:		1	2	3	4	2	9	\sum

C_{f,A,Kabel}2,00 [] Gesamtkraftbeiwert für die Antennenkabel [EN 1993-3-1:2006; (B.6)]KA,Kabel1,00 [] Abminderungsbeiwert für die Antennenkabel [EN 1993-3-1:2006; (B.6)]C_{f,A,Leiter}2,00 [] Gesamtkraftbeiwert für die Fallschutzleiter [EN 1993-3-1:2006; (B.6)]KA,Leiter0,80 [] Abminderungsbeiwert für die Fallschutzleiter [EN 1993-3-1:2006; (B.6)]

Tabelle A.2.9 Gittermast: H_{ges} =36 m; D_u = 2580 mm; (Tabelle 1. Mast Nr. 9) Zur Berechnung von Leiter und Kabel

In der Tabelle A.2.9 sind 6 Sektionen angegeben wobei jede Sektion 6m hoch ist.

In der Spalte 1 sind die Gesamtkraftbeiwerte $c_{f,A,Kabel}$ für die Antennenkabel angegeben.

In der Spalte 2 sind die Abminderungsbeiwerte $K_{A,Kabel}$ für die Antennenkabel angegeben.

In der Spalte 3 sind die Gesamtkraftbeiwerte $c_{f,A,Leiter}$ für die Fallschutzleiter angegeben.

In der Spalte 4 sind die Abminderungsbeiwerte $K_{A,Leiter}$ für die Fallschutzleiter angegeben.

In der Spalte 5 sind die Kabelflächen (A_{Kabel}) in m² angegeben.

In der Spalte 6 sind die Leiterflächen (A_{Leiter}) in m² angegeben.

In der Spalte 7 sind die werte für Kabel: $c_{f,A,Kabel}^* A_{Kabel}^* K_{A,Kabel}$ angegeben.

In der Spalte 8 sind die werte für Leiter: $c_{f,A,Leiter}^* A_{Leiter}^* K_{A,Leiter}$ angegeben.

In der Spalte 9 sind die Gesamtsummen der $\Sigma cf_i, A_i$ mit Berücksichtigung der Leiter- und Kabelbeiwertes $\Sigma cf_i, A_i = c_{f,T}A_T + c_{f,A}*A_{L,K}$ angegeben. (Siehe Tabelle A.2.8)

In der Spalte 10 sind die Gewichte der Leiter und Kabel $(m_{L,K})$ in kg angegeben.

In der Spalte 11 sind die Gesamtquerschnittsgewichte für Holme und Diagonale ($m_T=m_{dt}+m_{Ht}$) angegeben (Siehe Tabelle A.2.8).

In der Spalte 12 sind die Gesamtgewichte (inklusive Diagonale, Holme, Leiter und Kabel) für jede Sektion des Gittermastes angegeben.

Kontrolle der Bedingungen für statische Ersatzlasten für Gittermast H= 36 m; $D_u = 2580$ mm: (Tabelle 1 Mast Nr.: 9)

$$C_{f,T} A_T = 8,61 < \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{56,87}{3} = 18,96$$
 1 Sektion

$$C_{f,T} A_T = 8,61 + 8,65 = 17,26 < \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{56,87}{3} = 18,96$$
 2 Sektion

Abbrechen:

$$C_{f,T} A_T = 17,26 + 9,38 = 26,64 > \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{56,87}{3} = 18,96$$
 3 Sektion

$$d_{\scriptscriptstyle B} = 0.75 \cdot D_{\scriptscriptstyle u} = 0.75 \cdot 2.58 = 1.935$$
 ;

$$\tau_0 = 0.001;$$
 $h_T = 12m;$ $h = 36m:$ $\frac{h_T}{h} = \frac{12}{36} = 0.333$

$$\frac{7 \cdot m_T}{7850 \cdot 17,26 \cdot \sqrt{d_B \tau_o}} \left(\frac{5}{6} - \frac{h_T}{h}\right)^2 = \frac{7 \cdot (112,94 + 117,84 + 240)}{7850 \cdot 17,26 \cdot \sqrt{1.935 \cdot 0.001}} (0.83 - 0.333)^2 = 0.138 < 1$$

C _{f,T} A _T Σ C _{f,i} A _i + C _{f,A'} A (18+19)		20	8,58	00'6	29'6	9,30	36,55
C _{f,T} A _T		19	7,21	7,21	7,21	7,21	28,84
C _{f,T} A _T	18	1,37381	1,79066	2,45592	2,08701	7,71	
C _{f,} A _D	Diag	17	1,0043 0,36951	1,08 1,41482 0,37584	1,08 2,05956 0,39636	1,09 1,59651 0,4905	
C _f , A _H	Holme	16	1,0043	1,41482	2,05956	1,5965,1	-
Ç fc,	Diagonale	15	1,09	1,08	1,08	1,09	-
Cf.c Cc,sup Cfc,	Holme	14	•	•	•	62'0	
Ç,	Holme	13	1,1	1,09	1,08	-	-
A\ _T A=	Ф	12	0,217	0,261	6,84 0,333	735,0	3,366
А	m^2	11	5,76	6,3	6,84	7,38 0,357	26,28 3,366
Ατ	m ²	10	1,252	1,644	2,275	2,637	7,808
Ан	m^2	6	0,913	1,298	1,907	2,187	
A	m^2	8	0,339	0,348	0,367	0,45	
m _T	kg	7	85,2 108,62 0,339 0,913	85,2 109,92 0,348 1,298	312,3 338,46 0,367 1,907 2,275	483,4 513,93 0,45 2,187	-
ш#	kg	9		85,2	312,3	483,4	•
h dt		2	23,424	24,72	26,16	30,532	-
Holme	4	76,1/4	10,3 12 33,7/3,2 108/6,3	10,9 12,15 33,7/3,2 159/7,1 26,16	50/3,2 177,8/7,1 30,532		
Diag.		3	12 33,7/3,2	33,7/3,2	33,7/3,2	50/3,2	•
L	(m)	2	12	12	12,15	8,98 12,3	
Ld	(m)	1	9,76	10,3	10,9		
ktion Nr.:			1	2	က	4	\square

 $\Sigma C_{f,i} A_i = C_{f,T} A_T + C_{f,A}^* A_{L,K}$

Tabelle A.2.10 Gittermast: H_{ges} =24 m; D_u = 1320 mm; (Tabelle 1. Mast Nr. 13)

TU

In der Tabelle A.2.10 sind 4 Sektionen angegeben wobei jede Sektion 6 m

hoch ist.

In der Spalte 1 sind die Längen der Diagonalen (L_d) und in der Spalte 2 die

Längen der Holme (L_h) in m angegeben.

In der Spalte 3 sind die Rohrdurchmesser und deren Wandstärken (mm) für

Diagonale angegeben. In der Spalte 4 sind die Rohrdurchmesser und deren

Wandstärken (mm) für Holme angegeben.

In der Spalte 5 (m_{dt}) sind die Querschnittsgewichte für Diagonalen in kg

angegeben. In der Spalte 6 (mHt) sind die Querschnittsgewichte für Holme in kg

angegeben.

In der Spalte 7 sind die Gesamtquerschnittsgewichte für Holme und Diagonale

aus den Spalten 5 und 6 (m_T=m_{dt}+m_{Ht}) zusammen addiert angegeben.

In der Spalte 8 sind die Querschnittsflächen (A_d) für Diagonalen in m²

angegeben. In der Spalte 9 sind die Querschnittsflächen (AH) für Holme in m2

angegeben. In der Spalte 10 sind die Gesamtquerschnittsfläche für Holme und

Diagonale aus den Spalten 8 und 9 (A_T=A_d+A_H) zusammen addiert angegeben.

In der Spalte 11 sind die senkrechten Projektionen der von den Umrandungen

der Konstruktion eingeschlossenen Fläche (m²) A=6 m * a_i angegeben.

In der Spalte 12 sind die Völligkeitsgrade für alle Sektionen des Gittermastes

angegeben ($\Phi = A_T/A$).

In der Spalte 13 und 14 sind die unterkritischen und überkritischen Beiwerte

c_{f,c} und c_{c,su} für Holme des Gittermastes angegeben.

In der Spalte 15 sind die unterkritische beiwerte cf.c für Diagonale des

Gittermastes angegeben.

In der Spalte 16 wurden die Querschnittsflächen für Holme (A_H) mit Beiwert c_f

multipliziert (unterkritisch / überkritisch) angegeben.

In der Spalte 17 wurden die Querschnittsflächen für Diagonale (A_D) mit Beiwert c_f multipliziert (unterkritisch / überkritisch) angegeben.

In der Spalte 18 ist die Summe der Spalten 16 und 17: $c_fA_H + c_fA_D = c_{f,T}A_T$ angegeben.

In der Spalte 19 sind die Gesamtsummen der Σcf_i , A_i mit Berücksichtigung der Leiter- und Kabelbeiwertes Σcf_i , A_i = $c_{f,T}A_T$ + $c_{f,A}$ * $A_{L,K}$ angegeben.

Die Berechnungen für $c_{f,A}^*A_{L,K}$ werden in der nachfolgenden Tabelle A.2.11 angegeben.

ωχ	12	232,94	297,84	483	9'299	1671,38
m _T (kg)	11	112,94	177,84	898	9'28'9	2685,48
m _{L,K} (kg)	10	120	120	120	120	480
C _{f,T} A _{T+}	6	7,21	7,21	7,21	7,21	28,84
Gr,A,Leiter Aleiter *KA,Leiter	8	1,21	1,21	1,21	1,21	4,84
Cf,A,Kabel Akabel *KA,Kab	7	6	9	9	9	24,00
A _{leiter} (m²)	9	0,756	0,756	0,756	0,756	3,02
Ka,Leiter Akabel (m²/Aleiter (m²)	2	3	3	8	8	12
Ka,Leiter	4	8'0	8'0	8'0	8'0	-
CfA,Leiter	3	2	2	2	7	-
К.А,Каре I	2	1	1	1	1	-
CfA,Kabel	1	2	2	2	2	-
Sektion Nr.:		1	2	3	4	Σ

1,00 [] Abminderungsbeiwert für die Antennenkabel [EN 1993-3-1:2006; (B.6)] 2,00 [] Gesamtkraftbeiwert für die Antennenkabel [EN 1993-3-1:2006; (B.6)] G,A,Kabel KA,Kabel G,A,Leiter KA,Leiter

2,00 [] Gesamtkraftbeiwert für die Fallschutzleiter [EN 1993-3-1:2006; (B.6)]

0,80 [] Abminderungsbeiwert für die Fallschutzleiter [EN 1993-3-1:2006; (B.6)]

Gittermast:: H_{ges} =24 m; D_u = 1320 mm; (Tabelle 1. Mast Nr. 13) Zur Berechnung von Leiter und Kabel Tabelle A.2.11

In der Tabelle A.2.11 sind 4 Sektionen angegeben wobei jede Sektion 6m hoch ist.

In der Spalte 1 sind die Gesamtkraftbeiwerte $c_{f,A,Kabel}$ für die Antennenkabel angegeben.

In der Spalte 2 sind die Abminderungsbeiwerte $K_{A,Kabel}$ für die Antennenkabel angegeben.

In der Spalte 3 sind die Gesamtkraftbeiwerte $c_{f,A,Leiter}$ für die Fallschutzleiter angegeben.

In der Spalte 4 sind die Abminderungsbeiwerte $K_{A,Leiter}$ für die Fallschutzleiter angegeben.

In der Spalte 5 sind die Kabelflächen (A_{Kabel}) in m² angegeben.

In der Spalte 6 sind die Leiterflächen (A_{Leiter}) in m² angegeben.

In der Spalte 7 sind die werte für Kabel: $c_{f,A,Kabel}^* A_{Kabel}^* K_{A,Kabel}$ angegeben.

In der Spalte 8 sind die werte für Leiter: c_{f,A,Leiter}* A_{Leiter}* K_{A,Leiter} angegeben.

In der Spalte 9 sind die Gesamtsummen der $\Sigma cf_i, A_i$ mit Berücksichtigung der Leiter- und Kabelbeiwertes $\Sigma cf_i, A_i = c_{f,T}A_T + c_{f,A} * A_{L,K}$ angegeben. (Siehe Tabelle A.2.10)

In der Spalte 10 sind die Gewichte der Leiter und Kabel $(m_{L,K})$ in kg angegeben.

In der Spalte 11 sind die Gesamtquerschnittsgewichte für Holme und Diagonale (m_T=m_{dt}+m_{Ht}) angegeben (Siehe Tabelle A.2.10).

In der Spalte 12 sind die Gesamtgewichte (inklusive Diagonale, Holme, Leiter und Kabel) für jede Sektion des Gittermastes angegeben.

Kontrolle der Bedingungen für statische Ersatzlasten für Gittermast H= 24 m; $D_u = 1320$ mm: (Tabelle 1 Mast Nr.: 13)

$$C_{f,T} A_T = 8,58 < \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{36,55}{3} = 12,18$$
 1 Sektion

$$C_{f,T} A_T = 8,58 + 9,00 = 17,58 < \frac{1}{3} \sum_{i}^{N} C_{f,i} A_i = \frac{36,55}{3} = 18,33$$
 2 Sektion

Abbrechen:

$$C_{f,T} A_T = 17,58 + 9,67 = 27,25 > \frac{1}{3} \sum_{i=1}^{N} C_{f,i} A_i = \frac{36,55}{3} = 18,33$$
 3 Sektion

$$d_B = 0.75 \cdot D_u = 0.75 \cdot 1,32 = 0,99$$
 ;

$$\tau_0 = 0.001;$$
 $h_T = 12 m;$ $h = 36 m:$ $\frac{h_T}{h} = \frac{12}{24} = 0.5$

$$\frac{7 \cdot m_T}{7850 \cdot 17,58 \cdot \sqrt{d_B \tau_o}} \left(\frac{5}{6} - \frac{h_T}{h}\right)^2 = \frac{7 \cdot (112,94 + 117,84 + 240)}{7850 \cdot 17,58 \cdot \sqrt{0,99 \cdot 0.001}} (0.83 - 0.5)^2 = 0.084 < 1$$

ANHANG 3 VEREINFACHTER STATISCHER WINDLASTANSATZ FÜR GITTERMASTEN

A.3 Berechnung der Windlasten auf Holme

 Tabelle A.3.1
 Berechnung der Windlasten auf Holme

	Дe	Ļ									
	d _{Holm,eff}	Faktor	15	1,6	1,71	1,57	1,5	1,49	1,52	1,55	1,64
kN/m²	w=cf*qp* A _T / Lh	KN/m	14	0,104	0,113	0,140	0,159	0,107	0,107	0,118	0,107
0,26	db=dp*ce(z)	kN/m²	13	0,7826	0,7566	0,728	0,6942	0,6526	0,6006	0,533	0,4628
q _b =	ce(z)=2.1* (z/10)°0,2 4		12	3,01	2,91	2,8	2,67	2,51	2,31	2,05	1,78
Graz	z	Ē	11	45	39	33	27	21	15	6	ഹ
	G _{fc,8up} Holme	•	10	1		•		0,65	0,65	0,65	0,65
	C _{f,c Holme}	•	6	1,12	1,13	1,09	1,1	•	•		
	A _T / L _h	m4m _{Holme}	8	0,12	0,13	0,18	0,21	0,25	0,27	0,34	0,36
	Α	B ²	7	1,43	1,58	2,112	2,536	3,09	3,4	4,265	4,5
	₹	B ²	9	0,91	0,91	1,372	1,704	2,07	2,205	2,74	2,76
	٩	B ²	2	0,52	0,67	0,74	0,832	1,018	1,195	1,525	1,74
	Holme	(mm)	4	76/8,6	76/8,8	114,3/10	139,7/12,5	168,3/12,5	177,8/14,2	219/14,2	219/14,2
	Diag.	(mm)	3	42,4/4	54,4/4	60,3/4	76/4	76/4	88,9/4	88,9/4	88,9/4
	Ļ	Œ	2	12	12	12	12,2	12,3	12,4	12,5	12,6
	٦٩	Œ	1	12,3	12,3	12,3	13,8	13,4	15,72	17	19,52
	Schema			2,0 m 2,0 m 2,0 m 1,8 m	2,0 m 2,0 m 2,0 m 1,8 m	2.0 m 2.0 m 2.0 m 1.8 m	2,0 m 2,0 m 2,0 m 2,0 m 2,0 m	2,4 m 2,4 m 1,2 m 2,68 m	2.4 m 2.4 m 3,12 m 3,12 m	3,12 m 1,2 m 2,4 m 3,56 m	1,2 m 2,4 m 2,4 m 4,0 m
	·N HO!	'y _o s		-	2	e	4	S.	9	7	œ
	Emin T. Hanmahmat Fraistahanda stählarna							1 - 1			

Emin T. Hanmehmet Matrikelnr: 0231072 Studien ID: F 066 465

In der Tabelle A.3.1 ist ein Beispiel der Windlasten auf Holme für H_{ges} = 48 m und D_u =4000 mm (Tabelle 1, Mast Nr. 3) des Gittermastes zu sehen. Der Gittermast besteht aus 8 Sektionen wobei jede Sektion 6 m hoch ist. Für jede Sektion ist die Gesamtlänge der Diagonalen (L_d) und Holme (L_H) angegeben. Es sind auch die Querschnittsdurchmesser zu sehen. Es wurden die Querschnittsoberflächen für Holme (A_H) und Diagonale (A_d) und Gesamtfläche (A_T) berechnet.Nach all diesen Informationen kann die Spitzengeschwindigkeitsdruck (q_p) gerechnet werden. Die Endergebnisse in der Spalte 14 zeigen die Windlast (W in kN/m) auf Holme. Diese werden für vereinfachte statische Windlasten für Gittermasten $d_{Holme,eff} = F^*d_{Holme}$ verwendet. Hierbei ist Faktor F die Fläche der Diagonalen.

In der Spalte 1 sind die Längen der Diagonalen (L_d) für jede Sektion in mangegeben.

In der Spalte 2 sind die Längen der Holme (L_H) für jede Sektion in mangegeben.

In der Spalte 3 sind die Querschnittsdurchmesser und deren Wandstärken für Diagonale jeder Sektion in mm angegeben.

In der Spalte 4 sind die Querschnittsdurchmesser und deren Wandstärken für Holme jeder Sektion in mm angegeben.

In der Spalte 5 sind die Querschnittsflächen (A_d) für Diagonalen in m² angegeben.

In der Spalte 6 sind die Querschnittsflächen (A_H) für Holme in m² angegeben.

In der Spalte 7 sind die Gesamtflächen der Holme und Diagonalen $(A_T=A_d+A_H)$ in m^2 angegeben.

In der Spalte 8 sind die Ergebnisse aus der Spalten 2 und 7 (A_T/L_H) in m^2/m_{Holme} für Holme angegeben.

In der Spalte 9 und 10 sind die unterkritischen und überkritischen Beiwerte $c_{f,c}$ und $c_{c,su}$ für Holme des Gittermastes angegeben.

In der Spalte 11 sind die Höhen über dem Boden (z) für jede Sektion in m zu sehen.

In der Spalte 12 werden die Berechnungsergebnisse für Geländeparameter $c_{\text{e,z}}$ dargestellt.

In der Spalte 13 wird der Spitzengeschwindigkeitsdruck (qp) berechnet.

In der Spalte 14 wird die Windlast auf Holme mit der Formel $W=c_f^*q_p^*A_T/L_h$ in kN/m berechnet.

In der Spalte 15 werden die $d_{Holme,eff}$ mit Hilfe von Faktor (F) mit der Formel $d_{Holme,eff} = F^*d_{Holme}$ berechnet.

LITERATURVERZEICHNIS

- [1] Petersen Christian, Stahlbau: Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten, 4. Auflage, Springer Verlag, 2008.
- [2] Stahlbau Handbuch für Studium und Praxis Band 2, Stahlbau-Verlagsgesellschaft GmbH Köln 1964.
- [3] Goncharov S. Antennie baschni novogo pokoleniya. Verlag "Mir svazi 5", Moskau, 2006.
- [4] E. Hanmehmet Masterprojekt "Antennentragwerke" Institut für Hochbau, Technische Universität Graz, September 2013.
- [5] Hermann Schulte Vorbangantenne auf der Funksendestelle in Marlov. Stahlbau, München, 2000.
- [6] Spravochnik proektirovshika. Metalliceskiye konstrukcii Tom 3 Verlag "Stroyizdat" Moskau 1999.
- [7] Polincev O.E. "Opit modifikacii konstrukcii antennogo soorujeniya" Zeitschrift "Molodoy uçeniy" Moskau No:7, Band 1. 2011.
- [8] Praxis-Kommentar: DIN 4131: Antennentragwerke aus Stahl (Ausgabe November 1991), Kommentar Technische Baubestimmungen 20. Lieferung August 1996.
- [9] Simiu. E., Scanlan R.H. "Wind Effects on Structures". Third Edition. New York, 1996.
- [10] Maria-Eleni Dasiou, Joannis Vayas, Evangelos Efthymiou: Vergleichende Untersuchungen zur Windbelastung auf freistehende Telekomunikationsmasten nach DIN 4131 und Eurocode 3. Stahlbau 79, Heft I, Berlin, 2010.
- [11] Stahlbau Handbuch für Studium und Praxis Band 2, 1964.

- [12] N.P.Melnikov. Spravochnik proektirovschika. Metallicheskie konstrukcii. Strojizdat Moskau 1980.
- [13] Piotr Noakowski, Martin Breddermann, Andreas Harling, Jörg Schnetgöke "Rißbildung in turmartigen Tragwerken" Beton und Stahlbetonbau 100 Heft (7) Berlin 2005.
- [14] Eklin I.I "Ekonomiçeskaya effektivnost primeneniğya antennıx ystrojstv dla mobilnoj svazi". Stroitelstvo i texobezopasnost. Moskau , No.: 23. 2008.
- [15] A. Farago "Statische Berechnung zür Funkübertragungsstation" Dresden 2004.
- [16] Dipl.-Ing. Dr. Jochen Fornather Komitee-Manager für das Komitee 176, Belastungsannahmen im Bauwesen", a.o.Univ.Prof. Dipl.-Ing. Wilfried Braumüller Stv. Vorsitzender des Komitees 176. "Wie Windlasten aufTragwerke wirken ÖNORM B 4014-1 und -2 sowie der Eurocode EN 1991-1-4 regeln, welche Windlasten bei der Planung von Bauwerken zu berücksichtigen sind". © Austrian Standats 2007.
- [17] www.kathrein.de September 2013.
- [18] Marconi Communications GmbH: Marconi Catalogue 2004, Backnang 3, Deutschland.
- [19] http://www.stahlbaustudium.de September 2013.
- [20] Stahlbaukalender 2013, Ernst&Sohn Verlag, Eurocode 3 Anwendungsnormen, 15.Jahrgang. Türme und Maste nach DIN EN 1993-3-1 Univ.-Prof. a.D. Dr.-Ing. Udo Peil, Dr.-Ing. Mathias Clobes.

Normen

ÖNORM EN 1990	Grundlagen der Tragwerksplanung
ÖNORM EN 1991-1-1	Wichten, Eigengewicht, Nutzlasten im Hochbau
ÖNORM EN 1991-1-3	Allgemeine Einwirkungen, Schneelasten
ÖNORM B 1991-1-3	Allgemeine Einwirkungen – Schneelasten
ÖNORM EN 1991-1-4	Eurocode 1: Einwirkungen auf Tragwerke, Teil 1-4: Allgemeine Einwirkungen Windlasten.
ÖNORM B 1991-1-4	Eurocode 1: Einwirkungen auf Tragwerke, Teil 1-4: Allgemeine Einwirkungen – Windlasten, Nationale Festlegungen zur ÖNORM EN 1991-1-4 und nationale Ergänzungen.
ÖNORM EN 1993-1-1	Eurocode 3: Bemessung und Konstruktion von Stahlbauten, Teil 1-1: Allgemeine Bemessungsregel und Regeln für den Hochbau.
ÖNORM EN 1993-1-8	Eurocode 3: Bemessung und Konstruktion von Stahlbauten, Teil 1-8: Bemessung von Anschlüssen.
ÖNORM EN 1993-3-1	Eurocode 3: Bemessung und Konstruktion von Stahlbauten, Teil 3-1: Türme, Maste und Schornsteine – Türme und Masten. CEN, European Committee for Standardisation, 2005.

Dies ist eine Veröffentlichung des

FACHBEREICHS INGENIEURBAUKUNST (IBK) AN DER TU GRAZ

Der Fachbereich Ingenieurbaukunst umfasst die dem konstruktiven Ingenieurbau nahe stehenden Institute für Baustatik, Betonbau, Stahlbau & Flächentragwerke, Holzbau & Holztechnologie, Materialprüfung & Baustofftechnologie, Baubetrieb & Bauwirtschaft, Hochbau & Industriebau, Bauinformatik und Allgemeine Mechanik der Fakultät für Bauingenieurwissenschaften an der Technischen Universität Graz.

Dem Fachbereich Ingenieurbaukunst ist das Bautechnikzentrum (BTZ) zugeordnet, welches als gemeinsame hochmoderne Laboreinrichtung zur Durchführung der experimentellen Forschung aller beteiligten Institute dient. Es umfasst die drei Laboreinheiten für konstruktiven Ingenieurbau, für Bauphysik und für Baustofftechnologie.

Der Fachbereich Ingenieurbaukunst kooperiert im gemeinsamen Forschungsschwerpunkt "Advanced Construction Technology". Dieser Forschungsschwerpunkt umfasst sowohl Grundlagen- als auch praxisorientierte Forschungs- und Entwicklungsprogramme.

Weitere Forschungs- und Entwicklungskooperationen bestehen mit anderen Instituten der Fakultät, insbesondere mit der Gruppe Geotechnik, sowie nationalen und internationalen Partnern aus Wissenschaft und Wirtschaft.

Die Lehrinhalte des Fachbereichs Ingenieurbaukunst sind aufeinander abgestimmt. Aus gemeinsam betreuten Projektarbeiten und gemeinsamen Prüfungen innerhalb der Fachmodule können alle Beteiligten einen optimalen Nutzen ziehen.

Durch den gemeinsamen, einheitlichen Auftritt in der Öffentlichkeit präsentiert sich der Fachbereich Ingenieurbaukunst als moderne Lehrund Forschungsgemeinschaft, welche die Ziele und Visionen der TU Graz umsetzt.

Nummerierungssystematik der Schriftenreihe:

- $\label{eq:definition} D-Diplom-,\,Masterarbeiten/Dissertationen \mid F-Forschungsberichte$
- $S-Skripten,\ Vorlesungsunterlagen\ |\ V-Vorträge,\ Tagungen$

Institutskennzahl:

- 1 Allgemeine Mechanik | 2 Baustatik | 3 Betonbau
- 4 Holzbau & Holztechnologie | 5 Stahlbau & Flächentragwerke
- 6 Materialprüfung & Baustofftechnologie | 7 Baubetrieb & Bauwirtschaft
- 8 Hochbau & Industriebau | 9 Bauinformatik
- 10 Labor für Konstruktiven Ingenieurbau

Fortlaufende Nummer pro Reihe und Institut / Jahreszahl