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Abstract

Elliptic curve cryptography (ECC) is widely deployed in public-key cryptographic schemes
and offers high security with small key sizes. In most elliptic curve public-key cryptogra-
phy implementations, scalar multiplication is the operation with the highest computational
effort. This means that it has a significant influence on the execution time of ECC algo-
rithms. Optimizing this operation is therefore vital for good performance and represents
an interesting field for new research.

In this thesis, we discuss elliptic curves used for cryptography, including a new model
for elliptic curves called binary Huff curves. This curve model provides very fast dif-
ferential addition and differential doubling formulas. The discussion is completed with
a detailed explanation of some known mathematical attacks on elliptic curve cryptog-
raphy and an introduction to implementation attacks. We present several approaches
to scalar multiplication in order to illustrate different possibilities for scalar multiplica-
tion method optimizations. This includes high-speed scalar multiplication methods, an
endomorphism-based scalar multiplication method and side channel resistant scalar mul-
tiplication methods. The discussed high-speed scalar multiplication methods, such as the
fixed-base comb method, use intense precomputations to improve their performance. The
endomorphism-based scalar multiplication method exploits an efficiently computable en-
domorphism available on certain curves to speed up the computation. In contrast to the
aforementioned multiplication methods, the Montgomery ladder and Joye’s Double-and-
Add method primarily focus on side channel resistance. We implemented all mentioned
methods and available optimizations in Java. In this context, we introduce our new dif-
ferential Montgomery ladder scalar multiplication implementation which works on Huff
curves. This implementation is accompanied by efficient all-in-one, back-and-forth con-
version formulas with included y-coordinate recovery. Our differential Montgomery ladder
on binary Huff curves is up to 7.4% faster than our implementation of the fastest known
Montgomery ladder formulas up to that point. Furthermore, we implemented the so-called
improved fixed-base comb method for scalar multiplication and give a performance com-
parison for some of our implementations. Our implementation effort is completed with a
more general discussion on how cryptography can be implemented in Java.

Keywords: elliptic curves, ECC, Huff curves, scalar multiplication, fixed-base comb
methods, Montgomery ladder, Joye’s Double-and-Add, CoZ coordinates, MOV, SSSA,
Pohlig-Hellman, Pollard’s rho
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Kurzfassung

Elliptische-Kurven-Kryptografie (ECC) ist in Public-Key-Verschlüsselungsverfahren weit
verbreitet und bietet hohe Sicherheit trotz kurzer Schlüssellängen. In den meisten Ellip-
tische-Kurven-Kryptografieimplementierungen ist Skalarmultiplikation jene Operation mit
dem höchsten Rechenaufwand. Dies bedeutet, dass sie einen signifikanten Einfluss auf die
Ausführungszeit von ECC Algorithmen hat. Daher ist eine Optimierung dieser Operation
wichtig für gute Performanz und stellen ein interessantes Feld für neue Forschung dar.

In dieser Masterarbeit diskutieren wir elliptische Kurven die in der Kryptografie ein-
gesetzt werden, inklusive einem neuen Model für elliptische Kurven, sogenannte binäre
Huff -Kurven. Dieses Kurvenmodel bietet sehr schnelle differenzielle Additions- und dif-
ferenzielle Verdoppelungsformeln. Die Diskussion wird durch eine detaillierte Erklärung
einiger bekannter, mathematischer Attacken auf Elliptische-Kurven-Kryptografie und eine
Einführung in Implementierungsattacken abgerundet. Wir stellen mehrere Zugänge zur Sk-
alarmultiplikation vor, um die verschiedenen Möglichkeiten für Skalarmultiplikationsopti-
mierungen aufzuzeigen. Dies inkludiert Hochgeschwindigkeitsskalarmultiplikationsmetho-
den, eine Skalarmultiplikationsmethode basierend auf Endomorphismen und seitenkanalat-
tackenresistente Skalarmultiplikationsmethoden. Die diskutierten Hochgeschwindigkeitssk-
alarmultiplikationsmethoden, wie die fixed-base comb Methode, nutzen aufwendige Vorbe-
rechnungen um ihre Performanz zu verbessern. Die endomorphismusbasierte Skalarmulti-
plikationsmethode nützt einen effizient berechenbaren Endormorphismus auf einigen Kur-
ven aus, um die Berechnung zu beschleunigen. Im Gegensatz zu den zuvor erwähnten Ska-
larmultiplikationsmethoden, ist der Fokus der Montgomery Leiter und der Joye’s Double-
and-Add Methode die Seitenkanalattackenresistenz. Wir haben alle erwähnten Methoden
und die zur Verfügung stehenden Optimierungen in Java implementiert. In diesem Kontext
stellen wir auch unsere neue, differenzielle Montgomery Leiter Skalarmultiplikationsmetho-
denimplementierung, welche auf Huff Kurven arbeitet, vor. Diese Implementierung wird
begleitet von effizienten, all-in-one, vor-und-zurück Konvertierungsformeln mit integrierter
y-Koordinatenrekonstruktion. Unsere differenzielle Montgomery Leiter auf binären Huff
Kurven ist bis zu 7.4% schneller als unsere Implementierung der, bis zu diesem Zeitpunkt,
schnellsten bekannten Montgomery Leiter Formeln. Des Weiteren haben wir die soge-
nannte verbesserte fixed-base comb Methode für Skalarmultiplikation implementiert und
geben einen Performanzvergleich für einige unserer Implementierungen. Unser Implemen-
tierungsaufwand wird durch eine allgemeine Diskussion darüber, wie Kryptografie in Java
implementiert werden kann, abgerundet.

Stichwörter: elliptische Kurven, ECC, Huff Kurven, Skalarmultiplikation, fixed-base comb
Methoden, Montgomery Leiter, Joye’s Double-and-Add, CoZ Koordinaten, MOV, SSSA,
Pohlig-Hellman, Pollard’s rho
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Chapter 1

Introduction

One of the key factors changing our society is the ubiquitous electronic transfer of infor-
mation. As the transferred information may be of sensitive nature, cryptography is used
to protect said information. Cryptography offers different “services” to it’s users. Typi-
cally one or several properties like confidentiality, integrity, authenticity, non-repudiation,
anonymity or privacy of data are ensured. To be able to cover such a wide range of
goals, cryptography is a diverse field of science, although an abstract hierarchy within
cryptography exists. Cryptographic protocols consist of cryptographic schemes and cryp-
tographic algorithms, which themselves are founded on cryptographic primitives firmly
rooted in mathematics. This thesis will focus on topics concerning cryptographic algo-
rithms, cryptographic primitives and also some aspects of the implementation of those
theoretic concepts.

There are two main categories of cryptographic schemes, symmetric cryptography,
where both parties share a secret key which is used for encryption and decryption, and
asymmetric cryptography, also called public-key cryptography. Public-key cryptography de-
notes cryptographic systems which make use of two keys. One is called a private-key,
which is used for decryption and has to be kept secret. This key is accompanied by,
and mathematically related to, a so-called public-key, which is used for encryption. The
public-key can be unveiled to the public without compromising the security of the scheme,
as it must be mathematically hard to infer the private-key if one knows the public-key.
Together, public- and private-key form a so-called keypair.

In the 1970s, two major concepts in public-key cryptography were published; firstly, in
1976, the authors of [DH76] introduced a concept later named Diffie-Hellman key exchange.
This key exchange relies only on the authenticity of the exchanged keys, to establish a
shared secret known to both participants of the key exchange. The introduction of the
Diffie-Hellman key exchange was followed in 1978 by the publication of [RSA78], where
the authors introduced the so-called RSA public-key cryptosystem. The RSA scheme can
be used to encrypt and to digitally sign data. It builds its security on the so-called the
RSA problem. Currently, the most effective way to solve the RSA problem is to factor
the RSA modulus which is a big integer consisting of two large primes. For factoring big
integers, a subexponential time algorithm exists, namely the general number field sieve
(GNFS) (more information on the GNFS is given in [LHWL93]). Cryptography which
relies on the assumption that factoring big integers is hard is called integer factorisation
cryptography (IFC).

The mathematical concept of elliptic curves has been known for a long time, and was
mostly a tool used in theoretical mathematics. In 1985, elliptic curves became more of

1



CHAPTER 1. INTRODUCTION 2

practical use when Neil Koblitz in [Kob87] and Victor S. Miller in [Mil86] introduced
elliptic curve cryptography (ECC), which in turn inspired a lot of cryptography related
research on this topic. The ECC cryptographic schemes build their security on the as-
sumption that it is hard to solve the elliptic curve discrete logarithm problem (explained in
more detail in Section 3.4.1). To this day, there is no publicly known algorithm that solves
the elliptic curve discrete logarithm problem in polynomial time on a classical computer
if the curve is chosen properly.

ECC offers the same level of security as competing cryptographic schemes (e.g., RSA)
with considerably lower key sizes, which makes it especially interesting for systems with
restricted computing power and/or memory. A detailed comparison of the estimated
security gained by different key sizes in various cryptographic systems is available in [LV01].
NIST gives in [BBB+12] ready to use numbers as given in Table 1.1 (taken from [BBB+12,
Table 2]). Here one can clearly see how much slower the suggested key sizes for ECC based
schemes, compared to IFC based schemes, grow.

Table 1.1: Comparison of key size and achieved bits of security, for Diffie-Hellman (D-H),
integer factorisation cryptography (IFC) and elliptic curve cryptography (ECC)

Bits of Security FCC (e.g., DSA, D-H) IFC (e.g., RSA) ECC (e.g., ECDSA)

key size in bits key size in bits key size in bits

public / private

80 1024 / 160 1024 160

112 2048 / 224 2048 224

128 3072 / 256 3072 256

192 7680 / 384 7680 384

256 15360 / 512 15360 512

In the past, trust in the ECC has been shattered several times. The first time it concerned
the mathematical side of ECC. In 1991 the so-called MOV attack came out, which attacked
ECC on so called supersingular elliptic curves, closely followed by the SSSA attack which
attacked curves, where the curve order is equal to the order of the underlying finite field
(both attacks are explained in Section 3.4.3). Quite recently, trust in the standardizing
body surrounding ECC was shaken. It was shown that the NIST standardised crypto-
graphically secure pseudorandom number generator Dual_EC_DRBG had been standardized
in June 2006, although the authors of [Bro06] and [SS06] had shown in March and May
2006 respectively that it had weaknesses that could result in a backdoor. This raised
questions concerning the legitimacy of the NIST standardized curve parameters.

1.1 Contribution

In most elliptic curve public-key cryptography implementations scalar multiplication is the
operation with the highest computational effort. This means that it has a significant
influence on the execution time of ECC algorithms. Therefore, optimizing this operation
is vital for good performance and represents an interesting field for new research.

We implemented two different general approaches to scalar multiplication. First, we
implemented several different highly regular scalar multiplication methods, with very small
memory footprint and acceptable performance. Those are important building blocks for
side channel resistant implementations. Second, we implemented different high perfor-
mance scalar multiplication algorithms which use precomputations and give excellent per-
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formance in cases where no side channel resistance is needed. All implementations were
benchmarked and evaluated.

To our knowledge, we were the first to implement so-called Huff curves and publicly
state the curve parameters of the Huff curves corresponding to NIST curves to reduce the
implementation effort for others interested in this curve type. Furthermore, we introduced
all-in-one, back-and-forth conversion formulas with included y-coordinate recovery for dif-
ferential Huff curve Montgomery ladders. This was the theoretic basis for a Montgomery
ladder implementation, which is up to 7.4% faster than our implementation of the, up to
that point, fastest known Montgomery ladder formulas. We also published our research
in a scientific paper, [GH13], which was presented in a workshop during the ARES 2013
conference.

1.2 Outline

The reminder of this thesis is organized as follows. We start with Chapter 2 by building
the necessary theoretical background, including groups, fields and elliptic curves, which is
needed to understand the work documented in this thesis. In Chapter 3, various flavors
of elliptic curves, including Huff curves, are explained. Furthermore, we give generic and
state-of-the-art attacks on ECC. Later on, in Chapter 4, scalar multiplication methods
are introduced and explained. We discuss high performance scalar multiplication methods
which use precomputations as a time-memory trade-off to speed up multiplications. Those
are in contrast to Montgomery ladder type multiplication methods which have a very
small memory footprint and are highly regular. Chapter 5 gives an insight into how
cryptography is typically implemented in Java�. This chapter is followed by Chapter 6,
where the results of the practical implementations are given and discussed. The thesis
concludes with Chapter 7.



Chapter 2

Preliminaries

In this chapter, we try to give all readers a brief introduction to the mathematical principles
necessary to understand elliptic curves and the work done in this thesis. This chapter is
based on information published in the following publications: [HMV04], [CF05], [Sil92],
[Sma02], [BSS05] and [Han10] as well as lecture notes from [LZM09] and [OL09].

The chapter is structured as follows. In Section 2.1, an introduction to groups and fields
is given. Both types of finite fields, prime and binary fields, which act as mathematical
foundations for elliptic curves, are explained. In Section 2.2, elliptic curves and important
structural concepts, for example the group law, are introduced. In Section 2.2.1, the
theoretical concept of projective coordinate systems is given. This chapter concludes with
a short summary in Section 2.3.

2.1 Elementary Algebraic Structures

In this section, we introduce all, necessary elementary algebraic structures.
Section 2.1.1 focuses on groups, followed by Section 2.1.2 which introduces fields in

general, followed by Section 2.1.4 which concentrates on finite fields. Furthermore, we also
state important rules and theorems necessary for working with those algebraic structures.

2.1.1 Groups

A group (G, ·), is a set G with a mapping · : G×G→ G such that:

1. G is closed with respect to ·, meaning that if a, b ∈ G then a · b ∈ G,

2. · is associative that is for a, b, c ∈ G, a · (b · c) = (a · b) · c holds,

3. (G, ·) has a unit (or neutral) element e ∈ G such that a · e = e · a = a for all a ∈ G,

4. every element g ∈ G has an inverse g−1, i.e., g−1 · g = g · g−1 = e.

A group G is called commutative or Abelian if for every two elements a, b ∈ G the property
a·b = b·a is satisfied. A group is called cyclic if every element in the group can be expressed
as a power gn with n ∈ Z of some element g ∈ G, which is called the generator of the
group. A finite group G has a finite number of elements, called the order of G and is
denoted by |G|. If G is infinite then the order of the group is ∞. The order of an element
g ∈ G is the smallest number k ∈ N for which gk = 1, denoted by |g| = k. Furthermore,
the order of every element g ∈ G divides the group order. Again, if no such number

4



CHAPTER 2. PRELIMINARIES 5

exists, the order of g in G is ∞. An example to illustrate the workings of a generator in
a multiplicative cyclic group can be found below.

Example 2.1.1 (Generator). Z∗3 = Z3 \ {0} = {1, 2} where Z3 are integers mod 3, with
generator g = 2 the group elements are expressed as 21 ≡ 2 mod 3, 22 ≡ 1 mod 3.

A subgroup (H, ·) of group (G, ·) (denoted by H ≤ G) is a non-empty subset of elements
in G, which itself is a group. Furthermore, |H| is a divisor of |G| and the unit eG = eH
stays the same.

Definition 2.1.1 (Discrete Logarithm). Let G be a finite group, then the discrete loga-
rithm of h ∈ G to the base g ∈ G denoted by logg(h) is a solution x to gx = h, where x is
unique modulo the group order |G|.

Here is a simple example of a discrete logarithm and the order of an element.

Example 2.1.2 (Discrete Logarithm, Order of Element). We use the multiplicative,
Abelian group, given by the integers mod 5, as Z∗5 = Z5 \ {0},= {1, 2, 3, 4} with gen-
erator g = 2:

2x ≡ 3 mod 5, a discrete logarithm solution is x = 3,

24 = 16 ≡ 1 mod 5 is the smallest positive exponent, therefore 4 is the order of 2 ∈ Z5.

We will elaborate further on the discrete logarithm and the so-called discrete logarithm
problem in Chapter 3.

2.1.2 Fields

A field (F,+, ·) is a triplet where F is a set and + : F × F → F as well as · : F × F → F
are two mappings, such that:

� (F,+) is an additive Abelian group, with additive unit 0.

� (F ∗, ·) = (F \ {0}, ·) is a multiplicative Abelian group, with multiplicative unit 1.

Both mappings + and · satisfy and are connected through the distributive law, meaning
that:

∀a ∀b ∀c ∈F : (a+ b) · c = a · c+ b · c, (right-distributivity), and

∀a ∀b ∀c ∈F : a · (b+ c) = a · b+ a · c, (left-distributivity).

If the set F is finite, the field (F,+, ·) is called finite field.

2.1.3 Homomorphisms

A group homomorphism h : (G, ·) → (G′, ∗) is a mapping between two groups (G, ·) and
(G′, ∗). Group homomorphisms preserve the group structure with respect to the group
operations. More precisely, this means that for all a, b ∈ G : h(a · b) = h(a) ∗ h(b). Also,
the inverse h(a−1) = h(a)−1 of all elements a 6= 0 and the identity element are preserved,
i.e., h(eG) = eG′ .

A field homomorphism f : (F,+, ·)→ (F ′,⊕,�) is a function which represents a group
homomorphism for both (F,+)→ (F ′,⊕) and (F, ·)→ (F ′,�).

An injective homomorphism is called monomorphism, similarly a surjective homomor-
phism is called epimorphism and a bijective homomorphism is called isomorphism. If two
groups G,G′ or two fields F, F ′ are isomorphic, meaning that an isomorphism between
them exists, this is denoted by G ' G′ respectively F ' F ′.
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2.1.4 Finite Fields

A finite field, denoted by Fq, has q elements, where q = pn for some prime p with n ∈ N.
More precisely, for every such prime power pn, there is, up to isomorphism, exactly one
finite field Fpn , which is summarized in Theorem 2.1.1.

Theorem 2.1.1 (Number of Finite Fields). For every prime power q = pn with p ∈ P, n ∈
N there exists, up to isomorphisms, exactly one finite field of prime power order q (denoted
by Fq).

Proposition 2.1.1 (Cyclic Multiplicative Group). The multiplicative group (F∗q , ·) of a
finite field (Fq,+, ·) is cyclic.

Theorem 2.1.2 (Fermat’s Little Theorem). States the fact that ap ≡ a (mod p) for all
a ∈ Zp where Zp = {a mod p : a ∈ Z} and p ∈ P.

Definition 2.1.2 (Euler’s Totient Function). Let ϕ denote Euler’s totient function. Then,
given a positive integer n, ϕ(n) gives the number of all integers 1 ≤ k ≤ n, where k is
coprime to n.

Theorem 2.1.3 (Euler’s Theorem). States the fact that, given two positive, coprime
integers a and n, aϕ(n) ≡ 1 (mod n). This translates directly to finite fields where aϕ(q) ≡
1 (mod q) for all a ∈ F∗q .

The characteristic of a field F (denoted by char(F )) is defined as the smallest n ∈ N such
that:

∀a ∈ F : n · a = 0.

If such an integer does not exist, the characteristic is 0 by definition. The characteristic
of a finite field is always prime. Given an arbitrary finite field F , the relation between the
order |F | and the characteristic of the field is given as:

|F | = char(F )n,

for some n ∈ N. If n = 1 the field is called prime field, otherwise it is called extension
field.

Theorem 2.1.4 (Freshman’s Dream). In a field Fp of characteristic p, we have (x+y)p =
xp + yp.

Proof. This can easily be seen, as:

(x+ y)p =

p∑
n=0

(
p
n

)
xnyp−n =

p∑
n=0

p!

n!(p− n)!
xnyp−n = x0yp + xpy0 = xp + yp.

Taking a closer look at

(
p
n

)
= p!

n!(p−n)! which is 0 (mod p) if n 6= {0, p} (as

(
p
0

)
=(

p
p

)
= 1), leaving only the case x0yp + xpy0 = xp + yp.

All fields Fp of prime characteristic are equal to Zp. Addition and multiplication are
calculated modulo the prime p. Subsequently, only binary fields respectively the optimized
arithmetic over binary fields is mentioned in more detail.
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Binary Fields

The information in this section is based on information in [BSS99]. A finite field Fq with
q = 2m is called a binary field. All elements of a binary field can be represented with
polynomials. A binary polynomial f ∈ F2[x] of degree m is given as

f(x) =
m∑
i=0

aix
i

with coefficients ai ∈ F2. The degree of a polynomial, denoted deg(f), is defined as the
greatest index i for which ai is not zero, if there is no such i, i.e., f = 0, then we define
deg(f) = −∞.

Definition 2.1.3 (Irreducible Polynomial). A polynomial f ∈ F2[x] is called irreducible
if f is not invertible in F2[x] and its only factors are f and 1.

Definition 2.1.4 (Monic Polynomial). A polynomial is called monic if the non-zero
coefficient of highest degree is 1.

If f(x) is monic and irreducible in F2[x] and of degree m, then (F2[x]/(f(x)),+, ·) is a
finite field of order 2m. A field F2m is a vector space of dimension m over F2, therefore
the elements of a binary field are represented as binary vectors of coefficients of degree m.
The vector is given relative to a basis. There are two bases with which binary fields are
commonly represented.

� Polynomial Basis: The polynomial basis is given as (1, α, α2, . . . , αm−1), where α ∈
F2m is a root of f(x).

� Normal Basis: The normal basis is given as (α, α2, α22 . . . , α2m−1
) with α ∈ F2m

being a root of f(x).

Example 2.1.3 (Binary Field). Given the field F23 = F2[x]/(f) with irreducible polyno-
mial f(x) = x3 + x+ 1, α ∈ F23 .

The elements of F23 = F2[x]/(f) with irreducible polynomial f(x) = x3 + x + 1 are:
0, 1, α, α2, α3 = α + 1, α4 = α2 + α, α5 = α2 + α + 1, α6 = α2 + 1, α7 = 1, where
α ∈ F23 is a root of f(x).

Arithmetic

In F2m , calculations are done modulo an irreducible, binary polynomial f(x) of degree
m. Therefore, an element in F2m is always represented via a binary polynomial of degree
smaller then m. Computing squares in binary fields is greatly simplified due to Theo-
rem 2.1.4. There are no mixed terms, as (a + b)2 = a2 + b2. After a multiplication or
a squaring the result may have a degree ≥ m; if so it is reduced modulo the reduction
polynomial f(x). Consequently f(x) should be of low weight to give a better perfor-
mance. Polynomial addition modulo 2 is commonly implemented as a series of exclusive
or operations, as an addition of two bits modulo 2 is equivalent to the logic exclusive or
operation.

With polynomial basis representation, multiplications are more efficient than in normal
basis, as the polynomial multiplication is a carry-free version of a m-bit integer multipli-
cation. A squaring operation can be realized by inserting 0-bits between the consecutive
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bits of the internal representation of the polynomial, followed by a reduction modulo the
reduction polynomial. The 0-bit insertion can be precomputed for all 256 byte values,
making it a linear time table lookup. Therefore, the reduction is the most time-consuming
part of the squaring operation. With normal basis representation, so-called bit-serialized
multipliers, which are of interest in hardware implementations, can be realized. Also field
squarings are very efficient, as they can be implemented as cyclic shifts.

Example 2.1.4 (Binary Field Multiplication). Multiplication on the field F23 with irre-
ducible polynomial f(α) = α3 + α+ 1, α ∈ F23 with f(α) = 0:

(α2 + α+ 1) · (α2 + α+ 1) mod (α3 + α+ 1) =

(α4 + α3 + α2) + (α3 + α2 + α) + (α2 + α+ 1) mod (α3 + α+ 1) =

(recall 2 ≡ 0 mod 2) therefore (α4 + α2 + 1) mod (α3 + α+ 1) = −α+ 1 = α+ 1.

2.2 Elliptic Curves

An elliptic curve E is a smooth, algebraic curve over some field F . The curve is given by
the set of points (x, y) satisfying the equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

with a1, a2, a3, a4, a6 ∈ F , plus the point at infinity O, are called the F-rational points and
denoted by E(F ). O acts as unit to form an Abelian group. Smooth means there are no
singular points, i.e., the tangent through every point on E is uniquely determined, which
can be ensured by checking that the discriminant ∆(E) of E is ∆(E) 6= 0. For a curve,
given by Equation (2.1), ∆(E) is defined in the following equation, given in [BSS05]:

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4, and

∆(E) = −b22b8 − 8b34 − 27b26 + 9b2b4b6.


For a field of characteristic 2, Equation (2.1) can be simplified through an isomorphic
change of variables. There are two cases concerning the change of variables:

x = x′ + a2,

y = y′

}
for a1 = 0, and

x = a2
1x
′ +

a3

a1
,

y = a3
1y
′ +

a2
1a4 + a2

3

a3
1

 for a1 6= 0.

This yields the following Equation (2.2), for non-supersingular curves in short Weierstrass
form:

E : y2 + xy = x3 + a2x
2 + a6 for a1 6= 0, with a2, a6 ∈ F, and

∆(E) = a6,
(2.2)

and Equation (2.3), for so-called supersingular curves.

E : y2 + a3y = x3 + a4x+ a6. for a1 = 0, with a3, a4, a6 ∈ F, and

∆(E) = a4
3.

(2.3)
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For a field F of prime characteristic, i.e., char(F ) 6= {2, 3}, the isomorphic change of
variables:

x = x′ − a2
1 + 4a2

12
,

y = y′ − a1

2
(x′ − a2

1 + 4a2

12
)− a3

2
,

yields the following equation in in short Weierstrass form:

E : y2 = x3 + a4x+ a6, with a4, a6 ∈ F, and

∆(E) = −16(4a3
4 + 27a2

6).
(2.4)

Group Law and Addition Formulas

On elliptic curves there is an addition law, called the chord-and-tangent method.

Proposition 2.2.1. If a line (chord) is drawn through two distinct points P1, P2 ∈
E(F ), P1 6= P2 the line intersects E in a third point P3 ∈ E(F ). If P1 = P2 the point P3

is the intersection of E and the tangent through P1 (P1 is counted twice).

Definition 2.2.1 (Point Reflection). A point P (x, y) ∈ E(F )\{O} is reflected across the
x -axis by calculating the point −P (x,−y − a1x− a3).

In order to add two points P1, P2 ∈ E(F ), P1 6= P2 one draws a line (chord) through P1

and P2. The line is going to intersect E at a third point P3 ∈ E(F ) (taking multiplicities
into account). This third point is then reflected across the x-axis, giving the result −P3 =
P1 + P2. The concept is illustrated in Figure 2.1.

Figure 2.1: Point addition on E : y2 = x3 − x2 − 4x+ 4 over R

If P1 = P2, P1 must be doubled, for which the tangent rule applies. The tangent intersects
E in another point P3. This point, is again reflected across the x-axis, giving the result
−P3 = 2P1. This procedure is illustrated in Figure 2.2.
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Figure 2.2: Point doubling on E : y2 = x3 − x2 − 4x+ 4 over R

Group Law: The outlined addition law, in combination with the corresponding set of
points, given by E(F ), forms an Abelian group. Every one of these groups (E(F ),+) has
a mapping + : E(F )× E(F )→ E(F ) such that:

1. E(F ) is closed with respect to +, this follows directly from Proposition 2.2.1,

2. + is associative: P1 + (P2 + P3) = (P1 + P2) + P3 holds for all P1, P2, P3 ∈ E(F ),

3. the unit element e ∈ E(F ) is O such that P +O = O + P = P for all P ∈ E(F ),

4. every element P ∈ E(F ) has an inverse −P (as stated in Proposition 2.2.1),

5. + is commutative, meaning that P1 + P2 = P2 + P1 for all P1, P2 ∈ E(F ).

Addition Formulas: The formula for point addition with affine points, on non-super-
singular, binary curves, given by Equation (2.2) (taken from [HMV04, p.81]), is:

Addition: x3 = λ2 + λ+ x1 + x2 + a2 and y3 = λ(x1 + x3) + x3 + y1 with λ =
y1 + y2

x1 + x2
.

Doubling: x3 = λ2 + λ+ a2 = x2
1 +

b

x2
1

and y3 = x2
1 + λx3 + x3 with λ =

x1 + y1

x1
.

Point addition with affine points, on prime curves given by Equation (2.4), is achieved
with these formulas (taken from [HMV04, p.80]):

Addition: x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2 and y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1.

Doubling: x3 =

(
3x2

1 + a4

2y1

)2

− 2x1 and y3 =

(
3x2

1 + a4

2y1

)
(x1 − x3)− y1.

The point at infinity O serves as point of intersection, if for example a point of order
2 is doubled and the tangent does not intersect the elliptic curve. This is illustrated in
Figure 2.3.
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Figure 2.3: Necessity for the point at infinity O, on E : y2 = x3 − x2 − 4x+ 4 over R

Birational Equivalences

A birational equivalence works similar to an isomorphism, although it is slightly less strong
because it is undefined over some, so-called exceptional points.

A pair of elliptic curves (E,E′) is birationally equivalent if there is a birational, bijective
map Φ : E → E′. A birational map is a combination of two rational functions such that
each works on elements in one of the groups given by the elliptic curve E(F ) and E′(F ),
respectively.
The function φ = (φx(x), φy(y)) with φx(x), φy(y) ∈ E(F ) is mapping

φ : E → E′

and the function ψ = (ψx′(x
′), ψy′(y

′)) with ψx′(x
′), ψy′(y

′) ∈ E′(F ) ψ is mapping

ψ : E′ → E.

φ and ψ are the inverse of each other and the identity elements are idE = ψ ◦ φ and
idE′ = φ ◦ ψ.

2.2.1 Projective Coordinate Systems

On elliptic curves, the formulas for adding and doubling points with affine coordinates
need at least one inversion, which is the most expensive operation in finite fields. A way
to mitigate these costs are projective coordinate systems, as these coordinate systems lead
to addition and doubling formulas that avoid costly inversions. The following is a brief
outline on the theoretical background of projective coordinates.

First the equivalence relation ∼, over a field F , is defined as follows:

(X1, Y1, Z1) ∼ (X2, Y2, Z2) if X1 = λX2, Y1 = λY2, Z1 = λZ2 for some λ ∈ F ∗.

∼ is working on the set F 3\{(0, 0, 0)} of non-zero triples over F . A projective point
represents an equivalence class for representations and is given by the following equation:

(X : Y : Z) = {(λX, λY, λZ) : λ ∈ F ∗}.
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A projective point can be represented by every element in its equivalence class. If Z 6= 0,
the 1 − 1 relation of affine and projective representations of points can easily be shown
by scaling the point. This is done by calculating (XZ : YZ : 1), which is the only projective
representation where Z = 1. The line at infinity are those projective points that do not
correspond to any affine points, namely those points where Z = 0. This set of points is
given as P (F )0 = {(X : Y : Z), X, Y, Z ∈ F, Z = 0}.

For standard projective coordinates the homogenized, projective, long Weierstrass equa-
tion is given as:

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

This equation is derived from the affine Weierstrass equation, given in Equation (2.1),
by substituting (x, y) with (XZ ,

Y
Z ). For standard projective coordinates the point at infin-

ity O is (0 : 1 : 0), and the negation of a point P is given as −P = (X : −Y : Z).
Using projective coordinates does have its cost, the projective formulas need more

multiplications as the additional Z-part of the coordinate needs to be calculated as well.
Therefore, projective coordinate systems offer speed advantages only if calculating field
multiplications is considerably cheaper than calculating the inverse of a field element. For
other projective coordinate systems with practical relevance, see Chapter 3.

2.3 Summary

In this chapter, we introduced the reader to basic mathematical concepts necessary for
working with elliptic curves. Groups, fields and finite fields were defined and several of
their important mathematical properties were explained. We provided a more detailed
look at binary fields and their optimized arithmetic. All these concepts are the founda-
tion for elliptic curves, which were introduced, and their group and addition laws were
stated. Additionally we introduced the theoretical background of projective coordinate
systems, which are essential for high performance implementations of elliptic curves point
operations.



Chapter 3

Elliptic Curves in Cryptography

In this chapter, we discuss the standard elliptic curve types used in cryptography. We
also explain interesting and fast coordinate systems for each of these curve types. Later, a
more detailed look at the security of elliptic curves is given. We discuss some known math-
ematical attacks and give a brief introduction to implementation attacks. This chapter is
based on information published in the following publications: [HMV04], [CF05], [Sma02],
[BSS05], and [Kop09].

We start with prime Weierstrass curves which are covered by Section 3.1, followed
by binary Weierstrass curves in Section 3.2. Additionally the concept of Huff curves is
covered in Section 3.3. The security of elliptic curves is discussed in Section 3.4, where we
state the important elliptic curve discrete logarithm problem (ECDLP) and several types of
generic and state-of-the-art attacks on elliptic curve cryptography. This section is followed
by Section 3.5, which covers implementation attacks on elliptic curve cryptography with
a focus on timing and fault attacks. The chapter is summed up in Section 3.6.

3.1 Prime Weierstrass Curves

A Weierstrass curve over a prime, finite field Fp with p 6= 2, 3 is given by all points which
fulfill the following equation:

E : Y 2 = X3 + a4X + a6, with a4, a6 ∈ Fp (3.1)

plus the point at infinity O. Additionally, the curve has to be non-singular. This can be
ensured via its discriminant :

∆E(Fp) : −(4a3
4 + 27a2

6) 6= 0.

In the following sections, we will discuss several projective coordinate systems, as well as
their point addition and point doubling formulas.

Projective Coordinates

Given projective coordinates, the projective point P (X : Y : Z) corresponds to its affine
representation, given by (x, y) with (x, y) = (XZ ,

Y
Z ) for all Z 6= 0 and otherwise to the

point at infinity O. The point at infinity O is given as (0 : 1 : 0) and the negation of P
is given as −P = (X : −Y : Z). Furthermore, the projective equation of the elliptic curve
E, as defined in Equation (3.1), is given as:

E : Y 2Z = X3 + a4XZ
2 + a6Z

3, with a4, a6 ∈ Fp.

13
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Affine coordinates (x, y) correspond to projective coordinates (X : Y : Z) simply with
X = x, Y = y and Z = 1. Currently, the fastest formulas for point doubling, point
addition and scaling a point, according to [BL14b], are stated as:

Addition: 11M + 6S, Doubling: 5M + 6S, Scaling: 1I + 2M.

Here, M denotes a prime field multiplication, S denotes a prime field squaring and I
denotes a prime field inversion. In the following, we state these addition and doubling
formulas:

Addition: For two points P (X1 : Y1 : Z1), Q(X2 : Y2 : Z2) ∈ E(Fp) the decomposed
addition formula for P3(X3 : Y3 : Z3) = P +Q, is given as (taken from [BL14b]):

U1 = X1 · Z2, U2 = X2 · Z1, S1 = Y1 · Z2,

S2 = Y2 · Z1, ZZ = Z1 · Z2, T = U1 + U2,

TT = T 2, M = S1 + S2, R = TT − U1 · U2 + a4 · ZZ2,

F = ZZ ·M, L = M · F, LL = L2,

G = (T + L)2 − TT − LL, W = 2 ·R2 −G,
Y3 = R · (G− 2 ·W )− 2 · LL, X3 = 2 · F ·W, Z3 = 4 · F · F 2.

Doubling: For a point P (X1 : Y1 : Z1) ∈ (E(Fp)), the decomposed doubling formula for
calculating 2P (X3 : Y3 : Z3) is given as (taken from [BL14b]):

XX = X2
1 , ZZ = Z2

1 , w = a4 · ZZ + 3 ·XX,
s = 2 · Y1 · Z1, ss = s2, sss = s · ss,
R = Y1 · s, RR = R2, B = (X1 +R)2 −XX −RR,
h = w2 − 2 ·B,
Y3 = w · (B − h)− 2 ·RR, X3 = h · s, Z3 = sss.

Jacobian Coordinates

Jacobian coordinates were introduced in [CC86]. Jacobian coordinates are so-called weighted
projective coordinates. The affine point (x : y) is represented by the Jacobian point
P (X : Y : Z), where X = λcx, Y = λdy, Z = λ with λ 6= 0, c = 2 and d = 3. The point
at infinity O is given as (1 : 1 : 0) and the negation of P is given as −P = (X : −Y : Z).
The projective equation of the elliptic curve E, as defined in Equation (3.1), is given as:

E : Y 2 = X3 + a4XZ
4 + a6Z

6, with a4, a6 ∈ Fq. (3.2)

To convert Jacobian coordinates (X : Y : Z) with Z 6= 0 to affine coordinates (x, y),
one has to compute x = X

Z2 and y = Y
Z3 , if Z = 0 the corresponding point is O. Affine

coordinates correspond to Jacobian coordinates simply by X = x, Y = y and Z = 1.
Currently the fastest formulas for point doubling, point addition and scaling a point,
according to [BL14b], are stated as:

Addition: 11M + 5S, Doubling: 1M + 8S, Scaling: 1I + 3M + 1S.

Again, M denotes a prime field multiplication, S denotes a prime field squaring and I
denotes a prime field inversion. In the following, we state these addition and doubling
formulas:
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Addition: For two points P (X1 : Y1 : Z1), Q(X2 : Y2 : Z2) ∈ E(Fp) the decomposed
addition formula for P3(X3 : Y3 : Z3) = P +Q is given as (taken from [BL14b]):

Z1Z1 = Z2
1 , Z2Z2 = Z2

2 , U1 = X1 · Z2Z2,

U2 = X2 · Z1Z1, S1 = Y1 · Z2 · Z2Z2, S2 = Y2 · Z1 · Z1Z1,

H = U2 − U1, I = (2 ·H)2, J = H · I,
r = 2 · (S2 − S1), V = U1 · I,

X3 = r2 − J − 2 · V, Y3 = r · (V −X3)− 2 · S1 · J, Z3 = ((Z1 + Z2)2 − Z1Z1 − Z2Z2) ·H.

Doubling: For a point P (X1 : Y1 : Z1) ∈ E(Fp), the decomposed doubling formula for
calculating 2P (X3 : Y3 : Z3) is given as (taken from [BL14b]):

XX = X2
1 , Y Y = Y 2

1 , A = Y Y 2,

ZZ = Z2
1 , S = 2 · ((X1 + Y Y )2 −XX −A), M = 3 ·XX + a4 · ZZ2,

T = M2 − 2 · S,
X3 = T, Y3 = M · (S − T )− 8 ·A, Z3 = (Y1 + Z1)2 − Y Y − ZZ.

Jacobian Chudnovsky Coordinates

In the literature, there are several so called mixed representations; among them are the so-
called Jacobian Chudnovsky coordinates, where a point P (X : Y : Z : Z2 : Z3) represents a
Jacobian point. The redundant values give this coordinate system a slight speed advantage
for additions at the expense of slower doublings and additional memory consumption.

Given Jacobian Chudnovsky coordinates, the projective point P (X : Y : Z : Z2 : Z3),
corresponds to its affine point, given by (x, y), with (x, y) = ( X

Z2 ,
Y
Z3 ) for all Z 6= 0 and

to the point at infinity O otherwise. The point at infinity O is given as (0 : 1 : 0) and the
negation of P is given as −P = (X : −Y : Z : Z2 : Z3).

The projective equation of the elliptic curve E is the same as in Equation (3.2). Cur-
rently, the fastest formulas for point doubling and point addition, according to [Joy08,
Table 1], and the fastest formula for scaling a point, according to [BL14b], are stated as:

Addition: 10M + 4S, Doubling: 4M + 5S, Scaling: 1I + 3M + 1S.

Here, M denotes a prime field multiplication, S denotes a prime field squaring and I
denotes a prime field inversion. Next, we state these addition and doubling formulas.

Addition: For two points P (X1 : Y1 : Z1 : E1 : F1), Q(X2 : Y2 : Z2 : E2 : F2) ∈ E(Fp)
the decomposed addition formula for P3(X3 : Y3 : Z3 : E3 : F3) = P +Q, is given as (taken
from [Joy08, Equation 4]):

R = S1 − S2, G = 4H3, V = 4U1H
2,

S1 = 2Y1F2, S2 = 2Y2F1, H = U1 − U2,

U1 = X1E2, U2 = X2E1,

X3 = R2 +G− 2V, Y3 = R(V −X3)− S1G, Z3 = ((Z1 + Z2)2 − E1 − E2)H,

E3 = Z2
3 , F3 = E3Z3.

Doubling: For a point P (X1 : Y1 : Z1 : Z2
1 : Z3

1 ) ∈ E(Fp), the decomposed doubling
formula for calculating 2P (X3 : Y3 : Z3 : Z2

3 : Z3
3 ) is given as (taken from [CF05, p.282]):

A = 4X1Y
2
1 , B = 3X2

1 + a44Z4
1 ,

X3 = −2A+B2, Y3 = −8Y 4
1 +B(A−X3), Z3 = 2Y1Z1.
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3.2 Binary Weierstrass Curves

A Weierstrass curve over a binary, finite field F2m is given by all points which fulfill the
following affine equation:

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, with a1, a2, a3, a4, a6 ∈ F2m ,

plus the point at infinity (O). Additionally, the curve has to be non-singular. This can
be ensured via its discriminant :

∆E(F2m) : a6 6= 0.

There are two possible binary curve types, so-called non-supersingular curves, given by
Equation (3.3):

E : Y 2 +XY = X3 + a2X
2 + a6, with a2, a6 ∈ F2m , (3.3)

and, so-called supersingular curves, given by Equation (3.4).

E : Y 2 + a3Y = x3 + a4X + a6 with a2, a6 ∈ F2m . (3.4)

Supersingular curves are susceptible to the MOV attack (see Section 3.4.3) and therefore
not adequate for use in cryptography. One can check whether an elliptic curve is super-
singluar via its j-invariant. The j-invariant of E(F2m), denoted by j(E(F2m)), is given
as:

j(E(F2m)) =
a12

1

∆E(F2m)
.

To ensure that a binary curve is non-supersingular, the j-invariant has to be j(E(F2m)) 6=
0. In the following sections, we will discuss several projective coordinate systems, as well
as their point addition and point doubling formulas.

Projective Coordinates

Given projective coordinates, the projective point P (X : Y : Z) corresponds to its affine
point, given by (x, y), with (x, y) = (XZ ,

Y
Z ) for all Z 6= 0 and otherwise to the point at

infinity O. The point at infinity O is given as (0 : 1 : 0) and the negation of P is given as
−P = (X : X+Y : Z). Furthermore, the projective equation of the elliptic curve E(F2m),
as defined in Equation (3.3), is given as:

E : Y 2Z +XY Z = X3 + a2X
2Z+a6Z

3, with a2, a6 ∈ F2m .

Affine coordinates (x, y) correspond to projective coordinates (X : Y : Z) simply by
X = x, Y = y and Z = 1. Currently the fastest formulas for point doubling, point
addition, and scaling a point, according to [BL14b], are stated as

Addition: 14M + 1S, Doubling: 7M + 3S, Scaling: 1I + 2M.

Here M denotes a binary field multiplication, S denotes a binary field squaring and I
denotes a binary field inversion. In the following, we state these addition and doubling
formulas.
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Addition: For two points P (X1 : Y1 : Z1), Q(X2 : Y2 : Z2) ∈ E(F2m) the decomposed
addition formula for P3(X3 : Y3 : Z3) = P +Q, is given as (taken from [BL14b]):

Y1Z2 = Y1 · Z2, X1Z2 = X1 · Z2, A = Y1Z2 + Z1 · Y2,
B = X1Z2 + Z1 ·X2, AB = A+B, C = B2,

D = Z1 · Z2, E = B · C, F = (A ·AB + a2 · C) ·D + E,

Y3 = C · (A ·X1Z2 +B · Y1Z2) +AB · F, X3 = B · F, Z3 = E ·D.

Doubling: For a point P (X1 : Y1 : Z1) ∈ E(F2m), the decomposed doubling formula for
calculating 2P (X3 : Y3 : Z3) is given as (taken from [BL14b]):

A = X2
1 , B = A+ Y1 · Z1, C = X1 · Z1,

BC = B + C, D = C2, E = B ·BC + a2 ·D,
X3 = C · E, Y3 = BC · E +A2 · C, Z3 = C ·D.

Jacobian Coordinates

Jacobian coordinates are so-called weighted projective coordinates and the affine point
(x : y) is represented by the Jacobian point P (X : Y : Z), where X = λcx, Y = λdy, Z = λ
with λ 6= 0, c = 2 and d = 3. The point at infinity O is (1 : 1 : 0) and the negation of P
is given as −P = (X : XZ + Y : Z). The projective equation of the elliptic curve E, as
defined in Equation (3.3), is given as:

E : Y 2 +XY Z = X3 + a2X
2Z2 + a6Z

6, with a2, a6 ∈ F2m .

To convert Jacobian coordinates (X : Y : Z) with Z 6= 0 to affine coordinates (x, y),
one has to compute x = X

Z2 and y = Y
Z3 . If Z = 0 the corresponding point is O. Affine

coordinates correspond to Jacobian coordinates simply by X = x, Y = y and Z = 1.
Currently the fastest formulas for point doubling, point addition and scaling a point,
according to [BL14b], are stated as:

Addition: 14M + 5S, Doubling: 4M + 5S, Scaling: 1I + 3M + 1S.

Again M denotes a binary field multiplication, S denotes a binary field squaring and I
denotes a binary field inversion. In the following, we state these addition and doubling
formulas:

Addition: For two points P (X1 : Y1 : Z1), Q(X2 : Y2 : Z2) ∈ E(F2m) the decomposed
addition formula for P3(X3 : Y3 : Z3) = P +Q, is given as (taken from [BL14b]):

O1 = Z2
1 , O2 = Z2

2 , A = X1 ·O2,

B = X2 ·O1, C = Y1 ·O2 · Z2, D = Y2 ·O1 · Z1,

E = A+B, F = C +D, G = E · Z1,

H = F ·X2 +G · Y2, Z3 = G · Z2, I = F + Z3,

X3 = a2 · Z2
3 + F · I + E · E2, Y3 = I ·X3 +G2 ·H.

Doubling: For a point P (X1 : Y1 : Z1) ∈ E(F2m), the decomposed doubling formula for
calculating 2P (X3 : Y3 : Z3) is given as (taken from [BL14b]):

A = X2
1 , B = A2, C = Z2

1 ,

D = C2,

X3 = B + a6 ·D2, Z3 = X1 · C, Y3 = B · Z3 + (A+ Y1 · Z1 + Z3) ·X3.
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López-Dahab Coordinates

López-Dahab coordinates are a coordinate system used with elliptic curves over binary
fields E(F2m). They were introduced by López and Dahab in [LD98]. This subsection
sums up some ideas in their paper.

They derive their formulas by using the definition of a projective plane P 2 as a set
of equivalence classes of triples (X,Y, Z), ∃(X ∨ Y ∨ Z) 6= 0, where a pair of triples is
considered equivalent if:

∃λ ∈ F2m , λ 6= 0 for X1 = λX2, Y1 = λ2Y2, Z1 = λZ2.

Each of these equivalence classes is a projective point. The point at infinity O is the point
(1 : 0 : 0). The projective elliptic curve equation, as given in their paper, is:

E : Y 2 +XY Z = X3Z + a2X
2Z2 + a6Z

4, with a2, a6 ∈ F2m .

The conversion of affine coordinates (x, y) to López-Dahab coordinates (X : Y : Z) is
done by setting X = x, Y = y, and Z = 1. To convert López-Dahab coordinates to affine
coordinates it is necessary to compute (x.y) =

(
X
Z ,

Y
Z2

)
. It is easy to see that the projective

and the affine plane correspond. The negation of P is given as −P (X : XZ + Y : Z).
Currently the fastest formulas for point doubling, point addition and scaling a point,
according to [BL14b], are stated as:

Addition: 13M + 4S, Doubling: 3M + 5S, Scaling: 1I + 2M + 1S.

Again M denotes a binary field multiplication, S denotes a binary field squaring and I
denotes a binary field inversion. Below we state these addition and doubling formulas.

Addition: For two points P (X1 : Y1 : Z1), Q(X2 : Y2 : Z2) ∈ E(F2m) the decomposed
addition formula for P3(X3 : Y3 : Z3) = P +Q, is given as (taken from [BL14b]):

A = X1 · Z2, B = X2 · Z1, C = A2,

D = B2, E = A+B, F = C +D,

G = Y1 · Z2
2 , H = Y2 · Z2

1 , I = G+H,

J = I · E,
Z3 = F · Z1 · Z2, X3 = A · (H +D) +B · (C +G), Y3 = (A · J + F ·G) · F + (J + Z3) ·X3.

Doubling: For a point P (X1 : Y1 : Z1) ∈ E(F2m), the decomposed doubling formula for
calculating 2P (X3 : Y3 : Z3) is given as (taken from [BL14b]):

A = Z2
1 , B = a6 ·A2, C = X2

1 ,

Z3 = A · C, X3 = C2 +B, Y3 = (Y 2
1 + a2 · Z3 +B) ·X3 + Z3 ·B.

3.3 Binary Huff Curves

The so-called Huff model for elliptic curves was introduced in [Huf48] by Gerald Huff,
to study a diophatine problem. The work in [JTV10] generalized the idea to fields of
odd characteristic and made it available to cryptography. This section will loosely follow
the outline given in [DJ11], as it was the first paper that introduced binary Huff curves.
All equations in this section were introduced in [DJ11]. A generalized, affine, binary
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Huff curve H over F2m is given by the set H(F2m), consisting of all affine points (x, y)
that satisfy Equation (3.5) and the points at infinity (a, b), (1, 0) and (0, 1). The identity
element is given as o = (0, 0).

H : ax(y2 + fy + 1) = by(x2 + fx+ 1)), with a, b, f ∈ F∗2m , a 6= b, f 6= 0. (3.5)

H is birationally equivalent, over F2m for every m > 3, to a Weierstrass curve W ′ given
by:

W ′ : v(v + (a+ b)fu) = u(u+ a2)(u+ b2),

with the inverse mappings:

Ψ : H →W ′ with (x, y) 7−→
(
ab

xy
,
ab(axy + b)

x2y

)
, and

Φ : W ′ → H with (u, v) 7−→
(
b(u+ a2)

v
,

a(u+ b2)

v + (a+ b)fu

)
.

The Weierstrass curve W ′ is isomorphic to the Weierstrass curve W , given by:

W : v2 + uv = u3 + a2u
2 + a6, with a2, a6 ∈ F2m , a6 6= 0,

with the admissible change of variables:

Θ : (u, v)← (µ2u, µ3(v + su+
√
a6)), with µ = (a+ b)f.

Its inverse is given by:

Φ : (u′, v′)← (v2u′, v3v′ + sv2u′ +
√
a6), with v = µ−1.

For the change of variables to be admissible, certain conditions have to be met, namely:

s2 + s+ a2 + f−2 = 0 and (a+ b)4f4√a6 = a2b2 with s ∈ F2m .

The necessary parameter f ∈ F2m is chosen such that Tr(f−1) = Tr(a2) and Tr(f 8
√
a6) =

0. The second parameter s ∈ F2m is calculated by solving the equation s2+s+a2+f−2 = 0.
The third parameter t ∈ F2m is a solution to t2+(f4√a6)−1t+1 = 0. Lastly, the parameters
a ∈ F2m and b ∈ F2m can be calculated as

√
t = ab−1.

Standard Coordinates

Similar to Weierstrass curves, the projective point P (X : Y : Z) on a generalized Huff
curve corresponds to its affine point, given by (x, y), with (x, y) = (XZ ,

Y
Z ) for all Z 6= 0

and otherwise to one of the points at infinity O otherwise. The projective points at infinity
O are given as:

O = (1 : 0 : 0), (0 : 1 : 0), and (a : b : 0).

Affine coordinates (x, y) correspond to projective coordinates (X : Y : Z) simply by
X = x, Y = y and Z = 1. On generalized Huff curves, the negation of a point cannot be
calculated via its identity element as this element is not an inflection point of the curve.
However, the authors of [DJ11] show that the inverse can be calculated as it is the third
point of intersection when drawing a tangent at the identity element. For the inverse of
an affine point P (x, y) they give the following formula:

−P = P ∗
(
b · f
a+ b

,
a · f
a+ b

)
, with a, b, f ∈ F2m .
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The points P and
(
b·f
a+b ,

a·f
a+b

)
are joined with a line, where ∗ denotes the third point of

intersection (counting multiplicities) with the curve. They also show an alternative way
where the birational equivalence Ψ to a Weierstrass curve is exploited, which leads to an
alternative definition for −P , namely:

−P
(
y1(αx1 + 1)

(βy1 + 1)
,
x1(βx1 + 1)

(αx1 + 1)

)
,

with α = a+b
b·f and β = a+b

a·f . In contrast to binary Weierstrass curves, where the inverse
of a point can be calculated at the costs of one field addition, this operation is, in terms
of computing power, very expensive as it involves several binary field multiplications and
binary field inversions.

Currently the computational costs of formulas for point doubling and point addition,
according to [GH13], are stated as:

Addition: 15M + 3S, Doubling: 6M + 2D + 6S.

Again M denotes a binary field multiplication, D denotes a binary field multiplication
by a constant and S denotes a binary field squaring. Here we state these addition and
doubling formulas.

Addition: For two points P (X1 : Y1 : Z1), Q(X2 : Y2 : Z2) ∈ H(F2m) the decomposed
addition formula for P3(X3 : Y3 : Z3) = P +Q, is given as (taken from [DJ11]):

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,

m4 = (X1 + Z1)(X2 + Z2) +m1 +m3, m5 = (Y1 + Z1)(Y2 + Z2) +m2 +m3,

m6 = m4(m2 +m3), m7 = m5(m1 +m3), m8 = m1m2 +m2
3,

m9 = m8 + (X1Y1 + Z2
1 )(X2Y2 + Z2

2 ),

X3 = m6m9, Y3 = m7m9, Z3 = m4m5m8.

Doubling: For a point P (X1 : Y1 : Z1) ∈ H(F2m), the decomposed doubling formula for
calculating 2P (X3 : Y3 : Z3) is given as (taken from [DJ11]):

m1 = X1Y1 + Z2
1 , m2 = X1Z1, m3 = Y1Z1,

X3 = α · [m2(Y1 + Z1)2]2, Y3 = β · [m3(X1 + Z1)2]2, Z3 = [m1(m1 +m2 +m3)]2.

Here α = a+b
b and β = a+b

b , where a and b are parameters in Equation (3.5).

WZ Coordinates

Devigne and Joye introduced, a new projective coordinate system for Huff curves in [DJ11]:
so-called WZ coordinates. WZ coordinates make it possible to use differential addition and
doubling formulas without being forced to use an affine coordinate system. Affine coor-
dinate systems come with a severe performance penalty as they require costly inversions.
An affine point P = (X1

Z1
, Y1Z1

) is represented in WZ coordinates, with θ ∈ F∗2, as follows:

(W : Z) =

{
(θw(P ) : θ) = (θX1Y1 : θZ2

1 ) if P 6= (a : b : 0), and

(1 : 0) otherwise.

ω is a coordinate function that fulfills ω(P ) = ω(−P ), for example:

ω : (x, y) 7→ (x · y). (3.6)
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3.4 Security Properties of Elliptic Curves

In this section, we will discuss the security properties of elliptic curves, starting with
the elliptic curve discrete logarithm problem (ECDLP) in Section 3.4.1. This is followed
by mathematical attacks, wherein we first explain so-called generic attacks against the
ECDLP in Section 3.4.2. These are attacks that do not have special requirements con-
cerning the curve they are attacking, and secondly we explain state-of-the-art attacks in
Section 3.4.3. These are attacks with more specific requirements. In Section 3.5, we will
give a short introduction to implementation attacks, with a special focus on timing attacks
and fault attacks.

3.4.1 The Elliptic Curve Discrete Logarithm Problem

The elliptic curve discrete logarithm problem (ECDLP) is the mathematically hard prob-
lem on which the security assumptions of elliptic curve cryptography are based.

Definition 3.4.1 (ECDLP). Let G be an elliptic curve group generated by P . Given
Q ∈ G, the ECDLP is defined as finding an integer 0 ≤ k ≤ |P | − 1 such that kP = Q.

3.4.2 Generic Attacks against the ECDLP

An algorithm is considered generic if all its computations are any one of the following (as
stated by the authors of [CF05]):

� the composition of two group elements or,

� calculating the inverse of a group element or,

� comparing two group elements.

Therefore, the following generic algorithms for attacking the ECDLP work on any group
without relying on any special group properties.

Pollard’s ρ-Method

This section is a summary of the details and information given in [CF05] and [BSS99], as
well as in [HMV04]. Pollard’s method can be used to solve the ECDLP (kP = Q) as given
in Definition 3.4.1. The initial idea is to find a so-called collision by taking advantage of
the birthday paradox given in Theorem 3.4.1.

Theorem 3.4.1 (Birthday paradox ). While selecting randomly with replacement from an
urn with n labeled balls, one can expect to select a ball with the same label a second time
after

√
πn
2 ≈ 1.25

√
n draws from the urn.

To avoid the costly storage and computational requirements of a naive attack using the
birthday paradox, where it is necessary to store each previously selected element and com-
pare each element with all previously chosen elements, Pollard’s method uses a determin-
istic, pseudorandom iterating function (f : G → G) to conduct a walk over the group G
generated by P and calculate logP (Q) with Q ∈ G. This iterative walk consists of a se-
quence s of steps, where each step si starts by selecting two random integers c, d ∈ [0, n−1],
with n = |G|, followed by calculating si = cP + dQ. At a certain point the sequence will
start to loop, meaning that a step sj = c′P + d′Q = cP + dQ is obtained a second time. If
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two steps si, sj with i 6= j are equal, such that cP + dQ = c′P + d′Q, a so-called collision
has happened. In this case, the discrete logarithm is given as follows

logP (Q) =
c− c′

d′ − d
mod n.

All steps in s are in a finite set of size n, therefore collisions must occur. As the iterating
function behaves randomly, the approximate likelihood l of a collision is l =

√
πn
2 due to

the birthday paradox (given in Theorem 3.4.1). A visualisation of the steps of s forms the
Greek letter ρ, as shown in Figure 3.1, where one can also see that after a collision s starts
to cycle forever. In order to be able to efficiently detect that a collision happened, and as
a consequence the sequence s is looping, a so-called cycle detection algorithm is necessary.

s0

s1

s2

st−1

st

st+c

st+1

st+2

st+c−2

st+c−1

Figure 3.1: The ρ shaped figure formed by all steps in the sequence s

Cycle detection is a problem that occurs in many areas of computer science, therefore mul-
tiple algorithms which solve this problem already exist. One of them is Floyd’s algorithm,
which goes back to an idea for finding cycles in directed graphs, introduced in [Flo67]. A
cycle detection algorithm introduces two important parameters for the sequence s, namely
t the tail length and c the cycle length. The tail length gives the number of elements until
the cycle is reached; the tail is given by the elements {s0, s1, . . . st−1} in Figure 3.1. Sim-
ilarly, the cycle length gives the number of elements and therefore the “size” of the cycle.
In Figure 3.1 the cycle consists of the elements {st, . . . , st+c}. These two parameters, in
the case of Floyd’s algorithm, have the following expectancies: t ≈

√
πn
8 and c ≈

√
πn
8 .

Both expectancies are under the assumption that the iteration function behaves randomly.
Floyd’s algorithm detects a loop if si = s2i which is the case with i = c(1 + b tcc).

Floyd’s algorithm drastically reduces the storage and computational requirements,
compared to a naive attack, as only si = s2i for each si ∈ s need to be compared to
reliably detect a loop, and therefore the storage requirements are only one pair (si, s2i) of
iteration steps.

The expected number of group operations leading to the collision depends heavily on
the cycle finding algorithm as well as the close to random behavior of the iterating function.
The typical approach for getting an almost random iterating function is to divide the
group into several sets from which to randomly chose elements. For the currently best
iterating functions [Tes98] gives ≈ 1.453

√
|G| iterations to solve the ECDLP. It is also

worth mentioning that Pollard’s-ρ algorithm can be parallelized very efficiently, where for
M additional processors a linear speedup of M can be achieved. The authors of [HMV04]
give Algorithm 1 as a single processor algorithm.
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Algorithm 1 Pollard’s rho algorithm for the ECDPL (single processor) [HMV04, Algo-
rithm 4.3].

Input: P ∈ E(Fq) of prime order n, Q ∈ 〈P 〉.
Output: The discrete logarithm l = logPQ.
1: Select the number L of branches (e.g., L = 16 or L = 32)
2: Select a partition function H : 〈P 〉 → {1, 2, . . . , L}
3: for j from 1 to L do
4: Select aj , bj ∈R [0, n− 1]
5: Compute Rj = ajP + bjQ
6: end for
7: Select c′, d′ ∈R [0, n− 1] and compute X ′ = c′P + d′Q
8: Set X ′′ ← X ′, c′′ ← c′, d′′ ← d′

9: repeat
10: Compute j = H(X ′)
11: Set X ′ ← X ′ +Rj , c

′ ← c′ + aj mod n, d′ ← d′ + bj mod n
12: for i from 1 to 2 do
13: Compute j = H(X ′′)
14: Set X ′′ ← X ′′ +Rj , c

′′ ← c′′ + aj mod n, d′′ ← d′′ + bj mod n
15: end for
16: until X ′ = X ′′

17: if d′ = d′′ then
18: return failure
19: else
20: compute l = (c′ − c′′)(d′′ − d′)−1 mod n
21: return l
22: end if

The Pohlig-Hellman Algorithm

This section is based on information given in [BSS99] and [CF05], and follows the expla-
nations given in [WT02]. The Pohlig-Hellman algorithm can solve the discrete logarithm
(DL) (as defined in Section 2.1.1) in a given group G if a factorization of |G| is known.
The Pohlig-Hellman algorithm reduces the DL problem in the large group G to several DL
problems in probably much smaller subgroups, given by the prime factors of |G|. It gives
speed advantages compared to other methods only if the prime factors are significantly
smaller than |G|. The Pohlig-Hellman algorithm relies heavily on the Chinese Remainder
Theorem (CRT) which is introduced next.

The Chinese Remainder Theorem: The Chinese Remainder Theorem states that
given a set of congruences, there exists a unique solution to this set of congruences modulo
the product of all moduli, given that they are pairwise coprime. This is stated more
formally in Theorem 3.4.2.

Theorem 3.4.2 (Chinese Remainder Theorem). Given m1, . . . ,mn ∈ Z, where (mi,mj)
are pairwise coprime for all i 6= j and given a1, . . . , an ∈ Z, there exists an x ∈ Z for all:

x ≡ ai mod mi, for all 1 ≤ i ≤ n.

Furthermore, this x is unique module m1 . . .mn.

The Chinese Remainder Theorem leads to a generic algorithm, given in Algorithm 2.
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Algorithm 2 Chinese Remainder Algorithm

Input: A set of equations of form x ≡ ai mod mi.
Output: A solution x to the set of equations.

1: calculate m =
∏r
i=1mi = miMi where Mi = m

mi

2: calculate ni such that niMi ≡ 1 mod mi

3: return x =
∑r

i=1 aiMini (mod m)

Example 3.4.1 (Chinese Remainder Example). Given the following system of congru-
ences: x = 7 mod 26, x = 1 mod 11 and x = 3 mod 17. One starts by calculating:

m = 26 · 11 · 17 = 4862, m1 = 26,M1 = 11 · 17 = 187,

m2 = 11,M2 = 26 · 17 = 442, m3 = 17,M3 = 26 · 11 = 286.

Next the so-called ni are calculated, such that niMi ≡ 1 mod mi:

187 · n1 ≡ 1 mod 26,

n1 = −5,

442 · n2 ≡ 1 mod 11,

n2 = −5,

286 · n3 ≡ 1 mod 17,

n3 = −6.

Now a solution can be calculated as follows:

x =

r∑
i=1

aiMini (mod m),

= (7 · 187 · −5) + (1 · 442 · −5) + (3 · 286 · −6) (mod 4862) = −13903 (mod 4862),

= 683.

Now we have a look at the Pohlig-Hellman algorithm in the context of groups given by an
elliptic curve. We follow the outline given in [HMV04, Section 4.1.1]. The elliptic curve
discrete logarithm problem ECDLP (as introduced in Definition 3.4.1) finding an integer
0 ≤ k ≤ |P | − 1 such that k = logP (Q), given that a group G is an elliptic curve group
generated by P and Q ∈ G.

The prime factorisation of |G| is then given, as |P | = n =
∏r
i=1 p

ei
i . As every peii is

coprime to all other factors, the strategy is to transfer the ECDLP to all i subgroups, each
of order |peii |. By solving the ECDLP in all r subgroups, all kpi such that:

kpi ≡ k (mod peii ) with 1 ≤ i ≤ r, (3.7)

are determined. The CRT (as given in Section 3.4.2) is applied to these r equations and
gives a unique solution k (mod n) to the ECDLP for the group G.

For every peii with ei > 1, some intermediate steps are necessary as the solution mod
peii is calculated using the CRT. As peii |n, one calculates kpi = z mod pti for t = {1, . . . , ei},
which is referred to as lift of the value. The sought-after z is written in pi-ary represen-
tation, with 0 ≤ zi < pi, as:

z = z0 + z1pi + z2p
2
i + · · ·+ zei−1p

ei−1

i .

Then, every zi is calculated sequentially, starting with z0. Following along with the ex-
planations given in [HMV04], one can construct the following formulas using the pi-ary
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representation. One starts by transferring the ECDLP to the subgroup of order pi by cal-

culating P0 =
(
n
pi

)
P and Q0 =

(
n
pi

)
Q. The order of P0 is pi, as piP0 = pin

pi
P = nP , the

same can be checked for Q0. This leads to the following equation (taken from [HMV04]):

Q0 =
n

pi
Q = k

(
n

pi
P

)
= kP0 = z0P0.

Therefore, z0 can be calculated by solving z0 = logP0(Q0). We use this intermediate result
to calculate z1 as follows (taken from [HMV04]):

Q1 =
n

p2
i

(Q− z0P ) =
n

p2
i

(k − z0)P = (k − z0)P

(
n

p2
i

P

)
= (z0 + z1pi − z0)

(
n

p2
i

P

)
= z1

(
n

pi
P

)
= z1P0.

Again, the ECDLP has to be solved in 〈P0〉 and z1 can be calculated as z1 = logP0(Q1).
The authors of [HMV04] give the following generic formula for calculating zt = logP0(Qt):

Qt =
n

pt+1
i

(
Q− z0P − z1piP − z2p

2
iP − · · · − zt−1p

t−1
i P

)
,

given that z0, . . . , zt−1 are already calculated. This leads to a system of equations similar
to Equation (3.7), which can be solved by the CRT.

3.4.3 State-of-the-Art Attacks against the ECDLP

The main difference in the attacks described in the following section compared to the
attacks shown in Section 3.4.2 is that they involve certain assumptions concerning the
elliptic curves they are attacking.

The MOV Attack

The first sub-exponential algorithm which solves the ECDLP on some closely defined
groups was given 1991 by Menezes, Okamoto and Vanstone (which explains the name MOV
attack) in [MVO91] and uses the Weil pairing. Later on, this attack was generalized and
enhanced by others, most notably Frey and Rück in [FR94] and [FMR99]. The idea behind
this type of attack is to use a so-called pairing on an elliptic curve to transfer the ECDLP
in an elliptic curve E(Fq) to a DLP in an extension field Fqk of Fq, for which subexponential
attack algorithms, most notably the index-calculus method (described in Section 3.4.3),
are known. This is done by using the Weil pairing to establish an isomorphism between
the subgroup of E, generated by the prime order point P and the subgroup in Fqk given

by its nth root of unity, where n is the order of P and assumed to be n ≥ 3. To follow the
attack it is necessary to introduce the Weil pairing.

The Weil Pairing: A Weil pairing on an elliptic curve E(Fq) is given as a mapping:

en : E[n]× E[n]→ µn(Fqk),

where n ∈ N is relatively prime to q and µn is the nth root of unity (meaning that
en(P,Q)n = 1 for all P,Q ∈ E[n]).
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The so-called embedding degree k, with respect to n, is the smallest positive value that
fulfills n|(qk − 1). This property is based on the observation that all points of order n in
E mapped by en are isomorphic to points in the subgroup, consisting of all nth roots of
unity, of the minimal field F∗

qk
that contains all nth roots of unity. This means that the

order of |(Fqk)| = (qk − 1) must be divided by the order n of the subgroup created by
the mapped points from E[n]. For supersingular curves, k is always small. An interesting
paper discussing the minimal embedding field and its impact on the security of pairing
based cryptography is [Hit07].

Furthermore, the pairing en has the following basic properties for P,Q, P ′, Q′ ∈ E[n]:

� identity such that en(P, P ) = 1 for all P ∈ E[n],

� en is bilinear meaning that en(P +P ′, Q) = en(P,Q) · en(P ′, Q) as well as en(P,Q+
Q′) = en(P,Q) · en(P,Q′),

� en is non-degenerate meaning that there is no P 6= O such that en(P,Q) = 1 for all
Q and no Q 6= O such that en(P,Q) = 1 for all P ,

� en is alternating as en(P, P ) = 1 for all P and therefore en(P + Q,P + Q) =
en(P, P ) · en(P,Q) · en(Q,P ) · en(Q,Q) = en(P,Q) · en(Q,P ) = 1 from which follows
that en(P,Q) = en(Q,P )−1.

The given Weil pairing is used in the attack as an important step in Algorithm 3 given
by the authors of [MVO91].

Algorithm 3 [MVO91, Algorithm 2]. Algorithm that reduces the ECDLP to a DLP in a
finite field
Input: An element P ∈ E(Fq) of order n, and R ∈ 〈P 〉.
Output: An integer l such that R = lP .

1: Determine the smallest integer k such that E[n] ⊆ E(Fqk)
2: Find Q ∈ E[n] such that α = en(P,Q) has order n
3: Compute β = en(R,Q)
4: Compute l, the discrete logarithm of β to the base α in Fqk

The order n of point P has to be coprime to q and n|qk − 1. For step 4 in Algorithm 3
the index-calculus method, as given in the next section, is suitable to calculate αl = β.

Index-Calculus Method: This section follows the excellent explanation of the Index-
Calculus method given in [HMV04, Section 4.1.3] and uses additional information given
in [Die12]. The Index-Calculus method is the state-of-the-art attack for the DLP (as
stated in Definition 2.1.1) in the multiplicative group F∗q of a finite field Fq. According
to McCurley in [DM89], the main idea for the Index-Calculus method was first stated in
the early 20th century and then reinvented in the late 1970s. As outlined in [HMV04], the
index-calculus method can be sketched in four steps, as given in Algorithm 4.
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Algorithm 4 The Index-Calculus Method

Input: A generator g, a modulus n and an argument h.
Output: A solution x to gx ≡ h (mod n).

1: find a so-called factor base S
2: find linear relations
3: solve the linear system of equations given by those relations
4: extract the solution

Now follows a more detailed insight into each of the steps given in Algorithm 4, which
calculates logg(h) for the given group G = 〈g〉. G is of order n = |G| and h ∈ G.

Definition 3.4.2 (Smoothness Bound). Given a positive integer B as so-called smoothness
bound, then a positive integer a is called B-smooth if all its prime factors are smaller or
equal to B.

Step 1: The factor base S ⊂ G should consist of a subset of elements in G such that a
“significant” number of all elements in G can be expressed as a linear combination of few
elements in S and with small coefficients. In practice if G is the multiplicative group of a
prime field Fq, all elements in G can be represented by the integers of size less than q. A
smoothness bound B is chosen. This ensures that the biggest prime factor of each of the
chosen positive integers is smaller than or equal to B. The factor base S is then given by
all primes in the integer representation of G, which are smaller than or equal to B, giving
S as S = {pi} with 2 ≤ pi ≤ B with all primes p ∈ G, let x denote the cardinality of S.

If G is the multiplicative group of a binary field F2m , all elements of G can be rep-
resented by polynomials of degree smaller than m. The factor base S is given by the
irreducible polynomial of degree lower than or equal to the smoothness bound B. This
ensures that every element in G that can be factored over S has irreducible factors that
are of smaller degree than B, again x denotes the cardinality of S.

Step 2: One chooses a random number 0 ≤ k < n such that all the factors of gk lie in
S, or more formally (taken from [Equation 4.6][HMV04]):

gk =
x∏
i=1

pcii with ci ∈ N. (3.8)

A relation of indices can be obtained by taking the logarithms to the base g in the Equa-
tion (3.8). Such a relations is given as follows (taken from [Equation 4.7][HMV04]):

k ≡
x∑
i=1

cilogg(pi) (mod n).

Here the estimated number of relations is slightly larger than x [HMV04]. Step 2 also
shows a trade-off as the bigger the factor base S, the easier it is to find a gk which factors
over S, but it also increases the complexity of the system of equations that need to be
solved in the next step.

Step 3: The system of equations is obtained by calculating logg(pi) for all 1 ≤ i ≤ x.
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Step 4: After all logarithms of elements in S are calculated, a solution is extracted. To
compute logg(h) numbers 0 ≤ k < n are selected until gkh is a product of elements in s,
more formally (taken from [Equation 4.8][HMV04]):

gkh =
x∏
i=1

pdii with di ∈ N.

Similar to Step 1, one can apply the logarithm to both sides of the equation and retrieves
the solution as (taken from [Equation 4.9][HMV04]):

logg(h) = −k +
x∑
i=1

dilogg(pi) mod n.

It should be mentioned that the Index-Calculus method can not directly solve the
ECDLP in elliptic curve groups. This is due to the lack of prime elements, which makes
generic methods for finding an efficient factor base infeasible. In [Mil86, page 423], Miller
argues in more detail, as to why it is highly unlikely that an Index-Calculus method attack
will ever work directly on elliptic curves.

The SSSA Attack

The SSSA attack works on so-called prime field anomalous curves, which are elliptic curves
where the trace of Frobenius is one. This is the case if the group order of a curve E(Fq) is
equal to the order of the underlying finite field. These curves have the property that they
are cyclic and isomorphic to (Zp,+), therefore the ECDLP of the curve can be reduced
to the DLP in (Zq,+) and solved in subexponential time if a suitable, meaning efficiently
computable, isomorphism can be found. The attack was stated in three variations by
Semaev in [Sem98], Satoh and Araki in [SA98] and also by Smart in [Sma99]. The attack
can be roughly outlined as in Algorithm 5.

Algorithm 5 Outline of the SSSA attack

Input: Points P,Q ∈ E(Fq), an isomorphism φ : E(Fq)→ Fq such that φ(P ) 6= 0.
Output: P = l · P .

1: Calculate α = φ(Q), β = φ(P )
2: Find 0 ≤ l ≤ p− 1 such that l = βα−1 mod p using Algorithm 18
3: lα ≡ β mod p therefore P = l ·Q
4: return l

This attack renders all elliptic curves whose group order is equal to the order of the
underlying finite field unsuitable for cryptographic purposes.

3.5 Implementation Attacks against ECC

Implementation attacks, as the name suggests, do not try to cryptographically break a
theoretically secure cryptographic scheme, but instead focus on the concrete implementa-
tion of said scheme. The goal is to extract, via so-called side channels, enough information
about secret data, for example a secret key, such that it can be reconstructed or partially
reconstructed afterwards. There exists a wide variety of different side channels which can
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leak different amounts of information. Some examples are: the power consumption, mag-
netic emanation, acoustic emanation (sound), or execution time of operations on hardware
architectures or the side channel of response time for interactive cryptographic protocols.
In the following sections, we will focus on implementation attacks that are most relevant
in the context of applications running on servers. Section 3.5.1 gives an introduction to
timing attacks, followed by fault attacks in Section 3.5.2.

3.5.1 Timing Attacks

In 1996, Kocher was the first who published the concept of a timing attack in [Koc96].
He described the attack as a signal detection problem. The signal is expressed as timing
variations of operations that depend on secret data, which is camouflaged in a sum of noise
introduced by inaccurate timing measurements and/or noise generated by other properties
of the cryptographic system. A simple example illustrating a timing side channel, is
the elliptic curve point multiplication method called right-to-left binary method for point
multiplication which works as given in Algorithm 6. By studying the algorithm and
assuming that performing a double operation does not take the same amount of time as
performing an addition, an attacker can guess if a bit of k is 0 or 1. With this knowledge,
recovering the scalar k is an iterative process where one bit of k can be recovered by
executing one iteration of the algorithm’s for loop. One starts with k0 and measures if
an addition or a doubling is performed, which is equivalent to knowing if k0 is 1 or 0.
The knowledge of k0 is then used during the attack on k1 and so forth and so on, until
all bits of k are determined. Depending on the attacked implementation, it may not be
necessary to recover all secret bits, e.g., the authors of [NS03] showed that if a few bits of
the random nonce are leaked, the private-key used in the elliptic curve digital signature
algorithm (ECDSA) can be recovered. In order for a timing side channel attack to be
feasible, precise timing information is of essence. This was one of the reasons why timing
side channel attacks where considered to be local attacks until, in 2003, Brumeley and
Boneh (in [BB05]) successfully extracted an RSA private key from a server over their local
network. In 2011, Brumley and Tuveri published in [BT11] an example for a remote attack
on OpenSSL’s binary elliptic curve implementation of the Montgomery ladder (detailed
in Section 4.1). They attacked the Elliptic Curve Digital Signature Algorithm (ECDSA)
and exploited a side channel which leaked parts of the random nonce used in the ECDSA.
As this nonce is used for blinding the private key, a Lattice Attack could be mounted to
recover the secret key.

Defenses against Timing Attacks

An implementation which is not vulnerable to a timing attack doesn’t have a correlation
between secret values and the implemented algorithm’s execution time. This means that
the algorithm has to work in constant time, regardless of its input. Sadly there is no
perfect countermeasure against all side-channel attacks; one merely makes known attacks
infeasible. The scientific community came up with different concepts to ensure the timing
attack resistance of implementations. Some of them will be explained in more detail in
this section.

The authors of [CF05] state that making the implementation regular thwarts so-called
simple side-channel attacks as every link between secret data and observable outputs is
broken. The assumptions are that the attacker is able to observe one execution of the
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scalar multiplication algorithm. The authors recommend a variety of countermeasures,
namely:

� dummy arithmetic operations,

� the use of unified addition/doubling formulas,

� the Montgomery ladder (as described in Section 4.1) for scalar multiplication.

There are several advantages and drawbacks for every one of the approaches. Some ex-
amples of drawbacks are: dummy operations can be attacked with safe-error attacks (de-
scribed in Section 3.5.2), unified formulas are slower than their speed-optimized counter-
parts and the Montgomery ladder does not support speedups through precomputations.

3.5.2 Fault Attacks

Fault attacks comprise a wide variety of mostly hardware based attacks where a wide
range of physical environment conditions can be altered to induce a fault in a chip. Some
examples are exposing the chip to high temperatures, supply voltage outside of the speci-
fications, or exposure to radiation or magnetic fields with the goal of inducing an error in
the computation. This error should help a cryptographer to deduce some otherwise secret
information from the chip.

In context of elliptic curve cryptography, faults can also be induced if the validity
of elliptic curve public keys is not checked properly. The authors of [ABM+03], provide
practical, so-called invalid curve attacks on several protocols that make use of elliptic
curve cryptography.

Safe-Error Attacks

The rough outline of a safe-error attack is as follows. A fault is injected into the com-
putation of an implementation that uses dummy operations. Later on, the output of the
computation is checked as to whether the result is valid. If so, this means that the error
was introduced at a time when a dummy operation was calculated. For this attack, the
adversary needs physical control over the device. Therefore, it mainly poses a threat to
smart cards. This type of attack is not possible if all operations contained in an algorithm
are effective and regular, as every error influences the result of the calculation. This is, for
example, the case for the Montgomery ladder (described in Section 4.1) as well as Joye’s
Double-and-Add algorithm (described in Section 4.5).

Defenses against Fault Attacks

The authors of [CF05] suggest checking the result of the cryptographic operation as a
good countermeasure to mitigate fault attacks. The result must be a valid point which
lies on the used elliptic curve. They also bring to the reader’s attention that this kind of
checking, where the result is held back in case of errors, may have a downside. It can be
used in another safe-error attack. Therefore, they additionally recommend randomizing
the scalar.

The authors of [ABM+03] recommend checking the following four properties (taken
from [Definition 1][ABM+03]) of a received public key to ensure that a point W =
(xW , yW ) ∈ E is valid and therefore thwart their attacks:



CHAPTER 3. ELLIPTIC CURVES IN CRYPTOGRAPHY 31

1. W 6= O,

2. xW and yW are properly represented elements of Fq,

3. W satisfies the defining curve equation of E(Fq),

4. n ·W = O with n = |P |, where P is a prime order base point of E(Fq).

Checking beforehand is only effective if one can be certain that during the following cryp-
tographic operations no additional fault can be induced.

3.6 Summary

In this chapter, we introduced the standard elliptic curve types used in cryptography,
accompanied by a subset of the available coordinate systems. We showed the fastest
available doubling and addition formulas as well as their computational costs for easy
comparison. Additionally, we took a deeper look into the security of elliptic curves and
explained several well known mathematical attacks starting with older generic attacks
that work without special requirements, followed by newer, more specific attacks. Those
attacks were the reason why trust in elliptic curves was shaken in the beginning of the
1990s, and as a result certain classes of elliptic curves are no longer used in ECC. Later
on, we gave a brief introduction to implementation attacks on elliptic curve cryptography,
especially to timing and fault attacks. Implementation attacks are a constant threat to the
security of any cryptographic system. Theoretical concepts and assumptions tend to be
hard to implement in real world computers, and implementation errors can compromise the
security of systems that are theoretically secure. Implementation attacks can therefore not
be overlooked, and the defenses we mentioned have to be considered when implementing
cryptographic systems.



Chapter 4

Scalar Multiplication on Elliptic
Curves

In this chapter, we describe several ways in which a scalar multiplication on an elliptic
curve can be executed. Scalar multiplication is an essential building block for public-key
elliptic curve cryptography and has a significant influence on the execution time of ECC
algorithms. Therefore, optimized scalar multiplication methods are vital for good ECC
performance. Optimizations can be realized in several ways, e.g., by using more efficient
algorithms, by exploiting special elliptic curve properties like isomorphisms or by using
more efficient addition and doubling formulas based on special coordinate systems.

We start with basic scalar multiplication methods in Section 4.1. One of the most
crucial design decisions for a scalar multiplication algorithm is time-memory trade-off.
In this context, time-memory trade-off means computing and storing some intermediate
values that solely depend on a previously fixed point P beforehand. The algorithm gains
a reasonable speedup while executing scalar multiplications with P afterwards. In Sec-
tion 4.2, we give several scalar multiplication methods which utilize precomputations. A
scalar multiplication method that uses efficiently computable endomorphisms in combi-
nation with precomputations is discussed in Section 4.3. If there is no memory for pre-
computations available, various alternative algorithms with small memory footprints and
acceptable performance do exist. We introduce two different kinds. First, we introduce
the Montgomery ladder multiplication method in Section 4.4. Second, we also describe
Joye’s Double-and-Add multiplication method in Section 4.5. It should be noted that the
Montgomery ladder and Joye’s Double-and-Add method have the additional advantage
of being resistant to many implementation attacks. This chapter concludes with a short
summary in Section 4.6.

4.1 Basic Scalar Multiplication Methods

In this section, we first introduce some basic scalar multiplication methods. This is followed
by selected ideas for scalar encodings that will improve the performance of several scalar
multiplication methods given in later parts of the chapter.

Double-and-Add Multiplication

One of the most basic scalar multiplication algorithms is the Double-and-Add algorithm.
It exists in different varieties; one is illustrated in Algorithm 6.

32
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Algorithm 6 Right-to-left binary method for point multiplication [HMV04, Algo-
rithm 3.26]

Input: k = (k`−1, . . . , k0)2, P ∈ E(Fq).
Output: k · P .
Q = O
for i = 0 to `− 1 do

if ki = 1 then
Q = Q+ P

end if
P = 2P

end for
return Q

One can see that the scalar is represented in binary form and processed from right-to-left.
As there are no assumptions on the form of the scalar k, it is expected that on average
half of the ` bits are ones. Therefore, the expected running time of the algorithm can be
estimated as:

≈
(
`

2
additions+ ` doublings

)
.

As mentioned in Section 3.5, this algorithm is vulnerable to side channel attacks.

Double-and-Always-Add Multiplication

The double-and-always-add algorithm tries to counter simple side channel attacks via so-
called dummy instructions. Those are instructions that are executed but have no effect
on the outcome of the calculation. The author of [Cor99] introduced Algorithm 7, which
does exactly this. One point addition and one point doubling is executed per bit ki of the
scalar k and the result is chosen depending on ki. One of the executed operations is not
effective.

Algorithm 7 Double-and-Always-Add method for point multiplication [Cor99, Algo-
rithm 1’]

Input: k = (k`−1, . . . , k0)2, P ∈ E(Fq).
Output: Q = k · P .
R0 = P
for i = `− 2 to 0 do

R0 = 2R0

R1 = R0 + P
R0 = Rki

end for
return R0

One can see that the execution time of this algorithm does not depend on the format of
the scalar k so the algorithm is therefore called regular. Nonetheless this comes with a
performance penalty, as the estimated running time is:

≈ ((`− 2) additions+ (`− 2) doublings) .

Montgomery Ladder Multiplication

The so-called Montgomery ladder is an algorithm for scalar multiplication. It is based on
an idea introduced by Peter Montgomery in [Mon87]. The Montgomery ladder scalar mul-
tiplication algorithm has two main advantages. First it has very low storage requirements
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and secondly it executes the same effective operations for every bit of the scalar. This
has the effect that the execution time of the Montgomery ladder does not depend on the
format of the scalar k, which means the Montgomery ladder is regular. Those properties
give a good starting point if one aims to create an implementation which is resistant to
various implementation attacks (see Section 3.5 for an introduction to implementation
attacks). In its simplest form, the Montgomery ladder works as shown in Algorithm 8.

Algorithm 8 Montgomery Ladder on Elliptic Curves
Input: A point P on E and a scalar k = (k`−1, . . . , k0)2 ∈ Zp.
Output: k · P .
R0 = P and R1 = 2P
for i = `− 2 downto 0 do

if ki = 0 then
R1 = R0 +R1, and
R0 = 2R0

else
R0 = R0 +R1, and
R1 = 2R1

end if
end for
return R0

The scalar k of length ` is given in binary form. For every bit of the scalar, one addition
and one doubling are performed; this is called a Montgomery ladder step (MLS). It is of
interest that the relation between R1 and R0 is invariant throughout all ladder steps. It
should also be noted that it is possible to parallelize the Montgomery ladder algorithm.
An obvious way would be to use two processing units, one for additions and the other for
doublings, assuming that those two operations take roughly the same time to compute.
The expected runtime of Algorithm 8 for a scalar k of length ` is given as:

≈ ((`− 2) additions+ (`− 1) doublings) .

The number of additions and doubling stays the same throughout all optimizations of the
Montgomery ladder. Therefore, the addition and doubling formulas have to be optimized
to be more efficient in terms of field operations. We refere the reader to Section 4.4 where
we discuss several optimizations in detail.

Joye’s Double-and-Add Multiplication

Joye’s Double-and-Add algorithm has several properties similar to the Montgomery ladder,
e.g., all its operations are effective. This means that no dummy operations are necessary
for the algorithm to be regular. It should be noted that in Joye’s Double-and-Add mul-
tiplication method the scalar is processed right-to-left, giving advantages as it thwarts
for example the idea of the doubling attack given in [FV03]. This attack works only if
the scalar is processed right-to-left. The authors of [FV03] introduce their concept for a
downward Double-and-Add scalar multiplication method, as given in Algorithm 7. They
concentrate on the doubling steps, and observe that while computing the scalar multipli-
cation for two values P and 2P , similar intermediate steps emerge. Namely the steps k+1
for P and k for 2P . If those two steps are similar, one can deduce that a certain bit of
the scalar is 0. The attack can retrieve the zero bits in addition-subtraction chains such
as the NAF (as given in Section 4.1).
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Joyes’s Double-and-Add algorithm was introduced for an additive Abelian group G
by the authors of [Joy07]. Given an arbitrary point P ∈ G and a scalar k in binary
representation of length `, the multiplication Q = kP ∈ G can be calculated as Q =∑`−1

j=0(kj2
j)P . For 0 ≤ j < ` two states are defined in [Joy07]. Namely Sj =

∑j
i=0 kiBi

(where Bj = 2jP ) and Tj = Bj+1−Sj . These states represent the necessary intermediate
results while calculating the scalar multiplication. The authors of [Joy07] give the following
formulas for calculating both states:

Sj =

j∑
i=0

kiBi = kjBj + Sj−1 = kj(Sj−1 + Tj−1) + Sj−1,

= (1 + kj)Sj−1 + kjTj−1,

and
Tj = Bj+1 − Sj = 2Bj − (kjBj + Sj−1) = (2− kj)Bj − Sj−1,

= (2− kj)Tj−1 + (1− kj)Sj−1.

This is summarized by the authors in [Joy07, Proposition 1], which is stated as:

Sj =

{
Sj−1 if kj = 0

2Sj−1 + Tj−1 if kj = 1
and Tj =

{
Sj−1 + 2Tj−1 if kj = 0

Tj−1 if kj = 1

for all j ≥ 0 as Q = kP = S`−1. This leads directly to the so-called Double-and-Add scalar
multiplication algorithm depicted by Algorithm 9. The algorithm iterates over j bits of
the binary representation of a scalar k. For every bit kj the two states R0 and R1 are
given as: R0 = Sj and R1 = Tj . Additionally, after the jth iteration the relation of R0

and R1 satisfies R0 +R1 = 2jP .

Algorithm 9 Joye’s Double-and-Add Multiplication Method [Joy07, Algorithm 1]

Input: A point P ∈ G and k = (k`−1, . . . , k0)2 ∈ N.
Output: Q = k · P .
R0 = O and R1 = P
for j = 0 to `− 1 do

b = 1− kj
Rb = 2Rb +Rkj

end for
return R0

One can see that Algorithm 9 has an estimated running time of:

≈ ((`− 1) additions+ (`− 1) doublings) .

Non-Adjacent Form (NAF)

The NAF representation is a so-called signed digit representation. On elliptic curves
subtracting a point is (almost) equally expensive to adding a point. One can use this
observation for finding a minimal signed digit representation k =

∑`−1
i=0 ki2

i with ki ∈
{0,±1} for the scalar k, where no two consecutive digits are non-zero. Representing a
scalar in NAF form guarantees for every positive integer k the following properties (as
stated in [HMV04, Theorem 3.29]):

� every k gives a unique NAF, denoted NAF (k) of length `,
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� NAF (k) is the signed digit representation with the least non-zero digits, compared
to all signed digit representations,

� the maximum length ` of NAF (k) is given by the length of the binary representation
of k plus one,

� the length of ` is given as 2`

3 < k < 2`+1

3 ,

� the average density of non-zero digits of all NAF s of length ` is given with approx-
imately 1

3 .

Encoding a scalar in NAF form can yield performance advantages, for example in the case
of Algorithm 6, as it reduces the number of necessary additions significantly. Algorithm 10
shows how the NAF of a scalar k can be computed.

Algorithm 10 Computing the NAF of a positive integer [HMV04, Algorithm 3.30]

Input: positive integer k.
Output: NAF (k).
1: i = 0
2: while k ≥ 1 do
3: if k is odd then
4: ki = 2− (k mod 4)
5: k = k − ki
6: else
7: ki = 0
8: end if
9: k = k

2

10: i = i+ 1
11: end while
12: return (ki−1, ki−2, . . . , k1, k0)

Windowing Methods: The performance of scalar multiplication methods which use
NAF representation for the scalar can be further enhanced by so-called windowing meth-
ods. Solinas introduced the width-w windowing method in [Sol00]. Again the scalar is
represented in a signed digit representation, with w ≥ 2 and ` denoting the length of the
width-w NAF. The scalar can be written as k =

∑`−1
i=0 ki2

i where ki is odd, |ki| < 2w−1

and k`−1 6= 0. Among w consecutive digits, at most one is non-zero.

Width-w Non-adjacent Form (NAFw): Algorithm 11 shows how to compute the
width-w NAF of a positive integer. As stated in [HMV04, Theorem 3.33], the width-w
NAF representation guarantees, for every positive integer k, the following properties:

� every k gives a unique width-w NAF, denoted NAFw(k),

� NAF2(k) = NAF (k),

� the maximum length ` ofNAFw(k) is given by the length of the binary representation
of k plus one,

� the average density of non-zero digits of all width-w NAF of length ` is given with
approximately 1

w+1 .
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With the width-w windowing method, the additions for w bits of the scalar k are pro-
cessed at the same time. For every zero in the NAF representation, a doubling has to be
calculated. Algorithm 11 can be used to efficiently calculate the width-w NAF of a scalar.

Algorithm 11 Computing the width-w NAF of a positive integer [HMV04, Algo-
rithm 3.35]

Input: Window width w, positive integer k.
Output: NAFw(k).
1: i = 0
2: while k ≥ 1 do
3: if k is odd then
4: ki = k mods 2w (Note: mods gives an integer u with u ≡ k (mod 2w) and −2w−1 ≤ u < 2w−1)
5: k = k − ki
6: else
7: ki = 0
8: end if
9: k = k

2

10: i = i+ 1
11: end while
12: return (ki−1, ki−2, . . . , k1, k0)

The authors of [HMV04] give Algorithm 12 as the width-w NAF version of the right-to-left
binary method for point multiplication (introduced in Algorithm 6).

Algorithm 12 Window NAF method for point multiplication [HMV04, Algorithm 3.36]

Input: Window width w, positive integer k, P ∈ E(Fq).
Output: kP .
1: Use Algorithm 11 to compute NAFw(k) =

∑`−q
i=0 ki2

i

2: Compute Pi = iP for i ∈ {1, 3, 5, . . . , 2w−1 − 1}
3: Q = O
4: for i = `− 1 to 0 do
5: Q = 2Q
6: if k 6= 0 then
7: if ki > 0 then
8: Q = Q+ Pki

9: else
10: Q = Q− P−ki

11: end if
12: end if
13: end for
14: return Q

An approximation of the expected running time of Algorithm 12, with m = dlog2(q)e is
given as:

≈
[
1 doubling + (2w−2 − 1) additions)

]︸ ︷︷ ︸
precomputation costs (Step 2 of Algorithm 12)

+

[
m

w + 1
additions+m doublings

]
.

4.2 Comb Multiplication

In this section, we present several scalar multiplication methods which use precomputa-
tions for a fixed point P , meaning that they precalculate and store values that solely
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depend on P to speed up a scalar multiplication performed later on. We start with the
fixed-base comb multiplication method in Section 4.2.1. This concept is extended for the
improved fixed-base comb multiplication method in Section 4.2.2. This method is also
available in a simultaneous scalar multiplier version in Section 4.2.4.

4.2.1 Fixed-Base Comb Multiplication Method

The fixed-base comb multiplication method represents the scalar k of length ` as a binary
matrix with c columns and r rows. This concept was introduced by Lim and Lee in [LL94],
where they give a binary representation for k by splitting k into r blocks Ki, with 0 ≤ i ≤
r− 1, of equal length d = d `re. The scalar is padded with leading zeros if necessary. Each
block Ki is then written as a row in the matrix. The matrix columns c are the base for
all further computations. This scalar representation is illustrated in [HMV04] as follows:

k =


K0
...
Ki
...

Kr−1

 =


K0,d−1 · · · K0,0

...
...

Ki,d−1 · · · Ki,0
...

...
Kr−1,d−1 · · · Kr−1,0

 =


kd−1 · · · k0

...
...

k(i+1)d−1 · · · kir
...

...
krd−1 · · · k(r−1)d

 .

To gain a speedup later on, it is necessary to precompute all possible bit permutations for
a bitstring s = (br−1, . . . , b1, b0) of length r. This gives us a lookup table for every possible
window value, as:

[br−1, . . . , b2, b1, b0]P = br−12(r−1)dP + · · ·+ b222d + b12dP + b0P.

The actual scalar multiplication is computed with Algorithm 13. It is easy to see the table
lookup in Step 4:

Algorithm 13 Fixed-base comb method for point multiplication [HMV04, Algo-
rithm 3.44]

Input: Window width r, d = d `
r
e, k = (k`−1, . . . , k1, k0)2, P ∈ E(Fq).

Output: k · P .
1: Precomputation: compute [br−1, . . . , b2, b1, b0]P for all permutations for a bitstring b of length r
2: for i = d− 1 to 0 do
3: Q = 2Q.
4: Q = Q+ [Kr−1,i, . . . ,K1,i,K0,i]P .
5: end for
6: return (Q)

As stated in [HMV04], Algorithm 13 has an expected running time of:

≈
[(

2r − 1

2r
d− 1

)
additions+ (d− 1) doublings

]
.

It is of interest that the number of precomputations is given as 2r − 1. Those precompu-
tation costs amortize only for points fixed a priori, which is indicated by the name of the
multiplication method.
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4.2.2 Improved Fixed-Base Comb Method for Fast Scalar Multiplication

To fully understand the improvements introduced by Mohammed et al. in [MHH12], it is
necessary to discuss the so-called Sakai-Sakurai method for direct doubling beforehand.
Mohammed et al. use it to speedup the necessary doublings in their algorithm, which is
discussed later on.

Sakai-Sakurai Method for Direct Doubling

As the name suggests, the Sakai-Sakurai method (given in Algorithm 14) gives a way to
directly calculate kP (with P ∈ E(Fp)) from P . It avoids all the intermediate steps of
calculating 2iP for 0 ≤ i ≤ k − 1. The Sakai-Sakurai method computes 2iP with costs of
1I, 4i+ 1M , and 4i+ 1S compared to the costs of separate i doublings, given as iI, 2iM ,
and 2iS. Here I denotes a prime field inversion, M denotes a prime field multiplication
and S denotes a prime field squaring. The method only works under the assumption that
the scalar k is a power of two, meaning that k = 2r with r ≥ 1.

Algorithm 14 Sakai-Sakurai method for direct doubling [MHH12, Algorithm 3]

Input: A positive integer r such that k = 2r and P ∈ E(Fq).
Output: k = 2rP .
1: A1 = x1, B1 = 3x21 + a and C1 = −y1
2: for i = 2 to r do
3: Ai = B2

i−1 − 8Ai−1C
2
i−1

4: Bi = 3A2
i + 16i−1a(

∏i−1
j=1 Cj)

4

5: Ci = −8C4
i−1 −Bi−1(Ai − 4Ai−1C

2
i−1)

6: end for
7: Compute Dr = 12ArC

2
r −B2

r

8: Compute x2r =
B2

r−8ArC
2
r

(2r
∏r

i=1 Ci)2

9: Compute y2r =
8C4

r−BrDr

(2r
∏r

i=1 Ci)3

10: return (x2r , y2r )

In the following section, we will discuss the improved fixed-base comb method for scalar
multiplication which utilizes the Sakai-Sakurai method discussed.

Improved Fixed-Base Comb Method for Fast Scalar Multiplication

In 2012, Mohammed et al. proposed the improved fixed-base comb method for fast scalar
multiplication [MHH12]. Their work builds on ideas of Lim and Lee [LL94] as well as the
improvements introduced 2005 by Tsaur and Chou [TC05]. In their paper, Tsaur and
Chou represented the scalar in non-adjacent form (NAF) representation and, to speed
up additions, they used the so called Sakai-Sakurai method (as explained in the previous
section) for direct doubling. Mohamed et al. represent the scalar k in a so-called width-w
non-adjacent form (NAFw) (as described in Section 4.1) of length `. To create the matrix
representation for multiplying, k is split into a = d `we blocks of size w and if necessary k
is padded with zeros. This transforms k into the following form, k = Ka−1|| · · · ||K1||K0.
To build a a× w binary matrix every K becomes a column in the matrix, as follows:

k =
[
Ka−1 || · · · || K0

]
=

 ka−1,0 · · · k0,0
...

...
ka−1,w−1 · · · k0,w−1

 ,
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then from right-to-left the a×w matrix is split into w×v blocks of size b = dav e as follows:

k =

 [ka−1,0 · · · ka−b,0] · · · [kb−1,0 · · · k0,0]
...

...
[ka−1,w−1 · · · ka−b,w−1] · · · [kb−1,w−1 · · · k0,w−1]

 .
To increase speed precomputations are necessary, and [MHH12] give the following formulas
for all values that need to be precomputed:

G[0][sd] = ew−12w−1P + ew−22w−2P + · · ·+ e0P,

= sdP,

G[j][sd] = 2wb(G[j − 1][sd]),

= 2jwbG[0][sd] = 2jwbsdP,

for all 0 < j ≤ v − 1 with s ∈ {1, 21, 22, 23, . . . , 2w−1} and d ∈ {1, 3, 7, . . . , 2w−1 − 1}.
Furthermore, the lookup table index sd is given by the binary string ew−1 . . . e1e0. Af-
ter precomputing all necessary values, Algorithm 15 can be used to calculate kP . The
computational costs for this algorithm are stated in [MHH12] as:{[(

1−
(

w
w+1

)w)
a
]
additions+ (b− 2)X for the average case, and[(

1−
(
w−1
w

)w)
a
]
additions+ (b− 2)X for the worst case.

Here X is given as:

X =

{
doublings, if w = 1, and

applications of Algorithm 14 otherwise.

Algorithm 15 Proposed width-w NAF method for scalar multiplication [MHH12, Algo-
rithm 4]

Input: Positive integers w, v, (k = k`−1, . . . , k1, k0)NAFw and P ∈ E(Fq).
Output: Q = kP .
1: a = d `

w
e and b = da

v
e

2: Compute G[0][sd] and G[j][sd] for all s ∈ {1, 2, 22, 23, . . . , 2w−1}, 0 < j ≤ v − 1 and d ∈
{1, 3, 7, . . . , 2w−1 − 1}

3: Q = O
4: for t = b− 1 downto 0 do
5: if w = 1 then
6: Q = 2Q
7: else
8: Use Algorithm 14 to compute Q = 2wQ
9: end if

10: for j = v − 1 downto 0 do
11: Ij,t = (kjb+t,w−1 . . . kjb+t,0)NAFw

12: if Ij,t > 0 then
13: Q = Q+G[j][Ij,t]
14: else if Ij,t < 0 then
15: Q = Q−G[j][−Ij,t]
16: end if
17: end for
18: end for
19: return (Q)
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4.2.3 Multiple Point Scalar Multiplication

A multiple point scalar multiplication method is designed to calculate scalar multiplica-
tions of form kP + mQ with elliptic curve points P,Q ∈ E(Fq) and integers 0 ≤ k <
ordE(P ) and 0 ≤ m < ordE(Q). Multiplications of this form are used for example in the
Elliptic Curve Digital Signature Algorithm (ECDSA). Using for example Shamir’s trick
(see [Sol01] for more information) this can be done faster than two separate multiplications,
followed by an addition. One can accomplish this as outlined in [HMV04, Section 3.3.3].
The binary representation ` of both scalars k and m is written in a 2× ` matrix. This is
followed by precomputations for a windows of size w it is necessary to compute iP + jQ
for all 0 ≤ i, j < 2w. The result is calculated by adding the precomputed values iP + jQ
chosen using the 2×w bits of the scalar matrix. In total there are d `we intermediate steps.
The discussed method is given in Algorithm 16.

Algorithm 16 Simultaneous multiple point multiplication [HMV04, Algorithm 3.48]

Input: Window width w, k = (k`−1, . . . , k0)2,m = (m`−1, . . . ,m0)2, P,Q ∈ E(Fq).
Output: kP +mQ.
1: Write k = (Kd−1, . . . ,K1,K0) and m = (Md−1, . . . ,M1,M0) where each Ki,M i is a bitstring of

length w, and d = d `
w
c

2: R = O
3: for i = d− 1 downto 0 do
4: R = 2wR
5: R = R+ (KiP +M iQ)
6: end for
7: return (R)

An approximation of the expected running time of Algorithm 16 is given in equation [HMV04,
Equation 3.30] as:

≈
[
(3 · 22(w−1) − 2w−1 − 1) additions+ (22(w−1) − 2w−1) doublings

]
︸ ︷︷ ︸

precomputation costs

+

[(
22(w−1)

22w
d− 1

)
additions+ (d− 1)w doublings

]
.

4.2.4 Multiple Point Improved Fixed-Base Comb Method for Fast Scalar
Multiplication

The multiple point scalar multiplication method proposed in [MHH12] works very similarly
to the method described in Section 4.2.2 and assumes that both scalars are in NAFw form
and of length `. Analogous to the steps in Section 4.2.2, each of the two scalars is split
into a = d `we blocks of size w. This gives a representation as follows (all formulas in this
section are taken from [MHH12]):

k = Ka−1|| . . . ||K0 =
a−1∑
d=0

Kd2
dw and r = Ra−1|| . . . ||R0 =

a−1∑
d=0

Rd2
dw.
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Then from right-to-left the a × w matrices are split into w × v blocks of size b = dav e as
given by the following formulas:

kP =

b−1∑
t=0

2tw
v−1∑
j=0

Kjb+t2
jbwP and rQ =

b−1∑
t=0

2tw
v−1∑
j=0

Rjb+t2
jbwQ. (4.1)

Similarly to Section 4.2.2, the blocks Kjb+t and Rjb+t of the scalars are in NAFw repre-
sentation, namely [kjb+t,w−1 . . . kjb+t,0] and [rjb+t,w−1 . . . rjb+t,0]. Therefore, the formulas
in Equation (4.1) can be combined to the following formula:

kP + rQ =
b−1∑
t=0

2tw
v−1∑
j=0

(Kjb+t2
jbwP +Rjb+t2

jbwQ). (4.2)

To gain a speedup, in [MHH12] the following formulas for values that need to be precom-
puted, are given:

Gp[0][sd] = ew−12w−1P + ew−22w−2P + · · ·+ e0P,

= sdP,

Gp[j][sd] = 2wb(Gp[j − 1][sd]),

= 2jwbGp[0][sd] = 2jwbsdP,

Gq[0][sd] = ew−12w−1Q+ ew−22w−2Q+ · · ·+ e0Q,

= sdQ,

Gq[j][sd] = 2wb(Gq[j − 1][sd]),

= 2jwbGq[0][sd] = 2jwbsdQ,

for all 0 < j ≤ v − 1 with s ∈ {1, 21, 22, 23, . . . , 2w−1} and d ∈ {1, 3, 7, . . . , 2w−1 − 1}.
Furthermore, the index sd is given by the binary string ew−1 . . . e1e0. This allows us to
rewrite Equation (4.2) as

kP + rQ =
b−1∑
t=0

2tw
v−1∑
j=0

(Gp[j][Mj,t] +Gq[j][Nj,t]),

where 0 ≤ t < b, Mj,t = [kjb+t,w−1 . . . kjb+t,0] and Nj,t = [rjb+t,w−1 . . . rjb+t,0]. After
precomputing all necessary values, Algorithm 17 can be used to calculate a ·P +b ·Q. The
expected computational costs for this algorithm are stated (in [MHH12]) as:

2

[(
1−

(
w

w + 1

)w)
a

]
additions + (b− 2)X for the average case.

Here X is given as:

X =

{
doublings, if w = 1, and

applications of Algorithm 14 otherwise.
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Algorithm 17 Proposed width-w NAF method for multiple scalar multiplica-
tion [MHH12, Algorithm 5]

Input: Positive integers w, v, P,Q ∈ E(Fq), k = (k`−1, . . . , k1, k0)NAFw , r = (r`−1, . . . , r1, r0)NAFw .
Output: kP + rQ.
1: a = d `

w
e and b = da

v
e

2: Compute Gp[0][sd] and Gp[j][sd] for all s ∈ {1, 2, 22, 23, . . . , 2w−1}, 0 < j ≤ v − 1 and d ∈
{1, 3, 7, . . . , 2w−1 − 1}

3: Compute Gq[0][sd] and Gq[j][sd] for all s ∈ {1, 2, 22, 23, . . . , 2w−1}, 0 < j ≤ v − 1 and d ∈
{1, 3, 7, . . . , 2w−1 − 1}

4: R = O
5: for t = b− 1 downto 0 do
6: if w = 1 then
7: R = 2R
8: else
9: Use Algorithm 14 to compute R = 2wR

10: end if
11: for j = v − 1 downto 0 do
12: Mj,t = (kjb+t,w−1 . . . kjb+t,0)NAFw

13: if Mj,t > 0 then
14: R = R+Gp[j][Mj,t]
15: else if Mj,t < 0 then
16: R = R−Gp[j][−Mj,t]
17: end if
18: end for
19: for j = v − 1 downto 0 do
20: Nj,t = (kjb+t,w−1 . . . kjb+t,0)NAFw

21: if Nj,t > 0 then
22: R = R+Gq[j][Nj,t]
23: else if Nj,t < 0 then
24: R = R−Gq[j][−Nj,t]
25: end if
26: end for
27: end for
28: return (R)

4.3 Scalar Multiplication using Efficiently Computable En-
domorphisms

The scalar multiplication operation on elliptic curves can be accelerated, given that there
is an efficiently computable endomorphism available on the respective curve. The concepts
given in this section are related to the special arithmetic on Koblitz curves (see [Kob91]
and [Sol00]). They are not as powerful, but work on a larger class of elliptic curves. This
section is a summarization of the ideas given in [GLV01].

Endomorphisms

Given a finite field Fq and an elliptic curve E(Fq), an endomorphism φ is a mapping
φ : E → E given by a pair of rational functions g and h such that for all P ∈ E : φ(P ) =
(g(P ), h(P )) and φ(O) = O. Furthermore, all coefficients of g and h have to lie in Fq and
φ is a group homomorphism (as explained in Section 2.1.3) for the Abelian group defined
by E(Fq).
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Using Efficient Endomorphisms

The authors of [GLV01] state the idea that decomposing the scalar for the scalar mul-
tiplication can yield a significant increase in speed. Given a field Fq, an elliptic curve
E(Fq), a point P ∈ E(Fq) of prime order n, and an endomorphism φ on E(Fq). For the
decomposition to work, the characteristic polynomial of φ has to have a root λ modulo
n. The endomorphism φ works on 〈P 〉 as a multiplication map [λ] : P 7→ λP , meaning
that φ(P ) = λP . The method given in [GLV01] yields a performance improvement if the

costs of calculating φ are smaller than computing approximately log2 (n)
3 point doublings.

The main idea in [GLV01] is to represent the scalar 1 ≤ k ≤ n − 1 as k = k1 + k2λ with
k1, k2 ∈ {0, . . . , d

√
ne}. A scalar point multiplication can then be stated with the following

equation (taken from [GLV01, Equation 6]):

kP = (k1 + k2λ)P = k1P + k2(λP ) = k1P + k2φ(P ).

Given that k1 and k2 roughly have half the bit length of k, this decomposition makes it
possible to use a variety of simultaneous or interleaving scalar multiplication algorithms
to obtain speedups. The scalar decomposition builds on the following train of thought,
outlined in [GLV01]. Given G = Z×Z and a homomorphism f : G→ Zn where f : (i, j) 7→
(i+ jλ) mod n, then the problem of finding two integers k1, k2 which are both small can
also be expressed as finding a vector (k1, k2) ∈ Z × Z with a small Euclidean norm. The
authors of [GLV01] show how to find two linearly independent, short vectors, v1, v2 ∈ G
where f(v1) = f(v2) = 0 by applying the extended Euclidean algorithm (Algorithm 18) to
λ and n.

Algorithm 18 Extended Euclidean algorithm for integers [HMV04, Algorithm 2.19]

Input: Positive Integers a and b with a ≤ b.
Output: d = gcd(a, b) and integers x, y satisfying ax+ by = d.
1: u = a, v = b
2: x1 = 1, y1 = 0, x2 = 0, y2 = 1
3: while u 6= 0 do
4: q = b v

u
c, r = v − qu, x = x2 − qx1, y = y2 − qy1

5: v = u, u = r, x2 = x1, x1 = x, y2 = y1, y1 = y
6: end while
7: d = v, x = x2, y = y2
8: return (d, x, y)

The resulting vectors v1, v2 generate an integer lattice that contains a vector v that is
close to (k, 0). By rewriting v1, v2 and (k, 0) as vectors in Q × Q the authors of [GLV01]
give (k, 0) = β1v1 + β2v2 with β1, β2 ∈ Q. By rounding b1 = dβ1c and b2 = dβ2c, v can be
stated as v = b1v1 + b2v2. To accomplish the described scalar decomposition, the authors
of [HMV04] give Algorithm 19, which utilizes Algorithm 18 in a precomputation step.
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Algorithm 19 Balanced length-two representation of a multiplier [HMV04, Algo-
rithm 3.74]

Input: Integers n, λ, k ∈ [0, n− 1].
Output: Integers k1, k2 such that k ≡ k1 + k2λ (mod n) and |k1|, |k2| ≈

√
n.

1: Run the extended Euclidean algorithm (Algorithm 18) with inputs n and λ The algorithm produces
a sequence of equations sin + tiλ = ri where s0 = 1, t0 = 0, r0 = n, s1 = 0, t1 = 1, r1 = λ, and the
remainders ri are non-negative and strictly decreasing. Let ` be the greatest index for which r` ≥

√
n

2: Set (a1, b1) = (r`+1,−t`+1)
3: if (r2` + t2`) ≤ (r2`+2,−t2`+2) then
4: (a2, b2) = (r`,−t`).
5: else
6: (a2, b2) = (r`+2,−t`+2)
7: end if
8: Compute c1 = b b2k

n
e and c2 = b−b1k

n
e

9: Compute k1 = k − c1a1 − c2a2 and k2 = −c1b1 − c2b2
10: return (k1, k2)

Given a decomposed scalar k = k1 + k2λ mod n and a suitable endomorphism φ, Algo-
rithm 20 calculates kP for a point P ∈ E(Fq) by interleaving k1P +k2φ(P ). The expected
runtime is given in [HMV04, Equation 3.38] as follows:

≈

|{j : wj > 2}| doublings+
2∑
j=1

(2wj−2 − 1) additions+ Ck + Cφ


+

doublings+

2∑
j=1

1

wj + 1
additions

 t

2
,

where Ck denotes the costs of decomposing the scalar k, t is the bitlength of n, kj is given
in width-wj NAF and Cφ are the costs of finding a suitable homomorphism. The storage
requirements are stated in [HMV04] as 2w1−2 +2w2−2 points. With proper precalculations,
it is possible to avoid most of the costs Ck, as v1 and v2 do not depend on k, and therefore
the estimates v1 = b1

n and v2 = −b2
n in Algorithm 19 can be used.
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Algorithm 20 Point multiplication with efficiently computable endomorphisms [HMV04,
Algorithm 3.77]

Input: Integers k ∈ [0, n− 1], P ∈ E(Fq), window width w1 and w2, and λ.
Output: kP .
1: Use Algorithm 10 to find k1 and k2 such that k = k1 + k2λ mod n
2: Calculate P1 = φ(P ), and let P1 = P

3: Use Algorithm 18 to compute NAFwj (|kj |) =
∑`j−1

i=0 kj,i2
i for j = 1, 2

4: Let ` = max{`1, `2} and define kj,i = 0 for `j ≤ i < `, 1 ≤ j ≤ 2
5: If kj < 0, the set kj,i = −kj,i for 0 ≤ i < `j , 1 ≤ j ≤ 2
6: Compute iPj for i ∈ {1, 3, . . . , 2wj−1 − 1}, 1 ≤ j ≤ 2
7: Q = O
8: for i = `− 1 downto 0 do
9: if kj,i 6= 0 then

10: if kj,i > 0 then
11: Q = Q+ kj,iPj

12: else
13: Q = Q− |kj,i|Pj

14: end if
15: end if
16: end for
17: return Q

4.4 Montgomery Ladder Multiplication Methods

In this section, we explain several improvements to the Montgomery ladder which were
introduced over the last few years. All discussed improvements preserve the desirable
properties of the Montgomery ladder, i.e., low storage requirements and regularity. As
already mentioned in Section 4.1, the number of additions and doublings executed by the
Montgomery ladder is fixed. Therefore all improvements in the Montgomery ladder target
the addition and doubling formulas which are optimized in terms of field operations.

The standard Montgomery ladder was already discussed in Section 4.1. We start
by introducing an improved Montgomery ladder in Section 4.4.1 and an improved Co-Z
coordinate version of it in Section 4.4.2. A further improved version with Co-Z coordinates
and differential XZ formulas is given in Section 4.4.4. In Section 4.4.5, a fast Montgomery
ladder on Huff curves is introduced.

4.4.1 Differential Montgomery Ladder Multiplication

López and Dahab further extended the concept of the Montgomery ladder (as discussed in
Section 4.1) in [LD99]. One of their optimizations was the introduction of the differential
Montgomery ladder. López and Dahab state in [LD99, Lemma 2] that on a binary
elliptic curve, the x -coordinate of the sum of two affine points P1 = (x1, y1), P2 = (x2, y2),
denoted by x3, can be computed given the x -coordinates of P1 and P2 as well as the x and
y-coordinate of their difference ∆P = (P2−P1) = (x, y). This concept is called differential
addition or differential doubling, and [LD99] gives the explicit formula as follows:

x3 =

x+
(

x1
x1+x2

)2
+ x1

x1+x2
if P1 6= P2, (differential addition) and

x2
1 + a6

x21
if P1 = P2 (differential doubling).
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To speed up the Montgomery ladder these two observations, namely the invariant relation
between the ladder steps as well as the differential addition/doubling, are combined. As
only the x -coordinate is calculated in the intermediate ladder steps, the y-coordinate
needs to be recovered in an efficient manner at the end of the algorithm. Again López and

Dahab state in [LD99] an explicit formula, namely: y1 = (x1+x){(x1+x)(x2+x)+x2+y}
x + y.

Using these differential formulas, several field multiplications are saved per bit of scalar
k which lessens the computational costs considerably. Furthermore, the y-coordinate
recovery costs are one-time-only costs. Differential Montgomery ladder implementations
use so-called projective XZ coordinates as only the x- and z-coordinate are necessary to
calculate all intermediate steps. Currently the costs for the fastest formulas (according
to [BL14b]) for calculating a binary projective XZ coordinate Montgomery ladder step
(MLS) are:

5M + 4S + 1M√a6 .

Here M denotes a binary field multiplication and S a binary field squaring. 1M√a6 denotes
a binary field multiplication with the curve parameter a6. The Montgomery ladder step
is executed once per bit of the scalar k, and consists of one point addition plus one point
doubling. The additional one-time costs for the y-coordinate recovery (assuming P is
scaled) are given as (taken from [LD98]):

1I + 10M + 1S.

Here I denotes a binary field inversion, M denotes a binary field multiplication and S
denotes a binary field squaring.

4.4.2 Montgomery Ladder Multiplication with Co-Z Coordinates

The concept of Co-Z coordinates was introduced by Meloni in [Mel07]. It works on pro-
jective coordinates and is founded on the observation that points can be added more effi-
ciently if they share a common Z -coordinate. Meloni introduced his formulas for Jacobian
coordinates (explained in more detail in Section 3.1) under the following assumptions:
E is an elliptic curve over a field F, with char(F) ≥ 3, and P1 = (X1 : Y1 : Z) and
P2 = (X2 : Y2 : Z) share the same Z -coordinate. Given these conditions [Mel07] states
the formula for a point addition P1 + P2 = P3 = (X3 : Y3 : Z3) as follows:

X3 = (Y2 − Y1)2 −X2(X2 −X1)2 −X1(X2 −X1)2,

Y3 = (Y2 − Y1)[X1(X2 −X1)2 −X3]− Y1(X1 −X1)3,

Z3 = Z(X2 −X1).

(4.3)

This formula has the advantage that an alternative representation P ′1 for the point P1,
which has the same Z -coordinate as P3, is calculated. This is done without any additional
computation costs. A combination of intermediate values of Equation (4.3) is used to
express P ′1. P ′1 is given as: P ′1 = (X1(X1 −X2)2 : Y1(X1 −X2)3 : Z3) ∼ P1. This makes
it possible to use the newly calculated point P3 and the point P1 as new input to the
addition formula. In [GJM10] Goundar et al. took this concept further and developed
a so-called conjugate Co-Z addition, applicable to prime fields, which enables the use of
Co-Z formulas for binary scalar multiplication methods. The authors of [GJM10] give the
costs of one Montgomery ladder step (MLS), with their Co-Z formulas as:

9M + 7S.

Here, M denotes a prime field multiplication and S denotes a prime field squaring.
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4.4.3 Montgomery Ladder Multiplication with XY-only Co-Z Coordi-
nates

The authors of [VD10] discovered that when using Co-Z formulas it is possible to calcu-
late several consecutive additions without the necessity to calculate the z-coordinate of
intermediate results. To recover the affine coordinates of the final result, it is necessary
to recover the z -coordinate of the last step of the XY-only Co-Z coordinate Montgomery
ladder. We implemented the XY-only Co-Z coordinate Montgomery ladder as stated in
Algorithm 21.

Algorithm 21 Montgomery ladder with XY-only Co-Z doubling addition [Riv11, Algo-
rithm 10]

Input: P ∈ E(Fq), k = (k`−1, . . . , k,k0)2 ∈ N with k`−1 = 1.
Output: Q = k · P .

(R1, R0) = XYCZ-IDBL(P )
b = k`−2

(R1−b, Rb) = XYCZ-ADDC(Rb, R1−b)
for i = `− 2 to 1 do

b = ki
d = ki−1

s = d xor b
(R1−d, Rd) = XYCZ-DA(R1−b, Rb)
Rd = (−1)sRd

end for
b = k0
λ = FinalInvZ(R0, R1, P, b)
(Rb, R1−b) = XYCZ-ADD(R1−b, Rb)
return (X0λ

2, Y0λ
3)

The authors of [Riv11] give several highly specialized operations used in 21.

1. Initial doubling with Co-Z update operation, denoted XYCZ-IDBL (given in [Riv11,
Algorithm 23]).

2. The XY-only Co-Z conjugate addtion, denoted XYCZ-ADDC (given in [Riv11, Al-
gorithm 20]).

3. The XY-only Co-Z doubling-addition with update, denoted XYCZ-DA (given in [Riv11,
Algorithm 21]).

4. The coordinate recovery, denoted FinalInvZ (given in [Riv11, Algorithm 22]).

5. The XY-only Co-Z addition with update, denoted XYCZ-ADD (given in [Riv11,
Algorithm 18]).

For a detailed explanation of the implementation and inner workings of these operations,
please consult [Riv11]. The authors of [Riv11] give the costs of one Montgomery ladder
step (MLS) with XY-only Co-Z formulas as:

8M + 6S.

The additional one-time costs for calculating the affine coordinates of the results are given
as (taken from [Riv11]):

1I + 18M + 10S.
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Here, I denotes a prime field inversion, M denotes a prime field multiplication and S
denotes a prime field squaring.

4.4.4 Montgomery Ladder Multiplication with XZ-only Co-Z Coordi-
nates

Finally, Hutter et al. proposed an x-coordinate only (differential) Co-Z Montgomery ladder
in [HJS11]. It can be applied to elliptic curves over a field F, with char(F) 6= 2, 3.
All their formulas use homogeneous projective coordinates and the following setting is
assumed: E is an elliptic curve over a field F, with char(F) 6= 2, 3, P1 = (X1 : Y1 : Z)
and P2 = (X2 : Y2 : Z) share the same Z -coordinate and PD denotes the affine difference
∆PD = P2−P1 = (x, y). Their differential addition formula, which calculates P3 = P1+P2

is given as:

X3 = 2(X1 +X2)(X1X2 + a2Z
2) + 4a6Z

3 − xZ(X1 −X2)2,

Z3 = Z(X1 −X2)2.

Additionally, they state their differential doubling formula as follows:

X4 = (X2
2 − a2Z

2)2 − 8a6Z
3X2,

Z4 = Z[4X2(X2
2 + a2Z

2) + 4a6Z
3].

In order to be usable in a Montgomery ladder, the x -coordinate of the results R0 = (X3 :
Z3) and R1 = (X4 : Z4) need to have a shared Z-coordinate. This is achieved by using two
equivalent representations R0

∼= (X3Z4 : Z3Z4) and R1
∼= (X4Z3 : Z3Z4). The authors

of [HJS11] further optimized their formulas for the Montgomery ladder by combining the
differential addition with the differential doubling to the following equation:

X ′1 = V [(X1 +X2)(X2
1 +X2

2 − U + 2a4Z
2) + 4a6Z

3 − xZU ],

X ′2 = U [(X2
2 − a4Z

2)2 − 8a6Z
3X2],

Z ′ = UV Z,

where U = (X1 −X2)2 and V = X2(X2
2 + a4Z

2) + 4a6Z
3. Furthermore, R0 = (X ′1 : Z ′)

and R1 = (X ′2 : Z ′). This formulas for a XZ-only Co-Z Montgomery ladder step (MLS)
can be evaluated with costs given as:

9M + 5S + 1Ma4 + 1M4a6 .

Here, M denotes a prime field multiplication and S denotes a prime field squaring, 1Ma4

denotes the costs of multiplying with the curve parameter a4, similarly 4a6 denotes the
costs of multiplying 4a6. After all Montgomery ladder steps, the y-coordinate of the result
needs to be recovered as only the x -coordinate is calculated. To achieve this, the authors
of [HJS11] give the following equation:

X ′1 = DX1A,

Y ′1 = 2[(CX1 + a4A)(C +X1)−X2(C −X1)2] + 4a6B,

Z ′ = DB,

with A = Z2, B = ZA,C = xZ and D = 4y. The given y-coordinate recovery formula has
costs of:

8M + 2S + 1Ma4 + 1M4a6 , plus

1I + 2M if affine coordinates are needed.
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Here, I denotes a prime field inversion, M denotes a prime field multiplication and S
denotes a prime field squaring, 1Ma4 denotes the costs of multiplying with the curve
parameter a4, similarly 4a6 denotes the costs of multiplying 4a6.

4.4.5 Differential Montgomery Ladder Multiplication on Huff Curves

To be able to give a differential Montgomery ladder on Huff curves, it is necessary to first
introduce the differential addition and doubling operation on Huff curves.

Differential Addition and Doubling: The idea of differential addition and doubling
was already introduced in Section 4.4.1. It works similarly for Huff curves. López and
Dahab showed in [LD99] how to efficiently recover the y-coordinate of the result on binary
curves. Devigne and Joye used these concepts in [DJ11] as follows. Given a coordinate
function ω, as defined in Equation (3.6), and two points ω(P ), ω(Q) ∈ H(E), differential
addition describes the concept of using a known difference ω(Q−P ) to speed up the calcula-
tion of ω(P+Q). They give their differential formulas, with P 6= Q,ω1 = ω(P ), ω2 = ω(Q)
and ω̄ = ω(Q− P ), for differential doubling as:

ω(2P ) =

{
γ·w2

1
(1+w1)4

if ω1 6= 1, with γ = (a+b)2

ab , ω1 = ω(P ),

(1 : 0) if ω1 = 1.

and their differential addition works as:

ω(P +Q) =

{
(ω1+ω2)2

ω̄·(1+ω1ω2)2
if ω1ω2 6= 1, with γ = (a+b)2

ab

(1 : 0) if ω1ω2 = 1.

The idea of differential addition and differential doubling is heavily utilized when calcu-
lating a so-called differential Montgomery ladder, as shown in the next section.

Differential Montgomery Ladder: The projective Montgomery ladder on Huff curves
uses WZ coordinates as described in Section 3.3 and the projective versions of the differ-
ential addition and differential doubling formulas stated in the previous section. The
projective differential doubling formula, as given by [DJ11], is stated as follows:

W (2P ) =γ(W1Z1)2,

Z(2P ) =(W1 + Z1)4,
(4.4)

with γ = (a+b)2

ab and P = (W1 : Z1). Additionally [DJ11] states the projective differential
addition formula as follows:

W (P +Q) =Z̄(W1Z2 +W2Z1)2,

Z(P +Q) =W̄ (W1W2 + Z1Z2)2,

where P 6= Q, P = (W1 : Z1) and Q = (W2 : Z2), and W (P −Q) = (W̄ , Z̄). As there are
no standardized Huff curves, the practical use of Huff curves involves a mapping of points
from a given Weierstrass curve to the corresponding Huff curve, and later on mapping
the result on a Huff curve back to the corresponding Weierstrass curve. Fast and efficient
formulas to accomplish the mapping, as well as a simultaneous y-coordinate recovery of the
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Montgomery ladder’s result, are given in our paper in [GH13]. The formula for mapping
an affine point on a Weierstrass curve, denoted as PW = (u, v), to the corresponding point
in WZ coordinates on a Huff curve, denoted as PH = (W : Z), is stated as:

(W : Z) =
(
ab
(
µ2u+ a2

) (
µ2u+ b2

)
: µ6 (v + su+

√
a6) ((v + su+

√
a6) + u)

)
.

Where µ = (a+ b)f , and a, b, f and s are so-called Huff curve parameters. We refere the
reader to Section 3.3 for a more detailed explanation of those. The mapping of a point
PH = (W : Z), in WZ coordinates, on a Huff curve to the corresponding affine point
PW = (u, v) on a Weierstrass curve (including the y-coordinate recovery), takes multiple
steps and is stated as:

U1 = δZ1uW1W2,

V1 = β
(
β (δZ2 + uW2) +

(
u2 + v

)
W1W2

)
+ vuW 2

1W2,

with δ = ab
µ2

and β = δZ1 + uW1. The affine point PW = (u, v) is finally calculated as:

(u1, v1) =

(
U1

uW 2
1W2

,
V1

uW 2
1W2

)
.

The authors of [DJ11] state the costs of a projective differential addition and doubling with
WZ-coordinates as:

differential doubling: 1M + 1D,

differential addition: 5M.

Where M denotes the cost of a binary field multiplication and D denotes the cost of a
binary field multiplication with γ (given in Equation (4.4)). If used in a Montgomery
ladder, the constant difference of W (P − Q) can be scaled meaning that Z̄ = 1. This
reduces the costs for a differential Montgomery ladder step (MLS) to:

5M + 1D,

It is important to note that additional one-time costs not only for the y-coordinate recovery
but also for mapping between the Weierstrass and Huff curve arise. Those costs are given
as (taken from [GH13]):

Weierstrass to Huff curve: 2M + 4M8,

Huff to Weierstrass curve + y-coordinate recovery: 1I + 6M + 5M4 + 2M8 + 1S.

Here, I denotes a binary field inversion, M denotes a binary field multiplication, S de-
notes a binary field squaring, M4 and M8 denote a binary field multiplication with already
existing multiplication tables with window size 4 and 8 respectively. Those are used by
a precomputational scalar multiplication method for binary field elements, which is at-
tributed to Lim and Lee; for more details see Section 6.2.

4.5 Improved Joye’s Double-and-Add Multiplication Method

In this section, we show that Joye’s Double-and-Add method also benefited from some
already mentioned improvements. The authors of [GJM10] improved their implementation
of Algorithm 9 by introducing a so-called Co-Z point double-add with update (ZDAU)
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operation which takes advantage of Co-Z formulas. The ZDAU formula is comprised of
the Co-Z coordinate idea, as well as merging the addition and doubling steps into one
formula. This enables the implementation of Algorithm 9 as shown in Algorithm 22 (taken
from [GJM10]).

Algorithm 22 Joye’s Double-and-Add Multiplication Method with Co-Z Addition For-
mulas
Input: A point P ∈ E(Fq) and k = (k`−1, . . . , k0)2 ∈ N with k0 = 1.
Output: Q = k · P .
b = k1, Rb = P and (R1−b, Rb) = TPLU(Rb)
for i = 2 to `− 1 do

b = ki
(R1−b, Rb) = ZDAU(R1−b, Rb)

end for
return R0

Here, the initial tripling operation, denoted as TPLU , is given by the evaluation of P =
P + 2P in Co-Z arithmetic. The point tripling is achieved via a Co-Z doubling (DBL)
that gives (2P, P̃ ) from DBL(P ) followed by a Co-Z addition (ZADDU) with parameters
(P̃ , 2P ). For a detailed explanation of the implementation and inner workings of the
ZDAU, TPLU, ZADDU as well as the DBL operation, please consult [GJM10]. The
authors of [GJM10] give the costs per bit of the scalar with their Co-Z formulas for each
Co-Z Double-and-Add step as:

9M + 7S.

Where M denotes a prime field multiplication and S denotes a prime field squaring.

4.6 Summary

In this chapter we introduced several scalar multiplication methods; these can be split
into three parts. We started with basic scalar multiplication concepts, and provided
popular scalar recoding algorithms. Later, we gave the first class of scalar multiplication
methods which utilize precomputations. We explained them in detail and showed how
different improvements where achieved. The influence of those improvements can be seen
in the explicitly stated execution time estimations. We stated how a speedup for scalar
multiplication methods can be gained by using an efficiently computable endomorphism
in combination with a scalar conversion. This concept is not universally applicable, as an
efficiently computable endomorphism is necessary. We think it illustrates a different venue
for speeding up scalar multiplication methods and is therefore of general interest. The
second class of multiplication methods we explained was the class of regular multiplication
methods. We gave several flavors of the Montgomery ladder. We showed some ideas on how
the basic Montgomery ladder was improved using different addition and doubling formulas
and coordinate systems. The computational costs of every version of the Montgomery
ladder were explicitly stated to ease the comparison. We also showed how Joye’s Double-
and-Add multiplication method was improved, and stated the computational costs. We
tried to give an interesting overview of the developments in recent years, and illustrate
and explain them with carefully selected examples.



Chapter 5

Cryptography in Java

In this chapter, we give an introduction to the software architecture in Java related to
cryptography. All the scalar multiplication methods given in this thesis were implemented
in Java as part of the ECCelerate� add-on to the IAIK Java Cryptography Extension
(IAIK-JCE) software library. The IAIK-JCE is developed at the Institute for Applied
Information Processing and Communications (IAIK) at Graz University of Technology.
This chapter is based on the extensive documentation given in [Ora14] and information
published at [IT14].

This chapter is structured as follows. We start by giving an introduction to the Java
Cryptography Architecture (JCA) in Section 5.1, to give all readers a high-level overview
of the programming context for cryptographic implementations in Java. In Section 5.2,
we show how a Java Cryptography Extension (JCE) is designed and integrated into the
Java infrastructure. This is followed by Section 5.3, which gives a detailed look at the
ECCelerate� add-on that provides all the ECC support for the IAIK-JCE library. Of
special interest are the implemented performance improvements and optimizations to the
finite field level of all ECC operations. The chapter concludes with a short summary in
Section 5.4.

5.1 Java Cryptography Architecture

The Java Cryptography Architecture is a framework within Java targeted at providing
cryptographic services to applications. The goal is to give an interface to cryptographic
functionalities that is implementation independent and ensures implementation interoper-
ability. Those two design goals are reached in different ways. One of the core principles is
defining a standard application programming interface (API) for all so-called cryptographic
providers. An application doesn’t have to implement its own cryptographic functions. It
requests the desired cryptographic functionality from one of the available providers. Cryp-
tographic providers implement all security related functionality, e.g., signature algorithms,
encryption and decryption, or key conversion services. Each of them is able to offer several
cryptographic services simultaneously. The concept of a cryptographic provider is detailed
in Section 5.2.

53
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Figure 5.1: Overview of the JCA (taken from [Ora14])

The strict enforcement of a standardized API for cryptographic providers guarantees imple-
mentation independence. Numerous providers can be registered at the JCA, and applica-
tions request the functionality via the standardized interface. This is shown in Figure 5.1.
They are thus able to use several providers simultaneously. The standardized interface
also enables implementation interoperability. This means that, for example, in a cryp-
tographic protocol an application can generate its cryptographic keys with provider A,
and then use those keys for cryptographic operations which are performed by a different
provider B. Analogously, the providers can be used by several applications simultaneously.
Other important design principles of the JCA are algorithm independence and algorithm
extensibility. Algorithm independence is realized through so-called engine classes, which
are designed to represent the functionality and algorithmic flows in cryptographic building
blocks in a very abstract, high-level way. Examples for engine classes are MessageDigest,
SecureRandom or KeyGenerator. This helps to encapsulate the concrete implementations
of algorithms. Furthermore, it enables algorithm extensibility as those engine classes sim-
ply call actual implementation classes which have the same method signatures (more on
that in Section 5.2). This leads to easily extensible and easily updatable cryptographic
functionality.

5.2 Java Cryptography Extension

A Java Cryptography Extension (JCE) has to implement a cryptographic provider and
consists of one or several packages. The entirety of JCE’s functionality, meaning the
implemented cryptographic algorithms and cryptographic schemes, are registered with the
JCA. This can happen statically, where the cryptographic provider is entered in the security
properties configuration file, or dynamically via method calls to the Security class in the
JCA. The dynamic registration has some restrictions. First the provider has to have the
necessary privileges, and secondly it is only added to the currently running Java virtual
machine. A typical program flow looks like this: an application uses the software library
to request an algorithm’s implementation via so-called factories provided by the JCA. For



CHAPTER 5. CRYPTOGRAPHY IN JAVA 55

a comprehensive list of all available factories, see [Ora14]. There are two possible scenarios
after the request is issued. Both are illustrated in Figure 5.1 for a so-called MessageDigest

engine class combined with the MD5 hash function.

1. The user specified no provider, the JCA checks all providers in descending preference
order and takes the first available implementation of the algorithm (depicted on the
left side of Figure 5.1).

2. The user specified a provider, the JCA checks if the algorithm is indeed available,
and if so, returns an instance of the algorithm from the chosen provider (depicted
on the right side of Figure 5.1).

The JCA returns an instance of a MessageDigest engine class. This engine class is in-
tended to represent the abstract concept of a cryptographically secure message digest.
It encapsulates the following call structure. The call to specific functionality of the
MessageDigest class is forwarded to an abstract so-called MessageDigestSpi class, which
implements the Service Provider Interface (SPI). Abstract means that these classes cannot
be instantiated. The cryptographic provider therefore subclasses the MessageDigestSpi

class with a class that implements the actual functionality of a cryptographically secure
message digest. This is the class that executes the requested operations, and the result
is then communicated back to the application in the reversed call order. There are three
general types of engine classes that a cryptographic provider can implement, namely:

1. Cryptographic operations: classical cryptographic tasks and building blocks e.g., en-
and decryption, hash functions (message digests), (pseudo)random number genera-
tors, or digital signatures.

2. Generators or converters of cryptographic material : this typically means keys, key
pairs and standard parameters for algorithms.

3. Objects (keystores or certificates): those are standardized data structures which hold
cryptographic data, for example certificate stores and key stores.

For a complete list of all available engine classes see [Ora14].

5.3 IAIK-JCE and ECCelerate�

The IAIK Java Cryptography Extension (IAIK-JCE) is a software library which imple-
ments a JCE as described in Section 5.2. It offers an implementation of the Java Develop-
ment Kit’s default functionality, enhanced by a whole ecosystem of supporting software,
e.g., advanced X.509 certificate support and ASN.1 structures. Please see [IT14] for a
comprehensive list.

The ECCelerate� library is one component of the IAIK-JCE; it provides all ECC
support. In the following section, we give an overview of some implemented finite field level
optimizations. This is of interest as in Chapter 6 timings and benchmarks are stated which
all benefited from the here mentioned optimizations. The entire finite field arithmetic
is implemented using various mathematical speedups. For binary fields, the following
optimizations are implemented:

1. Where possible, all binary field arithmetic works in-place.
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2. For NIST standardized binary curves fast reduction polynomials according to [Nat13]
are used.

3. All elements are represented in a custom, optimized, little-endian long[] format.

4. Squaring of elements is performed in linear time, using lookup tables, as stated by
the authors of [SOOS95].

5. Multiplication of elements is performed using a left-to-right comb multiplier ([HMV04,
Algorithm 2.34]) with precomputation window size w as follows:

(a) w = 8 for curve parameters,

(b) w = 4 for all other multiplications

6. If possible, several field elements are inverted simultaneously using [HMV04, Algo-
rithm 2.26].

It is important to note that a performance gain can be achieved if a binary finite field
element is multiplied more than once. In this case, it is possible to reuse the precomputed
data and enjoy a considerable speedup without precomputation costs. In our performance
evaluation in Chapter 6, this is denoted as M4 for a binary finite field multiplication
with reused precomputation data of window size w = 4, and M8 denotes a multiplication
with reused precomputation data of window size w = 8. For prime fields, the following
optimizations are implemented:

1. Where possible, all prime field arithmetic works in-place.

2. For NIST standardized prime curves, fast reduction formulas according to [Nat13]
are used.

3. If possible, several field elements are inverted simultaneously using [HMV04, Algo-
rithm 2.26].

This list is not exhaustive; only the most relevant finite field level optimizations for the
scalar multiplication benchmarks are given. The scalar multiplication methods imple-
mented cannot be chosen directly by an application. Via a so-called OptimizationLevel

parameter, the desired time-memory trade-off can be adjusted to best fit the target plat-
form requirements. Depending on this parameter, the ECCelerate� library chooses the
scalar multiplication method and precomputation effort accordingly. Another important
configuration parameter is FullCheckEnabled, which enables public-key verification. As
mentioned in Section 3.5, disabling this check can lead to security problems if untrusted
public-keys have to be processed. If all used keys can be trusted, disabling this check
improves performance as the total number of checks is decreased.

5.4 Summary

In this chapter, we gave an introduction to the high level concepts of the Java Cryptog-
raphy Architecture (JCA). As Java is an object-oriented programming language, several
interesting software design concepts where shown. This was followed by a closer look at
the Java Cryptography Extension (JCE) design. We detailed how a JCE implementation
works, what interface restrictions are in place, and how the JCE is integrated into the



CHAPTER 5. CRYPTOGRAPHY IN JAVA 57

bigger structure of the JCA. Additionally we focused on the IAIK-JCE, and especially on
the ECCelerate� add-on as it provides all the ECC support for the IAIK-JCE library. We
took a deeper look at the finite field level optimizations of prime and binary fields. This
should give an idea about how ECC can be optimized on different levels, e.g., finite field
level or the elliptic curve level. Additionally, we provided some interesting parameters in
the ECCelerate� configuration and described their impact on performance. This gives all
readers a bit of context for the upcoming performance measurements and timing results
in Chapter 6.



Chapter 6

Results

In this chapter, we will detail interesting implementation aspects for some scalar multi-
plication methods mentioned in Chapter 4. Additionally, the results for our Huff curve
related research are given. All implementations were made for the ECCelerate� [Han14]
software library, which provided a very good and well-structured code base. The ECCel-
erate� add-on and some of its optimizations were already discussed in Chapter 5.

This chapter is structured as follows. In Section 6.1, we begin with giving insight into
the implementations of various scalar multiplication algorithms. Next, in Section 6.2, we
give details on the Huff curve related implementations, starting with the mapping formulas
between Huff and Weierstrass curves. This section is followed by benchmark and timing
results in Section 6.3. The chapter concludes with a short summary in Section 6.4.

6.1 Scalar Multiplication Method Implementations

In this section, we will detail noteworthy implementation specific decisions and formulas for
some of the scalar multiplication methods we implemented. The intent is to show solutions
for implementation problems one may encounter, and to offer some smaller improvements
we made while working on scalar multiplication algorithms.

Improved Fixed-Base Comb Multiplication Implementation

In addition to the improved fixed-base comb method for fast scalar multiplication (dis-
cussed in Section 4.2.2), which is stated for prime Weierstrass curves, we implemented a
version of the improved fixed-base comb method for fast scalar multiplication for binary
Weierstrass curves. The Sakai-Sakurai method for direct doubling is only available on
prime Weierstrass curves so we needed a suitable replacement. The authors of [CF05]
give an algorithm for repeated doublings for affine coordinates on binary curves which is
applicable to this task. This algorithm is shown in Algorithm 23.

58
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Algorithm 23 Repeated doublings [CF05, Algorithm 13.42]

Input: A point P = (x1, y1) on E such that [2k]P 6= O and an integer k ≥ 2.
Output: The point [2k]P of coordinates (x3, y3).
1: λ = x1+y1

x1

2: u = x1
3: for i = 1 to k − 1 do
4: x′ = λ2 + λ+ a2
5: λ′ = λ2 + a2 + a6

u4+a6

6: u = x′

7: λ = λ′

8: end for
9: x3 = λ2 + λ+ a2

10: y3 = u2 + (λ+ 1)x3
11: return (x3, y3)

The runtime of Algorithm 23 for a scalar k can be estimated as:

kI + (k + 1)M + (3k − 1)S.

Here, I denotes a binary field inversion, M denotes a binary field multiplication and S
denotes a binary field squaring. We adapted and implemented the algorithm for several
projective coordinate systems, as can be seen in Section 6.3. The binary Weierstrass
version of the improved fixed-base comb method for fast scalar multiplication performs
very well; see Table 6.4 for details.

Montgomery Ladder Implementation

There are some interesting circumstances one has to take into account when implement-
ing a Montgomery ladder, otherwise problems might arise. In the case of a differential
Montgomery ladder, if the scalar k is given as k = |E| − 1. Then, in the last step of
the differential Montgomery ladder, the point (k+ 1)P becomes O. This causes problems
when trying to recover the full coordinates for the result of kP . A possible workaround is
to calculate the differential Montgomery ladder with scalar k− 1 and add P to the result
of the differential Montgomery ladder.

One should also be aware that using a differential Montgomery ladder may make
the implementation vulnerable to fault attacks. This is mainly because the y-coordinate
is not used in the calculation. An example of such an attack is given by the authors
of [FLRV08], where they use the elliptic curve’s twist to transfer the calculation to a
cryptographically weak elliptic curve given by a set of points in a subgroup of the curve’s
twist. This subgroup is chosen such that the group order has small factors. This enables
them to solve the ECDLP and find the scalar k of the scalar multiplication kP . As a
countermeasure, the authors of [FLRV08] suggest regular checks if the point is still on the
cryptographically strong elliptic curve while executing the differential Montgomery ladder.
The authors of [BL14a] suggest choosing a twist safe curve or enabling point compression
to avoid this pitfall.

Montgomery Ladder Multiplication with Co-Z Coordinates Implementation

For our Montgomery ladder with Co-Z coordinates implementation, we used formulas given
by the authors of [GJM10]. For the conjugate Co-Z point addition, we used [GJM10,
Algorithm 6] and for the Co-Z point addition with update we used [GJM10, Algorithm 1].
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The authors do not explicitly state an algorithm for the Co-Z point doubling with update
operation; rather they described it in [GJM10, Section 4.3]. We implemented the Co-Z
point doubling with update as stated in Algorithm 24.

Algorithm 24 Co-Z point doubling with update

Input: X1, Y1, Z1.
Output: (X2 : Y2 : Z2), (X3 : Y3 : Z2).

1:

1. E = Y 2
1 9. N = Z2

1 17. Z2 = Y1 + Z1

2. B = X2
1 10. M = 3B 18. Z2 = Z2

2

3. L = E2 11. M = M + (N2a4) 19. Z2 = Z2 − E
4. S = X1 + E 12. X2 = M2 20. Z2 = Z2 −N
5. S = S2; 13. X2 = X2 − 2S 21. S3 = E −X1

6. S = S −B 14. Y2 = S −X2 22. S3 = 4S3

7. S = S − L 15. Y2 = Y2M 23. X3 = S
8. S = 2S 16. Y2 = Y2 − 8L 24. Y3 = 8L

2: return (X2 : Y2 : Z2), (X3 : Y3 : Z2)

Algorithm 24 returns a representation of the input point, as well as the doubled input
point. Both points have the same Z-coordinate.

Montgomery Ladder Multiplication with XZ-only Co-Z Coordinates Imple-
mentation

The authors of [HJS11] gave several algorithms for the differential Montgomery ladder
step as well as the coordinate recovery. Their formulas reflect the typical time-memory
trade-off, where memory in this case is used registers of a processor. As in our Java
implementation, we are not concerned with processor registers, so we chose the faster
algorithms. In this Section, M denotes a prime field multiplication, S denotes a prime
field squaring and A denotes a prime field addition, additionally Ma4 and M4a6 denote
the costs of a prime field multiplication with curve parameters a4 or 4a6 respectively.

One of the named differential Montgomery ladder step algorithms is Algorithm [HJS11,
Algorithm 5] with costs of 9M + 5S + 14A + 1Ma4 + 1M4a6 and Algorithm [HJS11, Al-
gorithm 6] with costs of 10M + 5S + 13A. On prime fields, there is no field element
multiplication method implemented which can gain a speed advantage by reusing precom-
puted data. Therefore, Algorithm [HJS11, Algorithm 6] (given in Algorithm 25) is faster
and, hence, the preferable option.

Algorithm 25 Out-of-place differential addition-and-doubling in a projective Co-Z coor-
dinate system [HJS11, Algorithm 6]

Input: X1, X2, TD = xDZ, Ta = a4Z
2, Tb = 4a6Z

3.
Output: X1, X2, TD, Ta, Tb.

1:

1. R2 = X1 −X2 11. R3 = R5R2 21. X ′2 = R1R4

2. R1 = R2
2 12. R3 = R3 + Tb 22. R2 = R1R3

3. R2 = X2
2 13. R5 = X1 +X2 23. R3 = R2Tb

4. R3 = R2 − Ta 14. R2 = R2 + Ta 24. R4 = R2
2

5. R4 = R2
3 15. R2 = R2 −R1 25. R1 = TDR2

6. R5 = X2 +X2 16. X2 = X2
1 26. R2 = TaR4

7. R3 = R5Tb 17. R2 = R2 +X2 27. Tb = T3R4

8. R4 = R4 −R3 18. X2 = R5R2 28. X1 = X1 −R1

9. R5 = R5 +R5 19. X2 = X2 + Tb 29. TD = R1

10. R2 = R2 + Ta 20. X1 = R3X2 30. Ta = R2

2: return X1, X2, TD, Ta, Tb
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A similar choice of algorithms is available for the coordinate recovery process. Again, the
authors of [HJS11] state several options. In Algorithm [HJS11, Algorithm 7], a version
with costs of 8M+2S+8A+1Ma4 +1M4a6 is given and in Algorithm [HJS11, Algorithm 8]
a version with costs of 10M + 3S + 8A is introduced. As the number of used registers is
irrelevant to us, we chose Algorithm 8 (given in Algorithm 26), as it is cheaper in terms
of computation effort.

Algorithm 26 Out-of-place (X : Y : Z)-recovery in projective Co-Z coordinate sys-
tem [HJS11, Algorithm 8]

Input: X1, X2, TD = xDZ, Ta = a4Z
2, Tb = 4a6Z

3, xD, yD.
Output: (X1 : X2 : Z).

1:

1. R1 = TDX1 8. R4 = R4 −R3 15. R3 = R3 +R3

2. R2 = R1 + Ta 9. R4 = R4 +R4 16. X1 = R3R1

3. R3 = X1 + TD 10. R4 = R4 + Tb 17. R1 = R2TD

4. R4 = R2R3 11. R2 = T 2
D 18. Z = R3R1

5. R3 = X1 − TD 12. R3 = X1R2 19. R2 = x2D
6. R2 = R2

3 13. R1 = xDR3 20. R3 = R2xD
7. R3 = R2X2 14. R3 = yD + yD 21. X2 = R3R4.

2: return (X1 : X2 : Z)

6.2 Huff Curve Related Implementation

To our knowledge we were the first to implement generalized binary Huff curves as in-
troduced in [DJ11]. We were also the first to publicly state, in [GH13], so-called Huff
curve parameters for all standardized binary NIST curves to reduce the implementation
efforts for others. These parameters are given in Table 6.1, and all additionally necessary
auxiliary parameters are given in Table 6.2.
As there are no standardized Huff curves yet, all points need to be mapped from Weier-
strass curves to Huff curves and vice versa. We introduced highly efficient all-in-one
formulas for this task. As outline in Section 3.3, a mapping in either direction consists
of multiple steps because an isomorphism as well as a birational equivalence have to be
taken into account. As discussed in Section 3.3, the isomorphism between the Weierstrass
curve EW and a Weierstrass curve EW ′ , which is birationally equivalent to a Huff curve,
is given as (taken from [GH13]):

Θ : EW (F2m)→ EW ′(F2m),

(u, v) 7−→ (µ2u, µ3(v + su+
√
a6)),

with its inverse given as:

Φ : EW ′(F2m)→ EW (F2m),

(u′, v′) 7−→ (v2u′, v3v′ + sv2u′ +
√
a6).

Here µ = (a + b)f, v = µ−1 where f and s are Huff parameters, as given in Section 3.3.
The birational equivalence is given in Section 3.3 as:

Ψ : H →W ′ with (x, y) 7−→
(
ab

xy
,
ab(axy + b)

x2y

)
,

Φ : W ′ → H with (u, v) 7−→
(
b(u+ a2)

v
,

a(u+ b2)

v + (a+ b)fu

)
.
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Table 6.1: Generalized Huff curve parameters for NIST recommended binary curves (cf.
[Nat13]), (taken from [GH13, Table 1])

Curve a b f

B-163 0x1 0x253f3c45a6d779b47e63758c35336f0679b42f4c0 0x6

K-163 0x1 0x20000000000000000000000000000000000000033 0x6

B-233 0x1 0x115b7c737bec7a5cc19212911c2bd03cadb9a29ddf9b1dc64b\ 0x3

8b3550fb3

K-233 0x1 0x1e5ff5c884156aaebbd38370425882dff04f04ba05a7f40740\ 0x2

82385c149

B-283 0x1 0x6a263cdd28c309d3d3068046747abe51375b0d763dccc64868\ 0x3

251918d59c21842dd4fe1

K-283 0x1 0x7a0fa1ffdaf44208a4efb593c405714e0fbc4423dd0db57384\ 0x2

89cb583073c2cae153d0d

B-409 0x1 0x3f2918c0e689aca093d4cf5a389aeda96eb5cdcb930617991d\ 0x9

09111a3f91dc7283123ef8ab912744e193c34c9bd3cd532e17b7

K-409 0x1 0x846538361ed11b7c42b9e302169a3ea16009df82f80a155d56\ 0x2

39d78d4ba8dd02284110d6b3fbc05dda9c0ed1c0d6316c72d676

B-571 0x1 0x3c0904534c17c94a947b971ee5e6a3f3fb917dd3b57d7ad1f6\ 0xf

ea35ec2593bae024934b8efe08d2a5bb97c4286665408d50f80c\
afc8dfbee0011c03e785fe39c94c977d5e3a7f065

K-571 0x1 0x6a28a2cf6fb77a9485f438a79f8832d86c465b689fd80b3d9c\ 0x2

4b1ef40380b5d92f85044e450336618a69b209eb37ecdd23da7b\
f7ee9e0fc1e98248edb0dc92f3510027be50cd2bb

Given a point PW = (u1, v1) on EW (F2m) and a point PW ′ = (u′1, v
′
1) ∈ EW ′(F2m), where

Θ (PW ) ∈ EW ′(F2m) and P = Ω (PW ′) is the corresponding point on EH(F2m). Our
all-in-one formulas for directly mapping points were derived as follows.

Weierstrass to Huff Curve

Given a point PW = (u, v) on the Weierstrass curve EW (F2m), the following formula maps
this point to a point PH(W : Z) in WZ-coordinates on the curve EH(F2m). This is
achieved by inserting the steps of Φ ◦ Θ in a formula. The formula for directly mapping
PW to PH(W : Z) is given as (taken from [GH13]):

(W : Z) =
(
ab
(
µ2u+ a2

) (
µ2u+ b2

)
: µ6 (v + su+

√
a6) ((v + su+

√
a6) + u)

)
.

The authors of [GH13] give the following decomposition to minimize the calculation effort
of the above formula:

A = µ2u, B = (A+ a2), C = (A+ b2),

D = v1 + su+
√
a6, E = D + u,

W = ab ·B · C, Z = µ6 ·D · E.

As one can see, there are several values which can be determined a priori, namely a2, b2,
and
√
a6. For µ2, µ6, s, and ab the lookup tables for the binary field multiplication method

can be precomputed. In our implementation, we precompute these values with window
size w = 8. Therefore, we are able to evaluate the decomposed formula with 2M + 4M8.
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Table 6.2: Auxiliary parameter s for mapping between NIST recommended binary Weier-
strass curves and the corresponding binary Huff curves (taken from [GH13, Table2])

Curve s

B-163 0x4058c6f9ae170f30f3ec9def6b2ddf2a28f0c0872

K-163 0x4058c6f9ae170f30f3ec9def6b2ddf2a28f0c0872

B-233 0xe7b4bcdb4af3163783507af91971d49927298e32e548d55b3a0b602a42

K-233 0xb1ce7164613a37fed984a32b18d265ada947ed207757d373d4e139835a

B-283 0x21b24c4336e195a894fc9021fabac4e6988ff780c29522af3261508be\
fb321108eda3fa

K-283 0x387fd1da986a7fa48458bf27d26d9162d60c2f7f6e3da61f30d215c6b\
193e73f223326e

B-409 0x106176448c66d8e7d0ddc074d76277a7ac8093ee53499d108099266d9\
82c68dae5cb61d5054b30ecfce3c3beebc8cbecb904fd0

K-409 0x15dedff38eafec7e43a277eea795fbb1d52e6075a8bfe6a275be0dcba\
f6b781f8c9d37e4f414e8de3634d946434d9b6a6d62e20

B-571 0x12007d9377488ff6122ccce941d1cef856279188c8e82a6696a918b2f\
ccd78353385beb5e972f83d491d22db627117ab1580dabd23c6e8adeb99\
d3bdbc95d6fb645833ba6b4f182

K-571 0x2780c6d786569591600518d211a5d6fbd900d9b44a1e4e65016d2331d\
d243a6b31db129832a46326c7e3fd9b43f900ee58ed165e550a3cc3a41f\
b88b001fa79f398351bb7c35dea

Here, M denotes a binary field multiplication and M8 denotes a binary field multiplication
with reused precomputation data of window size w = 8.

Huff Curve to Weierstrass

The intent of the following formulas is to convert the WZ-coordinate result of a differential
Montgomery ladder W (k · P ) ∈ EH(F2m), as given in Section 4.4.5, to an affine point
PW = (u1, v1) on a Weierstrass curve EW (F2m). These formulas work only with WZ-
coordinates. Similar to Section 6.2, a birational equivalence, namely Ω ◦ Ψ, has to be
evaluated. To save costly inversions, the steps of Ω are implicitly applied by inserting
them into the coordinate recovery formula. A coordinate recovery formula needs to be
applied regardless after calculating the differential Montgomery ladder. The authors of
[GH13] show this as follows. Given the y-coordinate recovery formula (taken from [LD99])

v1 =
(u1 + u)

(
(u1 + u) (u2 + u) + u2 + v

)
u

+ v, (6.1)

where u2 = ab
ω((k+1)·P ) is calculated via the point W ((k + 1)P ) = (W2 : Z2) which is

calculated during the last step of the Montgomery ladder. The insertion step consists of
replacing u1 = ab

ω(k·P ) with u1 = δ·Z1
W1

. Here ω(K ·P ) = W1
Z1

, given that W (k·P ) = (W1 : Z1),

δ = ab
µ2

and µ = (a+ b)f . This gives the following formula:

v1 =
(δZ1 + uW1)

(
(δZ1 + uW1) (δZ2 + uW2) +

(
u2 + v

)
W1W2

)
uW 2

1W2
+ v,
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and leads to:

U1 = δZ1uW1W2,

V1 = β
(
β (δZ2 + uW2) +

(
u2 + v

)
W1W2

)
+ uvW 2

1W2,

where β = δZ1 + uW1. Finally, (u1, v1) =
(

U1

uW 2
1W2

, V1
uW 2

1W2

)
can be calculated. The

authors of [GH13] give the following decomposition for evaluating this formula:

A = δZ1, B = δZ2, C = uW1,

D = uW2, E = A+ C, F = B +D,

G = W1W2, H = (u2 + v), I = (C ·G)−1 ,

J = A ·G, K = J · I, L = E · I,
u1 = uK, v1 = L · (E · F +H ·G) + v.

Again δ is a constant, e.g., a precomputable value, meaning that multiplying by δ requires
1M8. Furthermore, several binary field scalar multiplication lookup tables of intermediate
results can be reused, namely the tables of I and G, given a reduction of 4M to 2M + 2M4

and the lookup table of u1, replacing 3M with 1M + 2M4. These improvements can be
further advanced if the point PW = (u, v) is fixed. Then the lookup tables of u and H can
be precomputed with window size ω = 8, which replaces the required 1M + 3M4 + 1S
with 4M8. This gives the following overall costs for transferring the result to the Weier-
strass curve of origin, including the y-coordinate recovery, of 1I + 5M + 2M4 + 6M8 with
a fixed PW and 1I + 6M + 5M4 + 2M8 + 1S in the general case.

This gives total costs of 1I + 8M + 5M4 + 6M8 + 1S for a back and forth conversion,
including a y-coordinate recovery, for any arbitrary point PW . If a conversion to WZ-
coordinates is necessary, additional costs of 2M + 4M8 have to be taken into account.
Here, I denotes a binary field inversion, M denotes a binary field multiplication, M4

denotes a binary field multiplication with reused precomputation data of window size
w = 4, and M8 denotes a binary field multiplication with reused precomputation data of
window size w = 8.

6.3 Benchmark

In this section, we show benchmark results for some of our Montgomery ladder implemen-
tations and for some fixed-base comb scalar multiplication methods as well as for our Huff
curve related implementation.

We start with scalar multiplication method benchmarks in Section 6.3.1, followed by
Section 6.3.2 where we give timings for our Huff curve related implementation.

6.3.1 Scalar Multiplication Method Timings

All benchmarks given in this section were measured on an Intel Core�2 Duo T7500 running
Ubuntu Linux 12.04/amd64 and OpenJDK 7u55/amd64 in server mode.

In Table 6.3, we give the benchmark results for several Co-Z scalar multiplication
methods. We took these measurements on NIST prime curves. As one can see, the
coordinate system used heavily influences the speed of the scalar multiplication. This
benchmark also shows the effect of the improvement from standard Co-Z formulas to
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differential Co-Z formulas. We added the improved differential Joye’s Double-and-Add
method to give some context to the differential Montgomery ladder implementations.

Table 6.3: Comparison of Co-Z scalar multiplication methods on NIST prime curves

P-192 P-224 P-256 P-384 P-521

Montgomery ladder [µs] [µs] [µs] [µs] [µs]

Co-Z XY (Section 4.4.3)

Jacobian, a = 1 4492.89 5967.36 9225.52 20836.66 30661.05

Jacobian, a = 0 13346.15 17311.02 19557.10 20850.56 30676.73

Co-Z (Section 4.4.2)

Jacobian, a = 1 4750.19 6401.69 9920.93 23101.62 34383.17

Jacobian, a = 0 14282.25 18691.94 21170.29 23109.81 34420.64

Co-Z Double-and-Add

(Section 4.5)

Jacobian, a = 1 5102.52 6877.36 10476.91 23667.33 34929.21

Jacobian, a = 0 15240.88 19864.00 22445.01 23715.42 34915.39

In Table 6.4 and Table 6.5 we introduce benchmarks for comb based scalar multiplication
methods on NIST curves. The improved fixed-base comb method is implemented as de-
tailed in Section 6.1. The comb scalar multiplication is implemented as given in [HMV04,
Algorithm 3.44], and the two-table comb scalar multiplication is implemented as given
in [HMV04, Algorithm 3.45]. We took our timings with window size w = 8, and set the v
parameter for the improved fixed-base comb method to v = 8. Again, the choice of coordi-
nate system influences the execution time heavily; affine coordinates are especially slow.
It is of special interest that on binary NIST curves, the improved fixed-base comb method
outperforms even the two-table comb scalar multiplication method in almost all measured
cases.
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Table 6.4: Comparison of comb scalar multiplication methods on binary NIST curves

Type B-163 B-233 B-283 B-409 B-571

[µs] [µs] [µs] [µs] [µs]

Improved Comb multiplications
Affine, a = 1 1933.98 3407.40 6466.20 13187.45 32572.94
Projective, a = 1 1091.53 1923.82 2945.98 6030.58 10902.75
Jacobian, a = 1 1168.78 1969.22 3017.64 6111.81 11058.73
Lopez-Dahab, a = 2 1021.16 1766.04 2747.68 5554.28 10082.61
Lopez-Dahab, a = 1 993.47 1756.92 2737.76 5552.52 10097.10

Two-table comb
scalar multiplications

Affine, a = 1 2029.90 4247.07 7010.36 14431.47 36167.24
Projective, a = 1 1426.35 2653.09 3876.52 7540.47 14948.43
Jacobian, a = 1 1262.27 2420.91 3512.70 6723.64 13338.85
Lopez-Dahab, a = 2 1006.42 1913.49 2784.24 5325.40 10612.48
Lopez-Dahab, a = 1 1003.63 1910.59 2783.85 5330.17 10588.21

Comb scalar multiplications
Affine, a = 1 2715.91 5687.72 9478.46 19232.25 48459.79
Projective, a = 1 1704.28 3341.97 4892.63 9465.66 18720.98
Jacobian, a = 1 1514.15 2907.22 4252.55 8091.62 15985.59
Lopez-Dahab, a = 2 1190.57 2264.44 3298.65 6313.03 12596.84
Lopez-Dahab, a = 1 1188.27 2259.87 3295.19 6324.06 12631.37

Note that this is not the case on prime NIST curves. Here, the improved fixed-base
comb method is especially fast compared to the other scalar multiplication methods when
operating on affine coordinates. With all projective coordinate systems, it is on the same
level as the comb scalar multiplication method but significantly slower than the two-table
comb scalar multiplication method.
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Table 6.5: Comparison of comb scalar multiplication methods on prime NIST curves

Type P-192 P-224 P-256 P-384 P-521

[µs] [µs] [µs] [µs] [µs]

Improved Comb multiplications
Affine, a = 1 1542.81 2587.32 3384.31 8159.78 15745.06
Projective, a = 1 747.41 1256.29 1665.86 4108.33 7512.85
Jacobian, a = 1 766.82 1279.43 1700.23 4164.93 7466.10
Extended Jacobian, a = 1 773.89 1276.26 1708.14 4168.49 7489.65
Extended Jacobian, a = −3 752.61 1267.43 1707.86 4167.98 7512.09
Jacobian, a = 0 1888.45 2932.00 3075.61
Extended Jacobian, a = 0 1901.00 3004.32 3089.97

Two-table comb
scalar multiplications

Affine, a = 1 3153.49 4429.91 6111.41 15632.57 32048.20
Projective, a = 1 595.41 792.15 1250.75 2951.95 4460.77
Jacobian, a = 1 608.49 810.07 1252.00 2857.46 4237.68
Extended Jacobian, a = 1 592.92 789.08 1211.76 2758.87 4106.73
Extended Jacobian, a = −3 595.46 789.65 1210.33 2758.00 4112.20
Jacobian, a = 0 1639.26 2120.67 2424.20
Extended Jacobian, a = 0 1715.91 2221.35 2535.91

Comb scalar multiplications
Affine, a = 1 4372.53 6068.53 8266.65 21140.31 43218.95
Projective, a = 1 814.42 1080.55 1708.04 4003.71 5999.15
Jacobian, a = 1 807.01 1075.89 1665.27 3737.86 5496.67
Extended Jacobian, a = 1 757.47 1010.27 1551.90 3505.59 5163.89
Extended Jacobian, a = −3 757.85 1008.40 1549.70 3502.39 5171.99
Jacobian, a = 0 2074.50 2677.99 3059.65
Extended Jacobian, a = 0 2221.76 2863.27 3264.95

6.3.2 Huff Curve Timings

All benchmarks given in this section were measured on an Intel Core i5-2540M running
Ubuntu Linux 12.10/amd64 and OpenJDK 7u15/amd64 in server mode. We measured two
different timings for our implementation. First, we measured the timings of one application
of the Montgomery ladder. This was done for two different coordinate systems on the
standardized binary NIST curves. We used XZ-coordinates for a differential Montgomery
ladder on the Weierstrass curves and WZ-coordinates, as stated in Section 6.2, for the
Huff curve differential Montgomery ladder. We took these measurements for two different
scenarios, a fixed point P and a randomly chosen point P . One should keep in mind
that all timings include all necessary operations to retrieve the result. This includes the
y-coordinate recovery, and in the case of WZ-coordinates, all necessary mappings from
and to Huff curves. All timings are given in Table 6.6.
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Table 6.6: Timings of the Montgomery Ladder for WZ and XZ coordinates using binary
NIST curves (taken from [GH13, Table 3])

Coordinate Type B-163 [ms] B-233 [ms] B-283 [ms] B-409 [ms] B-571 [ms]

XZ 0.709 1.315 1.896 4.203 8.403

WZ 0.692 1.251 1.826 4.040 8.143

Speedup 2.46% 5.12% 3.83% 4.03% 3.19%

WZ (P fixed) 0.662 1.224 1.778 3.928 8.039

Speedup 7.10% 7.43% 6.64% 7.00% 4.53%

We looked more deeply into the performance improvements, and validated our results by
retrieving additional measurement data. This data gives a detailed explanation of the
saved costs for our implementation.

Table 6.7: Costs of squarings and of multiplications with curve parameters in relation to
ordinary multiplications (taken from [GH13, Table 4])

F2163 F2233 F2283 F2409 F2571

1S = 0.094M 0.080M 0.077M 0.061M 0.055M

1m8 = 0.369M 0.411M 0.387M 0.418M 0.430M∑
= 0.463M 0.491M 0.464M 0.479M 0.485M

We measured the relative costs of a binary field squaring S and a precomputed binary field
multiplication M8, compared to a binary field multiplication M. The motivation is that
with WZ-coordinates, compared to XZ-coordinates, one trades 1M for 1S + 1M8 per
Montgomery ladder step. This shows that for our implementation, per bit of scalar up to
0.54M are saved. This also illustrates the necessity of fast formulas for recovering the
y-coordinate and the additional mapping from and to Huff curves. Otherwise the obtained
speedup is diminished by the mapping and coordinate recovery costs. Given the all-in-one
back-and-forth conversion formulas with implicit y-coordinate recovery for Huff curves,
we would like to emphasize the following: The implementation effort for the faster Huff
curve backed WZ-coordinate differential Montgomery ladder is virtually the same as for
a differential Montgomery ladder on Weierstrass curves.

6.4 Summary

In this chapter, we gave detailed information on our implementation efforts. We showed
interesting decisions made while implementing the scalar multiplication method imple-
mentations, and some of the algorithms used. Later on, we showed how our differen-
tial Montgomery ladder on Huff curves works. We introduced decomposed formulas for
mapping points on Weierstrass curves to points on Huff curves and vice versa. In the
subsequent section, we gave benchmark results for all our implementations. We compared
several competing scalar multiplication methods, and showed the importance of fast and
efficient mapping formulas for the Huff curve differential Montgomery ladder. Our Huff
curve differential Montgomery ladder implementation achieved a speedup of up to 7.4%
compared to our implementation of the standard XZ-coordinate differential Montgomery
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ladder on Weierstrass curves. We showed that with our WZ-coordinate differential Mont-
gomery ladder implementation up to 0.54 binary scalar multiplications are saved per bit
of the scalar.



Chapter 7

Conclusions

In this thesis, we focused on elliptic curve cryptography in general, and on scalar multi-
plication methods in particular. Scalar multiplication is heavily utilized in elliptic curve
public-key cryptography and dominates the execution time of most elliptic curve public-key
cryptography algorithms. Faster scalar multiplication methods thus benefit a wide range
of ECC schemes and are vital for achieving competitive performance.

This thesis started with Chapter 2, where we gave the necessary theoretical background
of the mathematical concepts upon which ECC is build on. In Chapter 3 we presented
standard elliptic curves used in ECC, as well as the new binary Huff curves which are
suitable for cryptographic purposes. Additionally we explained known attacks on ECC.
This chapter included purely mathematical attacks which influence the choice of elliptic
curves available for cryptography. It also included a look into the rather different field of
implementation attacks. Over the years, implementation attacks have broken the security
of numerous cryptographic scheme implementations. They simply cannot be disregarded
when implementing cryptographic software solutions.

In Chapter 4, we focused on scalar multiplication methods and discussed several ap-
proaches, beginning with several high performance scalar multiplication methods which
use precomputations. We focused on fixed-base comb multiplication methods which pro-
vide especially good performance. A different avenue for optimizations was introduced by
a technique that speeds up scalar multiplication on elliptic curves with efficiently com-
putable endomorphisms. The third class of scalar multiplication methods we investigated
in detail was highly regular and memory efficient scalar multiplication methods, namely the
Montgomery ladder and Joye’s Double-and-Add method. In this context, we implemented
binary Huff curves and a differential Montgomery ladder scalar multiplication method on
said curves. Additionally, we stated all-in-one, back-and-forth conversion formulas with
included y-coordinate recovery for differential Montgomery ladders on Huff curves. Fur-
thermore, we explicitly stated curve parameters of the binary Huff curves corresponding
to NIST curves.

In Chapter 5, we detailed the environment for cryptography related implementations
in Java. As we implemented all our scalar multiplication algorithms in Java, this chap-
ter gives additional context for the following results chapter. Finally, in Chapter 6 we
presented the results of our research, complemented by timing and benchmarking of our
implementations. We showed that our differential Huff curve Montgomery ladder imple-
mentation is up to 7.4% faster than our implementation of the fastest known Montgomery
ladder formulas known up to that point. Additionally, we gave timing and implementation
details for some implemented scalar multiplication methods.

70
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7.1 Future Work

For future work, it would be interesting to further investigate different aspects of Huff
curves in detail. Most noteworthy are the unified point addition formulas for binary Huff
curves and the evaluation of pairings on Huff curves over non-binary finite fields.

Furthermore, it is always of interest to find new speedups for scalar multiplication
methods in general, and regular scalar multiplication methods in particular. Speeding up
the Montgomery ladder formulas has significant practical impact as it is a widely deployed,
proven and tested concept. We believe that additional implementation specific speedups
can be gained by further merging the combination of finite field level optimizations with
fast elliptic curve models.
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Definitions

A.1 Abbreviations

API application programming interface
CRT Chinese remainder theorem
DBL Co-Z doubling
DLP discrete logarithm problem
D-H Diffie-Hellman
ECC elliptic curve cryptography
ECDLP elliptic curve discrete logarithm problem
ECDSA elliptic curve digital signature algorithm
GNFS general number field sieve
IAIK Institute for Applied Information Processing and Communications
IAIK-JCE IAIK Java Cryptography Extension
IFC integer factorisation cryptography
JCA Java Cryptography Architecture
JCE Java Cryptography Extension
MLS Montgomery ladder step
MOV Menezes-Okamoto-Vanstone attack
NAF non-adjacent form
NAFw width-w non-adjacent form
NIST National Institute of Standards and Technology
RSA Rivest-Shamir-Adleman cryptosystem
SPI service provider interface
SSSA Semaev-Smart-Satoh-Araki attack
ZADDU Co-Z addition
ZDAU Co-Z point double-add with update
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A.2 Used Symbols

∃x existential quantification
∀x universal quantification
x ∈ G x is part of a set G√
x square root of a real value or a field element x
|x| absolute value of the real number x
a1, . . . , a6 Weierstrass coefficients
x+ y addition of real values or field elements or polynomials
x · y multiplication of real values or field elements
xy exponentiation of real values
x mod y the reminder of the division x

y

char(F ) characteristic of field F
deg(f) degree of polynomial f
E an elliptic curve in Weierstrass form
H an elliptic curve in Huff form
E(F ) a set of points on field F , defined by curve E, plus the point at infinity
∆(E) discriminant of curve E
(f ◦ g)(x) composition of functions, equal to f(g(x))
F a field F
F ∗ the multiplicative group of field F
Fq finite field F with q elements
〈g〉 group generated by generator g
F1 ' F2 group/field F1 and F2 are isomorphic
k! factorial of integer k
N all positive numbers i.e. {1, 2, 3, . . . }
N0 all non-negative numbers i.e. {0, 1, 2, 3, . . . }(
q
n

)
binomial coefficient, i.e.,

(
q
n

)
= q!

n!(q−n)!

O point at infinity/neutral element of an elliptic curve
G a group G
|G| order of group G
|g| order of group element g
(x, y) an affine point on a Weierstrass curve
(X : Y : Z) a projective point on a Weierstrass curve
P set of all prime numbers
Z ring of integers
Zm ring of integers modulo m
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Sage Source Code

1 #!/ usr / b in /env sage
2
3 import sys
4 from c o l l e c t i o n s import d e f a u l t d i c t
5
6 # Implements a l l necessary c a l c u l a t i o n s to ob ta in g en e r a l i z e d
7 # binary Huff curve parameters . See Sec t ion 5 in [ 1 ] .
8 #
9 # [ 1 ] Ju l i en Devinge and Marc Joye , Binary Huff Curves

10 #
11 class CalcHuffParameters ( ob j e c t ) :
12
13 # cons t ruc t o r
14 #
15 # curveName . . . the NIST name e . g . , NIST−B163
16 # F . . . under l y ing f i n i t e f i e l d
17 #
18 def i n i t ( s e l f , curveName , F ) :
19 s e l f . curveName = curveName
20 s e l f .F = F
21
22 # trans forms hex va l u e s in t o f i e l d e lements
23 #
24 # b . . . a hex va lue
25 #
26 def getElement ( s e l f , b ) :
27 return getElement (b , s e l f .F)
28
29 # ca l c u l a t e s the Huff curve parameter f
30 #
31 # aTwo . . . a 2 e l l i t i c curve parameter
32 # aSix . . . a 6 e l l i t i c curve parameter
33 #
34 def ca l cu l a t eF ( s e l f , aTwo , aSix ) :
35 check = aTwo . t r a c e ( )
36 tmp = aSix . n th root (8 )
37 i = 1
38
39 while True :
40 f = s e l f . getElement ( i )
41 #checks : TR( f *a 6 . n t h s q r t (8) == 0
42 i f ( ( f * tmp ) . t r a c e ( ) == 0 ) :
43 #checks : TR( a 2 ) == TR( f ˆ−1)

74



APPENDIX B. SAGE SOURCE CODE 75

44 i f ( ( f ˆ−1). t r a c e ( ) == check ) :
45 break
46 i += 1
47 return i
48
49 # ca l c u l a t e s the a u x i l i a r y Huff parameter s
50 #
51 # aTwo . . . a 2 e l l i t i c curve parameter
52 # f . . . f Huff curve parameter
53 def c a l c u l a t e S ( s e l f , aTwo , f ) :
54 R.<s> = PolynomialRing ( s e l f . F , ’ s ’ )
55 f = ( s ˆ2 + s + aTwo + ( f ˆ−2))
56 return f . r o o t s ( )
57
58 # so l v e s the equa t ion t ˆ2 + 1/( f ˆ4 * a6 . s q r t ( ) ) + 1 = 0
59 #
60 # aSix . . . a 6 e l l i p t i c curve parameter
61 # f . . . f Huff curve parameter
62 #
63 def ca l cu la t eT ( s e l f , aSix , f ) :
64 R.<x> = PolynomialRing ( s e l f . F , ’ x ’ )
65 tmp = 1 / ( ( ( s e l f . getElement ( f ) ) ˆ 4 ) * aSix . s q r t ( ) )
66 f = ( xˆ2 + tmp*x +1)
67 return f . r o o t s ( )
68
69 # ca l c u l a t e s Huff parameter a and b
70 #
71 # t s . . . t , s Huff curve parameters
72 #
73 def f indSolut ionAB ( s e l f , t s ) :
74 # highes tDegreeSo lu t i on , t h e r e are two s o l u t i o n s f o r
75 # NIST curves and the t u p l e i s s o r t ed by degree .
76 # ther e f o r e , the second one has the h i ghe r degree
77 t = t s [ 1 ] [ 0 ]
78 tSqrt = t . s q r t ( )
79 return 1 , tSqr t
80
81 # pr i n t s the c a l c u l a t e d Huff curve parameters in hex
82 #
83 # f . . . the Huff parameter f
84 # ab . . . array conta ing Huff parameters a and b
85 # s . . . the Huff parameter s
86 #
87 def p r i n t R e s u l t s ( s e l f , f , ab , s ) :
88 print ”============ ” + s e l f . curveName + ” ===============”
89 print ” f : ” + hex ( f )
90 print ”a : ” + hex ( ab [ 0 ] )
91 print ”b : ” + hex ( ab [ 1 ] . i n t e g e r r e p r e s e n t a t i o n ( ) )
92 print ” s : ” + hex ( s [ 0 ] [ 0 ] . i n t e g e r r e p r e s e n t a t i o n ( ) )
93 print ”=========================================”
94
95 # ca l c u l a t e s a l l g e n e r a l i z e d hu f f parameters and
96 # c a l l s the p r i n t method a f t e rwards
97 #
98 # aTwo . . . a 2 e l l i p t i c curve parameter
99 # aSix . . . a 6 e l l i p t i c curve parameter

100 #
101 def calculateAndPrintHuffParams ( s e l f , aTwo , aSix ) :
102 f = s e l f . c a l cu l a t eF (aTwo , aSix )
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103 t = s e l f . ca l cu la t eT ( aSix , f )
104 ab = s e l f . f indSolut ionAB ( t )
105 s = s e l f . c a l c u l a t e S (aTwo , s e l f . getElement ( f ) )
106 s e l f . p r i n t R e s u l t s ( f , ab , s )
107
108
109 # trans forms hex va l u e s in t o f i e l d e lements
110 #
111 # b . . . a hex va lue
112 # g . . . genera te o f under l y ing f i e l d
113 #
114 def getElement (b , F ) :
115 j = 0
116 x = 0
117 g = F. gen ( )
118 for i in b . b i t s ( ) :
119 i f ( i == 1 ) :
120 x += gˆ j
121 j += 1
122 return F( x )
123
124 # adds a l l the r e qu i r ed parameters in t o a d i c t i ona r y
125 #
126 def getNISTCurveParameters ( ) :
127 F1.<t> = GF( 2 ) [ ]
128
129 # NIST B−163
130 F.<g> = GF(2ˆ163 , name=’ g ’ , modulus=t ˆ163 + t ˆ7 + t ˆ6 + t ˆ3 + 1)
131 aSix = getElement (0 x020A601907B8C953CA1481EB10512F78744A3205FD , F)
132 aTwo = getElement (0 x1 , F)
133 nistB163 = {”F” : F , ”aTwo” : aTwo , ” aSix ” : aSix }
134
135 # NIST B−233
136 F.<g> = GF(2ˆ233 , name=’ g ’ , modulus=t ˆ233 + t ˆ74 + 1)
137 # reformat ing to accomodate l a r g e number
138 aS ixSt r ing = ( ”0x0066647EDE6C332C7F8C0923BB58213B333B20E9CE4281FE”
139 ”115F7D8F90AD” )
140 aSix = getElement ( I n t e g e r ( aS ixSt r ing ) , F)
141 aTwo = getElement (0 x1 , F)
142 nistB233 = {”F” : F , ”aTwo” : aTwo , ” aSix ” : aSix }
143
144 # NIST B−283
145 F.<g> = GF(2ˆ283 , name=’ g ’ , modulus=t ˆ283 + t ˆ12 + t ˆ7 + t ˆ5 + 1)
146 # reformat ing to accomodate l a r g e number
147 aS ixSt r ing = ( ”0x027B680AC8B8596DA5A4AF8A19A0303FCA97FD7645309FA2”
148 ”A581485AF6263E313B79A2F5” )
149 aSix = getElement ( I n t e g e r ( aS ixSt r ing ) , F)
150 aTwo = getElement (0 x1 , F)
151 nistB283 = {”F” : F , ”aTwo” : aTwo , ” aSix ” : aSix }
152
153 # NIST B−409
154 F.<g> = GF(2ˆ409 , name=’ g ’ , modulus=t ˆ409 + t ˆ87 + 1)
155 # reformat ing to accomodate l a r g e number
156 aS ixSt r ing = ( ”0x0021A5C2C8EE9FEB5C4B9A753B7B476B7FD6422EF1F3DD67”
157 ”4761FA99D6AC27C8A9A197B272822F6CD57A55AA4F50AE317B13545F” )
158 aSix = getElement ( I n t e g e r ( aS ixSt r ing ) , F)
159 aTwo = getElement (0 x1 , F)
160 nistB409 = {”F” : F , ”aTwo” : aTwo , ” aSix ” : aSix }
161
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162 # NIST B−571
163 F.<g> = GF(2ˆ571 , name=’ g ’ , modulus=t ˆ571 + t ˆ10 + t ˆ5 + t ˆ2 + 1)
164 # reformat ing to accomodate l a r g e number
165 aS ixSt r ing = ( ”0x02F40E7E2221F295DE297117B7F3D62F5C6A97FFCB8CEFF1”
166 ”CD6BA8CE4A9A18AD84FFABBD8EFA59332BE7AD6756A66E294AFD185A78FF12AA”
167 ”520E4DE739BACA0C7FFEFF7F2955727A” )
168 aSix = getElement ( I n t e g e r ( aS ixSt r ing ) , F)
169 aTwo = getElement (0 x1 , F)
170 nistB571 = {”F” : F , ”aTwo” : aTwo , ” aSix ” : aSix }
171
172 # NIST K−163
173 F.<g> = GF(2ˆ163 , name=’ g ’ , modulus=t ˆ163 + t ˆ7 + t ˆ6 + t ˆ3 + 1)
174 aSix = getElement (0 x1 , F)
175 aTwo = getElement (0 x1 , F)
176 nistK163 = {”F” : F , ”aTwo” : aTwo , ” aSix ” : aSix }
177
178 # NIST K−233
179 F.<g> = GF(2ˆ233 , name=’ g ’ , modulus=t ˆ233 + t ˆ74 + 1)
180 aSix = getElement (0 x1 , F)
181 aTwo = getElement (0 x0 , F)
182 nistK233 = {”F” : F , ”aTwo” : aTwo , ” aSix ” : aSix }
183
184 # NIST K−283
185 F.<g> = GF(2ˆ283 , name=’ g ’ , modulus=t ˆ283 + t ˆ12 + t ˆ7 + t ˆ5 + 1)
186 aSix = getElement (0 x1 , F)
187 aTwo = getElement (0 x0 , F)
188 nistK283 = {”F” : F , ”aTwo” : aTwo , ” aSix ” : aSix }
189
190 # NIST K−409
191 F.<g> = GF(2ˆ409 , name=’ g ’ , modulus=t ˆ409 + t ˆ87 + 1)
192 aSix = getElement (0 x1 , F)
193 aTwo = getElement (0 x0 , F)
194 nistK409 = {”F” : F , ”aTwo” : aTwo , ” aSix ” : aSix }
195
196 # NIST K−571
197 F.<g> = GF(2ˆ571 , name=’ g ’ , modulus=t ˆ571 + t ˆ10 + t ˆ5 + t ˆ2 + 1)
198 aSix = getElement (0 x1 , F)
199 aTwo = getElement (0 x0 , F)
200 nistK571 = {”F” : F , ”aTwo” : aTwo , ” aSix ” : aSix }
201
202 curveParams = {}
203 curveParams . update ({ ”B−163” : nistB163 })
204 curveParams . update ({ ”B−233” : nistB233 })
205 curveParams . update ({ ”B−283” : nistB283 })
206 curveParams . update ({ ”B−409” : nistB409 })
207 curveParams . update ({ ”B−571” : nistB571 })
208
209 curveParams . update ({ ”K−163” : nistK163 })
210 curveParams . update ({ ”K−233” : nistK233 })
211 curveParams . update ({ ”K−283” : nistK283 })
212 curveParams . update ({ ”K−409” : nistK409 })
213 curveParams . update ({ ”K−571” : nistK571 })
214
215 return curveParams
216
217 # ca l c u l a t e Huff curve parameters
218 # using the f o l l ow i n g c l a s s e s :
219 # CalcHuffParameters and ParameterStorage
220 #
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221 def main ( ) :
222
223 curveParams = getNISTCurveParameters ( )
224
225 for curveName , params in curveParams . i tems ( ) :
226 c a l c = CalcHuffParameters ( curveName , params [ ”F” ] )
227 c a l c . calculateAndPrintHuffParams ( params [ ”aTwo” ] , params [ ” aSix ” ] )
228
229 i f name == ” main ” :
230 main ( )

Listing B.1: Sage code for calculating generalized binary Huff curve parameters
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pages 316–327.

[LHWL93] Arjen K. Lenstra and Jr. Hendrik W. Lenstra, editors. The development of the
number field sieve, volume 1554 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin, 1993.

[LL94] Chae Hoon Lim and Pil Joong Lee. More Flexible Exponentiation with Pre-
computation. In Yvo Desmedt, editor, Advances in Cryptology - CRYPTO
’94,14th Annual International Cryptology Conference, Proceedings, volume 839
of Lecture Notes in Computer Science, pages 95–107. Springer, 1994.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes.
Journal of Cryptology, 2001. URL: http://cr.yp.to/bib/2001/lenstra.ps.

[LZM09] Mario Lamberger, Volker Ziegler, and Manfred Madritsch. Mathematische
Grundlagen der Kryptographie. University Lecture, 2009.

[Mel07] Nicolas Meloni. New Point Addition Formulae for ECC Applications. In
Claude Carlet and Berk Sunar, editors, Arithmetic of Finite Fields, First In-
ternational Workshop, WAIFI 2007, Proceedings, volume 4547 of Lecture Notes
in Computer Science, pages 189–201. Springer, 2007.



BIBLIOGRAPHY 83

[MHH12] Nashwa A. F. Mohammed, Mohsin H. A. Hashim, and Michael Hutter. Im-
proved Fixed-base Comb Method for Fast Scalar Multiplication. In Aika-
terini Mitrokotsa and Serge Vaudenay, editors, Progress in Cryptology -
AFRICACRYPT 2012 - 5th International Conference on Cryptology in Africa,
Proceedings, volume 7374 of Lecture Notes in Computer Science, pages 342 –
359. Springer, 2012.

[Mil86] Victor S. Miller. Use of Elliptic Curves in Cryptography. In Hugh C. Williams,
editor, Advances in Cryptology - CRYPTO ’85,Proceedings, volume 218 of
Lecture Notes in Computer Science, pages 417–426. Springer, 1986.

[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48:243–264, 1987.

[MVO91] Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. Reducing Elliptic
Curve Logarithms to Logarithms in a Finite Field. In Cris Koutsougeras and
Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, STOC ’91, pages 80–89. ACM, 1991.

[Nat13] National Institute of Standards and Technology. FIPS PUB 186-4: Digital
Signature Standard (DSS). National Institute of Standards and Technology,
2013. Available at http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.

186-4.pdf.

[NS03] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the elliptic curve
digital signature algorithm with partially known nonces. Des. Codes Cryptog-
raphy, 30(2):201–217, September 2003.

[OL09] Elisabeth Oswald and Mario Lamberger. Applied Cryptography 2. University
Lecture, 2009.

[Ora14] Oracle. Java� Cryptography Architecture (JCA) Reference Guide.
http://docs.oracle.com/javase/7/docs/technotes/guides/security/

crypto/CryptoSpec.html, 2014. Accessed: 2014-05-02.

[Riv11] Matthieu Rivain. Fast and regular algorithms for scalar multiplication over
elliptic curves. IACR Cryptology ePrint Archive, 2011:338, 2011.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-key Cryptosystems. Commun. ACM, 21(2):120–126,
February 1978.

[SA98] Takakazu Satoh and Kiyomichi Araki. Fermat quotients and the polynomial
time discrete log algorithm for anomalous elliptic curves. Commentarii Math-
ematici Universitatis Sancti Pauli, 47:81–92, 1998.

[Sem98] Igor A. Semaev. Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curve in characteristic p. Mathematics of Computation,
67(221):353–356, 1998.

[Sil92] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Grad-
uate Texts in Mathematics (2nd Edition). Springer-Verlag New York, 2nd
edition 2009, 1992.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://docs.oracle.com/javase/7/docs/ technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/7/docs/ technotes/guides/security/crypto/CryptoSpec.html


BIBLIOGRAPHY 84

[Sma99] Nigel P. Smart. The Discrete Logarithm Problem On Elliptic Curves Of Trace
One. Journal of Cryptology, 12:193–196, 1999.

[Sma02] Nigel P. Smart. Cryptography, An Introduction: Third Edition. Mcgraw-Hill
Professional, 2002.

[Sol00] Jerome A. Solinas. Efficient Arithmetic on Koblitz Curves. Des. Codes Cryp-
tography, 19(2/3):195–249, 2000.

[Sol01] Jerome A. Solinas. Low-Weight Binary Representations for Pairs of Integers.
Technical report, National Security Agency, USA, 2001.

[SOOS95] Richard Schroeppel, Hilarie K. Orman, Sean W. O’Malley, and Oliver
Spatscheck. Fast Key Exchange with Elliptic Curve Systems. In Don Cop-
persmith, editor, Advances in Cryptology - CRYPTO ’95, 15th Annual Inter-
national Cryptology Conference, Proceedings, volume 963 of Lecture Notes in
Computer Science, pages 43–56. Springer, 1995.

[SS06] Berry Schoenmakers and Andrey Sidorenko. Cryptanalysis of the Dual El-
liptic Curve Pseudorandom Generator. Cryptology ePrint Archive, Report
2006/190, 2006.

[TC05] Woei-Jiunn Tsaur and Chih-Ho Chou. Efficient algorithms for speeding up
the computations of elliptic curve cryptosystems. Applied Mathematics and
Computation, 168(2):1045–1064, 2005.

[Tes98] Edlyn Teske. Speeding Up Pollard’s Rho Method For Computing Discrete
Logarithms. In Joe Buhler, editor, Algorithmic Number Theory, Third Inter-
national Symposium, ANTS-III, Proceedings, volume 1423 of Lecture Notes in
Computer Science, pages 541–554. Springer, 1998.

[VD10] A. Venelli and F. Dassance. Faster Side-Channel Resistant Elliptic Curve
Scalar Multiplication. Arithmetic, Geometry, Cryptography and Coding Theory
2009, Contemporary Mathematics, 521:29–40, 2010.

[WT02] Lawrence C. Washington and Wade Trappe. Introduction to Cryptography:
With Coding Theory. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
edition, 2002.


	Introduction
	Contribution
	Outline

	Preliminaries
	Elementary Algebraic Structures
	Groups
	Fields
	Homomorphisms
	Finite Fields

	Elliptic Curves
	Projective Coordinate Systems

	Summary

	Elliptic Curves in Cryptography
	Prime Weierstrass Curves
	Binary Weierstrass Curves
	Binary Huff Curves
	Security Properties of Elliptic Curves
	The Elliptic Curve Discrete Logarithm Problem
	Generic Attacks against the ECDLP
	State-of-the-Art Attacks against the ECDLP

	Implementation Attacks against ECC
	Timing Attacks
	Fault Attacks

	Summary

	Scalar Multiplication on Elliptic Curves
	Basic Scalar Multiplication Methods
	Comb Multiplication
	Fixed-Base Comb Multiplication Method
	Improved Fixed-Base Comb Method for Fast Scalar Multiplication
	Multiple Point Scalar Multiplication
	Multiple Point Improved Fixed-Base Comb Method for Fast Scalar Multiplication

	Scalar Multiplication using Efficiently Computable Endomorphisms
	Montgomery Ladder Multiplication Methods
	Differential Montgomery Ladder Multiplication
	Montgomery Ladder Multiplication with Co-Z Coordinates
	Montgomery Ladder Multiplication with XY-only Co-Z Coordinates
	Montgomery Ladder Multiplication with XZ-only Co-Z Coordinates
	Differential Montgomery Ladder Multiplication on Huff Curves

	Improved Joye's Double-and-Add Multiplication Method
	Summary

	Cryptography in Java
	Java Cryptography Architecture
	Java Cryptography Extension
	IAIK-JCE and ECCelerate™
	Summary

	Results
	Scalar Multiplication Method Implementations
	Huff Curve Related Implementation
	Benchmark
	Scalar Multiplication Method Timings
	Huff Curve Timings

	Summary

	Conclusions
	Future Work

	Definitions
	Abbreviations
	Used Symbols

	Sage Source Code
	Bibliography

