
Graz University of Technology

Institute for Computer Graphics and Vision

Institute of Networks and Distributed Systems

Master Thesis

Real Time High Dynamic Range Video

on the GPU

Lorenz Jaeger
Graz, Austria, October 2014

Thesis supervisors

Prof. Dr. Dieter Schmalstieg

Prof. Dr. Paal Halvorsen

To Heimo Jaeger

Life is hard and so am I

Mark Oliver Everett

v

Abstract

The goal of this work was to show that real-time HDR is possible for large resolutions.

We implemented algorithms related to HDR content processing because this can greatly

improve the image quality of a video under difficult lighting conditions. For practical use

in live video capturing it was important for our algorithms to work in real-time. There-

fore we decided to implement existing algorithms in Nvidia’s CUDA. After selecting and

implementing multiple algorithms we extended an existing panoramic image processing

pipeline. This pipeline is used to capture panoramic videos of the playing field of a foot-

ball stadium located in Tromsø, Norway. We performed multiple tests on our extension.

These consisted of detailed performance analysis and an evaluation of the visual pleasant-

ness of the output in a small user study. We proved that real-time high resolution HDR

Video is possible and that it improves image quality.

Keywords. High Dynamic Range (HDR), panorama video, real-time,

vii

Acknowledgements

I would like to thank my supervisors, Prof. Schmalstieg and Prof. Halvorsen, for their

guidance and advice. I owe gratitude to Patrick Kaspar, Bernhard Kerbl and Ragnar

Langseth, without whose support this work would not be the same. Furthermore, I want to

thank my friends, family, and of course Barbora Orlická, for their encouragement through-

out the whole time.

ix

Contents

1 Introduction 1

2 High Dynamic Range 3

2.1 Introduction to HDR . 3

2.2 Radiance mapper . 4

2.2.1 Luminance & Key . 5

2.2.2 Response Function . 6

2.2.3 Weight Function . 6

2.3 Tone mapper . 6

2.3.1 Global vs. Local . 7

2.4 Pipeline . 8

2.4.1 Pipeline Modules . 8

2.4.2 Prerequisites for HDR . 10

2.4.3 Integration into Pipeline . 11

3 Related Work 13

3.1 General Purpose HDR . 13

3.1.1 Radiance mapping . 13

3.1.2 Tone mapping . 15

3.2 HDR for video . 17

4 Algorithms 19

4.1 Radiance mapper . 19

4.1.1 Debevec . 19

4.1.1.1 Procedure . 19

4.1.2 Robertson . 21

4.1.2.1 Procedure . 21

4.1.3 Tocci . 23

4.1.3.1 Procedure . 23

4.1.3.2 Comparison of Radiance mappers 24

4.2 Tone mapper . 24

4.2.1 Ward . 24

xi

xii CONTENTS

4.2.1.1 Procedure . 25

4.2.2 Larson . 26

4.2.2.1 Procedure . 26

4.2.3 Reinhard . 27

4.2.3.1 Procedure . 27

4.2.3.2 Comparison of Tone mappers 29

4.2.4 Weight Functions . 29

4.2.4.1 Debevec . 29

4.2.4.2 Robertson . 30

4.2.4.3 Mitsunaga . 30

4.2.4.4 Linear . 30

4.2.4.5 Comparison of Weight functions 31

5 Implementation 33

5.1 Implementation in C++ . 33

5.2 Implementation in CUDA . 34

5.2.1 CUDA concepts . 35

5.2.2 Common . 36

5.2.3 Debevec . 37

5.2.4 Robertson . 37

5.2.5 Tocci . 37

5.2.6 Ward . 39

5.2.7 Larson . 39

5.2.8 Reinhard . 41

6 Performance Measurement and Study 43

6.1 Performance . 43

6.1.1 Set-Up . 44

6.1.2 Execution Times . 44

6.1.3 Detailed Evaluation . 45

6.1.3.1 Legend . 46

6.1.3.2 Debevec . 47

6.1.3.3 Robertson . 48

6.1.3.4 Tocci . 48

6.1.3.5 Ward . 51

6.1.3.6 Larson . 53

6.1.3.7 Reinhard . 59

6.1.3.8 Common . 68

6.1.3.9 Overview . 69

6.2 Visual Comparison . 70

6.2.1 Set-Up . 70

CONTENTS xiii

6.2.2 Proceedings . 70

6.3 Results of subjective study . 71

6.4 Performance vs. Visual Result trade-off . 75

6.5 Final Result . 76

7 Conclusion 81

7.1 Future Work . 81

7.2 Concluding Remarks . 82

A Acronyms and Symbols 83

Bibliography 84

List of Figures

2.1 Capturing multiple exposures . 4

2.2 HDR example . 5

2.3 Local tone mapper example . 8

2.4 Pipeline hardware set-up . 8

2.5 Pipeline software set-up . 8

2.6 Pipeline camera set-up . 10

2.7 LDR example . 10

6.1 Execution times of pipeline . 45

6.2 Execution times of HDR module . 45

6.3 Execution times of calibration . 48

6.4 Evaluation of our implementation of Debevec and Malik’s algorithm 49

6.5 Evaluation of our implementation of Robertson et al.’s algorithm 50

6.7 Evaluation of our implementation of Tocci et al.’s algorithm 53

6.8 Evaluation of our implementation of Ward’s algorithm 54

6.9 Evaluation of our implementation of the sub step compute-foveal-image in

Larson et al.’s algorithm . 56

6.10 Evaluation of our implementation of the sub step calculate-histogram in

Larson et al.’s algorithm . 58

6.11 Evaluation of our implementation of the sub step apply-histogram in Larson

et al.’s algorithm . 59

6.12 Execution times of pipeline with reinhard 60

6.13 Execution times of HDR module with reinhard 60

6.14 Evaluation of our implementation of the sub step create-radiance-image in

Reinhard et al.’s algorithm . 63

6.15 Evaluation of our implementation of the sub step fft-forward in Reinhard

et al.’s algorithm . 64

6.16 Evaluation of our implementation of the sub step about processing complex

numbers in Reinhard et al.’s algorithm . 66

6.17 Evaluation of our implementation of the sub step applying the formula

introduced in Section 4.2.3.1 in Reinhard et al.’s algorithm 67

xv

xvi LIST OF FIGURES

6.18 Evaluation of our implementation of parallel reduction to recover

log-average brightness . 69

6.19 Results of the subjective user study . 75

6.20 Output images acquired using different combinations of algorithms 79

List of Tables

4.1 Radiance mapper Features . 24

4.2 Tone mapper Features . 29

4.3 Weightfunction Features . 31

6.1 Execution times of all modules in different configurations of HDR algorithms 46

6.2 Execution times of all modules with different number of Gauss Kernels used

by the radiance-mapper proposed by Reinhard et al. in ms 61

6.3 Execution times of all kernels in ms . 70

xvii

Chapter 1

Introduction

HDR (high dynamic range) video is a young field of research in the area of video pro-

cessing. There have been significant advances in HDR processing of static images in the

past. Transferring these insights into real-time video capture has not been attempted

widely. RED inc.∗ implemented real-time HDR capturing in their EPIC camera series.

Here, only the capturing is performed in real-time. Processing the image data in order

to be displayed on an LDR (low dynamic range) device still requires a time consuming

post-processing. Our goal was to implement all the necessary operations for capturing

and displaying HDR content in real-time. We used this implementation as a module to

extend an existing pipeline. We have set up an array of cameras that overlook a football

stadium located in Tromsø, Norway. By stitching the input of the cameras together we

obtain a high resolution panoramic video of the playing field. This video is later used for

various post-processing steps including player tracking, and processing for live streams.

Tromsø is located north of the Arctic Circle, this creates special conditions. Firstly, the

sun there never rises very high. This results in long shadows covering the playing field.

Secondly, snow is present for most of the time in the surroundings of the stadium. The

difference in brightness between shade, and snow illuminated by the sun cause difficult

light conditions. These problems are usually solved by manually adjusting the exposure of

the cameras capturing the video. Since our implementation is a fully automatic system,

this is not a viable option.

Previous attempts at capturing HDR real-time video were severely limited in resolution

because they were bounded by the floating point performance of the CPU . Therefore,

we decided to implement multiple existing HDR -processing algorithms in CUDA. The

∗http://www.red.com/

1

http://www.red.com/

2 Chapter 1. Introduction

processing power available on a GPU enables us to work with higher resolutions. We then

performed a comparison of the performances of the algorithms and picked the most suitable

one to be used in the pipeline.

This work is structured as follows. Chapter 2 introduces HDR and the aforementioned

pipeline. In Chapter 3 we discuss existing solutions for HDR processing. Out of these

related works we selected six algorithms to implement. These algorithms are discussed

in more detail in Chapter 4. How we implemented these algorithms in CUDA is then

discussed in Chapter 5. In Chapter 6 we perform a visual and performance evaluation

of our implementation. We conclude the work with Chapter 7 where we present the best

combination of algorithms.

Chapter 2

High Dynamic Range

Contents

2.1 Introduction to HDR . 3

2.2 Radiance mapper . 4

2.3 Tone mapper . 6

2.4 Pipeline . 8

2.1 Introduction to HDR

Brightness that occurs in the real-world can span twelve orders of magnitude. The range

of the human visual perception is nine orders of magnitude. If this range is exceeded,

the eye adapts using various adaptation techniques∗. A film inside a camera can capture

up to seven orders of magnitude. Photographic paper can reproduce up to four orders

of magnitude [26]. These facts lead to multiple problems when one tries to capture and

represent real world luminance values. First, a camera (analogue or digital) cannot

capture the full range present. This leads to either under- or overexposed areas in the

image. Second, the devices used to display the captured image exhibit an even lower

range than the capturing devices resulting in additional loss of information. These

problems can be solved using HDR (high dynamic range) processing which consists of

two steps. The first is called radiance mapping and deals with capturing and storing

real world luminance. The second is called tone-mapping which tries to map the

∗”Sensory Reception: Human Vision: Structure and Function of the Human Eye” Encyclopædia Bri-
tannica, vol. 27, 1987

3

4 Chapter 2. High Dynamic Range

captured luminance to a range that can be displayed by an LDR (low dynamic range) device.

2.2 Radiance mapper

A radiance mapper tries to capture the existing real world luminance using devices that

typically can not capture the entire range at once. An exemplary situation could be a

photographer taking a picture inside a church where the bright light shining through the

windows contrasts with the dark interior. If the photographer tries to capture both the

details of the interior and of the stained-glass windows, one of the following problems

occurs:

1. The intricate details of the windows are captured. The rest of the interior is under-

exposed and barely visible.

2. The inside of the church is visible, but the details in the window are not. The glass

is a featureless white area of saturation.

3. The inside of the church is underexposed and not visible. On the other hand the

window is overexposed and therefore not visible either.

The different cases mentioned above can be seen in Figure 2.1.

Figure 2.1: Example for capturing multiple exposures. Source: wikipedia.org

The most common approach to solve this problem is to take multiple images with

different exposure times. Those multiple exposures are then combined into a single image

by a radiance mapper. An example of this process can be seen in Figure 2.2. The way this

is exactly accomplished differs greatly from algorithm to algorithm and will be discussed

in further detail in Section 4.

2.2. Radiance mapper 5

Figure 2.2: Example for merging multiple exposures and performing tone map-
ping on the resulting HDR image. Source: wikipedia.org

LDR images are typically stored with eight bits per colour channel, resulting in 24-bit

colour-depth. This is too little for HDR purposes. Here the value for each colour channel

is stored as a floating point value. This leads to increased memory requirements.

2.2.1 Luminance & Key

Luminance is defined as
lm

sr ·m2
with lm = luminous flux, sr = steradian angle. This

represents the amount of light emitted in a certain direction over an angle [28]. This light

can have two possible sources. Either the material is emitting light, or it is reflecting

incoming light. The colloquial term for luminance is brightness. We will use these two

terms interchangeably from here on. The human eye perceives changes in brightness on

a log10 scale. This means that luminance of an object has to increase by an order of

magnitude to be perceived as twice as bright.

The key of a scene is the real world brightness that is mapped to the middle brightness

value in the output format. This means that this real world luminance level represents

the middle of the available range. It also describes the overall perceived brightness of the

output image. Low key images tend to be very dark, whereas high key images are much

brighter. Selecting the right key in traditional photography is often based on the zone

system proposed by Adams in [1], [2] and [3]. Here the possible output range is separated

into 11 zones. The photographer then tries to map the perceived middle brightness of the

scene to the middle zone in the output. In our algorithms the user can set a desired key

6 Chapter 2. High Dynamic Range

value and all other values are then scaled around this middle value. This enables the user

to set the tone of the image.

2.2.2 Response Function

The response function is a look-up table that maps real world luminance to stored lu-

minance. In an idealized and simplified model, if one photon hits a pixel on the image-

capturing device this pixel returns a brightness of one photon. If two photons hit a pixel,

it returns a brightness of two photons. This is a linear response curve. Physical film

used in analogue cameras does not exhibit a linear response curve. It is S-shaped. In the

lower range a threshold of brightness has to be exceeded in order to be registered, and

towards the upper end of the brightness range saturation effects alter the response. Tech-

nically, digital photo sensors have an almost linear response, but camera manufacturers

modify that response to mimic physical film. Each manufacturer uses a different mapping.

Therefore determining the individual response curve of a camera is part of some of the

algorithms. We implemented the response function in a discrete fashion. For each possible

input value (0-255) in each colour-channel we associate an output brightness. The range

of the output brightness spans multiple orders of magnitude as opposed to the range of

the input.

2.2.3 Weight Function

As previously mentioned, many radiance mappers merge multiple images with different

exposures into a single output image. The pixels of each image are often weighted to

prefer exposures with ’useful’ information. This means that the pixel is not all black or all

white but contains some sort of information. These extreme values of all black or all white

usually mean that a pixel was under- or overexposed, respectively. Therefore it contains

no information of interest. What is considered to be ’useful’ data varies between different

authors. This will be discussed in further detail in Section 4.2.4.

2.3 Tone mapper

The image produced by a radiance mapper can span up to twelve orders of magnitude.

Printing paper can only represent up to four orders of magnitude. Computer monitors

also span only a range of four orders of magnitude. The tone mapper tries to compress

the existing HDR data into a range suiting the capabilities of the display device. A näıve

2.3. Tone mapper 7

approach would be to normalize the HDR data. This typically leads to undesirable com-

pression artifacts. A single very high or low value can lead to strong compression where

most of the image content gets compressed into a single value.

2.3.1 Global vs. Local

The related literature distinguishes between two kinds of tone mappers:

1. Global operators: In this category of tone mappers an operation is applied onto

the image as a whole. The operation performed is the same for each pixel. No local

neighbourhood is taken into account. If two input values are the same, the output

value will be the same too. This kind of operator has the advantage of preserving

global contrast in the output image. These global approaches usually have shorter

execution times. This is because the complex operations required only need to be

performed once per image, not once per pixel. The compression of each pixel is often

implemented as a simple look-up operation.

Properties:

+ fast

+ conserves global contrast

− may lead to over compression if dynamic range is high

2. Local operators: Tone mappers in this category take the local neighbourhood of

each pixel into account. This means that two identical input values can result in

different output values. These operators are usually more computationally demand-

ing since complex operations have to be performed for each pixel. Reinhard et al.

[26] state that human vision is most sensitive to local contrast changes, so these

operators can lead to more desirable results according to Yoshida et al. [35]. This is

because local operators attempt to maximize local contrast and ignore global con-

trast. One downside of this approach are the artifacts appearing at contrast edges

called ”halos” as can be seen in Figure 2.3.

+ good local contrast

+ extreme values do not degrade whole image

− slow

− can produce artifacts/halos

8 Chapter 2. High Dynamic Range

Figure 2.3: Example of a local tone mapper. Source: wikipedia.org

2.4 Pipeline

2.4.1 Pipeline Modules

Figure 2.4: Overview of the hardware set-up of the panoramic capture pipeline.
Source: [10]

Bayer
Converter HDR

Panorama
StitcherUploader Downloader

GPU

CPU

Figure 2.5: Overview of the modules in the pipeline

In the following section we describe the individual modules that make up the previously

mentioned pipeline. The goal of this pipeline is to capture and distribute a real-time

panoramic video of the playing field of a football stadium. We extend this pipeline with

2.4. Pipeline 9

our HDR processing module.

recorder: This module runs on multiple machines in a distributed fashion. It records the

raw output of five cameras overlooking a football stadium. The cameras are mounted

on a custom made rack as seen in Figure 2.6. This module has to synchronize the

shutters of all cameras, manage white balance and detect dropped video frames. The

processing load required for these operations is too high to be efficiently handled

by a single machine, thus requiring a distributed implementation. Synchronisation

between the machines involved is achieved using a PCI express local area network

provided by Dolphin ∗. A more detailed view of the set-up can be seen in Figure

2.4.

Uploader: This module is responsible for uploading the captured images to the device

memory space of the GPU. This task is simple, but copying data to and from the

GPU is a costly operation. This module therefore attempts to minimize the amount

of data transferred.

Bayer Converter: Here the incoming raw data is converted. Initially, each pixel only

consists of a single colour channel. During this process, four of those pixels are

combined to result in a single RGB pixel. The demosaicing pattern used was first

proposed by Bayer [4]. This pattern is used in most digital image capturing devices.

Here the contribution to the final colour consists of one red, one blue, and two green

pixels. The colour green is represented more because the human vision is most

sensitive to this colour.

Panorama Stitcher: This module is responsible for merging the individual images of

the five cameras into one single, continuous image. Each FOV (field of view) of

the five cameras overlaps with the FOV of the neighbouring cameras. This way

an overlapping area between each of the images is created. The module performs

dynamic seam creation that merges the images in those areas, trying to avoid visible

seams. For this purpose an approach proposed by Xiong and Pulli [33] was adapted

to be executed on the GPU .

Downloader: This module performs the inverse operation of the Uploader module. It

copies the processed image data from the device memory located on the GPU to host

memory to be accessed by the CPU .

∗http://www.dolphinics.com/

10 Chapter 2. High Dynamic Range

Encoder: The processed video frames are encoded as a video stream by the Encoder

module. This stream is then either stored on a hard drive to be used later, or

immediately streamed to viewers.

Figure 2.6: Mounted camera array Source: [10]

2.4.2 Prerequisites for HDR

In this section we will briefly discuss why we decided to implement an HDR module in our

pipeline. The stadium where the cameras are currently installed has two properties that

make capturing videos challenging:

1. It is located in Tromsø, Norway. This town is situated north of the Arctic Circle.

Because of this, the sun does not rise very high, causing long shadows.

2. The roof of the stadium only covers the audience seats but not the playing field.

This circumstance coupled with the low sun causes parts of the playing area being

covered in shadow and other parts being brightly lit by the sun. This can be seen

in Figure 2.7.

Figure 2.7: Example image that shows shadow covering play area.

2.4. Pipeline 11

Television broadcasters trying to film a football game face the same problems, but

they employ people to man the cameras. This enables them to dynamically adjust the

exposure of the camera so show only the area of interest. Our system on the other hand

works without human intervention and covers the whole playing field instead of only an

area of interest.

Difficult light conditions coupled with the need for an autonomous solution lead us

to the conclusion, that we must perform HDR video capturing followed by tone mapping.

The resulting contrast compression enables us to make the entire play area visible at once,

independent of present light conditions.

2.4.3 Integration into Pipeline

The individual modules of the pipeline are loosely coupled with each other. We imple-

mented inter module communication based on the producer-consumer architectural model.

Each module only knows of its predecessor within the pipeline. Each time a module is

finished with an operation it requests new data to process from its predecessor. This loose

coupling enables us to change the composition of modules within the pipeline easily. One

such use-case would be the position of the HDR module in relation to other modules. There

are two positions that are viable. Either HDR is performed before or after the stitching

module. Executing the HDR -module after the Stitching module causes the input, which

needs to be processed by the HDR -module, to be slightly smaller. Executing the HDR mod-

ule before the Stitching module yields the following advantages: The stitching module has

to perform its operation only once on the merged data, not on each exposure individually.

Furthermore the stitching module has more data in a useful range to use for seam creation.

Therefore we decided to perform HDR related operations before the stitching module.

Data exchange between individual modules is facilitated using two data structures. The

image data is transmitted using CUDA-arrays. This data-structure is an opaque memory

layout that offers spatial based caching. Since many operations on the images depend on

their local neighbourhood this choice exhibits advantages over plain, linear global memory.

The properties of CUDA-arrays will be discussed in more detail in Section 5.2.1. Metadata,

like frame number and exposure time for each image, is stored in a C++ struct. When

multiple images are fused together, the related meta data is changed accordingly.

Chapter 3

Related Work

Contents

3.1 General Purpose HDR . 13

3.2 HDR for video . 17

3.1 General Purpose HDR

In this section we will discuss general-purpose HDR algorithms that are applicable in a

wide range of situations. We try to divide existing literature into two categories. First,

publications that aim to create HDR images, and second the ones that deal with displaying

HDR content. This clear distinction is not always possible since some authors tackle both

problems at once. For these cases we categorize the work based on what we deem to be

the crucial contribution of it.

3.1.1 Radiance mapping

Yamada et al. [34] propose a very simple way of combining multiple exposures. Instead of

merging the pixel values of different exposures, only the value of a single exposure is used.

The algorithm starts off with the value of the pixel in the longest exposure. It checks if

the pixel is saturated or not. If the pixel is not saturated, this value is used. If on the

other hand it is saturated, the next shorter exposure is considered. The same check of

saturation is applied to this new pixel value. This process is iteratively continued until all

pixels have non saturated values. The approach proposed is simple and quick, but since

no merging is performed, image noise can become an issue that has derogatory effects on

the output image.

13

14 Chapter 3. Related Work

Tocci et al. [29] extend the basic idea proposed by Yamada et al.. Under certain

circumstances pixels of different exposures are merged instead of using a single value. The

algorithm takes the local neighbourhood of each pixel into account. Again the pixel values

of the longest exposure are considered first. If the pixel itself or one of its neighbours is

above a certain saturation threshold, the value is merged with the value from the next

shorter exposure. If no saturation is observed, the pixel is used as it is. The weight

function used is based on the number of saturated pixels in the local neighbourhood,

and only penalizes pixels that are very close to over- or undersaturation. This process

is performed iteratively until there are no saturated pixels left, or all available exposures

have been considered.

Mann and Mann [21] were the first to propose recovering the response function of the

camera used. Authors in the past assumed direct access to the capturing chip. They were

able to assume a linear response, since no post-processing had been performed on the pixel

values. Reading RAW image data is not always possible and too slow for video capturing.

Therefore the authors introduce a way to approximate the response function of a camera.

This “calibration” has to be performed once in the lifetime of the camera used.

Debevec and Malik [7] build upon the idea introduced by Mann and Mann [21] and

propose multiple novel concepts in their landmark paper. Different exposures of the scene

are merged together, instead of using the pixel value of a single exposure. In order to

facilitate this merging, they introduce weight functions that give different priorities to

the exposures being merged. The weight function proposed by Debevec and Malik is a

triangular function. Here values towards the middle of the range get the highest weight

and therefore the most influence on the output. Debevec and Malik argue that pixels close

to black and white tend to contain less useful information because they are likely to be

over- or underexposed. This claim is refuted by other papers on this list, namely [27],

[12] and [29]. Furthermore the authors introduce a way to recover a camera’s response

function. For this, a number of sample images with known exposures are needed. This

operation only needs to be performed once for each camera used.

The approach put forth by Robertson et al. [27] is similar to the one proposed by

Debevec and Malik. The algorithm also contains a ”calibration” process for each camera

used. An arbitrary response function is recovered from a set of sample images at different

exposures. Unlike the weight function used by Debevec and Malik, Robertson et al. suggest

a dynamic weight function. It is based on the confidence that a value was represented

correctly using the given response function. When merging multiple exposures the formula

3.1. General Purpose HDR 15

proposed by Robertson et al. gives more weight to higher exposures because the authors

argue that those are more likely to contain useful information.

The algorithm suggested by Mann and Picard [22] is very similar to the one proposed

by Robertson et al.. In both a response function is recovered from sample images prior

to performing the radiance mapping step. Multiple exposures are merged using a weight

function that is based on confidence in the correctness of a measurement. The main

difference in the approach of Mann and Picard to the one of Robertson et al. is that the

response function is assumed to be parametric, not arbitrary. This limits accuracy and

can not represent every digital image sensor.

Mann [20] introduces multiple ideas in this work. First he dismisses the idea to perform

homomorphic filtering, but instead to work right in the real-world brightness domain. He

argues that many devices perform a form of logarithmic compression themselves. Per-

forming another logarithmic compression on top of that can lead to undesirable results.

Furthermore, he proposes using comparametrics. Here, one exposure is chosen as a base

image. Images with different exposures are represented as their difference to that base

image. By using this form or representation it is possible to split the process of recovering

a camera’s response function into two steps. Not all operations require a full response

function, so only the first step needs to be performed, thus requiring fewer computations.

Granados et al. [12] discuss various weight functions and compare them with each other.

Weight functions are used by some radiance mappers when merging multiple exposures.

Based on the saturation of a pixel in a certain exposure the pixel is given mor,e or less

weight in the final, merged image. Debevec and Malik, for example, argue that the most

useful data for a pixel is in the middle range of the pixel. Granados et al. argue that most of

the useful information is towards the upper end of the range before the pixel is saturated.

Granados et al. propose a weight function of their own, which takes various noise terms

into account. Because of this property the weight function needs to be “calibrated” to

the camera prior to use. This way the individual noise properties of the camera are

incorporated.

3.1.2 Tone mapping

One of the first works concerning tone mapping was written by Ward [32]. His proposed

tone mapping solution is a global operator (See Section 2.3.1). In his approach the author

takes the brightness capabilities of the displaying medium into account. Each pixel is scaled

with a global scaling factor that is based on the overall brightness of the incoming image

16 Chapter 3. Related Work

and the highest possible output brightness. The other values in the formula proposed by

Ward are magic numbers that were determined by the author in an empirical fashion.

These numbers represent the relation between the minimum discernible difference and the

input brightness. The goal of this formula is to preserve the relative contrast of the HDR

input image. One downside of this algorithm is that compression is performed linearly. If

the dynamic range is very high, this can lead to undesirable results. Only the very bright

and dark parts are visible while most of the details in the middle range are lost due to

over-compression.

Reinhard et al. [26] propose a sophisticated local tone mapping operator. They try to

simulate a technique called “dodging & burning” which is well established in traditional

photography [3]. When using this technique, different areas of the image are exposed

longer, or shorter when transferring the image from the negative to photographic paper.

This way areas that are too dark on the negative are made brighter in the resulting image

and overly bright areas are darkened. To transfer this technique to digital images the

authors propose to perform dodging & burning on a per pixel basis. For this, the local

neighbourhood of each pixel is taken into account by using an average of the neighbour-

hood. If the neighbourhood is dark, then the pixel is made darker, thus performing a

“dodging” operation. On the other hand, if the neighbourhood is very bright, then the

pixel itself is made brighter.

Larson et al. [18] suggest a global tone mapping operator that is based on histogram

equalisation. As opposed to näıve equalisation, they propose “histogram adjustment”.

Using this approach human contrast thresholds and the visual acuity of the eye are con-

sidered when adjusting the histogram. The authors also simulate some of the perceptual

effects of the human visual system observed by Krawczyk et al. [17].

Drago et al. [8] propose a hybrid approach between local and global tone mapping.

First, a global brightness adjustment is performed based on a key brightness value set by

the user. This step is similar to a key adjustment performed in [27]. Then, a local oper-

ator is applied to each pixel. Using this operator, each incoming HDR pixel is compressed

by applying a logarithmic operation. Depending on the brightness of the incoming pixel

the base of the logarithm is changed to either perform more, or less compression. Loga-

rithmic compression approximates how the human eye perceives brightness. This form of

compression leads to a “natural” look of the compressed image.

An approach that is neither a local nor a global approach, but instead a gradient

domain based solution is proposed by Fattal et al. [9]. Here the gradients in brightness for

3.2. HDR for video 17

the whole image are calculated. They are calculated in multiple resolutions to represent

different frequencies of contrast changes. This way local noise, and the overall, more global,

brightness changes of the image are accounted for. The higher the brightness gradient the

more compression is performed. This way small contrast changes are not changed and big

differences are adequately compressed into the displayable range. According to Yoshida

et al. [35] humans are most sensitive to small, high frequency contrast changes. These are

preserved when using this technique.

Mantiuk et al. [23] propose a novel approach where the light conditions surrounding

the displaying device are accounted for. The key brightness of the output image is adjusted

depending on the ambient luminance. The operator proposed is a global operator. When

performing the brightness adjustments to the image, the contrast behaviour of the human

eye is incorporated.

Krawczyk et al. [17] do not propose a tone mapping operator themselves. Instead they

observe various phenomena that occur in the human visual system. For example how

it adjusts to changes in brightness and how very dark and bright scenes are perceived

differently. The insights published in this work are used by some of the other authors

mentioned in this section. The findings include, but are not limited to: glare, blur, reduced

colour differentiation in dark areas and local contrast sensitivity. Their work should be

seen as supplementary work for the previously mentioned tone mappers.

3.2 HDR for video

In this section we introduce algorithms that specifically deal with performing high dynamic

range (HDR) operations on videos. This implies trying to maintain consistency across

multiple frames of the video. Benoit et al. [5] propose a tone mapping algorithm that

closely models how the human eye handles brightness compression. The algorithm consists

of multiple steps that each mimic a part of the eye. One step of this algorithm performs

temporal and spatial filtering. This temporal property is well suited for HDR video content.

Instead of optimizing for each frame independently, some knowledge of previous frames

is preserved. This enables smoother transitions between frames in which light conditions

change.

Guthier et al. [13] introduce a way of handling changing light conditions when capturing

a video. A tone mapping operator always tries to achieve the perfect result for each frame

and does not take any information from the previous frames into account. This can lead

to flicker over the duration of a video, even if the light conditions change only marginally..

18 Chapter 3. Related Work

The authors propose a smooth brightness transition between frames. This is achieved by

limiting the absolute brightness change possible between consecutive frames. The target

brightness set by the tone mapper is reached gradually over the course of multiple frames.

This corresponds to how the human eye adjusts to changes in brightness. Adaptation in

the eye is not instant, but instead is performed gradually over a short period of time.

Another publication by Guthier et al. [14] gives an overview of a real-time HDR video

pipeline that the authors have created. This work covers multiple previously published

papers by the authors. First, Guthier et al. tackle the capturing of the individual LDR

images. In their approach only a single picture is taken and analysed. An algorithm

detects any areas that are over or under exposed. These areas are captured again using

a different exposure time during a step called “partial re-exposure”. This technique helps

improve capture time, since only one full image has to be read. All subsequent reads are

performed for smaller parts of the image, thus reducing the amount of data that needs

to be processed. The authors use a hand-held camera that can move between capturing

different exposures. This circumstance necessitates image registration between individual

captures to detect any camera movement that might have occurred in the meantime. The

authors propose image registration based on histograms. The next two steps in the pipeline

are radiance mapping, and tone mapping. Here the authors are using algorithms proposed

by Debevec and Malik [7], and Larson et al. [18] respectively. Finally, the authors suggest

applying flicker reduction as a post-processing step on the output. This approach had

been previously introduced by them in [13].

Our approach to HDR was greatly influenced by this last paper by Guthier et al..

Because the input we process is more static, we only perform a subset of the operations

mentioned.

Chapter 4

Algorithms

Contents

4.1 Radiance mapper . 19

4.2 Tone mapper . 24

In the following chapter we will give an overview of the algorithms we chose to imple-

ment for our HDR processing module.

4.1 Radiance mapper

In this section we will introduce various algorithms that deal with creating HDR content.

This is the first step in our HDR module.

4.1.1 Debevec

We chose this algorithm because it is very robust. By merging multiple exposures the

resulting HDR image is less prone to noise artifacts that are present in a single image. The

assumption of an arbitrary response function gives this algorithm a wide range of applica-

tions and ensures compatibility with different kinds of cameras. Most of the tone mapping

algorithms we encountered used HDR data generated by using the approach introduced by

Debevec and Malik. This is a highly cited work in the area of HDR processing.

4.1.1.1 Procedure

The process for creating HDR images in this algorithms consists of two major steps, one

off-line step and an on-line step. The off-line step needs to be performed once in the

19

20 Chapter 4. Algorithms

lifetime of the camera used. The on-line step is performed for every frame of the video.

Off-line Step: The goal of the off-line step is to recover the arbitrary response function

of the camera being used. The input required for this process consists of two types of data.

One is multiple images of the same scene with different exposure times. The other is the

different exposure times of each of these images. All following steps could be performed for

every pixel of the incoming images. This is not necessary to get satisfying results and in

order to speed up computation only a sampled set of pixels are used in the computations.

For the sampled pixel positions their values in different exposures are read. These values

are used to solve a SVD system. By minimizing the following formula the response function

can be recovered.

O =
N∑
i=1

p∑
j=1

[g(Zij)− lnEi − ln∆tj]
2 + λ

Zmax∑
z=Zmin+1

g′′(z)2

where:

N = Number of pixel locations

P = Number of photographs

g() = response function

Zij = Value of incoming LDR values per colour channel (0 - 255)

Ei = Real world luminance of pixel i

tj = exposure time of photograph j in seconds

λ = smoothness term

By using the well known Gauss-Seidl algorithm [11] to solve this SVD , the response function

of the camera can be recovered

On-line step: The on-line step has to be performed for every frame of the video. Here

the goal is to merge multiple incoming LDR images into a single HDR output image. For

each pixel position the corresponding values in the differently exposed input images are

read. For each value the associated weight is looked up in the weight-function and the

response in the response-function. Furthermore, each exposure is scaled by the logarithm

of its exposure time in seconds. This process is described in the following equation:

lnEi =
∑P

j=1 w(Zij)(g(Zij)−ln∆tj)∑P
j=1 w(Zij)

where:

4.1. Radiance mapper 21

P = Number of photographs

g() = response function

Zij = Value of incoming LDR values per colour channel (0 - 255)

Ei = Real world luminance of pixel i

tj = exposure time of photograph j in seconds

w() = weight function

The value of one pixel is independent from its neighbouring pixels. Because of this

fact we decided to implement this step in CUDA to be executed on a GPU , thus enabling

us to utilize the parallel computing capabilities of the GPU .

4.1.2 Robertson

The approach by Robertson et al. enables recovering an arbitrary response function from

a given set of differently exposed images. The method proposed by Debevec and Malik [7]

is widely used and we wanted a different algorithm with an arbitrary response function to

compare it to. The concept of an adaptive weight function promised to be an interesting

addition to enhance the quality of the output.

4.1.2.1 Procedure

Like the solution proposed by Debevec and Malik the process proposed by Robertson

et al. is split up into an off-line and on-line step. The off-line step is performed once in

the lifetime of the camera used and the on-line step is performed for every frame of the

video.

Off-Line step The goal of the off-line step is to recover the response function of the

camera and calibrate the weight function to that response function. Every camera has

different quantization effects and noise properties. This means that the most useful range

for captured data differs from camera to camera. Therefore a dynamic weight function

based on confidence in the correctness of a value given by the response-function is proposed.

The iterative offline step consists of the following sub-steps:

1. First, an HDR image is created using the weight and response function from the pre-

vious iteration. For the initial iteration the response-function is a linearly increasing

function, and the weight-function is a Gaussian bell curve. A bell curve is used

because it best accounts for image noise artifacts in the low and high regions of the

input data according to Robertson et al..

22 Chapter 4. Algorithms

2. In the next step a new response function is calculated using the previously created

HDR image using the following formula:

Îm = 1
Card(Em)

∑
(i,j∈Em)

tix̂
l−1
j

where:

Îm = Value of response function at position m.

Em = LDR input value for one colour channel (0-255).

Card(Em) = how often this value occurs in the image.

ti = exposure time in seconds.

x̂l−1
j = HDR input value.

3. Afterwards, the weight function is updated. The value of a weight function at a

given position is determined by the gradient of the response function at the same

position. The authors argue that most of the noise and image quantization errors

occur towards the upper and lower bounds of the range of the sensor. Typically the

response curve is flattened in these regions. The output of the response function

does not change a lot for different input values in these regions. This leads to a

higher inaccuracy in flat regions of the response curve. Therefore the steepness of

the response curve is a good indicator for the correctness of a value returned by the

response function.

After completing the steps listed above a single iteration is complete. The process of

iterating is complete when one of the two following cases is fulfilled:

1. A user defined number of iterations is complete.

2. A user defined convergence rate is reached. The rate is determined by the difference

of the response function to the response function of the previous iteration expressed

as a percentage.

This series of steps only needs to be performed once in the lifetime of the camera.

On-line step The following on-line step is repeated for each frame of the video. Here

for each colour-channel of each pixel the following equation is applied:

x̂j =
∑

i wijtiÎyij∑
i wijt2i

4.1. Radiance mapper 23

where:

x̂j = HDR output value.

wij = weighting value according to weight function.

Îyij = response according to response function for incoming LDR value.

ti = exposure time in seconds.

Similar to the approach proposed by Debevec and Malik, multiple exposures are merged

into a single HDR image. The advantage of this approach lies in noise reduction. When

only using a single exposure the output is fully dependent on the value of the pixel at that

exposure. If the value of the pixel happens to be falsified by any type of noise, the resulting

HDR image is affected by that noise term too. This problem can be mitigated by taking an

average of multiple input exposures. Including the exposure time in the numerator of the

formula leads to values of pixels with longer exposures to have a bigger influence on the

result. This is done to utilize quantization effects described by Madden in [19]. Madden

states, that higher exposures are more likely to contain useful data. This is because at

lower exposures noise effects tend to contribute more to the captured values.

4.1.3 Tocci

The algorithms mentioned above only work on a single pixel and merge all available

exposures. In contrast to this the approach proposed by Tocci et al. also takes local

neighbourhood into account. Furthermore, not all exposures are used for each pixel but

only the ones containing the most information. Noise reduction is further improved by

taking local neighbourhood into account. This algorithm has a very complex on-line step

compared to the other algorithms. The complexity of the step made it a challenge to

efficiently port the process to CUDA.

4.1.3.1 Procedure

The approach proposed by Tocci et al. is only concerned with the on-line aspect of the

HDR image creation process. It is assumed that a response function has already been

recovered to be used by the algorithm. The authors suggest using the method proposed

by Debevec and Malik to determine the response function. The basic idea is the same as

in the approach proposed by Yamada et al. [34]. If possible, only the values of the highest

exposure are used. But the idea is extended by sophisticated merging that is performed

when the used image is close to saturation.

24 Chapter 4. Algorithms

For each pixel position the value of the longest exposure and its neighbourhood are

examined. This leads to four possible cases for each pixel. Each case requires a different

operation to be performed:

• Case 1: no pixels are saturated: use the value of the highest exposure.

• Case 2: main pixel is not saturated but local neighbourhood has one

or more saturated pixels: Merge the high exposure pixel with the next shorter

exposure using a factor based on the number of saturated neighbours.

• Case 3: main pixel is saturated but local neighbourhood has no saturated

pixels: Blend values of neighbours to be then merged with the main pixel.

• Case 4: main pixel is saturated and local neighbourhood contains satu-

rated pixels: Use value of the next lower exposure.

If there are more than two exposures available, this process is repeated for the next

pair of exposures.

4.1.3.2 Comparison of Radiance mappers

A brief overview of features of the radiance mappers mentioned in this chapter.

Algorithms Arbitrary Re-

sponse

Adaptive

Weight

Neighbourhood Prefer Higher

Exposures

Debevec and Malik •
Robertson et al. • • •
Tocci et al. •a -b • •
a depends on the algorithm chosen for recovering the response function
b has no explicit weight function

Table 4.1: Overview of radiance mapper features

4.2 Tone mapper

4.2.1 Ward

This algorithm consists of simple operations and is fast to execute. The results resemble

results obtained by simply normalizing the HDR input. This can lead to undesirable results

4.2. Tone mapper 25

if the dynamic range is very high as described in Section 2.3. Contrast differences of the

HDR input are preserved. This gives a good possibility to view raw HDR output without

falsifying contrast. Knowing that the results will probably not be satisfying we still decided

to implement the algorithm for the following reasons:

1. Quick to implement. Used to quickly test our radiance mapper implementations by

providing a possibility to visualize the output.

2. Since no colour correction or contrast distortion is performed, we used it as a de-

bugging tool.

3. Serves as baseline for comparisons with other, more elaborate algorithms.

4.2.1.1 Procedure

First the average brightness of the incoming HDR image needs to determined. Ward propose

using the log-average brightness. It is defined as following:

L̄w = 1
N exp

(∑
x,y

log(δ + Lw(x, y))

)

where:

L̄w = Average Brightness.

N = Number of samples/pixels

δ = small value to avoid singularity if black pixels are encountered

Lw() = “world” luminance of incoming HDR -pixel

The logarithm is used here because it best represents how the human eye perceives

brightness.

After the world luminance has been determined, a global scaling factor is calculated.

This factor is then applied to every incoming HDR -pixel. The scaling factor is calculated

using the following equation:

sf = 1
Ldmax

[
1.219+(Ldmax/2)0.4

1.219+L0.4
wa

]
where:

sf = Output display brightness

Ldmax = Maximum brightness of the displaying device

Lwa = Log-average brightness of incoming HDR image

26 Chapter 4. Algorithms

The numbers in this formula are magic numbers that were determined by the authors

in an empirical manner. These numbers represent the relation between the minimum

discernible difference and the input brightness.

After this scale factor has been applied, some pixels might still lie outside of the range

that the output device is capable to display. Therefore clipping is performed on the output

values. This can lead to bloom artifacts for very bright areas. Ward argues that this is a

desirable effect since it resembles effects of human vision as stated by Krawczyk et al. [17].

4.2.2 Larson

We chose this algorithm because it is a global tone mapper that can be used for comparison

with the one proposed by Ward. Among the more sophisticated global operators we found

this one to have very “pleasing” results. This algorithm is widely used in HDR -processing

software. It offers a good trade-off between quality and resource consumption.

4.2.2.1 Procedure

First a low resolution version of the incoming HDR -image is created. This images is called

the foveal image. The name stems from the fovea in the human eye. This is the region of

the retina where humans focus and perceive details. This area roughly corresponds to one

degree in our total FOV (field of view). The resolution of the foveal image is determined

by the FOV of the cameras used to capture the high resolution image. Each pixel in the

foveal image is covering one degree in the FOV of the camera. For example, if the camera

has a horizontal FOV of 60 degrees, then the width of the foveal image is 60 pixels.

In the next step a histogram of that foveal image is created. Once the histogram is

acquired, iterative histogram adjustment is performed. Here for each bin of the histogram

a ceiling is calculated. If the number of elements is above the ceiling, the count of elements

in the current bin is reduced to the ceiling determined for this bin. Larson et al. propose

the following equation for calculating the ceiling for each bin:

∆Lt(Ld)
∆Lt(Lw) ·

T∆bLw
[log(Ldmax)−log(Ldmin)]Ld

where:

4.2. Tone mapper 27

Lt = Just noticeable difference in brightness

Ld = Display brightness (in candelas/meter2)

Lw = World luminance (in candelas/meter2)

T = Total number of samples in the histogram

Ldmax = Maximum brightness of the displaying device

Ldmin = Minimum brightness of the displaying device

This needs to be performed in an iterative fashion since part of the formula is the

number of elements in the histogram. This count changes during each iteration if the

number of elements in a bin are reduced. The process is repeated until convergence is

achieved or a user determined number of iterations have been performed.

The next step consists of calculating the CDF (cumulative distribution function) to be

used in the final step of the process. This last step is performed on the full resolution

input image. Based on its brightness for each incoming pixel its corresponding histogram

bin is determined. The value in the CDF of this bin is then used as a normalized output

value. This normalized brightness needs to be mapped to the output device capabilities.

In our case a normalized output value of zero corresponds to zero, and the normalized

output value of one to 255.

4.2.3 Reinhard

In contrast to the other algorithms mentioned above this is a local tone mapper. We

wanted to include at least one local tone mapper to perform a more inclusive comparison.

Among local tone mappers the one proposed by Robertson et al. is widely used in HDR

-processing software. It promised pleasing results because it is emulating a technique that

has been used in analogue photography for many years with great success [2].

4.2.3.1 Procedure

The first step of this algorithm is to determine the average brightness of the incoming

image. The same log-averages as mentioned in Section 4.2.1.1 are used here. Using the

previously determined average brightness the incoming image is now scaled around a key-

brightness value. The key brightness determines which value gets mapped to middle gray

in the output (See Section 2.2.1). All other values of the image are scaled accordingly so

that the key value is in the middle of the range.

To transfer the technique of “dodging & burning” to digital images, the authors propose

taking an average of the local neighbourhood. Instead of performing this operation for

28 Chapter 4. Algorithms

entire areas of the image it is performed at a pixel granularity. This average is calculated

using Gaussian kernels of different sizes. If a very bright pixel is surrounded by dark

pixels, its brightness gets scaled down more than when surrounded by bright pixels. The

opposite applies for dark pixels in a bright neighbourhood. The quality of the output

depends on choosing the right size for the Gaussian kernel, which is used to perform the

operation. This size is based on local contrast characteristics. The goal is to find the

biggest gauss kernel that lies in a region of uniform contrast. To accomplish this a set

of different sized Gauss kernels is generated. The size of the smallest kernel is one pixel,

all following kernels are 1.6 times bigger than the previous one. Each pixel is convolved

with this set of kernels. In the next step the resulting averages of these convolutions are

compared using a centre-surround function. This comparison process starts with setting

the smallest kernel as the centre and the second smallest as the surround. In the next

iteration the previous surround is set as centre and the next bigger scaled kernel as the

new surround. If the centre-surround function returns a high value, the averages of the

two kernels have a large difference. This means that there is a change in contrast which is

only present in the larger of the two kernels. Parts of the bigger kernel lie in a region of

the image where brightness changes drastically. Therefore the smaller of the two kernels

is the ideal kernel because it is the biggest within a uniform region of contrast, and the

algorithm uses the result of this kernel to perform the final compression. In this final

compression each pixel is compressed using the following formula:

Ld(x, y) = L(x,y)
1+V1(x,y,sm(x,y))

where:

Ld = output luminance.

L = input luminance.

V1 = average of gauss kernel.

sm = size of gauss kernel.

This shows, that the incoming HDR luminance is scaled by the average given by the

Gauss kernel with the ideal size. There are multiple ways how to perform the convolution

of the pixel with the gauss kernels. The authors propose to transform both the image and

the Gauss kernels into their frequency domain using a FFT (fast Fourier transform). The

convolution is then performed within the frequency domain. The result is then transformed

back using a reverse FFT .

4.2. Tone mapper 29

4.2.3.2 Comparison of Tone mappers

A brief overview of the features and metrics of the previously mentioned tone mappers

Algorithms Local/Global Noise reduc-

tion

Contrast pre-

serving

requires clamp-

ing

Ward global • •
Larson et al. global

Robertson et al. local • •

Table 4.2: Overview of tone mapper features

4.2.4 Weight Functions

The tone mappers proposed by Debevec and Malik, and Robertson et al. merge multi-

ple exposures using weight-functions. These functions are used to give input with more

“useful” information more weight compared to over- or under saturated pixels. We imple-

mented different weight functions that can all be used in conjunction with those radiance

mapping algorithms. In the following section we will briefly discuss these weight-functions.

4.2.4.1 Debevec

The function proposed by Debevec and Malik is a hat function that linearly increases

towards the middle of the range and then linearly decreases towards the upper end of the

range. The authors argue that pixels captured close to the upper and lower bounds of the

range of the sensors contain less useful information for the following reasons:

1. The sensor is more prone to noise artifacts towards the limits of its range.

2. Pixels that are black or white are likely to be results of the image being over- or

under exposed.

3. Colour intensity is subtly boosted by giving pixels in the middle range more weight.

According to Petit and Mantiuk [25] this leads to an increased perceived pleasantness

of the resulting image.

We had to slightly adapt the formula proposed by Debevec and Malik. If a pixel

is perfectly white in all available exposures, it would be given a weight of zero in each

30 Chapter 4. Algorithms

exposure. This would lead to white surfaces turning black in the HDR output. To avoid

this we add an offset of one to the weights used. By applying this offset we can preserve

the colour white in the HDR output.

4.2.4.2 Robertson

Here the authors propose taking into account the confidence in a value being correct. They

argue that a value is more likely to be correct if the response function of the camera at that

position is steeper. Different real world brightness values are more distinctly detectable

this way. Furthermore, the authors argue that instead of using a linear function like

Debevec and Malik, using a Gaussian bell curve best approximates noise characteristics

of digital image sensors. For this reason the initial weight function used for calibration is

a Gaussian bell curve.

4.2.4.3 Mitsunaga

As opposed to the previous authors, Mitsunaga and Nayar argue that the most useful

values are towards the upper range, not the centre. Similar to [27], the weight function is

based on the slope of the response function.

4.2.4.4 Linear

We also implemented a linear weight function. Here for each incoming value the middle of

the range is returned. In our case, this weight function always returns 127.5. We use this

weight function as a baseline against which the other proposed functions are compared.

4.2. Tone mapper 31

4.2.4.5 Comparison of Weight functions

A short overview of the functionality and features of the presented weight functions:

Algorithm Linear Confidence Adaptive Exposure Time

Debevec and Malik •
Robertson et al. • • •
Mitsunaga and Nayar • •
Linear •

Table 4.3: Overview of Weightfunctions

Chapter 5

Implementation

Contents

5.1 Implementation in C++ . 33

5.2 Implementation in CUDA . 34

5.1 Implementation in C++

All host code of the pipeline is implemented in C++. As mentioned in Section 2.4.3 the

modules within the pipeline are loosely coupled. The individual components of the HDR

module extend this idea. The user can select which radiance mapper, tone mapper and

weight function are used at start-up. Each component shares a common interface to enable

communication with the other components of the module.

We also decided to implement the off-line steps of the algorithms proposed by Debevec

and Malik, and Robertson et al. in C++ for the following reasons

1. There is no real-time constraint and the step only needs to be performed once in the

lifetime of the camera.

2. Implementing in C++ enables us to use existing libraries to solve complex mathe-

matical operations.

3. It is easier to implement the processing as single threaded operation because many

steps require iterating and using results from previous iterations. Performing such

operations in parallel on a GPU introduces unnecessary synchronization complexity.

33

34 Chapter 5. Implementation

In the approach proposed by Debevec and Malik, a SVD is created and solved in order to

recover the response function. For this purpose we employ the EIGEN-Library ∗. This is a

template library that easily integrates into existing code bases. We use a highly optimized

version of the algorithm proposed by Jacobi [16] that is offered by EIGEN-Library.

To obtain data which is used to fill the SVD we gather random sample points of the

incoming images. For each chosen sampling pixel position we read the values from all

exposures. Therefore we know the value of each pixel in each of its exposures. To avoid

uneven sampling, which is inherent in random sampling, we divide the input images into

zones. One random pixel is chosen within each zone. Users can specify how many sample

points to take. Too few might cause under sampling, thus causing an imprecise recovery of

the response function. On the other hand too many sample points cause a long execution

time. Our experience shows that about 800 sample points are a good midpoint.

The algorithm put forward by Robertson et al. requires performing Gauss-Seidl[11]

relaxation. Instead of opting to use the EIGEN-Libray to compute this step we wrote our

own solver. It was less time consuming to write our own implementation than convert

the data to a format compatible with the library. This implementation is likely to be less

efficient than the optimized versions provided by EIGEN-Library, but it is sufficient for

our purposes.

The algorithm furthermore requires a radiance-mapping step to be performed. We

use our implementation of the on-line step that executes on the GPU for this purpose.

This means that for each iteration we have to upload the input images and download the

results. Although copying data to and from the GPU takes a long time, it is still quicker

than executing the on-line step on the CPU . This is caused by the process working on high

resolution input, as opposed to low resolution created by the sampling method used by

Debevec and Malik. In the case of high resolution input we can fully leverage the parallel

capabilities offered by the GPU .

5.2 Implementation in CUDA

In this section we discuss how we implemented the algorithms introduced in Section 4.

As previously mentioned, we implement the operations that need to be performed for

each frame of the video in Nvidia’s CUDA to be executed on a GPU . This enables us to

leverage the parallel computing capabilities of a GPU . It is necessary in order to achieve

computation times below the real-time threshold for our high resolution input.

∗http://eigen.tuxfamily.org

http://eigen.tuxfamily.org

5.2. Implementation in CUDA 35

5.2.1 CUDA concepts

First we want to briefly describe some features offered by CUDA that we utilize across

our different implementations.

CUDA Arrays CUDA-Arrays are an opaque memory layout where the content can only

be accessed via special handles. The individual pixel values are accessed along a Z-

curve. This way, 2D spatial relations can be simulated within a 1D-data structure.

Because of this special layout, the content of CUDA-Arrays cannot be accessed

directly. Nvidia offers either texture- or surface-objects for that purpose. Individual

values of the arrays can be addressed using these objects.

Furthermore, CUDA provides specialized implementations of standard C routines

malloc, memcpy & free to handle data within CUDA-Arrays.

Texture Objects † Texture objects are a read-only data structure that enables accessing

CUDA-Arrays. They offer three addressing modes: 1D, 2D, and 3D. This is impor-

tant since some features take locality into account, and their behaviour changes

according to the dimension used. Texture memory offers the following features:

• Caching: Caching is performed to exploit spatial locality. For each data access

in an image its local neighbourhood is cached. If a different thread accesses

this local neighbourhood the value is read right from the cache and thus the

necessity for an expensive global memory read is avoided. Developers have to

pay attention to how individual threads access image data to utilise this kind

of caching.

• Interpolation: When reading data, texture objects can perform linear inter-

polation between the value read and its neighbours. This operation is imple-

mented on a hardware level and therefore does not affect reading time.

• Bounding: As opposed to normal linear memory access, out of bounds

access is handled automatically. Instead of causing a segmentation fault, texture

objects offer the following options when out of bounds access occurs:

– Wrap: The values of the image are repeated along all borders.

– Clamp: The value at the border is extended into the direction of the

edge. Therefore reading out of bounds equals to reading along the border.

†Note: Texture and Surface Objects are only available for CUDA 5.0 and Compute Capability 3.0 and
above.

36 Chapter 5. Implementation

– Mirror: Similar to wrap, but instead of simply repeating the values, the

image is mirrored along the border.

– Border: When reading out of bounds, a predefined value is read.

• Normalization: All data can be read using normalized coordinates. This

enables algorithms to work across different images without assumptions about

the size of the input.

• Type conversion: When reading from a texture, the value can be converted

from int to float without affecting performance.

Surface Objects Similar to texture objects, surface objects offer a way of accessing

CUDA arrays. The main difference to texture objects is that surface objects also

offer write access. In order to enable write access, the special texture fetch hardware

cannot be used. Regular global memory reads are performed instead. Therefore

spatial caching is not available. Traditional caching of global memory is used. It the

data is only being read, texture objects are more useful and offer better caching.

5.2.2 Common

The following approaches are shared by all the implemented modules. Since the HDR

module was a part of a bigger pipeline, clear interfaces for other modules were defined.

The following pipeline details mostly deal with inter-module communication and the way

incoming and outgoing data is processed.

• All image data passed from and to the HDR module is stored in CUDA arrays. This

is for the benefit of the Stitcher Module, following our HDR module (See Figure 2.5).

The stitcher performs many reads in the local neighbourhood of a pixel. Therefore

the texture objects were a better choice in order to utilize the spatial caching they

offer.

• The output of the radiance mapper consists of a float value per pixel. This means

that instead of eight bits, there are 32 bits of information per pixel. Transferring data

between the radiance mapper and tone mapper threatened to become a bottleneck.

Therefore we decided to store HDR data using only 32 bits of memory encoded as

“Real Pixels” proposed by Ward [31]. All three colour channels share a common

8-bit exponent, and for each pixel an 8-bit mantissa is stored. If the values of the

pixels are far apart, some precision is lost, but in our case this did not become an

issue.

5.2. Implementation in CUDA 37

• The HDR module offers reading and writing all data in different colour-spaces. Some

of the implemented algorithms work in RGB colour-space whereas others work in

YUV. In order to simplify inter-module communication, all read and write operations

perform colour-space conversion when necessary. The user can specify the colour-

space of the input and output of the HDR module.

5.2.3 Debevec

The on-line step of the algorithm is executed for every frame of the video. Computa-

tionally this step is simple. For each pixel position the values at different exposures are

read. This is performed by a texture read. We made sure that adjacent threads read

adjacent pixels. This enables us to fully utilize spatial caching provided by CUDA texture

objects. Furthermore, lookups in pre-calculated response and weight functions are per-

formed. These functions are stored as two arrays in global memory. Since they contain

only few often read values (usually 255), we can utilize caching performed to global mem-

ory reads. Computationally the most expensive operations are logarithms and exponential

functions required by the equation introduced in Section 4.1.1.1.

The result of the operation is written to a surface object. The value being written is

encoded as a “real pixel” as mentioned in Section 5.2.2.

5.2.4 Robertson

The implementation of the on-line step of this algorithm is very similar to our implemen-

tation of the algorithm suggested by Debevec and Malik. Similarly texture reads, lookups

in weight and response functions, and writes of “real pixels” are performed. The difference

lies in the formula used to merge the exposures. As described in Section 2, the calculation

requires power functions. These operations are slower compared to the logarithms used

by Debevec and Malik. As can be seen in Figure 6.1, this causes slightly longer execution

times when compared to [7].

5.2.5 Tocci

This algorithm consists of a single, complex step. Each pixel can have multiple states and

complicated lookups have to be performed. These operations can cause a lot of thread

divergence, which has a negative impact on execution time. These properties seem to

favour an implementation executed on a CPU . The reason we decided to implement it in

CUDA is the size of the input. When the pipeline is fully deployed, the input consists

38 Chapter 5. Implementation

of 10 images with a resolution of 2040 × 1080 pixels each. This high resolution favours

the parallel capabilities of a GPU . We decided to implement this algorithm to be executed

on the GPU since the incoming data is residing in the memory of the GPU . Copying this

data into host memory, processing it, and uploading it would have added too much of a

performance penalty.

We will now go through the different steps of the algorithms and explain the

optimizations and compromises we applied.

1. The first step is to determine the state of the pixel. As mentioned in Section 4.1.3.1

the state of a pixel is based on the saturation of the pixel itself and its local neigh-

bourhood. We iterate over the local neighbourhood of each pixel, counting the

number of saturated pixels. Here the local caching property exhibited by texture

objects helps reduce read times.

2. In the next step, based on the state of the pixel itself and its neighbourhood, different

functions that handle the states are called. This can cause a slowdown since different

execution paths are taken for each pixel. This cannot be avoided, but we managed to

limit the divergence. We work only on the luminance channel, not manipulating the

chroma channels. Under these circumstances each pixel can only have four states.

If we worked on all three colour-channels, each pixel could have 81 different states

that would alter the execution paths. Depending on the state of the pixel one of the

following operations is performed:

State 1: No operation is performed. The current value of the pixel is passed on to be

used in the next iteration.

State 2: A scaling factor is calculated based on the number of saturated pixels in the

local neighbourhood. The value of the pixel in a lower exposure is read. Then

the value of the low exposure pixel is “converted” to a higher exposure. This

is done via a reverse lookup in the response function. This lookup requires

finding the nearest float value to the given one. To perform this lookup we

employ quick search paired with nearest neighbour comparisons. Comparing

each value with adjacent values creates issues with thread divergence. This

conversion operation turned out to be very computationally expensive as can

be seen in Section 6.1.3.4. Eventually the converted low exposure value is

merged with the current high exposure value using the previously calculated

5.2. Implementation in CUDA 39

scaling factor.

State 3: First the entire neighbourhood in a lower exposure is read. Then for each

pixel in the low exposure neighbourhood the difference to the centre pixels is

calculated and stored. Next the higher exposed neighbourhood is scaled using

the previously calculated difference. Then the high exposure neighbourhood

is further scaled using the same factor as in state two. Eventually this scaled

neighbourhood is merged with the high exposure centre pixel.

State 4: The value of the pixel in a lower exposure is read and used for the next iteration.

3. When all available exposures are merged as explained in step 2 the final step is

performed. In this step we look up the corresponding output value in the response

function for each merged pixel. The result is encoded in the “real pixel” format (see

5.2.2) and written to a surface object to be passed on to the tone mapping module.

5.2.6 Ward

The biggest challenge in this implementation was to determine the log-average brightness

of the incoming image in a timely fashion. We decided to implement this step using

the paradigm of parallel reduction. We use a highly optimized version of this approach

proposed by Harris et al. in [15]. In this approach each thread performs multiple reductions

instead of one. This enables us to use the number of threads that is optimal for the GPU

being used. As can be seen in Section 6.1.3.8, determining the incoming brightness takes

up the majority of computation time of this algorithm. The log-average brightness is

then used to calculate a scaling factor that is applied to every pixel. Since this factor

is the same for every pixel, we perform this calculation in a single thread on the CPU .

The value is passed to the GPU as a parameter during kernel launch. In the final step we

apply this scaling factor to the incoming HDR values. This step is the same for each pixel

and is performed in parallel. For each pixel we first convert the incoming real pixel value

to RGB. Then we multiply the pixel value with the scaling factor. Finally we perform

clamping on the resulting values to fit into the displayable range of the device. The result

is written to a surface object for further processing.

5.2.7 Larson

Here for each frame we have to calculate a histogram and perform iterative equalisation

on it. We took the following measures to improve performance:

40 Chapter 5. Implementation

1. First we reduce the problem size by creating a scaled down version of the input image.

The size of this low resolution version is determined by the FOV of the camera. One

pixel equals one degree in horizontal and vertical FOV . We launch one thread per

pixel in the low resolution image. Each kernel uses a box filter to accumulate the

pixels within the region it is responsible for. Again, we utilize texture objects and

their spatial caching property to increase read throughput.

2. In the next step we calculate the histogram of the low resolution image. Here we

employ a parallel approach. For each pixel a thread is launched. We calculate the

corresponding bin in the histogram. When increasing the value of a bin we use an

atomic add operation. This might cause some serialization of the parallel execution,

thus slowing down the operation. We could not find a better way to ensure data

coherence among the individual threads.

3. In order to calculate the histogram in the previous step, we needed to get the min-

imum and maximum value in the image. We implement parallel reduction to solve

this problem. The input data consists of the low resolution image. This implies

that the input size is small. We did not use the optimizations proposed by Harris

et al., but instead wrote our own, simpler implementation. We did this because

the problem size is very small. We wanted to avoid the overhead associated with

determining the optimal number of threads.

4. After calculating the histogram, we perform iterative histogram equalization. Here

for each bin the contrast to its neighbouring bins is calculated. If the difference

exceeds a certain contrast ceiling, the counts in that bin are reduced to the ceiling.

The ceiling is based on the total count of elements in the histogram. This causes

histogram equalization to be an iterative process.

This step is performed by a single thread on the GPU . Since this equalisation is

performed in a strictly serial way, the power of a GPU is not utilized. Our measure-

ments showed that this step takes approximately 100 micro seconds. We deem this

performance good enough for our purposes.

5. In the final step we perform a lookup in the CDF of the histogram for each incoming

pixel value. Apart from creating the low resolution input, this is the only step that

operates on the full resolution input. Despite its simplicity, this step turned out

to be among the most time consuming (See Figure 6.11). This is caused by the

necessity to perform texture read and surface write for each pixel.

5.2. Implementation in CUDA 41

5.2.8 Reinhard

This algorithm is divided into two major steps. One performed during initialization of the

pipeline and one on-line.

Initialization An important aspect of this algorithm is that the input is convolved with

multiple gauss kernels of different sizes. The gauss kernels are stored as an image with

the same resolution as the input. We perform a forward FFT on each gauss kernel during

initialization and store the resulting complex kernels. In the on-line step these kernels are

convolved with the input image in the frequency domain.

Online For each frame of the video we perform the following operations:

1. First, we scale the whole input around a key brightness value. This key brightness

determines which value gets mapped to middle gray in the output. All other values

of the image are scaled accordingly, so that the key value is in the middle of the

range. See Section 2.2.1 for more information on the key-brightness value.

2. Next, we perform a forward FFT operation on the Input. For this purpose we use the

CUFFT ‡ library provided by Nvidia. The functions provided by the library work

on arbitrarily sized input. The best performance can be achieved if the input size is

a power of two. We decided not to perform input padding to fulfil that requirement

for two reasons:

(a) We treat the input of multiple cameras at the same exposure as one huge image.

This means that our input image of one exposure is 5400 × 2040 pixels. The

next available power of two is 213 = 8192. An image with size 8192 · 8912 is

roughly 517 % larger than the original input. Although the algorithm performs

quicker with an input that fulfils the power of two requirement, the increased

input size negates the gain in speed.

(b) As we will discuss in more detail in Section 6.1, this algorithm already requires a

lot of memory. Increasing that memory footprint by 517 % has negative effects.

Fewer Gauss kernels would fit into the memory of the GPU , thus leading to less

noise reduction and likely a less pleasant image.

‡https://developer.nvidia.com/cuFFT

https://developer.nvidia.com/cuFFT

42 Chapter 5. Implementation

3. Each complex, transformed pixel is multiplied by its corresponding pixel position

in the transformed Gauss kernel. For this purpose we use the complex data-type

offered by CUFFT.

4. A reverse FFT transform is applied to the resulting image. The result still consists of a

real and a complex part. The complex part should be zero, but due to computational

inaccuracies it is only close to zero. Still, we discard the complex part and only use

the real numbers because the very small complex components are of no interest to

us.

5. In the final step we determine the ideal size of gauss kernel for a given input pixel.

For this purpose we compare two adjacent sized kernels. This way we can determine

contrast edges and pick the smaller kernel that is still within a region of uniform

contrast. The result of this kernel is then used to calculate the equation presented in

Section 4.2.3.1. The result obtained using the equation is then written to a surface

object for further processing. This sequence of steps is performed in parallel for each

pixel on the GPU .

We let the user decide how many gauss kernels to use. The original authors propose to

use eight kernels. In our implementation each gauss kernel is stored in an image with the

same size as the input image. Therefore each kernel requires ∼ 126 MB of device memory.

With our testing set-up(for details see Section 6.1.1) we could not simultaneously achieve

more than four kernels before running out of memory.

Only using one kernel equals reading the raw input and not performing any smoothing.

Contrast compression is still performed, but no noise reduction or local contrast enhance-

ment are applied to the input.

Chapter 6

Performance Measurement and

Study

Contents

6.1 Performance . 43

6.2 Visual Comparison . 70

6.3 Results of subjective study . 71

6.4 Performance vs. Visual Result trade-off 75

6.5 Final Result . 76

In this chapter we will perform an evaluation of the algorithms that we implemented.

This evaluation will cover two areas. First, we compare the execution times of the different

implementations. All algorithms had to perform the necessary operations below the real-

time threshold of 40ms. Second, we conducted a controlled experiment evaluation the

visual quality. For this purpose we had a small group of participants rate videos obtained

by executing the different combinations of algorithms.

6.1 Performance

In this section we compare objective metrics of our implementation. We pay special

attention to execution times and the achieved parallelism of our implementations on the

GPU .

43

44 Chapter 6. Performance Measurement and Study

6.1.1 Set-Up

The machine we used for execution and evaluation has the following system specifications:

CPU: Intel Core i7-3930K, 3.2 gHz, 6 Cores, 12 MB Cache

RAM: 32GB, DDR3

GPU: Nvidia GTX680, 3GB Memory, Kepler architecture

We capture the panorama video using five cameras, each with a resolution 2040×1080.

These cameras are mounted on a custom made rack. This rack enables the cameras to

cover the entire stadium and guarantees a slight overlap in the FOV of each camera. This

overlap is needed by the stitcher module to generate one panoramic image. Since the

large difference in the amount of light available in the two different regions (sun-light and

shadow) is our main challenge, we capture two different exposures where one captures the

details in shadow region and the other in highlights. These two exposures are captured

in turns by the same camera. Hence, to generate one high resolution panorama frame, we

have 10 images as the input to the HDR module.

For measuring the performance we use two configurations. In one configuration we

run only the HDR module. This provides a good overview of the raw performance of the

implementations. In the second configuration we execute the entire pipeline as described

in Section 2.4.3. This configuration provides an overview of the real-world performance

of the implementation. All modules are executed on a single GPU . Each of the modules

contains several kernels. The scheduling of these kernels on the GPU is managed by CUDA.

Therefore, it must be noted that the execution times include the scheduling overheads.

It can be seen in Figure 6.1 that the execution times of other modules fluctuate when

different HDR algorithms are employed. This is due to the fact that CUDA changes the

scheduling of the kernels according to various factors. The GPU used in our experiments is

capable of executing up to 16 kernels concurrently.

All measurements were captured by taking the average of 3000 input frames. All oper-

ations were performed on “cold” systems. This means that no operations were performed

before. This way there is no data in memory that could alter execution speed and loading

times.

6.1.2 Execution Times

In this section we will present the measured results acquired as described in Section 6.1.1.

6.1. Performance 45

As can be seen in Figure 6.1 and Table 6.1, most combinations achieve an execution

time below the required real-time threshold. The only exception is the approach proposed

by Reinhard et al.. In the following sections we will provide a more fine grained analysis

of each individual algorithm.

Figure 6.1: Execution times of the entire pipeline with different radiance mapper
and tone mapper configurations

Figure 6.2: Execution times of the HDR module with different radiance mapper
and tone mapper configurations

6.1.3 Detailed Evaluation

In this section we perform a detailed evaluation of individual kernels that are executed in

our implementations of the algorithms described above.

46 Chapter 6. Performance Measurement and Study

Algorithm Upload Bayer HDR Stitcher Download HDR only

Debevec - Ward 5.038 10.853 23.814 23.173 5.904 15.564

Debevec - Larson 4.210 10.742 34.729 29.232 5.230 25.998

Debevec - Reinhard 5.520 10.944 76.629 48.210 27.829 67.774

Robertson - Ward 5.247 14.632 27.837 27.529 5.321 19.680

Robertson - Larson 4.385 14.726 38.638 34.340 5.196 30.095

Robertson - Reinhard 5.590 14.916 80.727 53.682 26.164 71.740

Tocci - Ward 10.096 21.992 34.351 35.341 6.576 24.948

Tocci - Larson 10.043 21.346 44.814 42.480 4.964 35.361

Tocci - Reinhard 17.116 22.087 87.291 60.132 31.861 76.697

Table 6.1: Execution times of all modules in different configurations of HDR algorithms

6.1.3.1 Legend

In the following sections we will present graphs obtained by using Nvidia’s Visual Profiler.

We will explain the legend and notations used by the visual profiler.

The following notations are used in these graphs comparing the utilisation of different

modules of the GPU :

• Load/Store: Load and store instructions for shared and constant memory.

• Texture: Load and store instructions for local, global and texture memory.

• Single: Single-precision integer and floating-point arithmetic instructions.

• Double: Double-precision floating point arithmetic instructions.

• Special: Special arithmetic instructions such as sin, cos, pow, etc.

• Control-Flow: Direct and indirect branches, jumps, and calls.

In graphs showing instruction execution counts, the following notation is used:

• FP32: 32-Bit floating point instructions

• FP64: 64-Bit floating point instructions

• Integer: 32-Bit integer instructions

• Control-Flow: control flow instructions like if, else, for, etc.

• Load/Store: instructions related to loading and storing data

• Bit-Convert: Type-casing instructions

6.1. Performance 47

• Comm.: Communication

• Misc.: other operations that did not fit any of the previous categories

• Inactive: Thread executions that did not execute any instruction due to divergence

Pie charts that deal with stall reasons use the notation below:

• Instruction - Fetch: The next assembly instruction had not yet been fetched

• Compute: The compute resource(s) required by the instruction is not yet available

• Constant: A constant load is blocked due to a miss in the constant cache

• Data Request: A load/store cannot be made because the required resources are not

available or are fully utilized, or too many requests of a given type are outstanding.

• Synchronization: The warp is blocked at a syncthreads() call.

• Execution Dependency: An input required by the instruction is not yet available.

• Texture: The texture sub-system is fully utilized or has too many outstanding

requests.

6.1.3.2 Debevec

Performing the initial recovery of the response function only needs to be performed once in

the lifetime of the camera. Here we did not put emphasis on computation speed but rather

on the accuracy of the result. The main influence on the execution time and accuracy is the

number of sample points taken. Execution time increases exponentially with the number

of points taken. Our experience shows that about 800 sample points are a good middle

ground between accuracy and calculation time. The execution time plotted for varying

number of sample points can be seen in Figure 6.3.

An analysis of the on-line step can be seen in Figure 6.4. Despite the proposed for-

mula being rather simple, we can see that this operation is bound by computation time,

not memory operations(Figure 6.4a). Figure 6.4b shows the utilisation of the different

modules of the GPU . One can see that the modules are not evenly used. Most operations

are performed by the single-precision arithmetic unit and the module for “special” mathe-

matical operations. This uneven load can be attributed to the formula of the on-line step

introduced in Section 4.1.1.1. It mostly consists of additions, divisions and one logarith-

mic operation. Figure 6.4c shows how many operations that were performed by the cores

48 Chapter 6. Performance Measurement and Study

Figure 6.3: Execution times of the off-line calibration step of Debevec and Malik

were idle operations. For these idle operations the cores were not doing any work. This

algorithm performs at 90% of theoretical peak efficiency.

Execution Time: 7.737ms

6.1.3.3 Robertson

The on-line step performed for each frame of the video is very similar to the one proposed

by Debevec and Malik. This similarity can be observed when comparing Figure 6.4a and

Figure 6.5a. Here one can see that the algorithm suggested by Robertson et al. requires

only slightly more time for computations.

Figure 6.5b shows that the workload on the individual modules of the GPU is not evenly

spread. The highest strain is put on the single precision arithmetic unit. On the other

hand the other modules are not fully utilized.

Finally, by comparing idle times of the algorithm put forth by Robertson et al. with

the algorithm proposed by Debevec and Malik (Figure 6.5c and Figure 6.4c, respectively),

we conclude that our implementation of the algorithm proposed by Debevec and Malik is

more efficient because it contains fewer idle operations.

Execution time: 11.2ms.

6.1.3.4 Tocci

This algorithm performs multiple operations that take the local neighbourhood into ac-

count. This characteristic implies that a lot of memory reads are required for each pixel.

6.1. Performance 49

This fact becomes evident when looking at Figure 6.6a. The performance of this algorithm

is limited by the available memory bandwidth. One cause of memory performance degra-

dation is caused by register spilling. If the number of local variables exceeds the number

of available registers of each core, the variables are moved to L2-cache. The visual profiler

reveals that 81% of all memory traffic consists of read/write operations to L2-cache. The

cause for this register spilling is the fact that the algorithm proposed by Tocci et al. con-

sists of a single, complex step containing many numerical factors that need consideration.

Another memory related problem we have encountered is reading the response function.

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel
"radiance_mapper_debevec_rad" is most likely limited by instruction and memory latency. You should first examine the
information in the "Instruction And Memory Latency" section to determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "GeForce
GTX 750 Ti". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic
or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates latency
issues.

(a) comparison of time spent on computations versus memory I/O

6

3. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized.

3.1. Function Unit Utilization
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

3.2. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

(b) comparison of the utilisation of the different modules on the GPU

7

(c) Instruction execution count

Figure 6.4: Evaluation of our implementation of Debevec and Malik’s algorithm

50 Chapter 6. Performance Measurement and Study

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "radiance_mapper_robertson"
is most likely limited by instruction and memory latency. You should first examine the information in the "Instruction And Memory
Latency" section to determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "GeForce
GTX 750 Ti". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic
or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates latency
issues.

(a) comparison of time spent on computations versus memory I/O

6

3. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized.

3.1. Function Unit Utilization
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

3.2. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

(b) comparison of the utilisation of the different modules on the GPU

7

(c) Instruction execution count

Figure 6.5: Evaluation of our implementation of Robertson et al.’s algorithm

This response function is stored in global memory. When reading global memory, having

coalesced memory access is desirable. Unfortunately we cannot guarantee this, since each

read access of the response function is based on the value of the pixels read. These pixel

values vary greatly. This leads to poor performance when trying to read the response

function. Despite this fact, Figure 6.6d shows that the throughput to global memory is

very high. We achieve this high throughput by coalescing the pixel access between and

within threads. This observation is supported by Figure 6.6b. Most of the operations are

performed by the texture unit. We use texture objects for accessing the input images,

thus causing a high demand on the texture unit. The slow performance during reading of

6.1. Performance 51

the response function is compensated for by good performance during reading the pixel

values.

Nvidia’s visual profiler provides an overview of the primary causes for stalls. The

reasons in this implementation can be seen in Figure 6.7a. One can see that the primary

reason is execution dependency. Execution dependency means that instructions cannot be

executed because they depend on results of previous operations. As already mentioned,

this algorithm consists of many complex operations where some depend on results of the

previous operation.

Another problem we face in this algorithm is thread divergence. As mentioned in

Section 4.1.3.1, each pixel can have one of four states. We deal with all those states within

one kernel, which leads to thread divergence. Most of the pixels of our input fall into one

category. This leads to a thread divergence of 7.4% in our evaluation. This is far from

optimal, but also not as big a problem as we initially expected.

The number of instructions where cores were idle and did not contribute can be seen

in Figure 6.6c. Cores were idle about 15% of the time in this algorithm. Compared to

the idle times of Debevec and Malik, and Robertson et al. (Figure 6.4c & Figure 6.5c,

respectively), the parallelism of our implementation of the algorithm put forth by Tocci

et al. performs worse. Whether or not the longer execution time results in a more pleasing

image will be discussed in Section 6.5.

Execution time: 30.234 ms.

6.1.3.5 Ward

The kernel of this algorithm is very simple. Basically an HDR value is read, multiplied

with a constant factor, and then written to the output image. What was surprising to

us was the fact that this kernel is not limited by memory bandwidth, but instead by

arithmetic operations. This can be seen in Figure 6.8a. The reason for this are colour-

space conversions. We implemented all algorithms to be agnostic to the underlying colour-

space used. This is done by converting the pixel values to the colour-space required by the

algorithm when reading an writing. Within the kernel we use the RGB colour-space, while

the rest of the pipeline is usually using YUV colour-space. Even though the operations

within the kernel are simple, we still have to perform two colour-space conversions for

each pixel. These conversions consist of a series of vector multiplications. The observation

that colour-space conversions are a major contributor to execution time is supported by

Figure 6.8b. Here the highest demand is for the single precision arithmetic unit. This is

52 Chapter 6. Performance Measurement and Study

the one used for colour-space conversions. The high demand for the “special” module seen

in the same figure can be explained by the fact that we perform gamma-correction on the

output value. This step requires power operations which are performed by the “special”

module.

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "radiance_mapper_tocci" is
most likely limited by memory bandwidth. You should first examine the information in the "Memory Bandwidth" section to
determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Memory Bandwidth
For device "GeForce GTX 750 Ti" the kernel's compute utilization is significantly lower than its memory utilization. These
utilization levels indicate that the performance of the kernel is most likely being limited by the memory system. For this kernel the
limiting factor in the memory system is the bandwidth of the Device memory.

(a) comparison of time spent on computations versus memory I/O

8

4. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized. Compute
resources are used most efficiently when all threads in a warp have the same branching and predication behavior. The results below
indicate that a significant fraction of the available compute performance is being wasted because branch and predication behavior is
differing for threads within a warp.

4.1. Divergent Branches
Compute resource are used most efficiently when all threads in a warp have the same branching behavior. When this does not
occur the branch is said to be divergent. Divergent branches lower warp execution efficiency which leads to inefficient use of the
GPU's compute resources.

Optimization: Each entry below points to a divergent branch within the kernel. For each branch reduce the amount of intra-warp
divergence.

/home/lorenzke/bagadus_2/bagadussii/src/tromso/CudaHDR/./radiancemapper/radiancemapper_tocci.cu/home/lorenzke/bagadus_2/bagadussii/src/tromso/CudaHDR/./radiancemapper/radiancemapper_tocci.cu/home/lorenzke/bagadus_2/bagadussii/src/tromso/CudaHDR/./radiancemapper/radiancemapper_tocci.cu/home/lorenzke/bagadus_2/bagadussii/src/tromso/CudaHDR/./radiancemapper/radiancemapper_tocci.cu

Line 371 Divergence = 7.4% [51909 divergent executions out of 698098 total executions]

/usr/local/cuda/include/device_functions.h/usr/local/cuda/include/device_functions.h/usr/local/cuda/include/device_functions.h/usr/local/cuda/include/device_functions.h

Line 4517 Divergence = 36.8% [538960 divergent executions out of 1463197 total executions]

Line 4517 Divergence = 38.7% [561763 divergent executions out of 1452803 total executions]

Line 4517 Divergence = 39.4% [573686 divergent executions out of 1454809 total executions]

4.2. Function Unit Utilization
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

4.3. Instruction Execution Counts(b) comparison of the utilisation of the different modules on the GPU

9

(c) Instruction execution count

4

(d) Memory bandwidth occupancy

6.1. Performance 53

5

3. Instruction and Memory Latency
Instruction and memory latency limit the performance of a kernel when the GPU does not have enough work to keep busy. The
results below indicate that the GPU does not have enough work because instruction execution is stalling excessively.

3.1. Instruction Latencies May Be Limiting Performance
Instruction stall reasons indicate the condition that prevents warps from executing on any given cycle. The following chart shows
the break-down of stalls reasons averaged over the entire execution of the kernel. The kernel has good theoretical and achieved
occupancy indicating that there are likely sufficient warps executing on each SM. Since occupancy is not an issue it is likely that
performance is limited by the instruction stall reasons described below.
	Execution Dependency - An input required by the instruction is not yet available. Execution dependency stalls can potentially be
reduced by increasing instruction-level parallelism.
	Data Request - A load/store cannot be made because the required resources are not available or are fully utilized, or too many
requests of a given type are outstanding. Data request stalls can potentially be reduced by optimizing memory alignment and access
patterns.
	Instruction Fetch - The next assembly instruction has not yet been fetched.
	Compute - The compute resource(s) required by the instruction is not yet available.
	Texture - The texture sub-system is fully utilized or has too many outstanding requests.
	Constant - A constant load is blocked due to a miss in the constants cache.
	Synchronization - The warp is blocked at a __syncthreads() call.

Optimization: Resolve the primary stall issue; execution dependency.

3.2. Occupancy Is Not Limiting Kernel Performance
The kernel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU.

(a) Computation stall reasons

Figure 6.7: Evaluation of our implementation of Tocci et al.’s algorithm

Figure 6.8c shows the number of idle operations which illustrate how well this algorithm

performs in parallel. One can observe that less than 10% of operations were idle. We deem

this performance good enough for our purposes.

Execution time: 7.758 ms.

6.1.3.6 Larson

This algorithm consists of multiple kernels that are executed sequentially. We will briefly

describe each kernel and perform a full performance analysis for each one of them.

Create foveal image: The first kernel is responsible for creating the foveal image

introduced in Section 4.2.2.1. We use a simple box filter to merge multiple pixels into a

single pixel of the foveal image.

Figure 6.9a shows that the performance of this kernel is limited by memory bandwidth.

This is due to the fact that each kernel has to read multiple pixels in order to eventually

merge them.

The utilisation of different modules seen in Figure 6.9b reveals that the “special”

module is used the most by this kernel. This is caused by a conversion operation. We

store HDR pixels as “real pixels” (explained in Section 5.2.2). We perform a conversion from

the real-pixel-format to three floating point values to manipulate them. This conversion

54 Chapter 6. Performance Measurement and Study

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "tone_mapper" is most likely
limited by compute. You should first examine the information in the "Compute Resources" section to determine how it is limiting
performance.

1.1. Kernel Performance Is Bound By Compute
For device "GeForce GTX 750 Ti" the kernel's memory utilization is significantly lower than its compute utilization. These
utilization levels indicate that the performance of the kernel is most likely being limited by computation on the SMs.

(a) comparison of time spent on computations versus memory I/O

3

2. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized.

2.1. Function Unit Utilization
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

2.2. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

(b) comparison of the utilisation of the different modules on the GPU

4

2.3. Floating-Point Operation Counts
The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

(c) Instruction execution count

Figure 6.8: Evaluation of our implementation of Ward’s algorithm

includes exponential operations which cause a high load on the “special” module.

When examining idle operations (Figure 6.9c), one can observe a high percentage of

about 18%. The reasons for stalling, which causes the undesirable performance, can be

found in Figure 6.9e. It is obvious that the primary cause is execution dependency. This

is most likely due to stalls caused by waiting for operations responsible for reading pixel-

values. These read operations can take a long time in which all following operations that

depend on the read values can not be executed. Furthermore, Figure 6.9c shows that a

lot of bit convert operations are performed. The reason for this can be found in image

6.1. Performance 55

reading operations. These reading operations perform multiple type casting operations

when converting from “real-pixels” to floating point values.

Figure 6.9d shows the memory throughput that we achieve with this kernel. This high

occupancy is accomplished by coalescing the pixel access within each kernel. This way we

can fully utilize the spatial caching provided by CUDA texture objects.

Execution time: 4.459 ms.

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "compute_foveal_image" is
most likely limited by instruction and memory latency. You should first examine the information in the "Instruction And Memory
Latency" section to determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "GeForce
GTX 750 Ti". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic
or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates latency
issues.

(a) comparison of time spent on computations versus memory I/O

6

3. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized.

3.1. Function Unit Utilization
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

3.2. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

(b) comparison of the utilisation of the different modules on the GPU

(c) Instruction execution count

56 Chapter 6. Performance Measurement and Study

8

4. Memory Bandwidth
Memory bandwidth limits the performance of a kernel when one or more memories in the GPU cannot provide data at the rate
requested by the kernel.

4.1. Memory Bandwidth And Utilization
The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also
shows the utilization of each memory type relative to the maximum throughput supported by the memory.

(d) Memory bandwidth occupancy

3

2. Instruction and Memory Latency
Instruction and memory latency limit the performance of a kernel when the GPU does not have enough work to keep busy. The
results below indicate that the GPU does not have enough work because instruction execution is stalling excessively.

2.1. Instruction Latencies May Be Limiting Performance
Instruction stall reasons indicate the condition that prevents warps from executing on any given cycle. The following chart shows
the break-down of stalls reasons averaged over the entire execution of the kernel. The kernel has good theoretical and achieved
occupancy indicating that there are likely sufficient warps executing on each SM. Since occupancy is not an issue it is likely that
performance is limited by the instruction stall reasons described below.
	Instruction Fetch - The next assembly instruction has not yet been fetched.
	Compute - The compute resource(s) required by the instruction is not yet available.
	Constant - A constant load is blocked due to a miss in the constants cache.
	Data Request - A load/store cannot be made because the required resources are not available or are fully utilized, or too many
requests of a given type are outstanding. Data request stalls can potentially be reduced by optimizing memory alignment and access
patterns.
	Synchronization - The warp is blocked at a __syncthreads() call.
	Execution Dependency - An input required by the instruction is not yet available. Execution dependency stalls can potentially be
reduced by increasing instruction-level parallelism.
	Texture - The texture sub-system is fully utilized or has too many outstanding requests.

Optimization: Resolve the primary stall issue; execution dependency.

2.2. Occupancy Is Not Limiting Kernel Performance
The kernel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU.

(e) Computation stall reasons

Figure 6.9: Evaluation of our implementation of the sub step compute-foveal-image in
Larson et al.’s algorithm

Histogram equalisation: The next kernel we observe will be referred to as calculate-

histogram. This kernel performs histogram adjustment as introduced in Section 4. Since

this operation depends on the entire image and is iterative, we implemented it to be

executed by a single thread.

Our performance evaluation mostly focuses on the efficiency of parallel execution. This

fact leads to poor results of this kernel in the performance domain. When comparing the

utilization of the GPU (Figure 6.10a) with the same graphs of other algorithms this becomes

immediately apparent. Both bars are very small, therefore indicating a poor utilization of

the capabilities offered by the GPU .

Looking at the occupancy of different modules on the GPU (Figure 6.10b) shows that

they are used evenly. There is no single bottleneck module that slows down overall per-

formance.

Most of the instructions executed for a single warp are idle operations due to the non-

existent parallelism in this implementation. This can be seen in Figure 6.10c. About 97%

6.1. Performance 57

of the time warps were idle. There are 32 Threads in a warp. Of those threads only a

single one was actually active. Each thread contributes 3.125% to the overall theoretical

occupancy of 100% in a warp. This means that the single thread that was active actually

was active most of the time and only performed few idle operations. All the other idle

operations are caused by entirely idle threads.

In Figure 6.10d we can see that we do not fully utilize the number of warps and threads.

Again, this is due to the fact that we only use a single thread.

The previous observations for this kernel may lead to the conclusion that this step

is implemented inefficiently, but our observations reveal that this kernel only takes 109

micro-seconds. This is less than 2% of the overall execution time of the algorithm. There-

fore we conclude that this performance is “good enough” and does not warrant further

optimisation because the gains in execution time are negligible.

Execution time: 0.109 ms.

(a) comparison of time spent on computations versus memory I/O

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "calibrate_histogram" is most
likely limited by instruction and memory latency. You should first examine the information in the "Instruction And Memory
Latency" section to determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "GeForce
GTX 750 Ti". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic
or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates latency
issues.

6

3. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized. Compute
resources are used most efficiently when all threads in a warp have the same branching and predication behavior. The results below
indicate that a significant fraction of the available compute performance is being wasted because branch and predication behavior is
differing for threads within a warp.

3.1. Low Warp Execution Efficiency
Warp execution efficiency is the average percentage of active threads in each executed warp. Increasing warp execution efficiency
will increase utilization of the GPU's compute resources. The kernel's maximum warp execution efficiency is 3.1% because the
number of threads per block is not a multiple of the warp size.

Optimization: Reduce the amount of intra-warp divergence and predication in the kernel.

3.2. Function Unit Utilization
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

3.3. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

(b) comparison of the utilisation of the different modules on the GPU

Apply histogram: The last kernel of this algorithm that we will evaluate is called

apply-histogram. Here the actual contrast compression is carried out. For each incoming

HDR pixel-value we perform a lookup in the previously calculated CDF function and scale

the incoming pixel accordingly.

58 Chapter 6. Performance Measurement and Study

7

3.4. Floating-Point Operation Counts
The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

(c) Instruction execution count

4

2.3. Occupancy Charts
The following charts show how varying different components of the kernel will impact theoretical occupancy.

(d) Memory bandwidth occupancy

Figure 6.10: Evaluation of our implementation of the sub step calculate-histogram in
Larson et al.’s algorithm

Figure 6.11a shows that our implementation is bound by the number of arithmetic

operations that are performed. This is most likely due to the fact that we perform both a

colour-space conversion as well as converting from “real pixels” (See Section 5.2.2) to three-

floating point values. Furthermore, multiple computationally expensive multiplications

and divisions are performed within the kernel. These operations seem to greatly outweigh

the cost associated with reading HDR pixel values and writing LDR values.

When examining the utilization of the different modules of the GPU , as shown in Fig-

ure 6.11b, one can see that the load is not evenly distributed. There is a high demand

placed on the single precision arithmetic unit and a medium load on the “special” arith-

metic unit. Most of the other units remain mostly inactive. How this uneven distribution

affects the amount of idle operations performed can be seen in Figure 6.11c. Less than

10% of instructions were idle. This is in a similar range to the other algorithms and we

deem this performance good enough for our purposes.

Execution time: 9.69 ms.

6.1. Performance 59

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "apply_histogram" is most
likely limited by instruction and memory latency. You should first examine the information in the "Instruction And Memory
Latency" section to determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "GeForce
GTX 750 Ti". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic
or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates latency
issues.

(a) comparison of time spent on computations versus memory I/O

6

3. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized.

3.1. Function Unit Utilization
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

3.2. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

(b) comparison of the utilisation of the different modules on the GPU

7

3.3. Floating-Point Operation Counts
The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

(c) Instruction execution count

Figure 6.11: Evaluation of our implementation of the sub step apply-histogram in Larson
et al.’s algorithm

6.1.3.7 Reinhard

As can be seen in Figure 6.1, this algorithm exceeds the real-time threshold in every

possible combination with different radiance-mappers. We decided to do further testing

by varying the number of Gauss-kernels used by the algorithm. This affects memory

consumption and run-time. After convolving the image with the different kernels a reverse

FFT transform is applied. The number of Gauss-kernels determines the size of the input for

this operation. Fewer kernels result in quicker computation. This step is computationally

60 Chapter 6. Performance Measurement and Study

the most demanding step that needs to be performed for each frame of the video. The

execution time with different number of kernels can be seen in Figure 6.12. This figure

shows the execution times with the whole pipeline active. In Figure 6.13 only the HDR

module is used. Detailed execution times can be found in Table 6.2.

Figure 6.12: Execution times of the entire pipeline with different number of Gauss-
kernels used in Reinhard et al.’s algorithm

Figure 6.13: Execution times of the HDR module with different number of Gauss-
kernels used in Reinhard et al.’s algorithm

Even with just one Gauss kernel the execution time exceeds the real-time threshold of

40ms. We think that there are two ways to achieve better performance:

1. Reduce resolution of input: Unfortunately this is not an option since one of the

6.1. Performance 61

goals of the pipeline is creating high resolution panoramic videos.

2. Rework memory allocation: We decided to favour image quality over speed.

Therefore we perform multiple memory allocations and deallocations each frame to

enable as many Gauss kernels as possible. Fewer kernels result in worse image quality

because the neighbourhood observed is smaller. This leads to more image noise.

of Kernels Upload Bayer HDR Stitcher Download HDR only

1 3.882 7.388 48.676 13.263 7.448 40.492

2 3.849 7.431 61.034 13.259 9.299 52.261

3 3.949 7.433 75.290 12.414 8.900 67.104

4 4.023 7.441 92.047 12.857 9.102 81.284

Table 6.2: Execution times of all modules with different number of Gauss Kernels used by
the radiance-mapper proposed by Reinhard et al. in ms

In the following section we will perform a more detailed evaluation of the performance

of multiple kernels that are part of this algorithm. We will not explain all of them, but

the ones that have the biggest impact on performance.

Create-radiance-image: The first kernel we discuss is called create-radiance-image.

We perform two operations. First we convert the incoming HDR pixel values from “real

pixels” (see Section 5.2.2) into floating point values. These values are then converted to

a format used by Nvidia’s CUFFT which handles complex numbers. These conversions

are necessary because in a later step we perform an FFT on this input that will result in

complex values. The second operation performed by this kernel is scaling the brightness

of the incoming pixels around a user determined key-brightness value. How this key

brightness is affecting the image is explained in Section 2.2.1.

As can be seen in Figure 6.14a, this kernel is bound by the number of compute op-

erations, not memory bandwidth. It is caused by the second step described above. For

each pixel a number of arithmetic operations has to be performed in order to perform the

scaling around the key-brightness value in a uniform manner.

Figure 6.14b shows that the modules of the GPU are not used evenly. Most of the load is

imposed on the module responsible for double precision operations. This is caused by the

second step in the kernel. We perform the scaling of the pixels in double precision. This

is done because the scaling often includes a form of compression. We use double precision

62 Chapter 6. Performance Measurement and Study

instead of single precision floating point values in order not to lose the brightness difference

between pixels that are very similar in brightness.

The efficiency of our implementation can be seen in Figure 6.14c. Only about 5% of

the operations executed were idle instructions. Most of the time the GPU was performing

as intended. This observation is further supported by Figure 6.14d. It shows that we

achieved good memory throughput in this operation.

Execution time: 4.732 ms.

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "create_radiance_image" is
most likely limited by compute. You should first examine the information in the "Compute Resources" section to determine how it
is limiting performance.

1.1. Kernel Performance Is Bound By Compute
For device "GeForce GTX 750 Ti" the kernel's memory utilization is significantly lower than its compute utilization. These
utilization levels indicate that the performance of the kernel is most likely being limited by computation on the SMs.

(a) comparison of time spent on computations versus memory I/O

3

2. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized. Compute
resources are used most efficiently when all threads in a warp have the same branching and predication behavior. The results below
indicate that a significant fraction of the available compute performance is being wasted because branch and predication behavior is
differing for threads within a warp. Compute resources are used most efficiently when instructions do not overuse a function unit.
The results below indicate that compute performance may be limited by overuse of a function unit.

2.1. Divergent Branches
Compute resource are used most efficiently when all threads in a warp have the same branching behavior. When this does not
occur the branch is said to be divergent. Divergent branches lower warp execution efficiency which leads to inefficient use of the
GPU's compute resources.

Optimization: Each entry below points to a divergent branch within the kernel. For each branch reduce the amount of intra-warp
divergence.

/usr/local/cuda/include/math_functions.h/usr/local/cuda/include/math_functions.h/usr/local/cuda/include/math_functions.h/usr/local/cuda/include/math_functions.h

Line 8862 Divergence = 16.3% [56370 divergent executions out of 345600 total executions]

2.2. GPU Utilization Is Limited By Function Unit Usage
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is potentially
limited by overuse of the following function units: Double.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

2.3. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

(b) comparison of the utilisation of the different modules on the GPU

4

2.4. Floating-Point Operation Counts
The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

(c) Instruction execution count

6.1. Performance 63

5

3. Memory Bandwidth
Memory bandwidth limits the performance of a kernel when one or more memories in the GPU cannot provide data at the rate
requested by the kernel.

3.1. Memory Bandwidth And Utilization
The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also
shows the utilization of each memory type relative to the maximum throughput supported by the memory.

(d) Memory bandwidth occupancy

Figure 6.14: Evaluation of our implementation of the sub step create-radiance-image in
Reinhard et al.’s algorithm

FFT foward: The next kernel we are going to examine was not implemented by us.

Instead it is an operation offered by CUFFT. This algorithm requires multiple forward

and inverse Fourier transforms. Here we picked Nvidia’s implementation of a forward FFT

to examine. Figure 6.15a shows that the performance of this operations is limited by

arithmetic instruction throughput.

When examining the load on the different modules of the GPU (Figure 6.15b), one can

see that it is not evenly distributed. By far the highest demand is put on the single precision

floating point unit. Because the load is very high the implementation is very efficient

without saturating the floating point unit. This indicates a constant, high throughput by

that module.

This observation is further supported by Figure 6.15c. Approximately 5% of executed

instructions were idle instructions. This means that sufficient parallelism was achieved

for this operation. This figure furthermore shows that a large number of operations are

integer operations. On a modern GPU , integer operations are slower than floating point

operations. This is due to the fact that there are more FPU (floating point unit) than ALU

(arithmetic logic unit) units on a GPU .

Figure 6.15d shows the memory bandwidth utilisation. A high throughput to L1-cache

can be observed. This indicates a high amount of data sharing between threads of the

same warp using shared memory.

Execution time: 4.297 ms.

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "void
radixM_kernel<unsigned..." is most likely limited by compute. You should first examine the information in the "Compute
Resources" section to determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Compute
For device "GeForce GTX 750 Ti" the kernel's memory utilization is significantly lower than its compute utilization. These
utilization levels indicate that the performance of the kernel is most likely being limited by computation on the SMs.

(a) comparison of time spent on computations versus memory I/O

64 Chapter 6. Performance Measurement and Study

3

2. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized.

2.1. Function Unit Utilization
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

2.2. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

(b) comparison of the utilisation of the different modules on the GPU

4

2.3. Floating-Point Operation Counts
The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

(c) Instruction execution count

5

3. Memory Bandwidth
Memory bandwidth limits the performance of a kernel when one or more memories in the GPU cannot provide data at the rate
requested by the kernel.

3.1. Memory Bandwidth And Utilization
The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also
shows the utilization of each memory type relative to the maximum throughput supported by the memory.

(d) Memory bandwidth occupancy

Figure 6.15: Evaluation of our implementation of the sub step fft-forward in Reinhard
et al.’s algorithm

Process complex numbers: The next kernel we want to analyse deals with multiply-

ing complex numbers. This kernel is used to convolve the input image with the different

Gauss kernels. For this, we performed a forward FFT transformation on both the incoming

image and the Gauss kernels. Then for each pixel position the input is multiplied with

the Gauss kernel.

Figure 6.16a shows that this kernel is severely limited by memory bandwidth. This is

caused by the fact that for each pixel two read operations and one write operation have

6.1. Performance 65

to be performed. Compared to this, the arithmetic operations performed are very simple

and consist only of additions and multiplications. These operations can be performed very

efficiently on a GPU .

This fact is further supported by two figures. Firstly, Figure 6.16b, showing the utili-

sation of the different modules on the GPU . The load is evenly spread on different modules

and not very high on any of them. In contrast to this, Figure 6.16d shows a very high

demand on global device memory. Figure 6.16e shows that the major cause of stalling is

instruction dependency. This further supports the notion that reading the required data

is the bottleneck of these operations. Many operations had to wait for data that was being

read in the previous operation. Despite this one sided utilisation of the GPU , we achieve

high parallelism. This can be seen in Figure 6.16c. Only 3% of commands executed were

idle instructions. Another observation in this figure is the fact that a lot of operations are

integer operations. As mentioned in the previous kernel analysis, integer operations are

comparably slow operations on a GPU . Operations related to calculating addresses in a

linear array are the cause for the high number of integer operations in this kernel.

Execution time: 3.568 ms.

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "kernel_simple_process2D" is
most likely limited by memory bandwidth. You should first examine the information in the "Memory Bandwidth" section to
determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Memory Bandwidth
For device "GeForce GTX 750 Ti" the kernel's compute utilization is significantly lower than its memory utilization. These
utilization levels indicate that the performance of the kernel is most likely being limited by the memory system. For this kernel the
limiting factor in the memory system is the bandwidth of the Device memory.

(a) comparison of time spent on computations versus memory I/O

7

4. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized.

4.1. Function Unit Utilization
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

4.2. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

(b) comparison of the utilisation of the different modules on the GPU

66 Chapter 6. Performance Measurement and Study

8

4.3. Floating-Point Operation Counts
The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

(c) Instruction execution count

3

2. Memory Bandwidth
Memory bandwidth limits the performance of a kernel when one or more memories in the GPU cannot provide data at the rate
requested by the kernel. The results below indicate that the kernel is limited by the bandwidth available to the device memory.

2.1. GPU Utilization Is Limited By Memory Bandwidth
The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also
shows the utilization of each memory type relative to the maximum throughput supported by the memory. The results show that the
kernel's performance is potentially limited by the bandwidth available from one or more of the memories on the device.

Optimization: Try the following optimizations for the memory with high bandwidth utilization.
	Shared Memory - If possible use 64-bit accesses to shared memory and 8-byte bank mode to achieved 2x throughput.
	L2 Cache - Align and block kernel data to maximize L2 cache efficiency.
	Unified Cache - Reallocate texture data to shared or global memory. Resolve alignment and access pattern issues for global loads
and stores.
	Device Memory - Resolve alignment and access pattern issues for global loads and stores.
	System Memory (via PCIe) - Make sure performance critical data is placed in device or shared memory.

(d) Memory bandwidth occupancy

4

3. Instruction and Memory Latency
Instruction and memory latency limit the performance of a kernel when the GPU does not have enough work to keep busy. The
results below indicate that the GPU does not have enough work because instruction execution is stalling excessively.

3.1. Instruction Latencies May Be Limiting Performance
Instruction stall reasons indicate the condition that prevents warps from executing on any given cycle. The following chart shows
the break-down of stalls reasons averaged over the entire execution of the kernel. The kernel has good theoretical and achieved
occupancy indicating that there are likely sufficient warps executing on each SM. Since occupancy is not an issue it is likely that
performance is limited by the instruction stall reasons described below.
	Instruction Fetch - The next assembly instruction has not yet been fetched.
	Compute - The compute resource(s) required by the instruction is not yet available.
	Constant - A constant load is blocked due to a miss in the constants cache.
	Data Request - A load/store cannot be made because the required resources are not available or are fully utilized, or too many
requests of a given type are outstanding. Data request stalls can potentially be reduced by optimizing memory alignment and access
patterns.
	Synchronization - The warp is blocked at a __syncthreads() call.
	Execution Dependency - An input required by the instruction is not yet available. Execution dependency stalls can potentially be
reduced by increasing instruction-level parallelism.
	Texture - The texture sub-system is fully utilized or has too many outstanding requests.

Optimization: Resolve the primary stall issue; execution dependency.

3.2. Occupancy Is Not Limiting Kernel Performance
The kernel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU.

(e) Computation stall reasons

Figure 6.16: Evaluation of our implementation of the sub step about processing complex
numbers in Reinhard et al.’s algorithm

Tone mapper: The last kernel of this algorithm we want to examine is the final step

in the algorithm where the actual dynamic compression is performed. This is done by first

picking the correct size of Gauss kernel for each pixel and then calculating the equation

introduced in Section 4.2.3.1.

Figure 6.17a reveals that the performance of this algorithm is limited by the number

of arithmetic operations performed. The reason for this can be seen in Figure 6.17b. It

shows that the load on the different modules of the GPU is not evenly distributed. Most of

6.1. Performance 67

the load is put on the single precision arithmetic unit. This can lead to a bottleneck that

degrades overall performance.

In Figure 6.17c we can see that about 10% of the instructions executed were idle

operations. This is most likely caused by the one sided utilisation of the GPU .

Execution time: 8.677 ms.

(a) comparison of time spent on computations versus memory I/O

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "tone_mapper_reinhard" is
most likely limited by instruction and memory latency. You should first examine the information in the "Instruction And Memory
Latency" section to determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "GeForce
GTX 750 Ti". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic
or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates latency
issues.

6

3. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized. Compute
resources are used most efficiently when all threads in a warp have the same branching and predication behavior. The results below
indicate that a significant fraction of the available compute performance is being wasted because branch and predication behavior is
differing for threads within a warp.

3.1. Divergent Branches
Compute resource are used most efficiently when all threads in a warp have the same branching behavior. When this does not
occur the branch is said to be divergent. Divergent branches lower warp execution efficiency which leads to inefficient use of the
GPU's compute resources.

Optimization: Each entry below points to a divergent branch within the kernel. For each branch reduce the amount of intra-warp
divergence.

/usr/local/cuda/include/math_functions.h/usr/local/cuda/include/math_functions.h/usr/local/cuda/include/math_functions.h/usr/local/cuda/include/math_functions.h

Line 8862 Divergence = 18.2% [62813 divergent executions out of 345600 total executions]

3.2. Function Unit Utilization
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not limited
by overuse of any function unit.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

3.3. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

(b) comparison of the utilisation of the different modules on the GPU

7

3.4. Floating-Point Operation Counts
The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

(c) Instruction execution count

Figure 6.17: Evaluation of our implementation of the sub step applying the formula in-
troduced in Section 4.2.3.1 in Reinhard et al.’s algorithm

68 Chapter 6. Performance Measurement and Study

6.1.3.8 Common

In the following section we will perform the detailed analysis of a helping kernel that is used

by multiple algorithms. This kernel calculates the average brightness of an incoming image.

We use this kernel in the algorithms proposed by Ward, Larson et al., and Reinhard et al..

For this purpose we employed a heavily optimized version of parallel reduction proposed

by Harris et al. in [15]. We calculate the logarithm of the average brightness using the

equation introduced in Section 4.2.1.1.

Figure 6.18a shows that the performance of this algorithm is limited by the number

of arithmetic operations performed. The reason for this is twofold. First, the logarithm of

sums needs to be calculated in each iteration . This is computationally rather expensive.

Memory consumption on the other hand is reduced by using local memory for all operations

apart from the initial read. The combination of these two factors leads to high demand

for arithmetic operations coupled with low memory consumption.

According to Figure 6.18b, the highest strain is put on the double precision floating

point unit. We use double precision during this operation. This is done because the sum

during this operation tends to get very large. We only perform the division by the number

of pixels in the end after adding everything up. In order not to lose precision for large

numbers we elected to use double precision.

In Figure 6.18c we can observe that the amount of idle operations lies around 8%.

Possible reasons for this can be seen in Figure 6.18d. The primary reason for this is

execution dependency. This is caused by the nature of parallel reduction. The more

iterations have been performed, the fewer threads are active. For example in the last

iteration only a single thread is adding up the last two remaining elements.

Execution time: 12.365 ms.

2

1. Compute, Bandwidth, or Latency Bound
The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory
bandwidth, or instruction/memory latency. The results below indicate that the performance of kernel "void reduce6<double,
unsign..." is most likely limited by compute. You should first examine the information in the "Compute Resources" section to
determine how it is limiting performance.

1.1. Kernel Performance Is Bound By Compute
For device "GeForce GTX 750 Ti" the kernel's memory utilization is significantly lower than its compute utilization. These
utilization levels indicate that the performance of the kernel is most likely being limited by computation on the SMs.

(a) comparison of time spent on computations versus memory I/O

6.1. Performance 69

3

2. Compute Resources
GPU compute resources limit the performance of a kernel when those resources are insufficient or poorly utilized. Compute
resources are used most efficiently when instructions do not overuse a function unit. The results below indicate that compute
performance may be limited by overuse of a function unit.

2.1. GPU Utilization Is Limited By Function Unit Usage
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is potentially
limited by overuse of the following function units: Double.
	Load/Store - Load and store instructions for shared and constant memory.
	Texture - Load and store instructions for local, global, and texture memory.
	Single - Single-precision integer and floating-point arithmetic instructions.
	Double - Double-precision floating-point arithmetic instructions.
	Special - Special arithmetic instructions such as sin, cos, popc, etc.
	Control-Flow - Direct and indirect branches, jumps, and calls.

2.2. Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class. The
"Inactive" result shows the thread executions that did not execute any instruction because the thread was predicated or inactive due
to divergence.

(b) comparison of the utilisation of the different modules on the GPU

4

2.3. Floating-Point Operation Counts
The following chart shows the mix of floating-point operations executed by the kernel. The operations are grouped into classes and
for each class the chart shows the percentage of thread execution cycles that were devoted to executing operations in that class. The
results do not sum to 100% because non-floating-point operations executed by the kernel are not shown in this chart.

(c) Instruction execution count

6

4. Instruction and Memory Latency
Instruction and memory latency limit the performance of a kernel when the GPU does not have enough work to keep busy. The
results below indicate that the GPU does not have enough work because instruction execution is stalling excessively.

4.1. Instruction Latencies May Be Limiting Performance
Instruction stall reasons indicate the condition that prevents warps from executing on any given cycle. The following chart shows
the break-down of stalls reasons averaged over the entire execution of the kernel. The kernel has good theoretical and achieved
occupancy indicating that there are likely sufficient warps executing on each SM. Since occupancy is not an issue it is likely that
performance is limited by the instruction stall reasons described below.
	Instruction Fetch - The next assembly instruction has not yet been fetched.
	Compute - The compute resource(s) required by the instruction is not yet available.
	Constant - A constant load is blocked due to a miss in the constants cache.
	Data Request - A load/store cannot be made because the required resources are not available or are fully utilized, or too many
requests of a given type are outstanding. Data request stalls can potentially be reduced by optimizing memory alignment and access
patterns.
	Synchronization - The warp is blocked at a __syncthreads() call.
	Execution Dependency - An input required by the instruction is not yet available. Execution dependency stalls can potentially be
reduced by increasing instruction-level parallelism.
	Texture - The texture sub-system is fully utilized or has too many outstanding requests.

Optimization: Resolve the primary stall issue; execution dependency.

4.2. Occupancy Is Not Limiting Kernel Performance
The kernel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU.

(d) Stall reasons

Figure 6.18: Evaluation of our implementation of parallel reduction to recover log-average
brightness

6.1.3.9 Overview

An overview of the execution times of the kernels mentioned above can be seen in Table 6.3.

70 Chapter 6. Performance Measurement and Study

Kernel Execution Time

Debevec 7.737 ms

Robertson - radiance mapper 11.209 ms

Tocci - radiance mapper 30.234 ms

Ward - tone mapper 7.758 ms

Larson - compute foveal image 4.459 ms

Larson - calibrate histogram 0.109 ms

Larson - apply histogram 9.69 ms

Reinhard create-radiance-image 4.732 ms

Reinhard FFT -forward 4.297 ms

Reinhard process-complex-numbers 3.568 ms

Reinhard tone mapper 8.677 ms

Common - log average luminance 12.365 ms

Table 6.3: Execution times of all kernels in ms

6.2 Visual Comparison

We performed a subjective visual comparison of the output of our algorithms. This was

done in order to find algorithms that are pleasing to the eye of the viewer. Many studies

on the quality of tone-mappers have been performed ([25], [6], [30], [35]), but at our best

knowledge no study paired up different radiance mappers with tone mappers. For a more

complete list of comparisons of tone mappers we refer to Petit and Mantiuk [25]. The

output images of the different combinations of algorithms can be seen in Figure 6.20.

6.2.1 Set-Up

We perform the evaluation of quality without a real world reference. This is because we

wanted the content shown to resemble the real use-case. For this reason we were showing

recordings of the football stadium in Tromsø. We had no HDR monitor available that could

substitute for a real world reference either. We used a standard 24” TFT-monitor that

was set up in a dark room with controlled environmental luminance levels that exhibited

no direct light.

6.2.2 Proceedings

The different video sequences were shown to 11 participants individually. We based our

proceedings on the methodology proposed by Petit and Mantiuk in [25]. Before reviewing

6.3. Results of subjective study 71

the sequences, participants were told to pick the video they “liked the best” and “found

the most visually pleasing”. They furthermore were told not to look at only a single

feature, but rate the overall impression. Nine thumbnails of the different combinations

were shown on the screen. We also included a tenth video that was captured without

performing HDR processing. This was used as an LDR video to be compared with the others.

The participants were not aware of the fact that one of the videos was captured using

traditional LDR techniques. Upon clicking on one of the thumbnails the corresponding

video clip was shown in full screen using VLC media player ∗. The resolution of the

panoramic video did not match the resolution of the monitor used, therefore downscaling

was performed by VLC. The participants then had to rate each video in the following

categories: Colour reproduction, contrast, brightness, detail reproduction, and overall

pleasantness. We adopted those categories from [6]. In order to ensure that each video

has been seen, the users could only rate a video after it has been watched. In the following

section we will perform an analysis of the results obtained by this study.

6.3 Results of subjective study

By comparing the charts in Figure 6.19e, we can observe several emerging patterns. The

first one is that the tone-mapper proposed by Reinhard et al. outperforms the other tone-

mappers we implemented. For each possible combination with the implemented radiance-

mappers it scored the most points in all categories. A similar trend can be observed for

the two remaining tone-mapping operators. In most of the cases the one proposed by

Larson et al. outperforms the tone-mapper suggested by Ward. Only when paired up with

the radiance-mapper proposed by Robertson et al., the ordering between the two tone-

mappers was reversed. Another trend can be observed when comparing the performance

of the implemented radiance-mappers. The radiance-mapper proposed by Debevec and

Malik scored best among the participants of the study. The scores given to this radiance-

mapper outperform the other radiance-mappers when paired with either the tone-mapper

proposed by Larson et al., or Robertson et al.. Only when using the tone-mapper proposed

by Ward, the radiance-mapper proposed by Tocci et al. scored more points. To determine

whether HDR processing helps improve the quality of the captured video, we compare the

scores of our various radiance- and tone-mapper configurations with an LDR video. Here we

see that most of the algorithms perform on par, or better than the LDR video. When only

looking at the scores in the overall pleasantness category (Figure 6.19e), we can observe

∗http://www.videolan.org/vlc/index.html

http://www.videolan.org/vlc/index.html

72 Chapter 6. Performance Measurement and Study

that only a single combination scored worse than the LDR video. This is when pairing

up the radiance-mapper proposed by Robertson et al. with the tone-mapper suggested

by Ward. We think this is because the formula used in the radiance-mapper emphasises

long exposures. This leads to a higher brightness of the HDR output image. The mostly

linear compression performed by the tone-mapper suggested by Ward leads to undesirable

results with the increased dynamic range of this HDR input. One further observation is

concerned with how the scores differ between the categories. The average score is lowest

in the contrast category. Here the participants were asked to judge the existing contrast

in the picture. Low scores were to be given if the contrast was either too high or too

low. We see two possible reasons for the poor results of our HDR processing algorithms

in this domain. The first reason is related to the fact that most tone-mapping operators

try to reduce contrast in order to minimize the overall dynamic range. We believe that

the resulting low contrast image appeared too “bland” to the participants. The second

reason lies in the nature of the tone-mapping algorithm proposed by Ward. Nearly linear

dynamic range compression is performed here in order to preserve the relative contrast of

the image. If the dynamic range of the incoming HDR image is very high, this leads to only

the very dark and bright parts being visible. This results in an image where large parts

are either mostly over- or under-saturated. This causes the contrast to be perceived as

too high by our participants.

6.3. Results of subjective study 73

●

de
be

ve
c−

w
ar

d

de
be

ve
c−

la
rs

on

de
be

ve
c−

re
in

ha
rd

ro
be

rt
so

n−
w

ar
d

ro
be

rt
so

n−
la

rs
on

ro
be

rt
so

n−
re

in
ha

rd

to
cc

i−
w

ar
d

to
cc

i−
la

rs
on

to
cc

i−
re

in
ha

rd

no
 H

D
R

1

2

3

4

5

6

7

8

S
co

re

Algorithms

(a) Result for the category: Colour

●

●

● ●

de
be

ve
c−

w
ar

d

de
be

ve
c−

la
rs

on

de
be

ve
c−

re
in

ha
rd

ro
be

rt
so

n−
w

ar
d

ro
be

rt
so

n−
la

rs
on

ro
be

rt
so

n−
re

in
ha

rd

to
cc

i−
w

ar
d

to
cc

i−
la

rs
on

to
cc

i−
re

in
ha

rd

no
 H

D
R

2

4

6

8

S
co

re

Algorithms

(b) Result for the category: Contrast

74 Chapter 6. Performance Measurement and Study

●

●

de
be

ve
c−

w
ar

d

de
be

ve
c−

la
rs

on

de
be

ve
c−

re
in

ha
rd

ro
be

rt
so

n−
w

ar
d

ro
be

rt
so

n−
la

rs
on

ro
be

rt
so

n−
re

in
ha

rd

to
cc

i−
w

ar
d

to
cc

i−
la

rs
on

to
cc

i−
re

in
ha

rd

no
 H

D
R

1

2

3

4

5

6

7

8

S
co

re

Algorithms

(c) Result for the category: Brightness

●

●

●

de
be

ve
c−

w
ar

d

de
be

ve
c−

la
rs

on

de
be

ve
c−

re
in

ha
rd

ro
be

rt
so

n−
w

ar
d

ro
be

rt
so

n−
la

rs
on

ro
be

rt
so

n−
re

in
ha

rd

to
cc

i−
w

ar
d

to
cc

i−
la

rs
on

to
cc

i−
re

in
ha

rd

no
 H

D
R

2

4

6

8

S
co

re

Algorithms

(d) Result for the category: Detail reproduction

6.4. Performance vs. Visual Result trade-off 75

● ●

de
be

ve
c−

w
ar

d

de
be

ve
c−

la
rs

on

de
be

ve
c−

re
in

ha
rd

ro
be

rt
so

n−
w

ar
d

ro
be

rt
so

n−
la

rs
on

ro
be

rt
so

n−
re

in
ha

rd

to
cc

i−
w

ar
d

to
cc

i−
la

rs
on

to
cc

i−
re

in
ha

rd

no
 H

D
R

1

2

3

4

5

6

7

8

S
co

re

Algorithms

(e) Result for the category: Overall pleasantness

Figure 6.19: Results of the subjective user study

6.4 Performance vs. Visual Result trade-off

When only looking at the results of the visual study the ideal combination of algorithms

is clear. When using the radiance-mapper proposed by Debevec and Malik in conjunction

with the tone-mapper suggested by Reinhard et al., the participants of the study gave an

average score that was 50% higher than the next best combination. When looking at the

execution times of the algorithms such a clear verdict can not be given. The tone-mapper

introduced by Reinhard et al. barely passes the real time threshold when using only a

single Gauss kernel. When the whole pipeline is active the algorithm is too slow, even

when only using a single Gauss kernel. The next most visually pleasing combination uses

the same radiance mapper, but uses the tone-mapper proposed by Larson et al.. When

using this combination the execution times are well below the real-time threshold.

We want to answer the question if the higher visual quality of Reinhard et al.’s tone-

mapper can outweigh the disadvantage of a longer execution time. To accomplish this

we perform a näıve analysis to compare the two tone-mapping operators. By taking

76 Chapter 6. Performance Measurement and Study

execution time and visual study score into account we can determine a ratio between

score and execution time. When only using a single Gauss kernel the tone-mapper by

Reinhard et al. achieves a ratio of 1:8. This means that 8ms of execution time equal one

point scored in the visual study. The tone-mapper suggested by Larson et al. accomplishes

a ratio of 1:8.5. Using this simple metric, we come to the conclusion that the tone-mapper

proposed by Larson et al.is better suited for our application.

6.5 Final Result

We will briefly explain the final combination we settled on to use in the pipeline in the

future. As a radiance-mapper we selected the one proposed by Debevec and Malik. From

a performance standpoint, this algorithm proved to be the fastest. Furthermore, the

results also turned out to be the most visually pleasing. Therefore we conclude that this

radiance mapper is the ideal solution for our needs. Picking a corresponding tone-mapper

proved to be more difficult. The one proposed by Larson et al. exhibits good performance

characteristics. Visually it performs well in respect to brightness compression. But image

noise is greatly boosted by performing histogram equalisation. This is a major downside

of this algorithm. The visual results of the tone mapper introduced by Reinhard et al.

were also very pleasing. Brightness was not compressed as much, but the resulting image

was perceived as more natural by our test participants. The downside of this algorithm is

its runtime. When using only a single Gauss kernel we can barely accomplish the real-time

threshold as can be seen in Figure 6.12. Using only one kernel turns this tone mapper

from a local to a global tone mapper. In our opinion, this defeats the purpose of the tone-

mapper by forgoing “dodging & burning”. For this reason we favour the tone mapper

suggested by Larson et al.. In the future, when more powerful hardware is available we

will re-evaluate using the tone mapper proposed by Reinhard et al.. If computing power

doubles, this algorithm will probably prove to be a good choice.

Eventually we settled on the combination of the radiance-mapper by Debevec and

Malik in conjunction with the tone-mapper put forward by Larson et al..

6.5. Final Result 77

(a) Debevec - Ward (b) Debevec - Larson

(c) Debevec - Reinhard (d) Robertson - Ward

78 Chapter 6. Performance Measurement and Study

(e) Robertson - Larson (f) Robertson - Reinhard

(g) Tocci - Ward (h) Tocci - Larson

6.5. Final Result 79

(i) Tocci - Reinhard

Figure 6.20: Output images acquired using different combinations of algorithms

Chapter 7

Conclusion

7.1 Future Work

After this initial foray into real-time HDR processing in the context of high resolution

panoramic videos, we want to refine our work in several areas. During our work we

mostly focused on implementing as many algorithms as possible. This means that due

to time constraints some possible optimisations could not be performed. After selecting

the best combination of algorithms in Section 6.5, we want to perform an additional

optimization pass on those selected algorithms. Furthermore, we want to investigate

ways to improve our implementation of the algorithm put forth by Reinhard et al.. This

algorithm performed rather well in our subjective visual study, but our implementation

could not perform the necessary operations quick enough. Even in the fastest configuration

we could not pass the real-time threshold. After bringing this work to a close, we became

aware of a more effective implementation. This optimisation warrants further investigation

in the future.

Another important step towards a more autonomous video capturing system is auto-

matic determination of an optimal scene key brightness value. In the current system the

scene key brightness is set manually at the beginning of a recording. We want to investi-

gate ways of implementing a feedback loop that enables us to set the optimal scene key

brightness based on the output of our pipeline.

81

82 Chapter 7. Conclusion

7.2 Concluding Remarks

The goal of this work was to determine whether high-resolution, real-time HDR processing

is possible with the current hardware available. For this purpose we implemented several

algorithms in Nvidia’s CUDA. We extended an existing real-time panoramic video pipeline

with an HDR module. Within this module we experimented with various combinations

of our implemented algorithms. We performed extensive performance analysis on our

HDR processing module to determine how well the implemented algorithms are suited for

massive parallel execution as it is performed on a GPU . We also perform a user study to

determine which algorithms lead to visually pleasing results. We conclude the work with

finding the most preferable combination of algorithms and thus proving the feasibility of

our approach.

Appendix A

Acronyms and Symbols

List of Acronyms

HDR high dynamic range

LDR low dynamic range

FOV field of view

CDF cumulative distribution function

FFT fast Fourier transform

SVD singular value decomposition

ALU arithmetic logic unit

FPU floating point unit

83

84

Bibliography

[1] Adams, A. (1980). The camera, the ansel adams photography series. Little, Brown

and Company.

[2] Adams, A. and Baker, R. (1981). The negative. New York Graphic Society.

[3] Adams, A. and Baker, R. (1983). The print. Little, Brown.

[4] Bayer, B. E. (1976). Color imaging array. US Patent 3,971,065.

[5] Benoit, A., Alleysson, D., Herault, J., and Le Callet, P. (2009). Spatio-temporal tone

mapping operator based on a retina model. In Computational Color Imaging, pages

12–22. Springer.

[6] Čad́ık, M., Wimmer, M., Neumann, L., and Artusi, A. (2006). Image attributes

and quality for evaluation of tone mapping operators. In National Taiwan University.

Citeseer.

[7] Debevec, P. E. and Malik, J. (2008). Recovering high dynamic range radiance maps

from photographs. In ACM SIGGRAPH 2008 classes, page 31. ACM.

[8] Drago, F., Myszkowski, K., Annen, T., and Chiba, N. (2003). Adaptive logarithmic

mapping for displaying high contrast scenes. In Computer Graphics Forum, volume 22,

pages 419–426. Wiley Online Library.

[9] Fattal, R., Lischinski, D., and Werman, M. (2002). Gradient domain high dynamic

range compression. In ACM Transactions on Graphics (TOG), volume 21, pages 249–

256. ACM.

[10] Gaddam, V. R., Langseth, R., Ljødal, S., Gurdjos, P., Charvillat, V., Griwodz, C.,

and Halvorsen, P. (2014). Interactive zoom and panning from live panoramic video. In

NOSSDAV, page 19.

[11] Gauss, C., Schering, E., Brendel, M., and der Wissenschaften in Göttingen, A. (1903).

Carl Friedrich Gauss Werke ... Carl Friedrich Gauss Werke. Gedruckt in der Dieterich-

schen Universitätsdruckerei (W.F. Kaestner).

[12] Granados, M., Ajdin, B., Wand, M., Theobalt, C., Seidel, H.-P., and Lensch, H.

(2010). Optimal hdr reconstruction with linear digital cameras. In Computer Vision

and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 215–222. IEEE.

BIBLIOGRAPHY 85

[13] Guthier, B., Kopf, S., Eble, M., and Effelsberg, W. (2011). Flicker reduction in tone

mapped high dynamic range video. In IS&T/SPIE Electronic Imaging, pages 78660C–

78660C. International Society for Optics and Photonics.

[14] Guthier, B., Kopf, S., and Effelsberg, W. (2013). Algorithms for a real-time hdr video

system. Pattern Recognition Letters, 34(1):25–33.

[15] Harris, M. et al. (2007). Optimizing parallel reduction in cuda. NVIDIA Developer

Technology, 2:45.

[16] Jacobi, C. (1846). Ueber ein leichtes verfahren, die in der theorie der saekularstoerun-

gen vorkommenden gleichungen numerisch aufzuloesen. Journal fÃ1
4r reine und ange-

wandte Mathematik, 30:51–95.

[17] Krawczyk, G., Myszkowski, K., and Seidel, H.-P. (2005). Perceptual effects in real-

time tone mapping. In Proceedings of the 21st spring conference on Computer graphics,

pages 195–202. ACM.

[18] Larson, G. W., Rushmeier, H., and Piatko, C. (1997). A visibility matching tone

reproduction operator for high dynamic range scenes. IEEE Trans. on Visualization

and Computer Graphics, 3(4):291–306.

[19] Madden, B. C. (1993). Extended intensity range imaging. Technical Reports (CIS),

page 248.

[20] Mann, S. (2000). Comparametric equations with practical applications in quanti-

graphic image processing. Image Processing, IEEE Transactions on, 9(8):1389–1406.

[21] Mann, S. and Mann, R. (2001). Quantigraphic imaging: Estimating the camera

response and exposures from differently exposed images. In Computer Vision and Pat-

tern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society

Conference on, volume 1, pages I–842. IEEE.

[22] Mann, S. and Picard, R. (1994). Being undigital with digital cameras. MIT Media

Lab Perceptual.

[23] Mantiuk, R., Daly, S., and Kerofsky, L. (2008). Display adaptive tone mapping. In

ACM Transactions on Graphics (TOG), volume 27, page 68. ACM.

86

[24] Mitsunaga, T. and Nayar, S. K. (1999). Radiometric self calibration. In Computer Vi-

sion and Pattern Recognition, 1999. IEEE Computer Society Conference on., volume 1.

IEEE.

[25] Petit, J. and Mantiuk, R. K. (2013). Assessment of video tone-mapping: Are cam-

eras s-shaped tone-curves good enough? Journal of Visual Communication and Image

Representation, 24(7):1020–1030.

[26] Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. (2002). Photographic tone

reproduction for digital images. ACM Trans. on Graphics, 21(3):267–276.

[27] Robertson, M. A., Borman, S., and Stevenson, R. L. (2003). Estimation-theoretic

approach to dynamic range enhancement using multiple exposures. Journal of Electronic

Imaging, 12(2):219–228.

[28] Schubert, E. F., Gessmann, T., and Kim, J. K. (2005). Light emitting diodes. Wiley

Online Library.

[29] Tocci, M. D., Kiser, C., Tocci, N., and Sen, P. (2011). A versatile hdr video production

system. 30(4):41.

[30] Villa, C. and Labayrade, R. (2010). Psychovisual assessment of tone-mapping op-

erators for global appearance and colour reproduction. Proc. of Colour in Graphics

Imaging and Vision, 2.

[31] Ward, G. (1991). Real pixels. Graphics Gems II, pages 80–83.

[32] Ward, G. (1994). A contrast-based scalefactor for luminance display. Graphics gems

IV, pages 415–421.

[33] Xiong, Y. and Pulli, K. (2010). Fast panorama stitching for high-quality panoramic

images on mobile phones. Consumer Electronics, IEEE Transactions on, 56(2):298–306.

[34] Yamada, K., Nakano, T., Yamamoto, S., Akutsu, E., and Aoki, I. (1994). Wide

dynamic range vision sensor for vehicles. In Vehicle Navigation and Information Systems

Conference, 1994. Proceedings., 1994, pages 405–408. IEEE.

[35] Yoshida, A., Blanz, V., Myszkowski, K., and Seidel, H.-P. (2005). Perceptual eval-

uation of tone mapping operators with real-world scenes. In Electronic Imaging 2005,

pages 192–203. International Society for Optics and Photonics.

	Introduction
	High Dynamic Range
	Introduction to HDR
	Radiance mapper
	Luminance & Key
	Response Function
	Weight Function

	Tone mapper
	Global vs. Local

	Pipeline
	Pipeline Modules
	Prerequisites for HDR
	Integration into Pipeline

	Related Work
	General Purpose HDR
	Radiance mapping
	Tone mapping

	HDR for video

	Algorithms
	Radiance mapper
	Debevec
	Procedure

	Robertson
	Procedure

	Tocci
	Procedure
	Comparison of Radiance mappers

	Tone mapper
	Ward
	Procedure

	Larson
	Procedure

	Reinhard
	Procedure
	Comparison of Tone mappers

	Weight Functions
	Debevec
	Robertson
	Mitsunaga
	Linear
	Comparison of Weight functions

	Implementation
	Implementation in C++
	Implementation in CUDA
	CUDA concepts
	Common
	Debevec
	Robertson
	Tocci
	Ward
	Larson
	Reinhard

	Performance Measurement and Study
	Performance
	Set-Up
	Execution Times
	Detailed Evaluation
	Legend
	Debevec
	Robertson
	Tocci
	Ward
	Larson
	Reinhard
	Common
	Overview

	Visual Comparison
	Set-Up
	Proceedings

	Results of subjective study
	Performance vs. Visual Result trade-off
	Final Result

	Conclusion
	Future Work
	Concluding Remarks

	Acronyms and Symbols
	Bibliography

