
Karlheinz Wohlmuth, BSc

Nameplate Detection and Classification

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Computer Science

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Horst Bischof

Institute for Computer Graphics and Vision

Advisors

Univ.-Ass. Dipl.-Ing. Manuel Hofer, BSc

Institute for Computer Graphics and Vision

Dipl.-Ing. Michael Maurer, BSc

Institute for Computer Graphics and Vision

Graz, Austria, Jan. 2015

Abstract

Nameplates are attached to power supply equipment and describe their electrical prop-

erties, which are needed to maintain and repair these devices. The current practice of

manually transcribing these values into the testing application is time consuming, suscep-

tible to typing errors, and prone to omit important values. A number of related approaches

to locate and extract content from license plates, business cards, as well as forms exist,

but they rely either on a simple layout of the object, or require low noise and clutter free

input. These requirements are not guaranteed to be valid in our case of weathered and

stained nameplates, that usually contain a considerable amount of content. We propose

an algorithm to locate, segment, classify, and extract information from rectangular plates,

available as human readable text, that is applicable on a mobile device. A multi-view

approach ensures robust text extraction. We first locate the plate, segment it using Grab-

Cut, extract features and determine the type using a Random Forest, and finally extract

the text using a state of the art optical character recognition engine. Additional images

are matched to the existing one and all visible text regions are processed. Further, we

created a prototype implementation for the Android operating system that implements

the proposed steps, and use it to conduct several experiments under different lighting

conditions with a number of plates. The results show the applicability of the proposed

approach, as well as the robustness of the plate classifier even for weathered plates and

difficult lighting conditions, such as reflections or shadows.

Keywords. Nameplates, Segmentation, Classification, Optical Character Recognition,

Mobile Device

iii

Kurzfassung

An einem Großteil aller Energieversorgungsgeräte befinden sich Typenschilder, die de-

ren elektrische Eigenschaften beschreiben und nötig sind um die Geräte zu warten und

zu reparieren. Zur Zeit werden die benötigten Daten manuell in die Wartungswerkzeuge

übertragen. Dieses Vorgehen ist zeitaufwändig, fehleranfällig und wichtige Daten werden

möglicherweise ausgelassen. Für andere Arten von Typenschildern oder vergleichbaren

Objekten, wie zum Beispiel Kfz-Kennzeichen, Visitenkarten oder Formulare, gibt es be-

reits bestehende Ansätze um die Position und den Inhalt zu bestimmen, die jedoch auf

ein simples Layout aufbauen oder Eingabebilder mit wenig Störeinflüssen voraussetzten.

Diese Voraussetzungen sind in unserem Fall von großteils verwitterten und verschmutzten

Typenschildern, die üblicherweise größere Informationsmengen enthalten, nicht gegeben.

Wir stellen ein auf Mobilgeräten einsetzbares Verfahren vor, um die Position des Typen-

schildes zu ermitteln, es auszuschneiden, den Typ zu bestimmen, sowie darauf vorhandenen

Text zu extrahieren. Weitere Aufnahmen aus mehreren Blickwinkeln werden verwendet

um eine robuste Textextraktion zu gewährleisten. Zu Beginn wird das Schild lokalisiert

und mithilfe von GrabCut segmentiert. Weiters werden Merkmale extrahiert und mit

einem Random Forest klassifiziert. Die Textextraktion wird mit einer frei verfügbaren

Texterkennungs-Software durchgeführt. Zusätzliche Aufnahmen des Schildes werden zum

bestehenden Bild zugeordnet und alle sichtbaren Textregionen werden verarbeitet. Mit-

hilfe eins Prototyps für Android Geräte, der das vorgestellte Verfahren umsetzt, werden

Versuche mit mehreren Schildtypen unter verschieden Beleuchtungsbedingungen durch-

geführt. Die Ergebnisse zeigen die Anwendbarkeit des Algorithmus und die Robustheit

der Klassifikation bei verwitterten Schildern und unter schwierigen Beleuchtungsbedin-

gungen, wie zum Beispiel Reflexionen und Schatten.

Stichwörter. Typenschilder, Segmentierung, Klassifikation, optische Zeichenerkennung,

Mobilgerät

v

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

The text document uploaded to TUGRAZonline is identical to the presented master’s

thesis.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Master-

arbeit identisch.

Ort Datum Unterschrift

Acknowledgments

Over the last year a number of people helped me to complete this thesis. I would like

to thank my thesis advisers DI Manuel Hofer and DI Michael Maurer for their patience,

valuable input and guidance, as well as reviewing draft versions of this thesis.

Further, I would like to thank my supervisor Prof. Horst Bischof, and OMICRON

electronics GmbH for the cooperation that allowed me to work on this thesis. Moreover,

OMICRON supplied a number of images, used for development and testing, and a number

of actual plates.

Finally, I want to thank my family and friends for their moral support.

ix

Contents

1 Introduction 1

2 Related Work 5

2.1 License Plates . 5

2.2 Business Cards . 8

2.3 Scanned Objects . 10

2.4 Form Recognition . 12

2.5 Summary . 16

3 Nameplate Detection and Classification Approach 17

3.1 Nameplate Detection and Extraction . 18

3.1.1 Hough based Methods . 18

3.1.2 Line Primitive based Methods . 20

3.1.3 Feature based Methods . 21

3.1.4 Our Approach . 21

3.1.5 Plate Extraction . 24

3.2 Plate Classification . 28

3.2.1 Nameplate Feature Vector . 29

3.2.1.1 Plate Color . 31

3.2.1.2 Local Binary Patterns . 31

3.2.1.3 Size Ratio . 32

3.2.1.4 Final Feature Vector . 33

3.2.2 Classification using a Random Forest 33

3.3 Text Detection . 34

3.3.1 Character Extraction using Maximally Stable Extremal Regions . . 36

3.3.2 Character Grouping . 37

xi

xii

3.3.3 Noise Filtering . 38

3.4 Text Extraction . 41

3.5 Guided Image Acquisition . 44

3.6 Summary . 45

4 Evaluation and Experiments 47

4.1 Evaluation of the Classifier . 49

4.1.1 Parameter Selection using Grid Search 49

4.1.2 Plate Color . 50

4.1.3 Local Binary Patterns . 54

4.1.4 Size Ratio . 55

4.1.5 Combination of all Features . 56

4.2 Evaluation of the OCR . 61

4.3 Application . 63

4.3.1 Edge Cases . 69

5 Conclusion and Future Work 73

5.1 Summary . 73

5.2 Further Work . 74

A List of Acronyms 77

Bibliography 79

List of Figures

1.1 Examples for common nameplates. 2

1.2 Images of weathered nameplates. 3

2.1 License plate detection using MSER . 6

2.2 License plate detection using CSER . 7

2.3 Business card preprocessing steps . 9

2.4 Scanned input image and segmented objects 11

2.5 Sample grid, graph representation and production rules. 14

3.1 Flowchart of the proposed algorithm. 18

3.2 Nameplate detection steps for sample image 1. 22

3.3 Nameplate detection steps for sample image 2. 23

3.4 Major steps of the connected component extraction algorithm. 24

3.5 Nameplate extraction steps for sample image 1. 25

3.6 Nameplate extraction steps for sample image 2. 26

3.7 Plate detection results for sample image 1. 27

3.8 Plate detection results for sample image 2. 28

3.9 Sample images of different nameplates. 29

3.10 Color features extracted from the two sample images. 30

3.11 LBP codes extracted from the two sample images. 32

3.12 Schematic of the values used to calculate the size ratio. 33

3.13 Text extraction, grouping, and matching for sample image 1. 36

3.14 Text extraction, grouping, and matching for sample image 2. 37

3.15 Criterions for character grouping. 38

3.16 OCR preprocessing steps illustrated on printed text. 40

3.17 OCR preprocessing steps illustrated on embossed text. 40

xiii

xiv LIST OF FIGURES

3.18 Matches between the existing plate and a new image. 44

4.1 A sample image for each plate type. 48

4.2 Mean and median precision and recall plots for different grid sizes in the

CIE L*a*b color space. 50

4.3 Mean and median precision and recall plots for different grid sizes in the

RGB color space. 51

4.4 Training times for different grid sizes with median color values in the CIE

L*a*b color space as features . 51

4.5 Original and blurred images for different median blur kernel sizes, that are

only classified correctly with the complete feature vector. 58

4.6 Nameplate class where the sample images contain dark regions and reflections. 59

4.7 Nameplate class with three samples that is never correctly classified. 60

4.8 Screenshots of the Android application. 64

4.9 Plate detection steps for a plate of type k on an Android device. 65

4.10 Plate detection steps for a plate of type l on an Android device. 66

4.11 Plate detection steps for a plate of type m on an Android device. 67

4.12 Input images acquired at different angles relative to the plate. 69

4.13 Samples with problematic lighting conditions. 70

4.14 Classification results for badly illuminated plates. 71

List of Tables

3.1 Tesseract output for the samples from Figure 3.16 and Figure 3.17. 42

3.2 Sample regions where the OCR output improves after preprocessing. 42

3.3 Preprocessed sample regions where part of the text is removed. 43

4.1 Overview of the dataset. 47

4.2 Grid search results for the feature extraction parameters. 49

4.3 Grid size compared to number of trees in the random forest with only

median CIE L*a*b color value features. 52

4.4 Confusion matrix created with median color features extracted from the

CIE L*a*b color space. 53

4.5 Confusion matrix created using only LBP features. 54

4.6 Precision and recall for varying LBP radii and number of neighbors. 55

4.7 Confusion matrix created only with the size ratio as feature. 55

4.8 Results for common amounts of active split size variables. 56

4.9 Classification results for pairwise combined features. 56

4.10 Classification results for median blurred images with the complete feature

vector and LBP features alone. 57

4.11 Confusion matrix calculated using the final feature extraction parameters. . 59

4.12 OCR recognition results of the provided and self trained language file. . . . 62

4.13 OCR recognition results trained from the ISOCP font. 62

4.14 List of incorrectly recognized text regions. 63

4.15 Execution times of the different stages of the Android application. 68

xv

1
Introduction

Our modern society highly depends on electric power. Therefore, a huge network of electric

power supplying devices, such as power pylons, circuit breakers, and transformers, is spread

all over the world. To ensure the constant availability of electric power, the underlying

infrastructure has to undergo regular servicing. Therefore, attached nameplates provide

important information for all kinds of maintenance routines, as well as documentation

purposes. The content, which is present on these nameplates, usually consists of textual

information, such as serial numbers, manufacturing year, or vendor names, as well as

schematic drawings, logos, or even barcodes. In most cases, nameplates are of rectangular

shape, and made of metal or synthetic material.

Figure 1.1 shows two examples of such nameplates. These plates differ in size, lay-

out, the used font and material, as they originate from different vendors. The first ex-

ample nameplate, shown in Figure 1.1a, consists of aluminum, has a tarnished surface,

and contains a barcode amongst the human readable text. The second one, displayed in

Figure 1.1b, is made of synthetic material, has a polished and reflective surface, contains

schematic drawings, and is significantly larger than the first plate.

Up to now, the information on the nameplate is transcribed manually by the operator

during maintenance tasks. This transcription is prone to errors, such as typing errors or

omission of important information, which might result in severe damage of the respective

device, or even trigger blackouts. Furthermore, this process is quite time consuming

because of the complexity of most nameplates.

The two examples of nameplates, shown in Figure 1.1, are recent production samples.

As such, they are new, were never mounted to a device, and therefore are in pristine

condition. In contrast, Figure 1.2 shows two metallic nameplates that have spent a few

decades outdoors, mounted on a device. These images illustrate some of the problems

that complicate automated content extraction, as well as manual transcriptions. The

nameplates are exposed to environmental conditions for decades, and therefore become

weathered and stained. On very old nameplates it is even possible that the paint chips off,

rendering the text virtually unreadable. Further issues arise from the outdoor location,

1

2 Chapter 1. Introduction

(a) Nameplate made from metal (b) Nameplate made from syn-
thetic material with a specular
reflection visible at the top

Figure 1.1: Examples for common nameplates. Some vendor names have been
obfuscated.

and therefore are likely to include strong shadows, reflections, illumination changes and

partial occlusions, that may become problematic when capturing images for automatic

processing. An example of this can be seen in the plate displayed in Figure 1.1b, which

contains a specular reflection at the top.

In order to extract the semantic information which is present on the nameplate, one

could convert images of the text into machine readable text. This processes is called Op-

tical Character Recognition (OCR). There already exist a number of approaches that aim

at solving this task, as well as readily available OCR software implementations. However,

most of the available systems are designed and trained to process scanned sheets of pa-

per. Considering this, the four presented nameplates show another difficulty, namely each

of the four plates has a different font that differs from the ones used in text processing.

Moreover, one plate contains text that is embossed and therefore has a smaller stroke

width and lower contrast than painted or printed text. Hence, the existing OCR solutions

will most likely generate unsatisfactory results.

We propose a novel algorithm to detect, classify, and extract text from nameplates.

More specifically, nameplates that are attached to electric power supply equipment, with

the requirement that the nameplates are rectangular and contain human readable text.

Schematic drawings and barcodes are not processed. Our approach consists of the following

steps: First, the nameplate is located in the input image, extracted, and warped into an

up-right position. Then, we extract features and determine the type using a machine

learning approach. For each type, a list that contains the designations and positions

3

(a) Nameplate with embossed text (b) Weathered nameplate with rust stains

Figure 1.2: Images of aged, weathered nameplates. Some vendor names have
been obfuscated. (a) A nameplate with embossed text. The borders
of the plate have been partially overpainted. (b) A nameplate with
printed text. It is partially covered with rust stains from the screws.

of the text regions that should be extracted is assumed to be available. Each region is

preprocessed to remove noise and clutter, caused by dirt, parts of neighboring text, or

frames around the text. Finally, the filtered regions are input into an OCR engine. If

the recognition score of one or more regions is below a threshold, the user is instructed

to acquire a new image of the plate region where the problem occurred. The new image,

which may only contain a part of the plate, is matched to the existing one and the OCR is

executed again. This multi-view approach ensures robust text extraction when occlusions

or reflections are present. The final output of the algorithm consists of the detected plate

type, the recognized text, its position on the plate, as well as its confidence. The goal

of the practical task is to create a prototype of an Android1 application that allows the

user to acquire images, on which the previously listed steps to extract the content are

performed.

The main focus of the evaluation is placed on the plate classification, where we test

the features, extracted from the plate, individually and combined. Further, we show the

impact of training the OCR specifically for the fonts used on the plate, as well as the

applicability of the Android application on three different plate types. Finally, we show

the influence of different lighting conditions on the plate classification and text extraction

stages. This includes a number of extreme cases that lead to failure.

OMICRON electronics GmbH supplied a number of images of nameplates from various

transformers and similar devices, as well as a number of sample plates to capture more

images.

1http://www.android.com/ (last visited January 21, 2015)

http://www.android.com/

2
Related Work

This chapter provides an overview of several related areas of research. Since no other

algorithms have been proposed that exactly match our goal, a number of similar tasks are

examined, especially the detection and text extraction from license plates and business

cards, as well as the detection of objects in scanned images and the classification of forms.

In general these algorithms consist of the detection of plate-like objects, followed by the

extraction of information contained in the form of human readable text, similar to what

we are aiming at.

2.1 License Plates

The task of detecting and extracting content from license plates exhibits a number of

similarities to our task of nameplate detection and classification. License plates have a

rectangular shape and contain human readable text. Therefore, to extract their contents

it is necessary to locate them in the image and an Optical Character Recognition (OCR)

is applied to the individual characters.

Donoser et al. [16] propose a system to detect and track license plates for traffic man-

agement. They use Maximally Stable Extremal Regions (MSER) [29] to detect the license

plate in the input image (for a short overview of MSER see Section 3.3.1). The proposed

algorithm uses bright regions surrounded by a dark boundary (MSER+) to detect the

license plate, while dark regions with a bright boundary (MSER-) are used to detect the

characters on the plate. The MSER output of three sample license plates is displayed in

Figure 2.1. A region is detected as a license plate if a number of MSER- regions are found

inside a larger MSER+ region. Furthermore, the dark regions must be of approximately

the same size and their center points must lie on a straight line. The average height of

the dark regions must also be approximately the height of the surrounding bright region.

The authors use Support Vector Machines (SVM) [11] with the one-vs-one strategy to

perform character recognition, where the inputs of the classifier are the individual char-

acters represented by the MSER- regions. Since they also track the license plate over a

5

Reference:

Matas, J. and Chum, O. and Urban, M. and Pajdla, T. (2004)
Robust wide-baseline stereo from maximally stable extremal regions

Reference:

Cortes, Corinna and Vapnik, Vladimir (1995)
Support-vector networks

6 Chapter 2. Related Work

(a) Input image (b) MSER- (c) MSER+

Figure 2.1: License plate detection using MSER. (a) Input image with various
license plates from different countries. (b) The individual characters
of the plates detected using MSER- regions. (c) The license plates
detected as a MSER+ region. (Images taken from [16])

number of frames, multiple images of the plate are available, which are used to improve

the classification rate. The final detection result of the license plate text are the best

individual character results from a majority vote over all frames.

Matas and Zimmermann [30] propose a similar approach to detect text in natural im-

ages. However, they use extremal regions, a superset of MSER, to define Category-Specific

Extremal Regions (CSER). The proposed algorithm enumerates all extremal regions by

thresholding the image at each gray level, starting at level one. For each intensity level,

connected components are extracted that represent the extremal regions and descriptors

are calculated. The authors note that there are only three possible ways that existing

extremal regions change: they grow larger, two previously separated ones merge, or a new

region appears. This incremental update behavior is exploited by choosing descriptors

that are also incrementally computable, which keeps the runtime complexity low. They

propose the use of normalized central algebraic moments, compactness, Euler number

(the number of holes in the objects subtracted from the number of objects), entropy of the

cumulative histogram, number of convexities, and the area of the convex hull (although

the last two descriptors are not incrementally computable). These descriptors are then

input at each intensity level into a classifier whose output indicates whether the region is

of interest or not. This means that rotated or slanted characters must be incorporated

into the training samples, to be detected. It should be noted, that this approach detects

text in natural images. Therefore, to only obtain license plates, a separate grouping and

filtering step must be employed. The CSER detection pipeline and an example result are

shown in Figure 2.2. In addition to the license plate, the characters of the country of

origin sticker above the license plate are detected as well. Furthermore, this approach is

not only limited to text, but may also be used to detect other objects. For example in

Reference:

Donoser, M. and Arth, C. and Bischof, H. (2007)
Detecting, tracking and recognizing license plates

2.1. License Plates 7

(a) CSER detection steps (b) CSER detection results

Figure 2.2: License plate detection using CSER. (a) CSER detection algorithm.
The classifier determines if an extremal region contains relevant con-
tent or not. (b) CSER detection result. Since all text in the image
is detected, the letters on the country of origin sticker are found as
well. (Images taken from [30])

[30], the authors also explore how to detect traffic signs.

In contrast to the previous methods, Chang et al. [9] propose an approach that uses the

colors of the plates. This consists of two steps, license plate location and license number

identification. The authors define that only the four colors white, black, red, and green

are used on the license plates that will be detected. Hence, they require a color image as

input. They propose a color edge detector that responds only to edges caused by specific

color combinations, which results in very few edges in sections of the image that are not

part of a license plate. First, the image is converted into the Hue, Saturation and Intensity

(HSI) color space and the edge map is calculated. Fuzzy maps that model specific color

transitions and encode the probability that a region contains a license plate are generated

from each plane of the image, as well as the edge map. Given that license plates contain

a number of repetitive edges with high gradient magnitude, the maps are combined into

a single map, which is used to perform the detection step. To extract the license text,

adaptive thresholding is performed and connected components are extracted and filtered

by their aspect ratio. The centers of the connected components must form a straight

line, connected components that deviate are removed. Since the number of characters

on supported license plates is exactly eight, connected components are removed, starting

from the smallest one, until that number is reached or a significant jump in size occurs.

Should the number be lower, the algorithm tries to find new characters starting from the

outermost ones in direction of the known characters. The set of detected characters is

also checked against the format of the license text. To perform the character recognition,

they first separate numerical and alphanumerical characters using the known format of

the license text. Next, they perform topological sorting using the number of holes and the

Reference:

Matas, Jiri and Zimmermann, Karel (2005)
Unconstrained licence plate and text localization and recognition

Reference:

Matas, Jiri and Zimmermann, Karel (2005)
Unconstrained licence plate and text localization and recognition

8 Chapter 2. Related Work

node types as features. This is done to decrease the number of templates to which the

candidate must be compared to in the next and final step. Each character is compared to

the remaining templates and the best one is determined via a self organizing recognition

model. A neural network is used, where the weights for the nodes are derived from the

input character. The template is then input into the network and after it stabilizes, the

sum of weight changes in the network is used to derive a measure of similarity.

In summary, the examined approaches to license plate detection first detect the plate

in the input image, extract it and employ optical character recognition to extract the

license text. In contrast to the expected input images for our task, these images are very

cluttered, with only a small portion of the image being occupied by the actual license

plate. Furthermore, the layout of a license plate is much simpler. It consists of at most

two lines of text and the set and diversity of characters as well as the number of fonts is

limited. Since the examined approaches rely on the known layout and (in part) on the

colors and license text format, they do not fit our task of nameplate detection, although

individual steps can be adapted to extract text from the nameplates.

2.2 Business Cards

Another related topic is the detection and text extraction from business cards as they are

also rectangular and contain information in the form of human readable text. In contrast

to license plates there is no common layout and a variety of fonts are used, but the content

usually consists of a name and address information. There exist a number of papers that

cover the detection and text extraction specifically tailored to mobile devices.

Luo et al. [28] propose a system to extract the contact information from business cards

on mobile devices with limited processing power. The image from the built-in camera is

first converted to grayscale and scaled down to one-fourth of the width and height, which

reduces the computational- and memory requirements. Next, the edge map is extracted

using the Canny edge detector and the skew angle is calculated on the scaled down image.

Since business cards usually only contain non overlapping rectangles of text, everything

that does not fulfill this criterion is discarded. This yields the location of the business

card, by thresholding. To perform the text recognition, the authors propose a template

based algorithm that uses a two stage classifier, where the first stage is used to limit the

number of possible templates. The features used for classification of each character are

the width/height ratio, as well as the number of foreground and background pixels of the

input divided into a 4 × 4 grid. The second stage additionally incorporates the average

distance of the outermost foreground pixels to the borders, and the number of foreground

pixels in a 4×4 grid in four directions. If the classification score is low, the algorithm tries

to split the input into multiple characters, assuming they were not properly separated

during preprocessing. The points where the characters are divided, are determined by

analyzing the positions of the extreme points of the character contour. Finally, possible

recognition errors are corrected during post-processing. Characters that deviate from the

2.2. Business Cards 9

(a) Input image (b) Adaptively thresh-
olded input image

(c) Card outline (d) Up-right image

Figure 2.3: Business card preprocessing steps. (a) Sample input image. (b)
Adaptively thresholded image. (c) Difference between the eroded
and dilated image which is used as input for the calculation of the
Hough transform. (d) Warped business card, which is the final output
of the preprocessing stage. (Images taken from [2])

top baseline are discarded and the remaining ones are grouped into words. Furthermore,

no numbers are allowed in a word, and text correction is applied.

An approach similar to the previous one is proposed by Mollah et al. [31], which also

targets computationally limited mobile devices, although they only cover the segmentation

of the individual characters. The input image is separated into non overlapping cells, for

each one the variance is calculated and used to remove the background. Next, everything

that is not recognized as text is discarded. This includes graphics, lines, and noise. From

the remaining structures generated by text, connected components are extracted. The

authors note that multiple distorted or narrowly placed lines of text may merge and result

in a single connected component, whereas one well spaced line of text is represented by

one connected component. The skew angle for the text lines is determined by calculating

the distance of the first pixel at the bottom of the connected component, to an axis

parallel line. Skew angles are calculated at the borders and the middle of the connected

component. Should they differ too much, the procedure is repeated, although the pixels

from the top of the connected component are used. The final skew angle is the mean of

the three values. To separate the up-right connected components into individual lines,

the region is thresholded and a horizontal histogram is calculated. The region is split

at approximately same sized intervals, as indicated by the histogram. To separate a line

into characters, the same approach is employed by calculating and analyzing a vertical

histogram, however this means that italic or cursive text cannot be segmented properly.

The result consists of the separated characters of the individual lines, which may then be

input into an OCR.

Bhaskar et al. [2] propose a business card reader that runs on Android devices. In

contrast to the other solutions, they do not develop their own OCR, but use Tesseract1

instead, which is also our approach. First, they apply adaptive thresholding to the image

and then a number of morphological operations, which results in white regions inside the

1https://code.google.com/p/tesseract-ocr (last visited January 21, 2015)

Reference:

Bhaskar, Sonia and Lavassar, Nicholas and Green, Scott (2010)
Implementing Optical Character Recognition on the Android Operating System for Business Cards

https://code.google.com/p/tesseract-ocr

10 Chapter 2. Related Work

business card and black regions outside. To detect the boundaries of the card, another

morphological operation is applied and the Hough transform [17] of the thresholded dif-

ference of the eroded and dilated images is computed. They use the strongest peaks in

the Hough accumulator to detect the four boundary lines, with the constraint that all

corners, calculated by intersecting the lines, must be inside the image. Should all de-

tected lines violate the constraint, the input image is used as it is, and the perspective

transform later on is omitted. The authors note that often business cards do not have

a uniform background but instead contain graphics or color gradients, which can lead to

wrong outline detection results. To detect and correct such cases, they further analyze

the text flow. The bounding box that contains all black pixels of the card is split into six

bars and in each one, the angle of the text flow is calculated. The angles of the outermost

bars should be very similar to the angle of the corresponding boundary lines of the card.

Should they differ too much, the text flow angle takes precedence. The authors note that

this is only possible for the horizontal lines because business cards usually do not contain

vertical text, which could be used to calculate the angle for the vertical lines. The prepro-

cessing is completed by warping the image into an up-right position, which removes the

background. Figure 2.3 shows the preprocessing steps for a sample business card. The

extracted image is adaptively thresholded again and used if the number of black pixels

changes significantly compared to first thresholding result. Otherwise the previous result

is used. To improve OCR performance, different text blocks are separated by splitting

the image into two parts at corridors that are at least twenty pixels wide and contain

black pixels at each side. This is done by sweeping the image at different angles starting

from different points originating from the top line of the card. Finally, all split images are

passed to Tesseract (see Section 3.4 for an overview of the Tesseract OCR engine).

The considered approaches for business card readers primarily rely on the uniform

color of the business cards to segment them. Furthermore, the amount as well as the

content of the text, present on business cards, is limited to names and address information,

which allows the usage of dictionaries or text correction to limit OCR errors. The size of

business cards is also restricted as they must fit into wallets, which also keeps them in mint

condition. However, a large number of fonts and font faces may be used. Unfortunately

some of the examined approaches just fail with cursive and italic input.

2.3 Scanned Objects

The approaches considered in this section aim at detecting rectangular objects in preview

scans, so that multiple objects may be put onto the scanner, but each one is automatically

stored into an individual file. This topic only relates to our first step, namely the plate

detection and extraction. Since these approaches consider overlapping and approximately

rectangular objects, they are relevant because the plates we need to detect are usually not

perfectly rectangular or not well separated from the background.

Reference:

Duda, Richard O and Hart, Peter E (1972)
Use of the Hough transformation to detect lines and curves in pictures

2.3. Scanned Objects 11

(a) Scanned image (b) Segmented objects

Figure 2.4: Scanned input image and segmented objects. (a) Input image with
multiple objects, several of them do not consist of four corners and
four straight lines. (b) Segmented objects. (Images taken from [24])

Herley [24] proposes a computationally efficient algorithm to segment rectangles where

corners may be missing or edges may be ragged. An example of such objects is shown

in Figure 2.4a. First, the input image is split recursively into smaller images, such that

the resulting images only contain one object and little background. Next, they calculate

the number of foreground and background pixels in the split images and the center of

mass of the object, which is only an approximation of the real center because the objects

are not perfectly rectangular. The approximate angles of the corners of the object are

estimated by calculating the distance from the center to the borders. The authors note

that the corners of rectangular objects appear periodically. Therefore, their angle can be

estimated from the calculated distance values and refined by applying the precondition

that the objects must contain at least two parallel edges. Finally, to obtain the bounding

rectangle, the authors grow a rectangle located at the already known center with the

previously calculated angle. The growing rectangle is split into four quadrants. Each of

them is validated after every growing iteration with respect to the number of pixels not

belonging to the object. They terminate if three quadrants are above a threshold. The

results of the input image are depicted in Figure 2.4b.

Guerzhoy and Zhou [21] propose an algorithm to segment rectangular objects that

may overlap and are placed on a lightly textured background with unknown color, which

is the usual output of scanner preview images. The authors aim at detecting the back-

ground color, which is challenging when the image consists primarily of differently colored

foreground objects, but it allows them to segment the objects more easily. To retrieve the

background color, they first separate the image into line segments which have the same

tint, by calculating the neighboring color differences. Under the assumption, that the back-

ground color segments are long, a voting scheme is used to extract possible background

colors. For each of the background color candidates, the edge strength at the boundaries

Reference:

Herley, Cormac (2004)
Efficient inscribing of noisy rectangular objects in scanned images

12 Chapter 2. Related Work

to non background colors are calculated. The authors observed that the gradient between

background and object colors is larger then it is between foreground colors, and that the

number of edge pixels correlates with the number of foreground objects. Therefore, they

determine the true background color by only using line segments that exceed a certain

length, are of the most frequent color, and have a large number of edge points with high

gradient values. From these edge pixels, connected components are extracted and used

to fit lines, with weights derived from the edge strength. Neighboring pixels, located in

the direction of the line are added until a stoping criterion is reached. Orthogonal lines

are used to calculate the corners of the objects, as well as the line segments which form

the rectangle. To eliminate wrong line segments, the median and mean color differences

between foreground and background along the line segments are calculated and used to de-

rive the parameters of a score function from a number of automatically generated images.

Next, for each rectangle candidate, the same values used for line fitting and a score that

relates to the number of background pixels in the rectangle are input into an Adaboost

classifier, which determines if the rectangle candidate is a proper object or not. To find

better matches, the rectangle candidates are also shifted in the local neighborhood. A

candidate is accepted when at most 10% of the pixels inside the rectangle are classified as

background.

In summary, all approaches are specifically designed to be fast and detect potentially

imperfect rectangular objects with possible overlap or missing corners. However, they

rely on uniform background color which also must be distinct from the majority of the

content found in the foreground objects. Both conditions are usually not satisfied in

our application, as plates are mounted on arbitrary background, and unknown lighting

conditions may cause significant brightness changes. Also, the color of the plate is not

necessarily different from the background. Hence, the only way of distinguishing them

from the background is by the border of the plate.

2.4 Form Recognition

Classification and content extraction from preprinted forms is also a closely related research

topic. Instead of manual sorting and transcription of filled forms, a number of automated

approaches that process scanned documents have been presented. Forms are templates,

that consist of text describing its purpose, captions for the blank regions, and tables or

cells that must be filled in or are already preprinted. Examples include administrative

forms, bank checks, payment slips, and many others. Since the use of forms is widespread,

a number of different approaches have been developed over the years to automatically

process them. In [14], an overview of the topic is given, including images of sample forms

and descriptions of a number of popular approaches. The general layout and the small

variability within the form types, where the only differences are the filled-in regions, are

almost identical to our problem.

In a large number of forms the text must be entered in rectangular regions. Therefore,

Reference:

Coüasnon, Bertrand and Lemaitre, Aurélie (2014)
Recognition of Tables and Forms

2.4. Form Recognition 13

a number of approaches exist that exploit this fact, such as Shinjo et al. [36]. Their

approach is designed to work with low quality scans, that produce broken lines and noise.

First, lines are detected and skew correction is performed. Next, the 16 types of line

crossings and endings that occur in tables and cells are extracted. Cells are detected by

checking the computed features, as they are formed by L, T and + shaped crossings. To

correct errors introduced by broken lines and noise, the extracted cells are checked for

inconsistencies under the assumption that the lines of cells and tables start and end in

other lines of cells and tables. The consistency is checked using three rules in the following

order: a line must end on another line. If this is not the case, the line is extended until it

crosses another line. The outermost lines of tables must end in a line, otherwise they are

also extended until they do. And finally, crossing points are only allowed in cell corners.

The current structure is modified using these rules until no more rules are violated, where

matching rules with higher precedence are preferred. The final result consists of the table

and cell structure from which the values can be extracted.

Fan et al. [19] propose an algorithm that uses the line structure of the document to

classify it. Their first step involves removing all characters, since their information is not

used. This is done by thinning out all structures, followed by extraction and clustering

of features. Finally, all clusters that belong to characters are removed, leaving an image

that consists solely of lines. Next, three matrices are generated. The first contains the line

intersections, where each vertical line is represented as a column, and each horizontal one

as a row. When two lines intersect, the first matrix contains a number at the appropriate

location, representing the intersection type. The other two matrices encode the distances

of the lines to each other, one matrix for horizontal and one for vertical lines. To remain

scale invariant, the authors assign numbers to distances relative to the document size.

Matching a new document against a known one starts by calculating per element and

matrix differences that must be above a threshold, which eliminates completely unfitting

forms. Should the matrix sizes differ, a sub matrix of the larger one is used. A matching

score that is derived from the similarity of the line crossing types and the distances, is

calculated for the remaining candidates. This also requires that the matrices are of the

same size. Should this not be the case, the authors extract a sub matrix with the proper

size, that has the best match with the full version. The document type with the best

matching score is the determined and returned document type.

Sako et al. [35] propose an approach that performs the form classification using only

keywords and their location on the form. They extract all characters from the form and

perform OCR. Then a previously created keyword database is used to classify it. The

database contains keywords and their locations, which are unique to each form type. A

matching score is calculated by comparing the positions and string similarity. Finally, the

form type with the best match determines the result type. To counteract OCR inaccu-

racies, the authors match the strings by counting the number of insertions and deletions

needed to transform the first string into the second. To retrieve the form contents, a list of

regions is available for each form type. Those are the contents of interest which should be

14 Chapter 2. Related Work

3.1 Graph Representation
As we use graph grammar to represent structural knowl-

edge of table form, we need to define graph representation
of them. Althogh we can think of many representation, we
used box and adjacency representation. A node is a box
which has box types for its label, and a edge is adjacency
of two boxes. Each edge has edge label which represents
adjacency type illustrated in Fig.7. For example, graph rep-
resentation of table form document in Fig.8(a) becomes (b).

A B

A B

A B

A B

A B

A B

(a)same height (b)included (c)don’t connect

Figure 7. Symbols for adjacent box connec-
tivity.

1
2 3 4

5 6 7
8 9 10

(a)Box adjacencies of table form document.

box1

box3box2

box5

box8

box6

box4

box7

box10box9

(b)Graph representation of (a).

Figure 8. Graph representation of table form
document.

3.2 Document Structure Grammar
As the distribution of each box has two dimensional in-

formation, document structure grammar naturally becomes
two dimensional graph grammar.

A garaph grammar is represented with four tuple
(Σ, ∆, S, P), where Σ is a set of node label, and ∆ is a set
of edge label, and S is a starting symbol which is document
here, and P is a set of production rule. Each rule of P is de-
noted by p = (L, R, E), where L and R denotes lhs and
rhs of the rule, and E represents embedding rule which tells

IND

IND

IND
IND

BLK

BLK

1 2
hicb

3

IND
1

BLK
2

hicb
3

R=L=

E=((1,bl,*,3,bl),(1,ad,*,3,cd),(2,ar,*,3,ar),(2,ad,*,3,cd))

bl

ad ad

arbl ar

cd cd

IND

IND
IND

BLK

Figure 9. Production rule of graph grammar.

INDEXP

IND BLK

vci

hci cel

EXP
1

IND
2

R=L=

E=((2,ar,*,6,ar),(3,ad,*,7,ad),(4,ar,*,8,ar),(4,ad,*,8,ad))

ar

IND BLK
ad ad

ar
3 4

EXP
5

vci
6

ar

hci cel
ad ad

ar
7 8

EXP

Figure 10. Production rule for bidrectional in-
dication part.

edge label conversion from rhs to lhs. An example of pro-
duction rule for single indication is shown in Fig.9. For the
analysis of single, multiple and hierarchical indications, we
can simply extend one dimensional grammar rules which
we have proposed previously[9].

On the other hand, bidirectional indication has two di-
mensional information in its nature, thus we need graph no-
tation of rules to analyze them. One example rule for bidi-
rectional indication is shown in Fig.10. Other rules for anal-
ysis of bidirectional indication is shown in Fig.11 which is
represented in simplyfied form. Here we used four terminal
symbols “BLK”, “INS”, “IND”, “EXP”, and six nontermi-
nal symbols <table>, <Ev>, <hc>, <vci>, <hci> and
<cel> whose meanings are as follows.

<table> denotes whole bidirectional indication structure.

<Ev> denotes EXP box which appears on top left corner
of the bidirectional indication structure and vci.

<hc> denotes all hci and cel boxes in bidirectional indica-
tion structure.

<vci> denotes indication boxes in bidirectional indication
structure that indicates the entry data in vertically ad-
jacent entry boxes.

<hci> is same as <vci> except the function is horizontal.

<cel> represents the entry boxes in bidirectional indica-
tion structures.

With these rules, we can analyze the structure of table
form documents, that is, indication relations of every entry
box is analyzed.
3.3 Document Structure Analysis

With the graph grammar described above, document
structure analysis is performed. As the knowledge of doc-
ument structure is fully denoted in the grammar, we can
use general graph grammar parser for document structure
analysis. However, as the grammar is context sensitive, it
is difficult to parse the input in realistic computation time.

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR’03)
0-7695-1960-1/03 $17.00 © 2003 IEEE

(a) Grid annotated with cell
connectivity

3.1 Graph Representation
As we use graph grammar to represent structural knowl-

edge of table form, we need to define graph representation
of them. Althogh we can think of many representation, we
used box and adjacency representation. A node is a box
which has box types for its label, and a edge is adjacency
of two boxes. Each edge has edge label which represents
adjacency type illustrated in Fig.7. For example, graph rep-
resentation of table form document in Fig.8(a) becomes (b).

A B

A B

A B

A B

A B

A B

(a)same height (b)included (c)don’t connect

Figure 7. Symbols for adjacent box connec-
tivity.

1
2 3 4

5 6 7
8 9 10

(a)Box adjacencies of table form document.

box1

box3box2

box5

box8

box6

box4

box7

box10box9

(b)Graph representation of (a).

Figure 8. Graph representation of table form
document.

3.2 Document Structure Grammar
As the distribution of each box has two dimensional in-

formation, document structure grammar naturally becomes
two dimensional graph grammar.

A garaph grammar is represented with four tuple
(Σ, ∆, S, P), where Σ is a set of node label, and ∆ is a set
of edge label, and S is a starting symbol which is document
here, and P is a set of production rule. Each rule of P is de-
noted by p = (L, R, E), where L and R denotes lhs and
rhs of the rule, and E represents embedding rule which tells

IND

IND

IND
IND

BLK

BLK

1 2
hicb

3

IND
1

BLK
2

hicb
3

R=L=

E=((1,bl,*,3,bl),(1,ad,*,3,cd),(2,ar,*,3,ar),(2,ad,*,3,cd))

bl

ad ad

arbl ar

cd cd

IND

IND
IND

BLK

Figure 9. Production rule of graph grammar.

INDEXP

IND BLK

vci

hci cel

EXP
1

IND
2

R=L=

E=((2,ar,*,6,ar),(3,ad,*,7,ad),(4,ar,*,8,ar),(4,ad,*,8,ad))

ar

IND BLK
ad ad

ar
3 4

EXP
5

vci
6

ar

hci cel
ad ad

ar
7 8

EXP

Figure 10. Production rule for bidrectional in-
dication part.

edge label conversion from rhs to lhs. An example of pro-
duction rule for single indication is shown in Fig.9. For the
analysis of single, multiple and hierarchical indications, we
can simply extend one dimensional grammar rules which
we have proposed previously[9].

On the other hand, bidirectional indication has two di-
mensional information in its nature, thus we need graph no-
tation of rules to analyze them. One example rule for bidi-
rectional indication is shown in Fig.10. Other rules for anal-
ysis of bidirectional indication is shown in Fig.11 which is
represented in simplyfied form. Here we used four terminal
symbols “BLK”, “INS”, “IND”, “EXP”, and six nontermi-
nal symbols <table>, <Ev>, <hc>, <vci>, <hci> and
<cel> whose meanings are as follows.

<table> denotes whole bidirectional indication structure.

<Ev> denotes EXP box which appears on top left corner
of the bidirectional indication structure and vci.

<hc> denotes all hci and cel boxes in bidirectional indica-
tion structure.

<vci> denotes indication boxes in bidirectional indication
structure that indicates the entry data in vertically ad-
jacent entry boxes.

<hci> is same as <vci> except the function is horizontal.

<cel> represents the entry boxes in bidirectional indica-
tion structures.

With these rules, we can analyze the structure of table
form documents, that is, indication relations of every entry
box is analyzed.
3.3 Document Structure Analysis

With the graph grammar described above, document
structure analysis is performed. As the knowledge of doc-
ument structure is fully denoted in the grammar, we can
use general graph grammar parser for document structure
analysis. However, as the grammar is context sensitive, it
is difficult to parse the input in realistic computation time.

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR’03)
0-7695-1960-1/03 $17.00 © 2003 IEEE

(b) Graph representation

3.1 Graph Representation
As we use graph grammar to represent structural knowl-

edge of table form, we need to define graph representation
of them. Althogh we can think of many representation, we
used box and adjacency representation. A node is a box
which has box types for its label, and a edge is adjacency
of two boxes. Each edge has edge label which represents
adjacency type illustrated in Fig.7. For example, graph rep-
resentation of table form document in Fig.8(a) becomes (b).

A B

A B

A B

A B

A B

A B

(a)same height (b)included (c)don’t connect

Figure 7. Symbols for adjacent box connec-
tivity.

1
2 3 4

5 6 7
8 9 10

(a)Box adjacencies of table form document.

box1

box3box2

box5

box8

box6

box4

box7

box10box9

(b)Graph representation of (a).

Figure 8. Graph representation of table form
document.

3.2 Document Structure Grammar
As the distribution of each box has two dimensional in-

formation, document structure grammar naturally becomes
two dimensional graph grammar.

A garaph grammar is represented with four tuple
(Σ, ∆, S, P), where Σ is a set of node label, and ∆ is a set
of edge label, and S is a starting symbol which is document
here, and P is a set of production rule. Each rule of P is de-
noted by p = (L, R, E), where L and R denotes lhs and
rhs of the rule, and E represents embedding rule which tells

IND

IND

IND
IND

BLK

BLK

1 2
hicb

3

IND
1

BLK
2

hicb
3

R=L=

E=((1,bl,*,3,bl),(1,ad,*,3,cd),(2,ar,*,3,ar),(2,ad,*,3,cd))

bl

ad ad

arbl ar

cd cd

IND

IND
IND

BLK

Figure 9. Production rule of graph grammar.

INDEXP

IND BLK

vci

hci cel

EXP
1

IND
2

R=L=

E=((2,ar,*,6,ar),(3,ad,*,7,ad),(4,ar,*,8,ar),(4,ad,*,8,ad))

ar

IND BLK
ad ad

ar
3 4

EXP
5

vci
6

ar

hci cel
ad ad

ar
7 8

EXP

Figure 10. Production rule for bidrectional in-
dication part.

edge label conversion from rhs to lhs. An example of pro-
duction rule for single indication is shown in Fig.9. For the
analysis of single, multiple and hierarchical indications, we
can simply extend one dimensional grammar rules which
we have proposed previously[9].

On the other hand, bidirectional indication has two di-
mensional information in its nature, thus we need graph no-
tation of rules to analyze them. One example rule for bidi-
rectional indication is shown in Fig.10. Other rules for anal-
ysis of bidirectional indication is shown in Fig.11 which is
represented in simplyfied form. Here we used four terminal
symbols “BLK”, “INS”, “IND”, “EXP”, and six nontermi-
nal symbols <table>, <Ev>, <hc>, <vci>, <hci> and
<cel> whose meanings are as follows.

<table> denotes whole bidirectional indication structure.

<Ev> denotes EXP box which appears on top left corner
of the bidirectional indication structure and vci.

<hc> denotes all hci and cel boxes in bidirectional indica-
tion structure.

<vci> denotes indication boxes in bidirectional indication
structure that indicates the entry data in vertically ad-
jacent entry boxes.

<hci> is same as <vci> except the function is horizontal.

<cel> represents the entry boxes in bidirectional indica-
tion structures.

With these rules, we can analyze the structure of table
form documents, that is, indication relations of every entry
box is analyzed.
3.3 Document Structure Analysis

With the graph grammar described above, document
structure analysis is performed. As the knowledge of doc-
ument structure is fully denoted in the grammar, we can
use general graph grammar parser for document structure
analysis. However, as the grammar is context sensitive, it
is difficult to parse the input in realistic computation time.

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR’03)
0-7695-1960-1/03 $17.00 © 2003 IEEE

(c) A production rule

Figure 2.5: Sample grid, its graph representation and an example production
rule. (a) A sample grid. The arrows indicate the box connectivity
(→ indicates inclusion, ↔ indicates same height and − indicates no
connection) (b) The graph representation of the grid. (c) A produc-
tion rule of the graph grammar. (Images taken from [1])

extracted. Each of these regions is thresholded separately to improve the OCR precision,

and additional constrains, such as string composition suffixes, are used to extract the part

of the region (excluding descriptive text) that is of interest for further processing.

An approach that employs line and text positions and is applicable to forms without

tables or tabular structure is proposed by Ting and Leung [41]. They use fourteen different

primitives that occur on forms, such as text, lines, vertical distances between adjacent

rows, intents (positive and negative), and nine types of corners that are encoded into a

string by iterating over the objects that are sorted by their vertical position. To match a

new document, the number of common tokens of the learned blank and the new incoming

form are counted with and without the text blocks and combined into a score. A measure

without text is also incorporated, because learning is performed with empty forms.

Contrary to the considered approaches that are trained on empty forms, there exist a

number of methods where the structure of the document is specified using various flavors

of grammars which are then used to parse a new form. One such approach is proposed by

Amano and Asada [1], which uses a graph grammar to describe forms. The authors first

define an XML based description for grids, where the rows and the indention of the cells are

described, that can also be used as the result of the form analysis. Grids can be described

using graphs, where the cells are the vertices and the edges represent the connectivity

between them. Figure 2.5a shows a grid, where the arrows indicate the connectivity and

Figure 2.5b displays the resulting graph. The graph grammar consists of the node and

edge labels, the starting symbol and the production rules. A production rule consists of a

left and righthand side and a conversion rule. A sample rule is displayed in Figure 2.5c,

where the upper case labels indicate terminal symbols and the lower case ones indicate

nonterminals. The authors note that this grammar can be processed by a conventional

graph grammar parser, although since it is context sensitive, parsing is not efficient. To

speed up processing and make it suitable for real world application, the authors assign

priorities to the rules.

Coüasnon [12] proposes another grammar based system that is robust against noise.

Reference:

Amano, Akira and Asada, Naoki (2003)
Graph grammar based analysis system of complex table form document

2.4. Form Recognition 15

They employ a method named Description and Modification of Segmentation (DMOS)

that uses Enhanced Position Formalism (EPF) to describe the structure of the input,

and was previously used to extract musical notes, mathematical formulas, and military

application forms from the 19th century. Lines and symbols are extracted from the input

image and processed according to the rules described in EPF , where the parser may change

the structure during parsing. The authors note that there are two sources of noise: The

image itself, as well as parts of the document structure that are not formalized in the

grammar. Also, other grammar based approaches are not robust against noise because

the next element that is parsed is the next token, whereas using their approach, the parser

selects the next token to parse from the entire image by itself. EPF includes a number of

operators such as the position operator (which specifies that an object is located relative

to another object), the factorization operator (used to factor common parts of rules), save

operators (that allow to store and later load a nonterminal), the declaration operator

(that allows to refer to a number of rules by name), and the space reduction operator

(that limits the space where rules may be applied). To cope with noise, they propose

two new operators that work on terminals and have pre- and postconditions to skip noise,

and a new find operator, that applies the given rule to each token until it matches or a

stopping condition is satisfied. To prove the robustness against noise, the authors present

a complete grammar to detect the seven lines that make up a tennis court [12]. They note

that it is not necessary that the complete tennis court is visible and that the grammar is

scale invariant. The implementation of the parser that can execute a given grammar is

described in [13]. An extension of Prolog named λProlog is used to translate the grammar

into a λProlog program, which then performs the recursive descend parsing and bindings

to C are used to segment and extract the tokens from the input image.

Conclusively, a number of approaches have been proposed over the years to classify and

process forms which solve problems similar to our task. However, methods that extract

cells and grids from the image are not applicable, since not all plates contains them,

while approaches that extract a grid like structure from the text blocks encounter issues

with complex layouts. Approaches that further incorporate text blocks and keywords, by

performing OCR at the beginning, are also problematic for plate types that are weathered

or contain embossed text, where OCR performance without preprocessing is not satisfying

and slow to execute on a mobile device. When matching a new form against the known

form database, approaches that use string or graphs, consider the new form a noisier

version than the initially learned one, which might also lead to misclassifications on very

similar forms. Most grammars used to describe forms are either limited in expressiveness

or very complex to write, and very sensitive to noise [12]. An exception is for example

DMOS , but writing the grammars for each type is time consuming and cannot be done

by a regular user. Finally, each grammar must be translated to λProlog and executed

to check if the form matches its type. Overall, scanned forms usually contain a very low

amount of noise and are well segmented, the problematic cases are merged objects and

non continuos lines, where the amount of noise found on weathered plates is much higher.

Reference:

Coüasnon, Bertrand (2004)
Dealing with noise in DMOS, a generic method for structured document recognition: An example on a complete grammar

Reference:

Bertrand Coüasnon and Pascal Brisset and Igor Stéphan (1995)
Using Logic Programming Languages For Optical Music Recognition

Reference:

Coüasnon, Bertrand (2004)
Dealing with noise in DMOS, a generic method for structured document recognition: An example on a complete grammar

16 Chapter 2. Related Work

2.5 Summary

What all of these approaches have in common is that they detect approximately rectan-

gular objects and, with the exception of the scanned objects section, extract information

printed on them in the form of human readable text, which is then stored or handed on

for further processing. The detection step of these methods either detects the contents

and exploits the simple structure to group them together to locate the objects, or further

constrains such as uniform background or foreground color must be fulfilled. In case of

processing forms, no detection is needed at all, but only the type of the form must be

classified. Furthermore, the format of the content is usually known and a limited set of

characters and fonts are used, which simplifies the content extraction and optical character

recognition. A notable exception are business cards where a large number of fonts may

be used. This however also causes issues in the examined approaches. Forms are also

often filled by hand, but handwriting recognition is a field of its own and such cases are

not covered in the examined papers. Since these approaches exploit a number of specific

properties of the objects for which they are designed, which are not guaranteed to be valid

in our case, none of these complete approaches can be used as it is. Hence, we propose

our own method to detect and classify nameplates, utilizing individual steps of some of

the examined methods. The next chapter describes all steps of our proposed algorithm in

detail.

3
Nameplate Detection and Classification Approach

This chapter describes our approach to nameplate detection and classification of rectangu-

lar nameplates, that are attached to electric power supply equipment. All necessary steps,

which are needed to extract the desired information from a known set of nameplates are

explained, with the restriction that only human readable text is processed. Schematic

drawings and barcodes are not in the scope of this work.

Figure 3.1 shows a flowchart of the proposed algorithm. First, the nameplate is de-

tected, extracted, and warped. The result is an image that contains only the up-right

nameplate, which is then used to determine the type of the plate. Since there is no

standardized layout for such nameplates, each manufacturer produces different layouts for

different product lines. Therefore, the number of existing plate types is large, which makes

it desirable that the training process of the classifier is fast, so that new types can be added

quickly. This is achieved by using Random Forests [4], which are also fast during classifi-

cation and therefore of advantage when used on a mobile device. To generate the features

for classification, the image is split into cells by overlaying a grid. For each cell of the grid,

we compute a feature vector that consists of the median color value and histograms of

Local Binary Patterns (LBP). We concatenate the values of all cells and add the size ratio

of the plate as final feature. For each type, a list containing the designations and positions

of the text regions, that should be extracted, is usually available, because we deal with a

set of known nameplates. As all plates of a specific type share the same layout, knowing

the positions of the text regions simplifies the content extraction, since the boundaries

of the fields do not need to be determined. Further, the mapping of the content from

a specific region to a label is available, which is needed to meaningfully use the values

later on. The extracted regions are preprocessed, which removes artifacts caused by dirt

and other structures on the plate. Preprocessing consists of size filtering, morphological

opening and closing, and character grouping. Finally, the preprocessed text regions are fed

to the Tesseract Optical Character Recognition (OCR) engine. If the recognition score of

one or more regions is below a threshold, the user is instructed to acquire a new image of

the plate region where the problem occurred. This new image is matched to the existing

17

Reference:

Breiman, Leo (2001)
Random Forests

18 Chapter 3. Nameplate Detection and Classification Approach

Image Nameplate Detection Nameplate Extraction

up-right plate image

Nameplate Classification

Text DetectionText ExtractionPlate Contents

Request new Image Matching

Plate Type

Figure 3.1: Flowchart of the proposed algorithm to detect, classify, and extract
text from nameplates.

one and the OCR steps are repeated. When the scores of all regions are sufficiently high

or the maximum number of retries has been reached, the results are stored for further

processing. The final output consists of the detected plate type, the recognized text, as

well as its confidence and position on the plate.

This chapter is structured as follows: In Section 3.1 the detection and extraction of

the nameplate is explained. Section 3.2 describes the machine learning algorithm and

features that are used to classify the plate. Section 3.3 describes the detection of the text

regions on the plate, as well as the noise filtering. Section 3.4 gives a short overview of

OCR systems and describes our choice. Finally, Section 3.5 explains the guided image

acquisition approach to improve the final output.

3.1 Nameplate Detection and Extraction

This section details our approach to detect and extract the rectangular plate from the

input image. We assume that the plate is completely visible and placed predominantly

and roughly centered in the image, with some amount of background around it. We start

the section with an overview of a number of related approaches, which are designed to

detect arbitrary rectangular objects in images. Then, our approach to detect, extract, and

warp the plate into an up-right position is explained in detail.

3.1.1 Hough based Methods

There exist a number of related approaches that use the Hough transform [17], or deriva-

tions, to detect lines. To obtain rectangles, the located lines are grouped in various ways.

Wu et al. [42] propose an algorithm to detect rectangular panels in realtime. Their

goal is to process large images, for which the standard Hough transform is too slow.

Therefore, they use the Progressive Probabilistic Hough Transform (PPHT) to detect the

lines. In each iteration, the PPHT selects a point randomly, performs the hough voting,

Reference:

Duda, Richard O and Hart, Peter E (1972)
Use of the Hough transformation to detect lines and curves in pictures

3.1. Nameplate Detection and Extraction 19

and removes it from the list of unprocessed points. If a cell in the accumulator exceeds

the detection threshold, a line has been found. The pixels voting for the line are removed

from the input, as well as the accumulator and the line is stored if it exceeds the minimum

line length. The authors state that the line detection results are not satisfying, because

of distortions from the camera, resulting in lines that are not perfectly straight. To

detect such distorted lines, they propose to replace each pixel with a cross-shaped object.

Furthermore, they define a mapping from a pixel to its corresponding cross structure and

vice versa. This mapping is used to check line candidates only at their cross centers, as

well as to remove the entire cross structure from the input list if it voted for an accepted

line. This is done because the surplus pixels would result in additional detections of the

same line. The detected lines are grouped into rectangles by extracting parallel lines of the

same length, which are then combined with orthogonal pairs to complete the rectangle.

Hartl and Reitmayr [22] propose an efficient rectangle detection system, intended to be

used on mobile devices. First, they extract the edge map using the Canny edge detector

[6]. The threshold parameters are automatically selected. To improve the robustness and

increase speed, all edges produced by text are removed. Consequently, a lower number of

lines need to be processed. They do this by extracting connected components and calculate

the bounding box for each one. The aspect ratio, height of the bounding box, and number

of pixels in relation to the bounding area are used as filtering criterions. Next, the filtered

image is used to extract lines by applying the Hough transform [17]. Two lines form a

line bundle if their angle does not differ more than fourteen degrees, which accounts for

some amount of perspective distortion. The authors then group line bundles to rectangle

hypotheses, if all line intersections are inside the image. Finally, they compute the edge

support on the dilated edge image, where the most dominant rectangle hypothesis with

the highest edge support is the resulting rectangle. The edge map is dilated to increase

robustness against camera distortions, causing lines that are not completely straight.

A more generic approach to extract rectangles using a windowed Hough transform

is proposed by Jung and Schramm [25]. They use a ring shaped sliding window, where

the outer diameter approximately equals the size of the largest and the inner diameter

the size of the smallest rectangle that can be detected. Next, the Hough transform of

the region under the sliding window is calculated, where the discretization depends on

the outer ring diameter. To detect the peaks in a robust manner, a modified butterfly

evaluator (see Equation 2 in [25] for more details) is applied to the accumulator. To

retrieve the lines, the accumulator is thresholded. The authors select the threshold to be

half of the inner ring diameter, which only detects lines of at least half the required length.

This yields a number of peaks, which are grouped to extended peak pairs if the following

conditions hold: The two lines are approximately parallel, have the same length, and are

symmetrically placed in the accumulator space. An extended peak pair forms a rectangle

hypothesis if the orthogonal angle difference is within a threshold. Finally, the authors

perform non-maximum suppression by calculating an error measure that incorporates the

values used for grouping the peaks into extended peaks. They note that a shifted rectangle

Reference:

Canny, John (1986)
A computational approach to edge detection

Reference:

Duda, Richard O and Hart, Peter E (1972)
Use of the Hough transformation to detect lines and curves in pictures

Reference:

Jung, Claudio Rosito and Schramm, Rodrigo (2004)
Rectangle detection based on a windowed Hough transform

20 Chapter 3. Nameplate Detection and Classification Approach

is visually more distinctive than a slightly wrong rotation angle, therefore they assign a

larger weight to the distance measures.

All these approaches apply a Hough transform to extract lines which are grouped

into rectangles if a number of conditions are satisfied. As noted in a number of these

papers, the Hough transform is quite slow and requires a lot of memory. Therefore, to

use it on a mobile device, the input image must be downscaled and the resolution of the

Hough accumulator reduced. Furthermore, the content of nameplates is often contained

in a grid structure or cells. A number of schematic drawings are also frequently present,

which results in a large number of lines, that cannot be easily removed beforehand. With

the examined approaches, grouping and checking the hypotheses is time consuming. The

printed lines inside the plate may also exhibit stronger edge characteristics than the actual

separation between the plate and the background, thus leading to wrong detection results.

3.1.2 Line Primitive based Methods

A different approach is to use line primitives, which are extracted directly from the edge

map and are grouped and formed into rectangles. Since they do not apply the Hough

transform, these approaches are faster.

Lagunovsky and Ablameyko [26] propose an approach, where extracted lines are sub-

sequently grouped into rectangles. First, they detect the edges of the input image and

calculate the edge strength and direction. These values are used to extract contours and

cluster the line primitives. A line primitive is added to an existing cluster, if it is located

next to a primitive that is already in the cluster. They must have the same orientation

and the length of the line must be approximately the same as the average line length of the

cluster. If the conditions are not fulfilled, a new cluster is created. Lines, separated be-

cause of noise, are recombined if they have approximately the same angle and the distance

of their nearest points is below a threshold. To extract rectangles, all lines are represented

with their slope, length, and distance to the coordinate center. The authors note that in

this representation, approximately parallel lines are located close to each other. To detect

the other two orthogonal lines of a rectangle, the authors generate a hypothesis from the

already known parallel lines, by increasing the slope by 90◦. The search region is defined

by the end points of the parallel lines. Next, they extract quadrangles by extending the

four lines, until they intersect. Four lines form a quadrangle if the maximum distance

from all line end points to the line intersections is below a threshold. To retrieve the final

rectangle, the line pair with the greater length is adjusted to their averaged slope and the

shorter line pair is modified to be orthogonal to the other one. Each one of the adjusted

lines goes through the center of its corresponding unmodified line.

A similar method, that is also based on line grouping, is proposed by Tao et al. [40].

They use the Canny edge detector to extract the edge map and a splitting arithmetic to

retrieve linear elements, which are represented by their start and end points. Next, all

lines parallel to each other are grouped and parallel pairs of lines are combined into prim-

3.1. Nameplate Detection and Extraction 21

itive structures. These primitive structures are then used to generate rectangles, taking

into account that not all four lines may have the same length. Finally, non-maximum

suppression is performed to remove duplicate rectangles.

In contrast to the Hough-based approaches, line-based methods require less memory

and have lower computational requirements. Since the grouping is very similar among both

types, they share the same disadvantages when applied to nameplates. A large number

of rectangles are returned when the plate contains cells and grids, which might provide a

better detection score than the actual boundary between plate and background. They are

specifically designed for aerial images and printed circuit inspection with low amounts of

perspective distortion, which renders it unsuitable for our task.

3.1.3 Feature based Methods

The approaches examined in this section use specific features of the objects to detect

them. Several approaches were already elaborated in their entirety in Section 2.1. In this

context, only the object detection is of interest, not the following processing steps.

As previously described, Chang et al. [9] exploit specific color transitions of the plates,

used in a number of countries, to locate plate candidates. The final detection step checks

if the characters in the candidates follow a specific layout and format. In contrast, the

approach proposed by Matas and Zimmermann [30] uses Category-Specific Extremal Re-

gions (CSER) to detect characters in the input image. They locate the license plate by

grouping extracted objects, using knowledge of the content format and geometrical layout.

Similarly, Donoser et al. [16] detect the plate background and foreground objects using

Maximally Stable Extremal Regions (MSER) and report a license plate if the regions meet

a number of geometrical conditions.

The reasons why these approaches are unsuitable for our use case, are detailed at the

end of Section 2.1. In short, they exploit a number of structural properties of license plates

and their contents that are not valid in our use case, as nameplates have a more complex

and diverse layout.

3.1.4 Our Approach

In our approach, we first determine whether a nameplate is present in the image, and

should this be the case, retrieve its approximate location. We assume that only one

nameplate is located in the image. Furthermore, we require the plate to be entirely within

the image and the most predominant or centered object. Figure 3.2a, as well as Figure 3.3a

show images where these conditions are fulfilled.

First, the input image is proportionally scaled to a size of wd×hd, where wd is fixed to

a value of 400. The size of the rescaled image is sufficient to detect the plate and improves

the performance considerably. Next, the image is converted to grayscale, median blurred

with a window size of three, and adaptively thresholded. This is done by calculating

the threshold for each pixel, by averaging the values of the neighboring pixels, contained

22 Chapter 3. Nameplate Detection and Classification Approach

(a) Input image (b) Preprocessed image (c) Extracted contours

Figure 3.2: Nameplate detection steps for sample image 1. (a) Input image ac-
quired by the user. (b) Preprocessed input image. Median filtering,
adaptive thresholding, and morphological opening have been applied.
(c) Extracted components after filtering. They are the remaining
plate candidates.

in a square window with the size hd/2 × hd/2. Under our assumption that the image

consists mostly of the plate, this window size ensures that the individual pixel thresholds

are adjusted to possible brightness changes, resulting from the illumination conditions.

Yet, the size is large enough that regions in the image that contain no or very little

structure are not larger than the averaging window. In such regions, bright pixels caused

by noise or dirt would produce a very noisy thresholding result. The next step consists

of morphological opening with a square 3× 3 structuring element, which ensures that the

plate is one connected object. The size of the structuring element is chosen to bridge

small gaps caused by dirt or noise. Testing has shown, that a larger size would merge

the plate with the background. Figure 3.2b shows the preprocessing output for the first

sample input image, and Figure 3.3b shows the output for the second image. From the

preprocessed image, connected components are extracted using the approach proposed in

[8]. The approach operates very efficient, as each row in the image is scanned from top

to bottom. Background pixels are visited once, and contour pixels a constant number of

times. Therefore, the time required is linear in the number of pixels in the image. The

authors state that their algorithm consists of the following four principal steps: When an

unlabeled foreground pixel is encountered, the entire outline of the connected component

is assigned the same label until the starting point is reached again (Figure 3.4a). If an

already labeled pixel is encountered, the current row is followed until a background pixel

is reached and all pixels are assigned the label of the initial pixel (Figure 3.4b). Should

the next background pixel belong to an unlabeled internal contour, the entire contour

is labeled until the starting point is reached (Figure 3.4c). Finally, if a labeled internal

contour is encountered, the pixels in the row are followed and assigned the same label as

the first pixel until a background pixel is found (Figure 3.4d).

We filter the extracted connected components, where only regions with an area that is

larger than 6% and smaller than 90% of the image area are accepted. Next, the remain-

Reference:

Chang, Fu and Chen, Chun-Jen and Lu, Chi-Jen (2004)
A linear-time component-labeling algorithm using contour tracing technique

3.1. Nameplate Detection and Extraction 23

(a) Input image (b) Preprocessed image (c) Extracted contour

Figure 3.3: Nameplate detection steps for sample image 2. (a) Input image ac-
quired by the user. (b) Preprocessed input image. As for the first
sample image median filtering, adaptive thresholding, and morpho-
logical opening have been applied. (c) Filtered extracted components.
Only a single contour remains.

ing connected components are approximated through a polygon. The maximum allowed

distance between a contour pixel and the approximation is set to the perimeter of the

connected component divided by the fixed value 20. A connected component is accepted

if the approximation has three, four, or five corners. Triangles and pentagons are ac-

cepted to account for inaccuracies caused by the morphological closing. If the number

of corners is not in this range, the shape is not similar enough to a quadrangle and the

contour will not be processed further. Figure 3.2c shows the filtered contours, extracted

from the preprocessed image, of the first sample. As we can see, four candidates remain

after filtering. The two candidates at the right and left side are caused by the background,

while the candidate at the top originates from another plate that is only partially visible.

Further, Figure 3.3c displays the contour extracted from the second sample image. Only

one connected component remains after filtering, which originates from the actual plate.

Since the color of the plate is not known, the thresholded image is inverted and the

entire procedure repeated, which allows detection of plates with bright and dark back-

ground. Should the combined contour list contain more than one plate candidates, the

object where the distance between its centroid and the image center is smallest is chosen.

This removes cases where parts of the background form large connected components next

to the plate, that have either a larger width or larger height than the centered object.

This means, that a selection purely based on size or area cannot be used. Finally, if the

absolute value of the object angle does not exceed ten degrees, the rotated object corners

are returned as approximate plate location. Otherwise, the up-right bounding rectangle

is returned. The angle is limited, because it is calculated using moments and therefore,

24 Chapter 3. Nameplate Detection and Classification Approach

(a) (b) (c) (d)

Figure 3.4: Major steps of the connected component extraction algorithm. (Im-
ages taken from [8])

concavities on the connected component may cause large and entirely wrong rotation an-

gles. This constraint can be applied, as large angles are unlikely to occur since the user

will likely keep the imaging device leveled when capturing the plate.

In summary, the outlined steps where chosen to allow efficient detection of quadran-

gles. A small amount of perspective distortion is likely present, but it does not require

explicit handling, unlike in some related approaches which are based on line grouping.

Furthermore, there are no assumptions about the plate color or content, only about its

rectangular shape and central location in the image. Our approach is efficient and has low

memory requirements, which makes it suitable for usage on mobile devices.

3.1.5 Plate Extraction

After the presence of a nameplate and its approximate location have been determined,

the plate should be extracted as accurately as possible to simplify further processing. The

boundary returned from the previous step is unsuitable, because of inaccuracies introduced

by thresholding the image and the morphological opening. Furthermore, the rotation of

the returned rectangle is only an estimate based on the extracted connected components

and therefore unlikely to be accurate. The following steps operate on an input image with

the same size wd × hd as the plate localization, and result in an image that contains only

the up-right nameplate, extracted from the unscaled input image.

The first step consists of the retrieval of the plate outline using GrabCut [33]. The input

for the GrabCut algorithm consists of a color image, as well as a mask that specifies for

each pixel if it contains foreground, background, maybe foreground or maybe background.

The authors use two Gaussian Mixture Models (GMM), one for the background and one

for the foreground. Each iteration of the minimization algorithm first assigns the GMM

components to the pixels, learns the GMM parameters and segments the image using a

minimum graph cut. After convergence, this results in a segmentation with hard borders.

To generate a visually pleasing result, the authors apply a step called border matting. The

Reference:

Chang, Fu and Chen, Chun-Jen and Lu, Chi-Jen (2004)
A linear-time component-labeling algorithm using contour tracing technique

Reference:

Rother, Carsten and Kolmogorov, Vladimir and Blake, Andrew (2004)
Grabcut: Interactive foreground extraction using iterated graph cuts

3.1. Nameplate Detection and Extraction 25

(a) GrabCut mask (b) GrabCut result (c) Plate contour

Figure 3.5: Nameplate extraction steps for sample image 1. (a) Mask generated
for GrabCut. The white region indicates foreground, the light gray re-
gion probable foreground, the dark gray region probable background
and the black region background. The green rectangle is the plate
detection result. (b) GrabCut segmentation result. (c) Connected
components of the GrabCut segmentation. The back circles are the
corners of the approximated quadrangle, calculated from the contour.
The pixels of the contour inside the green rectangles are used to fit
lines.

contour of the thresholded object is retrieved and each pixel in the neighboring regions,

orthogonal to the contour, is assigned an alpha value depending on the distance to the

contour.

We use the approximate location of the plate (determined in the previous step) to

generate the mask for GrabCut. The center of the approximate rectangle remains un-

changed, only the size is scaled. A scale factor of 60% is used to indicate foreground, a

factor of 105% indicates probable foreground and a factor of 120% probable background.

The remaining parts of the image are marked as background. These values have been

chosen empirically to maximize the probability of a proper segmentation, even if the ap-

proximated rotation angle is wrong. Figure 3.5a displays the generated mask for the first

sample image. It shows the four different options starting from foreground (white) to

background (black), as well as the result from the previous plate detection step as a green

rectangle. Figure 3.6a displays the mask for the second image. In this case, the estimated

angle of the plate, with a value of 89.8◦, exceeded the plausibility threshold. As a result,

the plate detection step returned the up-right bounding rectangle.

In case the previous step failed and no rectangle was detected, a statically generated

mask with a fixed size is used. The backup mask is generated according to our assumption

that the plate is centered and fills most of the image. Therefore, a rectangle scaled to 55%

of the image size indicates foreground, a rectangle scaled to 75% indicates probable fore-

ground and at a scale of 97% probable background is indicated. As before, the remaining

pixels indicate background. Testing has shown, that if the input image meets our as-

sumptions and the plate is within the mask regions that indicate foreground, the resulting

segmentation is usable. Using the generated mask, one GrabCut iteration is performed.

26 Chapter 3. Nameplate Detection and Classification Approach

(a) GrabCut mask (b) GrabCut result (c) Plate contour

Figure 3.6: Nameplate extraction steps for sample image 2. (a) Mask generated
for GrabCut. The color coding is the same as described in the figure
for the first sample image. The green rectangle is the plate detec-
tion result. As the estimated angle of the connected contour is too
large, the up-right bounding rectangle is used. (b) GrabCut segmen-
tation result. At the bottom, separated from the nameplate, another
structure is visible. (c) Connected components of the GrabCut seg-
mentation. The red pixels, inside the green rectangles, are used to fit
lines.

Since no user interaction to correct the mask is desired, the parameters were chosen ac-

cordingly. As such, one iteration is sufficient to retrieve the plate and more iterations

would result in over segmentation. Figure 3.5b and Figure 3.6b display the segmentation

for the two sample images. The segmentation result for the second image contains the

visible portion of another plate at the bottom. The two plates are not connected, but

the second one is included because they have the same texture and color. The GrabCut

output is then used to retrieve the connected components of the segmented objects. Since

the segmentation is usually not perfect, a number of contours are detected. At the bor-

ders, a number of small confined regions are often generated. The connected components

are filtered and only the largest contour is processed further. To retrieve the corners, the

contour is approximated as a polygon, starting with a small allowed distance between the

connected component pixels and the approximation. If the resulting polygon does not have

four corners, the allowed approximation error is increased and the approximated points are

processed again. If the approximation is not a quadrangle after fifty iterations, the proce-

dure aborts and the plate detection has failed. The approximated quadrangle is unlikely

to be precise, because dirt that has accumulated at the borders, results in discolorations

that throw off GrabCut. Furthermore, differently colored screws that are used to fasten

the plate cause jagged contours and corners. However, the four corners are only used to

retrieve all points from the original contour, contained in a 100 pixel wide search window,

3.1. Nameplate Detection and Extraction 27

(a) Detected plate (b) Up-right plate

Figure 3.7: Plate detection results for sample image 1. (a) Plate detection result
(green) and extracted rectangle (blue). The estimated rotation of the
plate detection output is not correct. (b) Extracted, up-right plate.
At the top, a portion of the plate border is included.

centered at the line connecting two corners. The euclidian distance between the corners

is divided by a fixed value of 20, and the resulting value is used to offset the start and

endpoints of the search rectangle from the detected corners. The offset and window size

ensure that outliers, as well as the degraded corners are ignored. Furthermore, it prevents

retrieval of contour points that belong to another side if the plate is rotated. Figure 3.5c

and Figure 3.6c show for each sample image the connected component retrieved from the

segmentation, the search windows, and gathered points of the contour. The extracted

points are used to fit lines. These steps are performed for all four sides of the quadrangle,

and the intersection of the lines results in the corners of the plate. Finally, to retrieve

an up-right image of the plate, the corners are sorted clock wise. The maximum width

and height are used as output size and a perspective transform is applied. Figure 3.7a

shows the located plate positions of the detection (green) and extraction (blue) steps for

the first sample image. The rotation of the green rectangle, which is the result of the

plate detection, is not correct. This causes the inclusion of the plate border at the top, as

can be seen in the final plate image, displayed in Figure 3.7b. The results for the second

sample image are displayed in Figure 3.8. In this case, the result contains only the plate.

We should note that image segmentation using GrabCut is slow compared to the

extraction of the approximate rectangle. However, since texture information is used, the

resulting segmentation is far more accurate than the simple connected component based

approach. Line fitting, using the points of the plate contour of the GrabCut output,

results in accurate plate corners. Extracting the corners solely from the contour would be

challenging because of the often degraded corners, caused by the fixation screws or dirt.

After this step, the plate is available in an up-right position with the same size as in the

unscaled input image.

28 Chapter 3. Nameplate Detection and Classification Approach

(a) Detected plate (b) Up-right plate

Figure 3.8: Plate detection results for sample image 2. (a) Plate detection result
(green) and extracted rectangle (blue). (b) Extracted, up-right plate.
The entire plate is included in the result.

3.2 Plate Classification

After the plate has been located and extracted, its type must be determined. We conquer

the issue of numerous different types using a machine learning approach. In the literature,

several related methods for the task of image classification have been presented. The goal

of these approaches is to assign a category to the entire image. Therefore, no a priori

assumptions about the content of the input image can be made, which differs from our

situation. Nevertheless, the extraction and selection of image features is of interest.

Bosch et al. [3] propose an approach which classifies an image based on the categories

of the objects it contains. The image is represented at different levels by dividing it into

cells, arranged in a grid, where a higher level increases the number of rows and columns

in the grid. In each cell, the authors compute features. Scale-Invariant Feature Transform

(SIFT) features with four different radii, extracted at equally spaced points, represent the

appearance of the objects in the image. These points are clustered into visual words. The

shape of the objects is represented by histograms of oriented gradients. These values are

then calculated at each level over the entire image, and used to detect regions of interest.

A region of interest is a visually similar region that appears in multiple test images. Only

these regions are used to train a random forest.

Zhou et al. [43] propose a classification framework that, like the previous one, operates

with features extracted from cells in a grid. The first step of their approach consists

of transforming the calculated descriptors, extracted at regular intervals, into a feature

vector. The authors state that their coding allows the original and non linear function,

as described by the feature vector, to be approximated by a linear function. They further

explain, that any descriptor, such as SIFT , that takes the local neighborhood into account

3.2. Plate Classification 29

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Sample images of different nameplates. Some vendor names have
been obfuscated.

can be used. In the next step, the image is divided into cells, where feature vectors in

the same cell are combined. The authors also combine feature vectors of different cells to

retrieve descriptors that cover the entire image. Finally, linear support vector machines

are used to perform the classification.

These approaches divide the image into small regions and compute descriptors, that

encode the texture in each one. The descriptors are often SIFT or Speeded Up Robust

Features (SURF), which are expensive to calculate. Since these approaches aim at classi-

fying entire images into categories, no assumptions about the input image can be made.

However, in our case a few assumption can be made: Plates usually contain a number of

empty regions, and the non-empty content consists of text and line shaped structures. The

positions of these regions do not change for plates of the same type. Therefore, we can

more easily compute a feature for the entire plate that includes the spatial relationships

of these regions. The extracted feature vector and the machine learning algorithm used in

our approach are detailed in the following paragraphs.

3.2.1 Nameplate Feature Vector

Our feature vector contains information about the plate color, which makes it possible

to differentiate nameplates with the same structure but different color, and histograms of

30 Chapter 3. Nameplate Detection and Classification Approach

(a) Input image (b) Color features

(c) Input image (d) Color features

Figure 3.10: Input image and visualization of the color features, used for classi-
fication, of the two sample images. A 20 × 20 grid is used. The
images that contain the color features have been converted from the
CIE L*a*b color space to RBG for this visualization. (a) Extracted
plate image for the first example. (b) Median color features extracted
from the first sample plate. (c) Extracted plate image for the second
example. (b) Median color features extracted from second sample
plate.

local binary patterns, that encode the texture of the plate. The final feature is the size

ratio of the nameplate, which helps to distinguish plates with similar content but different

size proportions. For classification, we use a random forest. The feature extraction and

random forests are described in detail in the following sections.

The image, that we use to determine the type of the plate, must only contain the

nameplate in an up-right position. Such images are delivered by the previous plate ex-

traction step. Some examples are illustrated in Figure 3.9. Initially, the image is resized

to a fixed width of 800 pixels, where the new height is chosen to preserve the aspect ratio.

This results in an image with a size of wc × hc, that is used to extract all features.

3.2. Plate Classification 31

3.2.1.1 Plate Color

The plate color is an important feature, because the content of many plates is laid out

in similar structures, but the colors are different. To extract the color features, we first

convert the input image into the CIE L*a*b* [10] color space. In this color space, the

L-channel represents the lightness, the a-channel the color position in the red to green

range, and the b-channel the color position in the yellow to blue range. We use the CIE

L*a*b* color space, because it is designed to mimic human perception. This means, that

a change in the perceived color creates a proportional change in the color values in this

representation. Therefore, if the perception of the plate color only changes slightly, because

it is weathered or stained, the color values also only change slightly. This is not the case

in the standard RGB color space. Next, we divide the resized image into numColsRows

columns and rows. This results in a number of non overlapping cells, depending on the

size of the input image. For each cell and channel, the median color value is calculated,

and the resulting three values are appended to the feature vector. We chose the median

to be robust against outliers, regularly caused by dirt or an inaccurate plate segmentation

at the borders.

Figure 3.10 shows two input images and the resulting color values that are added to

the feature vector for the extracted plates of the test images. In the two samples, a 20×20

grid is used to retrieve the cells. Large dark regions, for example the vendor logo present

in the left upper corner of the first plate, are noticeable in the extracted color features.

3.2.1.2 Local Binary Patterns

The next feature, added to the feature vector, consists of histograms of Local Binary

Patterns (LBP) [32]. This feature encodes the texture of the plate. The LBP codes are

computed by comparing the values of a fixed number of neighboring pixels to the value of

the current center pixel. The neighboring pixels are evenly spaced around the center pixel,

in a circle with a fixed radius. For each neighbor, the corresponding bit in the code is set

to zero if its value is larger than the value of center pixel. If the value of the neighboring

pixel is smaller, the bit is set to one. The output image has the same dimensions as the

input image, and contains a LBP code for each pixel.

We extract the L-channel from the plate image that was converted to the CIE L*a*b

color space, as it contains the intensity values. Next, we apply Gaussian blurring with a

kernel that is 7×7 pixels large, which removes noise that would otherwise be incorporated

into the LBP features. The blurred image is then used to calculate the LBP codes.

In our implementation, we use numLBPNeighPixels neighboring pixels and a radius of

LBPRadius. Next, the same grid structure that was used to extract the color features is

applied to the image that contains the LBP codes. For each cell, we calculate a histogram

of the codes, which contains LBPHistSize bins. The cell histograms encode the number of

occurrences for each the direction, that are present in the corresponding area of the plate.

The placement of the histograms in a grid structure is important, because it preserves the

Reference:

CIE, Colorimetry (1986)
Publication No. 15.2

Reference:

Ojala, Timo and Pietikäinen, Matti and Harwood, David (1996)
A comparative study of texture measures with classification based on featured distributions

32 Chapter 3. Nameplate Detection and Classification Approach

(a) Input image (b) LBP codes

(c) Input image (d) LBP codes

Figure 3.11: Input image and LBP codes used for classification, extracted from
the two sample images. The radius is set to 16 and 4 neighbors are
checked. The codes are normalized to the default grayscale range of
0 to 255 for display. (a) Extracted plate image for the first example.
(b) LBP codes extracted from the sample plate. (c) Extracted plate
image for the second example. (d) LBP codes extracted from the
second plate.

spatial information that would otherwise be lost, if a single histogram would be calculated

over the entire image. The LBP codes for the two sample plates, as well as the original

input images, are displayed in Figure 3.11. To generate these images, a radius of 16, with

4 neighbors was used. The structure of the plate content is clearly recognizable in the two

images.

3.2.1.3 Size Ratio

The final feature that is added to the feature vector consists only of a single value. We

add it to distinguish plates that have a similar content structure and color, but different

3.2. Plate Classification 33

height (h
c)

width (wc)

Figure 3.12: Schematic of the values used to calculate the size ratio.

size proportions. It is the aspect ratio of the plate image, calculated as

ratio =
wc

hc
. (3.1)

We use the width (wc) and height (hc) values from the image, that contains only the

extracted plate, as shown in Section 3.1.5. Figure 3.12 displays a schematic that contains

the used values. We do not use the actual width and height values of the unscaled image,

as this would add a dependency of the feature to the resolution of the camera used to

capture the image. This is important, because the camera resolution varies with different

capturing devices.

We should note that the size ratio is the least important of the three features. Never-

theless, it represents a characteristic of the nameplate that helps to distinguish types with

similar content, but a different size ratio.

3.2.1.4 Final Feature Vector

In conclusion, the final feature vector that is calculated for each image, used for train-

ing and classification, contains median color values, histograms of LBP codes, and the

aspect ratio of the plate image. The selection of the parameters used to extract the

different features, referenced only with symbolic names (numColsRows, numLBPNeigh-

Pixels, LBPRadius, and LBPHistSize), is described in Section 4.1.1. The following section

describes and justifies our chosen machine learning algorithm, a random forest.

3.2.2 Classification using a Random Forest

Random forests were proposed by Breiman in [4]. A random forest consists of a number

of decision trees, where each tree is trained on a different subset of the training set. The

elements in the subsets are generated by bagging, which chooses elements randomly and

with restitution. Therefore, a sample may appear multiple times. When training the

trees, a random subset of the features in the feature vector is used to split the samples for

Reference:

Breiman, Leo (2001)
Random Forests

34 Chapter 3. Nameplate Detection and Classification Approach

each node. In our case, the number of features used for the splits is half the square root

of the number of all features. From all calculated splits, the one that causes the largest

decrease of entropy and therefore the largest information gain of the label histogram is

used. In our case, the learning is completed if numRFTrees trees are generated, or the

estimated classification error is smaller than 1%. The error is estimated during training

by classifying samples that were not chosen by the bagging procedure. The trees in the

random forest are not pruned. For classification, each tree generates a result from the

input data and a majority vote is used to derive the final class label.

We use random forests because they have a number of advantages. Breiman [4] states

that increasing the number of trees does not cause over fitting. Therefore, a large number

can be used safely, as it increases accuracy. However, with an increasing number of trees,

the improvement in classification accuracy declines at a certain point. Furthermore, a

larger number of trees increases the time needed for training, and linearly increases the

time for classification. Training and classification are also very fast, since each tree can

be processed in parallel. Finally, a very important factor is the classification performance.

The supervised machine learning survey presented in [7] compares a number of popular

approaches, including support vector machines, boosted trees, random forests and others.

Eleven datasets that contain binary classification problems are used for testing. The

authors conclude that there exists no universally superior algorithm, as no one excelled

at each problem. Their test results show that calibrated boosted trees, random forests

and bagged trees generally deliver the best performance. Another survey [38] compares

machine learning algorithms for traffic sign recognition. Their test set consists of 43

classes and over 51,000 test images. The results list random forests on the third place

of the machine learning algorithms. We evaluate our use of random forests in detail in

Chapter 4.

To sum up, our approach to classify the plates uses a feature vector that consists of

histograms of local binary patters, median color values in the CIE L*a*b color space, and

the plate aspect ratio. The features contain texture and color information of the plate and

can be calculated efficiently, which is important when used on a mobile device. Random

forests are used to classify the plates, as they are fast during training and classification

and deliver good classification performance. The machine learning approach allows an

operator to easily and quickly add new types. The major drawback is, that a relatively

high number of images for each plate type are needed for training, in oder to achieve

desirable classification accuracy.

3.3 Text Detection

The next step consists of locating the text regions on the plate and matching them to

a predefined list. For each plate type, a number of regions that hold information which

should be extracted are defined beforehand. The located text regions are mapped to

the user defined ones, and the image regions are passed to the OCR to convert them to

Reference:

Caruana, Rich and Niculescu-Mizil, Alexandru (2006)
An empirical comparison of supervised learning algorithms

Reference:

Stallkamp, Johannes and Schlipsing, Marc and Salmen, Jan and Igel, Christian (2012)
Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition

3.3. Text Detection 35

machine readable text. This section starts with an examination of popular text detection

methods and subsequently our approach is explained in detail.

There exist a number of methods, that are specifically designed to extract text from

natural images. One well known example is the Stroke Width Transform (SWT), proposed

by Epshtein et al. [18]. The authors exploit the fact, that the stroke width of characters

remains almost constant. The output of the first stage is an image of the same dimensions

as the input image, that contains the stroke width for each pixel. First, they compute

the edge map of the input image using the Canny edge detector and initialize all the

stroke width result values to infinity. For each returned edge pixel, the gradient direction

is followed until another edge pixel is found. If the gradient direction of the second

edge pixel roughly points back to the starting pixel, all stroke width values on the line

connecting them are set to the distance between the starting and the end pixel, but only

if they do not already have a lower value. When all edge pixels are processed, all start

pixels where an end pixel was found are revisited again. The stroke width values on the

lines connecting them are set to the median value of all pixels on the line. The authors

note that this is necessary to get correct results in corners. Next, they extract connected

components, where neighboring pixels are assigned to the same contour if their stroke

widths are similar. These contours are filtered to retrieve text regions. A contour is

discarded if the stroke width variance of its enclosed pixels is too large, or when its aspect

ratio or diameter to stroke width is not within a threshold. Furthermore, the bounding

box of a contour must be properly sized and not contain more than two inner contours.

The resulting letters are grouped into pairs if they have a similar stroke width, height,

and color and are not located too far apart. Finally, the character pairs are merged into

text lines and word boundaries are detected using a histogram of the character distances.

Gomez and Karatzas [20] propose another approach to detect text in natural images.

They first detect character candidates using MSER, which are filtered by size, aspect

ratio, stroke width, and number of holes. For the remaining regions, the following features

are calculated: Number of pixels, bounding box area, diameter of the bounding circle,

mean gray and color value in the L*a*b color space for the region itself and its boundary,

the stroke width as described above, and the mean gradient value of the outer boundary.

Next, they calculate a dendrogram for each feature. For each node of the dendrogram, the

probability that a number of regions share the same feature is calculated using the binomial

distribution and used for clustering. Then, a co-occurrence matrix over all clusters is

calculated. The final grouped regions are obtained by applying the previous clustering

steps again to the co-occurrence matrix. An Adaboost classifier is used to prune regions

that do not contain a character-shaped object. Finally, a second Adaboost classifier is

used to remove clustered regions that do not contain text.

Two other approaches were already examined in Section 2.1 as part of a larger system.

The first is described in [30] and uses category specific regions and a classifier that de-

termines if the input region is a character or not. The detected text regions are grouped

into license plates by incorporating knowledge of the layout. The second approach [16]

Reference:

Matas, Jiri and Zimmermann, Karel (2005)
Unconstrained licence plate and text localization and recognition

Reference:

Donoser, M. and Arth, C. and Bischof, H. (2007)
Detecting, tracking and recognizing license plates

36 Chapter 3. Nameplate Detection and Classification Approach

(a) Grouped MSER (b) Matched Rectangles (c) Final text positions

Figure 3.13: Text extraction, grouping, and matching for sample image 1. (a) Ex-
tracted MSERs, grouped into words. (b) Matches between detected
and user-defined text regions. (c) Final text positions used for OCR.
The text regions were moved to the bottom to account for the plate
border at the top.

employs maximally stable extremal regions to locate license plates. The license plates are

located by searching for a number of smaller regions placed within a larger one.

In summary, most of these systems are designed to detect text in natural images. Since

our plate images do not contain nearly as much clutter as found in natural images, such

sophisticated approaches like the SWT are not needed. Instead, we employ a similar

MSER and grouping based approach to extract characters and words from nameplates, as

presented in [16] for license plate detection. We have the extracted up-right plate image,

as well as a list that contains the position, content type, and name of the regions that

should be extracted. Since the plate is not always extracted perfectly, we need to adjust

the given regions, so that they align with the content of the plate.

3.3.1 Character Extraction using Maximally Stable Extremal Regions

First, the gradient magnitude of the input image is calculated and normalized to the 0

to 255 range. To remove the majority of noise from this image, caused by rust stains

and dirt, we set all pixels that have a value larger than 50 to the new value of 255. The

threshold has been determined experimentally, so that it removes noise and the characters

remain intact. The resulting image is used to extract MSER features.

Maximally stable extremal regions were proposed by Matas et al. [29]. The input image

is thresholded at each intensity level, starting at zero which results in a completely white

image. For each level, connected components are extracted and stored in a tree structure.

As the threshold increases, black regions appear, increase in size, and finally merge, until

the entire image is black. Each node in the tree represents an extremal region and its

subtree contains the nested components. Finally, regions that are maximally stable are

located and returned. A region is maximally stable, if its size remains mostly unchanged

over a number of thresholding levels. The stability is calculated at each level i using the

regions at the levels i+ ∆ and i−∆, where ∆ is a user provided parameter. The authors

Reference:

Donoser, M. and Arth, C. and Bischof, H. (2007)
Detecting, tracking and recognizing license plates

3.3. Text Detection 37

(a) Grouped MSER (b) Matched Rectangles (c) Final text positions

Figure 3.14: Text extraction, grouping, and matching for sample image 2. (a)
Extracted and grouped MSERs. (b) Matches between detected and
user-defined text regions. (c) Final text positions.

note that MSER is very fast to calculate, invariant against affine transformations of image

intensities, and offers multi scale detection.

We set the ∆ parameter to 5, the smallest allowed area of a region is 0.005 ·hc ·0.00125 ·
wc, and the maximum area is 0.05 · hc · 0.05 · wc. Furthermore, all regions with an aspect

ratio smaller than 0.2 are discarded.

3.3.2 Character Grouping

The regions are grouped into words, where two regions are combined if their height dif-

ference is smaller than 30 pixels, the distance on the x-axis between their bounding boxes

is smaller than 5 pixels, and their bounding box bottom positions on the y-axis differ

by less then 15 pixels. The iterative grouping procedure stops if no more regions can

be merged. Figure 3.13a and Figure 3.14a show the grouped regions of the two input

plates, while Figure 3.15 shows a schematic of the grouping conditions. Next, the grouped

regions are mapped to the user provided list, which contains their position in a refer-

ence plate, the content type, and the names of the regions that are used to store the

results. A detected region is assigned to the defined region, where the euclidian distance

between the two bounding box centers is the smallest. Since this simple mapping method

is likely to produce incorrect matches, usually caused by missing text regions on the plate

or wrong character grouping, the correspondences are used to estimate a rigid transform.

The coordinates of all user defined regions are warped using the calculated transform,

resulting in text regions with the user specified size and positions adapted to the detected

38 Chapter 3. Nameplate Detection and Classification Approach

A }
C{< 30px

< 15px

< 5px

Figure 3.15: Criterions for character grouping.

regions. Figure 3.13b and Figure 3.14b show the matched regions and Figure 3.13c and

Figure 3.14c the final text positions for the two sample plates.

At this point, we have a list of text regions and their positions on the full size plate

image. The regions contain images of the desired content, which are transformed by the

OCR into machine readable text in the next step.

3.3.3 Noise Filtering

The images of the text regions frequently contain structures that are not part of the text,

caused by borders around the text or neighboring text regions, as well as dirt on the

nameplate. Since most OCR systems are developed to process scanned text, which mostly

consists of well segmented characters, these additional structures would deteriorate the

output significantly. Therefore, preprocessing to remove them is applied. The listed steps

are applied to each extracted text region, which are provided by the previous stage. The

text regions are extracted from the unscaled plate image. As such, the size wf × hf of a

region depends on the image size. An input region may also contain multiple lines of text.

First, the absolute gradient magnitude of the input image is computed. Using the

gradient instead of adaptive thresholding yields better results if the image contains a gray

value gradient, which is frequently caused by rust stains. In such cases, simple thresholding

would create large black regions unsuitable for further processing. The minimum and

maximum gradient values are determined and used to calculate an adaptive threshold

for filtering, where all values smaller than the threshold are set to zero. To retrieve the

threshold, a histogram with 256 bins is calculated over the magnitude values and the bin

with the largest amount of values is located. This is done under the assumption that the

largest number of gradients is produced by text. A fixed thresholding value is unsuitable

because embossed text has very low contrast and would be removed by blurring the image

before calculating the gradient. For further processing, the filtered image is normalized

to the 0 to 255 range and adaptively thresholded, where the block size equals half the

image height, resulting in a binary image. Figure 3.16b shows a sample binary image for

printed text, where the rust stain from the input image is not visible anymore. Further,

Figure 3.17b shows another example for embossed text, that contains a lot of noise.

Next, possible horizontal and vertical lines, caused by borders around the text, are

3.3. Text Detection 39

removed. To remove horizontal lines, the image is morphologically opened using a struc-

turing element with the size wf/2.5 × wf/2.5, that contains a one pixel wide line at the

center. The opened image is subtracted pixel-wise from the original image. Since the char-

acter width is small in relation to the structuring element, they remain intact. Figure 3.16c

illustrates this for the first sample region. As the lines are not leveled, some parts of them

remain. However, using the same approach to remove vertical lines would also remove

most of the text. To prevent this, the presence and location of borders is determined first,

and only those regions are filtered. At the first 20% of the left and right side of the image,

peaks are detected. A peak is reported if 70% of all pixels in a column are black. Since

we assume that the text is roughly centered, the distance of the first detected peak on

either side to the image border should also be approximately the same. If a peak on each

side has been detected and the distance differs by more than wf/12, no filtering is done.

This condition is also often triggered by the first and last letter of the text. Figure 3.17c

shows the detected border at the left side of the second sample region. No borders are

reported for the first image, hence no border removal is necessary. The sides of the image

where a filtering region has been found are morphologically opened using a structuring

element with the size of hf/6 × hf/6, that contains a one pixel wide centered vertical

line. Again, the opening result is subtracted pixel-wise from the original image. Since

the removed lines usually are not perfectly horizontal or vertical, some debris of them

remains. Figure 3.17d displays the filtering result for the second region. To remove the

noise, we extract and filter connected components. A connected component is removed if

its bounding box touches the borders of the image, the bounding box width and height

are smaller than three pixels, or the area of the connected component is smaller than

(wf · hf)/800. The filtered regions are shown in Figure 3.16d and Figure 3.17e.

Next, the individual words are grouped into lines of text. Therefore, we first sort all

detected words by the y-coordinate of the centroid of their bounding box in ascending

order. A new line is started if the y-coordinate differs from the previous one by more

than 20% of the text region height (hf). To assign commas and accents to the correct

line, the overlap with the position of the starting contour is checked. After all characters

have been assigned to lines of text, each line that contains more than five characters is

checked for remaining border fragments that were not discarded earlier, because they are

skewed. The bounding box of the first and last characters of the line are checked against

the median bounding box contour height. If the height difference to the median contour

height is larger than 25%, the bounding box does not overlap with the bounding box of

the neighboring contour, and the bounding box width is smaller than 33% of the text

region width (wf), the contour is removed. At this point, the preprocessing is complete.

However, the characters only consist of borders, as all processing was done on an image

created by thresholding the gradient magnitude (e.g. Figure 3.16d). Such images cannot

be processed by the Tesseract OCR. To retrieve filled characters, the original unmodified

input image is adaptively thresholded with a block size of wf/7 and the filtered image is

morphologically opened with an 20×15 ellipsoidal structuring element. Figure 3.16e shows

40 Chapter 3. Nameplate Detection and Classification Approach

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.16: OCR preprocessing steps illustrated on printed text. (a) Input im-
age. The leftmost character does not belong to the region. (b) Binary
image generated from the gradient magnitude. (c) Horizontal and
vertical line removal result, no vertical borders were detected. Some
parts of the horizontal lines remain. (d) Remaining structures after
size and location filtering. (e) Adaptively thresholded input image.
The discoloration above the digits remains visible. (f) Mask, gener-
ated from the filtered gradient magnitude image. (g) Masked regions,
copied from the adaptively thresholded image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.17: OCR preprocessing steps illustrated on embossed text. (a) Input
image. The quality and contrast is good for embossed text. (b)
Binary image generated from the gradient magnitude. The uneven
metal results in noise. (c) A border in the image was detected at the
left side. (d) Horizontal and vertical line removal result. Since the
lines are not straight, some parts remain. (e) Remaining structures
after size and location filtering. (f) Adaptively thresholded input
image. (g) Mask, generated from the filtered gradient magnitude.
(h) Masked regions copied from the adaptively thresholded image.

3.4. Text Extraction 41

the thresholding result for the first image. The large black region is caused by the rust

stain. The thresholding result for the second regions, shown in Figure 3.17f, also contains

some clutter. The masks for both images are shown in Figure 3.16f and Figure 3.17g. The

opened image is used as a mask, when copying from the adaptively thresholded image.

The results for both regions that are passed to Tesseract are displayed in Figure 3.16g

and Figure 3.17h. As we can see, everything that does not belong to a character has been

removed.

3.4 Text Extraction

The process of assigning the character class to an image that contains a rendering of the

character, is called Optical Character Recognition (OCR). A number of papers examined

in Section 2 contain their own OCR approaches. Chang et al. [9] use the format of license

plates to separate digits from characters and topological sorting to reduce the number of

templates, to which the input is compared. A neural network is used to classify the image.

Luo et al. [28] employ a two stage classifier that determines the result by comparing a

number of extracted features from the input to a set of templates. Finally, Donoser et al.

[16] use a support vector machine [11] to classify the extracted MSER regions of the

license plate. As previously mentioned, these approaches are unlikely to provide good

results in our setting, because the authors exploit a number of constrains that do not hold

for nameplates. Examples are a known format of the string, only digits or no digits in

words, and a limited number of fonts and character classes. For our approach, we decided

to use the Tesseract OCR, designed to process scanned sheets of text.

The Tesseract OCR is well known, produces good results, and is widely used. It

initially started as a research project, but it is now available under an open source license.

The Tesseract algorithm is described in [37]. First, connected components are extracted

and grouped into lines. The line slope is tracked over the entire image region, therefore

deskewing of the input image with its associated loss of resolution is not needed. For

each line, the initial baseline is calculated using characters that are continuously placed.

Tesseract is able to process curved baselines which occur frequently in scanned documents.

Next, the lines are separated into characters. In case of fonts with a fixed character

width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is

analyzed, separated, and classified. The words with the lowest recognition score are split

into further characters, until the result improves. If this does not improve the recognition

score, contours are merged and classified again to check the change in the recognition

score. The features for classification are extracted from small fixed size patches over

neighboring contours and matched against the trained character representations. The

authors note that this approach enables Tesseract to easily handle characters broken into

multiple parts, which would not be possible if each contour is processed separately. The

following classification is done in two steps, the first selects possible candidates which are

compared to each other in the second stage to retrieve the result. The detection result is

Reference:

Cortes, Corinna and Vapnik, Vladimir (1995)
Support-vector networks

Reference:

Smith, Ray (2007)
An Overview of the Tesseract OCR Engine.

42 Chapter 3. Nameplate Detection and Classification Approach

Original Text Score Preprocessed Text Score

@ 54% 1978 81%

i 44;8s 61% 44’8 86%

Table 3.1: Tesseract output for the samples from Figure 3.16 and Figure 3.17.
The value in the score columns is the Tesseract recognition confidence.

Original Text Score Preprocessed Text Score

-9-8- 51% 56 56%

3-979- 33% 1970 74%

os-I 78% 0S-MS 82%

No output N/A FU 89%

93498 34% 33. 8 84%

TSESE 51% 3Ph 80%

330000 73% 30000 90%

No output N/A 20 800 80%

5 73- 2% 2013 74%

’7 3 -16609 37% 13 800 82%

Table 3.2: Samples of typical text regions where the OCR output improves after
preprocessing. For each sample, the unmodified image, the prepro-
cessed region, and the corresponding Tesseract output are listed. The
value in the score columns is the Tesseract recognition confidence. For
each sample, the output after preprocessing is correct.

also improved by incorporating a dictionary. Furthermore, while the text is processed, a

second classifier is trained with the output of the first one. After the first classifier has

processed the entire page, the second classifier is used to refine the result.

Since Tesseract is designed for scanned text, preprocessing as shown in Section 3.3.3

is necessary to obtain good results. The output of Tesseract for the examples shown in

3.4. Text Extraction 43

Original Text Score Preprocessed Text Score

9 m 31% Lr 60%

C27+E 27% 24/11 68%

20-4/25,7 72% 20 4/25 7 84%

27600 43% 21600 73%

Table 3.3: Text regions where the preprocessing removes parts of the text. The
unmodified and preprocessed regions, as well as the resulting OCR
output is displayed. The value in the score columns is the Tesser-
act recognition confidence. In each region the preprocessing removes
some part of the content, specifically commas and portions of char-
acters.

Figure 3.16 and Figure 3.17 can be seen in Table 3.1. The table contains the unmodified

and preprocessed text regions. For each region, the corresponding Tesseract output, as

well as the recognition confidence are listed. Further examples of typical text regions are

shown in Table 3.2. In general, the output for the original images is always incorrect or

even missing. In contrast, the output for each preprocessed region is correct. However,

there also exist cases where the preprocessing modified the actual content. A number of

such cases are shown in Table 3.3. In two examples, parts of the characters are removed,

while in the other two examples, the commas are removed. It should be noted, that only

in one case the output of the unmodified image is correct, while the preprocessed one is

not.

It should be noted that we disable the internal dictionary, as most of the strings we

need to process are arbitrary combinations of digits and letters. Therefore, using the

dictionary would worsen the result by altering the correctly detected characters. The

Tesseract project provides a number of language files, trained with fonts that are common

in scanned documents. Unfortunately the shape of the characters of the fonts used for

training are different from the ones used on most nameplates, which results in wrong

output. Furthermore, the thresholding algorithm, applied internally by Tesseract to the

input image, is not designed to handle uneven illumination and noise, which results in

mostly unusable output. However, first problem can be tackled by training a new language

with character samples from the unknown font. To reduce the issues caused by noise and

problematic illumination, we apply our preprocessing step.

After the OCR is finished, we have the text in machine readable form and the confi-

dence score for each region. If all confidence scores are larger or equal to 80%, the results

are stored and entire plate detection and classification procedure is finished. However, it

is possible that shadows and partial occlusions cause low scores. Our approach to handle

such cases is presented in the following section.

44 Chapter 3. Nameplate Detection and Classification Approach

(a) Existing plate image (b) New input image

(c) Final text positions

Figure 3.18: Matches between the existing plate and a new image. (a) Image of
the existing up-right plate image. (b) New image of the right plate
area. (c) Visualization of the keypoints, determined matches, and
location of the new image in the existing plate.

3.5 Guided Image Acquisition

The final step of our approach consists of requesting and processing further images of the

nameplate, if the OCR confidence score for at least one text region is low. The user is

prompted with a request to acquire a new image of the approximate region of the plate,

where the most problems occurred.

The extracted plate and the initial OCR results are stored as reference. Should the

averaged recognition score of at least one region be lower than 80%, a new image is

requested. The image is separated into four disjunct parts (top, bottom, left, and right)

and a new image is requested for the region, in which the most errors occurred. Keypoints

3.6. Summary 45

are extracted from the new image and the stored plate using the Oriented FAST and

Rotated BRIEF (ORB) [34] detector, and Binary Robust Invariant Scalable Keypoints

(BRISK) [27] descriptors are calculated. ORB and BRISK are used because of their lower

computational and memory requirements as well as comparable performance to SIFT . A

homography, that maps the new image to the reference plate, is calculated using the best

200 matches and Random Sample Consesus (RANSAC). Figure 3.18 shows a sample of

an existing up-right plate image, and a new input image that contains the right portion

of the plate at a larger magnification. Further, the extracted keypoints, the calculated

matches between the images, and the location of the new image in relation to the reference

plate, are displayed. Each completely visible region is warped into its up-right position,

where the size is approximately the same as in the new input image. Since each region is

processed and warped separately, the process can be executed in parallel and less resources

are needed since not the entire image must be processed. The preprocessing and OCR

steps, as described earlier, are executed for each new region. The results are merged with

the existing ones, where for each region only the one with the highest OCR confidence is

kept. If there still exist regions with a low recognition score, and the maximum number

of retires is not exceeded, another image is requested and processed as already described.

Should the number of retries be exceeded, the process stops and the user is informed about

the low score regions. The application experiments, presented in Section 4.3, show the

input images and the OCR output for three plates, which also includes the additionally

requested images.

3.6 Summary

In this chapter, all steps of our approach to detect, classify and extract text from name-

plates were described. Contours are used to roughly locate the plate and to create a mask

for its extraction using GrabCut. The feature vector used for classification of the extracted

plate consists of local binary patterns, median color values, and the size ratio, and is used

in conjunction with a random forest. The positions of the text regions that should be

extracted for each type are mapped to the text regions of the extracted nameplate. Each

region is preprocessed before it is passed to the OCR, which improves the detection result.

Finally, should the OCR recognition score be low, a new image of the problematic regions

is requested from the user and processed again. In the next section, the proposed steps are

evaluated, with special attention placed on the nameplate classification part. Additionally,

some results under different lighting conditions, as well as breakdown cases are shown.

Reference:

Rublee, Ethan and Rabaud, Vincent and Konolige, Kurt and Bradski, Gary (2011)
ORB: an efficient alternative to SIFT or SURF

4
Evaluation and Experiments

In the previous chapters we have shown our approach to locate, segment, and classify

nameplates, as well as text localization and Optical Character Recognition (OCR). This

chapter contains an evaluation of all these steps, where we primarily focus on the classi-

fication of nameplates, and show experimental results obtained using an Android device.

First, we evaluate the individual features that are extracted from the plate. They are

tested separately and combined, with different parameters for the machine learning al-

gorithm. Next, the output of the OCR is compared to the actual plate contents. Since

the used OCR is off-the-shelf software with no runtime tuning parameters (just training),

only the effect of training with the actual fonts that appear on the plates is evaluated.

Finally, we test three available plate types on an Android device and show the results.

This includes different lighting conditions, such as shadows and reflections, and their im-

pact on the processing steps. Furthermore, we show a number of breakdown cases, such

as extreme angles when capturing the image, or blurriness caused by insufficient lighting.

The dataset used for the experiments consists of 125 images of nameplates from 15

classes. The number of samples is relatively low, because it is not easy to acquire images

of real world aged plates for all the different types available. Table 4.1 lists the number of

images per class, and Figure 4.1 shows a sample plate from each class. Eleven classes are

composed of images of aged plates, that are mounted on deployed devices. These plates

are for the most part thirty or forty years old. The final four classes (k, l, m and n)

are composed of new plates and were photographed using an Android device. Due to the

low number of samples, all tests are conducted using leave-one-out cross-validation, where

each sample (from first to last) is classified while the rest is used to train the classifier.

Class a b c d e f g h i j k l m n o

Samples 7 10 7 8 15 4 4 5 3 8 12 12 13 11 6

Table 4.1: Overview of the available set of nameplate images used to perform
the experiments.

47

48 Chapter 4. Evaluation and Experiments

(a) Type a (b) Type b (c) Type c (d) Type d

(e) Type e (f) Type f (g) Type g (h) Type h

(i) Type i (j) Type j (k) Type k (l) Type l

(m) Type m (n) Type n (o) Type o

Figure 4.1: A sample image for each plate type. Some vendor names have been
obfuscated.

4.1. Evaluation of the Classifier 49

Parameter Possible values Final value

numColsRows 10, 20, 30, 40, 50, 60 20

numLBPNeighPixels 4, 8, 16 4

LBPRadius 2, 4, 8, 16 16

LBPHistSize 30, 40, 50, 60 60

numRFTrees 100, 200, 300 300

Table 4.2: Grid search results for the feature extraction parameters. For each
parameter, the possible values and the final value is listed.

This chapter is structured as follows: In Section 4.1, the features are used individually

to classify the dataset, and then the results of the combinations are shown. Section 4.2

evaluates the output of the OCR and shows the impact of training the actual fonts used

on the plates. Finally, Section 4.3 shows experimental results conducted on an Android

device, as well as extreme cases that lead to failure.

4.1 Evaluation of the Classifier

First, the three different types of features (color values, Local Binary Patterns (LBP), and

size ratio, as described in Section 3.2) are extracted from the plate and tested individually

to evaluate their significance. Next, the features are calculated using their optimal pa-

rameters, which were determined using grid search. Then we combine them and examine

their contribution to the final classification result.

The parameters of the random forest are set to generate at most 300 trees, with a

maximum depth of 50 and a sufficient training accuracy of 1%. The split size is set to

the square root of the number of features in the feature vector. All tests are executed on

a notebook, which contains a 2.4GHz Intel Core 2 Duo processor and 4 GB RAM. The

code is written in C++ and uses the OpenCV 2.4.9 framework1 to store and process all

images, as well as its random forest implementation. GPGPU capabilities, such as CUDA

or OpenCL, are not utilized.

4.1.1 Parameter Selection using Grid Search

The previous chapter, that explained our approach in detail, referred to a number of

parameters that are used to extract the features only in the form of symbolic constants.

The following variables were used: numColsRows, numLBPNeighPixels, LBPRadius, num-

RFTrees, and LBPHistSize. We have selected the actual values for these parameters for the

full feature vector using grid search. This includes the selection of a number of meaningful

values for each parameter. To retrieve the best combination, all possible combinations are

tested. In our case, we performed leave-one-out cross validation for each combination and

1http://opencv.org/ (last visited January 22, 2015)

http://opencv.org/

50 Chapter 4. Evaluation and Experiments

5 10 15 20 25 30 35 40 45 50

0.55

0.6

0.65

0.7

0.75

0.8

Grid Size

Precision
Recall

(a) Median

5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Grid Size

Precision
Recall

(b) Mean

Figure 4.2: Precision and recall for different number of rows and columns in the
CIE L*a*b color space. (a) Results when using the median cell values.
(b) Results when using the mean cell values.

stored the precision and recall values. For the chosen values of the features, this resulted in

576 possible combinations, that required approximately a month of runtime to calculate.

Table 4.2 contains the possible and best values for each parameter.

4.1.2 Plate Color

The color features are used to distinguish different types that have a similar content. We

use the median color in the CIE L*a*b color space, as explained in detail in Section 3.2.1.1.

The plots shown in Figure 4.2 display the resulting precision and recall values for

different numbers of rows and columns, where only the color information in the CIE

L*a*b color space is used for classification. When calculating the median color value for

each cell, the best result is achieved by splitting the image into 25 rows and columns,

resulting in a precision of 80.43% and a recall of 72.22%, as displayed in Figure 4.2a.

Using a larger number of rows and columns decreases the performance. The results of

calculating the features using the mean instead of the median are shown in Figure 4.2b.

The best classification result is achieved by dividing the image into 35 rows and columns,

resulting in a precision of 80.55% and recall of 73.47%. Compared to the results obtained

using the median, the precision increases by 0.12% and the recall by 1.25%. Further,

Figure 4.3 shows the results when the RGB color space is used to extract the features.

When extracting median color values, the overall best results are produced with 35 rows

and columns, resulting in a precision of 80.91% and a recall of 73.79%. Compared to the

best result obtained using the median in the CIE L*a*b color space, the precision increases

by 0.48% and the recall by 1.57%. Finally, when using the mean RGB values, the best

performance is achieved with 40 columns and rows, resulting in a precision of 78.87% and

recall of 72.70%. Overall, this is the worst result and the feature vector needed has the

highest number of dimensions.

4.1. Evaluation of the Classifier 51

5 10 15 20 25 30 35 40 45 50

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Grid Size

Precision
Recall

(a) Median

5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Grid Size

Precision
Recall

(b) Mean

Figure 4.3: Precision and recall for different number of rows and columns in the
RGB color space. (a) Results when using the median cell values. (b)
Results when using the mean cell values.

5 10 15 20 25 30 35 40 45 50

0

5000

10000

15000

20000

25000

30000

Grid Size

T
im

e
(m

s)

Train time

Figure 4.4: Training times for different grid sizes with median color values in the
CIE L*a*b color space as features. The displayed values are the mean
over five runs.

Since the number of trees in the forest influences the training and classification speed,

as a larger number of trees has to be generated during training and the input feature vector

must be evaluated by all trees during classification, a smaller number of trees is preferable.

Table 4.3 lists the results of different numbers of maximally allowed trees, compared to

different grid sizes. Median color values in the CIE L*a*b color space are used as features.

We can see, that at least 200 trees are necessary to achieve the best results up to a grid

size of 35 rows and columns. Furthermore, with an increasing number of features, smaller

forests achieve good results and the difference between the best and the worst result, as

well as the classification difference between the smallest and largest forest, diminishes.

We can see, that the best classification result, with only the color values as features, is

52 Chapter 4. Evaluation and Experiments

Trees
50 150 200 250 300 350

G
ri

d
si

ze

5
48.69%
50.47%

53.36%
51.88%

56.47%
52.06%

58.56%
53.96%

59.68%
54.08%

57.71%
53.72%

Precision
Recall

10
59.03%
54.32%

60.63%
55.86%

65.44%
58.70%

67.26%
60.31%

67.17%
59.25%

70.98%
60.25%

15
64.35%
57.10%

66.58%
57.92%

68.08%
59.14%

63.00%
57.36%

63.07%
57.40%

60.42%
56.89%

20
67.07%
62.03%

72.81%
63.38%

72.01%
63.79%

73.16%
64.89%

68.47%
62.42%

71.84%
61.77%

25
72.43%
67.69%

75.10%
68.94%

74.16%
70.21%

77.10%
68.50%

80.43%
72.22%

77.09%
70.50%

30
78.16%
68.53%

75.57%
68.81%

76.28%
71.67%

77.83%
71.60%

78.45%
71.89%

79.46%
73.79%

35
67.79%
67.04%

77.79%
71.89%

77.05%
74.48%

80.75%
74.75%

76.71%
72.01%

78.34%
72.96%

40
79.97%
75.13%

80.57%
74.75%

80.02%
73.79%

77.65%
72.67%

77.66%
71.89%

79.60%
74.81%

45
77.60%
74.73%

75.19%
69.21%

74.62%
70.65%

77.43%
72.56%

77.75%
73.06%

76.56%
70.39%

50
74.24%
72.11%

75.81%
70.88%

77.99%
71.96%

78.23%
71.96%

78.16%
72.85%

77.48%
73.62%

Table 4.3: Precision and recall values for different numbers of trees in the ran-
dom forest and varying grid sizes. The median CIE L*a*b color
values are used as features.

achieved using RGB median values and a grid size of 35 rows and columns. The next best

result is produced by CIE L*a*b mean values, again with 35 rows and columns, followed

by CIE L*a*b median values with 25 rows and columns, and finally mean RGB features

with 40 rows and columns. However, doubling the number of rows and columns results

in a quadratic increase of features, which causes a large increase in time needed to train

the forest. This can be seen in Figure 4.4, which displays the time needed to train a

forest for different numbers of cells. The plot was created using median color values in the

CIE L*a*b color space as features, where each displayed value is the mean over five runs.

The timing differences of training the forest with a feature vector created using different

combinations of median and mean value, as well as CIE L*a*b and RGB color space, are

within three times of the largest standard deviation of the five runs for each grid size.

Therefore, the choice of color space, as well as median or mean, appears not to have a

significant impact on the training time. The difference in the training time between 25

and 35 rows and columns amounts to 6.911 seconds when using only color features. For

comparison, the time difference becomes even larger with the complete feature vector that

also contains the LBP values and the plate size, where it amounts to 164.40 seconds. The

4.1. Evaluation of the Classifier 53

Predicted type
a b c d e f g h i j k l m n o

A
ct

u
a
l

ty
p

e

a 1 0 0 0 5 0 0 0 0 0 1 0 0 0 0

b 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 2 0 4 0 0 0 0 0 1 0 0 0 0

d 0 2 0 3 0 0 0 0 0 0 1 0 1 1 0

e 1 0 0 0 12 0 0 1 0 0 0 1 0 0 0

f 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

g 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0

h 0 0 0 0 2 0 0 2 0 0 0 1 0 0 0

i 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0

j 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0

k 0 0 0 0 1 0 0 0 0 0 9 0 2 0 0

l 0 0 0 1 0 0 0 0 0 0 2 9 0 0 0

m 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0

n 0 0 0 0 0 0 0 0 0 0 2 1 3 5 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

Table 4.4: Confusion matrix created with median color features extracted from
the CIE L*a*b color space. The images are divided into 20 rows and
columns.

relative speedup for the complete feature vector with 25 rows and columns, compared to

35, amounts to 3.74.

For systems like ours, the training time is usually not very important, as the classifier

is trained once and then deployed. However, as previously mentioned, a very large number

of plate types exist and new ones are added frequently as vendors introduce new devices.

Also, only a low number of samples for a few types will be available initially, because it is

difficult to retrieve images of the plates, as the devices are deployed globally and a number

of plate types are certainly out of production, due to their age. Therefore, it is desirable

to quickly add new types, where the trained classifier can then be deployed to the mobile

devices. As the number of types, as well as sample images for each type increases, the

time needed to train the classifier will also increase. As such, increased training speed

is preferable. Combined with the fact that the LBP values contribute the most to the

classification result, as will be shown in the following section, and considering that the

median CIE L*a*b color space feature vector delivers results that are only 0.48% worse in

precision and 1.25% in recall than the RGB median value feature vector, with 10 columns

and rows less, we decided to use median values in the CIE L*a*b color space rather than

RGB.

Table 4.4 shows the confusion matrix generated with only median color features, ex-

tracted from the CIE L*a*b color space. The precision is 70.35% and the recall 61.38%.

The images are divides into 20 rows and columns, determined using grid search for the final

feature vector. We can see that the types b (Figure 4.1b), f (Figure 4.1f), j (Figure 4.1j),

54 Chapter 4. Evaluation and Experiments

Predicted type
a b c d e f g h i j k l m n o

A
ct

u
al

ty
p

e

a 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0

d 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0

e 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0

f 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

h 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0

i 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

j 0 0 0 0 0 0 0 0 0 7 0 0 1 0 0

k 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0

l 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0

m 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0

n 0 0 0 0 0 0 0 0 0 1 0 0 0 10 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

Table 4.5: Confusion matrix created only with LBP features. The histogram
size is set to 60, 4 neighbors are checked with a radius of 16.

m (Figure 4.1m), and o (Figure 4.1o) are never misclassified. These types have colors that

are distinct from the other types, where only only the types b and m are misclassified as

other classes. As expected, the errors are among similar looking types.

4.1.3 Local Binary Patterns

The next feature added to the feature vector consists of histograms of LBP codes which

encode the texture of the plate. Details can be found in Section 3.2.1.2.

Table 4.5 shows the confusion matrix determined using only LBP as features. The

precision is 89.65% and the recall 90.22%. As we can see, errors occur with four types: f

(Figure 4.1f), i (Figure 4.1i), j (Figure 4.1j), and n (Figure 4.1n). For two of these incor-

rectly classified types, the dataset contains a low number of samples. For the type f, four

images are available, and for the type i, three. The final two classes, where classification

errors occurred, consist of a larger amount of samples. A sample from type j is reported

as type m, and an image from the class n is reported as type j. As can be seen from the

images, the three classes share some visual resemblance. Although there are a number of

errors, the classification performance with only LBP features is close to the result of the

complete feature vector.

Table 4.6 shows the precision and recall values for different radii and neighbor counts,

with a feature vector that consists only of LBP values. It can be seen that using either

four neighbors with a radius of eight, or eight neighbors with a radius of two deliver the

best results. Since the plates contain mostly empty space and the existing structures are

4.1. Evaluation of the Classifier 55

Radius
2 4 8 16

N
ei

g
h
b

or
s 4

89.60%
87.38%

90.03%
88.66%

91.05%
92.50%

90.81%
91.06%

Precision
Recall

8
91.25%
91.66%

89.09%
90.10%

90.91%
91.66%

90.63%
91.06%

16
88.48%
85.09%

87.72%
82.82%

88.55%
87.44%

87.65%
84.47%

Table 4.6: Precision and recall for varying LBP radii and number of neighbors.
Only LBP histograms with a histogram size of 60 are used as features.

Predicted type
a b c d e f g h i j k l m n o

A
ct

u
al

ty
p

e

a 0 4 2 0 0 1 0 0 0 0 0 0 0 0 0

b 4 1 2 0 0 1 0 0 2 0 0 0 0 0 0

c 2 2 2 0 0 1 0 0 0 0 0 0 0 0 0

d 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0

e 0 0 0 0 8 0 0 3 0 0 2 1 0 1 0

f 1 0 2 0 0 1 0 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 1 0 0 0 0 1 2 0 0

h 0 0 0 0 1 0 0 0 0 0 2 1 0 1 0

i 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

j 0 0 0 0 1 0 0 0 0 7 0 0 0 0 0

k 0 0 0 0 2 0 0 2 0 0 4 1 1 1 1

l 0 0 0 0 1 0 2 0 0 0 2 2 2 3 0

m 0 0 0 0 1 0 1 0 0 0 2 3 3 1 2

n 0 0 0 0 1 0 1 1 0 0 1 3 1 3 0

o 0 0 0 0 0 0 0 0 0 0 2 1 1 0 2

Table 4.7: Confusion matrix created only with the size ratio as feature for clas-
sification.

for the most part rectangular, a large radius with a low number of neighbors is enough to

represent the texture. Furthermore, a larger radius is less susceptible to changes in the

text, as well as other noise.

4.1.4 Size Ratio

The last characteristic that is added to the feature vector is the size ratio of the plate

image. Further details can be found in Section 3.2.1.3.

The confusion matrix, calculated with only the size ratio as feature per plate, shown

in Table 4.7, results in a precision of 31.69% and recall of 30.87%. As can be seen in

the table, only the class d (see Figure 4.1d) is never misclassified and no other image is

reported as this class. This is caused by the very distinctive size ratio of this nameplate

56 Chapter 4. Evaluation and Experiments

m 1/2 ·
√
N

√
N 2 ·

√
N

Precision 90.36% 89.96% 88.87%

Recall 92.12% 90.78% 87.95%

Table 4.8: Results for common amounts of active variables, chosen from all fea-
tures (size N), when selecting the splits.

Features Color + Size Ratio Color + LBP Size Ratio + LBP

Precision 75.63% 90.10% 90.12%

Recall 64.55% 92.12% 88.56%

Table 4.9: Classification results when combining the three features pairwise.

type, when compared to the other classes. As expected, the classification errors are among

classes that have approximately the same size ratio. Compared with the other two features,

the size ratio is the least important one. Nevertheless, the size ratio is characteristic for

a nameplate type and may help to distinguish types with similar content structure and

color, but different proportions.

4.1.5 Combination of all Features

In this section, we show the combinations of the three features that are tested individually

in the previous sections. First, the features are combined pairwise and then the complete

feature vector for the classifier is created by concatenating all three. For each combination,

we show the classification results.

The feature vector, calculated for each plate and passed to the random forest for clas-

sification, consists of N individual features. During training, the random forest chooses

m features from the feature vector at each node and uses the best split to split the data.

The number of features m, which remains constant for the entire forest, influences the

correlation between the trees and the classification strength of each tree. As shown by

Breiman [4], the classification performance of the forest increases with decreasing correla-

tion between the trees and an increasing number of strong classifiers. Further, increasing

m increases the strength of the individual classifiers and the correlation between them,

while decreasing it has the opposite effect. Table 4.8 lists the precision and recall values

for three typical values of active variables when drawing the splits, where the square root

of the number of variables is a frequently used value. As can be seen, using 1/2 ·
√
N

active variables provides the best results. Therefore, we use this value from now on.

Table 4.9 shows the pairwise combinations of the three features. It can be seen that

the LBP features contribute the most to the result, while the size ratio contributes the

least. The precision difference between the final feature vector and only LBP features is

0.26%, while the recall remains the same. Since the dataset contains only a small amount

of images, which are slightly blurry at the most, the color information contributes very

4.1. Evaluation of the Classifier 57

Kernel Size 9× 9 19× 19 29× 29 39× 39

LBP
124 (99.2%)

1 (0.8%)
104 (83.2%)
21 (16.8%)

60 (48.0%)
65 (52.0%)

35 (28.0%)
90 (72.0%)

Full Feature Vector
125 (100.0%)

0 (0.0%)
114 (91.2%)
11 (8.8%)

73 (58.4%)
52 (41.6%)

45 (36.0%)
80 (64.0%)

Table 4.10: Classification results for median blurred images with the complete
feature vector and LBP features alone. The green values list the
number of correctly classified images, while the red values wrong
ones.

little to the classification result. To simulate the effect of blurred plates with distorted

content, we apply median blurring to the images. Table 4.10 lists the classification results

for the entire dataset with the complete feature vector, as well as LBP features only,

for different median blur kernel sizes. For this test, we do not use leave-one-out cross

validation. Instead, all images from the dataset are used to initially train the classifier.

Then, all images are blurred before the feature vector used for classification is extracted.

As such, every image is classified correctly with both tested feature vectors if no blurring

is applied. The images are first resized to a width of 800 pixels, as described previously,

and then the median blurring is applied to the scaled images. This is necessary to obtain

comparable results, as the sizes of the images in the dataset vary greatly. The results show

that the complete feature vector always outperforms the one that consists only of LBP

features. With a blur kernel size of 9×9, a single image is misclassified with LBP features,

while with the complete feature vector, all images are recognized correctly. With increasing

kernel size, the number of correctly classified images decreases for both feature vectors.

However, for the three largest blur kernel sizes in the table, the difference of correctly

classified images remains about the same. It is largest with a kernel size of 29× 29, where

the classification result obtained with the complete feature vector includes 13 additional

correctly classified images. The other two cases, with kernel sizes of 19× 19 and 39× 39,

show a difference of 10 images. Figure 4.5 shows an unmodified and a blurred image

for each kernel size, where all blurred images are classified correctly with the complete

feature vector, but are wrong with the feature vector that contains only LBP values. It

should be noted, that with images blurred to such an extent, processing will fail in the

later stages, as no text is readable anymore. Nevertheless, we included these results to

show the robustness of the classifier. Furthermore, it is possible that such images are

present during regular usage, e.g., if the camera is out of focus, or the operator moves

while capturing the image, which results in motion blur. In these cases, the OCR will

fail for all regions, but the user will be prompted to capture additional images, which can

then be used to generate usable output.

The final classification results with the complete feature vector and the parameters

determined using grid search, are shown in Table 4.11. The precision and recall values

are listed in the first column of Table 4.8. Errors occur with the type n, where some of

58 Chapter 4. Evaluation and Experiments

(a) Original (b) 9× 9 kernel size (c) Original (d) 19× 19 kernel size

(e) Original (f) 29× 29 kernel size (g) Original (h) 39× 39 kernel size

Figure 4.5: Original and blurred images for different median blur kernel sizes.
All blurred images are classified correctly with the complete feature
vector but not with LBP features alone.

the samples contain dark regions, that cover large portions of the plate, as well as bright

reflections, which also cover a large area. As these conditions are present in most images,

they cause large variations in the samples of this class. These issues are caused by the

surface of the plate, which is highly reflective. Therefore, the quality of the captured

image changes with the lighting conditions, as well as the region on the plate on which the

camera focuses. Figure 4.6 shows four images from the dataset of this plate class, where

the first two show reflections, and the last two dark regions at the borders. We should

note that these images are less problematic for text extraction, as our gradient based

approach is robust against brightness variations. Nevertheless, should the reflections or

dark regions cause issues, more images will be requested where the operator can move to a

different position, such that the text becomes readable. Also, if the plate is mounted on a

device for a number of years, the surface gets less reflective and capturing images becomes

less problematic. The other plate type that causes errors, to the extent that it is never

classified correctly during leave-one-out cross validation, is class i. Figure 4.7 shows the

three available samples. It can be seen, that there is very little content on these plates,

4.1. Evaluation of the Classifier 59

Predicted type
a b c d e f g h i j k l m n o

A
ct

u
al

ty
p

e

a 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0

d 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0

e 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0

f 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

h 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0

i 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

j 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0

k 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0

l 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0

m 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0

n 0 0 0 0 0 0 0 0 0 0 0 0 2 9 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

Table 4.11: Confusion matrix calculated using the full feature vector with the
final parameters, determined using grid search.

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4

Figure 4.6: Nameplate class n where the sample images contain dark regions and
reflections. They are caused by the reflective surface of the plate and
depend on the lighting and on which part of the plate the camera
focuses.

when compared to the other classes. Further, the plates in Figure 4.7a and Figure 4.7c

are scratched and all three images have a slightly different color. We can see, that both

classes, that cause classification errors, contain large variations in the training samples.

Further, the dataset contains only three images for the class i. With a larger number of

samples, that cover the variations, the classification results should improve.

A random forest can estimate the importance of the individual features in the feature

60 Chapter 4. Evaluation and Experiments

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 4.7: Nameplate class i that contains only three samples and is never cor-
rectly classified during leave-one-out cross validation.

vector after training. To calculate the variable importance, Breiman proposes four different

measures, which are defined in the manual for the reference random forest implementation

[5]. We use Method 2, as it is implemented in OpenCV. The values for the tested feature,

of the samples that were not chosen by the bagging procedure, are randomly manipulated

and classified again by the forest. For each tree, the number of votes for the correct class

of the original and the modified samples are stored. The difference (i.e., the decrease in

accuracy) is averaged over all trees and indicates the importance of the tested feature.

However, as stated in [39], the approaches proposed by Breiman are problematic because

they can produce misleading results. The authors perform a number of simulation studies,

that show that the variable importance is influenced by the number of trees in the forest,

which is selectable by the user, but not the sample size. Nevertheless, we chose to show the

results of the estimated variable importance for informational purposes. Even if the values

are not completely reliable, they still give an indication which of the three main features

extracted from the plate, are ranked as most important by the forest. Examining the type

of the first 100 highest ranked features shows that they consist of 89 LBP values and 11

color values. The size ratio is located at the end with a very low score, which matches

our observations when combining the features pairwise. Furthermore, including the LBP

features in the feature vector results in smaller forests, because the forest accuracy is

reached before the maximum number of trees are generated.

The time (average over five runs) needed to train a forest with all samples amounts to

37.21 seconds. During classification, first the feature vector must be extracted. The time

needed depends on the size ratio of the plate, as the image is resized to a fixed width,

but the height is scaled to preserve the aspect ratio. Therefore, images that are higher

than wide require more time compared to the reversed size proportion. Extracting the

features from the plate type d (Figure 4.1d), requires the least amount of time with 56

milliseconds, whereas type j (Figure 4.1j) is the slowest, requiring 425 milliseconds (all

values are the fastest times of five runs). The average time needed to extract features over

the entire dataset is 247.59 milliseconds and the average classification time of the random

forest is 0.172 milliseconds.

4.2. Evaluation of the OCR 61

4.2 Evaluation of the OCR

The utilized OCR software, called Tesseract2, is generally regarded as the best open source

OCR. A comparison between the commercial ABBYY FineReader3 application and Tesser-

act is available in [23]. The authors use printed Polish historical documents as test input,

both the original scan and a denoised version. They conclude that there is no clear win-

ner, but Tesseract outperforms FineReader with good quality images, such as the denoised

versions. They further state, that Tesseract requires more samples for training. Another

widely used open source OCR is GOCR4. Dhiman and Singh [15] compare it to Tesseract,

where they vary the brightness, image type, resolution, and font of the test images. They

state that Tesseract outperforms GOCR in most cases. A short overview of the Tesseract

algorithm [37] is presented in Section 3.4. However, the use case for which general OCR

software, as the ones mentioned previously, are optimized, consists of processing sheets

of scanned documents. The number of fonts used on documents is limited, and scanning

produces images with even illumination and very little noise. This is not the case on our

input images. Therefore, a preprocessing step outputs only filtered binary images, which

are then passed to the OCR. The filtering approach is described in detail in Section 3.3.3.

Since Tesseract is off-the-shelf software, with little parameters to tune (only the use

of a dictionary or layout analysis can be controlled) we evaluate the effect of training

the font used on the nameplate. The Tessearct project provides a number of pre-trained

language files. The default language file eng is created using 17 fonts, which are commonly

used in word processing, including Arial, Comic Sans, Times New Romans, and Courier.

However, these fonts are usually not utilized on nameplates. Moreover, the shapes of the

characters of the fonts that are used, differ enough to be often classified incorrectly. For

training, bitmaps of text rendered with the new font, as well as a file that contains the

bounding box and content for each individual character are needed.

For the following evaluation, a plate of type k (see Figure 4.1k) is used. The language

files provided by the Tesseract project contain a dictionary, which we disable. Further, we

do not include a dictionary in the newly created language files. The use of a dictionary does

not make sense in our case, as most strings present on the plates, such as serial numbers

or abbreviations, are not regular words. Therefore, enabling the dictionary results in

additional errors, as Tesseract tries to match the recognized words to known ones. As can

be seen in the first column of Table 4.12, using the provided eng language file results in

57.14% of all regions and 86.25% of all characters being correctly recognized. The language

file plate was trained using the characters of two images from the plate itself, resulting in

71.42% of all regions and 90.0% of all characters being correct. Finally, Tesseract allows

to use multiple language files, which is shown in the final column. While the number of

correct regions remains unchanged, the number of correct characters increases by 1.87%.

2https://code.google.com/p/tesseract-ocr (last visited January 22, 2015)
3http://finereader.abbyy.com/ (last visited January 22, 2015)
4http://jocr.sourceforge.net/ (last visited January 22, 2015)

https://code.google.com/p/tesseract-ocr
http://finereader.abbyy.com/
http://jocr.sourceforge.net/

62 Chapter 4. Evaluation and Experiments

Used Language eng plate plate+eng

Correct Fields 16/28, (57.14%) 20/28, (71.42%) 20/28, (71.42%)

Correct Characters 138/160, (86.25%) 144/160, (90.0%) 147/160, (91.87%)

Table 4.12: OCR recognition results using the language files provided by the
Tesseract project, the font extracted from the plate itself and the
combination of both.

Used Language ISOCP ISOCP+eng ISOCP+plate+eng

Correct Fields 20/28, (71.42%) 20/28, (71.42%) 19/28, (67.85%)

Correct Characters 145/160, (90.62%) 147/160, (91.87%) 146/160, (91.25%)

Table 4.13: OCR recognition results using a language file trained only using the
ISOCP font used on the plate and combination with the other lan-
guage files.

This is probably the case because Tesseract incorporates information about the occurrence

of other characters in the vicinity. Therefore, the combination plate+eng provides the best

recognition results.

However, generating character samples for training from plate images is cumbersome

and there might not be enough occurrences for each character (at least five samples for

rarely occurring characters are recommended). If the font is available, character samples

can be generated using arbitrary text, which speeds up the procedure significantly and

the characters can be chosen freely. The result of training a language file in this manner is

shown in Table 4.13. The number of correct regions remains the same, while the number

of correct characters increases by 0.62%, compared to the the language file trained with

the characters directly from the plate. Combining the provided eng file and the one

trained using the font yields the best results, with 71.42% of all regions and 91.87% of all

characters being correct. Yet, the combination of all three decreases the number of correct

regions and characters again.

As we can see, the combinations plate+eng and ISOCP+eng result in the same amount

of correct regions and characters. This shows, that using samples, rendered using the font

file, can produce the same recognition results as character samples extracted directly

from the plate images. However, the number of character samples that are needed to

produce these results differ for the two approaches. The plate file was trained using 995

individual character samples from two images of the plate. The file ISOCP was trained

using 6320 character samples, where a dummy text (complemented with digits and decimal

separators) was used to generate the training data. Although, more than six times the

number of samples are used for the second approach, the time needed to compile the

training data is only a fraction compared to the first approach, as no manual character

annotation is needed. The results also show, that including the existing eng language file

is beneficial, as it increases the output accuracy in both cases.

The regions of the plate, that contain at least one misclassified character, are listed in

4.3. Application 63

Correct Text Detected Text OCR score

80,83 80 83 85%

Dyn5 Dn5 86%

SIEMENS SlEMENS 72%

LI125 AC50/AC3 Ll125 AE50/AC3 74%

1,435 1435 75%

24/1,1 2l+/1.1 71%

10.04.2014 1O O4 2014 85%

6,955 6 955 82%

Table 4.14: List of incorrectly recognized text regions created using a combination
of the ISOCP and eng language files.

Table 4.14. It can be seen, that most errors result from missing punctuation characters.

However, these regions have a high OCR confidence score. The reason is, that the pre-

processing parameters were tuned for aged plates that include a lot of clutter, caused by

dirt and stains or embossed text, because such plates will be processed more frequently

then new ones. Hence, the punctuation characters are removed completely, if their size

is below the filtering threshold. It is also possible that commas merge with the frames

around the text, where the overlapping parts are then removed, along with the borders.

The remaining part is either removed because it is too small or classified as a dot instead.

The remaining incorrect regions do indeed have a low confidence score, where the user

would have been prompted to acquire a new image of the problematic plate area.

4.3 Application

A goal of this thesis is to produce a prototype of an Android5 application that imple-

ments the previously described and evaluated algorithm. Figure 4.8 shows screenshots

of all activities of the finished prototype. The first view, shown in Figure 4.8a, con-

tains an overview of the previous scan results. Upon selecting an entry, another view (see

Figure 4.8b) shows the detailed results. It displays all defined fields, including the detected

text and OCR confidence score. Further, a visualization that includes the extracted and

warped plate is available (see Figure 4.8c). The low confidence regions are framed with

a blue color, and the high confidence regions with a green color. To capture images, the

application displays a live camera image, where the user can start the processing with

a tap on the screen. When an image is available, the plate segmentation, classification,

and text extraction steps are performed. Should more images be required, the user is

informed of the problematic plate region and a new image can be retrieved. Finally, if the

procedure is finished, either because all OCR regions have a sufficiently high confidence or

the maximum number of retries is exceeded, the results are visualized and stored in a file

5http://developer.android.com/ (last visited January 22, 2015)

http://developer.android.com/

64 Chapter 4. Evaluation and Experiments

(a) Overview (b) Detection result (c) Result visualisation

(d) Image capture

Figure 4.8: Screenshots of the Android application. (a) List of the previous plate
detection results. (b) Detailed plate detection results. (c) Visualiza-
tion of the plate detection results. (d) Image capturing view.

for further processing. The Android application uses the same C++ code for the image

processing as the PC version, only the user interface is written in Java.

All tests of the Android application are executed on a LG Nexus 5, which contains

a 2.26 GHz quad-core Snapdragon 800 Krait 400 SOC with 2 GB of RAM. As in the

previous tests, the OpenCV 2.4.8 framework, but no GPGPU capabilities are employed.

The trained random forest and Tesseract font are the same as in the evaluation from the

previous section. The maximum number of retires is set to four, which prevents a large

number of new image requests, caused by an improperly trained OCR. The visualization

of the OCR result, displayed for each tested plate type, contains the adjusted positions for

each text region. A green rectangle indicates an OCR score above or equal 80%, whereas

blue rectangles signal a lower score. A red rectangle denotes an empty region where no

4.3. Application 65

(a) Input (b) Plate (c) Result

(d) (e) (f) (g)

Figure 4.9: Plate detection steps for a plate of type k on an Android device.
(a) Initial image of the plate. (b) Segmented and warped plate. (c)
Visualization of the text regions and the OCR confidence. (d) First
requested detail image of the right side. (e) Second requested detail
image of the right side. (f) Third requested detail image of the right
side. (g) Fourth requested detail image of the right side.

content was found.

Figure 4.9 displays the input image and detection results for a plate of the type k, that

is made of aluminum. While the image was captured, the plate was illuminated using

artificial and natural light. The plate is located and segmented properly, no manual inter-

vention was needed. Further, all adjusted text regions are correctly placed at the actual

text positions that are present on the plate. The maximum number of four additional im-

ages are requested from the operator, where each of the four times the requested direction

is the right area of the plate. As can be seen in the visualization, shown in Figure 4.9c, the

final result contains four regions with a low OCR score, where three of them are located

on the right side of the plate. Table 4.15 lists the execution times of the individual steps

for this plate in the first column. As expected, the plate segmentation using GrabCut,

preprocessing and OCR, as well as keypoint matching require the highest amount of time.

The time needed to filter and execute the OCR for the fourth retry is by far the longest,

requiring 6.8 seconds. The reason is that the last image (see Figure 4.9g) was shot closer

to the plate, which results in a magnification of the text regions. In addition to the larger

66 Chapter 4. Evaluation and Experiments

(a) Input (b) Plate (c) Result

(d) (e) (f) (g)

Figure 4.10: Plate detection steps for a plate of type l on an Android device. (a)
Initial image of the plate. (b) Segmented and warped plate. (c)
Visualization of the text regions and the OCR confidence. (d) First
requested detail image of the left side. (e) Second requested detail
image of the left side. (f) Third requested detail image of the left
side. (g) Fourth requested detail image of the right side.

bitmaps that have to be processed, the image contains all regions, except of the lower

four. In the final output, 20 out of 28 (71.421%) text regions are entirely correct. Overall,

149 out of the 160 (93.12%) characters present in the text regions are correct. There are

six occurrences of missing or wrong (swapped dot and comma) decimal separators, as well

as three cases where the digit ’5’ is recognized as letter ’S’. The remaining errors are the

same as described in Section 4.2, where the same plate type was used.

The second plate has the type l and is made of plastic. The images for this plate were

taken under daylight conditions. Figure 4.10 displays the input image, the segmented

plate, the the text regions with the recognition confidence, as well as the four additionally

requested images. As for the previous plate, the plate localization and segmentation did

not need any manual intervention. Again, the maximum number of allowed retries are

exhausted. The requested directions for the additional images are three times the left,

and once the right area of the plate. This is expected, as the OCR is not trained for the

font used on the plate and most text regions are in the upper half. The execution times

of the individual steps are listed in the second column of Table 4.15 and are comparable

4.3. Application 67

(a) Input (b) Plate (c) Result

(d) (e) (f) (g)

Figure 4.11: Plate detection steps for a plate of type m on an Android device.
(a) Initial image of the plate. (b) Segmented and warped plate. (c)
Visualization of the text regions and the OCR confidence. (d) First
requested detail image of the right side. (e) Second requested detail
image of the left side. (f) Third requested detail image of the left
side. (g) Fourth requested detail image of the left side.

to those of the previous plate. The plate segmentation, preprocessing and OCR, as well

as image matching are again the slowest operations. The final output consists of 17 out of

44 (38.63%) entirely correct regions, as well as 185 out of 244 (75.81%) correct characters.

There are 5 instances where the characters ’1’, ’/’, or ’I’ are reported as ’l’. This is a typical

error that occurs when the OCR is not trained for a given font. Other frequent errors

include mix ups of the digit ’5’ and the letter ’S’. Furthermore, there are 19 cases of missing

or wrong (swapped dot and comma) decimal separators, caused by the preprocessing.

The last plate is of type m and is made of sheet metal. As such, the plate has a

reflective surface. Contrary to the first two plates, it is illuminated solely by artificial

light. The input image, extracted and warped plate, as well as the additionally requested

images and the result visualization are shown in Figure 4.11. It should be noted, that

this plate was not processed on the Android device, because the camera was unable to

automatically focus on the reflective surface of the plate. As this focus method is the only

one supported by the Android plate detector prototype, it is not able to capture an image

that contains readable text. Therefore, a camera application that allows for more focus

68 Chapter 4. Evaluation and Experiments

Operation Type k Type l

Plate detection 42 ms 61 ms

Plate segmentation 893 ms 793 ms

Feature vector construction 300 ms 298 ms

Classification 0.356 ms 0.391 ms

Text region mapping 541 ms 570 ms

Preprocessing and OCR 1675 ms 2269 ms

Retry 1 matching 3112 ms 3621 ms

Retry 1 preprocessing and OCR 2636 ms 1518 ms

Retry 2 matching 1853 ms 1776 ms

Retry 2 preprocessing and OCR 2559 ms 1161 ms

Retry 3 matching 1798 ms 1866 ms

Retry 3 preprocessing and OCR 2807 ms 2569 ms

Retry 4 matching 1793 ms 2062 ms

Retry 4 preprocessing and OCR 6841 ms 2545 ms

Total 26850.356 ms 21109.391 ms

Table 4.15: Execution times of the different stages of the Android application.

control was used to acquire the images, which were then processed by the PC version of

the application. For this reason, no timing values are listed as they cannot be meaningfully

compared to the other measurements. As for the previous plate, the OCR is not trained

for the font and all four allowed retries are exhausted. The first additionally requested

image is from the right area of the plate and the following three from the left area. In the

final output, 24 out of 39 (61.53%) text regions are completely correct, with 195 out of

223 (87.44%) correct characters. As for the first two plates, a number of errors are caused

by the OCR preprocessing, resulting in missing or wrong hyphens and decimal separators.

Moreover, a number of character mix ups, such as ’0’ and ’D’, as well as ’0’ and ’O’ are

also present. These are again a consequence of the untrained OCR for this particular font.

In conclusion, we can see that the plate localization, extraction and warping, text region

adjustment, as well as processing of additional images work properly for the images at

hand. The biggest issues are caused by the OCR and preprocessing, where the inaccuracies

are the result of two issues: The first one are interchanged characters, which are the result

of an OCR that is not trained for the given font. The second issue is caused by the region

preprocessing, which is tuned for aged plates and therefore repeatedly removes decimal

separators and hyphens. Occasionally, if they are not filtered, the OCR confuses dots and

commas. As described in Section 4.2, this is caused by the preprocessing, that removes

part of the commas if they overlap with the frame around the text. The last two tested

plates, with the types l and m, are labeled with a font where the comma character is only

marginally larger then the dot character. When looking at the images, it occasionally

requires effort to distinguish them. Theses problems are also the reason, that in all three

cases, the maximum allowed number of additional images are requested. Finally, another

4.3. Application 69

(a) Input (b) Result

(c) Input (d) Result

Figure 4.12: Input images acquired at different angles relative to the plate. (a)
Input image. (b) Up-right extracted plate. The size ratio is correct,
but the upper right parts of the plate are blurry. (c) Input image. (d)
Up-right extracted plate. The estimated size of the extracted plate
is wrong, which results in a squeezed image.

matter is the speed of the application. The processing times are acceptable for actual

usage, but should be improved further.

4.3.1 Edge Cases

Finally, we show a number of sample images that were not captured under optimal con-

ditions, as well their results. The examples include images where the camera is placed

at an acute angle relative to the plate, as well as plates captured under bad illumination

conditions.

Figure 4.12 shows two images, where the capturing device is located at different angles

relative to the plate. Our approach to segment the plate fails for both images. Therefore,

manual intervention which consists of annotating foreground and background areas is

70 Chapter 4. Evaluation and Experiments

(a) Input (b) Result

(c) Plate (d) Result

Figure 4.13: Samples with problematic lighting conditions. (a) Input image ac-
quired in a dark room. The only light source is the flash. (b) Text
regions and recognition confidence. The text extraction is unaffected
by the illumination. (c) A plate that contains a strong shadow at the
bottom. (d) Classification succeeds, the OCR output for the regions
under the shadow contains a number of incorrect characters.

necessary. The first plate, displayed in Figure 4.12b, is extracted with the correct size

ratio. However, the right upper region is blurry as the camera could not focus the entire

plate at this capturing angle. The blurry text causes problems during preprocessing and

OCR. For the second plate, the size is incorrectly estimated, causing a squeezed image

with an incorrect size ratio. While the classifier determines the correct type and the text

regions are adjusted to match, which can be seen in Figure 4.12d, the regions are offset by

a few pixels to the left and bottom. Combined with the small size, this results in cropped

text. As connected components that touch the border are removed during preprocessing,

4.3. Application 71

(a) (b) (c)

Figure 4.14: Classification results for badly illuminated plates. (a) The plate color
is mostly unchanged. The image is classified correctly. (b) The image
is noisy and is classified incorrectly as type m. (c) The image has
wrong colors and contains a lot of noise. It is classified incorrectly as
type m.

the OCR output for this image is not usable.

Problems are also caused by the lighting conditions under which the plate images are

taken. Figure 4.13 shows two images of plates with lighting conditions that are likely to

occur in real word usage. The first image, displayed in Figure 4.13a, was captured in a

dark room, with the flash of the mobile device as the only light source. Since the flash is

pointed at the center of the plate, the outer regions of the image are darker. This hides

possibly present structures in the background, while highlighting the plate itself, which

aids plate detection and segmentation. Furthermore, it should be noted that the images

of this plate class, used to train the classifier, do not contain any shadows or modified

colors. Also, the approaches used in the text extraction and OCR preprocessing steps are

robust against color shifts and gradients. The image is classified correctly and we can

see in Figure 4.13b, that the OCR reports four regions with a low confidence score. The

second example is shown in Figure 4.13c. The image contains a shadow that covers a large

region at the bottom of the plate. The plate is already extracted, because the shadow

interferes with the plate segmentation, again requiring manual intervention. As in the

previous example, the plate is classified correctly. However, the OCR output of the text

regions, covered by the shadow, contain a number of incorrect characters. Figure 4.13d

shows the text regions and the recognition confidence. As can be seen, the result contains

21 regions with a low OCR score (drawn in blue color). This is the case because the image

is blurry, which is caused by the large shadow, that interferes with the autofocus of the

camera.

Figure 4.14 shows three images of nameplates, that were captured under low light

72 Chapter 4. Evaluation and Experiments

conditions with no flash. This results in blurry images, that contain wrong colors and a

lot of noise. The first plate, shown in Figure 4.14a, is noisy, the lower part is very dark,

and the text is not readable. However the plate color is mostly unaffected and this plate is

correctly classified. The next plate, shown in Figure 4.14b, is incorrectly classified as type

m. In this image, the right and top regions are very dark and it contains about the same

amount of noise as the first image. The text in the brighter regions is also not readable.

The difference to the previous plate is the wrong color, which turned orange. The last

plate, displayed in Figure 4.14c, is also classified incorrectly as type m. In contrast to the

previous two images, no parts of the plate are dark and the entire text can be recognized

by a human. However, the plate contains a large amount of noise, which affects the LBP

feature extraction. In addition, when compared to the original color, the orange plate color

is entirely incorrect. These images show that incorrect colors, that affect a large part of the

plate, in combination with noisy and blurry images, result in misclassifications. Moreover,

the text extraction steps, that follow the classification, fail for all three images. The first

step that fails is the Maximally Stable Extremal Regions (MSER) extraction and grouping.

For the shown images, there are none or a very low number of detected regions, which

is caused by the low contrast. Even if the text region locations would be correct, the

preprocessing and OCR would generate unusable output, as the text is only faintly visible

and not readable by a human.

5
Conclusion and Future Work

5.1 Summary

In this Master’s Thesis, a method to detect, classify, and extract text from a known

set of nameplates was presented. The intended use case involved an operator that cap-

tures plates attached to electric power supply components, such as power transformers or

circuit breakers, using a mobile device where the extracted content is transmitted to main-

tenance equipment. Our presented approach contains the following steps: The nameplate

is localized in the input image, segmented, and classified using machine learning. The

classification stage uses color information, histograms of Local Binary Patterns (LBP),

and the plate size ratio as features to determine the type using a random forest. For each

type, the layout of the plate and so the positions of the labeled text regions were given.

The list of defined fields is matched against the detected fields on the plate to account

for possible inaccuracies introduced by the plate extraction. The adjusted regions are

preprocessed to remove noise, and passed to the Optical Character Recognition (OCR).

The preprocessing of the OCR extracts connected components, filters them by size, and

groups them into lines of text. The employed OCR is the well known open source project

Tesseract. If the OCR reported a low confidence score for at least one text region, the user

is signaled to acquire a new image of that part of the plate, which is then matched to the

existing image and the text processing steps are executed again. The process completes,

if all regions have a sufficiently high score or a fixed number of retries are exhausted. The

output consists of the detected plate type, the list of regions including the extracted text

and the OCR reliability.

To show the significance of the designed feature vector, we used a dataset of 125 images

of 15 classes which represented a subset of all existing types of nameplates. It contains

aged, as well as new types. The results showed, that the local binary pattern histograms

contribute most to the classification result, followed by the color features, and finally

the plate size ratio. Evaluation of the combined feature vector showed the robustness

of the classification under different lighting conditions, such as the presence of shadows

73

74 Chapter 5. Conclusion and Future Work

and specular reflections, as well as blurriness and incorrect colors, caused by insufficient

illumination. Furthermore, we demonstrated that training the OCR using the specific font

of the test plate could reduce the number of recognition errors. The remaining errors were

caused by the text region preprocessing, which removes hyphens, commas, and dots, in

case they are small, compared to the text region, or merged with the borders around the

text. This is caused by the filtering parameters, which are tuned for aged plates. The

very restrictive text region preprocessing also removes letters that were partly chipped

off or faded. Further, the plate localization may be inaccurate or fail if there is no clear

boundary between the plate and the background. Such cases occur if the borders of the

plate are overpainted, or dirt and moss accumulate.

Testing on an Android device with three available plates showed good results, if the

OCR was trained for the fonts on the nameplates. Highly reflective plates are difficult

to capture and require manual focus control, which is not implemented in the prototype.

However, it is unlikely that many such plates are mounted to devices, because if a plate is

exposed to environmental conditions for a time, the surface will tarnish quickly. Overall

the developed prototype is able to extract the requested information from plates and

execution time is suitable for actual usage.

5.2 Further Work

We have shown that the proposed algorithm is usable in real world conditions. However,

we have some ideas how to further improve it. The segmentation could be enhanced

by incorporating information acquired from the plate images that are used to train the

random forest. Examples are the positions of text or logos, which can be used to estimate

the plate boundary more precisely. Furthermore, the evaluation of the classifier shows

that two classes are sometimes misclassified. The first class consists only of three visually

distinctive images, which makes it very hard to classify them correctly. The second one also

contains a lot of variance in the form of reflections. To improve the accuracy, no changes

to the classification approach are necessary, but a larger number of samples are needed for

training. Finally, some improvements are possible for the last stages, preprocessing and

OCR. It is highly unlikely to always achieve perfect output, because some text (especially

embossed text or content of very old plates) is difficult to recognize even by a human. A

possibility would be to individually preprocess different types of marking. For example,

embossed text is much fainter, but the metal around the letters contains a lot of noise that

is caused by the imprinting. Further, knowledge about the format of the field contents

could be used to automatically verify and correct the detected content, such as decimal

separators of digits or hyphens in serial numbers. While the employed OCR is generally

regarded as the best open source solution, it is not tuned for our intended use case.

Therefore, another possibility would be to develop a new OCR, that is robust against

noise.

Since the Android application is a prototype to demonstrate the functionality of the

5.2. Further Work 75

developed algorithm, it should be integrated into a more consumer orientated user interface

that, for example, includes better image acquisition controls, such as focus and flash. As

shown in the previous section, the runtime requirements of the algorithm on a mobile

device are well suited for regular usage. However, a more fluent workflow can be gained by

exploiting the GPGPU capabilities, such as OpenCL, of modern smartphones. Especially

image processing operations, such as the region preprocessing or keypoint matching, would

gain performance due to the parallelism.

A
List of Acronyms

BRISK Binary Robust Invariant Scalable Keypoints

CSER Category-Specific Extremal Regions

DMOS Description and Modification of Segmentation

EPF Enhanced Position Formalism

GMM Gaussian Mixture Models

HSI Hue, Saturation and Intensity

LBP Local Binary Patterns

MSER Maximally Stable Extremal Regions

OCR Optical Character Recognition

ORB Oriented FAST and Rotated BRIEF

PPHT Progressive Probabilistic Hough Transform

RANSAC Random Sample Consesus

SIFT Scale-Invariant Feature Transform

SURF Speeded Up Robust Features

SVM Support Vector Machines

SWT Stroke Width Transform

77

BIBLIOGRAPHY 79

Bibliography

[1] Amano, A. and Asada, N. (2003). Graph grammar based analysis system of com-

plex table form document. In 7th International Conference on Document Analysis and

Recognition, volume 2, pages 916–916. IEEE Computer Society. (page 14)

[2] Bhaskar, S., Lavassar, N., and Green, S. (2010). Implementing optical character recog-

nition on the android operating system for business cards. (page 9)

[3] Bosch, A., Zisserman, A., and Munoz, X. (2007). Image classification using random

forests and ferns. Proceedings of IEEE International Conference on Computer Vision

(ICCV). (page 28)

[4] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32. (page 17, 33, 34,

56)

[5] Breiman, L. (2002). Manual on setting up, using, and understanding random forests

v3.1. http://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf.

(page 60)

[6] Canny, J. (1986). A computational approach to edge detection. Transactions on

Pattern Analysis and Machine Intelligence, pages 679–698. (page 19)

[7] Caruana, R. and Niculescu-Mizil, A. (2006). An empirical comparison of supervised

learning algorithms. In 23rd international conference on Machine learning, pages 161–

168. ACM. (page 34)

[8] Chang, F., Chen, C.-J., and Lu, C.-J. (2004a). A linear-time component-labeling

algorithm using contour tracing technique. Computer Vision and Image Understanding,

93(2):206–220. (page 22, 24)

[9] Chang, S.-L., Chen, L.-S., Chung, Y.-C., and Chen, S.-W. (2004b). Automatic license

plate recognition. IEEE Transactions on Intelligent Transportation Systems, 5(1):42 –

53. (page 7, 21, 41)

[10] CIE, Colorimetry (1986). Publication no. 15.2. Bureau Central De la CIE, Vienna.

(page 31)

[11] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,

20(3):273–297. (page 5, 41)

[12] Coüasnon, B. (2004). Dealing with noise in dmos, a generic method for structured

document recognition: An example on a complete grammar. In Graphics Recognition.

Recent Advances and Perspectives, pages 38–49. Springer. (page 14, 15)

http://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf

80

[13] Coüasnon, B., Brisset, P., and Stéphan, I. (1995). Using logic programming lan-

guages for optical music recognition. In 3rd International Conference on The Practical

Application of Prolog, pages 115–134. (page 15)

[14] Coüasnon, B. and Lemaitre, A. (2014). Recognition of tables and forms. Handbook

of Document Image Processing and Recognition, pages 647–677. (page 12)

[15] Dhiman, S. and Singh, A. (2013). Tesseract vs gocr a comparative study. International

Journal of Recent Technology and Engineering (IJRTE), pages 80–83. (page 61)

[16] Donoser, M., Arth, C., and Bischof, H. (2007). Detecting, tracking and recognizing

license plates. Proceedings of Asian Conference on Computer Vision (ACCV), pages

447–456. (page 5, 6, 21, 35, 36, 41)

[17] Duda, R. O. and Hart, P. E. (1972). Use of the hough transformation to detect lines

and curves in pictures. Communications of the ACM, 15(1):11–15. (page 10, 18, 19)

[18] Epshtein, B., Ofek, E., and Wexler, Y. (2010). Detecting text in natural scenes

with stroke width transform. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2963–2970. IEEE. (page 35)

[19] Fan, K.-C., Wang, Y.-K., and Chang, M.-L. (2001). Form document identification us-

ing line structure based features. In 6th International Conference on Document Analysis

and Recognition, pages 704–708. IEEE. (page 13)

[20] Gomez, L. and Karatzas, D. (2013). Multi-script text extraction from natural scenes.

In 12th International Conference on Document Analysis and Recognition (ICDAR),

pages 467–471. IEEE. (page 35)

[21] Guerzhoy, M. and Zhou, H. (2008). Segmentation of rectangular objects lying on

an unknown background in a small preview scan image. In Canadian Conference on

Computer and Robot Vision (CRV), pages 369–375. IEEE. (page 11)

[22] Hartl, A. and Reitmayr, G. (2012). Rectangular target extraction for mobile aug-

mented reality applications. In 21st International Conference on Pattern Recognition

(ICPR), pages 81–84. IEEE. (page 19)

[23] Heliński, M., Kmieciak, M., and Parko la, T. (2012). Report on the comparison of

tesseract and abbyy finereader ocr engines. Technical report, Poznań. (page 61)

[24] Herley, C. (2004). Efficient inscribing of noisy rectangular objects in scanned images.

In International Conference on Image Processing (ICIP), volume 4, pages 2399–2402.

IEEE. (page 11)

[25] Jung, C. R. and Schramm, R. (2004). Rectangle detection based on a windowed hough

transform. In 17th Brazilian Symposium on Computer Graphics and Image Processing,

pages 113–120. IEEE. (page 19)

BIBLIOGRAPHY 81

[26] Lagunovsky, D. and Ablameyko, S. (1999). Straight-line-based primitive extraction in

grey-scale object recognition. Pattern Recognition Letters, 20(10):1005–1014. (page 20)

[27] Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). Brisk: Binary robust invariant

scalable keypoints. In International Conference on Computer Vision (ICCV), pages

2548–2555. IEEE. (page 45)

[28] Luo, X.-P., Li, J., and Zhen, L.-X. (2004). Design and implementation of a card

reader based on build-in camera. In Proceedings of the 17th International Conference

on Pattern Recognition (ICPR), volume 1, pages 417–420. IEEE. (page 8, 41)

[29] Matas, J., Chum, O., Urban, M., and Pajdla, T. (2004). Robust wide-baseline stereo

from maximally stable extremal regions. Image and Vision Computing, 22(10):761–767.

(page 5, 36)

[30] Matas, J. and Zimmermann, K. (2005). Unconstrained licence plate and text local-

ization and recognition. In IEEE Transactions on Intelligent Transportation Systems,

pages 225–230. IEEE. (page 6, 7, 21, 35)

[31] Mollah, A. F., Basu, S., and Nasipuri, M. (2011). Segmentation of camera captured

business card images for mobile devices. CoRR, abs/1101.0457. (page 9)

[32] Ojala, T., Pietikäinen, M., and Harwood, D. (1996). A comparative study of tex-

ture measures with classification based on featured distributions. Pattern recognition,

29(1):51–59. (page 31)

[33] Rother, C., Kolmogorov, V., and Blake, A. (2004). Grabcut: Interactive foreground

extraction using iterated graph cuts. In ACM Transactions on Graphics (TOG), vol-

ume 23, pages 309–314. ACM. (page 24)

[34] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). Orb: an efficient

alternative to sift or surf. In International Conference on Computer Vision (ICCV),

pages 2564–2571. IEEE. (page 45)

[35] Sako, H., Seki, M., Furukawa, N., Ikeda, H., and Imaizumi, A. (2003). Form reading

based on form-type identification and form-data recognition. In 12th International

Conference on Document Analysis and Recognition, volume 2, pages 926–926. IEEE

Computer Society. (page 13)

[36] Shinjo, H., Hadano, E., Marukawa, K., Shima, Y., and Sako, H. (2001). A recursive

analysis for form cell recognition. In 6th International Conference Document Analysis

and Recognition, pages 694–698. IEEE. (page 13)

[37] Smith, R. (2007). An overview of the tesseract ocr engine. In International Conference

on Document Analysis and Recognition (ICDAR), volume 7, pages 629–633. (page 41,

61)

82

[38] Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. (2012). Man vs. computer:

Benchmarking machine learning algorithms for traffic sign recognition. Neural networks,

32:323–332. (page 34)

[39] Strobl, C. and Zeileis, A. (2008). Danger: High power! - exploring the statistical

properties of a test for random forest variable importance. (page 60)

[40] Tao, W.-b., Tian, J.-w., and Jian, L. (2002). A new approach to extract rectangular

building from aerial urban images. In 6th International Conference on Signal Processing,

volume 1, pages 143–146. IEEE. (page 20)

[41] Ting, A. and Leung, M. K. (1999). Form recognition using linear structure. Pattern

Recognition, 32(4):645–656. (page 14)

[42] Wu, Z., Kong, Q., Liu, J., and Liu, Y. (2011). A rectangle detection method for

real-time extraction of large panel edge. In 6th International Conference on Image and

Graphics (ICIG), pages 382–387. IEEE. (page 18)

[43] Zhou, X., Yu, K., Zhang, T., and Huang, T. S. (2010). Image classification using

super-vector coding of local image descriptors. In Computer Vision–ECCV, pages 141–

154. Springer. (page 28)

	Introduction
	Related Work
	License Plates
	Business Cards
	Scanned Objects
	Form Recognition
	Summary

	Nameplate Detection and Classification Approach
	Nameplate Detection and Extraction
	Hough based Methods
	Line Primitive based Methods
	Feature based Methods
	Our Approach
	Plate Extraction

	Plate Classification
	Nameplate Feature Vector
	Plate Color
	Local Binary Patterns
	Size Ratio
	Final Feature Vector

	Classification using a Random Forest

	Text Detection
	Character Extraction using Maximally Stable Extremal Regions
	Character Grouping
	Noise Filtering

	Text Extraction
	Guided Image Acquisition
	Summary

	Evaluation and Experiments
	Evaluation of the Classifier
	Parameter Selection using Grid Search
	Plate Color
	Local Binary Patterns
	Size Ratio
	Combination of all Features

	Evaluation of the OCR
	Application
	Edge Cases

	Conclusion and Future Work
	Summary
	Further Work

	List of Acronyms
	Bibliography

