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Abstract

The physics of materials with strongly correlated electrons is one of the most fasci-
nating topics in modern solid-state research. Standard band structure methods often
provide even qualitatively wrong results and are not suitable for an accurate descrip-
tion of strongly correlated systems and thus a many-body approach based on model
Hamiltonians is required.

One of the most popular and successful methods available for strongly correlated ma-
terials is the dynamical mean-field theory (DMFT). To solve the self-consistent set of
DMFT equations, it is necessary to determine the Green’s function of the so-called
Anderson impurity model. The main aim of this work is the development and the im-
plementation of a new impurity solver based on exact diagonalization and an adapted
version of cluster perturbation theory.

Subsequently, we test our method on the infinitely connected Bethe lattice by com-
paring the self-energy as well as the density of states to results obtained with exact
diagonalization and other impurity solvers. A special focus is put on the Mott-Hubbard
metal-insulator transition and the influence of electronic interaction on the quasipar-
ticle weight. Furthermore, simple mixing and the Broyden method are investigated as
mixing schemes to enhance the convergence of the DMFT self-consistency cycle.

Finally, we modify our solver to allow a treatment of multi-orbital impurity systems
in the framework of DFT+DMFT, which is a general approach to combine realistic
density functional theory (DFT) calculations with a successive application of DMFT
to the strongly correlated subspace. The transition metal oxide SrVO3 with its cubic
crystal structure is chosen as a benchmark material.

With our real-frequency impurity solver we are able to obtain qualitatively correct
results and to significantly improve on exact diagonalization for the same computational
cost.
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Kurzfassung

Die Physik der Materialien mit stark korrelierten Elektronen ist eines der faszinie-
rendsten Gebiete der modernen Festkörperforschung. Standard Bandstrukturmethoden
geben oft qualitativ falsche Resultate und sind nicht geeignet für die präzise Beschrei-
bung von stark korrelierten Systemen, weswegen ein auf Modell-Hamiltonoperatoren
basierender Vielteilchenzugang erforderlich ist.

Eine der gängisten und erfolgreichsten Methoden der numerischen Vielteilchenphysik
ist die dynamische Molekularfeldtheorie (DMFT). Um die selbstkonsistenten Gleichun-
gen der DMFT zu lösen, muss die Green’sche Funktion eines sogenannten Anderson-
Störstellenmodells bestimmt werden. Das Ziel dieser Arbeit ist die Entwicklung und
die Implementierung einer neuen Lösungsmethode, welche auf exakter Diagonalisierung
und einer adaptierten Version der Cluster-Störungstheorie basiert.

Anschließend testen wir unsere Methode auf dem unendlich koordinierten Bethe-Gitter,
indem wir sowohl die Selbstenergie als auch die Zustandsdichte mit Resultaten von ex-
akter Diagonalisierung und anderen Störstellenlösern vergleichen. Ein spezieller Fokus
wird auf den Mott-Hubbard Metall-Isolator Übergang, sowie den Einfluss der elek-
tronischen Wechselwirkung auf das Quasiteilchengewicht, gelegt. Um die Konvergenz
des DMFT-Selbstkonsistenz-Zyklus zu verbessern, werden einfaches Mischen und die
Broyden-Methode als mögliche Mischschemen untersucht.

Als letzten Teil dieser Arbeit modifizieren wir unseren Störstellenlöser für die Anwen-
dung auf Mehrorbitalsysteme im Rahmen von DFT+DMFT. Dieser allgemeine Zugang
kombiniert realistische Dichtefunktionaltheorierechnungen (DFT) mit einer darauffol-
genden Anwendung von DMFT auf den stark korrelierten Unterraum. Das Übergangs-
metalloxid SrVO3 mit seiner kubischen Kristallstruktur wird als Benchmarkmaterial
herangezogen.

Mit unserem Störstellenlöser für reelle Frequenzen gelingt es, qualitativ richtige Ergeb-
nisse zu erzielen und eine signifikante Verbesserung im Vergleich zur exakten Diagona-
lisierung, bei gleichem Rechenaufwand, zu erreichen.
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1. Introduction

Nowadays, theoretical solid-state physics is able to explain physical properties of many
materials, like simple metals, semiconductors and insulators. On the other hand, ma-
terials which are governed by a strong electronic correlation in narrow d- and f-orbitals
turn out to be notoriously difficult to describe. In such materials the single electron
picture fails, because the electrons experience a strong Coulomb repulsion. The pro-
nounced influence of an electron on all the others prohibits the treatment of electrons
as independent particles. Especially, in transition metals (e.g. copper, iron and vana-
dium) and their oxides correlations are the determinant factor for the emergence of
fascinating properties. High-Tc superconductivity [1], colossal magneto-resistance [2]
or a huge thermoelectric response [3] are just a few examples for the broad variety
of exotic phenomena displayed by strongly correlated electron systems. But precisely
the correlation effects, which lead to the richness of surprising phenomena, make the
numerical and analytical study all the more challenging.

Density functional theory (DFT) [4, 5] calculations often give even qualitatively wrong
results for such correlated materials (e.g. a compound is predicted to be a metal while
it is in fact an insulator). Standard band structure methods are not sufficient for
the treatment of strongly correlated materials and thus most theoretical attempts are
based on the introduction and investigation of model Hamiltonians. That is, the full
Hamiltonian is simplified to an effective Hamiltonian with only a few relevant degrees of
freedom, which usually describe a few valence electron orbitals around the Fermi energy.
The well-established Hubbard model [6] is one of the simplest, but it is considered to
capture the essential physics of strongly correlated electron systems ranging from the
Mott-Hubbard metal-insulator transition [7] and antiferromagnetism [8] to possible
d-wave superconductivity [9].

Despite the lack of an exact solution for the Hubbard model, adequate theoretical
approaches are obtained by using approximations. One of the most powerful attempts
to cope with the Hubbard model, in particular regarding calculations for real materials,
is the dynamical mean-field theory (DMFT) [10, 11, 12, 13]. DMFT, as discussed in
chapter 2 of this thesis, is a non-perturbative method based on the idea of describing
a correlated material in terms of a local model. The consequent mapping to a local
system leads to the Anderson impurity model (AIM) [14] and a self-consistent set
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1. Introduction

of equations. Although the computational difficulty is now just shifted to solving the
impurity model, the AIM is among the best studied quantum models and the advantage
lies in the huge variety of different numerical tools available.

A simple and yet frequently used impurity solver is exact diagonalization (ED) [15],
which is based on a finite discretization of the AIM bath degrees of freedom. Of course,
the results are affected by severe finite-size effects and the solver is additionally limited
by the exponential growth of the Hilbert space. However, ED does not suffer from a
restriction to a certain class of problems and is therefore well suited for studying multi-
orbital systems. ED turns out to be a very fast method that still allows for drawing
qualitatively correct conclusions. In the first part of chapter 3 we give a review of ED
and discuss the important aspects of an efficient numerical implementation.

The present work investigates a new approach based on cluster perturbation theory
(CPT) [16, 17]. Within CPT a larger system is divided into small exactly solvable
clusters while the coupling between the individual parts gets treated in strong-coupling
perturbation theory. In principle, CPT allows to work with a larger impurity system
for almost the same computational effort as ED. CPT and its variational extension
named variational cluster approach (VCA) [18] were probed for the AIM by Martin
Nuss [19, 20]. A logical consequence, as well as the aim of this work, is to develop
an impurity solver for DMFT based on CPT. To stay within the scope of this thesis
we focus only on CPT, but also VCA might be well suited as impurity solver. An
introduction to CPT and a detailed guidance to our newly developed cluster based
approach is elaborated in the second part of chapter 3.

In chapter 4 we benchmark our impurity solver for the single-orbital Hubbard model
on the Bethe lattice. In the comparison of our results with other impurity solvers
we consider the self-energy, the quasiparticle weight and the density of states as the
important quantities of interest. Furthermore, we investigate Broyden’s method as
mixing scheme to enhance the convergence of to the DMFT solution. In a second step,
our impurity solver is extended to multi-orbital problems and applied to the transition
metal oxide SrVO3 within the DFT+DMFT framework. The obtained results for
SrVO3 are presented in chapter 5.
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2. Strong correlations and the
dynamical mean-field theory

As discussed in the introduction, electrons in a solid are often described by an effective
many-body model. One of the simplest model Hamiltonian – and yet without exact
solution for dimensions higher than one – to describe strongly correlated materials is
the so-called Hubbard model [6]. A prosperous approach to deal with this model is
the dynamical mean-field theory (DMFT) [10, 11, 12, 13], which becomes exact in the
limit of infinite dimensions. DMFT is mathematically formulated in terms of Green’s
functions and thus a short overview of the Green’s functions theory is given before the
introduction of DMFT. For simplicity reasons DMFT is first outlined for the single-
orbital case and afterwards generalized to multi-orbital systems in terms of the ab-initio
DFT+DMFT (or LDA+DMFT) method [12, 21, 22, 23].

2.1. Hubbard model

The principle picture leading to the Hubbard model is that of individual atoms (or-
bitals) arranged on a regular lattice, whereby the electrons can move to neighboring
atoms and additionally experience an on-site interaction. Every lattice site is basically
just one energy level (one orbital) which can be empty or occupied by either one spin
up/down electron or one spin up and one spin down electron. The Pauli principle
prohibits two electrons with the same spin sitting on the same lattice site.

The movement of electrons is modeled with a kinetic energy term that allows an electron
sitting on a certain lattice site to hop to one of its neighboring sites. In principle, a
direct hopping to any other site would be possible, but is due to the exponential
diminution of atomic wave functions very unlikely. Therefore, very often only nearest-
neighbor hopping is taken into account.1 It should be noted that this treatment of the
kinetic energy term in the Hubbard model is equivalent to a tight-binding approach.

1For example, to describe high-Tc superconductors it is necessary to consider also next-nearest-
neighbor hoppings [24].
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2. Strong correlations and the dynamical mean-field theory
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Figure 2.1.: Hubbard model describing electrons on a 2D square lattice. The electrons
can move to neighboring sites with hopping strength t and additionaly feel
a local Coulomb repulsion U .

In addition to their movement the electrons interact with each other via the Coulomb
interaction. In the Hubbard model those interactions are taken into account with a
potential energy term, which is zero for empty sites and sites with one electron, but
penalizes two electrons on the same site. Electronic interactions between different sites
are neglected, because the apparently biggest contribution comes from two electrons
occupying the same orbital.

Putting all of that together the single-band (single-orbital) Hubbard Hamiltonian in
second quantization reads

H �
¸
xi,jyσ

tij

�
c:iσcjσ � h.c.

	
� µ

¸
iσ

niσ � U
¸
i

niÒniÓ. (2.1)

The kinetic energy (first term) models the electron movement by destructing it on site
j and creating it again (with the same spin) on site i. This process is possible between
all neighboring sites (denoted by xi, jy) and for each spin σ. The potential energy
(third term) counts the electrons on each site and adds an interaction energy U if a
site is doubly occupied. The second term is the chemical potential of the system, which
controls the filling. In the case of one electron per lattice site and particle symmetry
(half-filling) the chemical potential is given by µ � U{2. Dealing with the Hubbard
Model might seem simple, but it turns out to be a truly difficult problem.

Moreover, the simple Hubbard model, although grasping the important physics, is
hardly sufficient to describe the complexity of a real material. Hence, for a realistic
description of materials two additional aspects have to be considered [25]: first, the
effect of orbital degrees of freedom on the hopping of electrons and second, the role of
intra-atom interactions between different orbitals on a certain site. That is why, the
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2.2. Method of Green’s functions

Hubbard model has been extended to include multiple orbitals by assigning an orbital
index to each lattice site and including additional orbital interaction terms [6, 26]

H ��
¸
xi,jy
mm1σ

timjm1

�
c:imσcjm1σ � h.c.

	
� µ

¸
imσ

nimσ

�
¸
i

�
U
¸
m

nimÒnimÓ �
¸

m¡m1,σ

�
U 1nimσnim1σ̄ � pU 1 � Jqnimσnim1σ

	
�

¸
m�m1

J
�
c:imÓc

:
im1Òcim1ÓcimÒ � c:im1Óc

:
im1ÒcimÓcimÒ � h.c.

	�
.

(2.2)

The first line of equation 2.2 and the first interaction term in the second line are
basically the same as in the single-orbital Hubbard model, but now carrying also an
additional orbital index. The second (third) Coulomb term describes the interaction of
two electrons with opposite (same) spin but sitting in different orbitals. This Hamilto-
nian essentially captures Hund’s rule, because a configuration with two aligned spins
has an energy lowered by J . Note that terms in the last line depict spin flip and pair
hopping processes. The Hamiltonian 2.2 is often written in the more general form of
the local interaction term

H ��
¸
xi,jy
mm1σ

timjm1

�
c:imσcjm1σ � h.c.

	
� µ

¸
imσ

nimσ

� 1
2
¸
i

���¸
αβγδ
σσ1

rUmm1m2m3c:imσc
:
im1σ1cim3σ1cim2σ

��� , (2.3)

wheremm1m2m3 are orbital indices. rUmm1m2m3 is the general 4-index interaction tensor.

2.2. Method of Green’s functions

In this section, which is loosely based on the books [27, 28], a short introduction to the
essential parts of the Green’s function theory is given. More on the method of Green’s
function theory can be found therein.

The key quantity of interest is the fermionic single-particle2 retarded Green’s function

Gνν1 pt, t1q � �iΘ pt� t1q
A!

cν ptq , c:ν1 pt1q
)E

, (2.4)

2This Green’s function is called single-particle Green’s function, because it describes the propagation
of a single particle in a full many-body system. Thus, the Green’s function does also include all
kind of correlation effects.
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2. Strong correlations and the dynamical mean-field theory

where tA,Bu � AB � BA is the anticommutator. The indices ν � timσu and ν 1 �
tjm1σ1u are composed indices of the lattice site, the orbital and the spin. If the Hamil-
tonian H is independent of time, i.e. the system is translationally invariant in time,
the retarded Green’s function only depends on the time difference τ � t� t1. Hence, it
is convenient to Fourier transform the Green’s function to the frequency domain

Gνν1 pωq �
�8»
�8

dτGνν1 pτq eiωτ . (2.5)

To ensure the convergence of the integral ω Ñ ω� iη has to be used, where η � 0� is a
positive infinitesimal. This is necessary, because the Green’s function has poles on the
real axis exactly at the excitation energies of the system. Introducing a small η shifts
the poles off the real axis into the lower complex half-plane and makes Gνν1 pωq analytic
in the upper half-plane. As the Hubbard model is infinite and translationally invariant,
a second Fourier transform is usually performed to obtain the Green’s function in
momentum space G pk, ωq. This retarded Green’s function is of major interest, because
the spectral function is embedded in its imaginary part

A pk, ωq � � 1
π
= rG pk, ω � iηqs . (2.6)

Note that the spectral function A pk, ωq has to obey the sum-rule

�8»
�8

dωA pk, ωq � 1. (2.7)

Summing the spectral function A pk, ωq over k gives3

ρ pωq � ˆ̧
k

A pk, ωq , (2.8)

which is the density of states (DOS) of the system. The electron density n, i.e. the
filling of the system, is then given by

n �
8»

�8

dω
ρ pωq
eβω � 1 . (2.9)

Another important quantity is the so-called Matsubara Green’s function, defined on the
imaginary axis iω. This Green’s function is directly connected to a finite temperature
and in many cases easier to compute than the retarded Green’s function. More on

3All k sums
°̂

k

in this work imply a normalized summation over the 1. Brillouin zone, i.e.
°̂

kPBZ
1 � 1.
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2.3. The dynamical mean-field theory

Matsubara Green’s functions can be found in appendix A. From this point onwards
the complex variable z will be used for both imaginary and real frequencies.

A central concept in many-body physics is that of the self-energy Σ pk, zq, which is
defined by the Dyson equation

G�1 pk, zq � G�1
0 pk, zq � Σ pk, zq . (2.10)

This equation expresses the full Green’s functionG pk, zq in terms of the non-interacting4

Green’s function G0 pk, zq and the self-energy Σ pk, zq. The self-energy contains all
contributions coming from the Coulomb interaction. The Green’s function of non-
interacting electrons is given by

G0 pk, zq � 1
z � εk � µ

, (2.11)

where εk is the dispersion relation of the non-interacting tight-binding band. The
dispersion is obtained by the Fourier transform of the hopping amplitudes tij

εk �
¸
j

tije
ikpri�rjq. (2.12)

2.3. The dynamical mean-field theory

One of the most powerful methods to treat the models 2.1, 2.2 and 2.3 is the dynamical
mean-field theory (DMFT). This theory, developed over the last 25 years, approximates
the lattice model by an effective dynamical single-site problem [12]. The DMFT is based
on two pivotal works namely

• the introduction of the limit of infinite lattice coordination q
by Metzner and Vollhard in 1989 [10] and

• the self-consistent mapping of the Hubbard model onto a local impurity model
by Georges and Kotliar in 1992 [11].

Metzner and Vollhard concluded that the self-energy Σ pk, zq becomes a local and thus
k-independent quantity in the limit of a lattice with infinite coordination q

Σ pk, zq qÑ8� Σ pzq (2.13)

Consequently, an exact mapping of the original physical problem onto an auxiliary
impurity problem is possible. Strictly speaking, the whole translationally invariant

4or: free / bare / U � 0 Green’s function

7



2. Strong correlations and the dynamical mean-field theory

lattice can be replaced by identical impurity models – one at each lattice site.5 The
auxiliary problem consists of an interacting impurity site coupled to an infinite non-
interacting bath (figure 2.2).

BATH

lattice model

impurity model

Figure 2.2.: Within the DMFT the lattice problem is mapped to a single impurity
coupled to an effective bath.

This bath, determined in a self-consistent way, models the communication of the im-
purity site with the residual lattice. In the course of time electrons can come from the
bath to occupy the impurity site and to eventually jump back again into the bath (see
figure 2.3). As in the lattice model, the possible configurations on the impurity site
are limited to the unoccupied, the single electron with spin up or down and the doubly
occupied state with opposite spins.

BATH

| 0 > |   > |   >

TIME

e- e-

Figure 2.3.: The DMFT captures the dynamics of electrons on the impurity atom.
One possible evolution of the occupation and how it fluctuates with time
is shown.

5In this thesis only the paramagnetic phase is considered. For an antiferromagnetic phase two
different types of lattice sites need to be taken into account due to the doubling of the unit cell.
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2.3. The dynamical mean-field theory

Away from the special limit of infinite coordination the k-independence of the self-
energy is only an approximation

Σ pk, zq � Σ pzq . (2.14)

However, it should be stressed that assuming a local self-energy is the only approxi-
mation within the DMFT. The interpretation of this assumption is that spatial cor-
relations are neglected, but temporal correlations (fluctuations) are included and thus
the quantum nature of each individual site is respected. This contrasts with standard
mean-field theory where both spatial and temporal correlations are frozen out.

To allow a treatment of the impurity system in second quantization the coupled bath
needs to be modeled with non-interacting sites. One representation of the impurity
system is the so-called star geometry as shown in figure 2.4. In this geometry each
bath site i is directly coupled to the impurity via the hopping t0i. The associated
Anderson impurity model (AIM) [14] for a single impurity site reads

HAIM � Un0Òn0Ó � ε0
¸
σ

n0σlooooooooooomooooooooooon
IMPURITY

�
8̧

i�1,σ
εia

:
iσaiσloooooomoooooon

BATH

�
8̧

i�1,σ
t0i

�
a:iσa0σ � h.c.

	
looooooooooooomooooooooooooon

COUPLING

. (2.15)

U
ε1ε0

ε2
ε3

ε4

t01

t02
t03t04

ε5 t05

ε6
t06

ε07-0∞
t07-0∞

Figure 2.4.: AIM in star geometry, where each bath site is directly coupled to the
impurity. Within DMFT the parameters ε0 and U are fixed by the lattice
model and the bath parameters get defined by the bath Green’s function
G0 pzq.

The works mentioned above provide the cornerstones for the derivation of the DMFT
self-consistency equations. Several ways to obtain those mean-field equations exist,
e.g. the cavity method or an expansion around the atomic limit (those can be found
in [13]). In this work we give a heuristic justification for the DMFT based on two very
good reviews by A. Georges [12, 13].
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2. Strong correlations and the dynamical mean-field theory

First, we demand equivalence between the local lattice Green’s function Gloc pzq and
the impurity Green’s function g pzq6

Gloc pzq !� g pzq . (2.16)

It should be emphasized that the impurity problem is a local problem, thus the impurity
Green’s function g pzq is independent of k. The local lattice Green’s function Gloc pzq is
obtained by performing a k-summation over the k-dependent lattice Green’s function
G pk, zq and reads

Gloc pzq � ˆ̧
k

G pk, zq � ˆ̧
k

1
z � εk � µ� Σ pzq . (2.17)

Taking the continuum limit of the k-sum in equation 2.17 as well as transforming the
integration variable to the energy ε yields

Gloc pzq �
»
dε

ρ0 pεq
z � ε� µ� Σ pzq . (2.18)

Here, ρ0 pεq is the non-interacting DOS of the lattice defined as

ρ0 pεq � ˆ̧
k

δ pε� εkq . (2.19)

In practice, expression 2.18 is often used instead of 2.17 to avoid the cumbersome
k-summation.

Equation 2.16 is central to DMFT, because it reflects the mapping of a lattice problem
to an impurity problem. However, to conduct the mapping G pk, zq is needed, but that
is actually the desired quantity we want to obtain within DMFT. In other words, the
correct impurity model remains to be found in an iterative manner, which will lead us
to the DMFT self-consistency cycle.

The conduct the mapping to the impurity model the Dyson equation is used to obtain
the bath Green’s function G0 pzq

G0 pzq �
�
G�1
loc pzq � Σ pzq��1

. (2.20)

Note that this is not the free lattice Green’s function, but the local Green’s function
with locally removed interaction. G0pzq is a quantum generalization of the effective
Weiss field in standard mean-field theory. It accounts for the electronic motion from
the impurity site through the lattice and back to impurity site, where Σ pzq is present

6Capital letters are denoted to Green’s functions of the physical lattice system and small letters to
Green’s functions of the impurity system.
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2.3. The dynamical mean-field theory

at every site except on the impurity site itself. The crucial point is that G0 pzq is exactly
the free Green’s function of the impurity model

g0 pzq � G0 pzq , (2.21)

and thus defines the corresponding impurity system. The parameters of the impurity
site (U and ε0 � �µ) are given by the lattice Hamiltonian, but the bath on-site energies
εi and the hopping parameters t0i of the Hamiltonian 2.15 have to be determined
from the bath Green’s function G0 in compliance with equation 2.21. In fact, these
parameters enter only through the hybridization function

∆ pzq �
8̧

i�1

|t0i|2
z � εi

, (2.22)

which is nothing else but the bath contribution to the non-interacting impurity Green’s
function

g�1
0 pzq � z � µ� ∆ pzq . (2.23)

From equations 2.17, 2.20, 2.21, 2.22 and 2.23 follows the DMFT self-consistency con-
dition

Gloc pzq � ˆ̧
k

1
G�1
loc pzq � εk � ∆ pzq �

ˆ̧
k

1

G�1
loc pzq � εk �

8°
i�1

|t0i|2

z�εi

. (2.24)

The task of DMFT can be seen as finding the correct parameters t0i and εi to fulfill
equation 2.24. Usually, this has to be done in an iterative way, which includes the
crucial step of solving the impurity problem. The simplest method, and most often
used, is the forward iteration scheme (DMFT cycle) as shown in figure 2.5:

1. An initial guess for the self-energy Σ pzq is required as starting point. Unless we
know better, the non-interacting case (Σ pzq � 0) serves as an appropriate guess.
If results from previous calculations with a similar interaction strength U are at
hand, those might already offer a starting point close to the desired solution.

2. The local Green’s function Gloc pzq is calculated with equation 2.17 or 2.18. Ad-
ditionally, the chemical potential µ should be adjusted at this point to ensure the
desired filling n (equation 2.9) of the system.

3. Next, the bath Green’s function is obtained from equation 2.20, which also pro-
vides the parameters t0i and εi of the AIM Hamiltonian 2.15.

4. An appropriate impurity solver is used to calculate the impurity Green’s function
g pzq and subsequently the self-energy Σ pzq via the Dyson equation

Σimp pzq � g�1
0 pzq � g�1 pzq . (2.25)

11



2. Strong correlations and the dynamical mean-field theory

5. Due to the assumption of a purely local self-energy, Σimp pzq is used as the desired
self-energy for the lattice

Σnew pzq � Σimp pzq (2.26)

and is now set as input self-energy for the next iteration (step 2).

6. Self-consistency is reached when Σ pzq7 is converged and that can be checked with

|Σnew pzq � Σ pzq |   tol. (2.27)

Surprisingly, this simple forward iteration shows already a fast convergence. Although
a critical slowing down is observed in regimes close to phase transitions, usually less
than 20 iterations are enough to converge the DMFT cycle. In difficult regimes more
iterations are necessary and the initial starting point might become important. Simple
mixing or the modified Broyden’s method can be used (see section 2.5) to enhance the
convergence properties of the DMFT cycle.

Typically, the adjustment of the chemical potential µ in step 2 of the DMFT cycle
is only done every few iterations, because it requires a repeatedly evaluation of equa-
tion 2.17 or 2.18, which can be computationally demanding. As the filling n is a
monotonously increasing function of the chemical potential µ the use of a bisection
method is favorable.

The only inputs necessary for a DMFT calculation are

• the parameters of the Hubbard model – U and µ (or the filling n) and

• the dispersion relation of the non-interacting system εk, respectively the non-
interacting DOS ρ0 pεq.

It should be mentioned that the real bottleneck is now transferred to solving the
arising impurity problem, but fortunately multiple numerical tools are available to
deal with the AIM. Those range from methods based on quantum Monte Carlo (e.g.
HFQMC [29], CTQMC [30]) and renormalization group techniques (e.g. NRG [31],
DMRG [32]) to perturbative approaches (e.g. IPT [33], NCA [34]). Still, obtaining the
Green’s function of the impurity problem constitutes the crucial point in every DMFT
calculation. The different numerical approaches have all their advantages and disad-
vantages, thus the appropriate choice of method depends strongly on the application.

In calculations for N -orbital system the self-energy and the Green’s functions carry an
extra orbital index, which turns them into N �N matrices. Additionally, the impurity
Hamiltonian itself needs to be altered to a system with N interacting orbitals coupled

7Of course, other quantities can serve as convergence indicator, e.g. G0 pzq or equivalently the pa-
rameters t0i and εi.
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2. Strong correlations and the dynamical mean-field theory

to an appropriate bath8. The bath geometry itself depends on the concerned material
and its symmetries, but a common choice is to couple one chain of non-interacting sites
to each impurity orbital.

Modeling a real material with a Hubbard Hamiltonian and mapping the full lattice
problem to an effective impurity problem is of course an approximation. Nevertheless,
the DMFT has provided many valuable insights into the nature of strongly correlated
materials.

2.4. Exact limits of DMFT

The DMFT approximation 2.14 and consequently the mapping to an impurity problem
becomes exact in three limits [12]:

1. Non-interacting limit (U � 0)
The self-energy vanishes (Σ pzq � 0) and is therefore trivially k-independent.

2. Atomic limit (tij � 0)
Due to the missing hopping between sites this case describes disconnected atoms
with εk � 0. The hybridization vanishes and the self-energy can only have on-site
components.

3. Limit of infinite connectivity (or infinite dimension) (q Ñ 8)
As shown by Metzner and Vollhard [10], the self-energy becomes a local quantity
for a lattice with infinite coordination number q. This statement is similar for
the mean-field approximation in classical statistical mechanics.

It turns out that also for low coordination numbers (e.g. for a 3D material) DMFT
provides a surprisingly good approximation, because the theory is bounded by both
Hubbard limits (1. and 2. above) and additionally by the limit of infinite coordina-
tion.

2.5. Mixing

Mixing schemes are commonly used for density functional theory (DFT) calculations
and are implemented to accomplish a faster approach to self-consistency [35, 36]. More-
over, oscillations between different solutions can be avoided, which would prohibit
further convergence. Such mixing schemes can also be applied to DMFT calcula-
tions [37].

8The interacting orbitals are essentially the local part of Hamiltonian 2.3.
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2.6. Mott-Hubbard transition and quasiparticle weight

In principle, the DMFT cycle can be understood as a functional F rΣ pzqs. The N -th
iteration is then equivalent to

ΣN�1 pzq � F �ΣN pzq� (2.28)

and the self-consistent solution is a fixed-point Σ̂ pzq of the mapping F , obeying

F
�
Σ̂ pzq

�
� Σ̂ pzq (2.29)

In this scope, the DMFT cycle is nothing else but searching for a fixed-point solution
of the mapping F . Indeed, reaching self-consistency (where ΣN�1 pzq � ΣN pzq) corre-
sponds to solving a non-linear equation.9 As mentioned above, the simplest approach
is to inject ΣN pzq back into F until convergence is reached.

A common way to enhance convergence is to mix Σ pzq (or the Weiss field G0 pzq) of
two consecutive iterations. Simple mixing is done by linearly adding a certain fraction
of the previous self-energy to the self-energy of the current iteration.

ΣN�1 pzq � αF
�
ΣN pzq�� p1 � αqΣN pzq α P p0, 1q (2.30)

Of course, with the parameter α the convergence behavior of the DMFT loop can be
strongly influenced. However, if α is chosen too large the effect due to mixing might
be low and if chosen too small the DMFT cycle might converge very slowly. Care is
advisable for small α, because then the self-energy will not differ much between two
consecutive iterations. In this case the stopping criterion given by equation 2.27 should
be tightened.

A more sophisticated mixing method is required especially for calculations in the regime
around a phase transition. Contrary to simple mixing, Broyden’s method [37] incor-
porates all previous iterations and solves the non-linear system with a quasi-Newton-
Raphson procedure. Details on Broyden’s method are discussed in appendix B and a
comparison of different mixing schemes is shown in section 4.3.

2.6. Mott-Hubbard transition and quasiparticle weight

The physical properties of a correlated material depend strongly on the interaction
strength U . With increasing electronic repulsion the electrons of a metallic material
become more and more localized to eventually undergo a transition into an insula-
tor. Such a metal-insulator transition can be experimentally driven by temperature,
pressure, or doping. This so-called Mott-Hubbard transition [38, 39], is central to the

9Strictly speaking it is a system of non-linear equation – one for each z value.
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2. Strong correlations and the dynamical mean-field theory

modeling of strongly correlated materials, because it directly describes the competition
between kinetic energy and Coulomb repulsion [40]. The following considerations on
the Mott-Hubbard transition are made for DMFT on the Bethe lattice. An introduc-
tion to the properties of this specific lattice is given in section 4.1.

One extreme limit is the case without interaction U � 0 (see figure 2.6 (a)). The
electrons are delocalized and the material is well described by conventional band theory
and a wave-like electron picture. The other extreme, where electrons localize U ¡ Uc,
corresponds to a particle-like electron character and atomic-like states. The DOS shows
two separated bands (figure 2.6 (d)), one at the ionization energy EF � U{2 and one
at the electron affinity EF � U{2 of the individual atoms.

The crucial and most interesting question is how the DOS evolves between these well-
characterized limits (figure 2.6 (b and c)). In this intermediate correlation range the
DOS is a mixture of the emerging Hubbard bands and quasiparticle features. DMFT
offers an accurate description of the distinctive three-peak structure, whereby the Mott-
Hubbard transition appears as spectral weight transfer from the quasiparticle peak to
the Hubbard bands.

D D U/D  = 0.0 U/D  = 2.4

U/D  = 1.0 U/D  = 4.0

EFEF EF- U/2 EF+ U/2

D
E

N
S

IT
Y

 O
F

 S
T

A
T

E
S

(a)

(b)

(c)

(d)

Figure 2.6.: Mott-Hubbard metal-insulator transition on the Bethe lattice. With in-
creasing interaction strength U{D a characteristic three-peak structure
emerges. At the phase transition the central quasiparticle peak vanishes
and only two Hubbard bands are left.

The Mott-Hubbard transition for the specific scenario where the antiferromagnetic so-
lution, i.e. magnetic ordering, is suppressed has already been studied multiple times [41,
42, 43, 44]. The phase diagram of the paramagnetic Hubbard model on the Bethe lat-
tice is sketched in figure 2.7. The first order transition line Uc pT q is surrounded by
a hysteresis region, with borders Uc1 pT q in the metallic and Uc2 pT q in the insulating

16



2.6. Mott-Hubbard transition and quasiparticle weight

phase. Within this coexistence region a metallic and an insulating solution exist. At
the critical temperature all lines end in a second order critical point.

T

U

Uc
Uc1

Uc2

critical point

metal insulator
coexistance-

region

Figure 2.7.: Illustration of the phase diagram of the first order Mott-Hubbard metal-
insulator transition line Uc pT q and the two instability edges Uc1 pT q in the
metallic and Uc2 pT q in the insulating phase.

A quantitative measure for describing the spectral weight of the central quasiparticle
peak is the quasiparticle renormalization Z. Within Fermi liquid theory, excitations
created by adding a particle to the system are described by free particles with a long life
time and a renormalized mass. In this picture, a gas of interacting electrons can be seen
as a gas of renormalized non-interacting quasiparticles. Therefore, the quasiparticle
picture is only correct, if the retarded Green’s function (and consequently the DOS) of
the interacting system is similar to that of non-interacting particles around the Fermi
energy. The following derivation is based on the argumentation in [27], but for the sake
of simplicity and with regard to DMFT, a possible k-dependence of the self-energy is
here neglected.

First, we consider the retarded Green’s function

G pk, ωq � 1
ω � εk � µ� Σpωq (2.31)

and separate the self-energy Σpωq into its real and imaginary parts

G pk, ωq � 1
ω � εk � µ� < rΣpωqs � i= rΣpωqs , (2.32)

with εk � k2{2m as the free electron energy.

In the second step we expand Σ pωq to the first order in ω to anticipate the quasiparticle
picture

G pk, ωq �
�
ω � εk � µ� < rΣ p0qs � ω

B< rΣ pωqs
Bω

����
ω�0

��1

. (2.33)
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2. Strong correlations and the dynamical mean-field theory

The imaginary part of the self-energy can be set to zero around the expansion point,
because it was shown by Luttinger that in the metal the imaginary part of every
diagram contributing to the self-energy goes to zero as pεk � µq2 or faster [45].

Rewriting equation 2.33 and defining

Z�1 � 1 � B< rΣ pωqs
Bω

����
ω�0

(2.34)

and
ε̃k � Z pεk � < rΣ p0qsq (2.35)

leads to
G pk, ωq � Z

ω � ε̃k � µ
. (2.36)

This final Green’s function is indeed describing non-interacting particles and thus jus-
tifies the quasiparticle picture. Concluding from equation 2.36, the interaction has two
effects on the spectral function:

1. The integrated spectral weight around the Fermi energy is renormalized to Z.10

2. The renormalization acts on the dispersion resulting in a shift by �Z< rΣ p0qs
and more importantly in an effective mass

m� � Z�1m. (2.37)

The emerging quasiparticles correspond to electrons gaining mass m� due to
fermionic correlations.

The Cauchy-Riemann condition for an analytic complex function necessarily implies

Z�1 � 1 � B= rΣ piωnqs
Bωn

����
wnÑ0

(2.38)

with Matsubara frequencies ωn. This quasiparticle renormalization Z serves as a gen-
eral measure for the interaction induced effect on the DOS:

• U � 0 Ñ Z � 1
Uncorrelated system and hence no renormalization. The conventional band struc-
ture picture is valid.

• 0 ¤ U ¤ Uc Ñ 1 ¡ Z ¡ 0
Renormalization due to correlation. System is in a metallic phase, because of

10Note that there must be a so-called incoherent part of the spectral function with integrated weight
1 � Z to guarantee a normalized DOS. This also demands 1 ¥ Z ¥ 0.
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2.7. DFT + DMFT

spectral weight at the Fermi energy EF , but the quasiparticle peak shrinks with
increased U . Uc marks the critical U value of the Mott-Hubbard transition.

• U ¥ Uc Ñ Z � 0
Correlation induced phase transition to a Mott insulator. The spectral weight at
the Fermi energy EF is zero.

2.7. DFT + DMFT

While the Hubbard model and its extensions can provide a qualitative description of
real materials, they are still restricted to a few orbitals and depend on often unknown
parameters (i.e. U and t). A prosperous technique for strongly correlated materials,
which allows for parameter-free ab-inito calculations, is the DFT+DMFT method (or
LDA+DMFT) [12, 21, 22, 23].

2.7.1. Density functional theory

Within the density functional theory (DFT) [4, 5] the intractable many-body problem
of interacting electrons is reduced to a problem of non-interacting electrons moving in
an effective potential. DFT considers the electron density n prq as key variable instead
of the wave-function and is based on the two Hohenberg-Kohn theorems [46], stated
here without proof:

1. For a given external potential vext, the total energy of a system is an unique
functional of the ground state electron density.

2. The exact ground state density minimizes the energy functional E rn prqs.

The minimization of the energy functional δE rn prqs � 0 leads to the one-electron
Schrödinger equation [47]�

�1
2∇

2 � vs prq


ϕi prq � εiϕi prq , (2.39)

where ϕi prq are the so-called Kohn-Sham orbitals. The electron density of N indepen-
dent particles is then given by

n prq �
Ņ

i�1
|ϕi prq |2, (2.40)
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2. Strong correlations and the dynamical mean-field theory

with vs prq being a density dependent potential. This effective potential reads

vs prq � vext prq �
»
dr1

e2n pr1q
|r � r1| �

δExc rn prqs
δn prq (2.41)

and includes the external potential (i.e. stemming from the nuclei and external fields),
the Hartree term and the exchange-correlation term. The Hartree term describes
the electrostatic contribution to the electron-electron interaction. All the remaining
electron-electron interaction and the corrections to the kinetic energy are gathered in
the exchange-correlation term, which remains unknown and has to be approximated.
However, for an uniform electron gas the exchange-correlation energy can be calculated
for all values of the electron density. One of the simplest approaches is the local density
approximation (LDA) [48], which uses the exchange-correlation energy for an uniform
electron gas also in the case when the electron gas is not uniform, but varies in space.
The exchange-correlation energy is then given by

Exc rn prqs �
»
drεxc rn prqsn prq , (2.42)

where the exchange-correlation energy density εxc rn prqs does only depend on the local
density.

Together, equations 2.39 to 2.42 form the set of Kohn-Sham equation, which can be
solved in a self-consistent way to obtain the ground state energy and its density. Ad-
ditionally, the Kohn-Sham equations yield a whole spectrum of single-particle states
which are usually identified as the DFT band structure.11 While for many materials
qualitatively correct, this band structure fails completely to give reliable results for
strongly correlated materials.

2.7.2. Hamiltonian and Wannier functions

In order to combine DFT with a many-body DMFT calculation it is necessary to obtain
the required parameters of the underlying Hamiltonian. First, the strongly correlated
subspace of the electronic DFT states has to be identified by selecting certain bands of
interest. This subspace is subsequently expressed in terms of atomic-like orbitals. A
suitable choice for such orbitals are the maximally localized Wannier functions [49, 50].
They are defined as the Fourier transform of the Bloch states ϕkmσ prq

winσ prq �
¸
k

e�ik ·Ri

¸
m

Timnσϕkmσ prq . (2.43)

11Strictly speaking, the interpretation as physical band structure is wrong, because the Kohn-Sham
orbitals can only be considered as mathematical tools representing the actual problem.
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Timnσ is a unitary transformation matrix determined by minimizing

Ω �
¸
inσ

�xwinσ|r2|winσy � xwinσ|r|winσy2� , (2.44)

which is the total spread of all Wannier functions. Wannier functions form an orthonor-
mal basis set and resemble atomic orbitals closely, because they are centered on atoms
and decay with increasing distance from the nuclei. For the uncorrelated subspace
DFT can be seen as overall good approximation, but for the correlated subspace l the
DFT fails and a local short-range correction is required. This leads to the many-body
Hamiltonian for the strongly correlated subspace

HDMFT � HDFT �H l
U �H l

DC , (2.45)

where HDFT is the single-particle DFT part, H l
U the effective local electron interaction

and H l
DC the double counting term. The DFT part is written as

HDFT � �
¸
σij
mm1

timjm1c:imσcjm1σ (2.46)

with
timjm1 � �

»
dr wimσ prq

�
�1

2∇
2 � vs prq



wjm1σ prq . (2.47)

The on-site terms i � j are essentially describing a crystal-field while the terms i � j

are hopping integrals. The local orbital-dependent Coulomb interaction is given by12

H l
U � 1

2
¸
i

��� ¸
mm1m2m3

σσ1

rU l
mm1m2m3c

:
imσc

:
im1σ1cim3σ1cim2σ

��� , (2.48)

where

rU l
mm1m2m3 �

» »
drdr1wimσ prqwim1σ1 pr1q rU pr, r1qwim2σ prqwim3σ1 pr1q . (2.49)

rU pr, r1q is the Coulomb interaction, but partially screened by the electrons of the
uncorrelated subspace. Determining this Coulomb interaction is a difficult task and
beyond the scope of this thesis. The interested reader should be referred to [51, 52].

The double counting term H l
DC corrects the Hamiltonian for long-range Hartree and

the mean-field exchange-correlation interaction, which have already been taken into
account by the LDA energy functional and are included again via equation 2.49. Un-
fortunately, there is no rigorous way to determine this correction, but approximative
12Note that H l

U has the same form as the local part of Hamiltonian 2.3
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2. Strong correlations and the dynamical mean-field theory

methods to estimate the double counting term are available [53]. If only one kind of or-
bitals13 is present in the correlated subspace and if no uncorrelated states are included
in the model the double counting correcting can be written as

H l
DC �

¸
imσ

εσDCnimσ. (2.50)

This is nothing else but a constant shift to the chemical potential. Anyway, the chemical
potential has to be adjusted to give the correct filling and thus in this case the double
counting does not need to be treated separately.

2.7.3. DMFT for multi-orbital systems

In the previous sections we have collected all required ingredients for a DMFT calcula-
tion of a real material. The local interaction parameters rU l

mm1m2m3 of the Hamiltonian
2.45, which are the same for the corresponding impurity model, are determined by
equation 2.49. The dispersion εeffk is calculated from the integrals 2.47 and the Fourier
transform 2.12. Note that εeffk is now a matrix in the considered orbitals m, turning
also the self-energy and all Green’s functions into matrices. For example, the calcula-
tion of the local Green’s function Gloc pzq reads

Gloc pzq � ˆ̧
k

1
pz � µq1� Σ pzq � εeffk

. (2.51)

Often so-called one-shot DFT+DMFT calculations are performed, that is doing DFT
and the consecutive DMFT step only once. However, the resulting charge density of
the DMFT step can be put back into the Kohn-Sham potential vs prq leading to a full
charge self-consistent DFT+DMFT cycle [54]. This enlarged cycle is iterated until the
charge density converges. In this case equation 2.39 is solved only once per iteration,
because otherwise the information of the DMFT step would be lost and the previous
Kohn-Sham wave-functions would be restored. Typically, the DMFT step is the com-
putationally demanding part, for which reason a fast and efficient impurity solver is
desired. One promising approach based on exact diagonalization will be discussed in
the next chapter.

13For example t2g as in this thesis
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3. Impurity solvers

Generally, the AIM in star geometry, as given by Hamiltonian 2.15, can be unitarly
transformed to any other geometry with infinitely many bath sites. The representation
shown in figure 2.4, where an impurity site at the far left is coupled to an semi-infinite
chain of non-interacting sites, is often used. In this case the impurity hybridizes only
with one bath orbital – instead of infinitely many – but the bath possesses hoppings
along the chain to compensate for that.

U
ε1ε0 ε2 ε3 ε4

t01 t12 t23 t34

ε5

t45

ε6

t56 t67

. . . . . ε∞
t∞

Figure 3.1.: AIM in chain geometry, where the impurity hybridizes only with one bath
site. Within DMFT the parameters ε0 and U are fixed by the lattice model
and the bath parameters get defined by the bath Green’s function G0 pzq.

The corresponding Hamiltonian of the AIM in chain geometry reads14

HED
AIM � Un0Òn0Ó � ε0

¸
σ

n0σlooooooooooomooooooooooon
IMPURITY

�
L�1̧

i�1,σ
εia

:
iσaiσ �

L�2̧

i�1,σ
ti,i�1

�
a:iσai�1,σ � h.c.

	
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

BATH

� t01
¸
σ

�
a:0σa1σ � h.c.

	
loooooooooooomoooooooooooon

COUPLING

,

(3.1)

where L is the total number of sites in the system and L Ñ 8 corresponds to an
infinitely large bath. Many analytical and numerical studies at zero temperature are
based on this single-chain Hamiltonian. In the first part of this chapter we discuss the
exact diagonalization (ED) impurity solver [15]. An introduction to cluster perturba-
tion theory (CPT) [16, 17] and the elaboration of our newly developed cluster based
approach is presented in the second part.
14It should be kept in mind that the used parameters are not the same as those in Hamiltonian 2.15,

i.e. the star representation of the AIM. However, we will use the same symbols (ε, t and a) for
readability reasons.
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3. Impurity solvers

3.1. Exact diagonalization

Basically, exact diagonalization (ED) aims at solving the time-independent Schrödinger
equation

HED
AIM |φy � E |φy (3.2)

for the eigenvalues E and the eigenstates |φy of the Hamiltonian HED
AIM . Of course,

this allows only to treat a system with a finite number of sites. As an example, the
impurity model for the case L � 6 is shown in figure 3.2.

U
ε1ε0 ε2 ε3 ε4

t01 t12 t23 t34

ε5

t45

Figure 3.2.: Finite AIM of size L � 6.

Writing the impurity system in terms of a finite Hamiltonian comes with a discretiza-
tion of the bath levels, which is in contrast to the original continuous bath spectrum.
Additionally, the system size L is restricted to a small number of bath sites, so that
it is still possible to diagonalize the Hamiltonian numerically. Hence, also the num-
ber of adjustable parameters ~a15 is restricted to 2L � 1. The computational difficulty
of the problem is set by the total number of sites, due to the fact that the size of
the full Hamiltonian matrix HED

AIM growths exponentially with system size. In most
applications the total number of sites does not exceed twelve (or at most fifteen).

The procedure behind ED is simply to [55]

1. obtain the parameters of the impurity model,

2. generate the many-body basis states,

3. construct the Hamiltonian within this basis,

4. diagonalize the Hamiltonian and

5. calculate the full fermionic Green’s function g pzq.

Due to the exponential growth of the Hilbert space with system size, some consid-
erations for the practical implementation of this procedure are necessary. The most
important aspects will be discussed in the following sections.

15The vector ~a holds the hoppings t and the on-site energies ε of the bath.
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3.1. Exact diagonalization

3.1.1. Cost function

We have seen in section 2.3 that the impurity system is defined by the bath Green’s
function G0pzq. As a matter of fact, it is not possible to fulfill the DMFT condition
g0 pzq � G0 pzq with only a limited number of parameters at hand. Instead, this condi-
tion must be approximately satisfied in some optimal way. Typically, a least-squares
cost function is defined

χ �
»
W pzq|G�1

0 pzq � g�1
0 pz,~aq |2dz, (3.3)

which has to be minimized with respect to the tunable parameters ~a. The inverse of
the non-interacting Green’s function g�1

0 pz,~aq can be most easily generated from a
continuous fraction expansion

g�1
0 pz,~aq � z � ε0 �

t201

z � ε1 �
t212

. . . � t2L�2,L�1

z � εL�1

. (3.4)

Certainly, the cost function χ would vanish for L Ñ 8, but for a finite system it can
only be optimized. It should be emphasized that equation 3.3 is not uniquely defined
and can take various forms [13, 56, 57] considering the following points:

• The frequency dependent weights W pzq can be used to assess some frequencies
stronger than others, but the choice of W pzq does not follow any rigorous princi-
ple. In this work W pzq � 1 is used, because of the equal interested in the whole
frequency range.

• The fitted quantity in the cost function χ could either be G�1
0 pzq or G0 pzq. As

the bath parameters are directly embedded in the hybridization function ∆ pzq
and thus in G�1

0 pzq (see equation 2.23), it is somewhat more reasonable to carry
out the minimization directly in G�1

0 pzq.
• Usually, the complex Euclidean distance summed over all frequencies is used to

quantify the difference between G�1
0 pzq and g�1

0 pzq, as it appears to be the most
natural definition. Nonetheless, other distances could be considered instead.

• The minimization can be performed either in g0 pω � iηq on the real axis or in
g0 piωnq on the Matsubara axis. To circumvent the delta peaks occurring for real
frequencies the minimization is often carried out on the Matsubara axis16. The
advantage is due to the fact that g0 piωnq is a continuous function which can be
approximated much more easily, but using discrete Matsubara frequencies comes

16Then the integral in equation 3.3 is actually a sum over discrete Matsubara frequencies.
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3. Impurity solvers

with a finite temperature T . Although g0 pω � iηq consist only of (broadened)
delta peaks on the real axis, the focus of this thesis lies on performing DMFT
for real frequencies at T � 0, in particular regarding the investigated extension
to ED.

Especially for a small impurity systems, the freedom of defining a suitable cost function
does influence the resulting parameters and subsequently the final DMFT fixed-point.
However, this dependence gets less critical the larger the impurity system is.

The cost function χ might be a function with many local minima, which can make
it difficult to find the optimal parameters ~a. In practice, minimization procedures
such as the conjugate gradient method or simplex schemes turn out to be suitable
choices. Every optimization procedure requires a frequent calculation of g�1

0 pzq or
its derivative, but fortunately this is a numerically inexpensive task in comparison to
the diagonalization of HED

AIM . It is beneficial to start the minimization in consecutive
iterations with the optimized parameters obtained in the previous iteration step.

3.1.2. Basis states and the Hamiltonian

First of all, it is necessary to define a suitable representation for the quantum basis
states of the Hamiltonian. It is important that the basis set allows for [58]:

• a fast generation of the basis itself,

• computing matrix elements easily,

• a low need of memory and a fast access of states.

Within second quantization states are naturally formulated in terms of creation oper-
ators acting on the vacuum state |0y�

c:1Ò

	n1Ò
�
c:2Ò

	n2Ò � � �
�
c:LÒ

	nLÒ
�
c:1Ó

	n1Ó
�
c:2Ó

	n2Ó � � �
�
c:LÓ

	nLÓ |0y , (3.5)

with the occupation number niσ � t0, 1u. The order of the creation operators is a
matter of convention, but important to retain. Specifying the states by the occupation
number leads to a binary number for each state, e.g. for the state

c:1Òc
:
4Òc

:
1Óc

:
3Ó |0y � |1, 0, 0, 1; 1, 0, 1, 0y . (3.6)

This 8-bit binary number can be stored as an unsigned integer, which would be 154 for
the example above. Therefore, the entire many-body basis can be cast into a vector of
unsigned integer numbers.
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3.1. Exact diagonalization

The Hilbert space of an impurity system with L sites consists of dfull � 2L · 2L basis
states in total, but this number can be significantly reduced by exploiting symmetries
and quantum numbers.

The AIM Hamiltonian 3.1 conserves the total spin Sz as well as the particle numbers
NÒ and NÓ

17. This means that the diagonalization can be done separately for each spin
and particle sector, reducing the size of the effective Hilbert space to

dsector � L!
NÒ!pL�NÒq!

L!
NÓ!pL�NÓq! (3.7)

For the largest sector pNÒ � NÓ � L{2q equation 3.7 translates into dsectorL{2 �
pL!{pL{2q!2q2, which is still growing exponentially like 4L{L for large L. Neverthe-
less, the exploitation of those symmetries decreases the complexity of the problem and
can make the key difference to be able to treat a system of a certain size.

The second simplification is based on the observation that it is not necessary to store
each individual state. It is enough to keep all possible up and down states in two
separate vectors and bearing in mind that the full basis is obtained by pairing every
individual up state with each down state. This reduces the number of stored states
to dstored � 2 ·

?
dsector. This concept is very advantageous when constructing the

Hamiltonian matrix from the basis states.

Within one sector the number of up spins NÒ (down spins NÓ) is fixed and thus the
up (down) basis is nothing else but all possible permutation of NÒ (NÓ) electrons on L
sites. Probably the most efficient way to generate all those permutation is by using a
code known as ITEM #175 from the legendary technical HAKMEM memo [59, 60].
This little piece of code which given an integer, computes the next highest integer with
the same number of one bits can be applied iteratively to generate all subsets with
a given number of ones (code is listed in appendix C). By construction, the resulting
basis is automatically ordered in an ascending way.

The next step after generating the basis states is to build the full many-body Hamil-
tonian matrix. This matrix is usually extremely sparse and the number of non-zero
elements is typically of OpNq rather than OpN2q. This can be used to save memory
by storing only the individual entries and its corresponding row and column indices.
Moreover, a spares representation allows speeding up matrix-vector multiplications
occurring in exact diagonalization schemes.

Calculating the matrix elements xm|HED
AIM |ny simply boils down to acting with each

term of the Hamiltonian on every state of the basis: HED
AIM |ny. The position of the

initial state in the basis corresponds to the row number and the position of the resulting
17Those operators commute with the Hamiltonian and are therefore conserved quantities.
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3. Impurity solvers

state to the column number of a matrix element. Due to the fact that the basis is
already sorted, the search for the position of the resulting state can be done most
efficiently with a bisection algorithm.

The single-particle (hopping) terms destroy a spin on site i and create the same spin
on site j, but always act only on up or down states. For each individual hopping term
the procedure is:

1. Loop over all up states and check if hopping is permitted
(flip bit i from 1 to 0 and bit j from 0 to 1).

2. If yes:

a) Search resulting up state within all up states to obtain its position.

b) Calculate fermionic sign ξ by counting the electrons between sites i and j.

c) Add the element ξ · tij to the sparse matrix with the correct row and column
indices taking into account all down states belonging to the up state.

3. Do the same for all down states.

In C/C++ all the mentioned steps can be implemented very efficiently by using logical
bit operators, e.g. flipping bit i is basically a bit-wise XOR applied to the state and a
bit pattern having a one shifted i times to the left.

The advantages of separating up and down states gets evident at this point, because we
only have to act with the Hamiltonian on dstore states and not dsector states. Further-
more, the performance of the bisection search is of order log2 pdq and therefore about
a factor of two faster when searching only the up/down states.

Dealing with the interaction and on-site terms is in many cases easier. For instance,
in the single-orbital model only diagonal elements occur and thus the evaluation of
those terms requires one loop over the whole basis. For each state the interaction
contribution is obtained by applying a bitwise AND to the up and down parts. The
on-site energy for doubly occupied sites is just added to the interaction term and the
single occupied sites are determined with a bitwise XOR operation.

For the interaction part of the multi-orbital model, i.e. the local part of Hamiltonian
2.3, we distinguish between terms with the same spin of all four creation/annihilation
operators and terms with two different spins.

For the same spin pσ � σ1q again one loop over all up and down states is used, where the
condition of a possible creation/annihilation is checked and if applicable the according
bits are flipped. Caution is necessary for the determination of the fermionic sign,
because this time it depends not only on the bits between two sites, but also on the
indices of the operators.
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3.1. Exact diagonalization

For different spins pσ � σ1q we commute the operators

c:mσc
:
m1σ1cm3σ1cm2σ � c:m1σ1cm3σ1c

:
mσcm2σ. (3.8)

This term is now evaluated by acting with the first two operators on all spin σ1 states
and with the second two operators on all spin σ states while storing pairs of initial and
resulting states. Consequently, the matrix elements result from all combinations of up
and down states and need to be inserted correctly into the Hamiltonian matrix.

3.1.3. Diagonalizing the Hamiltonian – ground state

In this work the LAPACK [61, 62] routine ZHEEV is used to compute the eigensys-
tem of a Hamiltonian H18. This double precision routine diagonalizes an (optionally)
complex but hermitian matrix by first reducing it to a tridiagonal form with unitary
similarity transformations, and then applying the QR algorithm to compute the eigen-
vectors and eigenvalues of the tridiagonal matrix. Such a full diagonalization scheme
is only feasible for small impurity systems (L ¤ 6).

A different approach is the Lanczos algorithm [63], which is a standard scheme from
numerical mathematics to obtain a few extremal eigenvalues and eigenvectors. If the
system is prohibitively large for full diagonalization, the iterative Lanczos solver pro-
vides a fast and reliable method to determine the ground state and its energy. The
following discussion of the Lanczos algorithm is based on the references [64, 65].

The starting point of the Lanczos algorithm is a vector which has overlap with the
ground state and is typically chosen as a random normalized vector |φ0y. Applying the
Hamiltonian H n-times iteratively on the initial vector spans the Krylov subspace

Kn pH, |φ0yq � span
�|φ0y , H |φ0y , H2 |φ0y , H3 |φ0y , . . . , Hn |φ0y

�
. (3.9)

The generated Krylov vectors are not orthogonal a priori, but have to be orthogonalized
with the Gram-Schmidt scheme. This leads to the recursive relation

|φn�1y � H |φny � εn |φny � βn |φn�1y
with εn � xφn|H|φny

βn � xφn�1|H|φny � ||φn||

|φn�1y � |φn�1y
||φn�1||

,

(3.10)

18From here on the labels of H are omitted, because the presented methods are not subject to a
specific Hamiltonian.
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which is at the core of the Lanczos method.19 Directly from those equations we can
obtain the matrix

Vnm � xφn|H|φmy � xφn|φm�1y � εm xφn|φmy � βm xφn|φm�1y
� βnδn,m�1 � εmδn,m � βmδn,m�1.

(3.11)

Thus, the projection V of the Hamiltonian onto the Krylov subspace yields a tridiagonal
matrix

V �

�����������

ε0 β1 0
β1 ε1 β2 0
0 β2 ε2 β3

. . .

0 β3 ε3
. . . 0

. . . . . . . . . βn
0 βn εn

����������
(3.12)

The eigenvalues of this matrix are an approximation for the eigenvalues ofH. Of course,
the diagonalization of the matrix V has to be carried out, but this is numerically less
demanding since its size is typically of Op100q. To ensure convergence to the real
ground state energy, the algorithm is iterated until the relative change in the ground
state energy, which is the lowest eigenvalue of V , drops below a small tolerance tol.
Additionally, the procedure needs to be stopped if the Krylov subspace for a given
start vector |φ0y is exhausted, indicated by

βn �
b
xφn|φny   tol. (3.13)

To make the algorithm more efficient, the diagonalization of V is only performed in
an appropriate interval ND of iterations. The eigenvectors cγ of V correspond to the
projection of the H eigenvectors onto the Krylov subspace. At the same time, these
are nothing else but the expansion coefficients of the approximate eigenvectors |ψγy

|ψγy �
¸
n

cγn |φny with cγn � xφn|ψγy . (3.14)

As implied by equation 3.10, it is only necessary to keep the last three Krylov vectors
(|φn�2y , |φn�1y and |φny) in memory, but this prohibits evaluating equation 3.14 for
the eigenvectors. In practice, the whole algorithm can be executed a second time to
iteratively build the approximate eigenvectors |ψγy from the Krylov vectors |φny.

The Lanczos scheme is both simple and efficient, because for each iteration only one
vector-matrix multiplication contributes to the overall computational costs. Unfortu-
nately, the algorithm turns out to be sensitive to numerical instabilities as soon as
19The overlines symbolize quantities which are not normalized.
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one eigenvector is converged. Then orthogonality of the Krylov vectors is lost, which
results in unphysical degenerations and eigenvalues appearing multiple times. An ex-
plicit reorthogonalization of the Krylov basis can avoid such ghost states, but again
requires to keep all previous Krylov vectors in memory. If the systems itself is not
prone to degenerations and interest is only paid to the ground state and its energy, the
Lanczos algorithm can be used without the cumbersome reorthogonalization

3.1.4. Band Lanczos algorithm – Green’s function

An extension to the standard Lanczos scheme, commonly known as band Lanczos
algorithm [64, 66], is also applicable to systems with degenerate ground states. At the
same time, the band Lanczos algorithm allows for a direct calculation of the Green’s
function. Instead of a single start vector the band Lanczos scheme is initialized with a
block of p vectors

r|φ1y , |φ2y , . . . , |φpys (3.15)

Iteratively applying H to the multiple starting vectors spans the Krylov subspace

Kn pH, r|φiysq � span
�|φ1y , H |φ1y , H2 |φ1y , . . . , Hn |φ1y ,
|φ2y , H |φ2y , H2 |φ2y , . . . , Hn |φ2y ,

...
|φpy , H |φpy , H2 |φpy , . . . , Hn |φpy

�
.

(3.16)

In contrast to the standard Lanczos algorithm, it is not possible to use the termination
condition 3.13, which indicates linear dependence of the current Krylov vector on the
previous ones, for the multiple band Lanczos starting vectors. In the case p ¡ 1,
the occurrence of the first linearly dependent vector in the Krylov subspace 3.16 does
not mean that the entire block Krylov sequence is exhausted, but rather that the
regarding vector and all its following H-multiples do not provide any new information.
Therefore, the corresponding vector should be detected and deleted from the Krylov
subspace. This reoccurring process, referred to as exact deflation, reduces the p Krylov
vectors to pc and finally to pc � 0. It is impossible to distinguish numerically between
exactly and nearly linear dependent vectors. Thus, a vector has to be deflated if its
norm is smaller than a given tolerance, like it was defined in the condition 3.13.

Orthogonality has to be explicitly ensured only for 2pc � 1 consecutive band Lanczos
vectors and if deflation occurs against p � pc earlier vectors. The deflation results in
a banded matrix V , where each deflation reduces the bandwidth by two. Note that a
deflation of nearly independent vectors leads to non-zero entries in the corresponding
rows and columns of V .
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As a concrete example consider p � 3 start vectors. Deflations are occurring after 5
and 8 iterations would yield the V -matrix

V �

�����������������

� � � �
� � � � d d d d d

� � � � �
� � � � � �
d � � � � �
d � � � � d d

d � � � �
d d � � �
d d � �

����������������
. (3.17)

The stars p�q denote potential non-zero entries within the banded part and the d’s
stand for possible non-zero entries due to deflations. The algorithm stops – like in the
standard Lanczos scheme – if the eigenvalues of V are converged, or naturally if the
block Krylov subspace is exhausted after p deflations.

Now we turn to the evaluation of the full fermionic Green’s function gνν1 pzq for tem-
perature T � 0, which is given by [27, 28, 67]

gνν1 pzq �
¸
α

�
xψα0 |cν

1
z � pH � E0qc

:
ν1 |ψα0 y � xψα0 |c:ν1

1
z � pH � E0qcν |ψ

α
0 y
�
. (3.18)

The vector |ψα0 y is the ground state and the summation over α takes a possibly de-
generation of |ψα0 y into account. The first term in this representation corresponds to
the N � 1 particle sector, because the creation operator is applied to a N particle
ground state: c:ν1 |ψα0 y. Likewise, the second term describes the annihilation of a par-
ticle from the ground state leading to a N � 1 particle state: cν |ψα0 y. Inserting the
identity 1 � °

m
|ψmy xψm| into both terms of equation 3.18 results in the Lehmann

representation

gνν1 pzq �
¸
α

�¸
n

xψα0 |cν |ψny xψn|c:ν1 |ψα0 y
z � pEn � E0q �

¸
m

xψα0 |c:ν1 |ψmy xψm|cν |ψα0 y
z � pEm � E0q

�
. (3.19)

To evaluate the Green’s function in this form only the ground state, its energy and
the full information of the N � 1 particle sectors are required. Fortunately, the band
Lanczos algorithm provides all necessary ingredients:

1. The ground state |ψα0 y and its energy E0 are calculated with the standard Lanczos
scheme or in case of a likely degeneracy with the band Lanczos algorithm.

2. For each ground state the band Lanczos algorithm is executed two times.
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3.2. Cluster perturbation theory

Once with the start vectors20

|rφ1y � c:1 |ψ0y , |rφ2y � c:2 |ψ0y , . . . , |rφLy � c:L |ψ0y (3.20)

for the N � 1 particle sector and once with

|rφ1y � c1 |ψ0y , |rφ2y � c2 |ψ0y , . . . , |rφLy � cL |ψ0y (3.21)

for the N � 1 particle sector. Note that the initial vectors are orthonormalized
against each other a la Gram-Schmidt in the first steps of the algorithm

|φiy � 1
Ni

�
|rφiy � i�1̧

k�1
|φky xφk|rφiy

�
. (3.22)

3. For the N � 1 particle sector the eigenvectors of V are the projected eigenvec-
tors of H onto the Krylov subspace xφi|ψny. As the starting vectors are part
of the Krylov subspace, those also contain xφ1...L|ψny. To obtain xrφ1...L|ψny �
xψ0|c1...L|ψny we act with xψn| from the left on equation 3.22 and rearrange it to

xψn|rφiy � Ni xψn|φiy �
i�1̧

k�1
xψn|φky xφk|rφiy for i � 1 . . . L. (3.23)

These and their complex conjugates are exactly the matrix elements required by
equation 3.19. The same argument holds also for the N � 1 particle sector.

4. The energies En and Em correspond to the approximate eigenvalues of the banded
matrix V .

In practice, the occurring inner products in the Lehmann representation 3.19 are cast
into a so-called Q-matrix, allowing to deal with the Green’s function in a z-independent
form. Further details on the Q-matrix formalism are discussed in appendix D.

3.2. Cluster perturbation theory

Cluster perturbation theory (CPT) is an approximation scheme for calculating the
Green’s function of a strongly correlated system [16, 17, 68] and originates from a
leading order cluster extension of strong-coupling perturbation theory [16, 69]. CPT
is most often applied to translationally invariant systems (e.g. Hubbard model). The
key steps of every CPT calculation are:
20We omit the orbital and the spin index as well as the index α for the sake of simplicity.
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1. Divide the original lattice into a super-lattice of identical clusters.
These clusters have to be disconnected and of finite size L (see figure 3.3). In
terms of the Hamiltonian the system is rewritten as

H � H 1 � T, (3.24)

where H 1 is the Hamiltonian describing all clusters, but leaving out the hopping
terms between clusters. The matrix T contains exactly those omitted hoppings.

2. Calculate the cluster Green’s function G1pzq.
This can be done with ED as discussed in the previous section 3.1.

3. Treat inter-cluster hoppings in strong-coupling perturbation theory.
It can be shown that the leading order perturbation theory yields for the Green’s
function the equation

G�1pzq � G1�1pzq � T . (3.25)

A heuristic justification of this equation is given in appendix E. Applying a
partial Fourier transformation on the super-lattice level simplifies this equation
to

G�1
a,bpk, zq � G1�1

a,b pzq � Ta,bpkq, (3.26)

where the appearing matrices are only of size L� L.

4. Restore translationally invariance for the lattice Green’s function.
The Green’s function Ga,bpk, zq is only periodical over the cluster super-lattice,
but the original translational symmetry is still broken. The periodization proce-
dure for the full translationally invariant Green’s function reads

Gpk, zq � 1
Nc

¸
ra,rb

eikpra�rbqGa,bpk, zq. (3.27)

A detailed justification for this periodization can be found in [16] or [68].

Figure 3.3.: Tiling of a translationally invariant system into finite clusters of size L � 4.
The hopping between clusters is indicated by the dashed lines.
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The CPT result can be controlled by increasing the cluster size, whereby in the limit
L Ñ 8 the exact solution is recovered. Furthermore, CPT becomes an exact theory
in both the atomic-limit and the non-interacting U � 0 limit.

3.2.1. CPT for the impurity model

Now we turn to the – for this work relevant – case of a non-translationally invariant
system, i.e. the AIM. Recently, the AIM was investigated by means of CPT, and its
extended variational version known as variational cluster approach (VCA) [19, 20].
For a non-translationally invariant system the division into clusters is simplified to
separating the system into (see figure 3.4)

• a cluster of size L including the interacting impurity site and

• a semi-infinite chain of non-interacting sites.

U
ε1ε0 ε2 ε3 ε4

t01 t12 t23 tcpl

ε5

t45

ε6

t56 t67

. . . . . 

. . . . . 
cluster (finite size) environment (semi-infinite chain) 

Figure 3.4.: Division of the impurity model into a cluster of size L � 4 containing the
interacting impurity site and a semi-infinite non-interacting chain. The
coupling between these two systems is treated within CPT.

This separation into a cluster and an environment makes it possible to calculate the
Green’s function of both parts individually. Due to the missing translation invariance,
the Green’s function of the total system is then already given by equation 3.25, i.e.

g�1 pzq �

����������
gcl pzq 0

0 genv pzq

���������

�1

�

����������
tcpl

tcpl

���������
(3.28)

Here, the first matrix is two-block diagonal with the Green’s function of the cluster
gcl pzq in the first block and the Green’s function of the environment genv pzq in the
second block. The matrix T contains only the coupling between those two systems.
In the specific case of a non-interacting environment, the knowledge of the Green’s
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function on the first environment site is sufficient to evaluate the full CPT Green’s
function g pzq. The desired Green’s function of the coupled environment can be easily
calculated, e.g. with a continuous fraction expansion of the bath chain. To obtain the
cluster Green’s function ED is the method of choice.

As we still wish to obtain the parameters of the impurity system with the cost function
3.3, one possibility would be to couple a few extra bath sites to the L-site cluster [70].
However, we take a slightly different approach and parametrize our impurity system as
a cluster coupled to a semi-infinite chain with constant on-site energies ε8 and hoppings
t8.21 This choice is based on the observation that the parameters for sites far away from
the impurity indeed converge to a constant value if a system with sufficiently many bath
sites is used. In this bath representation the remaining parameters to determine are
the hoppings and on-site energies within the cluster, the hopping (coupling) between
the cluster and the chain as well as one on-site energy and one hopping for the whole
semi-infinite chain. Of course, our bath representation strongly restricts the bath, but
it offers a few advantages:

• Only three additional parameters influence the minimization of χ.

• The bath is infinite and therefore the bath Green’s function is continuous.22

• The Green’s function of the environment can be expressed analytically and cal-
culated in a fast way (see equation 3.29 below).

• It is well defined in the sense that it does not leave the freedom of choosing the
total number of bath sites.

The expression for the Green’s function genv pzq of a semi-infinite tight-binding chain
with hoppings t8 and on-site energies ε8 reads [71]

genv,ij pzq �f0,i�j pzq � f0,i�j pzq , whereby

fi,j pzq � �i sign p= rzsqb
4|t8|2 � pz � ε8q2

���z � ε8
2|t8| � i sign p= rzsq

d
1 �

�
z � ε8
2|t8|


2
�|i�j| .

(3.29)

Notably, the DOS on site 1 is given by

ρenv,11 pωq � � 1
π

lim
ηÑ0
= rgenv,11 pω � iηqs � <

��
b

4t28 � pω � ε8q2
2πt28

�� , (3.30)

which has a semicircular shape and a half-bandwidth of 2t8.
21Of course, other representation of the bath are possible or might be better justified.
22Strictly speaking, this is only true within the bandwidth of the environment.
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3.2. Cluster perturbation theory

It turns out that the CPT approach offers a few benefits, but at same time suffers from
some limitations. First, we shall have a look at the self-energy Σ pzq. Within CPT the
full and the free Green’s functions are given by

g�1pzq � g̃�1 pzq � T and g�1
0 pzq � g̃�1

0 pzq � T, (3.31)

where g̃ pzq and g̃�1
0 pzq are devoted to the Green’s functions of the separated systems.

Consequently, it follows for the self-energy23

Σ pzq � g�1
0 pzq � g�1 pzq � g̃�1

0 pzq � T � �g̃�1 pzq � T
�

� g̃�1
0 pzq � g̃�1 pzq �� g�1

0cl pzq � g�1
cl pzq � Σcl pzq .

(3.32)

This reflects the fact that CPT approximates the self-energy of the whole system Σ pzq
by the cluster self-energy Σcl pzq (see also appendix E). Correlations within the cluster
are fully taken into account, but all correlations going beyond are neglected. Although
the used AIM is of infinite size, the self-energy itself is just the self-energy of a finite
system and thus a discrete quantity. This is especially severe in terms of DMFT,
because the self-energy is the only quantity of interest for the lattice system (see the
DMFT cycle in figure 2.1).

It should be pointed out that the knowledge of the cluster parameters only is sufficient
to calculate the self-energy Σ pzq. CPT can be seen as a truncation of the impurity
system at a certain site, whereby all parameters of the system were determined by
minimizing the cost function 3.3, but with the non-interacting Green’s function g�1

0 pzq
of the full system. Nevertheless, the coupled chain will certainly have a strong influence
on the cluster parameters through the minimization of χ and those parameters will
therefore differ from that determined by ED.

In contrast to ED, where an artificial L-site system is used as replacement for the full
impurity model, CPT works directly with the full infinite system. Lifting our restriction
on the bath from above would correspond to χ � 0, because then G0 pzq can be exactly
represented by the infinite bath. On the other hand, ED will always show a rather
high χ due to fitting a collection of broadened delta peaks. Of course, χ � 0 does
not hold for our choice of the bath parametrization, but still χ is significantly reduced
in comparison to ED. Additionally, the DMFT self-consistency condition 2.16, which
can never be fulfilled within ED, is fulfilled much better when using CPT as impurity
solver as we will show below in section 4.4.

23In the step marked with � the size of the matrix Σ pzq is reduced to L�L, because all entries outside
cancel and do not contribute to the self-energy.
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3. Impurity solvers

3.2.2. Improving on the CPT approach

Undoubtedly, the outlined CPT procedure will suffer from a severe error introduced
by approximating the self-energy of the full impurity system with the self-energy of
the cluster only. In chapter 4 it will turn out that the CPT results are indeed not
satisfying. One reason is simply that CPT is only expected to be reliable as long as
the cluster-environment coupling tcpl remains small. Consequently, C. Weber et al. [70]
suggested to add a Lagrange term to the cost function 3.3

rχ � χ� rλ t2cpl. (3.33)

The introduced penalty term directly aims at keeping the coupling tcpl small. However,
the added term is somewhat arbitrary, not just its structure, but also the choice of the
weight rλ. For example take a small rλ, then the influence of the penalty is negligible
and we get again the unrestricted CPT result. On the other hand, for a huge penalty
term rλ ¡¡ χ the coupling is forced to zero. This case equals a decoupling of the bath
and leaves us with the bare ED cost function. Although it seems natural to chooserλ according to the magnitude of χ, the particular choice will influence the result. As
this approach is only ad-hoc and phenomenological, a better founded method will be
discussed in the remainder of this chapter. We start by defining a slightly different
cost function

χ
CPTλ � p1 � λq ·χCL � λ ·χCPT . (3.34)

χ
CL is the cost function 3.3 evaluated with the non-interacting Green’s function of

the cluster g0cl pzq. This means that all bath parameters ~a outside of the cluster are
set to zero. Accordingly, χCPT is the cost function obtained with the non-interacting
Green’s function of the full impurity system g0 pzq, where our bath parametrization, as
discussed in the previous section, is used. The cost function χCPTλ can be considered
as an interpolation between the ED and the CPT solution, because those limits are
restored for

λ � 0 : Ñ ED (decoupling of the environment)
λ � 1 : Ñ CPT (full coupling of the environment)

0   λ   1 : Ñ CPTλ (interpolation).
(3.35)

This new definition of the cost function turns out to be more stable and reliable than
the cost function 3.33, because it does not only restrict a certain parameter but acts
on the whole system in a more general way.

In figure 3.5 the values for χCPTλ and its individual contributions are depicted. The
calculations were performed on the half-filled Bethe lattice24 for a cluster of size L � 6
24For details on the Bethe lattice and the settings of the DMFT calculations see chapter 4.
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3.2. Cluster perturbation theory

and interaction strength U{D � 0.5. For each λ a full DMFT calculation was carried
out and only the converged values for χCPTλ are shown. The cost function χCPTλ�0 �
2.40 for ED is in this example about 50 times larger than the resulting cost function
χ
CPTλ�1 � 0.05 for CPT.
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Figure 3.5.: Cost function χCPTλ and its individual contributions according to equation
3.34 as a function of λ. Calculations were performed on the half-filled Bethe
Lattice for a cluster of size L � 6 and U{D � 0.5.

It can be seen nicely that even for a small λ the contribution coming from χ
CPT is

smaller than that from the bare cluster χED. Surprisingly, the latter exhibits a vast
growth with increasing λ, which is made possible by the decreasing prefactor p1 � λq. In
that case the representation of the bath Green’s function G0 pzq by the cluster Green’s
function g0cl pzq is extremely poor. Since the self-energy is determined by the cluster
quantities alone, this reflects the key reason for the poor performance of plain CPT,
which we will encounter in chapter 4.

3.2.3. Determination of the parameter λ

In this section we aim at determining the required parameter λ in post-processing the
converged DMFT results for the whole λ-range.25 For each λ between zero and one
(with a step size of ∆λ � 0.0025) and for the cluster sizes of L � 2, 4, 6 and 8 a full
DMFT calculation was carried out. The open task in this section is to choose the
calculation, i.e. the λ, which provides the ’best’ result.
25The reason for considering the converged results and not, e.g., the results after one iteration is

motivated by the desire to be independent of the initial starting point.
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3. Impurity solvers

Unfortunately, we still lack of a suitable way to determine the ’best’ λ value, because
regarding only the cost function would lead to the wrong conclusion λ � 1. Therefore,
we introduce a second figure of merit to justify a certain choice of λ. Without any
doubt, the error in the self-energy Σ pzq constitutes the most important measure for the
correctness of the impurity parameters. To quantify its error we define the difference

∆Σ pλq �
»
dz |ΣEX pz, λq � ΣCL pz, λq |, (3.36)

which compares the self-energy of the cluster ΣCL pz, λq to the ’exact’ self-energy of
the actual impurity system ΣEX pz, λq.

In figure 3.6 hypothetical behaviors of ∆Σ pλq as a function of λ are sketched. The case
in the middle would confirm the conclusion λ � 1, like drawn from the cost function
alone. On the other hand, the right case declares λ � 0 and selects the highest point
of the cost function, which would reduce the whole method to ad absurdum. The left
case – which is the desired one – provides a minimum of ∆Σ pλq somewhere in between
the two extremes and gives at the same time an optimal point for λ.

χ ΔΣ

0

χ χ

ΔΣ

ΔΣ

λ 1 0 λ 1 0 λ 1

CPTλ CPT ED

Figure 3.6.: Hypothetical behaviors of ∆Σ pλq. The left case would justify the CPTλ
approach and provide an optimal value for λ.

Of course, it is not possible to calculate the ’exact’ self-energy, but second order pertur-
bation theory in U offers a simple equation to obtain an approximation directly from
the non-interacting bath Green’s function. For half-filling the second order contribution
to the self-energy is given by26

Σ piωnq � U2

β»
0

dτG2
0pτqG0p�τqeiωnτ (3.37)

26The first order contribution is constant (�U{2) and can be absorbed into the chemical potential µ.
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3.2. Cluster perturbation theory

This approximation is commonly known from the iterative perturbation theory
(IPT) [7, 33, 72], where equation 3.37 is basically used as impurity solver. It should
be stressed that we are not using IPT as impurity solver in the DMFT cycle, because
the original IPT is only applicable at half-filling. Equation 3.37 is exclusively utilized
as a post-processing tool to determine the optimal λ.

Equation 3.37 needs to be evaluated twice to obtain a ∆Σ pλq. Once with the full bath
Green’s function G0 piωn, λq to obtain the – within second order perturbation theory
– ’exact’ ΣPT piωn, λq and once with the Green’s function of the cluster g0cl piωn, λq
only, which yields ΣCLPT piωn, λq. If we assume that the error introduced by second
order perturbation theory effects both ΣPT piωn, λq and ΣCLPT piωn, λq in a similar way,
then

∆Σ pλq �
8»
0

dωn |ΣPT piωn, λq � ΣCLPT piωn, λq | (3.38)

constitutes a suitable measure for the deviation, when approximating the whole system
by a L-site cluster.

If we look again at equation 3.37, we realize that G0 is required in imaginary time τ .
The transformation from the retarded Green’s function to Matsubara frequencies can
be easily done for the cluster, because with the parameters at hand we can evaluate
the continuous fraction representation given by equation 3.4 with z � iωn. In a sec-
ond step, the non-interacting Matsubara Green’s function g0 piωnq needs to be Fourier
transformed to imaginary time τ

g0pτq � 1
β

8̧

n��8

g0 piωnq e�iωnτ , (3.39)

where it is important to take the asymptotic tail of g0 piωnq correctly into account
(see appendix A for details). The transformation of G0 pωq, which is necessary for the
’exact’ ΣPT piωnq, can be done using the spectral theorem

G0 piωnq �
8»

�8

dω
A0 pωq
iωn � ω

with A0 pωq � � 1
π
=rG0 pωqs, (3.40)

or equivalently

<rG0 piωnqs � �
8»

�8

dω
ωA0 pωq
ω2
n � ω2 and =rG0 piωnqs � �

8»
�8

dω
ωnA0 pωq
ω2
n � ω2 . (3.41)

Again, the obtained G0 piωnq is Fourier transformed with equation 3.39.
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3. Impurity solvers

The resulting G0 pτq and g0 pτq are used to calculate ΣPT piωn, λq and ΣCLPT piωn, λq.
In figure 3.7 the converged self-energies for a few selected λ values are shown. The
calculations were performed on the half-filled Bethe lattice with L � 2 and U{D � 0.5.
It is important to choose U{D not too small, because the self-energy vanishes for
U{D Ñ 0, but also not too large to ensure the validity of second order perturbation
theory in U . For each λ both self-energies were calculated from the converged Green’s
functions as outlined above.

Surprisingly, ΣPT piωn, λq does exhibit only a weak dependence on the parameter λ.
On the contrary, ΣCLPT piωn, λq features a strong dependence, especially for λ ¥ 0.7.
Even if the imaginary part of ΣCLPT piωn, λq for λ � 0.85 deviates from ΣPT piωn, λq,
it shows the best accordance for both low and high Matsubara frequencies. Regarding
the real part the best agreement is also found for λ � 0.85.
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Figure 3.7.: Comparison of the imaginary (upper) and real (middle) part of ΣPT piωn, λq
and ΣCLPT piωn, λq for different λ. The lower left (right) picture shows the
low (high) frequency behavior of the imaginary part. All calculations were
performed on the half-filled Bethe lattice for U{D � 0.5. For each λ
the converged bath Green’s functions were used to obtain the shown self-
energies. Note that the results for ΣPT piωn, λq almost cover each other.

42



3.2. Cluster perturbation theory

It has to be noted that the real part of the self-energy should be zero for the half-
filled Bethe lattice,27 which is indeed the case if the self-energy is calculated via the
Dyson equation like in the DMFT cycle. However, if we evaluate equation 3.37 with
the converged g0cl piωn, λq and G0 piωn, λq this does not necessarily hold anymore.

The resulting ∆Σ pλq for cluster sizes of L � 2, 4, 6 and 8 are presented in figure 3.8. All
of them exhibit a distinct minimum around λ � 0.8, which gets slightly shift towards
lower λ for increasing cluster sizes. The optimal λ values at those minima are listed
in table 3.1. As expected ∆Σ pλq decreases with the cluster sizes over the whole λ
range and at the same time the shape is flattened leading to a much less distinctive
minimum. Certainly, this characteristic behavior of ∆Σ pλq has to continue for even
lager cluster sizes, because the limit LÑ 8 requires ∆Σ pλq Ñ 0 for all λ.
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Figure 3.8.: ∆Σ pλq for cluster sizes of L � 2, 4, 6 and 8.

L � 2 L � 4 L � 6 L � 8
λ 0.835 0.823 0.813 0.785

Table 3.1.: Optimal λ for different cluster sizes L according to the minima in figure 3.8

Due to the considerations in this section, we were able to determine the parameter
λ and also to base the concept of CPTλ on a well defined cost function. For the
calculation of the results presented in the next chapter the obtained optimal λ values
(as given in table 3.1) were used.

27or �U{2 depending on the definition of the chemical potential µ.
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4. Application to a single-orbital
system on the Bethe lattice

On the infinitely connected Bethe lattice the DMFT approximation becomes exact
and thus the only errors are originating from the impurity solver. This makes the
Bethe lattice well suited for benchmarks purposes and for the comparison of impurity
solvers. In this chapter the results for ED, CPT and CPTλ are presented for different
cluster sizes L and compared to results obtained with continuous-time Monte Carlo
(CTQMC) [30], numerical renormalization group (NRG) [31] and matrix product state
(MPS) [73] impurity solvers. The main focus is put on the self-energy, the quasiparticle
weight and the DOS.

4.1. The Bethe lattice

The Bethe lattice (or Cayle tree) is an infinite lattice where each site has q neighboring
sites. The special characteristic of the lattice is that any two sites are connected by an
unique shortest path (figure 4.1). In a strict sense the Bette lattice is just a pseudo-
lattice, because of the missing translational symmetry for q ¡ 2.

Figure 4.1.: Part of the Bethe lattice with coordination number q � 4. The lattice
itself is infinite and all sites are equivalent.
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4. Application to a single-orbital system on the Bethe lattice

An important simplification arises in the limit of infinite coordination (q Ñ 8), where
the self-energy becomes local in space and thus the DMFT approximation exact (see
also section 2.3). To maintain the balance between the kinetic and the Coulomb energy,
the nearest-neighbor hopping has to be scaled like [10]

t̃ � t?
q

(4.1)

in this limit. It can be shown that the non-interacting (U � 0) DOS on the infinitely
connected Bethe lattice is given by [71]

ρ0,BETHE pωq � 2
πD

c
1 �

� ω
D

	2
. (4.2)

This DOS, as drawn in figure 4.2, is smooth and has a semicircular shape with a finite
half-bandwidth D � 2t.

ω+D-D 0-ω

π t  
1

DOSBETHE(ω)

Figure 4.2.: Semicircular non-interacting (U � 0) DOS of the Bethe lattice with infinite
connectivity (q Ñ 8).

The Bethe lattice was pivotal in clarifying the Mott-Hubbard metal-insulator transition
of the Hubbard model at half-filling [7, 41, 42, 74, 75] and is now often used for
benchmark purposes. The Bethe lattice is usually included in every DMFT code.

4.2. Calculation setup

We adapted an existing MATLAB implementation of the DMFT cycle for our purposes,
but implemented the impurity solver in C++ for performance reasons. The impurity
solver takes the parameters of the AIM and returns the Green’s function in the Q-
matrix representation (see appendix D).

In the following sections we will discuss the results of our DMFT calculations for
temperature T � 0 on the Bethe lattice, where we have chosen D � 2eV (i.e. t � 1eV)
as half-bandwidth of the non-interacting DOS. All calculations were performed on the
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4.2. Calculation setup

real-frequency axis with a numerical broadening of η � 0.05eV. As discretization of the
frequency axis 4 · 103 points between �20 and 20eV were used. Excitations appearing
in the Lehmann representation 3.19 with weights lower than 10�10 were neglected, but
the fulfillment of the sum-rule 2.7 was checked in every iteration. The calculations
were carried out for interactions U{D from 0.0 to 4.5 in steps of ∆U{D � 0.05. The
MATLAB routine fminsearch based on the Nelder-Mead simplex method [76] was used
to minimize the cost function 3.3. The starting point for the minimization in the first
iteration for a given value of U{D was set to the bath parameters of the converged
solution from the previous value of U{D.

On the half-filled Bethe lattice the Hubbard model is particle-hole symmetric and thus
the on-site energies are already determined to ε0 � �U{2 and εi¡0 � 0.0. This simpli-
fication was directly implemented to reduce the number of fit parameters. However, if
we do not force the solution to be particle-hole symmetric, the required particle-hole
symmetry can serve as a check for the correctness of the DMFT implementation.

For each cluster size of L � 2, 4, 6, 8 and 10 sites an ED, CPT and CPTλ calculation was
performed. The parameter λ of the cost function 3.33 was set to the values determined
in the previous chapter (see table 3.1).28 We considered the DMFT self-consistency
loop as converged if the integrated absolute change of the bath Green’s function G0 pωq
between two consecutive iterations dropped below 5 · 10�4.

Although our DMFT calculations were done on the real axis, we can easily obtain the
Matsubara Green’s functions of the impurity system and consequently the Matsubara
self-energy Σ piωq by evaluating the Lehmann representation 3.19 with imaginary fre-
quencies z � iω. This allows to compare our results to continuous-time Monte Carlo
(CTQMC) [30] calculations.29 Note that the CTQMC solver directly works on the
Matsubara axis and only for a finite temperature T ¡ 0. For the shown results β ·D
was set to 200.

The numerical renormalization group (NRG) [31, 78] impurity solver yields very accu-
rate spectral information around the Fermi energy, due to the logarithmic frequency
discretization on the real axis. Therefore, we use NRG to benchmark our results for
the quasiparticle weight Z. NRG allows for calculations with T � 0 and provides a
real-frequency self-energy Σ pωq.30

Another method working on the real axis (and for T � 0) is a newly developed matrix
product states (MPS) [73] impurity solver. This solver offers a very accurate spectral
information over the whole energy range and thus a correct position and shape of
28For L � 10 the same λ as for L � 8 was used.
29The CTQMC data shown in this thesis was calculated by Markus Aichhorn with the CTQMC

impurity solver embedded in the TRIQS toolbox [77].
30The NRG self-energy was calculated by Martin Nuss with the NRG Ljubljana code [79].
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the Hubbard bands. We compare our calculated DOS to the spectra obtained with
MPS.31

As we will see below, our cluster based impurity solvers can not measure up with all
those sophisticated methods in terms of accuracy. However, it should be kept in mind
that our solvers benefit from a low computational effort, which can be scaled with the
cluster size L of the impurity system. A full DMFT calculation for one interaction
strength can easily take several hours for CTQMC, NRG or MPS in comparison to
a runtime of a few minutes for our cluster based solver, e.g. with L � 8. In table
4.2 the CPU time for solving the impurity system is listed for CPTλ and CTQMC.
Even if the computational demand of CPTλ is only a few seconds for L � 10, it is
limited to less than 15 sites due to the exponential growth of the Hilbert space (see
discussion in section 3.1). Not too much value should be attached to the necessary
number of iterations, because of the strong dependence on the initial starting point
and the convergence criteria.

L � 2 L � 4 L � 6 L � 8 L � 10 CTQMC
CPU time 0.01s 0.03s 1.00s 3.60s 14.12s �500s
Iterations 15 27 30 33 32 �15

Table 4.1.: CPU time for calculating the impurity Green’s function listed for CPTλ
and CTQMC. Calculations were performed on a standard workstation PC.

4.3. Mixing

In figure 4.3 different mixing schemes for the interaction strengths U{D � 0.5 (left
graph) and U{D � 1.5 (right graph) are compared to each other. All calculations were
performed with the CPTλ impurity solver and a cluster size of L � 4. For simple and
Broyden mixing the parameter α was set to 0.8. For this benchmark we used the non-
interacting system (i.e. Σ pωq � 0) as initial guess for the DMFT cycle. We measured
the convergence by comparing the integrated difference in the bath Green’s function
G0 pωq of two consecutive iterations.

In the very first iterations simple mixing and the Broyden’s method show a similar
behavior, because the starting approximation is basically the same for both mixing
schemes (see appendix B). Clearly, Broyden mixing exhibits a much faster convergence
rate after the first initial steps. If CPTλ is used as impurity solver it is likely that the
DMFT self-consistency cycle starts to oscillate between solutions. We can observe in
figure 4.3 that Broyden mixing is able to break those oscillations.
31The MPS calculations were performed by Martin Ganahl and published in [73].
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As seen in both graphs and concluding from experience, Broyden mixing typically
converges faster and is more stable when performed in Σ pωq.
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Figure 4.3.: Convergence comparison of simple mixing (blue), Broyden mixing (red)
and DMFT without mixing (black). Both mixing schemes were performed
in the self-energy Σ pωq () and the bath Green’s function G0 pωq (�). The
calculations were obtained with CPTλ (L � 4) with interactions U{D �
0.5 (left) and U{D � 1.5 (right). As mixing parameter α � 0.8 was used.

However, already simple mixing does improve the convergence for the lower interaction
U{D � 0.5, but cannot prevent the oscillations for U{D � 1.5. Simple mixing usually
shows a similar convergence whether performed in the self-energy Σ pωq or the bath
Green’s function G0 pωq.

Overall, the Broyden mixing scheme works better than simple mixing and turns out
to be particularly useful when consecutive iterations start to oscillate. The implemen-
tation of Broyden’s method is straight forward and the advantages are underlined by
the convincing convergence acceleration over the simple mixing scheme.

For the results presented in the following sections, Broyden mixing was switched on
after a thermalization period of 10 DMFT steps and restarted after every 20th iteration
(as suggested in appendix B).

4.4. Fullfillment of the DMFT self-consistency

One important aspect of every DMFT calculation is the fulfillment of the self-consistency
condition 2.16. Therefore, we compare the converged Green’s functions of the impurity
system g pωq and the local lattice Green’s function Gloc pωq in figure 4.4. The results
were obtained with an interaction of U{D � 1.0 and a cluster size of L � 6.
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4. Application to a single-orbital system on the Bethe lattice

Of course, the claimed self-consistency can never be reached with the finite impurity
system used in ED. The impurity Green’s function is given by the Lehman represen-
tation 3.19 and is thus composed of broadened delta peaks located at the excitation
energies. This leads to a rather strong deviation of the impurity Green’s function g pωq
from the local lattice Green’s function Gloc pωq (see upper left graph in figure 4.4).

The CPT impurity Green’s function as given by equation 3.25 is a continuous function
within the band-width of the coupled semi-infinite chain. The peaks outside the con-
tinuous part (see upper right graph in figure 4.4) are stemming from cluster excitation,
which do not lie within the band-width of the bath chain. For CPT both Green’s
functions show a much better agreement than within ED, whereby the remaining de-
viation is influenced by our restriction on the chain parameters (see section 3.2.1).
When we compare the two red lines in the upper graphs of figure 4.4, we note that the
converged CPT DOS is very much different from the ED DOS. Our newly proposed
method CPTλ does also improve the self-consistency condition, but the CPTλ spectra
provides the best accordance with MPS, as we will see below.
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Figure 4.4.: Comparison of the local lattice Green’s function Gloc pωq (red) and the
impurity model Green’s function g pωq (blue) for ED (upper left), CPT
(upper right) and CPTλ (lower). The cluster size was set to L � 6 and
the interaction to U{D � 1.0.
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4.5. Self-energy and quasiparticle weight

We start our discussion with figure 4.5, where we compare the imaginary part of the
Matsubara self-energy =Σ piωq of our investigated impurity solvers ED (green), CPT
(red) and CPTλ (blue) to the exact results from CTQMC (black). The Matsubara self-
energy is shown for three interaction strengths in the metallic regime (U{D � 1.0, 2.0
and 2.6). The first observation we make is the overestimation of the Matsubara self-
energy by ED and the underestimation by CPT for all interactions. The CPTλ self-
energy is located somewhere in between those two extremes, but is in general slightly
too large. The largest deviations occur for the smallest number of bath sites (i.e.
L � 2).

For U{D � 1.0 the Matsubara self-energies of all three methods are converging towards
the CTQMC result with increasing cluster size L. This expected behavior is strongly
pronounced in ED, where the smallest impurity system (L � 2) yields the Matsubara
self-energy farthest from CTQMC. Remarkably, CPTλ shows overall a much weaker
spread with L � 4 giving a self-energy already closer to CTQMC than ED (L � 8).
Despite the fact that the CPT self-energies are close to the CTQMC self-energy for
this interaction strength, the largest deviations are found in the very important region
of low Matsubara frequencies.

Looking at the second depicted interaction strength (U{D � 2.0), we observe that the
CPTλ results lie close to each other without an apparent trend towards the CTQMC
self-energy. Still all CPTλ results provide a better estimation than ED with as much as
8 sites. The wrong low frequency behavior of CPT is now even more pronounced and
additionally an increase of the cluster size does not lead to a significant improvement.

In contrast to the two lower interaction strengths, the third example with U{D � 2.6
is located in the difficult region close to the phase transition. Unexpectedly, the self-
energy given by ED and CPTλ show a reverted trend as a function of the cluster size
L, whereby only L � 2 falls out of the line. Again, CPT suffers from an extremely
poor low energy behavior.

All methods resemble the correct high frequency behavior and feature the required
asymptotic course to =Σ piωq � 0 for iω Ñ 8. Beside that, CPTλ outperforms both
ED and CPT when regarding the low Matsubara frequencies (see right column in
figure 4.5) up to about 1eV. We argue that CPTλ provides the most reasonable results
for the self-energy, because of the correct behavior for both low and high Matsubara
frequencies. We will further elaborate on the low energy region in the discussion of the
quasiparticle weight Z below.
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Figure 4.5.: Imaginary part of the Matsubara self-energy =Σ piωq for U{D � 1.0 (upper
panel), U{D � 2.0 (middle panel), U{D � 2.6 (lower panel) with ED
(green), CPT (red) and CPTλ (blue) as impurity solvers. The calculations
were performed for cluster sizes of 2 p�q , 4 p�q , 6 p�q and 8 pOq sites and are
compared to CTQMC (black) with βD � 200. The right graphs show the
low energy details.
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On the half-filled Bethe lattice the real part of the Matsubara self-energy is a constant
given by <Σ piωq � U{2. As shown in figure 4.6, this is indeed very accurately satisfied
by all studied methods. The only exception is the cluster size L � 2, where a small
deviation from the constant value can be observed at low Matsubara frequencies. The
CTQMC self-energy exhibits oscillations, which are caused by the statistical nature of
every Monte Carlo calculation. In contrast, our Hamiltonian based impurity solvers do
not suffer from any statistical errors.

0 5 10 15 20

1.994

1.996

1.998

2.000

2.002

iω / eV

ℜ
[Σ

(iω
)]

/e
V

CTQMC (β*D = 200)

ED L=2

CPT L=2

other

U/Dh=h2.0

0 5 10 15 20
2.590

2.592

2.594

2.596

2.598

2.600

2.602

2.604

2.606

iω / eV

ℜ
[Σ

(iω
)]

/e
V

CTQMC (β*D = 200)

ED L=2

CPT L=2

other

U/Dh=h2.6

Figure 4.6.: Real part of the Matsubara self-energy <Σ piωq for ED with L � 2 (green),
CPT with L � 2 (red) and CPTλ as well as all other cluster sizes (blue)
compared to CTQMC (black) with βD � 200. The interaction strength
was set to U{D � 2.0 (left) and U{D � 2.6 (right).

Before we turn to the discussion of the quasiparticle weight Z, we have a brief look on
the general form of the Matsubara self-energy as a function of the interaction strength
U{D. In figure 4.7 the effect of the electronic correlation is shown for CPTλ (L � 10).
In the case of a non-interaction system (U{D � 0) the self-energy is trivially zero
(Σ piωq � 0). However, for U{D � 0 it features a very distinctive curvature and
develops a minimum, which gets shifted downwards zero with increasing interaction.
In the metallic regime the self-energy goes to zero for both iω Ñ 0 and iω Ñ 8.
According to the definition 2.38, the slope at iω � 0 corresponds to the quasiparticle
weight Z. Above the phase transition, i.e. in the insulating regime, the self-energy
diverges and thus the quasiparticle weight Z is zero.

We concluded in the discussion of figure 4.5 that CPTλ provides a good approximation
of the self-energy especially for low Matsubara frequencies. This observation gets also
reflected in the quasiparticle weight Z, which is presented in figure 4.8 as a function
of the interaction strength U{D. All investigated impurity solvers (ED, CPT and
CPTλ) provide a qualitatively correct behavior of Z. For the non-interacting system
(U{D � 0) the quasiparticle weight is one and within the metallic phase it gradually
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decreases when U{D is increased. In the insulating regime the quasiparticle weight is
equal to zero. Nevertheless, only ED and CPTλ reproduce the characteristic mirrored
S-shape of the NRG result.
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compared to NRG data (black) taken from [80].
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4.5. Self-energy and quasiparticle weight

In general, ED underestimates the quasiparticle weight Z, but converges towards NRG
with increasing cluster size L. On the other side, CPT overestimates Z strongly, but
also displays a correct convergence behavior (see also figure 4.9). The quasiparticle
weight provided by CPT for a cluster size of L � 8 is still far from the NRG data
points, particularly for interactions above U{D � 0.5. CPTλ shows a remarkably good
accordance with NRG. For the cluster size L � 4 the quasiparticle weight almost
covers the NRG data points, whereby the CPTλ results for L � 6 and L � 8 imply
that Z is already well converged to its final value. We want to stress here that there
are no parameters in the CPTλ theory that are adjusted to fit Z.

The convergence of the quasiparticle weight Z with cluster size L for two selected
interactions (U{D � 0.6 and 1.6) is depicted in figure 4.9. As we already mentioned
above, ED and CPT show a convergence towards the correct NRG quasiparticle weight.
While CPT gives a vastly wrong result even for a cluster size of L � 10 (see right graph
in figure 4.9), CPTλ provides the correct Z already for a cluster as small as 4 sites.

2 4 6 8 10
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

L

Z
 

NRG T=0

ED

CPT

CPTλ

2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

L

Z
 

NRG T=0

ED

CPT

CPTλ

U/D = 0.6 U/D = 1.6

Figure 4.9.: Convergence of the quasiparticle weight Z with increasing cluster size L for
ED (green), CPT (red) and CPTλ (blue) to the NRG value from reference
[80]. The interaction was set to U{D � 0.6 (left) and U{D � 1.6 (right).

Here we will investigate the region around the metal-insulator phase transition only
briefly, because it is not the main focus of this work. Anyhow, the interested reader
shall be refereed to [41, 42, 43, 44], where the Mott-Hubbard phase transition on the
Bethe lattice is studied in greater detail. A zoom into figure 4.8 of the region around
the phase transition is given in the left graph of figure 4.10. Noteworthy, all methods
provide a very good estimation for the critical phase transition point Uc2{D, which
was determined to Uc2{D � 2.95 for the NRG reference data in [80]. It is important
to remember that calculations close to the phase transition are subjected to a slow
convergence of the DMFT cycle. Calculating the data points to a high precision is
difficult, because the DMFT self-consistency cycle turns out to be rather unstable in
this region. This is due to the coexistence of both an insulating and a metallic solution
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(see also section 2.6). For example, regard the quasiparticle weight for ED, where Z
jumps from a finite value to zero rather abruptly. This happens, because the metallic
solution can not be stabilized anymore. Consequently, it is rather difficult to determine
the precise value of the phase transition point Uc2{D.

In our DMFT calculations we move along the T � 0 line of the phase diagram illustrated
in figure 2.7. Due to our calculation setup, where we increase the interaction stepwise
and start each DMFT cycle with the parameters obtained from the previous interaction,
the solution is forced to stay in the metallic phase up to the transition point Uc2{D.
If the calculation is performed in the other direction, thus starting in the insulating
phase and decreasing the interaction stepwise, the solutions remains insulating down
to Uc1{D. The result is a hysteresis in the quasiparticle weight Z, which is displayed
for ED (L � 4) in the right graph of figure 4.10. In addition to the solution shown in
figure 4.8, a second solution is found between the interactions Uc1{D � 2.1 and Uc2{D �
2.9. These interactions mark the coexisting region of the metallic and the insulating
solution. At the lower transition point the quasiparticle weight jumps abruptly from
Z � 0 to the finite Z value of the purely metallic phase. It should be mentioned that
most likely the insulating solution is found if the DMFT cycle is started with arbitrary
parameters for the impurity system. We did not study the hysteresis for CPT/CPTλ
or other cluster sizes.
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Figure 4.10.: Left: Quasiparticle weight Z versus interaction U{D around the phase
transition. For the color code and the markers consider the legend of
figure 4.8. Right: Quasiparticle hysteresis obtained with ED (L � 4)

After the elaborations on the Matsubara self-energy and the quasiparticle weight, we
will now focus on the real-frequency self-energy. The imaginary part of Σ pωq is pre-
sented in figure 4.11, where the results for cluster sizes of L � 4 and L � 8 are
compared to NRG. For this calculations the interaction was set to U{D � 1.0, 2.0 and
2.5. Generally, the self-energy of our cluster based methods feature peaks stemming
from finite-size effects of the impurity solvers (see also the discussion in section 3.2.1).
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For the weakest correlation (U{D � 1.0), we find that ED an CPTλ show a good low
energy accordance with NRG. In particular for L � 8, CPTλ is able to significantly
improve on the ED result and to yield a reasonable good representation of the self-
energy up to about �4eV. CPT provides only an adequate self-energy above �� 4eV.
As we will see in the next section, contributions above this energy have only a very
low spectral weight and are not of primary interest. The extremely poor low energy
behavior rules out CPT as a suitable impurity solver.

Turning to the interactions U{D � 2.0 and U{D � 2.5, we observe that both ED
and CPTλ are in a remarkable good accordance with NRG for energies below �1.5eV.
Above �1.5eV both methods show a small imaginary part of the self-energy, which will
result in too narow Hubbard bands (see the DOS ρ pωq in the following section). We
want to note here that at high energies, NRG suffers from the logarithmic discretiza-
tion and cannot be taken as an exact reference anymore. CPT, on the other hand,
features some parts of the high frequency tail, but entirely fails in the region around
the Fermi energy. It should be emphasized that CPTλ (L � 4) already provides a
self-energy comparable to ED (L � 8). This is particularly beneficial when regarding
the computational costs, which are of course much lower for a cluster of 4 sites only.
For U{D � 2.5 the results for CPTλ and ED are very similar and not even a bigger
cluster of L � 8 leads to an observable improvement.

4.6. Density of states

Finally, we come to the study of the Bethe lattices DOS ρ pωq, which is shown for
calculations performed with a cluster size of L � 4 in figure 4.12 and for L � 8 in figure
4.13. The DOS ρ pωq was calculated from the local lattice Green’s functionGloc pωq with
equations 2.6 and 2.8. For the particle-hole symmetric half-filled Hubbard model the
DOS is of course symmetric around the Fermi energy. In general, the DOS calculated
with our cluster based impurity solvers suffer from severe finite-size effects (e.g. see first
panel in figures 4.12 and 4.13), which are due to the peaked structure of the self-energy
Σ pωq. In addition, the Hubbard bands for the intermediate interactions are much too
high and notably too narrow in comparison to the MPS DOS. This is primarily caused
by the unsatisfying high energy representation of the self-energy Σ pωq.
As we conclude in the previous discussion, the weight contributing to the quasiparticle
is too high in CPT, too low in ED and almost correct in CPTλ (see the second and
third panel in figures 4.12 and 4.13). Both ED and CPTλ provide the correct shape of
the quasiparticle peak, but to the contrary, the CPT quasiparticle peak has a strongly
semi-elliptical shape. Interestingly, for U{D � 2.0 and U{D � 2.6 the area under the
quasiparticle peak of the CPTλ DOS seems to be too small. However, it is difficult to
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determine a sharp end of the quasiparticle peak in the MPS DOS for the estimation
of its spectral weight. Especially for U{D � 2.0, the Hubbard bands might have large
tails reaching into the central region. Importantly, if we integrate the spectra from
�1 to 1eV, we find that the difference in the weight of the quasiparticle peak between
MPS and CPTλ is only of order Op10�2q in absolute numbers.32

For the lowest depicted interaction strength U{D � 1.0 (first panel in figure 4.12), we
observe that CPTλ (L � 4) not just improves on the central weight, but also shifts
the weight of the emerging Hubbard bands to higher energies. Beside the low-energy
contribution, the CPT result consists of three distinctive peaks above �2eV with a very
poor representation of the whole spectrum. We argue that CPTλ provides the DOS
with a shape closest to the MPS result. The DOS of all three cluster based solvers
show a significant improvement when the cluster size is increased to L � 8 (first panel
in figure 4.13). Again, note the overall good accordance of the CPTλ and the MPS
spectrum.

Now we turn to the DOS ρ pωq for U{D � 2.0 presented in the second panel of figures
4.12 and 4.13. In comparison to CPTλ (L � 4), the Hubbard bands in ED are slightly
shifted to too low energies. It should be emphasized that the CPTλ bands stay essen-
tially at the same position for L � 8, but that the ED bands are moving towards the
CPTλ result. On the other hand, the CPT bands feature a two peak structure located
at too high energies. Surprisingly, for L � 8 and U{D � 2.0 CPT gives the broad-
est, but strongest peaked Hubbard bands, which exhibit a good high energy behavior
(between �3 and �5eV).

We observe a nearly identical DOS of CPTλ/ED and that even for both cluster sizes
(L � 4 and L � 8) in the third panel of figures 4.12 and 4.13 for U{D � 2.6. For
this interaction the Hubbard bands obtained with our solvers are centered right in the
middle of the MPS Hubbard bands. Again, the CPT (L � 4) Hubbard bands posses a
two peaked structure shifted to too high energies, but for L � 8 a third peak appears
leading to a slightly lower and wider Hubbard band. Another small peak is wrongly
placed at about �1eV right in between the Hubbard band and the quasiparticle peak.

In the insulator (U{D � 3.2) the spectral weight at ω � 0 vanishes and thus the
spectrum consists only of the two Hubbard bands (see lowest panel in figures 4.12 and
4.13). As the electrons become localized the implication for the impurity model is
that the interacting site decouples from the bath.33 This means that we are left with
an atomic problem which is completely independent of the number of bath sites and
consequently also independent of the used impurity solver. It follows from the atomic
limit that the Hubbard bands have to be separated by the energy U .
32This is also confirmed by the quasiparticle weight shown in figure 4.8.
33i.e. hopping t01 goes to zero.
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Figure 4.12.: DOS ρ pωq for interactions U{D � 1.0 (first panel), U{D � 2.0 (second
panel), U{D � 2.6 (third panel) and U{D � 3.2 (fourth panel). The ED
(green), CPT (red) and CPTλ (blue) results for a cluster size L � 4 are
compared to a DOS calculated with MPS (black).
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Figure 4.13.: DOS ρ pωq for interactions U{D � 1.0 (first panel), U{D � 2.0 (second
panel), U{D � 2.6 (third panel) and U{D � 3.2 (fourth panel). The ED
(green), CPT (red) and CPTλ (blue) results for a cluster size L � 8 are
compared to a DOS calculated with MPS (black).
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4. Application to a single-orbital system on the Bethe lattice

Of course, the CPTλ impurity solver can not reproduce the fine details of the spectrum
as revealed by MPS. For example, it is not possible to resolve features like the sharp
peak at the edge of the Hubbard bands for U{D � 2.6 with a feasible number of
bath sites. Nonetheless, the general properties of the DOS over the whole interaction
range are still represented. Those are the position of the Hubbard bands, the weight
distribution between them and the central quasiparticle peak and the shape of the
quasiparticle peak itself.

Next, we briefly study the effect of the numerical broadening η. The converged pa-
rameters of the impurity system obtained from a DMFT calculation with η � 0.05eV
were used to evaluate the self-energy for two additional broadenings (η � 0.5eV and
η � 0.005eV).34 As usual, the DOS ρ pωq for an altered broadening follows from equa-
tions 2.6, 2.8 and 2.18 with z � ω � iη. The results are depicted for CPTλ (L � 8)
and U{D � 2.0 in figure 4.14.

For the smallest broadening η � 0.005eV the finite-size peaks are strongly pronounced,
but it is important to point out that the maximum of the quasiparticle peak at the Fermi
energy obeys the Luttinger pinning of the DOS [81], which is in our case ρ p0q � 1{π
(see also equation 4.2 and figure 4.2). Additionally, the spectral weight around ω � 0
resembles the MPS result closely. For a higher η this is not fulfilled anymore, because
at the same time the broadening reduces the height of the peak to preserve the total
weight. The extreme example of η � 0.5eV smears out the entire spectrum such
that it appears to be smooth. We argue that η � 0.05eV is a good tradeoff between
’correctness’ and smoothness of the DOS.
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Figure 4.14.: Dependence of the DOS ρ pωq on the numerical broadening η. The CPTλ
(L � 8) calculation for U{D � 2.0 was performed with η � 0.05eV
(blue). Using equations 2.6, 2.8 and 2.18 the DOS was evaluated again
with η � 0.005eV (green) and η � 0.5eV (red).

34Note that this is not the same as performing DMFT with a different broadening η, which was not
studied within the scope of this thesis.
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4.6. Density of states

The remarkable accordance of the CPTλ (L � 10) DOS for U{D � 1.0 with the MPS
DOS is shown in figure 4.15. Despite the simplicity and the low computational demand
of our impurity solver, we are able to reproduce the overall shape of the spectrum in
the weakly correlated regime surprisingly well. As mentioned above, the spikes in the
CPTλ spectrum are due to finite-size effects of the cluster. To increase the accompanied
energy resolution of the bath for a smoother spectrum a cluster size far beyond the
computational limit would be necessary.
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Figure 4.15.: CPTλ (L � 10) DOS compared to the MPS DOS for U{D � 1.0.

The evolution of the DOS for CPTλ as a function of the interaction U{D is illustrated
for L � 10 in figure 4.16 and for L � 8 in figure 4.17.
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Figure 4.16.: Evolution of the DOS for CPTλ (L � 10) as a function of U{D with steps
of ∆U{D � 0.5.
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Figure 4.17.: Evolution of the DOS for CPTλ (L � 8) as a function of U{D with steps
of ∆U{D � 0.05.

Both 3D plots reveal the development of the characteristic three peak structure with
increasing interaction U{D. In the weak correlation regime the semicircular DOS of
the non-interacting Bethe lattice starts to broaden, but already for U{D � 1.0 the
emerging Hubbard bands are clearly visible. When approaching the phase transition
spectral weight gets transferred from the central quasiparticle peak to the more and
more pronounced Hubbard bands. At the phase transition point Uc2{D the quasiparti-
cle peak vanishes and the spectrum is left with the Hubbard bands, which are separated
by the energy difference U . In conclusion, CPTλ offers a reasonable description of the
DOS over the whole interaction range.

64



5. Application to a multi-orbital
system - SrVO3

While NRG, MPS and other sophisticated methods are certainly superior to the CPTλ
impurity solver in the one-band case, they are not directly applicable to multi-orbital
systems. The only restriction of CPTλ is the number of sites treated within the in-
teracting cluster and thus multi-orbital systems can be addressed with our impurity
solver. In this chapter we apply ED and CPTλ to the correlated paramagnetic material
SrVO3 and compare the results to a CTQMC calculation. The properties of SrVO3

were already extensively studied experimentally as well as within the DFT+DMFT
approach, e.g. in the references [82, 83, 84, 85, 86].

5.1. The material and DFT results

SrVO3 belongs to the group of transition metal oxides and has a cubic perovskite crystal
structure (Pm3m) with a 3d1 electronic configuration [87] (see figure 5.1). Due to the
influence of electric fields caused by the neighboring oxygen atoms in the octahedral
environment, the five-fold degeneracy of the vanadium d-orbitals is lifted, because wave-
functions pointing towards the oxygen ions have a higher energy than those pointing
between them. This crystal-field causes the 3d states to split into eg and lower lying t2g
states. For a crystal with perfect cubic symmetry (like SrVO3) hybridization between
eg and t2g states is forbidden. The states within both subbands are two-fold and three-
fold degenerated (see figure 5.2) [88]. The only electron in the d1 configuration sits on
a t2g level and the empty eg states are well separated in energy.
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5. Application to a multi-orbital system - SrVO3

Figure 5.1.: SrVO3 crystal structure. Blue sphere: strontium; green spheres: vana-
dium; red spheres: oxygen; red lines: oxygen octahedra; black lines: cubic
vanadium grid (unit cell). The size of the atoms is not to scale. Drawn
with the free software Balls&Sticks [89].

E

3d1

t2g

eg

Figure 5.2.: Upper: 3d-orbitals in the cubic crystal-field drawn with the free software
Orbital Viewer [90]. Lower: Splitting of the vanadium 3d-orbitals in
cubic SrVO3. The fivefold degeneracy is lifted to two eg and three t2g
orbitals. The energy splitting is not to scale.
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5.1. The material and DFT results

The DFT DOS calculated with the DFT code WIEN2K [91] is shown in the left graph of
figure 5.3.35 Because of the d1 configuration, the t2g manifold is partially filled and the
Fermi level cuts through these bands. Below the t2g bands the O-2p states show their
main contribution between �7 and �2eV. From about 1.3 to 5.5eV the V-3d states of
eg symmetry form a broad band. The energy difference between the t2g and eg band
centers of gravity indicates a clear separation of those bands. Therefore, it is legitimate
to consider only the partially filled triply degenerated t2g bands, lying in the energy
window from �1.5 to 2.0eV, for the DMFT calculation.

Subsequently, these strongly correlated subbands are projected to localized Wannier
functions with WIEN2WANNIER [92]. The DOS of the t2g Wannier functions (per orbital
and spin) is shown in the right graph of figure 5.3. The number of k-points was set
to 9261, because this number is a good tradeoff between sufficiently enough points for
an accurate representation of the DFT DOS and an acceptable computational cost for
the k-summation required by equation 2.51.36

The t2g orbitals are effectively described by the multi-orbital Hamiltonian 2.2. The
required Coulomb interaction and Hund’s coupling were determined to U � 4.0eV,
J � 0.6eV, U 1 � U � 2J � 2.8eV (see also reference [85]).

−3 −2 −1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ω / eV

ρ
(ω

) 
/ 
e

V
−

1

V−3d t
2g

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

ω / eV

D
O

S
 /
 e

V
−

1 total

O−2p

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

ω / eV

 D
O

S
 /
 e

V
−

1 V−3d e
g

V−3d t
2g

D
F

T
D

F
T

(DMFT subsp.)

Figure 5.3.: Upper left: Total DFT DOS of SrVO3 (black) and O-2p contribution
(blue). Lower left: Partial DOS of V-3d t2g (red) and eg (green) orbitals.
Right: DOS (per orbital and spin) of the t2g Wannier functions in the sub-
space from �1.5 to 2.0eV with 9261 k-points. Calculations were performed
with WIEN2K and WIEN2WANNIER.

35The DFT calculation with WIEN2K and the projection to localized Wannier orbitals with
WIEN2WANNIER was performed by Markus Aichhorn.

36Evaluating equation 2.51 requires one loop over all z-points and one nested loop over all k-points.
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5. Application to a multi-orbital system - SrVO3

5.2. DMFT calculation setup

Considering three t2g orbitals as subspace for DMFT demands 3 � 3 self-energy and
Green’s functions matrices.37 However, in the case of SrVO3 the self-energy matrix
Σmm1 pzq is diagonal in the orbital indices and even orbital independent

Σmm1 pzq � δmm1Σ pzq , (5.1)

which means that the self-energy can be still treated as a vector Σ pzq – like in the
one-orbital case. The impurity model (figure 5.4) consists of three interacting sites,
where each one is coupled to a semi-infinite bath chain. Due to the orbital degeneracy
each bath chain must have the same parameters, which allows for minimizing the cost
function 3.3 for one chain only. Because of those computational simplifications SrVO3

serves as a popular material for testing numerical implementations of multi-orbital
impurity solvers.

The interacting part (colored box in figure 5.4) is determined by the local part of
Hamiltonian 2.2 with the parameters (U, J and J 1) given above. Dealing with the
impurity system itself remains a multi-orbital problem and when using ED/CPTλ as
impurity solver, three times less bath sites per orbital are feasible in comparison to the
single-band system discussed in the previous chapter.
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Figure 5.4.: AIM for SrVO3. Each orbital is coupled to an infinite bath chain. Due to
the degeneracy of the three orbitals the bath chains must have the same
parameters.

37The matrices are actually of size 6 � 6 including the spin degrees of freedom.
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5.3. DMFT results

The results shown in section 5.3 were obtained by one-shot DFT+DMFT calculations
on the real frequency axis with 4 · 103 ω-points between �20 and 20eV. The numer-
ical broadening was set to η � 0.05eV. To ensure a filling of 1{6, i.e. one electron
per atom, the chemical potential was adjusted after every 7th iteration. The DMFT
self-consistency loop was considered as converged if the integrated absolute change of
the bath Green’s function G0 pωq between two consecutive iterations was smaller than
5 · 10�4 and the absolute error of the filling less than 10�3. CPTλ was performed with
λ � 0.8. Note that all shown quantities are per orbital and per spin.

5.3. DMFT results

First, we discuss the self-energy on the Matsubara axis Σ piωq depicted in figure 5.5,
where the ED and CPTλ results for L � 6 and L � 9 are compared to the self-energy
obtained with CTQMC (β � 50eV�1). We want to emphasize that the DMFT loop
itself is performed on the real-frequency axis and only the final result is shown for
Matsubara frequencies. As real and constant contributions can either come from the
chemical potential µ or the real part of the Matsubara self-energy < rΣ piωqs, we plot
the difference of those two quantities.

Regarding the imaginary part of the self-energy first (see upper panel in figure 5.5), we
observe that ED predicts a too metallic solution in comparison to CTQMC, but already
CPTλ (L � 6) lies much closer to CTQMC than ED L � 9. The imaginary part of
the CPTλ self-energies resembles the CTQMC curve remarkably well and provides the
correct behavior for both low and high Matsubara frequencies. Surprisingly, CPTλ
(L � 9) is in accordance with CTQMC below 1eV and above 4eV. As we expected for
both impurity solvers, the self-energy improves when an additional bath site is added
to each orbital.

A very similar behavior is found when regarding the real part of the self-energy (lower
panel of figure 5.5). ED (L � 6) predicts a too low real part, but again the result does
improve for L � 9. Except for the lowest Matsubara frequencies, CPTλ (L � 9) lies
almost on top of the CTQMC result. In the case of the Hubbard model, the Fermi
liquid theory states Σ p0q�µ � 0 [93]. However, the values at ω � 0 for ED and CPTλ
are slightly shifted away from zero.

Overall, the CPTλ result shows a very good agreement with the CTQMC data and
clearly outperforms ED. Of course, the satisfying low frequency behavior of the self-
energy gets also reflected in the quasiparticle weight Z, which is listed in table 5.3 for
all used methods and a ARPES measurement [86]. ED overestimates Z, but CPTλ
provides a quasiparticle weight very close to CTQMC, and more importantly, within
the errors of the experimental reference value.
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Figure 5.5.: Imaginary part (upper panel) and real part (lower panel) of Σ piωq � µ.
Calculations were performed for ED (green) and CPTλ (blue) with a sys-
tem size of L � 6 (dotdashed) and L � 9 (solid). Results are compared to
CTQMC (black) with β � 50 eV�1.

ED L � 6 ED L � 9 CPTλ L � 6 CPTλ L � 9 CTQMC ARPES
Z 0.72 0.67 0.59 0.60 0.62 0.56� 0.06

Table 5.1.: Quasiparticle weight Z listed for ED, CPTλ, CTQMC and a ARPES
experiment [86].

In figure 5.6 the DOS, i.e. �1{π=Gloc pωq, and the real part of Gloc pωq are presented.
Since the electron filling is only 1{6, the spectra are strongly asymmetric, with the
maximum of the quasiparticle peak at about 0.55eV above the Fermi energy. Roughly
half of the spectral weight is accounted for by the quasiparticle peak. The remaining
weight is divided into the two Hubbard bands, whereby the upper Hubbard band
contributes �40% to the overall weight and the lower Hubbard band less than �10%.
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panels) compared to CTQMC (β � 50 eV�1).
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The heavily peaked structure of the Hubbard bands of the ED and CPTλ spectra is
due to finite-size effects stemming from the impurity cluster. Increasing the cluster
size to L � 9 does reveal a few additional details, but it does not provide much further
information on the position and shape of the Hubbard bands.38

It should be emphasized that the CTQMC calculation is a method working on the
Matsubara axis, thus an analytic continuation is necessary to obtain the spectral infor-
mation on the real axis. The statistical noise in the simulation data turns the analytic
continuation into an ill-posed problem. This means that small changes on the Matsub-
ara axis can have a strong effect on the resulting DOS and thus heavily influence the
shape and position of the Hubbard bands. Usually, the analytic continuation is done
with the Padé approximation [94] or a maximum entropy method [95]. The advantage
of our cluster based method is that real-frequency observables are directly available
from the calculations without any further approximations.

For an impurity cluster of 9 sites the central quasiparticle peak is slightly narrowed
and shifted towards lower frequencies in comparison to the 6 site cluster. Especially
for CPTλ (L � 9), the central part of the spectrum shows a remarkable agreement
with the CTQMC DOS. Also the upper Hubbard band of the CPTλ result exhibits a
better accordance to the CTQMC band in comparison to ED. The latter shows a huge
gap between 1.7 and 2.3eV with the first ED peak of the upper Hubbard band placed
not before 2.8eV, which is even beyond the maximum of the CTQMC band.

It seems that CPTλ places the lower Hubbard band at too low energies. However, the
lower Hubbard band of the CTQMC DOS is rather flat and has a long tail towards
lower frequencies.39 While the shape of the CPTλ band is not in accordance with the
CTQMC result, the central point of gravity is estimated better than by ED. This
statement is underlined below by the comparison of the first moments of the DOS. It
should be mentioned that other DFT+DMFT results [84] suggest a lower Hubbard band
centered around �2eV, but those calculations were performed with larger parameter
values for the local Hamiltonian (U � 5.5eV and J � 1.0eV).

In general, the real part of Gloc pωq does follow the CTQMC result, but possesses jumps
(discontinuities) exactly at the frequencies of the peaks occurring in the DOS. The real
and imaginary part of Gloc pωq essentially contain the same information, because they
are connected via the Kramers-Kroning relation [27].

To compare the spectra on the real axis in more detail the integrated spectral weights

F0 pωq �
ω»

�8

dω1ρ pω1q and F1 pωq �
ω»

�8

dω1ω1ρ pω1q , (5.2)

38Cluster sizes far beyond the computational limit would be necessary to achieve a smoother DOS.
39Those are most likely effects of the analytic continuation.
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5.3. DMFT results

which are the zeroth (left) and first (right) moment of the DOS ρ pωq are plotted in
figure 5.7.
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Figure 5.7.: Cumulative zeroth (left) and the first (right) moment of the DOS ρ pωq for
ED (green) and CPTλ (blue) compared to CTQMC (black).

The zeroth moments of ED/CPTλ show a remarkably good agreement with the in-
tegrated weight of the CTQMC DOS in the important frequency range from about
�1 to 1eV. Outside this range the zeroth moment is slightly better reproduced by
CPTλ. Regarding the first moment, we note that CPTλ is in reasonable accordance
with CTQMC over the whole energy range. From the first moment between �2.5 and
0.0eV, we can conclude that the lower Hubbard band is located such that its cen-
tral point of gravity is estimated better by CPTλ. The steps in the moments of the
ED/CPTλ DOS are caused by the peaks in their spectra.

In figure 5.8 the spectral functions A pk, ωq for the k-path Γ p0, 0, 0q Ñ X p0, π, 0q Ñ
M pπ, π, 0q Ñ Γ p0, 0, 0q are shown for DFT (left) and DMFT with CPTλ (L � 9) as
impurity solver (right). The spectral functions were obtained for the given k-path by
evaluating equation 2.51, but without performing the k-summation. Note that only
the strongly correlated t2g subbands of the DFT spectral function, which we treated
within DMFT, are plotted.

In the DMFT dispersion the quasiparticle peak in the region between �1 and 1eV and
the two Hubbard bands are well pronounced. The peaked structure of the bands is
also reflected in the spectral function. Overall, the Hubbard bands have a rather flat
dispersion, whereby the lower band has its main weight around �2eV and the upper
band between 1.5 and 3.5eV (see also the DOS for CPTλ (L � 9) in figure 5.6). The
DFT t2g bands are renormalized to about half of the initial DFT width, which is well
consistent with the quasiparticle renormalization of Z � 0.6.
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Figure 5.8.: Spectral function A pk, ωq for the k-path Γ p0, 0, 0q Ñ X p0, π, 0q Ñ
M pπ, π, 0q Ñ Γ p0, 0, 0q. Left: DFT band structure of the t2g subspace
around the Fermi energy. Right: DMFT spectral function with CPTλ
(L � 9) as impurity solver.
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6. Conclusions

In this thesis the use of CPT as a real-frequency impurity solver for DMFT was studied.
For this purpose, the impurity system was split into a finite cluster containing the
impurity site and a semi-infinite non-interacting chain. The coupling between those
two systems is treated within CPT. However, CPT is only expected to be reliable as
long as the coupling stays small, which was achieved by modifying the cost function
for the impurity parameters by introducing an additional parameter λ. With the
self-energy as a second figure of merit, we were able to develop a consistent way to
determine λ.

This newly developed impurity solver (CPTλ) was first investigated on the infinitely
connected Bethe lattice. In contrast to ED/CPT, CPTλ shows a good low and high
frequency behavior of the self-energy on the Matsubara axis. Remarkably, CPTλ with
an impurity cluster of only four sites provides already a quasiparticle weight very close
to NRG comparison data. Although the DOS suffers from finite-size effects and a poor
representation of the Hubbard bands, CPTλ yields a qualitatively correct spectrum,
especially in the weakly correlated regime. We observe that the spectral weight transfer
from the central region around the Fermi energy to the Hubbard bands with increasing
interaction strength is well reproduced. Noteworthy, all three impurity solvers (ED,
CPT and CPTλ) provide a proper estimation of the phase transition point.

To allow a faster and more stable convergence to the DMFT fixed-point we implemented
Broyden’s method as mixing scheme. It turns out that this advanced approach works
best if mixing is performed in the self-energy.

As final part of this work, our impurity solver was tested in the framework of
DFT+DMFT on the strongly correlated paramagnetic material SrVO3. The splitting
of the DFT spectrum into the characteristic three peaked structure consisting of the
quasiparticle peak and the two Hubbard bands is well pronounced. CPTλ yields a very
accurate representation of the spectrum around the Fermi energy (i.e. the quasiparticle
peak) and thus a quasiparticle weight within the errors of available experimental data.
Despite the strongly peaked structure of the Hubbard bands, we observe a reasonably
good distribution of the spectral weight, which is confirmed by the comparison of the
DOS itself and its zeroth and first moments to data obtained with CTQMC.
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6. Conclusions

In general, calculations performed with CPTλ as real-frequency impurity solver do
provide qualitatively better results than ED. This concerns in particular the position
of the Hubbard bands and the central quasiparticle weight. Of course, the resulting
spectra can not measure up with those provided by impurity solvers like NRG, MPS or
CTQMC, but CPTλ offers a fast and widely applicable way to obtain good estimates
before applying one of the more advanced methods.

Solvers based on ED/CPT can in principle be used on the imaginary or the real-
frequency axis and do not suffer from restrictions like the sign-problem or the ill-posed
analytic continuation for numerical data. The low computational demand would make
them suitable for charge self-consistent DFT+DMFT or total energy calculations of
multi-orbital systems. The results for SrVO3 with only 1 and 2 bath sites per orbital
are promising, but of course CPTλ needs to be tested for other strongly correlated
materials and in situations with lower symmetry than in the perfectly cubic case of
SrVO3.

76



A. Matsubara Green’s function

This brief introduction to Matsubara Green’s functions is based on the books [27, 28],
whereby more on the Green’s function theory can be found therein. Here, we start with
the definition of the Matsubara (imaginary-time) single-particle Green’s function

Gνν1 pτ, τ 1q � �
A
Tτcν pτq , c:ν1 pτ 1q

E
, (A.1)

where τ and τ 1 are real parameters satisfying 0   τ and τ 1   β with β � 1{T .40 Tτ is
the time ordering operator which puts the operators c and c: in a chronological order.
The time evolution of the operators is defined as the usual real-time evolution

c pτq � eHτc e�Hτ and c: pτq � eHτc:e�Hτ , (A.2)

but setting it � τ , which is called Wick rotation. As for the retarded Green’s func-
tion (introduced in section 2.2), a time-independent Hamiltonian results in a Green’s
function dependent only on the time difference τ � τ 1, with �β   τ � τ 1   β to guar-
antee the convergence of equation A.1. Using the cyclic properties of the trace the
anti-periodicity of the Matsubara Green’s function

G pτq � �G pτ � βq for τ   0, (A.3)

can be shown and thus the Matsubara Green’s function is periodic in 2β. Due to
these properties, the Fourier transformation of the imaginary-time Green’s function
G pτq leads to a discrete imaginary-frequency Green’s function G piωnq defined at the
(fermionic) Matsubara frequencies

ωn � p2n� 1q π
β

(A.4)

Note that the Matsubara frequencies are directly connected to a finite temperature.41

Beside poles or branch cuts on the real axis, the Green’s function G pzq is analytic
in both the upper and lower complex plane. According to the theory of analytic
functions, two functions are fully identical if they coincide in an infinite number of
40The Boltzmann constant kB is set to 1.
41For T � 0 the Matsubara frequencies become continuous.

77



A. Matsubara Green’s function

points. This means that the Matsubara Green’s function can be analytically continued
from Matsubara frequencies to the real axis by substituting iω Ñ ω � iη. However,
this is only possible if an analytic expression of the Green’s function, like the Lehmann
representation (equation 3.19), is available. Otherwise, e.g. in the case of numerical
data, the analytic continuation turns out to be an ill-posed problem.

To evaluate equation 3.37 we need to Fourier transform the Matsubara Green’s function
G piωnq from the frequency domain iωn to imaginary times τ . Some consideration are
necessary to numerically perform this transformation in an efficient and proper way.
The following elaborations are based on the lecture notes [96] and outlined for a non-
interacting Green’s function, but are also valid in the interacting case. The Fourier
transformation of the discrete Matsubara frequencies is defined as

G0 pτq � 1
β

8̧

n��8

G0 piωnq e�iωnτ � 1
β

N�1̧

n��N

G0 piωnq e�iωnτ �GT
0 pτq , (A.5)

where the first part can be evaluated numerically only for a finite number of 2N points.
Not treating the truncation GT

0 pτq straightforwardly would require a large number of
Matsubara frequencies. Therefore, we shall take a look at the asymptotic behavior of
G0 piωnq

G0 piωnq �
»
dε

ρ0 pεq
iωn � ε

�
»
dερ0 pεq

�
� ε

ω2
n � ε2

� iωn
ω2
n � ε2



�

� � 1
ω2
n

»
dερ0 pεq ε� i

ωn

»
dερ0 pεq � � εB

ω2
n

� i

ωn
� � i

ωn
,

(A.6)

where εB is the band center of mass energy. With this approximation for large Mat-
subara frequencies it is possible to derive an expression for GT

0 pτq.

GT
0 pτq �

1
β

�N�1¸
n��8

G0 piωnq e�iωnτ � 1
β

8̧

n�N

G0 piωnq e�iωnτ �

� 1
β

8̧

n�N

�
G0 piωnq e�iωnτ �G0 p�iωnq eiωnτ

� �
� � i

β

8̧

n�N

1
ωn

�
e�iωnτ � eiωnτ

� � � 2
β

8̧

n�N

sin pωnτq
ωn

�

� � 2
β

8̧

n�0

sin pωnτq
ωn

� 2
β

N�1̧

n�0

sin pωnτq
ωn

�

� � 2
π

8̧

n�0

sin
�
p2n� 1q πτ

β

	
2n� 1 � 2

β

N�1̧

n�0

sin pωnτq
ωn

�

� �1
2sign pτq �

2
β

N�1̧

n�0

sin pωnτq
ωn

(A.7)
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Putting together equation A.5 and A.7 gives the final expression for the Fourier trans-
formation

G0 pτq � 1
β

N�1̧

n��N

G0 piωnq e�iωnτ � 1
2sign pτq �

2
β

N�1̧

n�0

sin pωnτq
ωn

, (A.8)

but now including an asymptotic tail correction. If the Fourier transformation is carried
out several times, the second an third term need to be calculated only once, because
they are independent of G0 piωnq. To capture the physics correctly it is necessary to
chosen N large enough to ensure being close to the high frequency asymptote � 1

iωn
.
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B. Broyden’s Method for DMFT

A more advanced mixing approach is the so-called Broyden’s method, which incorpo-
rates the knowledge of the self-energy Σ pzq change over all previous iterations. To
stay within the scope of this thesis, only the resulting equations given in the publica-
tion [37] are stated. Additional details on the derivation can be found in the references
therein. The same considerations hold also for mixing performed in other quantities
(e.g. G0 pzq).

First we rewrite equation 2.29 from section 2.5

rF �Σ̂ pzq
�
� F

�
Σ̂ pzq

�
� Σ̂ pzq � 0, (B.1)

where the roots Σ̂ pzq of the mapping rF correspond to the DMFT fixed-points. Ba-
sically, Broyden’s method is a quasi-Newton-Raphson method and aims at finding
precisely those roots.

The mixed self-energy after the Nth iteration is given by

ΣN�1 pzq � ΣN pzq � �JN��1 rΣN pzq , (B.2)

where ΣN pzq is the mixed self-energy after the (N�1)th step and rΣN pzq � rF �ΣN pzq�
the difference between ΣN pzq and the self-energy resulting from one DMFT iteration
with ΣN pzq as input. The true Jacobian matrix

�
JN

��1 of the system is unknown,
thus a simple approximation (i.e. a diagonal matrix) is used for the initial Jacobian.42

Incorporating the information of all previous iterations to update the current Jacobian
matrix and simplifying the computational scheme so that only the vectors rΣN pzq and
ΣN pzq need to be stored, leads finally to the (modified) Broyden method

ΣN�1 pzq � ΣN pzq � αrΣN pzq �
N�1̧

n�1

N�1̧

k�1
cNk β

N
k,nU

n pzq (B.3)

with
cNk �

�
∆rΣk pzq

	: rΣN pzq , Un pzq � α∆rΣn pzq � ∆Σn pzq (B.4)

42Using � 1
α1 as initial Jacobian corresponds to simple mixing.
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and the matrices

βNk,n �
��
ω2

01�AN
��1

�
k,n
, ANk,n �

�
∆rΣn pzq

	:
∆rΣk pzq . (B.5)

The quantities ∆rΣN pzq and ∆ΣN pzq are the normalized differences between consecu-
tive iterations

∆ΣN pzq � ΣN�1 pzq � ΣN pzq
|rΣN�1 pzq � rΣN pzq | , ∆rΣN pzq �

rΣN�1 pzq � rΣN pzq
|rΣN�1 pzq � rΣN pzq | . (B.6)

The first two terms of equation B.3 correspond to simple mixing with parameter α.
The last term is a correction, which accounts for the updates of the initial Jacobian.
According to reference [37] the weight ω0 should be chosen to 0.01.

Implementing Broyden’s method (equations B.3 to B.6) into the DMFT cycle is straight
forward and the added computational expenses turn out to be very low. In practice,
it is advisable to

• use a thermalization period of a few iterations (�10) without mixing

• and to restart the mixing after some iterations (�10 � 20),

to avoid an incorporation of solutions which are far from the actual one (e.g. due to a
poor initial guess).
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C. Generation of basis states with
HAKMEM #175

This code snippet is adapted from reference [60].

1 void permutat ions ( int i n i t i a l , int nr , std : : vector<int> &st )
2 //This func t i on gene ra t e s the lowest nr permutations
3 // o f the i n i t i a l b i t pattern
4

5 unsigned int x = i n i t i a l ;
6 unsigned int u ;
7 unsigned int v ;
8

9 s t . r e s e r v e ( nr ) ;
10 s t . push_back (x ) ;
11 for (unsigned int i = 1 ; i < nr ; i++)
12 {
13 u = x & �x ;
14 v = u + x ;
15 x = v + ( ( ( v^x )/u)>>2);
16 s t . push_back (x ) ;
17 }
18 }
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D. Q-matrix formalism

The Lehmann representation of the Green’s function, where we omit a possible degen-
eration of the ground state |ψ0y, reads

Gνν1 pzq �
¸
n

xψ0|cν |ψny xψn|c:ν1 |ψ0y
z � pEn � E0q �

¸
m

xψ0|c:ν1 |ψmy xψm|cν |ψ0y
z � pEm � E0q . (D.1)

The idea of the Q-matrix formalism (first suggested in [97]) is to write the occurring
sums in the Lehmann representation in terms of a convenient matrix multiplication

Gνν1 pzq �
¸
γ

Qνγ
1

z � λγ
Q:
γν1 � QΛ pzqQ:, (D.2)

with the Q-matrix of dimension Nγ � L

Qiγ �
#

xψ0|cν |ψγy , for γ P N � 1
xψγ|cν |ψ0y , for γ P N � 1

(D.3)

and the diagonal Λ-matrix of dimension Nγ �Nγ

Λγγ1 pzq � δγγ1

z � λγ
, where λγ �

#
Eγ � E0, for γ P N � 1
E0 � Eγ, for γ P N � 1

. (D.4)

The matrix Q comprehends the weights of all excitations, whereby the matrix Λ is
the only z-dependent quantity left. This means that the full information embedded in
the Green’s function can be stored in a single matrix Q and one vector λγ. From the
computational point of view this formalism is beneficial, because it allows for evaluating
equation D.2 for any z be it on the real or the imaginary axis.

The sum-rule given by equation 2.7 transferred to the Q-matrix formalism yields

QQ: � 1. (D.5)

Usually, many exited states contribute with very little weight to the Green’s function.
Those excitations can be deleted from λγ as well as from the corresponding columns in
the Q-matrix. Still, it is important to fulfill the sum-rule D.5, ensuring no observable
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D. Q-matrix formalism

effect caused by reducing the dimensionality of Q. Throwing out all negligible exci-
tations reduces the computational cost of evaluating equation D.2, which is typically
done for many z-values to obtain a full frequency dependent Green’s function.
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E. Motivating the CPT equation

As starting point we consider the Dyson’s equation for both the full system

G�1 pzq � G0
�1 pzq � Σ pzq (E.1)

and the cluster only
G1�1 pzq � G1

0
�1 pzq � Σ1 pzq , (E.2)

where primes mark cluster quantities. CPT is based on approximating the self-energy
of the full system Σ pzq by the self-energy of the cluster Σ1 pzq only [55]. Thus we
obtain within CPT

G�1 pzq � G0
�1 pzq � Σ pzq � G0

�1 pzq � Σ1 pzq �
� G0

�1 pzq �G1
0
�1 pzq �G1�1 pzq . (E.3)

In the last step the self-energy Σ1 pzq was substituted with the self-energy from equation
E.2. Expressing the non-interacting Green’s functions in terms of the single-particle
Hamiltonians H0 and H 1

0

G�1 pzq � G1�1 pzq � pz1�H0q �
�
z1�H 1

0

�
� G1�1 pzq � �H0 �H 1

0

� � G1�1 pzq � T , (E.4)

leads finally to the CPT equation as stated in equation 3.25. The matrix T contains
exactly the terms which are not present in the cluster Hamiltonian H 1

0 and that are
the inter-cluster hoppings.
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