
Masterarbeit

Measurement Based Evaluation Framework for

Near Field Communication Systems

Gernot Johann Solic, BSc

————————————–

Institut für Technische Informatik

Technische Universität Graz

Vorstand: Univ.-Prof. Dipl.-Inform. Dr. techn. Kay Römer

Begutachter: Ass.-Prof. Dipl.-Ing. Dr. techn. Christian Steger

Betreuer: Ass.-Prof. Dipl.-Ing. Dr. techn. Christian Steger

Dipl.-Ing. Dr. techn. Manuel Menghin, BSc

Graz, im August 2014

Kurzfassung

Im Laufe der letzten Jahre hat sich NFC am Markt immer stärker durchgesetzt und hat sich

auf mobilen Endgeräten als ein weiterer Kommunikationsstandard etabliert. Ein aktuelles

Thema im Bereich von Datenerfassung und Fernsteuerung sind NFC-Bridges, die gewöhnli-

che Elektronikbauteile um eine NFC-Kommunikationsschnittstelle erweitern können und

es somit ermöglichen, Smartphones als Ersatz für Benutzeroberflächen einzusetzen. Auf

mobilen Endgeräten ist die Energieversorgung limitiert – daher sollten die integrierten Kom-

ponenten optimiert werden um eine möglichst lange Betriebszeit zu ermöglichen. Es müssen

daher diese NFC-Systeme auf einen möglichst geringen Energieverbrauch optimiert werden.

In der Praxis werden Werkzeuge zur Evaluierung des Energieverbrauches häufig an die zu

entwickelnden NFC-Applikationen angepasst. In dieser Masterarbeit wird ein generisches

Grundkonzept für NFC-Systeme diskutiert und wie anhand dieses Entwicklungswerkzeuges

der Energieverbrauch gemessen und anschließend optimiert werden kann.

Das in dieser Masterarbeit konzipierte NFC-System dient als Grundlage für den Daten-

tausch zwischen den kommunizierenden NFC-Komponenten. In der Implementation des

Evaluierungssystems wird ein Smartphone mit NFC-Erweiterung als Benutzerschnittstelle

und ein Einplatinencomputer mit NFC-Gateway Erweiterung als NFC-Bridge eingesetzt.

Diese zwei Komponenten dienen als Basis für die Ausführungsplattform der zu evaluierenden

Anwendungen. Anschließend wird eine vorhandene Messumgebung an die Ausführungs-

plattform angeschlossen, die zur Messung des Energieverbrauches dient. Nach der Messung

werden die erfassten Daten ausgewertet und mit Hilfe dieser Datenanalyse können Op-

timierungen für den Energieverbrauch an der Applikation vorgenommen werden welche

die Laufzeit des mobilen Endgerätes erhöhen. Die Stärken dieser Evaluierungsumgebung

liegen im generischen Aufbau, in der Reduzierung des Entwicklungsaufwandes sowie der

progressiven Optimierung der Applikation.

Zusätzlich zur Implementierung des Evaluierungssystems werden auch drei konkrete Anwen-

dungsfälle auf diesem NFC-System evaluiert und mittels einfachen Softwareoptimierungen

verbessert. Diese Anwendungsfälle sollen den Umgang mit dem messbasierten Evaluierungs-

system erläutern und zeigen wie Applikationen optimiert werden können. Der Vergleich

der erfassten Messdaten von den einzelnen Anwendungsfällen soll beweisen, dass dieses

generische Konzept eines Evaluierungssystems für NFC-Brücken als Grundgerüst für die

Entwicklung von Applikationen erfolgreich herangezogen werden kann.

1

Abstract

In the last few years NFC has become a mature communication standard for mobile devices

and is suitable for a broad variety of application areas. A hot topic in terms of remote

control and data acquisition are NFC bridges which are able to extend common electronic

devices with a NFC interface. Furthermore, NFC enabled smartphones can be utilized as

a replacement of the built-in user-interface for these electronic devices. NFC applications

are different and therefore the evaluation of the power consumption has to be adapted to

individual use-cases in order to increase the operating time of the system.

This thesis will introduce a generic measurement based evaluation framework for NFC

systems which can be used as underlaying development and optimization platform. The

evaluation framework is the foundation for the communication between the NFC components

and is executed in a real hardware environment. The implementation uses a state-of-the art

NFC enabled smartphone as the user-interface. Furthermore, a single-board computer with

a NFC gateway extension as the desired NFC bridge is providing the run-time environment

for the use-case applications. The analysis of the power consumption is done with an existing

evaluation suite which will be appended to the run-time environment for measurement

purpose. The gathered power consumption data is used to apply optimizations to the

evaluated application and increase the operating time of the mobile device. The main

advantages for such a evaluation framework is the generic architecture, the improvement

of the development cycle and continuous progressive optimizations.

In addition to the evaluation framework, three use-case applications are evaluated to expose

the current implementation and optimization potential with simple software techniques.

These use-case applications demonstrate the functionality of the framework and are utilized

in order to improve application development in terms of power consumption. Furthermore,

the comparison of the collected measurement data from the unoptimized and optimized

application shows how successful the evaluation framework works and serves as the proof

of concept.

2

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz am,

(Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

.............................. ...

date (signature)

3

Danksagung

Diese Diplomarbeit wurde im Studienjahr 2013/2014 am Institut für Technische Informatik

im Rahmen des META[:SEC:] Projekts an der Technischen Universität Graz durchgeführt.

Danksagung an alle am Institut, die mich während der Recherche und Erarbeitung dieser

Arbeit unterstützt und motiviert haben. Ein besonders ausdrücklicher Dank gilt speziell

Dipl.-Ing. Manuel Menghin, der mir über die gesamte Dauer des Projektes mit wertvollen

Tipps, Anregungen sowie Verbesserungsvorschlägen beistand und mich bei der Realisierung

dieser Arbeit stets gefördert hat. Bedanken möchte ich mich auch bei Herrn Ass. Prof. Dipl.-

Ing. Dr. techn. Christian Steger, der mich während der Anfertigung meiner Masterarbeit

begleitet hat.

Herzlich bedanke ich mich außerdem bei meinen Eltern, die mir meine Ausbildung erst

ermöglichten und mir immer eine wertvolle moralische Hilfe sind. Ein weiterer Dank gilt

zusätzlich meiner Schwester und meinen Verwandten für die Unterstützung.

Bedanken möchte ich mich auch besonders bei meiner Freundin, die mir jederzeit mit

vollstem Verständnis zur Seite stand. Desweiteren bedanke ich mich bei meinen langjährigen

Freunden aus meinem Heimatort und auch bei den neu gewonnenen Freunden während des

Studiums für die angenehme Zusammenarbeit und die spannende Zeit.

Herzlichen Dank für Eure Unterstützung!

Graz, 28. August 2014 Gernot Johann Solic, BSc

4

Contents

1 Introduction 11

1.1 Motivation . 12

1.2 Contribution and Goals . 13

1.3 Content Structure . 15

2 Related Work 16

2.1 Radio Frequency Identification . 16

2.2 Near Field Communication . 16

2.2.1 Standards . 17

2.2.2 Operation modes . 18

2.2.3 Modulation . 19

2.2.4 Coding . 19

2.2.5 Data and Command Flow . 19

2.3 Ubiquitous Systems for NFC . 20

2.3.1 Monitoring System . 21

2.3.2 Wireless Sensor . 22

2.4 Power Optimization Techniques for NFC . 22

2.4.1 Power Drain Reduction with Stand-by Mechanisms 23

2.4.2 Power Management . 24

2.4.3 Physical Parameter Analysis . 26

2.4.4 Use-Case Dependency . 26

2.5 Power Evaluation Strategies . 27

2.5.1 Automation . 28

2.5.2 Hardware in the Loop . 28

2.5.3 Run-time Measurement . 30

2.5.4 Battery Sensing . 32

2.6 Evaluation of Devices . 32

2.6.1 Device Selection Criteria . 32

2.7 Generic Architecture . 33

2.7.1 Open Platform . 34

3 Design 36

3.1 Synopsis . 36

5

3.1.1 Basic Concept . 36

3.1.2 System Composition . 37

3.1.3 Strengths . 38

3.2 Requirements . 38

3.3 Architecture . 38

3.3.1 Fundamentals . 40

3.3.2 Outline . 41

3.4 Design . 42

3.4.1 Component Classification . 42

3.4.2 Run-time Environment . 43

3.4.3 Measurement Suite . 43

3.4.4 Generic Approach . 44

3.4.5 Communication Loop . 44

4 Implementation 46

4.1 Overview . 46

4.1.1 Brief Description . 46

4.1.2 Schedule and Road-map . 47

4.1.3 Design Realization . 49

4.2 Hardware Components . 50

4.2.1 Initiator User-Interfaces . 50

4.2.2 Initiator NFC Modules . 53

4.2.3 Target Platforms . 55

4.2.4 Target Gateway . 55

4.2.5 Measurement Suite . 57

4.3 Hardware Composition . 58

4.3.1 Development Setup . 58

4.3.2 Evaluation Setup . 60

4.4 Development Environment . 62

4.4.1 Tools . 63

4.4.2 Testing and Debugging . 64

4.5 Software Components . 64

4.5.1 Reader Bridge . 65

4.5.2 Reader Interface . 65

4.5.3 Proxmark3 Firmware . 65

4.5.4 Proxmark3 Client . 66

4.5.5 Use-Case Applications . 66

4.6 Software Composition . 66

4.7 Software Implementation . 67

4.7.1 Reader Bridge . 67

4.7.2 Reader Interface . 69

4.7.3 Proxmark3 Firmware . 71

4.7.4 Proxmark3 Client . 72

4.7.5 Utilities . 73

6

4.8 Alternative Approaches . 74

4.8.1 Internal Reader . 74

4.8.2 Breakout Board . 75

4.8.3 Dual Gateway . 76

5 Case Study 78

5.1 Measurement Setup . 78

5.1.1 Software Setup . 80

5.2 Measurement Process . 81

5.3 Use Case Evaluation . 82

5.4 Example: Remote Sensor . 84

5.4.1 Proximity Range . 84

5.4.2 Multiple Sensors . 84

5.5 Example: Large Data Exchange . 87

5.6 Example: Request Timing . 88

6 Conclusion 89

7 Future Work 90

A Acronyms 93

B Development Setup 96

B.1 Eclipse and Android . 96

B.2 Proxmark3 Firmware . 96

B.3 Raspberry Pi . 97

Bibliography 103

7

List of Figures

1.1 Evaluation and optimization process . 12

1.2 NFC bridge based on start-of-the-art hardware 13

2.1 NFC forum architecture . 17

2.2 Reader-Writer mode . 18

2.3 Card-Emulation Mode . 18

2.4 Modulation types for RFID with n = 2 symbols 19

(a) ASK Modulation . 19

(b) PSK Modulation . 19

(c) FSK Modulation . 19

2.5 Coding signals . 20

2.6 Block diagram of the remote monitoring system 21

2.7 Simplified system architecture of the power meter 23

2.8 System architecture of NIZE . 24

2.9 PTF-Determinator in an NFC environment 24

2.10 Adaptive field strength in a multiple-transponder system 25

2.11 Caching strategy for primitive values in an NFC-environment 28

2.12 Controller automation for power evaluation systems 29

2.13 In-the-loop test method . 29

2.14 Function testing with iterative process . 30

2.15 Run-time hardware in the loop test-bench 31

2.16 Voltage and current sensing with extended measurement environment . . . 32

2.17 System architecture for a basic system . 34

3.1 Basic concept . 37

3.2 System architecture with essential components 41

3.3 Evaluation framework design . 43

3.4 Simple masking of underlaying hardware . 44

3.5 Request-response loop . 45

4.1 Development Timeline . 48

4.2 Development road-map . 48

4.3 Design realization with real hardware . 50

4.4 Overview of the utilized hardware equipment 59

8

(a) LG E960 (Nexus 4) . 59

(b) DUALi DE-620 . 59

(c) Raspberry Pi Model B . 59

(d) GT-I9023 (Nexus S) . 59

(e) ACR122U . 59

(f) Proxmark3 . 59

(g) OMAP35x . 59

4.5 Development hardware setup . 60

4.6 Evaluation hardware setup . 61

4.7 Software composition . 68

4.8 Communication between the reader bridge and interface 71

4.9 Proxmark3 protocol packet . 71

4.10 Communication between the Proxmark3 firmware and the client 74

4.11 Approach with the smartphones internal NFC reader 75

4.12 Approach with a NFC breakout board . 76

4.13 Dual gateway approach . 77

5.1 Measurement setup for the use-case study 79

5.2 Measurement setup snapshot . 80

5.3 META[:SEC:] Evaluator Input Panel for the main configuration 82

5.4 META[:SEC:] Evaluator Settings for a remote SOAP web-service 82

5.5 Measurement process of the evaluation suite 83

5.6 Evaluated use-case applications . 83

(a) Sensor application . 83

(b) Data application . 83

(c) Timing application . 83

5.7 Single sensor requests . 85

(a) Distance = 0 cm . 85

(b) Distance = 1 cm . 85

(c) Distance = 2 cm . 85

5.8 Single and clustered requests . 85

(a) Single sensor requests . 85

(b) Clustered sensor requests . 85

5.9 Large data set transfer . 87

(a) Raw data . 87

(b) Compressed Data . 87

5.10 Timed data requests . 88

(a) No timeout . 88

(b) With timeout . 88

7.1 Central configuration example . 91

9

List of Tables

2.1 ECMA International NFC standards . 17

2.2 Separation of test cases in categories . 33

3.1 Run-time module elemental components . 37

3.2 Measurement suite module essential components 37

3.3 Features of the proposed system . 38

3.4 Requirements - general . 38

3.5 Requirements - initiator (portable device) 39

3.6 Requirements - target . 39

3.7 Requirements - observable interface . 40

3.8 Requirements - observer . 40

3.9 Requirements - measurement controller and automation mechanics 40

4.1 Technical Specification - LG E960 (Nexus 4) 51

4.2 Technical Specification - GT-I9023 (Nexus S) 52

4.3 Technical Specification - DUALi DE-620 USB NFC Reader 54

4.4 Technical Specification - ACR122U USB NFC Reader 54

4.5 Technical Specification - Raspberry Pi Model B (rev. 2) 56

4.6 Technical Specification - Proxmark3 . 57

4.7 Technical Specification - OMAP35x Evaluation Module 57

4.8 Connection Description - Development setup 58

4.9 Connection Description - Productive setup 62

5.1 Measurement: Proximity range . 84

5.2 Measurement: Multiple sensors . 85

5.3 Measurement: Large data set . 87

5.4 Measurement: Timed data requests . 88

10

Chapter 1

Introduction

During the last years, radio frequency identification (RFID) technology expanded quickly

and new fields of applications have been a hot topic of research for various technical

domains. A relatively young specification architectures is near field communication (NFC)

which is characterized by a short transmission range and secure communication between

the two involved devices. NFC was designed to be backwards compatible to existing RFID

infrastructures and should discover new application areas that are requiring the charac-

terizing properties of this specification. NFC was integrated in different market sectors

like payment environments or access authorization systems with a highly security relevant

focus. The breakthrough that made NFC aware in general public was the integration of this

communication technology in the new generation of mobile devices. The high market pene-

tration of smartphones anticipate plenty new use-case scenarios for NFC systems. A current

issue topic in terms of connecting mobile gadgets with common electronic devices are NFC

bridges which are extending existing hardware with NFC interfaces. Thus common devices

can be extended with an input unit (smartphone) that has a highly user-friendly design

at a low-cost because no additional extensions are required beside the bridge hardware.

[1] mentions three unique advantages of NFC enabled smartphones integrated into NFC

system environments:

• Interactivity: User interface for intuitive client input options and visualizations.

• Multi-application management: Possibility of multiple application execution in real-

time and remotely with help of the smartphones mobile network functionalities.

• Remote User Management: Users are able to authenticate over the NFC interface

and can receive personal or customized information.

The main advantage is that NFC systems in combination with a sophisticated user interface

have a valuable potential for innovative use-cases currently and in the near future. A

limiting constraint of these innovative ecosystems is the power consumption of the NFC

interfaces especially for smartphones as mobile devices are supplied by a battery and hence

everything has to be power optimized.

11

CHAPTER 1. INTRODUCTION 12

Development

MeasurementOptimizations

Analysis

Figure 1.1: Evaluation and optimization process

1.1 Motivation

The limited power supply of the mobile device (smartphone) requires optimization tech-

niques for the NFC connection in terms of power consumption. But how can researchers

and developers determine the parts of the system with the highest impact to the power

drain in order to increase time of operation? New development tools are required which can

be utilized to discover power critical regions and are adaptable for a wide range of possible

use-case applications. These tools gather the required information by measuring the power

consumption on real hardware during application execution. The collected measurement

data is analyzed afterwards and provides feedback for potential improvement adaptations

(optimizations) to the present system. Thus the quality of NFC applications based on NFC

bridges can be enhanced iteratively with continuous measurement. Figure 1.1 illustrates the

optimization process through frequent measurement iterations. This concept is specifying

four process tasks:

• Development: Implementation and realization of the main functionality and system

logic in terms of application context.

• Measurement: Application execution and parallel power consumption measurement

with convenient instruments.

• Analysis: Evaluation of measurement results and detection of optimization possibili-

ties of the application.

• Optimizations: Improve the application with suitable power optimization techniques

and methods.

Currently, evaluation tools are already existing but they are designed to measure specific

applications rather than novel NFC system architectures. Thus the concept of a generic

measurement framework can be utilized to evaluate and optimize various different use-

case scenarios. Furthermore, this generic approach of the NFC framework could be the

underlaying foundation for the general development of a NFC bridge architecture.

CHAPTER 1. INTRODUCTION 13

NFC

Initiator

(Smartphone)

NFC Link

NFC Extension

(Bridge Gateway)

Target

(Bridge Interface)

Link Link

Measurement

Computational

Unit

Computational

Unit

<< wired >>

User Interface NFC Bridge

Figure 1.2: NFC bridge based on start-of-the-art hardware

1.2 Contribution and Goals

This master thesis is part of the META[:SEC:] project which is conducted by the Institute

of Technical Informatics 1 on TUGraz. In this project, a measurement based evaluation

framework for NFC bridges is designed and implemented. The main object of this thesis

is the realization of an generic evaluation environment for researchers and developers

which execute and measure various different use-case applications. The benefit is the

classification of the required modules for such an environment and how this concept can

be implemented with state-of-the-art hardware. Currently, NFC bridges consist of an

initiator which is establishing the connection and a target which is responding to the

requests from the initiator. This concept for NFC bridges is the central component which

will be extended to an evaluation framework. The initiator and target should provide the

run-time environment for the use-case application which will be evaluated on the system.

A measurement suite is appended to the core execution framework and collects the power

consumption of the devices. The concept of an evaluation system is illustrated in figure 1.2

in which the initiator consists of a user-interface (smartphone) and the target is a primitive

computational unit (e.g. micro-controller) with a gateway as NFC extension. Furthermore,

the target and the gateway extension can be integrated as NFC bridge in common devices

(e.g. consumer electronics) with few effort and at a low-cost.

A concrete implementation with real hardware is developed during the practical work of

this thesis. The main implementation part is the development of the run-time environment.

An existing measurement component will be appended to the run-time environment. The

1https://www.iti.tugraz.at/

https://www.iti.tugraz.at/
https://www.iti.tugraz.at/
https://www.iti.tugraz.at/

CHAPTER 1. INTRODUCTION 14

combination of the measurement component and the run-time environment is the targeted

evaluation framework. Further, this basic system can be utilized to measure and optimize

NFC use-case applications and serves as a template for more enhanced measurement based

evaluation frameworks. A case study should demonstrate that the concept of such an

environment is working and can be used to optimize NFC applications and services. In this

case study three use-case scenarios are implemented on top of the evaluation framework and

analyzed afterwards. This serves as the proof of concept for the implementation approach

of the designed system. The following enumeration lists the general tasks for the research

of this thesis and the practical implementation:

1. Analyze existing NFC evaluation systems and related work

2. Create a concept and design of the measurement based evaluation framework

3. Implementing of the run-time environment

4. Integration of the existing measurement suite from META[:SEC:] into the evaluation

framework

5. Perform case-study analysis with use-case application examples as proof of concept

CHAPTER 1. INTRODUCTION 15

1.3 Content Structure

This thesis is structured in several different topics. This description gives a brief overview

about all chapters and sections that are included in this work. From the design of the

very first basic abstraction until the final evaluation framework with a prove of concept.

Afterwards, results will be presented and upcoming tasks will be defined in the future work

chapter.

Related Work 2 This chapter gives an overview of techniques, methodologies and

concepts that are related to this thesis and have influenced the idea and realization of this

work.

Design 3 This part discusses the classified components and composition for the targeted

evaluation framework and also identifies the necessary requirements of the system.

Implementation 4 This chapter explains the creation and development process of the

current implementation and describes how the hardware and software works.

Case Study 5 This part demonstrates the measurement extension and shows evaluation

examples with different use-case applications.

Conclusion 6 This chapter gives a summary of the findings during the research of this

thesis and exposes advantages and disadvantages of the system.

Future Work 7 This part describes possible enhancements for the current implementa-

tion which are researchable in future projects.

Chapter 2

Related Work

Related work describes reference systems for NFC environments and gives an overview of

how to measure such systems and improve them with different strategies. They illustrate a

generic architecture that is the anchor for further designs and concepts. In the sections

power consumption and evaluation it is discussed how to automate the testing process in

the system and how to use collected data in order to optimize the system and lower the

power drain from the battery. Thereafter, the evaluation of hardware devices for the system

is argued, this is the classification of possible devices that would fit in the environment. The

last section in Related Work covers the possible operation systems that will be used for the

basic practical implementation and the integration in the planned run-time environment.

2.1 Radio Frequency Identification

RFID is a wireless communication technology for data and energy transmission. The major

idea behind RFID is the electrical or magnetic field which establishes the connection for

the transfer. The NFC specification relies on a high frequency magnetic field, thus the

NFC components of devices are inductively coupled systems. These systems are similar to

the electrical transformer principle. The active device initiates a magnetic field which is

used as the communication channel to the second device. [2, pg. 13ff]

2.2 Near Field Communication

A new specification of the RFID technology is near field communication (NFC) and very

common for the current device generations. It represents a young set of communication

standards compared to other personal area networks (PAN) systems (e.g. Bluetooth).

NFC covers the radio frequency ISM band of 13.56 MHz and it is a short range (~10 cm)

communication technology. The three operation modes for NFC are peer-to-peer, reader-

writer and card-emulation mode. The major advantages for NFC over other wireless

16

CHAPTER 2. RELATED WORK 17

Peer-to-Peer Reader / Writer Card Emulation

Card Emulation

Smartcard possibilities

for mobile devices

Reader / Writer

NFC Forum tag format

NFCIP-1

Transport protocol

LLCP

Top layer protocol

Applications

NFCIP-1 (ISO/IEC 18092)

ISO/IEC 14443 Typ A,B and JIS X 6319-4 (FeliCa)

Figure 2.1: NFC forum architecture [2, pg. 90]

communication technologies are the energy transfer from the active to the passive NFC

device and its pairing-less establishment of the connection. NFC is a combination as well

as extension of the proprietary RFID systems NXP MIFARE (ISO/IEC 14443 Typ A)

and Sony FeliCa and it is downward compatible to existing RFID systems based on these

standards. [2, pg. 87]

2.2.1 Standards

There are several engineering standards for the NFC specification, the most important

ones are NFCIP-1 (ISO/IEC 18092) and NFCIP-2 (ISO/IEC 21481). Table 2.1 gives an

overview of the ECMA1 NFC standards. [2, pg. 87]

Standard Description

ECMA-340 Near Field Communication Interface and Protocol (NFCIP-1)
ECMA-352 Near Field Communication Interface and Protocol-2 (NFCIP-2)
ECMA-356 NFCIP-1 RF Interface Test methods
ECMA-362 NFCIP-1 Protocol Test Methods
ECMA-373 Near Field Communication Wired Interface (NFC-WI)
ECMA-385 NFC-SEC: NFCIP-1 Security Services and Protocol
ECMA-386 NFC-SEC-01: NFC-SEC Cryptography Standard using ECDH and AES

Table 2.1: Engineering standards for NFC defined by ECMA International [2, pg. 88]

The NFC forum is an association of organizations and companies with strong interest to

push the NFC technology to the market. This forum is responsible for the definition of

NFC specifications, compliance with the standards and information for customers about

the application possibilities. The forum created a complete NFC architecture based on the

engineering standards from ECMA International, see figure 2.1. [2, pg. 88]

1European Computer Manufacturers Association

CHAPTER 2. RELATED WORK 18

NFC Reader/Writer NFC TransponderHost

Power supply for the

activation of the HF field

and supply of the transponder

Reader/Writer starts

communication

Transponder answers

over load modulation

Figure 2.2: Reader-Writer mode [2, pg. 92]

RFID Reader NFC Card-EmulationHost

Power supply for the

activation of the HF field

and supply for the smartcard

Reader starts

communication

Emulated smartcard

answers over load modulation

Figure 2.3: Card-Emulation Mode [2, pg. 100]

2.2.2 Operation modes

The three standard operation modes for NFC systems are reader-writer mode, card-

emulation mode and per-to-peer mode. In this thesis reader-writer and card-emulation

mode will be focused, peer-to-peer mode can be added in future projects if necessary.

Reader-Writer Mode

The reader-writer mode provides communication with passive RFID transponders (see

figure 2.2). Every NFC enabled device must support the specified NFC forum tags. Based

on NFCIP-1, the passive communication component notifies the active part if the peer-to-

peer mode is supported, otherwise the reader-writer mode is used. The reader-write mode

is the backward compatibility mode to existing RFID environments. [2, pg. 99]

Card-Emulation Mode

The card-emulation mode provides the interaction with RFID readers (see figure 2.3)

and is backward compatible to smartcard environments. The NFC device emulates a

contact-less smartcard like FeliCa, Mifare or even application protocol data unit (APDU)

driven cards. NFC hardware provides a secure element that is similar to a real smartcard

and communicates over the wireless NFC interface. A secure element is independent and

operates autonomous even if the other hardware of the device is deactivated. [2, pg. 100]

CHAPTER 2. RELATED WORK 19

0

−1

−0.5

0

0.5

1

(a) ASK Modulation

0

−1

−0.5

0

0.5

1

(b) PSK Modulation

0

−1

−0.5

0

0.5

1

(c) FSK Modulation

Figure 2.4: Modulation types for RFID with n = 2 symbols

The proposed system will be implemented in reader-writer mode with support for custom

APDU operations (card-emulation mode). The target (transponder emulation) will be

compatible to NFC forum type 1-3 tag specification [3, 4, 5] and can also be extended with

customized APDU commands which are not part of the specification. A secure element

is not planned but can be simply added to the software implementation of the target

emulation.

2.2.3 Modulation

The modulation binds digital information to the emitted magnetic field in order to transport

the data between NFC devices. There a three different modulation types for RFID

technology: amplitude shift keying (ASK), phase shift keying (PSK) and frequency shift

keying (FSK). For NfcA systems 100% ASK (initiator) and the on-off keying (OOK)

(target) are the relevant modulation types. As the name suggests ASK encodes the data

into the amplitude of the signal-wave. For binary signals 2-ASK is very common because

this type only uses two states (0,1). Figure 2.4 illustrates these three different modulation

types.

2.2.4 Coding

The coding in combination with the modulation is the layer for data transportation. Two

types of coding are used in terms of NfcA: modified miller-coding on the initiators side

and manchester-coding on the targets side. Figure 2.5 shows the information data and the

signal for the specific coding.

2.2.5 Data and Command Flow

Data flow is based on a request-response sequence and actions are encapsulated into APDU

packets which are transceived between the initiator and target. The initiator (active part)

prepares request command and sends it to the target (passive or emulated transponder)

which is responding accordingly to the request. The validation of transmitted data is

CHAPTER 2. RELATED WORK 20

1 0 1 1 0 0 1 0

Miller Coding

Modified Miller Coding

Manchester Coding

Figure 2.5: Coding signals [2, pg. 24]

performed with cyclic redundancy check (CRC) in particular CRC-16 (ISO/IEC 13239

standard) which is based on the polynomial equation P (x) = x16 + x15 + x2 + 1 [6, pg. 1].

Depending on the operation mode there is an initialization sequence for target determination,

activation and selection. After this initialization phase application dependent commands

can be exchanged. For the NfcA technology which is supported and implemented in

the proposed system the initialization phase is described in [7] and is executed with the

following tasks:

1. Request targets (ALL_REQ and SENS_REQ)

2. Anticollision phase (NFCID1) (SDD_REQ)

3. Target selection (SEL_REQ)

4. Application requests (READ, WRITE, . . .)

5. Target deselection (listen mode → sleep mode) (SLP_REQ)

2.3 Ubiquitous Systems for NFC

There are various prototypes for controlling and monitoring sensor devices over a wireless

data link. [8] explains three NFC enabled sensors types.

1. Passive sensors

2. User controlled semi-passive sensors

3. Standalone semi-passive sensors for long-term monitoring

Suitable for this project are stand-alone semi-passive sensors for long-term monitoring

which are activated by user or environment events. [8] describes such systems in detail.

A possible realization of a stand-alone semi-passive sensor can be a simple temperature

transmitter. The sensor is activated with a trigger in periodic intervals and records the

measured temperature to the internal storage. The user can connect the smartphone with

the sensor with help of the NFC interface and is able to evaluate the stored temperature

values. The user is able to control the target device in order to activate the sensor and gets

CHAPTER 2. RELATED WORK 21

Heart Rate Monitor

(External Measurment Unit)

Control
Human Heartbeat

(Measurable Condition)

Measurement

Conversion
Power Supply

Data Storage

Passive

Near Field

Communication

Control

User Interface
GPRS

Communication

Active

Near Field

Communication

Active NFC Reader

FU2

FU2.1 FU2.2

FU2.3 FU2.4

FU1

NFC Frontend Module

FU1.2

FU1.1 FU1.5

FU1.3 FU1.4

User

Interface

GPRS

Communication
Data Storage

Control

Back-end Server

FU3

FU3.2 FU3.1

FU3.4 FU3.3

IF1

IF3.2

IF2

IF3.1

IF3.3

IF5.1

IF5.2
IF5.3

IF7.2

IF7.1
IF7.3

Figure 2.6: Block diagram of the remote monitoring system [9, pg. 74]

the current temperature directly. This approach is straight forward and a solid foundation

for the targeted evaluation framework.

2.3.1 Monitoring System

A more detailed view on stand-alone semi-passive sensors is described by Opperman and

Hancke [9, pg. 46]. The designed system measures the human heartbeat with an external

measurement sensor. This sensor is connected to a passive NFC front-end module with an

internal storage system. The active NFC reader is a smartphone and supplies the front-end

module. The reader also establishes a general packet radio service (GPRS) connection to a

back-end server where the heartbeat data is collected and stored. The created system is

shown in figure 2.6.

The functional unit (FU) 1 is operating as the NFC gateway and any feasible sensor

equipment is attachable to this device. Communication is established over a NFC connection

to the FU 2. FU 1 is a passive component so it is activated when the FU 2 (smartphone)

with its active NFC reader is in close proximity. The FU 2 in this configuration acts as a

repeater. It receives data from the FU 1 and transmits the information over long range to

the back-end server (FU 3) with help of GPRS technology. FU 3 has obtained control over

the measurement equipment with a two-way wireless connection and is able to interact

CHAPTER 2. RELATED WORK 22

with FU 1. The detailed description and results for this example prototype is discussed in

[9, pg. 46].

2.3.2 Wireless Sensor

Chan et al. [10, pg. 751] designed a wireless RFID power meter with an outage recording

module, see figure 2.7. The central component is a RFID tag which provides access to the

power meter with an outage recording module and the rear-end processing system. A data

acquisition module (DAM) is used to collect and memorize the recorded data for voltage

and current to the internal storage unit. This module is connected with the RFID reader

via RS3232 which can transmit the stored data to the RFID tag. The outage recording

module operates the same way. The rear-end processing system is implemented as a

personal digital assistant (PDA) RFID reader. The PDA can be used to extract the stored

data periodically from the RFID tag and analyze it for further processing.

The two following caveats need to be observed in this particular prototype.

• Concurrency: It is important to manage the access times from the RFID tag. A

flag can help to determine the access state and the reader which is just performing

an operation on the tag. This simple solution keeps the system in a stable state.

The flag solution will not scale well for larger and more complex systems with more

sensor modules attached.

• Memory Size: The RFID tag has a limited memory size. The power meter prototype

does not require a large storage capacity because the RFID tag is capable to store 64

pages each with 4 Bytes. The discussed system only needs 34 of the storage pages.

On systems with a higher data throughput this is a bottle-neck for the RFID tag

solution.

2.4 Power Optimization Techniques for NFC

Power consumption is an important issue on ubiquitous mobile-devices because available

battery capacity is limited without connection to an electric supply network. Wireless

data transmission drains a significant amount of power from the supply. Thus power

saving principles must be applied to mobile-devices. Power optimization is a huge topic in

general and therefore common approaches for NFC will be pointed out and explained in

this thesis. NFC power-awareness is a key topic because in a typical environment there is

an active component (initiator) and a passive component (target). The initiator energizes

the target with the emitted magnetic field. Stand-by optimization, power management

and appropriate hardware design are universal techniques for lowering the power drain of

mobile-devices.

2serial communication interface

CHAPTER 2. RELATED WORK 23

RFID Reader

RFID Tag

RFID Reader

PDA-based

RFID Reader

Rear-End

Processing System

Data

Acquisition

Module

Rear-End

Processing System

for Power Meter

and Outage

Recording System

Customer

Customer

Loads

Power Meter and

Outage Recording Module

Figure 2.7: Simplified system architecture of the power meter [10, pg. 751]

2.4.1 Power Drain Reduction with Stand-by Mechanisms

Meier [11, pg. 1] remarks that a significant amount of power is wasted during idle time

and power savings can be accomplished with state-of-the-art stand-by mechanisms. It

is necessary to enable the magnetic field of the initiator on demand when there is data

ready to be send. On Android operating system (OS) the magnetic field is switched on

with the display of the mobile device. Therefore, user activity is required to initialize NFC

communication. Another approach is periodically enabling the field and the determination

of a responding transponder. Finding the best timings for the activation of the field is a

complex task and is different for each application and based on the performed operations.

Another option is the use of the initiator’s magnetic field to enable the targets internal

power supply. Druml et al. [12, pg. 2] introduce an innovative near field communication

interface enabling zero energy (NIZE). This methodology implements exactly this target

activation with the initiators magnetic field. The analog front-end of the reader and

target device behave like an over-the-air activation switch for the targets power supply,

see figure 2.8. The reader establishes the magnetic field and the target collects the power

and triggers the internal supply. After all enqueued communication messages are finished

the target device turns off the internal power supply. This solution guarantees a lossless

stand-by target. Devices which are waiting for user interaction can be extended simply

and cost-efficiently.

CHAPTER 2. RELATED WORK 24

NFC Reader Target Device

Analog

Front

End
Rest of Target Device

(RoTD)

Power Supply

Analog

Front

End

Rest of

NFC

Reader

H(t)

Power Supply Control

Figure 2.8: System architecture of NIZE [12, pg. 2]

Smart

Phone

Smart Card

(Tag)

Power Transfer Function (PTF)

Data Transmission Channel

Power Transfer Channel

Reader

IC
Coil Coil

Power

SupplyPin Pout

<<Software>>

PTF-Determinator

2. Control H-Field 1. Determine PTF

describes

uses to

Figure 2.9: PTF-Determinator in an NFC environment [13, pg. 1]

2.4.2 Power Management

Another approach for power saving is efficient energy management. This methodology

describes dynamically power scaling. Thus the system is analyzing the power consumption

in every single state and based on the gathered information the power drain will be reduced

to a minimum where the systems still operates correctly.

Menghin et al. [13, pg. 1] proposes the PTF-Determinator which is some kind of such a

dynamically mechanism. During run-time of the system the PTF-Determinator identifies the

power transfer function (PTF) and scales the consumed power to a sufficient minimum. The

PTF-Determinator is adapted for a NFC environment and determines power consumption

during run-time for the tag-detection. The acquired information is used to enhance the

timings for the initialization phase. Menghin et al. mentions an average of 12% power

saving for the PTF-Determinator.

The automatic power stepping (APS) is a similar procedure for power management. Xu

et al. [14, pg. 1] mention that APS scales the transmission power level with the amount

of used tags in the magnetic field. Extensive empirical studies has been performed on

CHAPTER 2. RELATED WORK 25

Battery Powered

Transponder A + B

Active
...

Field Strength Scaling

Transponder A Active

Time [s]

H
-F

ie
ld

 [
A

/m
]

Transponder A

Transponder B

Transponder C

Scenario 1

Scenario 2

Embedded System

Transponder A

(Gateway)Coil
RFID-

Bridge
I
2
C

Mobile HF-Band RFID-Reader

(Smart Phone)

Reader IC Coil
Pin

RFID

Examples Of Possible Scenarios:

Transponder B

(RF Memory)Coil
RF Powered

Memory
I
2
C

Figure 2.10: Adaptive field strength in a multiple-transponder system [16, pg. 1]

passive tags to establish an accurate APS which reduces the power consumption up to

about 60%. This method is basically applicable for RFID systems and compatible with

existing standards. It is not necessary to modify transponders for an APS extension.

Other counter-measure techniques focus on the magnetic field like adaptive field strength

scaling (AFSS). Typically, many systems are operating on the maximum field strength but

this is not necessary for some applications. Thus a better strategy would be an adjustment

of the magnetic field to the transponders needs. The basic concept of AFSS is to increase

or decrease the field strength accordingly to the smartcard power consumption [15]. There

are two different approaches for this field scaling technique:

• Request-based AFSS: Software implementation of the scaling. For example, the

smartcard exchanges the power consumption information with the reader (initiator)

which adjusts the strength to a proper value.

• Instantaneous power consumption-based AFSS: Hardware modifications for

the involved components.

Field strength can also be dynamically scaled for multiple-transponder systems thus the

field strength is increased with the amount of transponders. Figure 2.10 shows a multi-

transponder system and how the reader (initiator) behaves when new transponders are

entering the proximity range. Energy reduction for AFSS is on average up to 54% and

for multiple-transponder implementations it is about 34%. Therefore, the field strength

scaling is a powerful optimization method [16].

CHAPTER 2. RELATED WORK 26

2.4.3 Physical Parameter Analysis

Physical parameters have considerable impact on the power drain. For instance, in RFID

and NFC systems the design and efficiency of antennas have a major influence on the

operating time of different devices. A potential high power drain is avoidable with an

evaluation of the systems specific physical parameters. For wireless environments the most

common parameters are antenna design, distance between antennas and field strength.

Warnick et al. [17, pg. 1] developed a relationship between near field power transfer and

radiation efficiency for dipole-type antennas in order to identify the optimal geometrical

parameters for the desired antenna. This method can either be used for communication

purpose or for power transfer between systems.

2.4.4 Use-Case Dependency

A different approach for power consumption reduction is the direct evaluation of the

selected application. Previous discussed strategies are usually generic methods which can

be applied to a broad range of systems. The following ideas and concepts are heavily

depending on the use-case and have to be adapted to the actual scenario. This thesis is

generally based on the mentioned methodologies below in order to test different kinds of

NFC environments and reduce the power consumption with software techniques.

Compression and Packet Size

Data compression and accordingly packet size adjustment also increase battery supply

time. Both types of optimization strongly depend on the system environment and have to

be implemented correctly.

Data Compression: With data compression the communication transfers faster because

less data is send and the data-channel can be closed earlier. In relation to NFC this means

the magnetic field can be switched-off faster which results in a lower power drain. In

general, there are two categories of data compression: lossless and lossy-compression. As

their names suggest lossless compression transports the exact digital information from

the sender to the receiver. The sender encodes data with the selected algorithm and the

receiver decodes the data, so that the original data from the sender and the receivers

decoded data are identical. With lossy-compression the information is lost between sender

and receiver, but for the receiver the lost information is not important to recompose the

essential data. A lot of efficient lossy and lossless compression algorithms exist. The proper

selection of the right scheme depends on the information that is transceived. Another

factor for choosing the appropriate compression method is the packaging ratio and in

relation to that the encoding and decoding performance which increases execution time.

Finding the right technique for the application can be researched in [18].

CHAPTER 2. RELATED WORK 27

Message Size: The adjustment of the message size can also give a huge improvement

in terms of power consumption. A simple approach could be clustering of a request-

series. Therefore, it is possible to construct one cumulative packet for multiple requests.

A trivial example for NFC systems: The initiator performs a custom command which

requests a series of single Byte values from the target. For simplification, initialization

and authentication are skipped. The initiator requests 10 values in row from the target.

This results in 10 ∗ 1 + 10 ∗ 2 = 30Bytes (2 Bytes for CRC16) which are responded in 10

messages. Clustering will reduce the size by 18Bytes (10 ∗ 1 + 2 = 12Bytes). So there is

about 60% CRC16 overhead without clustering in this particular example which can be

avoided with a sophisticated clustering algorithm. This approach will not work for chained

APDU responses because they are already fully allocated.

Overhead Reduction

In terms of power optimization the elimination of specific application overhead could help

to lower the power output. Depending on the system and the application context some

generic solutions are:

• Skipping of request and selection commands

• No exchange of authentication data for none security-critical systems

• Reduce validation to a minimum (CRC)

Caching

A convenient caching strategy has a positive impact on the systems power consumption.

The general question is the determination when data transfer is required and how long

the data is valid. The developer has to keep in mind when information is outdated and

needs to be refreshed. It is not necessary continuously pulling the actual data over the

communication interface (NFC). Data can be stored in a buffer and is valid for a adjusted

time period. On new data requests the buffer value will be returned as the current value.

After the time-out the value can be requested again from the communication interface and

is stored as buffer for the next time interval. Figure 2.11 illustrates a basic approach for a

caching strategy in a NFC environment. The application is repeatedly pooling for a single

value from the reader. The first request will be responded by the reader and the value

will be stored in the cache. All following responses until the time-out are coming from the

caches value buffer.

2.5 Power Evaluation Strategies

The last chapter demonstrate methods for power consumption optimization in energy-aware

communication systems. The next step is to measure and capture power consumption in

CHAPTER 2. RELATED WORK 28

NFC

Interface

NFC

Interface

TargetInitiator

Analog

Sensor

A/D

Converter

Application

Cache

Logic

Analog Values

41.6°

70mA

On/O�

Figure 2.11: Caching strategy for primitive values in an NFC environment

order to find energy-critical implementation sections and improve them. Power evaluation

closes the gap between classification of energy consumption and optimization techniques.

Some challenging tasks in terms of power evaluation are fast and flexible adaptation of the

system under test and also the separation of measurement suite and the system environment

itself therefore the capturing systems should act like an observer.

2.5.1 Automation

Automation is the general foundation for power evaluation systems and thus it is necessary

to implement automated behavior. Applications change over time and have to be tested

repeatedly. With a highly automated environment it is possible to generate measurement

data on demand while reducing testing-time. A concept is illustrated in figure 2.12 in

which a controller manages measurement elements and stores the collected data for further

use. Assigning measured data to application logic is essential for a conclusion. Therefore,

the controller also observes the state of the executed applications. The controller is fully

configurable and parameterizable to fulfill the requirements. Gathered results can either

be evaluated by the controller unit or externally. A similar hardware in the loop approach

is discussed in [19].

2.5.2 Hardware in the Loop

A hardware in the loop (HIL) as discussed in [20, 19] is a common and established

process which facilitates the development and optimization tasks of hardware devices

that are part of the systems environment. Main benefit of a HIL approach is testing

various collaborating hardware components inclusively the program-logic in a surrounding

simulation. In this thesis the targeted measurement framework will act as a HIL simulation

where it is possible to replace hardware devices and software components effortless. The

whole simulation performs in real-time and provides a perspective how the system behaves

in real environments. This strategy is suitable for a wide range of technical systems like

automotive industry, robotics and power engineering. Architectures and designs which can

CHAPTER 2. RELATED WORK 29

Reader (Initatior) Emulation Device (Target)

Application Logic Battery

NFC

Interface

Measurment Element

Controller

Sample Data Storage

Application Data

Voltmeter, Amperemeter, ...

Application LogicBattery

NFC

Interface

Con�guration

Figure 2.12: Controller automation for power evaluation systems

Simulated environment model

Inputs Outputs
System
under
test

Loop-back

Figure 2.13: In the loop test method [25, pg. 2]

be applied to various systems are explained in [21, 22, 23, 24].

Another concept is in-the-loop testing for software components. Ryssel, Ploennigs, and

Kabitzsch [25, pg. 2] mentions a system under test (SUT) in combination with a simula-

tion model for in-the-loop testing, see figure 1. Furthermore, there are four in-the-loop

procedures for the SUT:

• Model in the loop (MIL): Creation of a model that describes the component

under test. The model can be used to test whether the requirements are fulfilled.

• Software in the loop (SIL): Software implementation (any kind of language is

possible) or generation from the model.

• Processor in the loop (PIL): Test of the previously developed implementation

on the target processor. The underlying system architecture is irrelevant.

• Hardware in the loop (HIL): Deployment of the software component to the target

device itself with the predefined requirements.

CHAPTER 2. RELATED WORK 30

Function Invoker

Measurment

Suite

Battery

Target System

Software Software

Development

Testing and

Measurement

Optimized

System

Desired

System?
Refactoring

no yes

Function Testing Iterative Development

Figure 2.14: Function testing with iterative process

2.5.3 Run-time Measurement

The identification of critical code-segments (software) is a complex process. Run-time

measurement is a proper approach for the identification of critical segments with a high

power consumption. Power drain is measured while the system-software is running. The

information is used afterwards to optimize the affected code-sections. There are different

ways of implementing the run-time measurement.

Function testing is an option where an external or independent tool (function-invoker) is

invoking functions or methods of the target-systems software application (target-system)

which should be measured. The function-invoker can be any sort of software-component

that is communicating with the target-system. This function-invoker executes a set of test

instructions and gathers information about the power consumption of the target-system.

The gathered data derives directly from the target-system itself or from some external

attached measurement-suite. Thereafter it is possible to analyze the results and apply

optimizations to the target-systems software application (e.g. rewrite/redesign critical

code-sections, adapt time-out/wait operations). The whole process can be made iterative

to improve the system progressively. The repeated steps should be included to the software

development process to gain feedback of the current implementation. Figure 2.14 shows

an abstract function testing environment and the iterative process with the described

function-invoker, target-system and an external measurement suite.

Beside the functional measurement which is executed from external tools there is in-

place section testing. The whole measurement process is directly included in the main

software-application of the measured target-device. Thus there is no utility for external

test initiation needed. The measurement starts with a special marker (start-marker) in the

source-code and stops with another marker (stop-marker). The start-marker invokes the

power measurement and the system is gathering the requested values until the application

reaches the stop-marker. The collected measurement data can be stored and used to

CHAPTER 2. RELATED WORK 31

RFID

System Under Test (SUT)

HF-Band

RFID-Reader

BIN / FSS / (CONST)

Implemenation

Development Board

Using Android OS

Hardware-In-The-Loop Testbench

Controls

Execution

Measures Power

Consumption

NI Measurement

Device + Labview

Matlab (Evaluation)

Web Service (Controller)

Transponder A

Transponder B

Transponder C

Figure 2.15: Run-time hardware in the loop test-bench [16, pg. 6]

adapt the systems power consumption. An additional useful extension is labeling of the

measurement sections with a tagging algorithm. The start and stop-marker will receive a

tag to get a reference to each other. This tag-label can be anything (e.g. function name)

or even a basic string identifier. The advantage over the function testing is the fast and

comfortable implementation. Disadvantages are code-overhead (which can be removed after

optimization) and the leak of encapsulation between application logic and measurement.

Another disadvantage could be the accessibility of the measuring-component. Algorithm

1 shows an elemental pseudo-code of a measurement execution. After the measurement

task the collected data is processed and critical sections or functions can be identified

and optimized. Combination of both types can lead to a hybrid-system that is capable of

performing external measurements execution with start-markers and end-markers.

Algorithm 1 Elemental in-place section test example for NFC

1: procedure TestProcedure

2: initialisation
3: id1← all identifier (tag)
4: id2← request and authentication identifier (tag)
5: startMeasurement(id1, id2)
6: request(param, . . .)
7: authentication(param, . . .)
8: stopMeasurement(id2)
9: read(param, . . .)

10: write(param, . . .)
11: . . .

12: stopMeasurement(id1)
13: return

An actual system implementation in a HIL environment is discussed by Menghin and Druml

[16, pg. 6]. Figure 2.15 illustrates a measurement set-up with an android development

board as SUT and the web-service is the controller and invoker of the function testing.

CHAPTER 2. RELATED WORK 32

B
a

tt
e

ry
A

A/D

A/D

Voltage

Current

Electronic

Device

Measurement

Environment

+ Model

Battery

Information

Device

Control

Figure 2.16: Voltage and current sensing with extended measurement environment [26, pg.
51]

2.5.4 Battery Sensing

Accordingly to [26] most cell-phone measurement environments are focusing on the main

battery parameters like voltage, impedance and current. With state of charge (SOC)

measurement it is possible to define a model for the power drain and charge state of

a mobile device. This model can be used afterwards to optimize energy consumption

and increase battery lifetime. Most SOC based measurement approaches are describing

procedures to improve estimation accuracy. Generally the models can be separated in three

generic categories as discussed in [27]:

• Physical: Description of physical measure

• Empirical: Extraction of information from testing and creation of an abstraction

• Abstract: Creation of a similar theoretical system

• Mixed: Combination of the other three described categories

[26] discusses some examples on how to determine SOC. Figure 2.16 illustrates a basically

set-up for a battery evaluation and measurement system. Measured parameters are voltage

and current, furthermore it is possible to calculate the electric power output (P = U ·I). The

digitalization of the collected physical parameters is provided by analog-digital converter.

This approach can be used to connect the measurement environment with the SUT.

2.6 Evaluation of Devices

2.6.1 Device Selection Criteria

The selection of appropriate NFC devices is a major object for the design and implementa-

tion process of this thesis. Various NFC devices are available nowadays and therefore it is

CHAPTER 2. RELATED WORK 33

necessary to determine which components are appropriate in order to cover the require-

ments for such a test and evaluation framework. Many use-cases are covering payment and

ticketing systems but there are also other NFC applications available (e.g. smartposters).

Langer, Saminger, and Grünberger [28, pg. 2052] are mentioning three main types of

testing NFC related devices and equipment. This testing types are specified by the NFC

forum testing working group.

• Conformance testing

• Interoperability testing

• Performance testing

Langer, Saminger, and Grünberger [28, pg. 2052] explain that the antenna of NFC enabled

smartphones highly influence the quality of the transmission. Thus the design of the

antenna is important because of different device cases or the available space for the antenna.

Langer, Saminger, and Grünberger are specifying a separation of the test cases in categories

as seen in table 2.2.

Category Description

Proximity range Determine the minimal and maximal transfer and detection range
for devices.

Communication hole Measurement for communication holes in the proximity range.

Collision avoidance Verification of the device is prone to collisions if there are multiple
communication partners in proximity range.

Read operation Check if there are malfunctions for read operation.

Write operation Check if there are malfunctions for write operation.

Speed adaptation Verification of the transmission speed after switching to a differ-
ent speed rate.

Protocol Testing the protocol reliability and correctness.

Table 2.2: Separation of test cases in categories

2.7 Generic Architecture

Opperman and Hancke [29, pg. 2] are describing a generic NFC system for monitoring or

control functionality, where some sort of communication interface (reader) is placed between

the monitoring and observed device. Opperman and Hancke are defining this interface as

the gateway which is capable of short range data exchange. The transferred information

can be control commands for a programmable logic controller (PLC) or stored sensor data.

A combination of controlling and monitoring is also feasible. The recommendation for the

utilized gateway is a NFC enabled smartphone. The interface is recording and storing

sensor data and if the smartphone is in proximity range for data exchange the gateway and

target device are connecting each other via NFC. Figure 2.17 represents the setup of a

CHAPTER 2. RELATED WORK 34

Back-end Local Reader
Device

Interface
Sensor or PLC

Short-range

Communication

Long-range

Communication

Bearer

Figure 2.17: System architecture for a basic system [29, pg. 2]

simple gateway system. Opperman and Hancke want to avoid the use of power consuming

hardware to enable wireless connection. So the target device can be assembled with NFC

technology to create a short range communication channel. The received information from

the target device on the smartphone can distributed to different electronic components

with use of long range communication channels on the smartphone (e.g. short message

service (SMS), wireless local area network (WLAN) or universal mobile telecommunications

system (UMTS)).

Opperman and Hancke point out that such systems are essential for low-power or even

powerless devices. Thus it is possible to create a complete powerless sensor interface for

various use-cases. Every time the smartphones magnetic field is in close proximity to the

sensor it activates the interface and the sensor is able to measure, collect and transmit the

data. All energy needed for this process comes from the magnetic field that is established

by the smartphone. For the system that should be implemented and developed in this

thesis the target device will have its own power supply and accordingly the NFC gateway

interface, because the battery of the smartphone should be used as little as possible. [29,

pg. 3]

Another reason for NFC enabled interfaces or gateways are the inexpensive assembly and

implementation costs for this technology to add a wireless communication layer. Other

technologies are more complex and expensive.

2.7.1 Open Platform

[30, 31, 32] clarifies open-source hardware and the potential of making hardware accessible

for all individuals. Open-source hardware is similar to open-source software. Design

and implementation are public available and everybody can assemble it. The advantages

over proprietary hardware are collaborative public enhancements, cost reduction and

comfortable extensibility. The planned measurement framework in this thesis is aimed to

be open-source in order to make this solution public available for research and science.

As discussed earlier, it is essential to create an open environment including free and

open-source software (FOSS). The projected system will use various devices thus it is

necessary to establish stability and reliability in this eco-system. Therefore, proven firm-

and software will be used to fulfill these objectives.

CHAPTER 2. RELATED WORK 35

Linux Linux (Arch Linux) will be the operating system of choice because it is a stable,

reliable and well documented system. It is expendable in terms of software and has a

broad bandwidth of supported utilities and features. Linux will be the bottom layer of the

software stack for the evaluation framework.

Android Android is a Linux based operation system from Google Inc. especially for

mobile devices which is well established on the market. With approximately 71% market

shares (2013) Android is the most used mobile operation system in Germany and still

growing [33]. The applications on Android smartphones are implemented in Java3 and

executed in a Java environment called Dalvik Virtual Machine. The application development

process is straight forward and extensively documented. The graphical user interface (GUI)

can be defined with extensible mark-up language (XML) syntax which accelerates the

development process significantly. Thus creation of user-interface prototypes is very rapid.

3object-oriented programming language

Chapter 3

Design

The chapter design gives an overview of the NFC evaluation frameworks concept. An

approach with all involved parts and components will be illustrated to understand the

fundamentals of that exposition. The design phase is the preparation of the concrete

realization for the practical work. Therefore, the individual modules will be described in

detail to channel the abstraction into real hardware later on. The mentioned modules

can be certainly exchanged with other solutions that collaborate better with the targeted

use-case application.

3.1 Synopsis

This chapter describes the design of the power evaluation framework for NFC systems. The

related work that was discussed previously gives some fundamental ideas how to set-up such

a framework. There are many different applications and use-cases for NFC architectures

with the three communication specifications: reader-writer, card-emulation and peer-to-

peer mode. This basic design will concentrate on the reader-writer and card-emulation

mode, peer-to-peer communication can be extended later. These used modes require an

initiator that is establishing the magnetic field to send request commands and a responding

target. This serves as the bottom layer for the runtime-environment. In addition to that,

the initiator and target can be observed in order to determine their energy consumption.

3.1.1 Basic Concept

The basic concept for the design is illustrated in figure 3.1 and explains the required

modules for the framework. The initiator sends requests (Request A and Request B) to the

target which is responding accordingly. This process is managed by the controller and the

sequence is configured with help of the automation mechanism. Meanwhile the observable

interface provides the observer with measurement data that is collected during information

exchange between initiator and target. The measured data is tagged to create a relation to

36

CHAPTER 3. DESIGN 37

Initiator (Observerable)

Target (Observerable)

Request A

Response A

Request B

Response B

Run-Time Environment

Observer

M
e

a
su

re
m

e
n

t

D
a

ta

Controller

A
u

to
m

a
ti

o
n

M
e

ch
a

n
is

m

Measurement Suite

Figure 3.1: Basic concept

the executed commands (software) on initiator or target. The collected information from

the observer is further processed and used to perform enhancements to the application

that is executed on the system.

3.1.2 System Composition

The two basic modules are run-time environment and the attached measurement suite.

These modules can be subdivided in various components as shown in table 3.1 for run-time

environment and table 3.2 for measurement suite.

Composition Description

Initiator Initializer of the communication exchange (Requester)

Target Component which is answering requests (Responder)

Observable Interface that can be observed for measurement data

Table 3.1: Run-time module elemental components

Composition Description

Observer Connected to the observable and collects measurement data

Controller Interface to control initiator, target and observer

Automation Automatic testing mechanisms for the application with help of the
controller

Table 3.2: Measurement suite module essential components

CHAPTER 3. DESIGN 38

3.1.3 Strengths

The strengths of this platform in order to decrease the time for the optimization process

are listed in table 3.3.

Feature Description

Adaptability Initiator, target and controller logic should be simply replaceable with
other applications to ensure a rapid adaptable environment.

Integration Measurement can be simply integrated in the application but will not
influence the original application.

Feedback Gathered consumption information is analyzed and provides feedback for
energy optimizations.

Simulation Application execution in an generic hardware environment for real-time
systems.

Extension Additional development of extensions which can be appended to the
initial basic evaluation framework.

Table 3.3: Features of the proposed system

3.2 Requirements

The modules are outlined and approximately defined. The next step is the descrip-

tion of requirements for each component to curtail the module functionalities. Tables

3.4, 3.5, 3.6, 3.7, 3.8 and 3.9 specify the necessary requirements for each component and

the priority (P) with values: high , medium and low .

Identifier P Requirement

R-1.1 Possibilities to improve the applications with measurement techniques
and optimizations based on the results.

R-1.2 Generic test environment and avoidance of specialized test environments
for use-case applications.

R-1.3 Reusable software components for different use-case scenarios (modular
system design).

Table 3.4: Requirements - general

3.3 Architecture

The basic concept is the first approach to an accurate design that is used to implement

the evaluation framework. The basic modules are defined and specified in detail now. The

following section gives an overview of the general design that is created and implemented.

CHAPTER 3. DESIGN 39

Identifier P Requirement

R-2.1 User interface (GUI based) for input handling and feedback.

R-2.2 Establishment of the magnetic field and NFC connection to the target
with internal or external module.

R-2.3 Recognition and identification of emulated transponders by the target
module.

R-2.4 Possibility to attach measurement suite to the power consumption of
the NFC module over the observable interface.

R-2.5 Protocol accordingly to ISO 14443 3-4 specification and custom enhance-
ments (data packaging).

R-2.6 Exchange possibility for the NFC module so that external and internal
interfaces are possible.

R-2.7 Generic interface for the underlaying NFC hardware so that fast reader-
context switching is possible.

R-2.8 Fast development capabilities for the operating system platform (appli-
cation execution environment and feature-rich software stack).

R-2.9 Open-source hardware and software for simple reproduction and docu-
mentation.

R-2.10 Support of discrete protocol definitions that are application-context
depending.

R-2.11 Handle multiple (different) targets in the proximity range at the same
time.

R-2.12 Internal power consumption measurement and data up-link bridge for
the observer.

Table 3.5: Requirements - initiator (portable device)

Identifier P Requirement

R-3.1 Internal or external NFC modules are possible to answer the initiators
requests.

R-3.2 Exchange possibility for the NFC module and the communication pro-
tocol/link.

R-3.3 Emulation capabilities of various transponder types based on ISO 14443
3-4.

R-3.4 Open-source hardware and software for simple reproduction and docu-
mentation.

R-3.5 Application logic (software) platform independent and executables for
different operating system possible.

R-3.6 External accessories (e.g. sensors, indicators, actuators, etc.) can be
attached and controlled by the target.

R-3.7 Hot-swapping of the emulation process to constantly provide a transpon-
der to the initiator.

Table 3.6: Requirements - target

CHAPTER 3. DESIGN 40

Identifier P Requirement

R-4.1 Measurement of various simple physical parameters.

R-4.2 Controllable with the attached observer.

R-4.3 Observable is able to store measurement data internal which is later
fetched by the observer.

Table 3.7: Requirements - observable interface

Identifier P Requirement

R-5.1 Measurement of the observable interfaces with accurate timings for
invocation and stop.

R-5.2 Gathering of measurement data from the attached observables.

R-5.3 Management by the measurement controller.

R-5.4 Saving of measurement data and related meta-data in internal storage
and a data up-link to the controller.

Table 3.8: Requirements - observer

Identifier P Requirement

R-6.1 Initialization and monitoring of the whole measurement sequence.

R-6.2 Storage system for measured data.

R-6.3 Automation with application measurement configuration (predefined
script for the testing process).

R-6.4 Possibility for measurement data export (analysis with external tools
and software).

R-6.5 Internal computation and analysis of gathered values.

R-6.6 Automatic highlighting and indication of source-code segments with
high power consumption.

Table 3.9: Requirements - measurement controller and automation mechanics

3.3.1 Fundamentals

The initiator that is included in the run-time environment can be a typically NFC reader.

This reader establishes the communication channel to the target with a request-response

protocol. The reader is controlled from user-input or from the software itself. Therefore,

state-of-the-art portable devices with integrated NFC technology can act as reader which

initiates the magnetic field and communicates with the target because they are able to

handle user-interactions (e.g. touch-screen or buttons) to report feedback to the user (e.g.

display). The NFC chip is not necessarily required because external readers can also be

attached and the portable device is only used for computation (CPU) and user feedback.

For this design the portable device has two main functions: handle user interaction and

establish the NFC connection.

On the other hand, the target is responding to the initiator as a transponder. In this design

the target emulates the NFC tag and contains a computational unit (CU) and the NFC

CHAPTER 3. DESIGN 41

Initiator

(Portable Device)

CU

NFC

Interface

Internal

Battery

Target

NFC

Interface

Accessories

Sensor

Actuator

Power

Supply

CU

(Card Emulation)

Measurement Machine

Instrumentation Instrumentation

Display & Input

Controller/Automation

Observeable

Data Acquisition and Storage

Observer

Figure 3.2: System architecture with essential components

element. The application logic is exchangeable on both sides (initiator and target) as this

is important for the adaptability. The computational unit can be connected with various

external accessories (e.g. sensors) which are required for the active application. This

system is the definition of the basic run-time environment and in addition the measurement

suite can be attached. Simple volt and ammeters can be utilized for the measurement

process of the portable devices observable interface (external reader) and the targets NFC

extension. The measurement instruments are connected to an independent computer for

measurement data computation and storage.

3.3.2 Outline

Depending on the basic concept figure 3.2 shows a draft of the design with the fundamental

modules.

Initiator As discussed previously, the initiator is a portable device with NFC interface

and an own computational unit which is executing the initiator software of the application.

The underlaying operating system provides a fast development and deployment process.

The device handles and processes the user input. The power supply is an internal battery

which is charged over the power network.

Target The target is an encapsulated machine with a standard operating system and the

NFC interface is connected over wire. The target machine executes the opposite part of the

CHAPTER 3. DESIGN 42

software application. It can be combined with external accessories which can be controlled

and prompted by the initiator over the NFC communication channel. For example, the

target is connected to a temperature sensor so that the portable device is able to request

the actual value from the target.

Observable Interfaces Initiator and target provide power supply wire branches from

the NFC interface to measure the power consumption of the device. In this design the

obervables are primitive electric circuits for current and voltage measurement with attached

instruments. In an advanced design these observables can be replaced with independent and

autonomous interfaces which can be modified and adapted to the application requirements.

Measurement Observer The observer is the module that is gathering and processing

the measured values from the observable interfaces which can be used to analyze the

executed software on the initiator or target. The measurement machine supervises the

observer component and stores the collected data in the internal memory.

Measurement Controller and Automation Mechanics The controller and the in-

tegrated automation takes care of the whole measurement sequence and is responsible for

the correct invocation of the software components on the initiator and target platform.

The measurement process of the observer is timed within the executed application and

calculates the results that are needed for system optimizations.

3.4 Design

General design is a more precisely definition of the included components and devices. The

raw design showed a mostly abstract approach of the proposed system and in this section

the framework is defined to make explicit decisions for the following implementation.

3.4.1 Component Classification

The previously design outline illustrates two basic components (run-time environment

and measurement suite) and the subdivided parts (target, initiator, observable interfaces,

measurement observer, controller and automation). The target is already defined as a

portable device and for this design a state-of-the-art smartphone will be used because

applications can be quickly developed and it is a proper interface for user input. Several

smartphones have a NFC chip included which can be used as initiator, but also external NFC

devices can be appended to the device. The target is a low-cost single-board computation

platform with an over the wire attached and programmable NFC device called gateway.

The measurement suite is a simple personal computer with a programmable measurement

kit and a hardware interface for volt and ammeter. So the use-case application that is

CHAPTER 3. DESIGN 43

NFC

 << linked >>

CPU RAM

NFC

Internal

User Interface

(Smartphone)

Gateway Device

(NFC Extension)

Target Device

(Low-Cost Single Board Computer)

Accessories

(sensor, display, led, etc.)

CPU RAM

Personal Computer
(Measurement Device)

Measurement

Controller

Measurment Suite

power measurement

 interface

 in
te

rfa
ce

 interface

NFC

External

Instrumentation

 << linked >>

CPU RAM

Figure 3.3: Evaluation framework design

developed with help of this framework is executed on the smartphone and the single-board

computer. Measurement is invoked from the personal computer. Figure 3.3 shows the

design of the evaluation framework.

3.4.2 Run-time Environment

The application under test is basically executed on the run-time environment (smartphone

and single-board computer). The development for these devices is tied to the underlying

system. Most smartphone operating systems provide a software development kit (SDK)

for rapid software development. This SDK is used to implement the initiator application

and the GUI is used to handle the user input. The target application can be implemented

with any programming language that is applicable for the single-board computer.

3.4.3 Measurement Suite

The personal computer is connected to the smartphone’s battery when the internal NFC

chip is used or directly to the external NFC extension depending on the used interface.

The suite can also be connected to the single-board NFC extension in order to measure the

power drain. Measurement is based on voltage and current usage by the communication

interfaces. The computer initiates the measurement with a custom application which can

be configured for automation purpose.

CHAPTER 3. DESIGN 44

Operating

System

Use-Case Application

NFC

Interface

Internal

NFC

Module

External

NFC

Module

Initiator

Operating

System

Use-Case Application

NFC

Interface

NFC

Module

Target

Hardware

Driver
NFC

Controller/Driver

Software

Figure 3.4: Simple masking of underlaying hardware

3.4.4 Generic Approach

The intention of the measurement framework is the generic approach which can be accom-

plished with exchangeable components. The executed application has no information about

the underlaying framework and how it operates. The system provides interfaces for the

software application on initiator and target so that the core functionalities are accessible.

Figure 3.4 illustrates the generic approach with separation of NFC hardware and use-case

application.

3.4.5 Communication Loop

This describes the cycle of information exchange between target and initiator. The transfer

can be based on standards like ISO 14443 3-4 or other specifications. The evaluated

use-case application consists of two major parts: the executed software on initiator and

target. The software on the initiator side is sending commands to the target and is waiting

for response. The necessary initialization steps are covered from the fundamental run-time

environment (operating system). On the target side the requests are fetched and passed

on to the software application which is computing the response. The data is depending on

the application context.

Figure 3.5 shows a request-response challenge between initiator and target. For example, the

portable device (initiator) is a smartmeter 1 which is able to read data from measurement

cells (target). Thus the initiator is requesting a simple n-Byte value from the target (e.g.

sensor value) therefore the ISO 14443-3 specification is used with a read request. The

1measurement device

CHAPTER 3. DESIGN 45

Start Application

Update Value

Prepare Request

Target

initalized?

Select/Anticollision Send Request

Target

responding?

Receive Data

Process Data

yes

no

yes

no

Idle/Wait

Fetched Request

Prepare Response
Data from

Accessory?

Start Application

Get Data (Accessory)

Send Response

no

yes

TargetInitiator

Figure 3.5: Request-response loop

target responds to the request with the measured value and the smartmeter can process

the received value. Selection and anticollision are handled by the operating system.

Chapter 4

Implementation

After the design process the basic system implementation is discussed and utilities and

tools for realization are defined. This section describes the final evaluation platform and

also approaches the emerged challenges through the implementation process. Furthermore,

the implemented software and extended firmware are extensively documented in order to

explain how they can be utilized in other NFC applications or services with less effort.

4.1 Overview

The implementation is the practical part of this thesis in order to prove that the concept of

this evaluation platform for NFC systems is working. In this implementation the initiator

is the device under evaluation (measuring of the power consumption). This project will

only implement software components for the environment. State-of-the-art hardware will

be used to provide the basic computation platforms. The development stages are basically

described in the following sections, and will give a brief overview of the development process.

This will cover the implementation of the framework and the application scenario which

will be used for the case study.

4.1.1 Brief Description

The development tasks are the foundation for a strict procedure to facilitate a successful

implementation. Therefore, in the first phase the previously abstract design will be modeled

to a real-hardware composition. Searching for appropriate devices that are fitting the

requirements and the definition of the real-world concept is the initial task. Thereafter

the collaboration of the selected devices is tested and analyzed to fabricate a elemental

underlying hardware architecture for the software realization that is developed in the

subsequent step.

After the completion of these tasks the basic run-time environment is ready to execute

46

CHAPTER 4. IMPLEMENTATION 47

use-case applications which can be evaluated and optimized on this evaluation framework.

These use-case examples will be implemented to give a proof of concept for the developed

measurement based evaluation framework and therefore it is necessary to attach a mea-

surement suite to the executing run-time environment. An existing implementation of such

a measurement component will be appended and used for the evaluation. The utilized

measurement suite is based on a previously project.

To get a brief overview of the implementation tasks, the definition of the general objectives

that will be covered during the whole work progress in order to generate a reliable evaluation

framework is summarized in the following list:

• Adapting the conceptual design from 3.4.1 to a simple real-world solution for replica-

tion purpose.

• Identification and selection of appropriate hardware that covers the predefined

requirements from 3.2.

• Evaluation and testing of chosen hardware in terms of software compatibility and

operating system fundament.

• Implementation and testing of the computation logic for all included modules to

provide a basic run-time environment.

• Development and realization of application examples for the proof of concept that is

discussed in 5.

• Integration of an existing measurement suite to the run-time environment, and

configuration for the application examples.

• Documentation of the newly developed modules to provide a fundamental framework

for future projects discussed in 7.

4.1.2 Schedule and Road-map

The implementation tasks is defined and described, but the progress of development is an

iterative cycle. To realize and complete all required task a schedule for the implementation

is shown in figure 4.1 to clarify the processing and execution of the work-tasks. Tasks can

be closely interlinked to the next and previous neighbor and must be adapted iteratively

to fit in the existing setup.

As an extension to the development schedule an associated road-map is illustrated in figure

4.2 that displays the chronology progress. The identification of objectives and stages in

this road-map helps to give an outlook for each milestone in the project. This road-map is

no indication for the working time that is spend for each milestone or objective.

CHAPTER 4. IMPLEMENTATION 48

Design

Hardware System

Software Components

Measurement Suite

Use-Case Applications

Measurement & Analysis

Evaluation &

Testing

Appendage

Adaption

Optimization

Figure 4.1: Development Timeline

Hardware

Software

Measurement

Evaluation

Hardware

Identi�cation

Hardware

Selection

Hardware

Testing

Initiatior

Implementation

Target

Implementation

Measurement Suite

Extension

Measurement Suite

Con�guration

Use-Case

Measurement

Use-Case

Analysis

Use-Case

Summary

Hardware

Acquisition

Use-Case Applications

Implementation

Software

Environment

Milestone 2:

Run-Time Environment

Milestone 1:

Hardware System
Milestone 3:

Framework Completion
Milestone 4:

Proof of Concept

Milestone 1 Milestone 2 Milestone 3 Milestone 4 Finish

Figure 4.2: Development road-map

CHAPTER 4. IMPLEMENTATION 49

4.1.3 Design Realization

As discussed earlier the very first implementation task is the adaption of the existing

design to a real-world solution. Therefore, all components have to be classified to specify a

system with state-of-the-art hardware. The design pretends an user-interface (initiator)

as smartphone and a simple single-boarded computation platform as the target. Android

is the operating system of choice for this solution because it features a fast development

process, software testing and GUI libraries. Android application execution environment is

based on the Java programming language with dalvik virtual machine (DVM) as run-time

environment and therefore the initiator software will be implemented accordingly.

The NFC module for the smartphone will be an external reader device which can be

controlled programmatically. The advantage of this system is the fixed and reproducible

NFC initialization. With an external device the user is able to control the phone interface

without restrictions or limitations. Another advantage of this external device is the

directly programming interface for the developer. Android handles the internal NFC chip

autonomously so there is no direct connection to gain full control over the chip. With

an external reader the developer directly controls the integrated NFC chip. Also the

immediate measurement of power consumption is problematic because a wired interface

is required for the process that means disassembling the smartphone. A further problem

in terms of measurement is the assignation of energy consumption to the internal NFC

module. The determination is a complex task which can be avoided with an external device

because plain wire connections to the power supply of the reader can be used to measure

the power consumption. The software of the NFC module implements the same interfaces

like the Android system which provides them for the application execution environment.

That guarantees the simple changeability of the reader device to the internal module. The

communication between the smartphone and external reader is implemented wireless so

that the phone can be freely moved.

The target will be a single-boarded ARM platform because of its energy efficiency and

performance. The target device should be simply replaceable and therefore the software on

this machine is also developed with Java to provide a platform-independent architecture.

The target software can be executed on various different machines because Java is available

for a wide range of computation platforms. Java is executed within an virtual environment

called java run-time environment (JRE) which facilitate the platform independence. The

target also has an external NFC component such as the smartphone. This NFC gateway

module is capable to emulate tags within the ISO 14443 3-4 specification to establish

a connection and can be programmed with no limitations (firmware). This module is

communicating with two devices. On the first side to the smartphones external reader and

on the other side to the connected single-board platform. The connection to the target is a

wired interface because it is not necessary to make the target movable in the current stage.

The wired link is used for data transmission and also supplies the module with power. A

simple circuit attachment is possible to integrate this module in the measurement suites

evaluation process.

CHAPTER 4. IMPLEMENTATION 50

NFC

 << wired >>

ARM

User Interface

(Android Smartphone)

Gateway Device

(NFC Extension)

Target Device

(Low-Cost Single Board Computer)

Accessories

(sensor, display, led, etc.)

ARM

Personal Computer
(Measurement Device)

Measurement

Controller

Measurement Suite

power measurement

 interface

 interface

NFC

External

Instrumentation

 << wirless>>

DVM

Initiator Applications

(Java)

power

supply

Firmware JRE

Measurement Con�guration

App 1

App 2

App 3

Con�g App 1

Con�g App 2

Con�g App 3

Target Applications

(Java)

App 1

App 2

App 3

Figure 4.3: Design realization with real hardware

As earlier described, the attached measurement suite is available from a previously project

and provides interfaces for voltage and current measurement. The suite software is

parameterized with a configuration that contains the necessary measurement sequence that

is responsible for the correct invocation and timing of the whole process.

Figure 4.3 shows the composition of the above described devices.

4.2 Hardware Components

In this section the used hardware is described and specified in detail in order to reproduce

the whole evaluation framework. The devices are selected because they are compatible

and simple to obtain except of the Proxmark3 that can be assembled with the open-source

blueprints or from a reseller 1. The mentioned hardware can be equipped with custom

software to cover the requirements and provide the underlaying run-time and evaluation

stack for the use-case application measurement.

4.2.1 Initiator User-Interfaces

The state-of-the-art smartphones that are used for this implementation are the common

mentioned development phones from Google (Nexus series). The mobile devices are shipped

1http://www.proxmark3.com/

http://www.proxmark3.com/

CHAPTER 4. IMPLEMENTATION 51

Specification Description

CPU Qualcomm SnapdragonTM S4 Pro CPU (Quadcore 1.5 GHz Krait)

GPU Adreno 320

Chipset Qualcomm SnapdragonTM APQ8064

RAM 2GB

Battery Non-removable Li-Po 2100 mAh battery

Sensors Accelerometer, gyro, proximity, compass, barometer

Display True HD IPS Plus capacitive touchscreen, 16M colors (768 x 1280 pixels,
4.7 inches (~318 ppi pixel density))

Storage Internal 8/16GB

WLAN Wi-Fi 802.11 a/b/g/n, dual-band, DLNA, Wi-Fi hotspot

Bluetooth v4.0 with A2DP

NFC Broadcom Controller BCM20793

USB microUSB (SlimPort) v2.0

OS Android OS v4.4.2 (KitKat)

Table 4.1: Technical Specification - LG E960 (Nexus 4) [34, 35]

with the plain and standard Android user interface that is part of the original source-code.

Other manufacturers are assembling customized user-interfaces on top of Googles Android

implementation. Google also introduced the Nexus series as the reference hardware platform

for application development on Android operating systems. Another reason for choosing

phones out of the Nexus series is the internal support of NFC with an integrated chip.

The applications that run on the target are not developed for a specific type of hardware

or mobile device and therefore should be deployable and executable on several Android

platforms.

LG E960 (Nexus 4)

As the name suggests the Nexus 4 is the fourth smartphone generation of the Nexus

series introduced by Google. This mobile device was selected because it was the latest

available reference hardware that is mentioned for Android development. As of now

the Nexus 4 was replaced 2 by the new generation of the series. The Nexus 4 features

an internal NFC module from Broadcom which is also a selection choice for this phone.

A major disadvantage of this phone is the encapsulated battery so the phone must be

disassembled if the measurement should be attached to the phones internal battery to

record the power consumption of the NFC chip. But this disadvantage does not affect

the actual implementation because an external NFC module is used for the measurement

and evaluation setup. Table 4.1 lists all relevant technical specifications for the Nexus

4 smartphone that are relatable to this implementation. Figure 4.4a shows the Nexus 4

smartphone.

2Nexus 5 introduction, October 2013

CHAPTER 4. IMPLEMENTATION 52

Specification Description

CPU 1.0 GHz ARM Cortex-A8

GPU PowerVR SGX540

Chipset Hummingbird

RAM 512MB

Battery Li-Ion 1500 mAh battery

Sensors Accelerometer, gyro, proximity, compass, barometer

Display S-LCD capacitive touchscreen, 16M colors (480 x 800 pixels, 4.0 inches
(~233 ppi pixel density))

Storage Internal 16GB

WLAN Wi-Fi 802.11 b/g/n, DLNA, Wi-Fi hotspot

Bluetooth v2.1 with A2DP, EDR

NFC NXP PN65N

USB microUSB v2.0

OS Android OS, v4.1.1 (Jelly Bean)

Table 4.2: Technical Specification - GT-I9023 (Nexus S) [38, 39]

GT-I9023 (Nexus S)

As a second user-interface the Nexus S is used which is the second generation of the Nexus

series. This portable phone was introduced to demonstrate the exchangeability of the

user-interface with less effort. The chassis of the Nexus S can be simply opened on the

backside. Thus the measurement suite can be attached to the internal battery of this phone.

This is just a possibility for the measurement setup and is not actually used in the current

implementation which uses a common generic interface for the NFC communication over

the external reader as mentioned earlier. The internal proprietary NFC module is a mature

and proven chip from NXP Semiconductors which has a high potential to be integrated in

the evaluation framework [36, 37]. Table 4.2 lists all relevant technical specifications for

the Nexus S smartphone that are relatable to this implementation. Figure 4.4d shows the

Nexus S smartphone.

Android Device Emulator

The development is driven by the Android emulator that is shipped with the SDK because

no real-hardware is necessary to develop the user-interface for the initiator. The emulator is

a visualization of an Android hardware device and has the equal execution environment for

the Java applications. With the ARM hardware emulation the performance of such a virtual

device is limited because the emulation itself requires numerous resources in addition to the

JRE which is the second layer of virtualization. Therefore the SDK provides a hardware

accelerated execution manager (HAXM) created by Intel which speeds up the emulators

execution. HAXM is suitable for CPUs that support VT-x 3, EM64T 4, and Execute

3Intel virtualization on x86
4extended memory 64 technology

CHAPTER 4. IMPLEMENTATION 53

Disable (XD) Bit. In addition with an Android x86 5 operating system HAXM can be

utilized to accelerate the software execution on a standard x86 development computer [40].

The emulator supports various different android virtual device (AVD) images like the Nexus

4 and S, so that applications can be developed within the virtualization and deployed

on real hardware. The emulation can be initiated with the following command which

avd_name is the image of the emulated device (Nexus 4 or S):

$ emulator -avd <avd_name> [-<option> [<value>]] ... [-<qemu args>]

4.2.2 Initiator NFC Modules

There are two types of NFC elements in the system: internal and external ones. Integrated

modules in the smartphone are universal communication chips with a variety of supported

technologies (e.g. Bluetooth, WLAN). The interface of this chips is provided by the Android

operation system and is hardware independent. The attached external NFC modules for the

smartphones are state-of-the-art reader devices. They can be programmed over personal

computer/smart card (PC/SC) or proprietary custom software application programming

interface (API) (vendor mode). They also provide the standard NFC commands as a facade

and they manage the protocol communication with the soldered internal chip. In this

implementation they are not directly connected to the smartphone, a standard personal

computer (PC) acts as a bridge and provides the reader over a socket connection to the

network.

Internal Modules

The internal NFC modules assembled on the smartphone were evaluated and tested in this

practical work but they were not utilized. The reasons for this decision is the API that is

provided by the external reader and the circumstantial measurement setup for internal

modules. Also several problems occurred during device evaluation which are discussed and

explained in section 4.8. The integration of the internal modules can be extended in future

work 7 until the Android API features more low-level commands for the NFC interface

like the introduction of host-based card-emulation [41] in Android 4.4 (KitKat) [42].

DUALi DE-620 USB NFC Reader

The DUALi DE-620 USB NFC Reader (short: DE620) is the primary and fully featured

external NFC extension for the initiator (smartphone). The development will focus on

this device and implements the same NFC interface as the standard Android API. The

major advantage of this reader is the proprietary vendor mode for ISO 14443-3 specified

communication. The actual system implements the DE620 in vendor mode and skips the

PC/SC mode. During software implementation the reader is connected to the development

5CPU instruction set architecture

CHAPTER 4. IMPLEMENTATION 54

Specification Description

CPU ARM 32-bit Cortex-M3 (48MHz)

RAM 20KB SRAM

Storage 128KB Flash

Power Supply Voltage: 5V DC, Current: 150mA

USB 2.0 Full speed interface (12Mbps)

NFC Standard ISO/IEC 18092 NFC, ISO 14443 Type A/B, NXP Semiconductors
Mifare, Sony FeliCa

Antenna Frequency 13.56 MHz

Antenna Distance 20-50mm

Speed 106-424 kbps

Peripherals 2x LED

API PC/SC and Proprietary (Vendor Mode)

Table 4.3: Technical Specification - DUALi DE-620 USB NFC Reader [43]

Specification Description

Power Supply Voltage: Regulated 5V DC, Current: 50-200mA

USB 2.0 Full speed interface (12Mbps)

NFC Standard ISO/IEC 18092 NFC, ISO 14443 Type A/B, NXP Semiconductors
Mifare, Sony FeliCa

Antenna Frequency 13.56 MHz

Antenna Distance about 50mm

Speed 106-424 kbps

Peripherals Dual color LED (green/red), monotone buzzer

API PC/SC and CT-API (PC/SC Wrapper)

Table 4.4: Technical Specification - ACR122U USB NFC Reader [44]

machine and in the final setup the reader is able to connect with the measurement machine

or another PC. Table 4.3 lists all relevant technical specifications for the DE620 reader

that are relatable to this implementation. Figure 4.4b shows the DE620 reader.

ACR122U USB NFC Reader

The ACR122U USB NFC reader (short: ACR122U) is the secondary extension that is used

for parallel testing and evaluation purpose. The reader is implemented with standardized

PC/SC mode to support a simple plug-and-play solution. The ACR122U features a basic

functionality for the NFC communication and the interface for the smartphone. The

ACR122U can be purchased with an extra SDK but that is not necessarily required

because Java provides a generic solution (Java Smartcard IO) for the integration in other

software. Table 4.3 lists all relevant technical specifications for the ACR122U reader, that

are relatable to this implementation. Figure 4.4e shows the ACR122U reader.

CHAPTER 4. IMPLEMENTATION 55

4.2.3 Target Platforms

The target platform is the foundation for the target application execution and is a common

computation machine. The target software is designed to be independent and can be

executed in a JRE. This platform is emulating a transponder tag which is activated by the

initiator and responds to request commands. This emulation logic has the possibility to

integrate additional accessories from the target platform and further on this machine acts

like a bridge to another device which is controlled by the user (smartphone).

Development Machine

During the implementation a development machine is the central component for the whole

evaluation framework. The development machine emulates the Android smartphone with

the execution of the initiator application, provides access to the external NFC reader

and also operates as the target with the associated software stack and application. The

development environment is described in section 4.4 to illustrate the detailed implementation

progress of the evaluation framework. The wired connection to the devices are powered by

universal serial bus (USB) therefore the development machine requires at least three unused

ports. This platform guarantees a simple and comfortable environment for development

and makes rapid deployment and testing possible.

Raspberry Pi Model B (rev. 2)

Later on the development machine is replaced with a Raspberry Pi single-board computer

to operate in an own environment. This ARM computation platform takes control over

the tag emulation and the connection to peripheral devices (e.g. sensors, actuators, etc.).

Linux (ArchLinux [45]) is the operation system on this computer because it is lightweight

and management is possible over secure shell (SSH). The system works out-of-the-box and

is installed on a common standard high capacity (SDHC) card. Some modifications are

necessary in order to work with the attached NFC module and other connected utilities.

A major advantage of the Raspberry Pi platform is the high connectivity with electric

circuits over the integrated general purpose input/output (GPIO) interface which allows

implementation of various different use-cases with simple hardware elements [46]. Table 4.5

lists all relevant technical specifications for the Raspberry Pi single-board computer that are

relatable to this implementation. Figure 4.4c shows the Raspberry Pi Model B hardware.

4.2.4 Target Gateway

The target gateway device is the extension of the Raspberry Pi with an interface for NFC.

The gateway takes control of the hardware communication and pass-trough the received

data to the target software on the Raspberry Pi. During implementation progress the

CHAPTER 4. IMPLEMENTATION 56

Specification Description

CPU ARM1176JZFS v6 32Bit Single Core + (VPU) and DSP, 700MHz

GPU Videocore IV, Dual Core, 128 KB L2-Cache, 250 MHz, HDMI 1.3a

Chipset Broadcom BCM2835 SoC

RAM 512 MB RAM, 400 MHz

Storage SD Memory Card Slot (SDHC), Class 4 & 6 Cards

LAN RJ45 10/100 MBit/s Ethernet, internal over USB-Controller

Indicators 5x LEDs (Power, SD-Card Access, LAN 10/100 MBit, LAN Full-Duplex,
LAN Link/Access)

NFC NXP PN65N

USB 2x USB 2.0 internal Hub (5V Supply max. 3,5W (700mA))

GPIO 26 Pin Port @5V, 3,3V, GND and 17 3,3V GPIO Pins (SPI, I2C, UART)
with 2-16mA

Table 4.5: Technical Specification - Raspberry Pi Model B (rev. 2) [48, 47]

gateway device is directly connected to the development machine in order to rapidly deploy

software changes.

Proxmark3

The Proxmark3 is a small hardware device for research RFID and NFC technology [49]. It

features a large spectrum of supported modes like snooping, listening, emulating in the two

frequency ranges: high frequency (3-30 MHz) (HF) and low frequency (30-300 kHz) (LF),

only HF is used in this context because of the NFC specification. The Proxmark3 is

based on an open-hardware design and can be self assembled or purchased also the whole

software is freely available [50] and can be modified under GNU General Public License.

This software has basically two major components: firmware and client. The firmware is

the operating system of the Proxmark3 and the client software is the application which

is the interface to control the Proxmark3 from the host-machine. This implies that this

tool is connected to another computer. Windows and Linux are supported operating

systems for the host-platform and the connection is established over USB. The device is

powered over the USB connection but also runs without the host-machine and firmware

modifications. A detailed description of the used protocol and control system between

the firmware and the client of the host-machine is available in section 4.7.3. The bulk of

the software implementation is written in plain C 6 so some parts have to be adapted to

Java for the evaluation framework. Table 4.6 lists all relevant technical specifications for

the Proxmark3 extension that are relatable to this implementation. Figure 4.4f shows the

Proxmark3 hardware.

6imperative programming languages

CHAPTER 4. IMPLEMENTATION 57

Specification Description

CPU Atmel AT91SAM7S256 55 MHz

RAM 64kB

Storage 256Kb

FPGA Xilinx Spartan-II

RF Independent circuits for HF and LF

USB mini-USB 2.0

Interface 1x key button, 4x LED

Antenna External with USB 2.0 mini 4-Pin Hirose

Table 4.6: Technical Specification - Proxmark3 [52, 51, 53]

Specification Description

CPU Cortex A8

RAM 256 MB LPDDR

Storage 256 MB NAND Flash

LAN 10/100Mbps

Table 4.7: Technical Specification - OMAP35x Evaluation Module

4.2.5 Measurement Suite

The measurement suite is the expansion for the run-time environment and is used for the

evaluation of the use-case application under test. The initiator software that is executed

on the development machine (Android emulator) is deployed on the Android development

board and on the measurement machine. Furthermore, the development machine is now

only used to observe the Android development board with the android debug bridge (ADB).

Android Development Board (OMAP35x)

The measurement for the case-study described in chapter 5 was done with an Android

development board, because of the direct local area network (LAN) connection to the

measurement machine. This reduces the delay between the measurement suite and the

application under test. The development board is a OMAP35x Evaluation Module (EVM)

from Texas Instruments 7 with Android 2.2 (Froyo) as operating system. Table 4.7 lists all

relevant technical specifications for the OMAP35x that are relatable to this implementation.

Figure 4.4g shows the Proxmark3 hardware.

Measurement Machine

The measurement machine is the computer that executes the measurement software and

measures the power consumption of the external NFC reader. The socket connection to

7http://www.ti.com/tool/tmdsevm3530

CHAPTER 4. IMPLEMENTATION 58

the smartphone invokes different methods on the initiator software and the measurement

machine collects voltage and current (2-channels) from the connected reader. The mea-

surement machine is a NI PXI-1042Q from National Instruments and the reader is wired

with a SCB-68 I/O connector block that is connected to the PXI-1042Q. META[:SEC:]

Evaluator 4 is the software that is used to measure the power consumption and call the

methods from the configuration. The setup and explanation for the measurement suite is

described in chapter 5.

4.3 Hardware Composition

This section describes the development setup for the evaluation framework with the earlier

introduced hardware. The linking of the integrated hardware devices is either accomplished

with a serial interface or over a plain socket connection depending on the requirements.

The first step is to assemble the fundamental run-time environment and the second step is

the extension with the measurement suite. The development is done on a PC and therefore

the machine is the central device for the realization process. The development environment

is replaced later with the measurement machine and the single-board computer.

4.3.1 Development Setup

Foremost task is the creation of the run-time environment consisting of the initiator

(user-interface and reader) and the responding platform (target and attached gateway).

Figure 4.5 illustrates the setup of the basic utilities of the framework in general over USB

and table 4.8 describes the utilized connections between the included devices and shows

required or optional linking in order to provide a runnable environment.

Id Type Req. Description

Link A Socket TCP/IP over LAN/WLAN connection for the Android smart-
phone to the development machine in order to control the
external reader.

Link B Serial USB debugging and application deployment connection for
the ADB (Link A also can be used for this purpose).

Link C Serial USB connection between the development machine and the
external NFC reader.

Link D Serial USB connection between the development machine and the
Proxmark3 for firmware flashing and control mechanics.

Link E Analog Connection from the Proxmark3 to the attached antenna
with USB cords. Only for power supply and analog signal
transfer.

Table 4.8: Connection Description - Development setup

CHAPTER 4. IMPLEMENTATION 59

(a) LG E960 (Nexus 4) (b) DUALi DE-620 (c) Raspberry Pi Model B

(d) GT-I9023 (Nexus S) (e) ACR122U (f) Proxmark3

(g) OMAP35x

Figure 4.4: Overview of the utilized hardware equipment

CHAPTER 4. IMPLEMENTATION 60

Development Machine

(Personal Computer)

Android

Emulator

Development

Environment

Smartphone

(Nexus 4 or Nexus S)

Target Gateway

(Proxmark3)

Proxmark3

Antenna

NFC Reader

(DE620 or ACR122U)

Hardware

Interfaces

Link C

Link D Link E

NFC Proximity

Link B

Link A

<< wired >>

<< wireless >>

Figure 4.5: Development hardware setup

4.3.2 Evaluation Setup

The difference between the previous setup is the reduction of the development machine

and relocation of the executed software on this computer. The development machine

administrates the programming logic for the user-interface (when the emulator is used),

the external reader and the gateway of the target. So the development machine is the

all-in-one device for the implementation process and the Raspberry Pi as target is not even

needed. For the productive setup with the inclusion of the measurement suite the software

is distributed to the corresponding gadgets.

User-interface can be either deployed on the hardware smartphone, the Android development

board or the emulator which is connected to the development machine (can be also executed

on the measurement machine). The control software for the Proxmark3 (gateway) is now

executed directly on the Raspberry Pi (target). Modifications to the firmware of the

Proxmark3 are not possible at the current stage of implementation but can be extended in

future work. Initiator and target software can be modified in the productive setup. The

client application for the external reader is also executed on the measurement machine

because the USB connection is also required to determine power consumption of the device.

Figure 4.6 demonstrates the evaluation setup of the utilized hardware in this project

including the measurement suite with the Android development board as the initiator

platform without the requirement of the development machine. Table 4.9 describes all used

connection between the devices.

CHAPTER 4. IMPLEMENTATION 61

Development Machine

(Personal Computer)

Android

Emulator

Development

Environment

Hardware

Interfaces

Proxmark3

Antenna

NFC Proximity

Android

Emulator

Hardware

Interfaces

Android

Development

Board

Measurment Machine

(Personal Computer)

Raspberry Pi

(Target)

Target Gateway

(Proxmark3)

NFC Reader

(DE620 or ACR122U)

Measurment

Interface

Smartphone

(Nexus 4 or Nexus S)

Link A Link B

Link C

Link D Link E

Link G

Link H Link J

M2Link F M1

<< wired >> << wireless >> << not implemented >>

Figure 4.6: Evaluation hardware setup

CHAPTER 4. IMPLEMENTATION 62

Id Type Req. Description

Link A Socket TCP/IP over LAN/WLAN connection for the Android smart-
phone to the measurement machine in order to control the
external reader.

Link B Serial USB debugging and application deployment connection for
the Android smartphone using ADB (also possible over
LAN/WLAN).

Link C Socket TCP/IP over LAN/WLAN connection for the Android emu-
lator (development machine) to the measurement machine in
order to control the external reader.

Link D Socket TCP/IP over LAN/WLAN connection for the Android de-
velopment board to the measurement machine in order to
control the external reade.r

Link E Serial USB debugging and application deployment connection for
the Android development board using ADB (also possible
over LAN/WLAN).

Link F Serial USB connection between the measurement machine and the
external NFC reader (data and power transmission). Software
for the reader is executed on the measurement machine.

Link G Socket SSH over LAN/WLAN connection to manage the Raspberry
Pi remotely (deployment and control).

Link H Analog Connection from the Proxmark3 to the attached antenna
with USB cords. Only for power supply and analog signal
transfer.

Link J Serial USB connection between the Raspberry Pi (target) and the
Proxmark3 (gateway) for control mechanics (flashing not
implemented).

M 1 Analog Managed power measurement of the attached external reader
(DE620 or ACR122U) with an analog interface for current
and voltage.

M 2 Analog Managed power measurement of the Proxmark3 (gateway)
with an analog interface for current and voltage (not imple-
mented in the actual stage but can be extended in future
work).

Table 4.9: Connection Description - Productive setup

4.4 Development Environment

The section development environment explains how the software components were created

and which common programming practices were applied. As mentioned earlier Java is the

development language of choice (except the Proxmark3 firmware which is C based) because

Android applications are mainly based on Java and the JRE is available for a wide range

of various operating systems and platforms. Implemented software-code can be reused

especially for protocol and communication purpose. For the implementation common

CHAPTER 4. IMPLEMENTATION 63

software patterns [54] were used to guarantee a modular, maintainable and extensible

software design.

4.4.1 Tools

Java: The applications for initiator (smartphone), target (Raspberry Pi) and the external

reader (DE620 and ACR122U) are implemented in Java (Version 1.7) and can be executed

on the standard JRE except the external reader implementation which must be executed

in a 32bit JRE. This is necessary because the Duali DE620 is shipped with a proprietary

interface (dynamic link library (DLL) based) for Windows operating system. The DLL is

mapped with java native access (JNA) [55] to provide the low-level reader interface to the

Java application (details see 4.7.2).

Android SDK: The development of Android applications is driven by the Android

SDK. This development environment is shipped with various tools which are helpful during

implementation process. With the integrated download manager the SDK can be updated

comfortably and additional extras might be installed like the earlier described HAXM

or support libraries. The manager also administrates the different API versions from

early Android 1.5 (API 3) until the latests version Android 4.4 (API 19). The Android

applications implemented in the practical part require a minimum API level of 8 and an

actually target level of 18.

C: The Proxmark3 open-source software is based on C therefore the modifications are

directly made in the firmware implementation. The Proxmark3 sources can be compiled

with the common GNU compiler collection (GCC) (version >= 4.7) and optionally a

Subversion client and Perl interpreter (for inclusion of a version string in the firmware).

A tutorial for the setup of the compilation and flashing process can be found in the

appendix B.

Eclipse: Eclipse [56] is the integrated development environment (IDE) which is used

to develop, compile and execute the software components in Java and C. Which is not a

requirement but rather a personal choice. The assembled Java software will be distributed

as JAR files to the target platform (Raspberry Pi) and the measurement machine. The

compilation of the Proxmark3 software will be performed with Makefiles that can be

executed with the Eclipse IDE. The major advantage of this development environment is

the inclusion of all software components in an all-in-one solution for Android, Java and C.

Furthermore, the sharing of common used source-code is possible which avoids duplicated

code segments.

There are many alternatives for compilation and management like Ant [57] or Maven [58]

which are more lightweight and can be configured faster than a whole Eclipse setup. These

tools will also properly work with the implemented Java components.

CHAPTER 4. IMPLEMENTATION 64

4.4.2 Testing and Debugging

In order to ensure an appropriate software quality the implementation is developed with

suitable testing tools and based on test-driven development (TDD) approaches. The Java

software components are tested with JUnit (Version 4) 8 and the Android implementations

with the internal unit testing tools 9. The firmware implementation of the Proxmark3

could be also tested with CUnit 10 or other unit testing frameworks for C. In this project

this part was skipped because the firmware is only slightly modified and tunnels the

received commands directly to the target (Raspberry Pi). Only very few calculation logic

is implemented on Proxmark3 side. Debugging for the Java components and the Android

applications was done with internal Eclipse debug tools.

Debug Messaging

The official Proxmark3 implementation supports a custom debug messaging system in

which the Proxmark3 is sending message packets over the serial connection to the client

software which can be further processed or printed. This messaging system provides a

simple and fast remote debugging mechanism for developers with program execution on

the Proxmark3. The debugging is based on the communication protocol for the Proxmark3

and the client software. A detailed protocol description can be found in section 4.7.3.

Logging

The debug messaging of the Proxmark3 firmware is not a properly debugging technique but

rather a logging mechanism for the client software so this system works like the LogCat 11

for the Android environment. A logging subsystem was appended to the developed Java

software components to get feedback of the executed application. The logging is based

on simple logging facade for Java (SLF4J) 12 with Log4J 13 as back-end framework. The

back-end framework can be exchanged with different logging implementations if required.

4.5 Software Components

In the following sections the utilized software components of the evaluation framework

will be introduced. Some of this applications are depending on already existing interfaces

or protocols and were implemented to cover the necessary requirements which will be

8http://junit.org/
9https://developer.android.com/tools/testing/index.html

10http://cunit.sourceforge.net/
11http://developer.android.com/tools/help/logcat.html
12http://www.slf4j.org/
13http://logging.apache.org/log4j/2.x/

http://junit.org/
https://developer.android.com/tools/testing/index.html
http://cunit.sourceforge.net/
http://developer.android.com/tools/help/logcat.html
http://www.slf4j.org/
http://logging.apache.org/log4j/2.x/

CHAPTER 4. IMPLEMENTATION 65

explained accordingly. An extensive description as well as implementation details of the

actual software applications will be given in section 4.7.

4.5.1 Reader Bridge

The Android reader bridge implementation is the connection to the external executed NFC

reader software. This is basically a shared library that has to be imported in every use-case

application in order to use the DE620 or ACR122U as the NFC communication module

which is required to gather power consumption of the use-case application. The current

implementation is based on Mifare Ultralight and therefore the android.nfc.tech.NfcA

class from the Android SDK is the reference for the external reader communication interface.

Mifare Ultralight is used because it is compatible to ISO 14443-3 and the Nexus 4 internal

NFC chip is not supporting the common Mifare Classic transponder types. This was a

design decision for the current realization an advanced implementation can be developed

with any type of transponder hardware and emulation. Use-case applications NFC context

can be switched between the external and internal reader with a simple module exchange.

The use-case application has no knowledge how the bridge is communicating with the

reader and which protocol is used for this purpose. This guarantees a simple changeability

for the utilized NFC element on the initiator side.

4.5.2 Reader Interface

The reader interface software provides the external NFC reader to the Android bridge.

This software is based on plain Java and has to be executed in a 32bit JRE because the

DE620 is controlled with a DLL. The ACR122U is connected with the PC/SC interface.

The reader manager also provides a simulation mode and therefore no real hardware is

needed and the responses are generated by the software itself. The simulator can be freely

implemented by the developer to fulfill the use-case application requirements and assists

during the Android application development.

4.5.3 Proxmark3 Firmware

The Proxmark3 as the gateway device is based on three general software components:

• The bootrom (bootloader) which initializes the hardware, provides the flashing

function over USB and transfers execution to the operating system. The bootrom is

the backbone of the device and should only be flashed if really necessary (in terms of

compatibility).

• The field programmable gate array (FPGA) image converts the analogue signals from

the external attached antenna to digital information that can be computed with the

ARM processor.

CHAPTER 4. IMPLEMENTATION 66

• The operating system is the software that is executed after hardware initialization

(bootrom). It can be modified in any way and flashed to the Proxmark3. This

implementation uses a extended version of this operating system with a customized

emulation loop to ensure a gateway mode for the Proxmark3 (pass-through).

The operating system is booting and set in an idle mode waiting for a client software

connection. The Proxmark3 source-code includes a native client which is implemented in

C. The Proxmark3 firmware and the client are using a serial connection and a customized

protocol for communication. The existing client (also implemented on the operating system)

features a broad bandwidth of RFID tools for LF an HF operations.

The standard firmware is computing the emulation of the NFC tag directly on the Proxmark3

and the client only initializes the emulation. This does not cover the requirements because

the operating system has to be flashed for modifications of the use-case application and no

peripherals (e.g. sensors) can be attached to the Proxmark3 platform. So it is important

that the Proxmark3 is only acting as a gateway and forwards all received commands to

the target (Raspberry Pi). The target is computing the response and sending it back to

the Proxmark3 which responds to the requested command from the NFC reader.

4.5.4 Proxmark3 Client

The existing Proxmark3 client is not needed for the actual system because a custom client

software was developed for the tag emulation. This implementation is written in Java

and executed on the target (Raspberry Pi). The Java Proxmark3 client implements the

communication protocol from the original client and initializes the gateway mode on the

Proxmark3. This client internally computes the responses for the use-case under test and

therefore it can be loaded with customized response configurations during start-up.

4.5.5 Use-Case Applications

Use-case applications in this system are separated into two general parts which might be

tested and evaluated with the framework:

• Initiator: Android application with the reader bridge implementation for the NFC

communication.

• Target: Response configuration that is executed within the Proxmark3 client and

additional software from the peripherals which is exchanging data with the Proxmark3

client.

4.6 Software Composition

This section describes the data flow between initiator and target with the introduced

software components. The Android application initiates the communication with the

CHAPTER 4. IMPLEMENTATION 67

reader bridge and interface over the socket connection. The interface implements the

basic methods from the android.nfc.tech.NfcA class and maps this object to the

readers native functions. The protocol that is used with the socket connection is a request-

response challenge and data is encoded in JavaScript object notation (JSON) for readability.

The request from the Android application transports an identifier and optional function

parameters to the reader software. The application is blocked until the response data is

received.

The reader interface software executes the given method with the additional parameters so

that the reader hardware performs the data exchange. Afterwards the reader waits for the

response of the gateway or continues execution after a predefined timeout.

The gateway device (Proxmark3) receives the emitted command from the reader, passes

through it to the target and waits for the response from the target. The Proxmark3 has

a customized protocol for the serial connection to the target. The data exchange is also

based on a request-response protocol but within plain Byte format.

The target receives the command (APDU Frame) from the gateway over the serial connec-

tion, dispatches it and computes the response accordingly to the received command. This

response is send back to the gateway which encodes the command for the NFC connection.

The response data is received by the reader and forwarded to the initiator through the

controller and the interface. Figure 4.7 illustrates the software composition and how they

are connected and interacting.

4.7 Software Implementation

4.7.1 Reader Bridge

The reader bridge class NfcSim implements android.nfc.tech.NfcA from the Android

SDK. The constructor of the NfcSim class needs a host parameter (readerHost) with

internet protocol (IP) and port number for the connection to the reader interface. Thus it

is possible to include multiple readers if necessary. The connection to the NFC reader has

to be initialized with the connect() method. The close() method is disconnecting

the reader interface. After connection establishment basic functionalities for read() and

write() accordingly to NfcA (Mifare Ultralight) is available. The more advanced method

transceive() can be used to send custom APDU commands to the reader interface.

The connection is established with a socket and data is encapsulated in the class Packet

with a message code and a payload. The socket connection is partitioned in incoming and

outgoing data so therefore the application is listening for incoming data and sending data

when required. The message code is an identifier for the bridge and the reader interface to

determine which command should be executed. This Packet is encoded with help of the

Gson library 14 into JSON format for readability. Currently the protocol supports the

14https://code.google.com/p/google-gson/

https://code.google.com/p/google-gson/

CHAPTER 4. IMPLEMENTATION 68

Use-Case Application

Reader Bridge

Android

(Nexus 4 or Nexus S)

Reader Interface

External Reader

(DE620 or ACR122U)

Reader Native Interface

Gateway

(Proxmark3)

Target

(Raspberry Pi)

Modi�ed Firmware

Proxmark3 Client

Response Con�guration

Request Response

Socket Connection + JSON

NFC Communication

Serial Connection

Figure 4.7: Software composition

CHAPTER 4. IMPLEMENTATION 69

basic request-response commands (READ , WRITE , TRANSCEIVE). If required, additional

commands can be added within the Packet class. Because of the socket connection every

Android application needs to provide network communication with the reader interface

therefore it is necessary to enable the permission INTERNET in the AndroidManifest .

Listing 1 shows the basic usage of the transceive() function of the reader bridge with a

simple read request.

Listing 1 Example of a custom Android use-case application

public class ExampleApplication extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

// New NfcSim object with the IP of the reader interface

NfcSim tag = new NfcSim("129.27.146.29");

// Send request

byte[] result = tag.transceive(new byte[] { 0x30, 0x01 });

// Process the result ...

}

}

4.7.2 Reader Interface

The reader interface is the counter-part for the reader bridge described above. The

CardReaderServer class is the entrance point for the execution and can be called with

different command line parameters:

• -r <reader> Indicates which reader should be loaded. Default reader will be DE620.

Possible arguments are de620 , acr122 and simulator .

• -h Prints the help for the application.

After startup the reader interface initializes the socket and waits for the bridge to connect.

When the bridge has successfully connected the reader interface dispatches all incoming

commands to the initialized hardware reader or simulator. The simulator is a virtual device

that behaves like a real hardware. The simulator receives commands and replies to it. This

is helpful for the development process because the whole target back-end is not required.

DE620

This is the primary reader module which is used later for the use-case study and the

measurement setup. The reader is shipped with a 32 bit DLL (Windows operating system)

file which grants access to the reader hardware. So therefore it is required that Java

application can access this DLL outside of the virtual execution environment. The JNA

CHAPTER 4. IMPLEMENTATION 70

library 15 is included to map the methods Java internally to the accordingly native DLL

methods. The DE620DLLInterface class is the connection to the native code execution.

The connection and data exchange with the hardware reader is executed as follows:

1. DE_InitPort() Initialization of the reader with a port for the serial identifier.

2. DE_FindCard() Detect transponders in the magnetic field of the reader.

3. Data Exchange with the Proxmark3 gateway device and interface for the reader

bridge.

• DE_Transparent() → reader bridge transceive() command.

• DEA_READ() → reader bridge read() command.

• DEA_UltraM_Write() → reader bridge write() command.

The Select and AntiCollision mechanics for the transponder are accomplished with

DE_FindCard() but can be directly implemented if this is required for the concrete

use-case application.

ACR122U

The ACR122U is hooked over PC/SC and has to be initialized with connect() . After the

initialization the reader can be accessed over the provided methods or either natively with

APDU commands. The methods read() , write() and transceive() are mapped

directly to the reader bridge.

Simulator

The simulator is a tool for development process to simulate a real hardware reader. The

simulator can be simple extended to fit the requirements of the use-case application. The

idea behind this simulator is that the Simulator class is the template for the response

configuration from the target executable. So for the development process no real NFC

hardware is required. In future work the simulator and the target response configuration

should share the same implementation for reusability.

Figure 4.8 illustrates the communication between the reader bridge and interface with the

JSON Packet protocol.

It is recommended to create a java archive (JAR) for the execution of the reader interface

software. Thus the application (with the DE620 as reader) can be started with:

$ java -jar reader.jar -r de620

15https://github.com/twall/jna

https://github.com/twall/jna

CHAPTER 4. IMPLEMENTATION 71

Android

Use-Case

Application

Reader Bridge

Packet

+

Gson

Socket Socket

DLL

PC/SC

Simulator

Reader Interface

Dispatch

In In

OutOut

Request Response

Packet

+

Gson

ACR122U

DE620

Figure 4.8: Communication between the reader bridge and interface

CommandCode Arg0 Arg1 Arg2 Data/Payload

8 bytes8 bytes 8 bytes 8 bytes 512 bytes

544 bytes

Arguments

Figure 4.9: Proxmark3 protocol packet

4.7.3 Proxmark3 Firmware

The Proxmark3 firmware is open-source and available from the public online repository 16.

This firmware can be compiled and flashed to the device with the tutorial in appendix B.

The Proxmark3 starts when it gets connected over USB. After the bootrom initialization

and firmware loading the Proxmark3 is idle and waits for an incoming command from the

serial connection. For this implementation a additional functionality called gateway mode

was added. In this mode the Proxmark3 forwards all incoming commands to the client and

replies the computed response from the target (Proxmark3 client) to the reader.

So the Proxmark3 serial protocol is extended to make data communication possible in

this gateway mode. A message packet of the protocol for the command/data exchange is

shown in figure 4.9. The CommandCode indicates which command has to be executed on

the receiving side. The arguments can be used to handle parameters that are important

for the command itself. The data field is used for the payload that is processed during

command execution.

16https://github.com/Proxmark/proxmark3

https://github.com/Proxmark/proxmark3

CHAPTER 4. IMPLEMENTATION 72

The main simulation loop that was introduced for the gateway mode can be found in

armsrc/iso14443a.c within SimulateIso14443aTagOnClient() . When the emulation

is initiated from the client software the Proxmark3 is listening for NFC communication

from the reader device. After a command was successfully received the Proxmark3

wraps the command in a message package, sends it to the Proxmark3 client and waits

for a message packet. When the response packet has arrived, the Proxmark3 extracts

the CommandCode and performs the corresponding action. The existing CommandCodes

are listed in include/usb_cmd.h . The additionally introduced CommandCodes for the

message protocol:

• CMD_SIMULATE_TAG_ISO_14443a_ON_CLIENT (0x0800) which starts the gateway

mode on the Proxmark3.

• CMD_SIM_REQUEST (0x0801) is the request command from the Proxmark3 to the

client.

• CMD_SIM_RESPONSE (0x0802) is the response from the client to the Proxmark3.

• CMD_SIM_RESPONSE_CORRECTION (0x0803) is equal to CMD_SIM_RESPONSE but

with parity correction.

• CMD_SIM_RESPONSE_4BIT (0x0804) responses for a write command with only 4

bit response.

• CMD_SIM_CONTINUE (0x0805) continues execution without sending a response to

the reader.

• CMD_SIM_STOP (0x0806) stops the emulation (this is currently not supported).

4.7.4 Proxmark3 Client

The Proxmark3 client is the software that is executed on the target (Raspberry Pi) and

mainly communicates with the Proxmark3 firmware over the specified protocol. The client

software establishes the connection to the Proxmark3 with the jSSC library 17 for serial

interfaces. Furthermore, the client loads the responder module which is a implementation

of the Command Java interface and is the counterpart for the use-case application on

the smartphone. After the connection initialization, the client automatically invokes the

gateway mode on the Proxmark3. From that moment on all received messages from the

reader device are handed-over to the client through the Proxmark3. The client software is

polling for new messages from the serial interface and the CommandProcessor dispatches

the commands and sends it to the loaded responder. This module computes the response

and the client encapsulates it in a packet for the serial protocol and sends it back to the

gateway.

Listing 2 shows how to implement a custom responder for a specific use-case application

accordingly to the Android application.

17https://code.google.com/p/java-simple-serial-connector

https://code.google.com/p/java-simple-serial-connector

CHAPTER 4. IMPLEMENTATION 73

Listing 2 Example of a custom responder class

public class ExampleResponder implements Command {

@Override

public void execute(CommunicationCommand cmd) {

byte[] data = cmd.getData();

if (data[0] == 0x30) {

// Compute read request and respond

int blocknumber = data[1];

}

}

}

The Proxmark3 client provides some start parameters which can be used to start the client

with different modules and automates the execution:

• -r <responder> Indicates which responder should be loaded for the dispatcher.

An example might be -r com.example.Responder and the parameter needs the

full name of the class including the Java package.

• -i Starts the interactive mode with a command line interface. This parameter skips

the automatically starting of the gateway mode on the Proxmark3. The user has

to start the mode manually with sim . With version the Proxmark3 bootrom,

firmware and FPGA versions are printed to the screen. quit leaves the interactive

mode and exits the client software.

• -h Prints the help for the application.

As mentioned earlier the sources should be packed into a Java JAR file for comfortable

execution also the deployment process on the Raspberry Pi is faster with a executable

JAR. With the following command the client can be started:

$ java -jar client.jar -r com.example.Responder

In figure 4.10 the communication between the Proxmark3 firmware and the client software

for the target is illustrated.

4.7.5 Utilities

The utilities are a Java library that is shared among all other Java software components

and contains routines that are commonly used. These tools provide formatting, conversion

and manipulation of different basic Java types.

CHAPTER 4. IMPLEMENTATION 74

Antenna

Proxmark3 Rasperry Pi

Proxmark3 ClientFirmware

jSCC

Loaded Responder

Module

Protocol

Packet

Protocol

Packet

Gateway Dispatcher

Serial

Interface

Request Response

Figure 4.10: Communication between the Proxmark3 firmware and the client

4.8 Alternative Approaches

This section gives an overview of other implementation approaches with different hardware

that was evaluated during this thesis and points out advantages and disadvantages for each

system. Furthermore, it will be explained why these systems were not used and which

problems occurred during testing and evaluation.

4.8.1 Internal Reader

The internal NFC chip from smartphones can be used to act as the initiator or target.

This system architecture was evaluated with the Nexus 4 as the initiator part and the

Proxmark3 and Raspberry Pi as the back-end which is currently used in the evaluation

framework. The intention was to have an initiator which is combining the user interface

and the NFC communication in one device and with the Android API it would be runnable

on various smartphones. Thus such an environment can be copied effortless and has a

potential outcome in terms of power optimizations for NFC use-case applications.

So the first step to connect the Nexus 4 as the initiator with the Proxmark3 gateway.

The NFC connection between these two devices worked rarely and the emulated tag from

the Proxmark3 was continuously dropped (HALT command) by the Nexus 4. Also other

tests with the Nexus S as the initiator failed with similar results. It may has to do

with the Proxmark3 antenna which is not optimal designed for target mode (transponder

emulation) but rather than initiator mode. Also the Android operating system handles the

tag internally and if a standard tag technology is connected the system is reading the tag.

So the Proxmark3 has to determine if the request is coming from the operating system

itself or from the running application.

The measurement of power drain was not simple possible with the Nexus 4 because the

CHAPTER 4. IMPLEMENTATION 75

NFC NFC

Smartphone Proxmark3 Raspberry Pi

Measurement Suite

USB

Figure 4.11: Approach with the smartphones internal NFC reader

chassis has to be opened to measure the power consumption of the NFC module from the

internal battery. Furthermore, the measurement would not be accurate because all other

internal hardware components of the smartphone are connected to the battery and would

falsify the measurement results. The real power drain from the NFC module has to be

estimated from the measured data. Only a full disassemble and a direct measurement of

the NFC chip may have leaded to helpful consumption measurement. Figure 4.11 shows

an example setup for a basic evaluation system with the internal reader.

Advantages:

• Cost efficiency: No extra reader hardware for the initiator is required for the NFC

communication.

• Android API : The use-case applications can be implemented without any dependencies

(no reader bridge).

• Various devices: The initiator can be any kind of Android hardware that has an

internal NFC chip. (e.g. tablets, desktop computer)

Disadvantages:

• Complicated measurement: smartphone has to be opened to measure the power

consumption.

• Field strength: The field strength of the internal module is heavily optimized for

power consumption and so problems with the Proxmark3 communication may occur.

4.8.2 Breakout Board

Another approach with a very similar design to the actual system is the replacement of the

Proxmark3 with the NXP PN532 NFC/RFID controller breakout board from Adafruit18.

This board is a NFC extension for the Raspberry Pi and can be connected over the GPIO

pins on the motherboard. The major advantage over the Proxmark3 extension is the direct

control of the PN532 NFC chip so there is no firmware needed for the breakout board.

Thus the Raspberry Pi handles the connection directly. The PN523 can be programmed

18http://www.adafruit.com/products/364

http://www.adafruit.com/products/364

CHAPTER 4. IMPLEMENTATION 76

NFC NFC

Smartphone Breakout

Board

Raspberry Pi

Measurement Suite

GPIO / USB

Figure 4.12: Approach with a NFC breakout board

with Libnfc 19 an open-source low-level NFC library. A tutorial how the breakout board

can be connected to the Raspberry Pi and how the library is used can be found in [59].

This approach was evaluated and failed for the same reason because the emulated tag

from the breakout board was dropped by the Android smartphone. But this approach may

work with the external NFC reader extension in the current system (untested). Figure

4.11 shows an example setup for the targeted system with the Adafruit breakout board

controller.

Advantages:

• Cost efficiency: The breakout board is relatively low priced compared to the Prox-

mark3 hardware.

• Open-source libraries: With use of the open-source Libnfc library the breakout board

is able to emulate a broad bandwidth of transponders.

• Single software component: No firmware is needed for the breakout board and so

the development of the use-case implementation can be achieved directly with the

library.

• Measurement friendly: With the connection over the GPIO pins the measurement of

the power consumption is accurate and effortless.

• Operating System independent: The breakout board can be connected over UART,

I2C or SPI to Linux, Windows and Mac computers.

Disadvantages:

• Proprietary: NFC connection is established with the proprietary NXP PN532 chip

and also the hardware design is not available for the breakout board.

4.8.3 Dual Gateway

An alternative could be a dual gateway system with two connected Proxmark3 devices.

Thus the smartphones external NFC reader is a Proxmark3 which forwards the requests

from the mobile phone to the Proxmark3 target gateway. The advantage of this system is

19http://nfc-tools.org/index.php?title=Libnfc

http://nfc-tools.org/index.php?title=Libnfc

CHAPTER 4. IMPLEMENTATION 77

NFC

Smartphone
Proxmark3

Raspberry Pi

Measurement Suite

USB
NFC

USB

Proxmark3 Proxmark3

Figure 4.13: Dual gateway approach

the development of the gateway firmware which can be either executed in reader mode or

otherwise in target mode. On Android side a client for the Proxmark3 is needed to invoke

the reader mode and provides an interface for the use-case application. This system was

basically only a concept and is untested in the current stage but it is a real open-source

based solution without a proprietary NFC reader extension.

Advantages:

• Non-proprietary system: The used hardware for such a system is open-sourced in

terms of hardware and software.

• Free programmable: RFID/NFC applications can be developed and evaluated on this

system.

• FPGA modifications: Additional features can be added later without a redesign of

the underlaying hardware.

Disadvantages:

• Expensive hardware: The Proxmark3 hardware is relatively expensive compared to

other NFC extensions if it is purchased pre-assembled.

• Rarely active development community: The software for the Proxmark3 offers various

features but the development is stagnating currently.

• Lack of documentation: The source-code documentation is nearly non-existent so it

may be hard to understand how the firmware works.

Chapter 5

Case Study

This chapter covers the implementation of specific use-cases to demonstrate the capability

of the proposed and implemented evaluation framework. This demonstration should prove

that the run-time environment and measurement suite are working as expected within

the predefined conditions. The specific applications will be evaluated with use of the

attached automated NFC measurement suite and defined test-cases. The acquired power

measurement data will be analyzed and presented in this chapter. Also the performed tests

are designed to maintain repeatable and comprehensible. The results will be taken directly

from the attached software suite and this description will also include and express the

errors of measurement that occurred during the testing-phase. The case-study examples

will be implemented and evaluated without any power optimizations. After the analysis of

the power consumption, optimization techniques will be applied to the application and a

further power evaluation iteration should illustrate the decreased power consumption.

5.1 Measurement Setup

The measurement setup for the evaluation of the use-case applications is based on the

run-time environment, the Android development board and the measurement machine. Also

the Android use-case application has to be extended for the suite so that the measurement

controller invokes methods on Android side and measures the power consumption from the

attached NFC reader. Figure 5.1 illustrates the actual hardware setup that was used during

the use-case evaluation. Figure 5.2 shows a snapshot of the measurement setup (without

the measurement machine, the I/O connector block and the development machine).

Voltage and current values are captured on the measurement machine with help of the I/O

connectors. The USB connection from the development machine to the Android develop-

ment board is used for observation of the executed use-case application and debugging and

the LAN connection from the measurement machine to the Android development board is

used for the socket connection between reader bridge and interface (direct connection for

decreased delay) and the invocation of methods that should be observed in terms of power

78

CHAPTER 5. CASE STUDY 79

Development Machine

(Personal Computer)

Development

Environment

Hardware

Interfaces

Proxmark3

Antenna

NFC Proximity

- MetaSec Evaluator

- Reader Interface

Hardware

Interfaces

Android Development Board

(OMAP35x)

Measurement Machine

(NI PXI-1042Q)

Raspberry Pi

(Target)

Target Gateway

(Proxmark3)

NFC Reader

(DE620 or ACR122U)

Measurement

Interface

 LAN

USB

 I/O Connector Block

(OMAP35x)

Custom Firmware

(Gateway Mode)

- Use-Case Application

- Reader Interface

- SysClient

Proxmark3 Client

Use-Case Responder

LAN

V

A

USB

Figure 5.1: Measurement setup for the use-case study

CHAPTER 5. CASE STUDY 80

Figure 5.2: Measurement setup snapshot

consumption. Furthermore, the development machine and the Raspberry Pi are connected

over LAN for SSH management.

One part of the measurement suite is called META[:SEC:] Evaluator (version 4) and is

the primary software that is executed on the measurement machine and provides a simple

object access protocol (SOAP) API over the LAN connection for the Android SysClient

which is the secondary part. This SysClient controls the use-case application and invokes

methods that should be evaluated and optimized.

5.1.1 Software Setup

The measurement suite is mainly a method based testing tool that executes methods

from the Android use-case application therefore the SysClient has to be integrated for

testing purpose. The SysClient requires the IP address of the development machine for

the connection to the SOAP API. The next step is the creation of an evaluation schedule

which is a configuration file for the META[:SEC:] Evaluator and includes the sequence of

the measured methods. The following list describes the steps for the software setup:

1. Implemented Android use-case application and responder for the Proxmark3 client.

2. Integration of the SysClient in the Android use-case application.

3. Configuration of the SysClient (IP address of the development machine).

4. Measurement sequence for the META[:SEC:] Evaluator as a configuration file.

CHAPTER 5. CASE STUDY 81

5.2 Measurement Process

When the setup of the measurement is finished the application is ready for the evaluation

cycle. The following list shows a step by step guide on how to initiate the implemented

software components and starts the measurement process:

1. Raspberry Pi (Target)

(a) Deploy the Java JAR file of the Proxmark3 client.

(b) Start the Proxmark3 client with the desired responder.

2. Measurement Machine (NI PXI-1042Q)

(a) Deploy the Java JAR file (reader interface).

(b) Start the reader interface (32bit) with the module of the attached reader.

(c) Start the META[:SEC:] Evaluator 4 suite.

(d) Specify the sequence file in the input panel of the evaluator.

(e) Specify the package name of the use-case application so that the SysClient

knows which application to test.

(f) Optionally specify the result identifier which is the filename of the gener-

ated Matlab data.

3. Android Development Board (OMAP35x)

(a) Deploy the Android use-case application.

(b) Deploy the SysClient application.

(c) Start the Android use-case application.

(d) Start the SysClient application (service will run in background).

4. Measurement Machine (NI PXI-1042Q)

(a) A command prompt should indicate that the SysClient from the smartphone

has connected.

(b) Start the measurement by pressing Start Measurement/Simulation .

(c) The suite now executes all methods from the result identifier on the

smartphone.

(d) Wait until the sequence has finished with all methods (indicated in the mea-

surement command prompt).

(e) Get the result data from the suite by pressing Get Result .

(f) A new file should be added in the root directory of the META[:SEC:] Evaluator

with the name of the result identifier .

CHAPTER 5. CASE STUDY 82

Figure 5.3: META[:SEC:] Evaluator Input Panel for the main configuration

Figure 5.4: META[:SEC:] Evaluator Settings for a remote SOAP web-service

Figure 5.3 and 5.4 show the META[:SEC:] Evaluator software that is used to perform the

evaluation process. Figure 5.5 depicts the processing of the measurement suite.

5.3 Use Case Evaluation

The gathered and measured values for voltage (U) and current (I) are multiplied to get

the power consumption (P) (see equation 5.1). The mean power consumption (P) and the

execution time (t) are multiplied to get the energy consumption (E) (see equation 5.2).

P = U · I (5.1)

E = P · t (5.2)

CHAPTER 5. CASE STUDY 83

Start Measurement

Measure Method

Collect Measurement

Data Method

Create Result

from gathered Data

Get Result as

Matlab File

Process Result

Last Method

in Sequence?

Initiate Method

with SysClient

Initiate next Method

with SysClient
Stop Measurement

yesno

Figure 5.5: Measurement process of the evaluation suite

(a) Sensor application (b) Data application (c) Timing application

Figure 5.6: Evaluated use-case applications

CHAPTER 5. CASE STUDY 84

5.4 Example: Remote Sensor

The first use-case application is a peripheral sensor device attached to the Raspberry Pi

similar to a smartmeter system. The Android application is reading the value of the sensor

device and displays it to the user. Usually the initiator is moved towards the target and

reads the data in close proximity. In this case the data has to be acquired manually. So the

smartphone provides a user-interface to request the sensor data over the NFC connection.

Figure 5.6a shows the Android use-case application for the sensor values. The first test

only includes Sensor Data 0 as label for the gathered data. The sensor data is displayed

as temperature value and randomly generated on the target (Raspberry Pi). So the sensor

data that is collected over the NFC interface is a generated value and does not come from

a hardware sensor unit.

5.4.1 Proximity Range

The first test setup should prove that the measurement is working as expected and therefore

the distance between the external reader and the Proxmark3 antenna was increased. The

power consumption should increase accordingly to the distance. The Android use-case

application is requiring the sensor value with a custom request with 1 Byte length and the

response is encoded into a Java float (4 Bytes) with 2 Bytes CRC. To reduce measuring

inaccuracy the Android application is requiring 30 values in row from the target. The

distance between the Proxmark3 antenna and the reader is set to 0 cm, 1 cm and 2 cm.

Distance = 0 cm Distance = 1 cm Distance = 2 cm

Power Consumption (min) 0.527 W 0.522 W 0.531 W

Power Consumption (max) 1.099 W 1.123 W 1.147 W

Power Consumption (mean) 0.856 W 0.859 W 0.864 W

Execution Time 10.0 s 10.0 s 10.0 s

Energy Consumption 8.558 J 8.594 J 8.643 J

Table 5.1: Measurement: Proximity range

Figures 5.7a, 5.7b, and 5.7c show the power consumption during the request loop with

different distances. The gathered measurement data in table 5.1 shows that the reader is

consuming about 0.856 W on average with zero distance to the target. The average power

consumption is slightly increasing with the transfer distance between the NFC components.

So this very simple test proves that the increasing power consumption is measurable with

the evaluation framework.

5.4.2 Multiple Sensors

In the last testing sequence a single sensor value was transfered from the sensor device

(target) to the smartphone (initiator). Now there are multiple sensors connected which

CHAPTER 5. CASE STUDY 85

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

P
ow

er
 [W

]

Time [s]

(a) Distance = 0 cm

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

P
ow

er
 [W

]

Time [s]

(b) Distance = 1 cm

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

P
ow

er
 [W

]

Time [s]

(c) Distance = 2 cm

Figure 5.7: Single sensor requests

should be readout over the NFC connection. This measurement should show how clustering

of data reduces the power consumption. So therefore the first test is requesting every single

sensor separately in every iteration whereas the second test is concatenating the sensor

values so that just one request is used to transfer the desired sensor data. For this test

four temperature sensors are simulated on the Raspberry Pi. The smartphone updates the

sensor values 10 times so with the first test there are 10 ∗ 4 = 40 requests that are send and

with the second test only 10 because one request returns the data of all sensor devices.

Single Sensor Clustered Sensor

Power Consumption (min) 0.536 W 0.606 W

Power Consumption (max) 1.233 W 1.225 W

Power Consumption (mean) 0.917 W 0.898 W

Execution Time 12.5 s 2.1 s

Energy Consumption 11.468 J 1.885 J

Table 5.2: Measurement: Multiple sensors

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

P
ow

er
 [W

]

Time [s]

(a) Single sensor requests

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

P
ow

er
 [W

]

Time [s]

(b) Clustered sensor requests

Figure 5.8: Single and clustered requests

Figures 5.8a and 5.8b illustrate the power consumption during the requests. The measured

CHAPTER 5. CASE STUDY 86

values in table 5.2 show that the average power consumption for the reader is between 0.917

W and 0.898 W (nearly equal) but the execution time for the clustered sensor example is

significantly shorter which reduces the energy consumption about 1− 1.885J

11.468J
= 1− 0.164 =

83.6%. This is an evident example and the results are as expected. The user does not

notice the difference how the data is acquired and therefore such a clustering mechanic is a

common optimization technique.

CHAPTER 5. CASE STUDY 87

5.5 Example: Large Data Exchange

The second use-case application example is the transfer of a large data set and how

compression of such data reduces the power consumption during communication. The

target device generates random data with a predefined length. This raw data is transfered

in chunks to the smartphone that is reassembling the original data. In the second step

the data is compressed with the popular zlib library1. With compression fewer requests

for the data transfer are needed and thus the power consumption is decreased. A CRC32

checksum should validate the file and expose transmission errors that may occurred during

data transfer. The transfer of the data is double checked because every single response

appends a CRC16 (2 Byte) checksum. For this use-case experiment the data size is set to

600 Bytes and the transfered chunk-size is 20 Bytes.

Uncompressed Transfer Compressed Transfer

Power Consumption (min) 0.534 W 0.532 W

Power Consumption (max) 1.230 W 1.228 W

Power Consumption (mean) 0.913 W 0.902 W

Execution Time 14.6 s 3.7 s

Energy Consumption 13.336 J 3.337 J

Table 5.3: Measurement: Large data set

Figures 5.9a and 5.9b are showing the power consumption during the requests. Measurement

values can be seen in table 5.3 which are showing that the transfer of the compressed data

takes about 1− 3.7s

14.6s
= 1− 0.253 = 74.7% less time. Therefore the energy consumption is

also reduced by almost the same factor because the average consumption is nearly equal

again like in the last use-case test example.

0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

P
ow

er
 [W

]

Time [s]

(a) Raw data

0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

P
ow

er
 [W

]

Time [s]

(b) Compressed Data

Figure 5.9: Large data set transfer

1http://www.zlib.net/

http://www.zlib.net/

CHAPTER 5. CASE STUDY 88

5.6 Example: Request Timing

This use-case application example demonstrates how timeouts and timing in general can

reduce power consumption. It is a similar test like the previously discussed sensor example.

A single value (data) is requested from the target device (in this case a single Byte) and

displayed on the smartphone. An additional Byte for the timeout is also appended which

indicates the data (single Byte value) is expected to be changed. In the first test the

smartphone permanently requests the value from the Raspberry Pi and ignores the timeout

for the next request. The target is requesting the same value over and over again until

it changes after the timeout. The second test uses the timeout and waits with the next

request until the data has expired. The timeout for this example is randomly generated

between 0 and 1500ms and the the test is running for 15s.

No Timeout With Timeout

Power Consumption (min) 0.533 W 0.534 W

Power Consumption (max) 1.228 W 1.230 W

Power Consumption (mean) 0.921 W 0.873 W

Execution Time 15.0 s 15.0 s

Energy Consumption 13.815 J 13.099 J

Table 5.4: Measurement: Timed data requests

Figures 5.10a and 5.10b show the power consumption during the requests. The variance of

the average power consumption between the two test samples is not that high (average

power consumption: 0.921 W (no timing) versus 0.873 W (with timing) see table 5.4).

Nevertheless the timed requests are requiring less energy compared to the test that is

ignoring the timeout completely. A more advanced and better optimization example would

be turning off the magnetic field of the reader during the timeout which would drastically

lower the energy consumption for the second test sample.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

P
ow

er
 [W

]

Time [s]

(a) No timeout

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

P
ow

er
 [W

]

Time [s]

(b) With timeout

Figure 5.10: Timed data requests

Chapter 6

Conclusion

The following conclusion points out the advantages and disadvantages of the evaluation

framework. Furthermore, which concepts or designs are satisfying and have a high potential

to support developers in their productive implementation work. But also deficiency of the

systems will be identified and highlighted and the conclusion also includes a critical view

on such an evaluation framework. The contrast between positive and negative findings will

be argued in avoidance of implementation faults that might happen in the development

progress. The initial concept of an evaluation framework for NFC bridge systems was

designed and implemented in this thesis.

The interoperability of NFC opens the way to a variety of application areas and thus an

evaluation framework has a justified existence. The proposed and implemented evaluation

framework should demonstrate how such a system can be created and support researchers

and developers to create and build their own NFC applications on top of the fundamental

run-time environment. As addition to the basic development foundation based on NFC

bridges a measurement suite can help to evaluate and optimize applications that are

executed on this system. The underlying architecture of this evaluation platform fulfills

the requirements to evaluate a variety of novel NFC systems like the NFC bridge. The

proposed design does not cover all evaluation aspects but provides a new baseline for NFC

evaluation frameworks and can be adapted to cover special requirements for the developed

applications that are evaluated on the platform afterwards. An example would be the

extension with various measurement utilities for the fundamental run-time environment in

order to evaluate different measurable values (e.g. magnetic field strength).

The proof of concept was shown in the case study especially with the evaluation of the

use-case application examples. These examples were kept simple to demonstrate the

capability of the framework by going through the optimization process for certain use-cases.

More advanced power optimizations techniques (software and hardware) are described

in the related work. Finally it needs to be mentioned that the actual implementation is

working as expected and can be used to evaluate and optimize the power consumption of

NFC bridge systems.

89

Chapter 7

Future Work

In this chapter potential new features and ideas are discussed in order to improve the

evaluation framework of this thesis. This chapter also contains concepts that appeared

mostly during implementation phase and evaluation of results, but are beyond the scope of

the actual work of this project.

Tag Technology and Modes: The current implementation supports NfcA technology

(ISO 14443-3A). The Raspberry Pi with the attached gateway is able to emulate tag

types that are covered by this specification. Other tag technologies can be implemented

additionally and extend the evaluation framework for new use-case applications. The

introduction of NFC data exchange format (NDEF) messages is also an option that can be

developed, because it is the standard data encoding for information transfer between NFC

devices.

The smartphone as initiator is in reader-writer mode and the Raspberry Pi with the

Proxmark3 gateway as target is in card-emulation mode. The peer-to-peer mode is not

part of the current evaluation system and can be implemented in a further project. The

Android API already supports the peer-to-peer mode (internal NFC chip) which can be

utilized as foundation for the development of such an environment.

Reversed Communication: Another idea for the extension of the evaluation framework

is to reverse the NFC communication direction. The smartphone act as the target and

the Raspberry Pi as the initiator. This system can be applied where the initiator is a

stationary device that is connected to the power network. Thus the power optimization of

the smartphone is the primary task. Android 4.4 introduced the host-based card emulation1

that turns the mobile phone in a smartcard which communicates with a standard NFC

reader. Also the secure element can be accessed with this operation mode and used for

various new use-case scenarios.

1https://developer.android.com/guide/topics/connectivity/nfc/hce.html

90

https://developer.android.com/guide/topics/connectivity/nfc/hce.html

CHAPTER 7. FUTURE WORK 91

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

 <name>Configuration 1</name>
 <version>1.0</version>
 <result-file>result.mat</result>
 <sequence>test-1.txt</sequence>

 <components>
 <reader-interface>
 <ip>192.168.1.10</ip>
 <reader>de620</reader>
 ...
 </reader-interface>
 <proxmark-client>
 ...
 </proxmark-client>
 ...
 </components>
</configuration>

Development Machine

Measurement

Machine
Smartphone Raspberry Pi

Con�gurations

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

 <name>Configuration 1</name>
 <version>1.0</version>
 <result-file>result.mat</result>
 <sequence>test-1.txt</sequence>

 <components>
 <reader-interface>
 <ip>192.168.1.10</ip>
 <reader>de620</reader>
 ...
 </reader-interface>
 <proxmark-client>
 ...
 </proxmark-client>
 ...
 </components>
</configuration>

Con�guration File (XML)

Result Data

Con�guration

Distribution

Figure 7.1: Central configuration example

Central Configuration and Execution: A central configuration and execution ap-

proach would also improve the usability of the current evaluation system. The configuration

can for example include the measurement sequence, IP addresses, result identifier, use-case

application specific data, mode for the reader interface (simulator, DE620, ACR120U),

responder module, etc. which can be distributed to the devices that are executing the

software components and are initialized with the parameters from the configuration file.

The advantage of this system is a faster development process and a simple switching

between different measurement configurations (e.g. responder modules). Currently the

software components have to be configured and executed manually. Figure 7.1 shows a

concept of a central configuration and execution from a central development unit.

Remote Deployment and Measurement: Also the deployment of the software com-

ponents from the development machine to the devices that are part of the actual evaluation

framework may be realized in a future extension. So the targeted objective for this idea

is a central development environment which automatically generate the JAR files and

distribute it to the hardware devices with the central configuration. Furthermore, this

environment is able to start and stop the software components and is observing the whole

execution process with enhanced logging mechanics.

The design of this development environment can be realized as a remote measurement

system in which clients are able to connect and upload applications (plus configuration).

Furthermore, the system evaluates the power consumption by starting the measurement

process. The clients share the same evaluation framework and are not requiring a local

hardware environment.

CHAPTER 7. FUTURE WORK 92

Framework Simulation Extension: The simulator of the reader interface is very

similar to the custom responder class of the Proxmark3 client. The actual implementation

can be refactored in order to use the exact same classes for both software components. The

responder can then be developed straight-forward as a simulator for the reader interface

and afterwards simply copied to the Proxmark3 client.

Power Analysis Extension of Code Segments: An advanced extension to the current

system is a detection mechanism that is analyzing the executed code and automatically

estimate which code segments are potential candidates for optimization modifications. Thus

the measurement suite is able to measure the whole application without a measurement

sequence and only with use of the source-code that is running either on the smartphone or

the Raspberry Pi.

Appendix A

Acronyms

ADB android debug bridge

AFSS adaptive field strength scaling

APDU application protocol data unit

API application programming interface

APS automatic power stepping

ASK amplitude shift keying

AVD android virtual device

CPU central processing unit

CRC cyclic redundancy check

CU computational unit

DAM data acquisition module

DLL dynamic link library

DVFS dynamic voltage and frequency scaling

DVM dalvik virtual machine

FOSS free and open-source software

FPGA field programmable gate array

FSK frequency shift keying

FU functional unit

GCC GNU compiler collection

GPIO general purpose input/output

93

APPENDIX A. ACRONYMS 94

GPRS general packet radio service

GPU graphics processing unit

GUI graphical user interface

HAXM hardware accelerated execution manager

HF high frequency (3-30 MHz)

HIL hardware in the loop

IDE integrated development environment

IP internet protocol

JAR java archive

JDK Java development kit

JNA java native access

JRE java run-time environment

JSON JavaScript object notation

LAN local area network

LED light emitting diode

LF low frequency (30-300 kHz)

LLC logical link control layer

MAC media access control layer

NDEF NFC data exchange format

NFC near field communication

NIZE near field communication interface enabling zero energy

OOK on-off keying

OSI open systems interconnection

OS operating system

PAN personal area networks

PC/SC personal computer/smart card

PC personal computer

PDA personal digital assistant

PLC programmable logic controller

PPF power profile flattening

APPENDIX A. ACRONYMS 95

PSK phase shift keying

PTF power transfer function

RAM random access memory

RFID radio frequency identification

RF radio frequency

SDHC standard high capacity

SDK software development kit

SIL software in the loop

SLF4J simple logging facade for Java

SMS short message service

SOAP simple object access protocol

SOC state of charge

SSH secure shell

SUT system under test

TCP transmission control protocol

TDD test-driven development

UMTS universal mobile telecommunications system

USB universal serial bus

WLAN wireless local area network

XML extensible mark-up language

Appendix B

Development Setup

B.1 Eclipse and Android

Installation guide for the Android SDK and the Eclipse integration can be found in the An-

droid documentation 1. The software components for the evaluation framework can be sim-

ply imported to Eclipse (File → Import → Existing Projects into Workspace).

The reader interface requires a 32bit Java environment because of the DLL library from

the DE620 NFC reader.

B.2 Proxmark3 Firmware

The Proxmark3 firmware compilation and flashing process requires some addition devel-

opment tools. Windows/Linux users can install the system with help of the Proxmark3

online guide:

• Windows: https://code.google.com/p/proxmark3/wiki/Windows

• Linux: https://code.google.com/p/proxmark3/wiki/Linux

The next step is the adaption of the used port for the serial connection in the Makefile accord-

ingly to the system (Linux: FLASH_PORT=/dev/ttyACM0 , Windows: FLASH_PORT=COM5

port numbers vary). After the setup of the build tools the modified firmware can be

compiled in this environment and flashed to the connected Proxmark3.

Compiling of all Proxmark3 software components:

$ make all

Flashing of the firmware (os):

$ make flash-os

1http://developer.android.com/sdk/index.html

96

http://developer.android.com/sdk/index.html
https://code.google.com/p/proxmark3/wiki/Windows
https://code.google.com/p/proxmark3/wiki/Linux
http://developer.android.com/sdk/index.html

APPENDIX B. DEVELOPMENT SETUP 97

Flashing of the bootrom (only if required):

$ make flash-bootrom

Flashing of the FPGA (only if required):

$ make flash-fpga

B.3 Raspberry Pi

The Arch Linux installation on the Raspberry Pi can be achieved with the guide 2 from

Arch Linux ARM. Afterwards, the Proxmark3 driver has to be installed on the operating

system in order to work with the Proxmark3 client software.

With use of SSH (Terminal or Putty) the JAR file for the Proxmark3 client software can

be send to the Raspberry Pi:

$ scp client.jar user@host:client.jar

For the execution of the JAR file on the Raspberry Pi install the open Java development

kit (JDK) environment over SSH :

$ pacman -S jre7-openjdk

2http://archlinuxarm.org/platforms/armv6/raspberry-pi

http://archlinuxarm.org/platforms/armv6/raspberry-pi
http://archlinuxarm.org/platforms/armv6/raspberry-pi

Bibliography

[1] NFC Forum. “Essentials for Successful NFC Mobile Ecosystems”. In: (2008) (cit. on

p. 11).

[2] Josef Langer and Michael Roland. Anwendungen und Technik von Near Field Com-

munication (NFC). Springer Berlin Heidelberg, 2010. isbn: 978-3-642-05496-9. doi:

10.1007/978-3-642-05497-6 (cit. on pp. 16–18, 20).

[3] NFC Forum. “Type 1 Tag Operation Specification. Technical Specification”. In:

(2011). Ed. by NFC Forum, p. 47 (cit. on p. 19).

[4] NFC Forum. “Type 2 Tag Operation Specification. Technical Specification”. In:

(2011). Ed. by NFC Forum, p. 53 (cit. on p. 19).

[5] NFC Forum. “Type 3 Tag Operation Specification. Technical Specification”. In:

(2011). Ed. by NFC Forum, p. 33 (cit. on p. 19).

[6] Thomas Schmidt. “CRC Generating and Checking”. In: Microchip Technology Inc.

(2000) (cit. on p. 20).

[7] NFC Forum. “NFC Digital Protocol (DIGITAL 1.0). Technical Specification”. In:

(2010). Ed. by NFC Forum, p. 194 (cit. on p. 20).

[8] Esko Strömmer, Mika Hillukkala, and Arto Ylisaukko-oja. “Ultra-low Power Sensors

with Near Field Communication for Mobile Applications”. English. In: Wireless Sensor

and Actor Networks. Ed. by Luis Orozco-Barbosa, Teresa Olivares, Rafael Casado, and

Aurelio Bermúdez. Vol. 248. IFIP International Federation for Information Processing.

Springer US, 2007, pp. 131–142. isbn: 978-0-387-74898-6. doi: 10.1007/978-0-387-

74899-3_12 (cit. on p. 20).

[9] Charl A. Opperman and Gerhard P. Hancke. “Using NFC-enabled phones for remote

data acquisition and digital control”. In: AFRICON (2011), pp. 1–6. issn: 21530025.

doi: 10.1109/AFRCON.2011.6072147 (cit. on pp. 21, 22).

[10] Shun-Yu Chan, Shang-Wen Luan, Jen-Hao Teng, and Ming-Chang Tsai. “Design

and implementation of a RFID-based power meter and outage recording system”.

In: ICSET 2008 IEEE International Conference on Sustainable Energy Technologies

(2008), pp. 750–754. doi: 10.1109/ICSET.2008.4747106 (cit. on pp. 22, 23).

[11] Alan K. Meier. “A worldwide review of standby power use in homes”. In: Lawrence

Berkeley National Laboratory (2001), pp. 1–5 (cit. on p. 23).

98

http://dx.doi.org/10.1007/978-3-642-05497-6
http://dx.doi.org/10.1007/978-0-387-74899-3_12
http://dx.doi.org/10.1007/978-0-387-74899-3_12
http://dx.doi.org/10.1109/AFRCON.2011.6072147
http://dx.doi.org/10.1109/ICSET.2008.4747106

BIBLIOGRAPHY 99

[12] Norbert Druml, Manuel Menghin, Rejhan Basagic, Christian Steger, Reinhold Weiss,

Holger Bock, and Josef Haid. “NIZE - a Near Field Communication interface enabling

zero energy standby for everyday electronic devices”. In: IEEE 8th International

Conference on Wireless and Mobile Computing, Networking and Communications

(WiMob) (Oct. 2012), pp. 261–267. doi: 10.1109/WiMOB.2012.6379085 (cit. on

pp. 23, 24).

[13] Manuel Menghin, Norbert Druml, Christian Steger, Reinhold Weiss, Holger Bock,

and Josef Haid. “The PTF-Determinator: A Run-Time Method Used to Save Energy

in NFC-Systems”. In: 2012 Fourth International EURASIP Workshop on RFID

Technology 1 (2012), pp. 92–98. doi: 10.1109/RFID.2012.12 (cit. on p. 24).

[14] Xunteng Xu, Lin Gu, Jianping Wang, Guoliang Xing, and Shing-chi Cheung. “Read

More with Less : An Adaptive Approach to Energy-Efficient RFID Systems”. In:

IEEE Journal on Selected Areas in Communications 29.8 (2011), pp. 1684–1697. doi:

10.1109/JSAC.2011.110917 (cit. on p. 24).

[15] Norbert Druml, Manuel Menghin, Christian Steger, Reinhold Weiss, Andreas Genser,

Holger Bock, and Josef Haid. “Adaptive Field Strength Scaling: A Power Optimization

Technique for Contactless Reader / Smart Card Systems”. In: 15th Euromicro

Conference on Digital System Design (Sept. 2012), pp. 616–623. doi: 10.1109/DSD.

2012.20 (cit. on p. 25).

[16] Manuel Menghin and Norbert Druml. “Energy efficiency by using field strength

scaling for multi-transponder applications”. In: 12th International Conference on

Telecommunications (ConTEL) (2013), pp. 263–270 (cit. on pp. 25, 31).

[17] K Warnick, B Gottula, Sushant Shrestha, and James Smith. “Optimizing Power

Transfer Efficiency and Bandwidth for Near Field Communication Systems”. In:

IEEE Transactions on Antennas and Propagation 61.2 (2013), pp. 927–933. doi:

10.1109/TAP.2012.2220325 (cit. on p. 26).

[18] William A. Pearlman and Amir Said. Digital Signal Compression: Principles and

Practice. Digital Signal Compression: Principles and Practice. Cambridge University

Press, 2011. isbn: 9780521899826 (cit. on p. 26).

[19] Fangming Gu, WS Harrison, DM Tilbury, and Yuan Chengyin. “Hardware-in-the-

loop for manufacturing automation control: Current status and identified needs”. In:

CASE 2007 IEEE International Conference on Automation Science and Engineering

(Sept. 2007), pp. 1105–1110. doi: 10.1109/COASE.2007.4341787 (cit. on p. 28).

[20] M. Bacic. “On hardware-in-the-loop simulation”. In: CDC-ECC 2005 44th IEEE

Conference on Decision and Control (2005). doi: 10.1109/CDC.2005.1582653

(cit. on p. 28).

[21] A. Bouscayrol. “Different types of Hardware-In-the-Loop simulation for electric

drives”. In: IEEE International Symposium on Industrial Electronics (June 2008),

pp. 2146–2151. doi: 10.1109/ISIE.2008.4677304 (cit. on p. 29).

http://dx.doi.org/10.1109/WiMOB.2012.6379085
http://dx.doi.org/10.1109/RFID.2012.12
http://dx.doi.org/10.1109/JSAC.2011.110917
http://dx.doi.org/10.1109/DSD.2012.20
http://dx.doi.org/10.1109/DSD.2012.20
http://dx.doi.org/10.1109/TAP.2012.2220325
http://dx.doi.org/10.1109/COASE.2007.4341787
http://dx.doi.org/10.1109/CDC.2005.1582653
http://dx.doi.org/10.1109/ISIE.2008.4677304

BIBLIOGRAPHY 100

[22] Santiago Lentijo, S D’Arco, and Antonello Monti. “Comparing the dynamic per-

formances of power hardware-in-the-loop interfaces”. In: IEEE Transactions on

Industrial Electronics 57.4 (2010), pp. 1195–1207. doi: 10.1109/TIE.2009.2027246

(cit. on p. 29).

[23] Yuheng Li, Zechang Sun, and Jiayuan Wang. “Design for battery management

system hardware-in-loop test platform”. In: ICEMI 9th International Conference on

Electronic Measurement and Instruments (Aug. 2009), pages. doi: 10.1109/ICEMI.

2009.5274292 (cit. on p. 29).

[24] A Monti, S D’Arco, and A Deshmukh. “A new architecture for low cost power

hardware in the loop testing of power electronics equipments”. In: ISIE 2008 IEEE

International Symposium on Industrial Electronics 29208 (2008), pp. 2183–2188. doi:

10.1109/ISIE.2008.4677306 (cit. on p. 29).

[25] Uwe Ryssel, Joern Ploennigs, and Klaus Kabitzsch. “Generative design of hardware-

in-the-loop models”. In: APGES 2007 (2007), pp. 1–8 (cit. on p. 29).

[26] R Casas and O Casas. “Battery sensing for energy-aware system design”. In: Computer

38 (11 2005). doi: 10.1109/MC.2005.367 (cit. on p. 32).

[27] Rao Ravishankar, Sarma Vrudhula, and Daler N. Rakhmatov. “Battery Modeling for

Energy-Aware System Design”. In: Computer 36 (12 2008). doi: 10.1109/MC.2003.

1250886 (cit. on p. 32).

[28] Josef Langer, Christian Saminger, and Stefan Grünberger. “A comprehensive concept

and system for measurement and testing Near Field Communication devices”. In:

2009 Eurocon IEEE (2009), pp. 2052–2057. doi: 10.1109/EURCON.2009.5167930

(cit. on p. 33).

[29] Charl A. Opperman and Gerhard P. Hancke. “A Generic NFC-enabled Measurement

System for Remote Monitoring and Control of Client-side Equipment”. In: 3rd

International Workshop on Near Field Communication (NFC) (Feb. 2011), pp. 44–49.

doi: 10.1109/NFC.2011.11 (cit. on pp. 33, 34).

[30] John R. Ackerman. “Toward open source hardware”. In: U. Dayton L. Rev. (2008)

(cit. on p. 34).

[31] S. Davidson. “Open-source hardware”. In: IEEE Design and Test of Computers 21.5

(Sept. 2004), pp. 456–456. issn: 0740-7475. doi: 10.1109/MDT.2004.68 (cit. on

p. 34).

[32] Joshua M Pearce. “Materials science. Building research equipment with free, open-

source hardware.” In: Science Magazine 14 337.6100 (2012), pp. 1303–4. issn: 1095-

9203. doi: 10.1126/science.1228183 (cit. on p. 34).

[33] Statista. Anzahl der Smartphone-Nutzer in Deutschland nach genutztem Betrieb-

ssystem im September 2013 (in Millionen). 2014. url: http://de.statista.com/

statistik/daten/studie/176811/umfrage/verbreitung-mobiler-endgeraete-

nach-betriebssystem-in-deutschland/ (cit. on p. 35).

[34] Google Inc. LG E960 (Nexus 4) Technical Specification. 2014. url: http://www.

google.de/nexus/4/specs/ (visited on 05/22/2014) (cit. on p. 51).

http://dx.doi.org/10.1109/TIE.2009.2027246
http://dx.doi.org/10.1109/ICEMI.2009.5274292
http://dx.doi.org/10.1109/ICEMI.2009.5274292
http://dx.doi.org/10.1109/ISIE.2008.4677306
http://dx.doi.org/10.1109/MC.2005.367
http://dx.doi.org/10.1109/MC.2003.1250886
http://dx.doi.org/10.1109/MC.2003.1250886
http://dx.doi.org/10.1109/EURCON.2009.5167930
http://dx.doi.org/10.1109/NFC.2011.11
http://dx.doi.org/10.1109/MDT.2004.68
http://dx.doi.org/10.1126/science.1228183
http://de.statista.com/statistik/daten/studie/176811/umfrage/verbreitung-mobiler-endgeraete-nach-betriebssystem-in-deutschland/
http://de.statista.com/statistik/daten/studie/176811/umfrage/verbreitung-mobiler-endgeraete-nach-betriebssystem-in-deutschland/
http://de.statista.com/statistik/daten/studie/176811/umfrage/verbreitung-mobiler-endgeraete-nach-betriebssystem-in-deutschland/
http://www.google.de/nexus/4/specs/
http://www.google.de/nexus/4/specs/

BIBLIOGRAPHY 101

[35] GSMArena. LG E960 (Nexus 4) Technical Specification. 2014. url: http://www.

gsmarena.com/lg_nexus_4_e960-5048.php (visited on 05/22/2014) (cit. on p. 51).

[36] NXP Semiconductors. NXP’s NFC solution implemented in Galaxy Nexus from

Google. 2011. url: http://www.nxp.com/news/press-releases/2011/11/nxp-

nfc-solution-implemented-in-galaxy-nexus-from-google.html (visited on

05/22/2014) (cit. on p. 52).

[37] NXP Semiconductors. NXP NFC controller PN544 for mobile phones and portable

equipment. 2010. url: http://www.nxp.com/documents/leaflet/75016890.pdf

(visited on 05/22/2014) (cit. on p. 52).

[38] Google Inc. GT-I9023 (Nexus S) Technical Specification. 2010. url: http : / /

googleblog.blogspot.co.at/2010/12/introducing-nexus-s-with-gingerbread.

html (visited on 05/22/2014) (cit. on p. 52).

[39] GSMArena. GT-I9023 (Nexus S) Technical Specification. 2014. url: http://www.

gsmarena.com/samsung_google_nexus_s_i9023-3910.php (visited on 05/22/2014)

(cit. on p. 52).

[40] Intel Corporation. Intel R© Hardware Accelerated Execution Manager. 2014. url:

https://software.intel.com/en- us/android/articles/intel- hardware-

accelerated-execution-manager (visited on 05/22/2014) (cit. on p. 53).

[41] Google Inc. Host-based Card Emulation Technical Description. 2014. url: http:

//developer.android.com/guide/topics/connectivity/nfc/hce.html (visited

on 05/23/2014) (cit. on p. 53).

[42] Google Inc. Android 4.4 APIs - API Level: 19. 2014. url: https://developer.

android.com/about/versions/android-4.4.html (visited on 05/23/2014) (cit. on

p. 53).

[43] DUALi Inc. DUALi DE-620 USB Technical Specification. 2014. url: http://www.

duali.com/upload/bbs/DE-620%20HID.pdf (visited on 05/22/2014) (cit. on p. 54).

[44] Advanced Card Systems Ltd. ACR122U USB NFC Reader Technical Specification.

Version 3.02. 2014. url: http : / / downloads . acs . com . hk / drivers / cn / TSP -

ACR122U-3.02.pdf (visited on 05/22/2014) (cit. on p. 54).

[45] Judd Vinet and Aaron Griffin. Arch Linux, a lightweight and flexible Linux distribution.

2014. url: https://www.archlinux.org/ (visited on 05/23/2014) (cit. on p. 55).

[46] Bernhard Trummer. Raspberry Pi GPIO Pin Hacking. 2014. url: http://glt14-

programm.linuxtage.at/events/250.de.html (visited on 05/23/2014) (cit. on

p. 55).

[47] Alexander Langer. Raspberry Pi Model B (rev. 2) Technical Specification. 2012.

url: http : / / raspberrycenter . de / handbuch / technische - daten (visited on

05/22/2014) (cit. on p. 56).

[48] Raspberry PI Foundation. Raspberry Pi Model B (rev. 2) Technical Specification. 2014.

url: http://www.raspberrypi.org/documentation/hardware/raspberrypi/

(visited on 05/22/2014) (cit. on p. 56).

http://www.gsmarena.com/lg_nexus_4_e960-5048.php
http://www.gsmarena.com/lg_nexus_4_e960-5048.php
http://www.nxp.com/news/press-releases/2011/11/nxp-nfc-solution-implemented-in-galaxy-nexus-from-google.html
http://www.nxp.com/news/press-releases/2011/11/nxp-nfc-solution-implemented-in-galaxy-nexus-from-google.html
http://www.nxp.com/documents/leaflet/75016890.pdf
http://googleblog.blogspot.co.at/2010/12/introducing-nexus-s-with-gingerbread.html
http://googleblog.blogspot.co.at/2010/12/introducing-nexus-s-with-gingerbread.html
http://googleblog.blogspot.co.at/2010/12/introducing-nexus-s-with-gingerbread.html
http://www.gsmarena.com/samsung_google_nexus_s_i9023-3910.php
http://www.gsmarena.com/samsung_google_nexus_s_i9023-3910.php
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
http://developer.android.com/guide/topics/connectivity/nfc/hce.html
http://developer.android.com/guide/topics/connectivity/nfc/hce.html
https://developer.android.com/about/versions/android-4.4.html
https://developer.android.com/about/versions/android-4.4.html
http://www.duali.com/upload/bbs/DE-620%20HID.pdf
http://www.duali.com/upload/bbs/DE-620%20HID.pdf
http://downloads.acs.com.hk/drivers/cn/TSP-ACR122U-3.02.pdf
http://downloads.acs.com.hk/drivers/cn/TSP-ACR122U-3.02.pdf
https://www.archlinux.org/
http://glt14-programm.linuxtage.at/events/250.de.html
http://glt14-programm.linuxtage.at/events/250.de.html
http://raspberrycenter.de/handbuch/technische-daten
http://www.raspberrypi.org/documentation/hardware/raspberrypi/

BIBLIOGRAPHY 102

[49] Proxmark3 Community. Proxmark3 General Description. 2014. url: https://code.

google.com/p/proxmark3/wiki/HomePage?tm=6 (visited on 05/23/2014) (cit. on

p. 56).

[50] Proxmark3 Community. Official Proxmark SourceCode Repository. 2014. url: https:

//github.com/Proxmark/proxmark3 (visited on 05/23/2014) (cit. on p. 56).

[51] Atmel Corporation. AT91SAM7S256 Microcontroller Technical Specification. 2014.

url: http://www.atmel.com/devices/sam7s256.aspx (visited on 05/22/2014)

(cit. on p. 57).

[52] Proxmark3 Community. Proxmark3 Technical Description. 2013. url: https://code.

google.com/p/proxmark3/wiki/HardwareDescription (visited on 05/22/2014)

(cit. on p. 57).

[53] Xilinx Inc. Spartan-II FPGA Family Data Sheet. Version DS001-1 (v2.8). 2008. url:

http://www.xilinx.com/support/documentation/data_sheets/ds001.pdf

(visited on 05/22/2014) (cit. on p. 57).

[54] Sourcemaking. Design Patterns. 2014. url: http://sourcemaking.com/design_

patterns (visited on 05/28/2014) (cit. on p. 63).

[55] JNA Development Team. Java Native Access (JNA). 2014. url: https://github.

com/twall/jna#readme (visited on 05/28/2014) (cit. on p. 63).

[56] Eclipse Foundation. Eclipse IDE Website. 2014. url: http://www.eclipse.org/

(visited on 05/28/2014) (cit. on p. 63).

[57] Apache Software Foundation. Apache Ant Website. 2014. url: http://ant.apache.

org/ (visited on 05/28/2014) (cit. on p. 63).

[58] Apache Software Foundation. Apache Maven Website. 2014. url: http://maven.

apache.org/ (visited on 05/28/2014) (cit. on p. 63).

[59] Kevin Townsend. Adafruit NFC/RFID on Raspberry Pi. 2012. url: https://learn.

adafruit.com/adafruit- nfc- rfid- on- raspberry- pi/overview (visited on

06/17/2014) (cit. on p. 76).

[60] Andreas Genser, Christian Bachmann, Christian Steger, Weiss Rudolf, and Josef

Haid. “Estimation-based run-time power profile flattening for RF-powered smart card

systems”. In: IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)

December (2010), pp. 6–9. doi: 10.1109/APCCAS.2010.5775006.

[61] Doug Serfass and Kenji Yoshigoe. “Wireless Sensor Networks using android virtual

devices and Near Field Communication peer-to-peer emulation”. In: 2012 Proceedings

of IEEE Southeastcon. IEEE, 2012, pp. 1–6. isbn: 9781467313759. doi: 10.1109/

SECon.2012.6196980.

[62] Zhu Zhiyuan, Tan Jie, Hongsheng Zhao, Qiang Guan, and Na Li. “A dynamic

RFID performance test system”. In: IEEE International Conference on RFID-

Technology and Applications (RFID TA) June (2010), pp. 17–19. doi: 10.1109/RFID-

TA.2010.5529855.

https://code.google.com/p/proxmark3/wiki/HomePage?tm=6
https://code.google.com/p/proxmark3/wiki/HomePage?tm=6
https://github.com/Proxmark/proxmark3
https://github.com/Proxmark/proxmark3
http://www.atmel.com/devices/sam7s256.aspx
https://code.google.com/p/proxmark3/wiki/HardwareDescription
https://code.google.com/p/proxmark3/wiki/HardwareDescription
http://www.xilinx.com/support/documentation/data_sheets/ds001.pdf
http://sourcemaking.com/design_patterns
http://sourcemaking.com/design_patterns
https://github.com/twall/jna#readme
https://github.com/twall/jna#readme
http://www.eclipse.org/
http://ant.apache.org/
http://ant.apache.org/
http://maven.apache.org/
http://maven.apache.org/
https://learn.adafruit.com/adafruit-nfc-rfid-on-raspberry-pi/overview
https://learn.adafruit.com/adafruit-nfc-rfid-on-raspberry-pi/overview
http://dx.doi.org/10.1109/APCCAS.2010.5775006
http://dx.doi.org/10.1109/SECon.2012.6196980
http://dx.doi.org/10.1109/SECon.2012.6196980
http://dx.doi.org/10.1109/RFID-TA.2010.5529855
http://dx.doi.org/10.1109/RFID-TA.2010.5529855

BIBLIOGRAPHY 103

[63] Google Inc. Android Emulator Documentation. 2014. url: http://developer.

android.com/tools/help/emulator.html (visited on 05/22/2014).

http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/emulator.html

	Introduction
	Motivation
	Contribution and Goals
	Content Structure

	Related Work
	Radio Frequency Identification
	Near Field Communication
	Standards
	Operation modes
	Modulation
	Coding
	Data and Command Flow

	Ubiquitous Systems for NFC
	Monitoring System
	Wireless Sensor

	Power Optimization Techniques for NFC
	Power Drain Reduction with Stand-by Mechanisms
	Power Management
	Physical Parameter Analysis
	Use-Case Dependency

	Power Evaluation Strategies
	Automation
	Hardware in the Loop
	Run-time Measurement
	Battery Sensing

	Evaluation of Devices
	Device Selection Criteria

	Generic Architecture
	Open Platform

	Design
	Synopsis
	Basic Concept
	System Composition
	Strengths

	Requirements
	Architecture
	Fundamentals
	Outline

	Design
	Component Classification
	Run-time Environment
	Measurement Suite
	Generic Approach
	Communication Loop

	Implementation
	Overview
	Brief Description
	Schedule and Road-map
	Design Realization

	Hardware Components
	Initiator User-Interfaces
	Initiator NFC Modules
	Target Platforms
	Target Gateway
	Measurement Suite

	Hardware Composition
	Development Setup
	Evaluation Setup

	Development Environment
	Tools
	Testing and Debugging

	Software Components
	Reader Bridge
	Reader Interface
	Proxmark3 Firmware
	Proxmark3 Client
	Use-Case Applications

	Software Composition
	Software Implementation
	Reader Bridge
	Reader Interface
	Proxmark3 Firmware
	Proxmark3 Client
	Utilities

	Alternative Approaches
	Internal Reader
	Breakout Board
	Dual Gateway

	Case Study
	Measurement Setup
	Software Setup

	Measurement Process
	Use Case Evaluation
	Example: Remote Sensor
	Proximity Range
	Multiple Sensors

	Example: Large Data Exchange
	Example: Request Timing

	Conclusion
	Future Work
	Acronyms
	Development Setup
	Eclipse and Android
	Proxmark3 Firmware
	Raspberry Pi

	Bibliography

