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Abstract

Single image super resolution is a fundamental research topic and refers to the
process of up-sampling or upscaling of a single raster graphics image. The de-
veloped methods start from simple interpolation-based filtering, inverse problem
statement and example-based methods to systems utilizing sparse representation.
In this work we further develop the Super Resolution (SR) method utilizing sparse
representation by incorporating it in a bilevel program. Formulating the SR prob-
lem via sparse representation as bilevel programing problem has various advantages
over the initially defined joint sparse coding scheme by Yang et al.[YWHM10]. The
joint sparse coding scheme trains two dictionaries, a low-resolution and a high res-
olution dictionary in the concatenated feature space in a single instance leading to
a suboptimal sparse decomposition in the test case where only the low-resolution
feature space is given. In contrast our bilevel program learns the two dictionaries
such that they are optimal in both feature spaces individually. In the test case
sparse decomposition in the low resolution feature spaces is therefore optimal and
we can show significant improvements over the joint sparse coding scheme devel-
oped by Yang et al. Additionally our bilevel training scheme implicitly learns the
mapping function from low to high-resolution feature space without an explicit
definition or inversion of a forward model. This is advantageous since this map-
ping function is non-linear. We show that our bilevel program can compete with
state-of-the-art algorithms.

Keywords. Single Image Super Resolution, Sparse Coding, Sparse Representa-
tion, Sparse Decomposition, Bilevel Optimization, Bilevel Program
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Kurzfassung

Super Resolution gehört zur Grundlagenforschung im Bereich der Bildrekonstruk-
tion und beschreibt das Vergrößern von einzelnen Rastergrafiken/natürlichen
Bildern. Die herangezogenen Methoden reichen von einfacher interpolativer
Filterung über inverse Problemdefinition und beispielbasierten Ansätzen hin
zu Systemen, die Sparse Approximation einsetzen. In dieser Arbeit entwickeln
wir den Ansatz der Sparsen Approximation weiter, indem wir es in ein Bilevel
Optimierungs- progamm einbetten. Die wegweisende Arbeit von Yang et
al.[YWHM10] zeigt die Stärken der Methode der Sparsen Approximation
angewendet auf das Gebiet der Bildvergrößerung auf. Dabei beinhaltet
ihr Ansatz eine grundlegende Schwäche. Sie verwenden ein suboptimales
kombiniertes Training, wobei zwei Wörterbücher erstellt werden, eines für
den hochaufgelösten und eines für niedrigaufgelösten Bildraum. Durch ihr
kombiniertes Training sind die Wörterbücher aber nicht optimal in den einzelnen
Bildräumen was zum Nachteil beim Test der Vergrößerung führt, da hier nur
das niedrigaufgelöste Bild vorhanden ist. Unser zweischichtiges mathematisches
Optimierungsprogramm hingegen lernt die Wörterbücher so, dass sie in beiden
Bildräumen optimal sind. Der Testfall, in dem nur das niedrigaufgelöste Bild
vorhanden ist, ist damit mathematisch optimal und wir können signifikante
Verbesserungen zum ursprünglichen Ansatz von Yang et al. präsentieren.
Zusätzlich lernt unser zweischichtiges Optimierungsprogramm die Transformation
vom niedrigaufgelösten zum hochaufgelösten Bildraum ohne diese explizit zu
definieren. Der Vorteil dabei, diese Transformation ist schwer zu modellieren und
nicht linear. Abschließend zeigen wir, dass unsere Ergebnisse auf Augenhöhe mit
den modernsten Methoden ist.

Schlagwörter. Sparse Coding, Super Resolution, Bilevel Optimization
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1. Introduction
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1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Super Resolution . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1. Motivation

Many digital image applications demand High Resolution (hr) images or videos as

an input for signal processing and analysis or for human interpretation. Although

there exist several classes of resolution in the context of digital images such as

spatial, spectral or temporal resolution, here we focus on spatial resolution. A dig-

ital image is made up of small picture elements called pixels and spatial resolution

refers to the density of pixels per unit area. Higher pixel density mostly signifies

more image information, possibly higher frequencies and structural information.

Such hr images can be obtained by high quality video acquisition systems. These

systems are limited by their components, mainly the image sensor and the opti-

cal system but these components can be very expensive. Images from less costly

sources like the Internet, smart phones, surveillance, medical images, satellites or

old content (PAL/NTSC) often do not have the resolution needed for adequate

processing, analysis, zooming or displaying capacity. In this cases SR can play

an important role as it can improve the resolution of such content[YH11]. Ad-

ditionally SR is a fundamental research topic comparable with image deblurring,

inpainting, denoising or image restoration in general as these subjects can give

proof-of-concept for recent scientific developments.

1
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1.2. Super Resolution

Originally, SR refers to the process of upscaling (or up-sampling) a digital video.

The basic idea in SR is to combine the non-redundant information in the Low

Resolution (lr) frames and form a hr image. Figure 1.1 shows a simplified sketch

how a basic SR reconstruction algorithm works. In 1984 Tsai and Huang [HT84]

presented the first super resolution reconstruction of an image sequence by aligning

the degraded lr image frames and merging them in the frequency domain to form

the hr image sequence. The term “Super Resolution” was first mentioned by Irani

et al. in 1991 in their work “Improving resolution by image registration”[IP91].

Historically, super resolution was mainly applied on multi-frame images (videos)

and hence referred to, as classical super resolution. Later research moved on to

the more challenging up-sampling of single images. In the literature, single image

super resolution is also referred to as image interpolation or image hallucination.

Task-driven SR algorithms were developed for specific problems in areas such as

surveillance, where inspection and recognition of face images or license plates is

required. These problems can be better constrained and special image priors can

be exploited. In general, SR is a computational complex and numerically ill-posed

problem. This is even more true for single image SR since there is no additional

information except the image itself. In this work we focus on single image super

resolution for natural images.

A main concern in single image SR is to find an image prior to constrain the

problem. Systems like [FREM04],[AD05] and [UPWB10] try to exploit natural

image priors based on intuitive understanding of natural images as they consist

mainly of flat regions separated by sharp edges[BM87]. Others focus on statistical

analysis and distribution of edges to regularize the problem[Fat07][SSXS08].

Systems incorporating example-based image priors like [FJP02],[CYX04]

and [BRGA12] also have shown great success. Since example-based systems

require large training sets in storage, single image SR systems utilizing sparse

representations [YWHM10] [ZEP12][TDG13] have become attractive as they

reduce the stored data significantly. Very recently, SR systems modeling

the entire SR-pipeline by neuronal networks have shown yet more superior

results[KH12][DLHT14].
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Figure 1.1.: The basic idea in SR reconstruction is to combine the non-
redundant information in the lr frames by employing the sub-
pixel shift between single video frames (image adopted from
[YH11]).

1.3. Contribution

Single image Super Resolution is an active field of research and lately SR al-

gorithms based on sparse coding have become state-of-the-art methods[YH11].

Sparse Representation or Sparse Coding (SC) was originally developed for Com-

pressed Sensing/Compressive Sampling[FR11]. The main idea in Compressive

Sampling is to perform compression directly while capturing data. It is a paradigm

that tries to surpass Shannon’s sampling theorem and create a new type of sam-

pling theory[CW08]. With the aid of a leaned dictionary, SC can successfully

recover a signal of length n with k � n nonzero coefficients. In SC one learns an

over-complete set of bases on the input signal such that the signal can be sparsely

represented by these bases of the dictionary. This leads to a dimensionality re-

duction for the benefit of any signal transmission or compression algorithm. Such

dictionaries can be used to tackle the Super Resolution problem, recent exam-

ples are [YWHM10][YWL+12b][HQZ13][ZEP12] or [TDG13]. The seminal work

of Yang et al.[YWHM10] jointly learns two dictionaries, one for high-resolution

patches and one for low-resolution patches in a concatenated feature space. In the

test case, Yang et al. find the sparse representation on the lr image facilitating

the lr dictionary and use the same representation to reconstruct the hr image

utilizing the hr dictionary. As they mention in their work, through the joint lean-

ing process, the dictionaries are only optimal in the concatenated feature space

but not in each individual space. However, in the test case of an upscaling process,

only the lr input is given and one can only find the sparse representation in the
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lr feature space. Thus this learning scheme is suboptimal.

In comparison we propose a bilevel program for the dictionary learning following

the works of Yang et al.[YWL+12b][YWL+12a]. Bilevel programming was origi-

nally developed in game theory and NP-hard problems like the traveler-salesman

can be efficiently solved with such programming techniques[MSS04][Bar98]. A

bilevel program is a hierarchical optimization problem that contains an optimiza-

tion problem in the constraint of another optimization problem[BM73]. It consists

of a upper-level objective function and a lower-level objective, both can have con-

straints added[VC94]. In our case we have two closely related dictionary learning

problems but one goal, namely to reconstruct high-quality hr images. In this

work we develop a bilevel program for learning a low- and a high-resolution dictio-

nary coupled by a common sparse vector. This bilevel optimization formulation is

designed to be optimal in both feature spaces individually which leads to better

results in the reconstruction.

1.4. Outline

This work is organized as follows. First we give an overview of SR techniques and

describe the leading works in this field. Furthermore, we give an introduction to

optimization techniques used by our SR systems in chapter 2. Next we present two

similar sparse coding approaches incorporated to a bilevel optimization formulation

and we derive an algorithm for each. The first approach equips the lower-level

objective by a smoothed l1,ε-regularization delineated in chapter 3, while the second

approach follows the active set method detailed by Yang et al.[YWL+12b] later

in the same chapter. In chapter 4 we compare the two algorithms with each

other and with state-of-the-art methods. We present the main features of our

implementation regarding the color treatment, the datasets we use and the image

quality assessment. We conclude in chapter 5 and highlight further work.
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2.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Super Resolution Interpolation . . . . . . . . . . . . . . 5

2.3. Super Resolution as an Inverse Problem . . . . . . . . 8

2.4. Super Resolution via Learning Based Regularization . 10

2.5. Super Resolution via Sparse Representation . . . . . . 13

2.6. Approximation of the l1-norm . . . . . . . . . . . . . . . 20

2.7. The Fast Iterative Shrinkage/Thresholding Algorithm 21

2.8. The Inertial Proximal Algorithm For Strongly Con-

vex Optimization . . . . . . . . . . . . . . . . . . . . . . . 23

2.9. Bilevel Optimization for Coupled Feature Spaces . . . 25

2.10. Linear Algebra and Matrix Differentiation . . . . . . . 26

2.11. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1. Notation

First we want to clarify some basic notations. Capital letters are used for matrices

and matrix functions like F (X), X,A, . . . while lower-case letters are preserved for

vector functions f(X), f(x), . . ., bold lower-case letters are used for vectors x, cT

and non-formated letters signify scalars λ, . . ..

2.2. Super Resolution Interpolation

In Super Resolution (SR) we operate on raster graphic images, sometimes re-

ferred to as bitmap or pixmap images. They consist of a rectangular grid of dis-

5
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crete pixel values with an associated bit depth, normally in the 8-bit range[Fol96].

In image interpolation, a pixel value is interpreted as a discrete data point of a

continuous interpolation function. Basic image interpolation algorithms such as

nearest-neighbor, bilinear or bicubic interpolation approximate the missing pixel

information from their most proximate neighbors in the 2D pixel grid. Figure 2.1

shows three basic interpolation kernels and figure 2.2 shows the result of these

basic interpolation algorithms applied on the “lena” image.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Interpolation Kernels in 1D
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c
o

e
ff

s

 

 

nearest neighbor

bilinear
bicubic

Figure 2.1.: Basic interpolation kernels in 1D. Blue is the nearest-neighbor,
green the bilinear and red shows the bicubic interpolation ker-
nel.

These basic image interpolation kernels are data-invariant linear filters with

low complexity. They are unable to adapt to varying pixel structures and there-

fore suffer from blurring edges, textured regions or details in general. More ad-

vanced image interpolation algorithm such as the New Edge Directed Interpolation

(NEDI)[LO00], Soft-decision Adaptive Interpolation (SAI)[ZW08] or the interpo-

lation via Regularized Local Linear Regression (RLLR)[LZX+11] can partially

overcome these limitations. The basic idea in NEDI for example is to use the

local covariance coefficients computed on a Low Resolution (lr) patch to adapt

the interpolation coefficients forming a High Resolution (hr) image pixel. This

approach is capable of tuning the interpolation coefficients to match an arbitrary

directed step edge. SAI in contrast estimates a group of pixels rather than a

single pixel. This approach adapts to varying scene structures using a 2D piece-

wise auto-regression model where the model parameters are estimated at a moving
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(a) original (b) nearest

(c) bilinear (d) bicubic

Figure 2.2.: Result of basic image interpolation algorithms upsampled by a
magnification factor of 3. First image shows the original input
file of size 254 x 254 pixels. The following images from left to
right show interpolation results of nearest-neighbor (29.1dB),
bilinear (30.1dB) and bicubic(31.4dB) interpolation respec-
tively.

window in the lr input image. Additionally, the learned model is enforced by a

soft-decision process applied on a block of pixels in the lr observation and on

the hr estimate. Their approach preserves spatial coherence in the estimate and

reduces common visual artifacts such as blurring and ringing. The ideas of SAI

have been incorporated in other algorithms like the robust version RSAI[ZFW13].

The work of Dong et al.[DZLS13] incorporates the ideas of sparse coding in
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image interpolation. They uses a Principal Component Analysis (PCA) dictio-

nary in addition to the known redundancies in natural images to estimate a high

resolution image. Dong et al. incorporate a auto-regression model like SAI but

extend it to non-local patches within the image. The sparse coding model and

the non-local auto regression model are then combined in a complex optimiza-

tion framework consisting of PCA dictionary learning, solving the auto regres-

sion model within a regularized least-squares formulation, sparse decomposition

done with FISTA[BT09] followed by a conjugate gradient minimization. Their

algorithm achieves good results but has a rather slow runtime due to the high

computational complexity.

Image interpolation and super resolution are closely related. One could say that

image interpolation is a subtask of super resolution by omitting image degrada-

tions such as blur and noise but separating these two fields of research becomes

increasingly difficult. While in image interpolation the focus is set on the up-

sampling process itself, super resolution aims to address all undesired effects of

image degradation including resolution degradation, blur and noise. A SR algo-

rithm typically models three parts, the up-sampling or interpolation, a deblurring

and a denoising step. Image interpolation is still a highly active field of research

and nowadays incorporates many machine learning techniques[SH12].

2.3. Super Resolution as an Inverse Problem

Super Resolution attempts to reconstruct a hr image from a lr observation. This

type of a formulation is called an inverse problem. To solve an inverse problem in

general, one requires the formulation of a forward model (or observation model).

In the case of SR, the most common linear forward model is given by

y = Ax+ n. (2.1)

where y is the lr observation, A the system matrix, x the hr estimate and n the

remaining noise. The system matrix A is the product of a sub-sampling matrix or

down-sampling operator S, a blurring or anti-aliasing operator B and an optional

alignment operatorW for classical multi-image SR, hence A = SBW . The forward

model 2.1 for SR is an underdetermined system and difficult to invert. Having
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defined a forward model one can formulate a cost function which ensures that the

final solution is “close” to the measured observation. The cost function for (2.1)

is given as

x∗ = arg min
x

J(x) = arg min
x

1

2
‖y − Ax‖2

2, (2.2)

where the noise n is modeled as additive zero-mean white Gaussian noise, and

therefore the cost function is equipped with the quadratic norm. This cost function

is called the reconstruction constraint and can be interpreted as the Maximum

Likelihood (ML) estimator p(x|y)[EF97] given the observation p(y). An algorithm

minimizing (2.2) must necessarily invert the linear forward model (2.1). This can

be done by utilizing the pseudo inverse of the system matrix, hence (ATA)−1.

Since A is underdetermined, ATA can be ill-conditioned and inverting it can be

numerically unstable and amplify the noise in the singular vectors of ATA. Since

a robust SR algorithm is desired, adding a regularization to the cost function is a

common way to stabilize the SR reconstruction,

J(x) =
1

2
‖y − Ax‖2

2 + λΦ(x). (2.3)

The regularization in (2.3) poses a constraint on the space of solutions of x.

From a Bayesian viewpoint this can be seen as an image prior p(x) and there-

fore minimizing (2.3) can be interpreted as the Maximum A-posteriori Pobability

(MAP) estimator. In literature common regularizations are Tikhonov regularizer

Φ(x) = ‖Tx‖2
2 , Total Variation (TV) regularizations Φ(x) = ‖∇x‖1 and many

more. This optimization problem can be solved by various algorithms includ-

ing gradient decent methods like Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA)[BT09] or interior-point methods like the primal-dual algorithm of Cham-

bolle and Pock[CP11]. For a regularization equipped with the quadratic norm such

as Tikhonov regularization, the problem can be solved explicitly and reduces to

a ridged regression. SR application solving (2.3) are for example Farsiu et al.

[FREM04], Mitzel et al. [MPSC09], Unger et al. [UPWB10] and Innerhofer et

al.[IP13]
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2.4. Super Resolution via Learning Based

Regularization

Modeling SR as an inverse problem with a generic global regularization results in

a fast and robust algorithm. The drawback of this rather basic approach is that

it cannot infer novel image details lost in a down-sampling process. Especially for

single image SR, the regularization becomes crucial and a local example based non-

parametric image prior can outperform a generic global regularization, particularly

for higher up-sampling factors. In leaning based SR one tries to find a non-

parametric local image prior which can infer novel image details.

Backer and Kanade stated in there seminal work “Limits on super-resolution and

how to break them”[BK02], that with increasing magnification factors the recon-

struction constraint combined with a smoothness prior becomes less meaningful.

The hr images of such a system result in very little high-frequency content. By

using a “recognition prior” exploited by learning face images and by incorporating

additional similar face images to the reconstruction constraint, Backer et al. could

outperform former SR systems. They called their SR algorithm a hallucination

algorithm.

The goal of learning based SR is to estimate hr details that are not present in

the lr observation and can not become visible by simple sharpening. An early

work in example-based SR is the system of Freeman et al.[FJP02] where they use

example patches directly in the upscaling process. They generate a huge training

set of low and high-resolution patch-pairs for every possible lr image patch. Each

patch pair is connected via the observation model (2.1): yi = Axi + n.

In inference, just taking the nearest lr patch from the training set and using

the corresponding hr patch to form the hr estimate would lead to poor results

with many disturbing artifacts. They add a probabilistic model to account for

spatial coherence between overlapping hr patches. The probabilistic model pro-

posed by Freeman et al. is a Markov Random Field (MRF). Figure 2.3 shows this

MRF model where the yi-nodes are lr observed input patches, the hr estimated

patches xi are “hidden” nodes and lines indicate statistical dependencies between

nodes. The optimal hr patch at each xi-node is the collection which maximizes

the Markov’s network probability. The exact solution to the MRF can be compu-

tationally intractable for which reason an approximate, iterative algorithm called
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Belief Propagation (BP) [YFW00] was employed. BP is a message passing algo-

rithm specialized on graphical models such as MRF or Bayesian Networks[Pea88].

Figure 2.3.: MRF model used by Freeman et al.[FJP02]. The lr patches,
located at nodes yi are the observed inputs. The hr patches
donated as “hidden” nodes xi are the estimates. The lines
indicate statistical dependencies between the nodes.

Another effective approach in example based SR is the method of Chang et

al.[CYX04], called Neighborhood Embedding (NE) through Locally Linear Em-

bedding (LLE). NE with LLE was originally developed in Manifold learning and

uses local patches to reconstruct the input. Suppose we have a high-dimensional

data space provided with sufficient data points, the local geometry of a new patch

can be identified by the reconstruction weights of local or similar patches from the

dataset. The reconstruction weight is a measurement matrix with which a data

point is reconstructed from its Nearest Neighbors (NN) minimizing the reconstruc-

tion error. Equation (2.4) gives the formula to calculate the reconstruction weight

wp for a lr patch yp utilizing the K-NNs concatenated in the matrix Yk, donated

as

w∗
p = arg min

wp

‖yp − Ykwp‖2
2. (2.4)

This is a least squares problem on a linear system of equations and has a closed-

form solution which leads to an efficient algorithm. The LLE used by [CYX04]

roughly consists of two steps. First find K nearest neighbors in the lr feature

space and calculate the reconstruction weights minimizing the reconstruction error,

following equ. (2.4). Use the same reconstruction weights and the appropriate

high-resolution K-NNs to compute the hr patches here referred as embeddings.
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In [CYX04] these hr embeddings are then used to form the hr image and are

averaged in overlapping regions.

A recent enhancements of a NE approach is the work of Bevilacqua et al.

[BRGA12]. Their system is based on [CYX04] but in contrast they use Non-

Negative Least Square (NNLS) rather than LLE. NNLS is similar to LLE but

adds a non-negative inequality constraint to the least-square fitting of the recon-

struction weights. Figure 2.4 gives an example result of these NE algorithms. It

is interesting to see that in this example and for most of our test images, LLE

outperforms the NNLS approach, but this could be due to the lack of parameter

tuning since we used only the default settings.

(a) original (b) bicubic (28.1dB)

(c) NE+LLE (29.5dB) (d) NE+NNLS (29.6dB)

Figure 2.4.: Result of NE algorithms upsampled by a magnification factor
of 3. First image shows the original input file of size 762 x 504
pixels. The following images from left to right show SR results
of bicubic interpolation (28.1dB), NE with LLE (29.5dB) and
NE with NNLS(29.6dB) approach, respectively.
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2.5. Super Resolution via Sparse Representation

Sparse Representation or Sparse Coding (SC) is a method first developed in the

field of Compressed Sensing[FR11]. The idea is to learn a set of over-complete

bases called dictionary and use a linear combination of few of these bases to esti-

mate a signal. Representing data in an over-complete dictionary is called sparse

representation or SC and the bases or entries in the dictionary are called atoms.

An over-complete dictionary is a redundant representation of data, meaning that

we have more atoms than dimensions in the signal space and a signal can be rep-

resented by more than one combination of atoms. This promises to represent a

wider range of signal phenomena than just using a complete set of bases[RBE10].

Sparse Coding has been successfully applied to various image reconstruction

task including image denoising[EA06], inverse half-toning [MBP12], image de-

blurring[CDMBP11], restoration of missing pixels[AEB06] or artistic image trans-

forms/conversions[WZLP12a].

The seminal work of Yang et al.[YWHM10] first applied SC to SR. They jointly

learn a low- and high-resolution dictionary Dl, Dh from a large training set of

patches. The patch pairs are connected via the observation model (2.1) and fea-

tures are eventually taken from the lr patches. In the reconstruction one seeks a

linear combination of lr atoms representing a lr patch or feature such that the

number of dictionary atoms in use is small, avoiding overfitting. Thus, a sparsity

inducing norm has to be included as a regularization. The sparse vector found by

this scheme on the lr observation is then used to from the hr patch utilizing the

hr dictionary. A convex relaxation to the sparse decomposition problem in the

unconstrained formulation is given as

α∗ = arg min
α

1

2
‖y −Dlα‖2

2︸ ︷︷ ︸
data fitting term

+ λ‖α‖1︸ ︷︷ ︸
sparsity inducing term

(2.5)

where y is the lr observation, Dl the lr dictionary, α the sparse vector and λ a

parameter controlling the sparsity penalty. At this point we note that Dl has a di-

mension of m × n where m � n making the linear system under-determined.

Therefore we have more atoms n than dimensions in the signal space m and

the dictionary is said to be over-complete. The same is true for the hr dic-

tionary. The hr patch x is than recovered using the hr dictionary Dh and



2.5. Super Resolution via Sparse Representation 14

the sparse vector α found by the decomposition s.t. x = Dhα. In literature

equation (2.5) is known as the Least Absolute Shrinkage and Selection Operator

(LASSO) problem and can be solved with various algorithms including Least-

angle Regression (LARS)[EHJT04], FISTA[BT09], primal-dual [CP11] and many

more[YGZ+10][BJMO12]. The process of estimating a sparse vector satisfying a

linear system of equations is referred to as sparse approximation, sparse decom-

position or dictionary inference. Equ. (2.5) consists of a sparsity inducing term

to assure that the vector α is sparse (most entries equal zero) and therefore the

under-determined linear system of equation represented by the data fidelity term

is solved by using only a few atoms of the dictionary fitting the input vector y.

The sparsity inducing term can vary depending on the problem statement. Com-

mon regularizations are the l1-norm or the l0-pseudo-norm but also the elastic-net

regularization, mixed l1/lp-norms and group LASSO can be employed[BJMO12].

SR via sparse representation like [YWHM10] can be seen as a further develop-

ment of the example based regularization. Example based SR systems like [FJP02]

use image patches directly as priors and therefore require the large sets of patch

pairs in storage. In SC the learned dictionaries form an over-complete set of bases

and reduce the training result stored significantly. Moreover, due to the redun-

dancy the dictionary is still flexible enough to account for most signal phenomena.

Sparse representation can also be seen as a inference-by-synthesis model which

does not need to solve an ill-conditioned inverse model but rather synthesizes a

signal through a well-conditioned model. Figure 2.5 shows a dictionary learned on

high resolution patches with 1024 atoms each with a size of 6× 6 pixels.

The difficult task in SC is the dictionary learning. The problem statement is

NP-hard and no generic solver can be used. The dictionary learning problem in

the unconstrained formulation in a single feature space is given as

min
D,α

1

2
‖x−Dα‖2

2 + λ‖α‖p, (2.6)

where p can ether be the l0 pseudo-norm, the l1-norm and various combinations of

group l1/lp-norms. This optimization problem is non-convex and non-linear since

it has to minimize both the dictionary D and sparse vector α simultaneously. The

standard solution is to split the subject into two separate convex sub-problems

and alternatively optimize both. First, one initializes the dictionary with random
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(a) hr dictionary

(b) lr dictionary

Figure 2.5.: Learned high- and low resolution dictionary, each with 1024
atoms of size of 6×6 pixels. We only show the first 272 atoms
to give better details. The dictionaries where trained with
our l1,ε-regularized bilevel program. The lr features consists
of first- and second order central differences in horizontal and
vertical direction.
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sampled patches and solves the sparse decomposition problem optimizing (2.5)

to find the optimal α. Subsequently one optimizes D while keeping α fixed.

The optimization in regard to the dictionary D while the sparse representation

vector α is fixed, is known as a Quadratically Constrained Quadratic Programming

(QCQP)[YWL+12a]. Since the dictionary learning problem is non-convex and

non-linear, one can only find a local minimum of α and D[LBRN06]. Note that

we have given the unconstrained dictionary learning problem. Usually a constraint

on the dictionary atoms is added to prevent trivial solutions, hence ‖D(:, k)‖2 ≤ 1,

for k = 1, 2, . . . , K. A trivial solution satisfying the dictionary learning problem

2.6 is for example the dictionary being the identity matrix D = I while the sparse

vector is the input α = x.

2.5.1. Sparse Coding for Coupled Feature Spaces

In the case of SR we actually have two feature spaces, one high- and one low-

resolution signal space, meaning X and Y respectively. The seminal work of Yang

et al.[YWHM10] proposes to learn two dictionaries Dl, Dh for each feature space.

These two spaces are tied by a mapping function F . The simplest case is shown

in the observation model (2.1). Their goal is to collaboratively learn coupled

dictionaries (Dl, Dh) such that the sparse representation of the lr dictionary can

be used to reconstruct the paired signal in the hr space. Yang et al. proposed

a method which essentially concatenates the two feature spaces and transforms

the dictionary learning problem in two separate feature spaces to a standard SC

problem (2.6) in a single feature space. The following formula ensures that the

common sparse representation αi reconstructs both the lr feature yi and the hr

patch xi,

min
Dh,Dl,{αi}Ni=1

N∑
i=1

1

2

(
‖yi −Dlαi‖2

2 + ‖xi −Dhαi‖2
2

)
+ λ‖αi‖1. (2.7)

Grouping the two reconstruction errors of (2.7) leads to the standard SC scheme

of (2.6) in the concatenated feature space of X and Y , donating

x̄i =

 xi
yi

 , D̄ =

 Dh

Dl

 , (2.8)
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min
D̄,{αi}Ni=1

N∑
i=1

1

2
‖x̄i − D̄αi‖2

2 + λ‖αi‖1. (2.9)

This joint sparse coding scheme can only be optimal in the concatenated feature

space of X and Y but not in each space individually. In the decomposition stage

only the observation signal yi is given and we want to recover the corresponding

hr patch xi. Therefore there is no possibility to ensure that the found sparse

representation vector αi is optimal in the hr space, X . Due to this shortcoming

we developed a bilevel formulation which we explain in detail in the next chapter.

Another state-of-the-art SR algorithm based on sparse coding is the work of

Zeyde et al.[ZEP12]. They follow the work of Yang et al.[YWHM10] but make

some important modifications. At the preprocessing stage, a dimensionality re-

duction is performed on the lr features from the lr image making the dictionary

training faster. More importantly, they avoid the suboptimal joint SC scheme

used in [YWHM10] by training primarily the lr dictionary with the aid of the

K-SVD1 dictionary training developed in [AEB06]. A side product of training the

lr dictionary is the sparse representation vector inferred from the lr dictionary.

With this SC vector at hand for each training sample, they learn the hr dictionary

following equation (2.10). Note that in this training process, the sparse vector is

optimal in the lr feature space and the hr dictionary guarantees that the same

vector is optimal in the hr signal space. Thus, this training process overcomes the

suboptimal training scheme developed in [YWHM10].

Dh = arg min
Dh

∑
N

‖xi −Dhαi‖2
2. (2.10)

In addition they develop a more complex global training scheme for the hr

dictionary using a global image based patch extraction operator. This operator,

simply a special matrix, extracts all patches of an image and takes the overlap

of the high-resolution patches into account. Using such an operator enforces

spatial coherence within the training. In the reconstruction an image is split into

patches and features are taken. The dimensionality reduction is performed and

the Orthogonal Matching Pursuit (OMP) algorithm[RZE08] is applied on the

reduced set of lr features utilizing the lr dictionary. The resulting sparse vectors

are used to reconstruct hr patches with the aid of the high-resolution dictionary.

1Singular Value Decomposition (SVD) algorithm generalizing K-means clustering
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The actual hr image is formed by solving a Least-Squares (LS) problem on the

difference between the approximated patches and the actual image incorporating

the extraction operator. This LS problem has a closed form solution and can

therefore be solved efficiently.

An interesting combination of a Sparse Coding and a Neighborhood

Embedding approach is the work of Timofte et al.[TDG13] and its further

developed version [TDSVG14]. Their system learns two dictionaries, a hr and

a lr dictionary, and regressors anchored to the dictionary atoms. They borrow

the dictionary learning method from Zeyde et al.[ZEP12] but use a totally

different decomposition approach, rather similar to NE. While normally sparse

decomposition follows equ. (2.5) where the l1-norm is used as regularization,

they instead employ the l2-norm on the sparse coefficient vector resulting in a

Ridge Regression (RR)[TA77] which has a closed-form solution. In the global

case, meaning all dictionary atoms are used as neighbors to the input feature,

this leads to a projection matrix that can be precomputed and is given by

x = Dh(D
T
l Dl + λI)−1DT

l yF ,

PG = Dh(D
T
l Dl + λI)−1DT

l , (2.11)

where x is the hr patch, yF the lr input feature, Dl and Dh the low- and high-

resolution dictionary, respectively and PG is the global projection matrix. As

this formulation is very general, they propose to group the dictionary atoms into

neighborhoods based on the correlation between atoms rather then the Euclidean

distance. Once the neighborhood of the atoms is defined, they detachedly pre-

compute the projection matrix Pj for each atom dj of the dictionaries utilizing

their neighbors. This can all be calculated offline and in advance. The actual SR

problem can then be solved by finding the nearest dictionary atom dj to the input

feature yiF in the lr dictionary and use the associated projection matrix Pj to

map the input feature to the hr space. One can imagine that this method can

be computed efficiently and has a fast runtime since only an NN search has to be

solved and no optimization is needed.

In figure 2.6 we show SR estimates of different sparse coding SR methods. We

compare the results of Yang et al.[YWHM10], Zeyde et al.[ZEP12] and Timofte
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et al.[TDG13]. By inspecting the image details of each method, one can see slight

differences in the quality. As the image of Yang et al. shows, this method can not

super resolve textures and image details as well as the others and their results are

very smooth. The superior methods of Zeyde et al. and Timofte et al. produce

more realistic hr images but do not much differ from each other in terms of Image

quality assessment (IQA).

(a) original (b) Yang et al. 25.1dB

(c) Zeyde et al. 25.4dB (d) Timofte et al. 25.4dB

(e) original cu (f) Yang cut (g) Zeyde cut (h) Timofte cut

Figure 2.6.: Result of SC SR algorithms upsampled by a magnification
factor of 3. First image shows the original input file “barbara”.
The following images from left to right and top to bottom
show SR results of [YWHM10](25.1dB), [ZEP12](25.4dB) and
[TDG13](25.4dB), respectively. One can see that [YWHM10]
gives a slightly smoother result, while [ZEP12] and [TDG13]
can resolve more realistic images.
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2.6. Approximation of the l1-norm

Before we introduce the bilevel optimization procedure, it is important to clarify

some basic properties of the l1-norm and the approximation we are using, the l1,ε-

norm. The l1-norm is a common regularization in convex optimization. In the

context of SC it is used as an alternative to the l0 pseudo-norm, which is a non-

convex semi-norm counting the non-zero components in a vector. A regularization

using the l0-norm is utilized for giving sparse solution vectors. Likewise, the l1-

norm is a sparsity inducing norm[BJMO12] and such a property is inherent to SC.

In our first algorithm we incorporate a smooth approximation of the l1-norm, the

l1,ε-norm, with its derivations given by

Φ(x) =
√
x2 + ε2, (2.12)

Φ′(x) =
x√

x2 + ε2
, (2.13)

where x is the sparse vector and ε is a small scalar constant. The major benefit

of using this approximation is, that it is infinitely often differentiable. From a

numerical point of view, regularization with the l1,ε-norm should lead to equal

results while having the advantage of being differentiable and it can be applied

while disregarding additional assumptions. In contrast to the l1,ε-norm, the first

order derivative of the l1-norm can only be evaluated at point x 6= 0 and is given

by
d|x|
dx

=
x

|x|
, ∀x 6= 0. (2.14)

The sub-differential formula is given by

∂|x|
∂x

=


1 if x > 0

−1 if x < 0

[−1, 1] else.

(2.15)

The second derivative of |x| with respect to x is zero everywhere except at point

zero, where it does not exist.

Figure 2.7(a) shows the absolute value function, |x| compared to its approxima-

tion equ. (2.12) and figure 2.7(b) shows the derivative of the l1,ε-norm compared

to the subdifferential of the l1-norm. Note that in our implementation ε is set to
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10−6 but for presentation we set it to a higher value.

2.7. The Fast Iterative Shrinkage/Thresholding

Algorithm

At this point we want to show the basic properties of the l1,ε-regularization when

incorporated in the FISTA. The FISTA belongs to the first-order convex op-

timization methods which only use the objective value and the (sub)gradient to

optimize functions. The FISTA is an accelerated version of the rather slow-

converging group of Iterative Shrinkage-Thresholding Algorithms (ISTAs). It can

be used to tackle unconstrained minimization problems of a sum of two convex

function f(x) and g(x), given by

min
x
f(x) + λg(x). (2.16)

The LASSO problem or the sparse decomposition problem stated in (2.5) are

examples of such problems. We recall (2.5) given by

min
x

1

2
‖Ax− b‖2 + λ‖x‖1. (2.17)

Any functions satisfying following requirements can be solved by FISTA/ISTA.

1. f + g admits a minimizer x∗

2. f is convex, smooth and differentiable

3. g is convex, subdifferentiable and simple2

To understand FISTA we recall the standard procedure of ISTA. ISTA splits

the optimization problem, making a gradient step of the smooth function f and

applying the proximal map on the result of the gradient step solving the non-

smooth function g. For problem (2.17) the general gradient step of ISTA is given

by

xk+1 = Tλτ
(
xk − ηAT (Axk − b)

)
(2.18)

2the prox-map has a closed-form solution or can be rapidly solved numerically
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where η is the step size and Tλτ : Rn → Rn is the shrinkage or proximal operator

of the l1-norm defined by

Tλτ (xi) = (|xi| − λτ)+ sgn(xi). (2.19)

The step size of both algorithms depends on the Lipschitz constant of ∇f , for

(2.17) it is given by

L(f) = λmax(A
TA)

η ≤ 2

L
=

2

‖ATA‖
. (2.20)

In comparison to ISTA, FISTA applies the shrinkage operator not on the gradient

step of f directly but rather at a very specific linear combination of the previous

two iterates of x resulting in the increased rate of convergence. In algorithm 1 we

give a summary of the FISTA.

Algorithm 1 Summary of the FISTA

Require: input A, b, λ, and for a hot-start x0

ηleq 1
‖ATA‖ , y1 = x0 ∈ Rn and t1 = 1

while not converged do
xk+1 = Tλτ

(
yk − ηAT (Ayk − b)

)
/∗ with Tλτ (x) given by (2.19) ∗/
tk+1 =

1+
√

1+4t2k
2

yk+1 = xk +
(
tk−1
tk+1

)
(xk − xk−1)

end while

Algorithms using the proximal operator to solve convex optimization problems

are called proximal algorithms. They are well suited for non-smooth, constrained

and large scale problems especially if the proximal operator can be evaluated suffi-

ciently[PB14]. The proximal algorithm adds a quadratic function to the objective,

transforming it to a strongly convex function even if the objective is non-smooth.

Let g : Rn → R ∪ {+∞} be a closed proper convex function, then the proximal-

operator proxg : Rn → Rn of g is defined by

proxg(y) := arg min
x

(
g(x) +

1

2
‖x− y‖2

2

)
. (2.21)

Equation (2.21) states the unscaled prox-operator and has a unique minimizer for

every y ∈ Rn. In most cases, as in our own, we have a scaled prox-operator. The
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scaling is done by adding a scalar parameter to the 1/2-term, giving 1/(2τ). In

the scaled version, τ plays a role similar to the step-size parameter in gradient

methods. By inspecting the proximal-operator of the l1-norm we see the well-

known soft-threshold operator as stated in (2.19). The smooth approximation,

the l1,ε-norm (2.12), results in a different proximal-operator. In this case the prox-

operator point-wise solves a quadric polynomial equation given by,

proxλτg(y) := arg min
x

1

2τ
(x− y)2 + λ

√
x2 + ε2. (2.22)

This prox-operator cannot be solved explicitly in reasonable time, thus we ap-

ply Newton’s method[Wei14] to solve the quadric equation. This leads us to the

following derivations of (2.22) stated point-wise as,

f ′ : 0 = (x− x̂)
√
x2 + ε2 + τλx,

f ′′ : 0 =
x(x− x̂)√
x2 + ε2

+
√
x2 + ε2 + τλ,

xn+1 = xn − f ′

f ′′
. (2.23)

Newton’s method converges in very few iterations and can be evaluated effi-

ciently. Figure 2.8 show the soft-thresholding operator obtained by solving the

proximal algorithm on the scaled l1-norm and compares it to the prox-operator of

the smoothed scaled l1,ε-norm.

2.8. The Inertial Proximal Algorithm For Strongly

Convex Optimization

A newly presented algorithm called Inertial Proximal Algorithm for strongly con-

vex Optimization (IPIASCO)[OBP14] can solve strongly convex optimization

problems of certain type with an even better convergence rate than FISTA or

equivalent algorithms. It makes the same assumptions as FISTA given in (2.16)

yet surpasses the optimal rate of convergence for f or g being strongly convex and

f being twice differentiable. Fortunately, the problem of (2.17) combined with the

l1,ε-regularization poses such a problem whereby a linear convergence rate can be
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Figure 2.7.: Approximation of the l1-norm of a variable x and its deriva-
tive. Figure (a) shows the absolute value function |x| and our
approximation, Φ(x) defined in equ. (2.12). Figure (b) shows
the derivatives, function sgn(x) compared to the derivative
Φ′(x).
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Figure 2.8.: This figure shows the solution of the prox-operators. Red
shows the standard shrinkage thresholding function used by
FISTA compared to the resulting prox-operator of the l1,ε-
norm.

achieved. The IPIASCO exploits the structure of strongly convex functions utiliz-

ing the Lipschitz-constants and the convexity parameters. With these parameters

the algorithm is able to adapt the step size such that an increased convergence rate

can be achieved. The general gradient step of IPIASCO follows the heavy-ball

method[Pol87] and is given by

xn+1 = (I + α∂g)−1 (xn − α∇f + β(xn − xn−1)) . (2.24)
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where α and β are specifically chosen step size parameters and (I + α∂g) is the

prox-operator of g. The step size parameters are given by

α =
4

(
√
l +m+

√
L+m)2 − 4m

,β =
(
√
m+ L−

√
m+ l)2

(
√
m+ L+

√
m+ l)2 − 4m

(2.25)

where L is the Lipschitz constant of ∇f and l and m are the convexity parameters

of f and g , respectively. In our case l = 0 and m = min
x∈[lb,ub]

λ ε2

(x2+ε2)
2
3

. The Lipschitz

constant of ∇f is the same as that in FISTA. The IPIASCO is summarized in

algorithm 2.

Algorithm 2 Summary of the IPIASCO

Require: input A, b, λ, and for a hot-start x0

L = 1
‖ATA‖ ,/∗ α and β is given by (2.25)∗/

while not converged do
xk+1 =

∏
C

(
xk − αAT (Axk − b) + β(xk − xk−1

)
/∗ with

∏
C(x) given by (2.22) ∗/

end while

2.9. Bilevel Optimization for Coupled Feature

Spaces

The main contribution of this work is a bilevel optimization algorithm extending

the dictionary learning problem to coupled feature spaces. The bilevel program

enables us to learn the dictionaries hierarchically and ensures the goal that both

dictionaries are optimal in each space while having a common sparse representa-

tion. Analogous procedures have been developed by Yang et al. in [YWL+12a]

and [YWL+12b]. As previously stated, the dictionary learning problem for cou-

pled feature spaces should be formulated such that the dictionaries are optimal

in both feature spaces individually. We recall that a bilevel program is a hi-

erarchical optimization problem as they contain a nested optimization problem

within the constraint of another optimization problem[Dem02]. Given a common

sparse representation, we can easily argue that the dictionary learning problem

can be modeled hierarchically such that an optimal lr dictionary in the lr fea-

ture space is a requirement to optimize the hr dictionary in the hr feature space

since in decomposition only the lr feature space is given. In our case we formulate

the bilevel program such that it minimize the error in the high-resolution feature
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space, while requiring an optimal solution of the sparse decomposition in the low-

resolution feature space. Therefore the bilevel program guarantees that the found

sparse representation selecting the dictionary atoms is optimal in the lr features

space and in the hr feature space. But more important the bilevel program can

propagate the error found in the high-resolution feature space to a change of the

low-resolution dictionary and the high-resolution dictionary such that this error is

minimized.

Zeyde et al.[ZEP12] in contrast only learn an optimal lr dictionary. Subse-

quently they use the corresponding hr training set and the sparse representation

found in the lr feature space to create a high-resolution dictionary. Their approach

is not capable to change the low-resolution dictionary or the sparse representation

due to errors in the high-resolution feature space.

Another advantage of the bilevel formulation is that the mapping function con-

necting the two feature spaces does not need to be known as this is inherently

formulated in the bilevel program. This is beneficial to our system since we select

the first and second order central difference features in the lr feature space but

use the hr patches directly in the hr feature space. The mapping function con-

necting the two features spaces could still be formulated as a linear function but

we do not need to model it.

2.10. Linear Algebra and Matrix Differentiation

Before we begin with the actual bilevel optimization problem statement and deriva-

tion we want to recall some basic properties of matrix calculus since we need them

later on. Differentiation of a matrix function F (X) in regard to a matrix X is not

as straight forward as one might think. Several different notations exist, each of

which have their own justifications, however we will only recall the notation we

use. The interested reader is referred to [MN99] for further details. From vector

calculus we know that if f(x) is an m × 1 vector function of an n × 1 vector x,

then the derivative or Jacobian matrix of f in respect to x is a m× n matrix,

D f(x) =
∂f(x)

∂xT
. (2.26)
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Generalizing this formulation to matrix functions of matrices admits the following

definition.

Definition 2.1. Let F be a differentiable m × n real matrix function of the real

valued matrix X with size p×q, then the Jacobian matrix of F at X is the mn×pq

matrix

DF (X) =
∂ vecF (X)

∂(vecX)T
. (2.27)

With this notation one guarantees that all properties of the Jacobian matrix are

preserved. Furthermore the study of matrix functions of matrices is reduced to the

study of vector functions of vectors. The gradient of the matrix function F (X) is

given by transposing the Jacobian matrix DF (X), hence ∇F (X) = DF (X)T .

After having a definition for deriving matrix functions, we recall some useful

linear algebra notations. These will be employed in the next chapter. First we

bring the Kronecker product in mind and the relation to the vec-operator. Let A

be a matrix of size m × n and B be a matrix of size p × q. The mp × nq matrix

defined by 
a1,1B · · · a1,nB

...
. . .

...

am,1B · · · am,nB

 (2.28)

is called the Kronecker product of A and B and is written as A ⊗ B. Note that

the matrix product of AB is only defined if the numbers of columns of A is equal

the number of rows in B, hence n = q. The Kronecker product in comparison is

defined for any pair of matrices. Transposing a Kronecker product gives

(A⊗B)T = (AT ⊗BT ). (2.29)

Assume we have a valid matrix product AXC then

vec(AXC) = (CT ⊗ A) vec(X). (2.30)

The proof of this theorem is left out here. We refer to [MN99, p.32] for details. A
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special case of (2.30) is the vector function AXc, where c is a vector, then

AXc = (cT ⊗ A) vec(X) . (2.31)

Furthermore we recall the commutation matrix Kmn. Let A be a m × n matrix,

then vec(A) and vec(AT ) have the same mn components but their entries are in

a different order. Thus there exists a unique mn×mn permutation matrix which

transforms vec(A) into vec(AT ). This matrix is called the commutation matrix

Kmn. Hence

Kmn vec(A) = vec(AT ). (2.32)

The matrix Kmn is orthogonal, hence

KT
mn = K−1

mn = Knm. (2.33)

Concluding we define A as a m× n matrix and b as p× 1 vector. Then

Kmp(b⊗ A) = (A⊗ b). (2.34)

Again, proof to this equations is given in [MN99, p.55] and is omitted at this point.

2.11. Summary

In this chapter we have introduced some major single image SR methods and

algorithms. Among these categories there is a lot of ongoing research making it

difficult to give a comprehensive summary. Furthermore we have given a short

overview of convex optimization algorithms. These algorithms are utilized to solve

the bilevel programs defined in the next chapter. We concluded this chapter by

giving some tools for matrix differentiation that are also applied in the bilevel

optimization procedure.
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In this chapter we formulate a bilevel sparse coding program with smoothed

l1,ε-regularization for the dictionary learning problem and describe the benefits

and drawbacks of the l1,ε-regularization. We further develop a derivation of this

program facilitating the common l1-regularization. This leads to an algorithm

which uses only the active set of dictionary atoms while omitting all other atoms.

We conclude this chapter with a discussion of the benefits and disadvantages of

these two dictionary learning algorithms.

3.1. Bilevel Program with Smoothed

l1,ε-Regularization

Bilevel optimization belongs to the class of hierarchical mathematical programs

and is closely related to mathematical programs with equilibrium constraints

[CMS07]. The major feature of bilevel programs is that they include two math-

ematical programs in a single instance and one of these programs is part of the

other’s constraint. In the general setup a bilevel program consists of an upper-level

problem and a lower-level problem both of which can have constraints associated.

Therefore a bilevel program tries to find the optimal solution for both, the lower-

level and the upper-level problem, even if they have opposite objectives.

29
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In our case we have two closely related dictionary training problems, one on the

low-resolution features and one on the high-resolution patches, both sharing the

same sparse vector. Our bilevel program optimizes both dictionaries simultane-

ously. The definition of our bilevel program is given as

L{α, Dl, Dh} = min
α,Dl,Dh

N∑
i=1

‖Dhαi − fhi‖2
2 (3.1a)

s.t. E{αi} = arg min
αi

1

2
‖Dlαi − f li‖2

2 + λΦ(αi) (3.1b)

where αi are the sparse vectors, fhi and f li are the high and low-resolution

patches pairs, Dh and Dl the high and low-resolution dictionaries respectively,

and Φ(α) is the smoothed l1,ε-norm stated in equ. (2.12). The variable fhi is a

k×1 vector, Dh is an k×n, Dl an m×n matrix, αi an n×1, f li an m×1 vectors.

In comparison to [YWL+12b] we do not have a norm constraint on the dictionary

atoms; D(:, k) ≤ 1. The main reason why the norm constraint is employed, is to

prevent the trivial solution of infinitely large dictionary atoms and infinitely small

sparse vectors α. We believe that our training scheme implicitly learns the correct

norm of each atom because we are also initializing the program with dictionaries

trained by[YWHM10].

By inspecting the structure of our bilevel optimization problem (3.1) we see

that the lower-level objective is a strictly convex function without any constraint

added. This implies that we can find a unique minimizer α∗. The upper-level

objective states a linear program. A bilevel program with such a structure can be

solved by reformulating it as a single-level optimization problem. This is done by

deriving the optimality condition of the lower level-objective (3.1b) and adding it

as a constraint to the upper-level objective (3.1a). The resulting constraint opti-

mization problem can then be rewritten as a unconstrained optimization problem

introducing a Lagragian multiplier associated with the constraint. This newly

created Lagragian function can then be solved by differentiation in regard to all

unknown variables and eliminating the Lagragian multipliers and sparse vector.

This leads to the derivatives of the upper-level objective (3.1) with regard to the

dictionaries Dh and Dl, while keeping the optimal α inferred from the lower-
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level objective(3.1b). In our algorithm we subsequently plugin the derivatives

in the quasi-Newton method of the Limited Broyden-Fletcher-Goldfarb-Shanno

(lBFGS) algorithm[LN89]. The same derivatives could be found by differentia-

tion of the upper-level objective where the chain rule would be applied followed

by implicit differentiation of α in respect to Dl. This procedure was employed by

Yang et al. in [YWL+12b].

In our formulation of the bilevel program(3.1) we use the smoothed approxi-

mation to the l1-norm, the l1,ε-norm. The obvious advantage of using the l1,ε-

regularization in the lower-level objective is that it is continuously differentiable

and strictly convex. This means that the first-order optimality condition is suffi-

cient for global optimality and a unique minimizer can be found. Furthermore

this functional is twice differentiable at all points. In comparison, if the l1-

regularization in the lower-level objective is employed we would also reach a global

but not necessarily unique minimizer. Additionally the l1-norm has no second-

order derivative at point zero requiring supplemental assumptions if the same al-

gorithm is applied. The first-order necessary optimality condition of (3.1b), which

is also sufficient, is calculated by deriving it with respect to α and setting it to

zero, giving,

∂E

∂α

∣∣∣∣
α∗(Dl)

= DT
l Dlαi −DT

l f
l
i + λ

αi√
α2
i + ε2

= 0. (3.2)

This equation is also referred to as the stationary condition of the lower-level

objective. We now add the stationary condition (3.2) as a constraint to the upper-

level problem (3.1a). The resulting single level constraint optimization problem is

given by

L{α, Dl, Dh} = min
α,Dl,Dh

N∑
i=1

‖Dhαi − fhi‖2
2

s.t. ∇αE{αi} = DT
l Dlαi −DT

l f
l
i + λ

αi√
α2
i + ε2

= 0.

(3.3)

Since this equation(3.3) states an optimization problem with equality constraint, it

can easily be reformulated as an unconstrained optimization problem with the aid
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of Lagrangian multipliers. The reformulated unconstrained upper-level objective

is given by

max
pi

min
α,Dl,Dh

N∑
i=1

‖Dhαi − fhi‖2
2 +

〈
pi, D

T
l Dlαi −DT

l f
l
i + λ

αi√
α2
i + ε2

〉
,

(3.4)

where pi are the Lagrangian multipliers. This equation can now be derived with

respect to the variables p, α,Dl and Dh. For the derivation in respect to Dh we

swap Dh and α in the matrix-vector product ‖Dhαi−fhi‖ to ‖Ki vec(Dh)−fhi‖

where the matrix Ki is the reordered αi vector of size k × n ∗ k given by Ki =

(αTi ⊗ Ik). The remaining derivatives are given as,

∂L

∂pi
= DT

l Dl + λ diag
ε2

(α2
i + ε2)

3
2

= 0, (3.5)

∂L

∂αi
= DT

hDhαi −DT
h f

h
i + pi

(
DT
l Dl + λ diag

ε2

(α2
i + ε2)

3
2

)
, (3.6)

∂L

∂Dl

= pi
∂
(
DT
l Dlαi −DT

l f
l
i

)
∂Dl

, (3.7)

∂L

∂Dh

= KT
i(Ki vec(Dh)− fhi). (3.8)

Equation (3.6) can now be solved explicitly in respect to the Lagrangian p and

inserted in (3.7) following,

p =−
(
∂L

∂α

)(
∂2E

∂α2

)−1

⇒ pi =−
(
DT
hDhαi −DT

h f
h
i

)(
DT
l Dl + λ diag

ε2

(α2
i + ε2)

3
2

)−1

,

∂L

∂Dl

=−
(
DT
hDhαi −DT

h f
h
i

)(
DT
l Dl + λ diag

ε2

(α2
i + ε2)

3
2

)−1

∂
(
DT
l Dlαi −DT

l f
l
i

)
∂Dl

. (3.9)

The partial derivative ∂
(
DT
l Dlαi −DT

l f
l
i

)
in respect to ∂Dl is calculated follow-

ing [MN99] with definition 2.1 and the use of the vec-operator and the Kronecker
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product giving,

DDl f(Dl) =
∂
(
DT
l Dlα−DT

l f
l
)

∂vec(Dl)T

∂f(Dl) = ∂(DT
l D

Tα)− ∂(DT
l f

l)

∂f(Dl) = In∂(DT
l )Dlα+DT

l ∂(Dl)α− In∂(DT
l )f l

∂f(Dl) = (αTDT
l ⊗ In)∂ vec(DT

l ) + (αT ⊗DT
l )∂ vec(Dl)− (f l

T ⊗ In)∂ vec(DT
l )

∂f(Dl) = (αTDT
l ⊗ In)Kmn∂ vec(Dl) + (αT ⊗DT

l )∂ vec(Dl)− (f l
T ⊗ In)Kmn∂ vec(Dl)

DDl f(Dl) = (αTDT
l − f l

T ⊗ In)Kmn + (αT ⊗DT
l )

∇Dlf(Dl) =
(

(αTDT
l − f l

T ⊗ In)Kmn

)T
+ (αT ⊗DT

l )T

∇Dlf(Dl) = Knm(Dlα− f l ⊗ In) + (α⊗Dl)

∇Dlf(Dl) =
(
In ⊗ (Dlαi − f li)

)
+ (αi ⊗Dl) . (3.10)

Note that we have omitted the subscript due to ease of reading except for the result.

The derivative of L with respect to Dh and Dl can than be plugged in an lBFGS

algorithm1[LN89][BLNZ95]. This algorithm belongs to the quasi-Newton methods

and approximates the second derivatives, the Hessian, of the unknown variables

by their previous iterates, in our case Dh and Dl. The algorithm uses rank-one

updates specified by gradient evaluation on the unknowns to approximate the

Hessian. Beneficially, the lBFGS includes a line search since our bilevel program

only gives a decent direction.

As we have now derived the dictionary learning update, we still need the re-

sults of the sparse decomposition of the lower-level objective in order to calculate

equation (3.9) and (3.8). Thus, we need the optimal α, the unique minimizer

α∗ of (3.1b). This is a precondition in our bilevel program as we have set the

first-order optimality condition of the lower-level objective to zero, as defined in

equation (3.2). We have to guarantee that the gradient of the lower-level objective

is as small as possible. Since we defined a smoothed l1,ε problem, we cannot use

a standard solver. Thus, we decided to use the Inertial Proximal Algorithm for

strongly convex Optimization (IPIASCO)[OBP14] to solve the sparse decompo-

sition on the low-resolution dictionary. As the name suggests the IPIASCO is

a special solver for strongly convex optimization problems and since the sparse

1http://www.cs.toronto.edu/~liam/lbfgs-1.1.tar.gz

http://www.cs.toronto.edu/~liam/lbfgs-1.1.tar.gz
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decomposition with l1,ε-regularization poses such a problem, this algorithm fits

perfectly for our purpose and converges in linear time. The smoothed l1,ε regular-

ization generates a particular proximity operator sometimes referred as shrinkage

operator similar to the famous soft threshold operator in Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA). We refer to section 2.6 where we have already

defined our proximity operator and IPIASCO.

In our algorithmic settings it is crucial to solve the lower-level objective precisely

since our first-order optimality condition demands that the gradient equals zero,

∇αE{αi} = 0. Only then does the gradient formulation of the upper-level objective

become valid and the bilevel program decrease the loss function. Beneficial to the

IPIASCO is that we can set the value of the gradient as a convergence criteria.

In our implementation we demand that the gradient has to be less than 10−7 in

order to reach convergence. Algorithm 3 gives a brief summary of our program.

Algorithm 3 Bilevel program with l1,ε-regularization solving (3.1)

Require: input f l,fh, λ, ε, initial Dl, Dh

x = [vec(Dl); vec(Dh)]
start lBFGS(x)
while lBFGS not converged do
/∗ sparse decomposition with IPIASCO on Dl given f l ∗/
/∗ and proxΦ(α) : Newton alg. following (2.23) ∗/
α = IPIASCO(Dl,f

l, λ, ε)
for all samples i ∈ f li do
/∗ calculate derivatives following (3.8) and (3.9) ∗/

∇LiDl =−
(
DT
hDhαi −DT

h f
h
i

)(
DT
l Dl + λ diag

ε2

(α2
i + ε2)

3
2

)−1

(
(In ⊗ (Dlαi − f li)) + (αi ⊗Dl)

)
∇LiDh =(αTi ⊗ Ik)

end for
LDl =

∑
i∇LiDl

LDh =
∑

i∇LiDh
end while

3.1.1. Discussion

Unfortunately, the smoothed l1,ε-norm is not truly sparsity inducing. This can be

easily seen by inspecting the prox-operator of the l1,ε-norm in figure 2.8. Due to

this fact the resulting sparse vector α is not sparse anymore. The vector α is
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instead a full vector with most entries smaller than ε. This impacts the runtime

of our algorithm, but not to the quality of the result. On the contrary, the results

using the smoothed l1,ε-norm in the optimization are superior to the results using

the l1-regularization, but the runtime of the training is rather slow. Therefore we

developed a simplified training scheme similar to Yang et al. in [YWL+12b] with

the l1-regularization which we present in the next sections.

3.2. Bilevel Program with an Active Set

In sparse decomposition usually only a small set of dictionary atoms are active to

describe the input data, meaning most of the dictionary atoms are left out and

the coefficient vector α become sparse, for reference see equation (2.5) or (3.1b).

This fact can be utilized in the bilevel optimization procedure. The main idea is

to apply the same differentiation as we developed earlier but just on the “active

atoms” of the dictionary for each training sample. This reduces the computational

overhead significantly and faster training can be employed. To apply this simplifi-

cation we still need to make some assumptions on the l1-regularization, since the

second derivative of the l1-norm is not defined, at least at point zero. We shortly

recapitulate the bilevel program of (3.1) but with the l1-regularization giving

L{α, Dl, Dh} = min
α,Dl,Dh

N∑
i=1

‖Dhαi − fhi‖2
2 (3.11a)

s.t. E{αi} = arg min
αi

1

2
‖Dlαi − f li‖2

2 + λ‖αi‖1. (3.11b)

If we inspect the first derivative of the lower-level program (3.11b) and assume

that most entries of the coefficient vector α are zero, the problem can be reduced to

the set of active dictionary atoms. We recapitulate the first-order sub-differential

of the lower-level objective equipped with the l1-regularization giving,

∂E

∂αi
= DT

l Dlαi −DT
l f

l
i + λ sgn(αi) = 0. (3.12)

At this point we donate Λi as the active set of the optimal α∗
i to (3.12), hence

Λi = {k : α∗
i(k) 6= 0}. Equation (3.12) does not depend on αi, ∀αi(k) = 0 and
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the second derivative with respect to αi is zero. Further we imply that sgn(αi) is

constant for all αiΛ and the second derivative of sgn(αi) vanishes. Additionally

we assume that the chosen dictionary atoms and therefore the non-zero entries in

the sparse vector do not change for small perturbations of the dictionary. Yang et

al.[YWL+12b] define similar lemmas and gives proof to them. In fact they reach

the same derivations as we do.

We can now apply the previous discussed assumptions to the derivations (3.4)

and consequentially to (3.8) and (3.9). The derivatives of L with respect to DhΛ

and DlΛ are given by,

∇LDl = −
(
DT
hΛ
DhΛαiΛ −DT

hΛ
fhi
) (
DT
lΛ
DlΛ

)−1

(
∂DT

lΛ
DlΛαiΛ −DT

lΛ
f li

∂DlΛ

)
,

(3.13)

∇LDh = KT (K vec(DhΛ)− fhi), (3.14)

with K = (αTiΛ ⊗ Ik). Compared to equations (3.8) and (3.9), we see only a

small difference in the Hessian
(
DT
lΛ
DlΛ

)−1
of the lower-level program, where the

regularization term has vanished. This is explained by our assumptions on the

active set, where we say that sgn(αi) is constant and its derivative is zero.

Implementing this algorithm results in faster computation of the derivations

since they are only computed on a subset of the dictionary atoms. To do this and

make our assumptions valid, we have to compute the sparse decomposition of α

on Dl and fl in advance of each iteration of the lBFGS. We want to clarify that

the sparse decomposition in this method needs to be computed with the FISTA

algorithm[BT09] and standard soft-thresholding since we have the l1-regularization

in the lower-level program. A brief summary of the active set program is given in

algorithm 4.

3.3. Discussion

In this chapter we have derived two comprehensive algorithms through a bilevel

program solving the dictionary learning problem for coupled feature spaces. Both

of these algorithms exploit the power of bilevel programming and give superior
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Algorithm 4 Bilevel program with active set method (3.11)

Require: input f l,fh, λ, initial Dl, Dh

x = [vec(Dl); vec(Dh)]
/∗ start lBFGS(x) ∗/
while lBFGS not converged do

for all samples i ∈ f li do
/∗ sparse decomposition with FISTA on Dl given f li ∗/
αi = FISTA(Dl,f

l
i, λ)

Λ = {k : αi(k) 6= 0}
/∗ calculate derivatives following (3.14) and (3.13) ∗/

∇LiDl =−
(
DT
hΛ
DhΛαiΛ −DT

hΛ
fhi
) (
DT
lΛ
DlΛ

)−1(
(In ⊗ (DlΛαiΛ − f li)) + (αiΛ ⊗DlΛ)

)
∇LiDh =(αTiΛ ⊗ Ik)

end for
LDl =

∑
i∇LiDl

LDh =
∑

i∇LiDh
end while

testing results compared to the joint training method for coupled feature spaces

described in the previous chapter 2.5. The active set method follows the idea

of Yang et al.[YWL+12b] and can be computed faster while the smoothed l1,ε

regularized bilevel program results in a numerically more stable algorithm. From

a numerical point of view the bilevel program with smoothed l1,ε-regularization in

the lower-level objective is more coherent but also more computationally complex.

This is also proven by our evaluations whereby the smoothed l1,ε regularization

outperforms the active set method in most cases. We see the reason for this in

the better conditioning of the pseudo-inverse of the low-resolution dictionary in

equ. (3.13) compared to equ. (3.9). Also the run-time differences are negligible

since the training can be performed offline or in advance. Additionally, due to the

recently developed IPIASCO[OBP14] and their linear convergence, the run-time

of the sparse decomposition performed with IPIASCO is slightly faster compared

to FISTA and their results outperform the active set method.
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In this chapter we give a brief summary of Image quality assessment (IQA)

and recapitulate the two previously described algorithms. We show qualitative

and objective evaluation and compare our algorithms with state-of-the-art sparse

coding super resolution systems. Additionally we give some further details about

our implementation.

4.1. Image Quality Assessment

IQA is an active field of research and a number of new methods have been proposed

to evaluate image reconstruction systems. Classical qualitative measurements like

the Peak-Signal-to-Noise Ratio (PSNR) or the Root Mean Square Error (RMS)

error are said to be inconsistent with the human perception because we are much

more sensitive to structural errors rather than pure differences in the pixel value.

The human eye weights errors on edges or corners higher than in other areas of an

image. The major idea behind objective quality measurements as the Structural

Similarity (SSIM) index[WBSS04] for example is, to better reflect what people

and therefore the human vision defines as a “good”. The SSIM index measures

the perceived change in the structural information. It is evaluated at a moving

window and takes the average, the variance and the dynamic range into account.

We evaluate our algorithms with the SSIM-index and the PSNR since PSNR

38
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is still the most common qualitative measurement. Other objective IQA metrics

include Feature Structural Similarity (FSIM) [ZZMZ11] and Gradient Similarity

(GSM)[LLN12] to name just a view.

4.2. Dataset

Super Resolution (SR) systems often just evaluate their system on a small set

of images and a comprehensive evaluation image database for SR does not exist.

The pre-requests for a SR testing database are probably more restrictive than in

other fields of image reconstruction. JPEG images for example include already

distortion artifacts which would be augmented by SR systems. Often the Kodac

Image CD photos[Com99] are used as testing examples. We took a dataset with

different classes of images like animals, cars, landscape, buildings, people, flowers,

medical images and computer generated graphics. We give credit to Li He[HQZ13]

for sending us this comprehensive dataset. We took out one image from each class

to train our algorithms and evaluated on all the other images. Figure 4.1 shows

our training images. The testing database consists of 72 images, 9 images from

each class where one has been taken out for the training. Additionally we trained

our algorithm with the images used by Yang et al. in [YWHM10]. Although this

dataset only consists of images of flowers, nature images, human faces and cars,

this dataset gives equal or even better testing results on both, the testing dataset

of Li He and the testing images of Yang et al. We compare our algorithms with the

works of Yang et al.[YWHM10], Zeyde et al.[ZEP12] and Timofte et al.[TDG13]

as these methods are all based on sparse coding.

4.3. Implementation

The basic points of our implementations regarding the two algorithms, 3 and 4,

have already been summarized in the previous chapter. Here we want to give

some details about the image preprocessing, the training scheme in general and

the sparse decomposition.
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(a) car (b) landscape (c) people (d) building

(e) animal (f) flower (g) medical (h) computer graphic

Figure 4.1.: This figure shows our training images. Each image was taken
from a class of test images, fig. (a) belongs to cars, (b) to
landscapes, (c) to humans, (d) to buildings, (e) to animals, (f)
to flowers, (g) to medical images and (h) shows a computer
generated image.

(a) face (b) flower (c) nature (d) car

Figure 4.2.: This figure shows some training images from Yang et al.[YWHM10].

4.3.1. Color Treatment

Commonly SR systems only operate on the chroma or luminance channel when

processing color images, because the chroma channel comprises the most structural

information. Therefore RGB color images are usually transformed to a color space,

where a luminance channel is available, in our case the YCbCr color space, and

consequently only the luminance channel is processed by the SR system. The
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remaining color (difference) channels do not contain much structural information

and are just bicubically up-sampled for the benefit of faster runtime. Treating

color images this way is oriented toward human vision. Color spaces like Lab or

YCbCr comprise a separate channel for luminance information as the human eye

does by their rod cells in the retina. The cone cells in comparison are less sensitive

to light and encode the color information.

4.3.2. Upscaling Factors

A higher upsampling rate is usually achieved by applying a smaller upscaling factor

iteratively. For example if a upsampling rate of 4 is desired, the SR pipeline with

an upscaling factor of 2 is applied twice, iteratively. If upscaling factors apart

from natural numbers are desired the SR system has to be specially trained or

upsampled by a higher factor and subsequently downsampled accordingly.

4.3.3. Training Scheme

As for most learning based SR systems, we need training data in both feature

spaces and therefore a Low Resolution (lr) and a High Resolution (hr) image

pair. In our case we have a system that processes image patches and thus we need

patch pairs as training data. For the patch extraction in general and the image

preprocessing in particular we choose a similar way as Timofte et al. since it is

also based on dictionary learning and currently shows the best qualitative results

of dictionary based SR systems.

Imagine we have a lr and hr image pair, they propose to upscale the lr image

by a factor of 2 using bicubic interpolation to create a “mid-resolution” image.

Then they apply high-pass filters on it and perform a dimensionality reduction

using a Principal Component Analysis (PCA). The hr image patches are drawn

after subtracting the bicubically upscaled lr image from the hr image. In this

manner Timofte et al. learn the difference between the bicubic upsampled lr

image and the original hr image patch based on the “mid-resolution” features.

We can argue that such a system learns instead a deconvolution rather than an

upscaling process. In comparison we do not subtract the bicubically upsampled

lr patch from the hr patch, we instead subtract the mean of the “mid-resolution”

image patch from the hr image patch. In this manner we learn high-resolution
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patches independently from their mean and are thus translation invariant regarding

the mean of a patch. Therefore our preprocessing consists of four steps. First we

take the hr input image and create a downsampled lr image. This lr image is

bicubically upsampled to a Mid Resolution (mr) image. This mr image is filtered

and patches are drawn. From the unfiltered mr image the mean of each patch

is taken and subtracted from the hr patch. The mean-invariant hr patches and

the corresponding filtered mr patches then form the training set. We think that

dimensionality reduction in the lr feature space is not necessary (although it would

lead to a small runtime speedup) because we want to keep as much information

as possible about the lr features. The mr image reinforces this objective. First

it smooths the lr image and thus features can be drawn without smoothing the

kernel. More importantly, the mr image can be seen as a non-linear projection in

a higher-dimensional space with similar effects as the kernel-trick in the Support

Vector Machine (SVM). The Kernels of the high-pass filters are given by

K1H = [−1 0 1],

K1V = [−1 0 1]T

K2H = [−1 0 − 2 0 1]/2,

K2V = [−1 0 − 2 0 1]T/2 (4.1)

where K1H and K2H are the first and second order central differences in horizontal

direction and K1V and K2V are the first and second order central differences in

vertical direction, respectively. With this training scheme we learn a lr dictionary

composed of mr features and a hr dictionary consisting of patches where the mean

has been subtracted. Figure 4.3 shows a semantic overview of our preprocessing

and patch extraction scheme.

4.3.4. Norm Constraint on Dictionary Atoms

At this point we want to note that we do not constrain the dictionary columns

to have L2 unit norm. This is done to prevent the trivial solution of infinitely

large dictionary atoms and infinitely small sparse vectors α. Since we initialize

our dictionaries with the results of a jointly trained dictionary with norm con-

straints[YWHM10], we think that a L2 unit-norm constraint is not necessary be-
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cause the dictionary atoms do not change dramatically. Furthermore we would

have to reformulate our model and beyond that, the utilized lBFGS algorithm

can not handle an additional reprojection of the dictionaries on the L2 unit norm.

The lBFGS is an algorithm solving unconstrained optimization problems and the

reprojection would be a constraint. Note that patches of the same size from images

with different spatial resolutions exhibit distinct L2-norms. The L2 norm increases

with increasing spatial resolution. A goal of our training scheme was to implic-

itly learn the differences in the norm. This was mainly achieved by omitting the

norm constraint on the dictionary atoms. In comparison, Yang et al.[YWHM10]

used a norm factor to account for the differences and found this factor by regres-

sion. Zeyde et al.[ZEP12] and Timofte et al.[TDG13] chose a different approach by

learning only the differences between bicubic upsampled patches and the original

hr patches and therefore the norm of the patches becomes insignificant.

4.3.5. Testing Scheme

In the sparse decomposition stage, also referred to as sparse inference or sparse

approximation, the lr input image is bicubically upscaled to a mr image where the

mean is taken and features of each patch are drawn eventually. The concatenated

features are used to perform sparse decomposition on the lr dictionary. The

resulting sparse vector α and the hr dictionary are used to form the estimate and

the mean of the unfiltered mr patch is added. The features we draw from the mr

image are the first and second order gradients given in (4.1). Figure 4.4 shows the

preprocessing and the formation of the estimate in the test case.

4.3.6. Remarks on the Patch Size

As we have a patch-based system, it is crucial to take an appropriate patch size

for a given upscaling factor. The patch size in combination with the bit depth

determines the space of possible patches and scales exponentially with the patch

size. Note that the size of a dictionary atom, the squared patch size, and the

number of atoms in a dictionary are also correlated. Since a main feature of sparse

coding is the over-completeness of their dictionaries, we desire that the dictionary

has at least 4-6 times the number of atoms than the size of an atom. Therefore

the dictionary size and the patch size are dependent. At this point we want to
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HR Image

LR Image

MR Image

Filtered Img’s

down-sampled

up-sampled

4 x filtered

fH

fL

+
-

mean

preprocessing patch extraction features

Figure 4.3.: Semantic Overview of the SR training example preprocessing. The
image preprocessing can be divided into three section, image prepro-
cessing, patch extraction and feature concatenation. First a hr input
image is down-sampled to get a lr input image. The lr image is bicu-
bically upsampled to a “mid-resolution” image. We apply the first and
second order central differences filter on this image. Next we extract
patches from the high- and mid- resolution images and subtract the
mean of a mid-resolution patch from the hr patch. At the same stage
we extract patches of the four filtered images and concatenate these
feature patches.

remark that the estimates of a patch based system become less meaningful at

the boarders. One could desire large dictionaries with high patch size but as the

previously stated facts clarify, this has some drawbacks. First of all with a higher

patch size the dictionary size grows and this has a large impact on the runtime

of the algorithms. Additionally, as the estimates become less meaningful at the

boarders we are likely to introduce new error sources. In our experiments we found

that a patch size between 6 and 8 pixels for a upscaling factor of 2 grants good

results. For a upscaling factor of 3 we used a patch size of 9.
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4.3.7. Remarks on the Parameters ε and λ

In our first bilevel program developed in the previous chapter, algorithm 3, we used

an strongly convex approximation to the l1-norm, the l1,ε-norm. This norm holds a

major parameter the ε. A basic property of the developed algorithm is the gradient

of lower-level objective(3.2), the first order optimality condition, which we seek to

be zero. The parameter ε is important for reaching this goal. In principle we want

ε to be as small as possible to better approximate the l1-norm. The drawback

of a small ε parameter is the slower convergence of the gradient to reach zero.

Apart from this fact, the norm parameter ε and the regularization parameter λ

are connected. In other words, the ε parameter influences the “sparsity” of vector

α. For a smaller ε, λ has to be smaller too, to get the same number of non-zeros in

the sparse vector α. Unfortunately, the l1,ε-norm does not truly result in a sparse

vector i.e. entries equal to zero. Therefore we can not measure the number of

non-zeros. However, we can measure the number of entries higher than a given

threshold. Since we do not want to over- or underfit the training, it is important

to reach a steady low number of non-zero coefficients. For e = 10−6 the number

of non-zero coefficients are equal down to a threshold of 10−6 which is enough for

our purpose and we think that coefficients smaller than 10−6 are insignificant. For

the test case our major goal is to reach good qualitative estimates in reasonable

time and therefore we set the ε slightly higher, i.e. ε = 10−5.

4.4. Evaluation

We evaluated our algorithms on two datasets, the dataset “Set14” of [TDG13] com-

prising 14 images and the dataset “Li He” of [HQZ13] containing 72 images. Both

test sets where upscaled by magnification factors of 2 and 3. We give objective

qualitative measurements in terms of PSNR and SSIM-index and compare the

results to the methods of Yang et al.[YWHM10], Zeyde et al.[ZEP12] and Tim-

ofte et al.[TDG13]. All measurements have been performed on the luminescent

channel, the grayscale of the images, since all compared methods operate on the

chroma channel only and the differences are most significant on this channel. For

presentation issues we show the resulting RGB images. Additionally we created

a real world test set of already degraded image here referred as test set “Mauth-
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LR Image

MR Image

Filtered Img’s

up-sampled

4 x filtered

fl

preprocessing patch extraction features sparse decomposition

sparse de-
composition

DL
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×DH

+mean

α, sparse
vector
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Figure 4.4.: Semantic overview of the SR test example preprocessing. The im-
age preprocessing can be divided in four section, image preprocess-
ing, patch extraction, feature concatenation and sparse decomposi-
tion. First the lr input image is bicubically up-sampled to the mr
image. Next the mr image is filtered by applying the first and second
order central differences, horizontally and vertically. Then we extract
patches from the filtered mid-resolution images and co-instantaneously
extract the mean of the unfiltered patches. The filtered patches are
concatenated and form the lr feature used by the sparse decomposi-
tion. The resulting sparse vector is multiplied with the hr dictionary
and the mean of the mr patch is added to form an estimated patch.

ner”. Since the images of the test set “Mauthner” are already distorted, we can

not compare them to the undistorted images but we compare the results to each

other. For an upscaling factor of 2 we could not evaluate the method of Yang et

al. and therefore left out because their dictionaries where corrupted and we did

not want to give false results.

In order to evaluate our algorithms, sparse decomposition was done with FISTA

for the active set algorithm 4 and IPIASCO for the smoothed l1,ε regularized al-

gorithm 3. Since no real performance tweaks were employed the algorithms have

rather slow run-times which we note, as an average for all performed test cases, in

the tables. To overcome this drawback we used our trained dictionaries in combina-

tion with an optimized fast solver from the Sparse Modeling Software (SPAMS)

toolbox[MBPS09] and could achieve big run-time improvements for slightly in-

ferior results. These averaged results are also stated in the evaluation tables.
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Parameters Values
Dictionary atoms 1024
Scaling factor 2
High-res. patch size 6
Low-res. patch size 3
Mid-res. patch size 6
λactive 0.10
λsmoothed 0.03
Max nr. of iterations 500

Table 4.1.: This table shows the parameters for testing dataset “Set 14”
and “Li He” with scaling factor of 2.

The SPAMS toolbox incorporates many sparse solvers including Least Absolute

Shrinkage and Selection Operator (LASSO) with elastic-net regularization. This

regularization is quite similar to the l1,ε regularization since it combines l1- and

l2-regularization. At this point we have to note that this is mathematically not

consistent but acceptable for practical consideration.

4.4.1. Test Results for Upscaling Factor of 2

Table 4.1 shows the simulation parameters used with magnification factor of 2 for

both test sets. As already mentioned in the previous section, the λ values differ a

lot for the two algorithms, the active set method and the smoothed l1,ε regularized

method. This can be explained by the use of the smoothed l1,ε-norm where the ε

parameter influences the regularization parameter λ and therefore λ needs to be

lower to get the same number of non-zero coefficients in the sparse vector. We

choose to have a mean of 10 non-zeros entries in the sparse vector for a single

patch resulting in the presented parameters.

Table 4.2 shows the evaluation results on the test set “Set14” for a magnification

factor of 2. We could not evaluate the results of Yang et al.[YWHM10] because the

shipped dictionaries included errors and we did not want to give false results. In-

terestingly, our methods outperform the others in terms of PSNR but the method

of Timofte et al. achieves slightly better results in terms of the SSIM-index due

to the superior elaboration of textured regions.

Table 4.3 shows the evaluation results on the test set “Li He” for upscaling

factor of 2. We see that for a majority of the images we can outperform all other

methods in terms of PSNR and SSIM. The differences in regard to the SSIM-

index are minor. Interestingly, for specific image content the method of Timofte
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system: Bicubic Yang et al. Zeyde et al. Timofte et al. Our Active Set Our Smoothed l1e
image PSNR SSIM PSNR PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
baboon 24.86 0.955 - 25.47 0.984 25.54 0.986 25.53 0.978 25.60 0.986
barbara 28.00 0.963 - 28.70 0.985 28.59 0.986 28.49 0.975 28.49 0.984
bridge 26.58 0.974 - 27.55 0.991 27.54 0.993 27.63 0.989 27.69 0.993
coastguard 29.12 0.789 - 30.41 0.840 30.44 0.845 30.30 0.815 30.58 0.840
comic 26.02 0.849 - 27.65 0.899 27.77 0.902 28.11 0.907 28.15 0.910
face 34.83 0.862 - 35.57 0.882 35.63 0.884 34.97 0.855 35.55 0.879
flowers 30.37 0.899 - 32.28 0.927 32.29 0.929 32.61 0.922 32.73 0.931
foreman 34.14 0.952 - 36.18 0.967 36.40 0.967 36.26 0.957 36.52 0.967
lenna 34.70 0.990 - 36.21 0.996 36.32 0.997 35.88 0.985 36.30 0.994
man 29.25 0.981 - 30.44 0.994 30.47 0.994 30.58 0.985 30.72 0.993
monarch 32.94 0.995 - 35.75 0.999 35.71 0.999 36.33 0.995 36.40 0.997
pepper 34.97 0.993 - 36.59 0.997 36.39 0.997 36.29 0.986 36.73 0.995
ppt3 26.87 0.991 - 29.30 0.998 28.97 0.998 29.92 0.998 29.82 0.998
zebra 30.63 0.987 - 33.21 0.997 33.07 0.997 32.94 0.991 33.31 0.997

average 30.23 0.941 - 31.81 0.961 31.80 0.962 31.85 0.953 32.04 0.962
mean run-
time [s]

- - 358 22 - 2 - 2398 - 14234 -

average,
LASSO

30.23 0.941 - 31.81 0.961 31.80 0.962 31.92 0.959 31.94 0.957

mean run-
time, LASSO
[s]

- - - 22 - 2 - 14.9 - 15.4 -

Table 4.2.: This table shows the evaluation of our bilevel sparse coding
algorithms compared to the works of Yang et al.[YWHM10],
Zeyde et al.[ZEP12] and Timofte et al.[TDG13] on the test
set “Set 14” from [TDG13] for a scaling factor of 2.

et al. achieves better results and especially for images of face and animals (group

gnd2x and gnd4x) they can outperform both of our algorithms.

To investigate this fact we present two exemplar images for a magnification factor

of 2. Figure 4.5 shows the estimates of the image “monarch” with qualitative

results. We see that our smoothed l1,ε-regularized method can outperform all

others. This method can reduce ringing artifacts at edges and corners while still

inferring fine texture. Our active set method also reduces the ringing at edges

compared to the others but results in overall smoother images. Figure 4.6 shows

the results of the image “gnd48” upscaled by factor of 2. This image belongs to

the group of animal images where the method of Timofte et al. gives superior

results compared to ours. Their system better infers textual content present in

this image group like hairs and fur. The active set methods smooths the image at

textured regions more than others method.

Figure 4.7 shows the qualitative and objective measurements of the estimates

compared to bicubic interpolation, while figure 4.8 shows the results aggregated

in a dataplot. Interestingly, our active set method achieves good performance in

terms of PSNR but can not compete with the others in terms of SSIM due to the

high smoothing of textured regions.
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(a) original (b) bicubic 32.94dB (c) Zeyde et al. 35.75dB

(d) original cut (e) bicubic cut (f) Zeyde cut

(g) Timofte et al. 35.71dB (h) active set 36.40dB (i) smoothed l1,ε 32.94dB

(j) Timofte cut (k) active set cut (l) smoothed l1,ε cut

Figure 4.5.: High-resolution estimates of the monarch image upscaled by factor
2. Bicubic interpolation achieve a PSNR of 32.94dB, Zeyde et al.
35.75dB, Timofte et al. 35.71dB while our active set achieves 36.33dB
and the smoothed l1,ε regularized method 36.40dB. This exemplar
shows that our methods reduce ringing artifacts at edges and corners
compared to the others.
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(a) original (b) bicubic 37.55dB (c) Zeyde et al. 41.26dB

(d) original cut (e) bicubic cut (f) Zeyde cut

(g) Timofte et al. 41.34dB (h) active set 39.58dB (i) smoothed l1,ε 40.48dB

(j) Timofte cut (k) active set cut (l) smoothed l1,ε cut

Figure 4.6.: High-resolution estimates of the gnd48 image upscaled by factor
2. Bicubic interpolation achieve a PSNR of 37.55dB, Zeyde et al.
41.26dB, Timofte et al. 41.34dB while our active set achieves 39.58dB
and the smoothed l1,ε regularized method 40.48dB. This exemplar
shows that Timofte et al. can infere more textured details compared
to our methods.
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system: Bicubic Yang et al. Zeyde et al. Timofte et al. Our Active Set Our Smoothed l1e
image PSNR SSIM PSNR - PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
gnd02 28.72 0.887 - 30.52 0.924 30.76 0.927 31.52 0.926 31.56 0.935
gnd03 28.65 0.831 - 29.79 0.873 29.85 0.876 29.94 0.865 30.05 0.879
gnd04 27.19 0.866 - 28.35 0.900 28.36 0.901 28.57 0.898 28.64 0.906
gnd05 27.35 0.889 - 28.97 0.922 28.96 0.922 29.45 0.920 29.49 0.929
gnd06 29.98 0.850 - 31.14 0.884 31.16 0.886 31.16 0.872 31.28 0.886
gnd07 30.22 0.919 - 32.06 0.943 32.04 0.943 32.56 0.939 32.63 0.947
gnd08 28.51 0.896 - 29.70 0.923 29.77 0.925 29.89 0.916 30.01 0.927
gnd09 30.53 0.922 - 32.44 0.948 32.29 0.945 32.87 0.946 32.91 0.953
gnd10 27.68 0.856 - 29.58 0.898 29.41 0.894 30.07 0.897 30.09 0.905
gnd12 29.69 0.841 - 31.03 0.883 31.22 0.889 31.18 0.878 31.34 0.892
gnd13 26.58 0.806 - 27.62 0.849 27.67 0.853 27.66 0.842 27.72 0.853
gnd14 26.61 0.765 - 27.51 0.816 27.64 0.823 27.58 0.809 27.70 0.823
gnd15 29.42 0.834 - 30.36 0.872 30.45 0.876 30.29 0.861 30.43 0.875
gnd16 31.19 0.872 - 32.08 0.898 32.11 0.900 31.91 0.881 32.09 0.898
gnd17 26.59 0.788 - 27.65 0.842 27.78 0.849 27.81 0.833 27.91 0.851
gnd18 24.76 0.772 - 25.61 0.820 25.71 0.826 25.80 0.816 25.82 0.828
gnd19 28.35 0.811 - 29.48 0.857 29.66 0.863 29.65 0.851 29.84 0.866
gnd20 29.46 0.864 - 30.35 0.896 30.46 0.900 30.40 0.889 30.49 0.900
gnd21 32.71 0.910 - 34.49 0.934 34.68 0.936 34.71 0.924 34.99 0.936
gnd23 31.45 0.938 - 34.18 0.956 34.04 0.956 34.58 0.949 34.97 0.958
gnd24 31.65 0.938 - 33.62 0.957 33.90 0.959 34.04 0.950 34.30 0.960
gnd25 42.43 0.979 - 43.53 0.984 43.81 0.984 41.20 0.967 43.16 0.981
gnd26 33.13 0.944 - 34.96 0.961 35.07 0.962 34.91 0.954 35.18 0.962
gnd27 33.07 0.916 - 34.46 0.939 34.60 0.941 34.29 0.919 34.72 0.939
gnd28 41.78 0.974 - 43.67 0.982 44.10 0.983 41.52 0.968 42.60 0.980
gnd29 38.75 0.973 - 40.92 0.980 40.99 0.981 39.82 0.968 40.49 0.979
gnd30 23.01 0.669 - 23.49 0.724 23.56 0.732 23.55 0.719 23.61 0.734
gnd31 28.08 0.807 - 29.15 0.845 29.06 0.844 29.32 0.838 29.36 0.848
gnd33 31.62 0.928 - 33.59 0.955 33.46 0.953 34.03 0.956 34.02 0.958
gnd34 26.31 0.805 - 27.35 0.846 27.34 0.847 27.59 0.845 27.59 0.852
gnd35 30.32 0.896 - 31.83 0.928 31.69 0.926 31.92 0.926 31.94 0.931
gnd36 28.23 0.863 - 29.58 0.900 29.62 0.902 29.91 0.901 29.90 0.907
gnd37 26.34 0.849 - 27.75 0.891 27.51 0.886 28.04 0.895 27.98 0.898
gnd38 26.21 0.785 - 27.29 0.841 27.40 0.847 27.42 0.840 27.48 0.850
gnd39 21.25 0.776 - 22.67 0.841 22.64 0.841 23.04 0.852 22.97 0.852
gnd40 25.82 0.816 - 27.42 0.865 27.41 0.866 27.80 0.863 27.82 0.873
gnd41 30.95 0.853 - 32.21 0.893 32.45 0.898 32.24 0.876 32.53 0.896
gnd42 32.83 0.880 - 33.61 0.902 33.70 0.905 33.33 0.888 33.57 0.902
gnd43 26.07 0.705 - 26.56 0.754 26.62 0.761 26.54 0.743 26.63 0.761
gnd45 36.73 0.969 - 38.94 0.978 39.15 0.979 38.52 0.967 39.12 0.977
gnd46 33.35 0.932 - 34.91 0.952 35.17 0.955 34.46 0.941 34.90 0.952
gnd47 35.80 0.944 - 37.78 0.962 37.83 0.963 37.40 0.952 37.92 0.962
gnd48 37.55 0.976 - 41.26 0.985 41.34 0.986 39.58 0.970 40.48 0.983
gnd49 27.77 0.808 - 28.90 0.852 28.97 0.856 28.89 0.839 29.03 0.856
gnd50 29.81 0.836 - 30.76 0.876 30.89 0.881 30.65 0.863 30.87 0.879
gnd52 25.86 0.781 - 26.77 0.833 26.89 0.839 26.82 0.831 26.92 0.841
gnd53 34.13 0.935 - 36.22 0.959 36.34 0.960 36.42 0.955 36.68 0.964
gnd54 37.43 0.950 - 39.53 0.967 39.65 0.968 38.79 0.952 39.84 0.968
gnd55 29.97 0.875 - 31.24 0.912 31.46 0.918 31.43 0.912 31.59 0.920
gnd56 28.72 0.878 - 30.03 0.913 30.14 0.916 30.16 0.908 30.26 0.917
gnd57 25.04 0.829 - 26.44 0.877 26.53 0.881 26.74 0.881 26.76 0.886
gnd58 28.72 0.878 - 30.33 0.914 30.36 0.917 30.45 0.910 30.58 0.919
gnd59 32.24 0.931 - 34.20 0.956 34.28 0.957 34.26 0.948 34.52 0.958
gnd60 27.98 0.898 - 29.76 0.932 29.92 0.935 30.22 0.935 30.30 0.940
gnd61 24.34 0.831 - 25.75 0.872 25.83 0.874 26.32 0.882 26.31 0.884
gnd63 32.34 0.960 - 36.43 0.977 36.21 0.978 37.04 0.972 37.62 0.979
gnd64 30.82 0.891 - 32.22 0.915 32.38 0.917 32.19 0.906 32.46 0.916
gnd65 26.20 0.872 - 28.11 0.913 27.98 0.914 29.04 0.917 29.13 0.923
gnd66 31.73 0.939 - 34.57 0.963 34.77 0.964 34.60 0.956 35.13 0.965
gnd67 29.16 0.891 - 31.50 0.927 31.53 0.928 32.05 0.922 32.29 0.934
gnd68 26.55 0.897 - 28.61 0.933 28.78 0.936 29.16 0.924 29.37 0.938
gnd69 26.90 0.868 - 28.88 0.906 28.92 0.908 29.50 0.912 29.58 0.917
gnd70 24.77 0.852 - 27.08 0.899 27.11 0.901 27.65 0.897 27.69 0.905
gnd71 27.86 0.876 - 29.52 0.913 29.61 0.915 29.94 0.907 30.02 0.920
gnd72 26.77 0.867 - 28.49 0.912 28.62 0.915 29.19 0.922 29.17 0.924
gnd73 28.89 0.917 - 30.61 0.941 30.60 0.942 31.02 0.943 31.09 0.946
gnd74 27.11 0.852 - 28.35 0.891 28.45 0.895 28.44 0.885 28.53 0.896
gnd75 29.91 0.905 - 31.87 0.938 31.97 0.941 32.55 0.934 32.85 0.945
gnd76 31.34 0.908 - 33.01 0.939 33.21 0.942 33.24 0.939 33.47 0.946
gnd77 24.53 0.715 - 25.27 0.775 25.35 0.782 25.32 0.773 25.41 0.786
gnd79 26.61 0.778 - 27.61 0.826 27.66 0.829 27.76 0.820 27.80 0.833
gnd80 30.33 0.884 - 31.90 0.920 32.03 0.923 32.34 0.918 32.44 0.928

average 29.59 0.869 - 31.16 0.904 31.23 0.906 31.25 0.898 31.47 0.909
mean
run-time
[s]

- - 76.9 2.9 - 0.4 - 345.6 - 769.8 -

average,
LASSO

29.59 0.869 - 31.16 0.904 31.23 0.906 31.35 0.907 31.33 0.902

mean
run-time,
LASSO [s]

- - - 4.8 - 0.4 - 5.2 - 5.3 -

Table 4.3.: This table shows the evaluation of our bilevel sparse coding
algorithms compared to the works of Yang et al.[YWHM10],
Zeyde et al.[ZEP12], Timofte et al.[TDG13] on the test set
“Li He” from [HQZ13] for a scaling factor of 2.
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Figure 4.7.: This figures show the performance of the different methods compared
to bicubic interpolation upscaled by a factor of 2. We can see that
our l1,ε-regularized method achieves better performance in regard of
PSNR while the method of Timofte et al. outperforms the others in
terms of the SSIM-index.
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Figure 4.8.: This figure shows the aggregated results for magnification factor of 2
on the test set “Set14”. The bold markers represent the average of
the results. Interesting to see is that our active set method achieves
good performance in terms of PSNR but can not compete with the
others in terms of the SSIM-index.

4.4.2. Test Results for Upscaling Factor of 3

Table 4.4 shows the simulation parameters used with magnification factor of 3 for

both test sets. Again we choose to have a mean of 10 non-zeros entries in the

sparse vector for a single patch resulting in the presented parameters where λactive

is set to 0.1 while λsmoothed is set to be 0.03 to reach the same number of non-zero

entries.
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Figure 4.9.: This figures show the performance of the different methods compared
to bicubic interpolation upscaled by a factor of 2 on the test set “LI
He”. We can see that our l1,ε-regularized method can outperform all
the others for most of the images.
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Figure 4.10.: This figure shows the aggregated results for magnification factor of 2
on the test set “Li He”. We can see that our l1,ε-regularized method
achieves best performance in regard of PSNR and SSIM-index, while
the active set method suffers specially in terms of the SSIM index.

Parameters Values
Dictionary atoms 1024
Scaling factor 3
High-res. patch size 9
Low-res. patch size 3
Mid-res. patch size 6
λactive 0.10
λsmoothed 0.03
ε 10−5

Max nr. of iterations 500

Table 4.4.: This table shows the parameters for testing dataset “Set 14”
and “Li He” with scaling factor of 3.



4.4. Evaluation 54

system: Bicubic Yang et al. Zeyde et al. Timofte et al. Our Active Set Our Smoothed l1e
image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
baboon 23.21 0.805 23.46 0.843 23.52 0.846 23.56 0.851 23.49 0.828 23.58 0.849
barbara 26.25 0.877 26.39 0.884 26.77 0.899 26.70 0.899 26.56 0.883 26.75 0.897
bridge 24.40 0.865 24.78 0.896 25.02 0.899 25.00 0.902 24.98 0.888 25.11 0.902
coastguard 26.55 0.615 26.95 0.638 27.14 0.655 27.07 0.658 27.02 0.616 27.20 0.648
comic 23.12 0.699 23.84 0.754 23.98 0.756 24.01 0.759 24.19 0.762 24.29 0.773
face 32.82 0.798 33.07 0.801 33.53 0.820 33.60 0.823 33.00 0.789 33.57 0.816
flowers 27.23 0.801 28.22 0.829 28.41 0.837 28.44 0.839 28.58 0.829 28.80 0.845
foreman 31.18 0.906 32.22 0.911 33.15 0.929 33.16 0.929 33.27 0.920 33.77 0.933
lenna 31.68 0.953 32.43 0.956 32.99 0.967 33.07 0.968 32.89 0.953 33.27 0.965
man 27.01 0.909 27.70 0.926 27.90 0.934 27.91 0.936 27.96 0.919 28.17 0.936
monarch 29.43 0.970 30.63 0.976 31.09 0.981 31.02 0.981 31.50 0.978 31.83 0.982
pepper 32.39 0.969 33.23 0.964 34.02 0.978 33.76 0.978 34.00 0.965 34.44 0.976
ppt3 23.71 0.942 24.88 0.960 25.22 0.965 24.96 0.962 25.60 0.968 25.74 0.971
zebra 26.63 0.912 27.81 0.933 28.51 0.941 28.40 0.942 28.51 0.921 28.93 0.941

average 27.54 0.859 28.26 0.876 28.66 0.886 28.62 0.888 28.68 0.873 28.96 0.888
mean run-
time [s]

- - 92.9 - 3.7 - 0.7 - 486.2 - 1156.5 -

average,
LASSO

27.54 0.859 27.54 0.859 28.66 0.886 28.62 0.888 28.74 0.884 28.87 0.879

mean run-
time [s],
LASSO

- - 92.9 - 6.4 - 0.7 - 8.5 - 8.5 -

Table 4.5.: This table shows the evaluation of our bilevel sparse coding
algorithms compared to the works of Yang et al.[YWHM10],
Zeyde et al.[ZEP12] and Timofte et al.[TDG13] on the test set
“Set 14” from [TDG13] for a scaling factor of 3. We see that
both our algorithms gain performance compare to the results
upscaled by factor 2.

Table 4.5 shows the evaluation results on the test set “Set14” for a magnification

factor of 3. For this upscaling factor we could evaluate the results of Yang et

al.[YWHM10] due to the correctness of the shipped dictionaries. Interestingly, for

this upscaling factor our l1,ε-regularized method outperform the others in terms of

both measurements, the PSNR and the SSIM-index.

Table 4.6 shows the evaluation results on the test set “Li He” for an upscaling

factor of 3. Compared to the result of magnification factor 2 both our algorithms

gain performance in terms of PSNR and SSIM. We explain this fact by the use

of bilevel optimization. Our bilevel programs are able to train the dictionaries

such that they are optimal in both feature spaces individually. We think that this

capacity is beneficial and has more impact for higher scaling factors.

We present three exemplar images for this magnification factor. Figure 4.11

shows the estimates of the image “zebra” with qualitative results. We can see

that the smoothed l1,ε method reduces the ringing artifacts at the leg of the zebra

compared to others. Figure 4.12 shows the results of the image “gnd63” upscaled

by factor of 3. This is a rare case where the active set method outperforms all the

others. This phenomena can be explained by the content of the image. Computer

tomography images mainly consist of flat regions separated by strong edges. Since

this is also a characteristic result for the active set method, it performs best on this

image group. At last figure 4.13 shows the results of the image “gnd48”. Here we
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see that the method of Timofte et al. can infer more details at textured regions,

for example for the hairs of the girl. Our smoothed l1,ε method is competitive for

this group of images but does not outperform Timofte et al. for this image.

Figure 4.14 shows the results of upscaling factor 3 on the test set “Li He” com-

pared to bicubic interpolation. We see that our l1,ε-regularized method achieves

best overall performance in regard of PSNR and the SSIM-index, while Timofte

et al. are better when bicubic interpolation performs well. We explain this by their

training scheme. Since Timofte et al. only learn the differences between bicubic

interpolation and the actual hr patch they “start” already from a higher level

before inferring novel details. Figure 4.15 shows the aggregated results in terms of

PSNR and SSIM-index for magnification factor 3 on the test set “Li He”. We can

see that our l1,ε-regularized method achieves best overall performance in regard of

PSNR and the SSIM-index.

4.4.3. Test Results for Degenerated Images

In order to investigate the performance of SR systems on degenerated images we

took some images of a real-world example. These images where take automatically

on a skiing slope and on a car test track. Since these images are already distorted

and no ground truth is available, we can only compare the results subjectively to

each other.

In table 4.7 we give qualitative measurements on the noisy “Set14”. We added

zero-mean white Gaussian noise with a standard deviation of 0.01 to the images

which have been in the rage between [0..1]. Due to the higher smoothing of the

images, the active set method performs best. This can also be seen in figure 4.16

where we present the results of the noisy image “coastguard”. In figure 4.17 we

present the results of the real-world example “BMW02”. Since this image set is

already degenerated, no qualitative evaluation was performed. We see that all

algorithms yield more or less equal results but subjectively our methods seem

slightly better for example at the road paintings and car boarders.
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(a) original (b) Yang et al. 27.81dB (c) Zeyde et al. 28.51dB

(d) original cut (e) Yang cut (f) Zeyde cut

(g) Timofte et al. 28.40dB (h) active set 28.51dB (i) smoothed l1,ε 28.93dB

(j) Timofte cut (k) active set cut (l) smoothed l1,ε cut

Figure 4.11.: High-resolution estimates of the zebra image upscaled by factor 3.
Yang et al. achieve a PSNR of 27.81dB, Zeyde et al. 28.51dB,
Timofte et al. 28.40dB while our active set achieves 28.51dB and
the smoothed l1,ε regularized method 28.93dB. We can see that
the smoothed l1,ε method reduces the ringing artifacts compared to
others.



4.4. Evaluation 57

system: Bicubic Yang et al. Zeyde et al. Timofte et al. Our Active Set Our Smoothed l1e
image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
gnd02 26.23 0.796 27.17 0.827 27.18 0.835 27.19 0.834 27.47 0.835 27.67 0.850
gnd03 26.50 0.723 27.03 0.754 27.25 0.764 27.23 0.766 27.27 0.751 27.44 0.771
gnd04 24.99 0.763 25.50 0.792 25.67 0.799 25.66 0.797 25.69 0.794 25.77 0.804
gnd05 24.51 0.787 25.09 0.813 25.48 0.825 25.41 0.823 25.61 0.821 25.72 0.834
gnd06 27.46 0.739 27.93 0.766 28.21 0.776 28.17 0.777 28.12 0.757 28.33 0.778
gnd07 27.32 0.842 28.30 0.859 28.45 0.870 28.37 0.868 28.63 0.863 28.80 0.876
gnd08 25.93 0.809 26.82 0.834 26.79 0.844 26.78 0.844 27.01 0.840 27.22 0.854
gnd09 27.41 0.839 28.08 0.862 28.53 0.875 28.39 0.869 28.74 0.875 28.73 0.884
gnd10 24.65 0.737 25.32 0.760 25.74 0.783 25.52 0.773 26.00 0.780 26.11 0.796
gnd12 27.01 0.706 27.46 0.743 27.81 0.752 27.89 0.759 27.84 0.739 28.10 0.762
gnd13 24.03 0.653 24.38 0.693 24.62 0.700 24.65 0.704 24.55 0.685 24.72 0.704
gnd14 24.37 0.603 24.79 0.649 24.93 0.655 24.99 0.662 24.88 0.635 25.03 0.659
gnd15 26.97 0.701 27.22 0.732 27.52 0.742 27.57 0.748 27.37 0.720 27.55 0.744
gnd16 29.09 0.789 29.13 0.793 29.67 0.815 29.68 0.818 29.44 0.790 29.73 0.814
gnd17 24.31 0.625 24.77 0.669 24.81 0.674 24.87 0.682 24.83 0.653 24.96 0.682
gnd18 22.78 0.632 23.06 0.657 23.17 0.670 23.18 0.673 23.21 0.658 23.25 0.675
gnd19 26.01 0.669 26.49 0.710 26.63 0.715 26.69 0.721 26.64 0.699 26.79 0.721
gnd20 27.38 0.768 27.70 0.790 27.85 0.799 27.89 0.802 27.78 0.784 27.94 0.803
gnd21 29.95 0.838 30.67 0.850 31.20 0.866 31.23 0.868 31.31 0.856 31.64 0.872
gnd23 28.28 0.883 29.68 0.894 30.24 0.912 30.09 0.910 30.73 0.906 31.19 0.918
gnd24 28.69 0.879 29.39 0.883 29.86 0.902 29.94 0.903 30.00 0.894 30.29 0.907
gnd25 39.03 0.957 39.17 0.956 41.20 0.972 41.37 0.973 38.56 0.943 40.52 0.967
gnd26 29.76 0.882 30.41 0.896 31.28 0.912 31.28 0.912 31.25 0.904 31.60 0.915
gnd27 30.38 0.842 30.74 0.849 31.19 0.866 31.27 0.869 31.00 0.840 31.37 0.865
gnd28 37.70 0.941 35.90 0.931 39.14 0.954 39.40 0.956 37.39 0.932 38.68 0.951
gnd29 35.67 0.951 34.60 0.938 37.48 0.961 37.45 0.961 36.37 0.944 37.27 0.959
gnd30 21.69 0.520 21.91 0.561 21.95 0.564 21.99 0.572 21.94 0.548 22.01 0.569
gnd31 25.95 0.692 26.44 0.715 26.66 0.727 26.55 0.724 26.73 0.717 26.85 0.732
gnd33 28.35 0.836 29.02 0.865 29.79 0.880 29.73 0.879 29.89 0.876 30.02 0.886
gnd34 24.35 0.694 24.67 0.709 24.84 0.726 24.82 0.726 24.87 0.716 25.02 0.734
gnd35 27.63 0.796 27.92 0.815 28.77 0.840 28.60 0.836 28.64 0.831 28.84 0.844
gnd36 25.61 0.746 26.15 0.780 26.44 0.789 26.43 0.790 26.54 0.787 26.71 0.800
gnd37 23.76 0.719 24.12 0.746 24.56 0.764 24.46 0.759 24.62 0.763 24.67 0.771
gnd38 23.60 0.595 24.05 0.654 24.12 0.653 24.16 0.661 24.12 0.641 24.22 0.661
gnd39 18.38 0.561 18.86 0.623 19.00 0.623 18.97 0.622 19.09 0.634 19.13 0.639
gnd40 23.10 0.669 23.93 0.712 24.13 0.724 24.07 0.723 24.35 0.724 24.48 0.739
gnd41 28.37 0.725 28.60 0.741 28.91 0.757 28.97 0.761 28.75 0.727 29.02 0.756
gnd42 30.73 0.804 30.35 0.804 31.24 0.826 31.31 0.829 30.87 0.802 31.16 0.823
gnd43 24.66 0.567 24.77 0.601 24.95 0.610 24.97 0.617 24.85 0.584 24.98 0.612
gnd45 32.71 0.932 33.44 0.928 34.08 0.945 34.28 0.946 33.88 0.930 34.42 0.945
gnd46 29.45 0.837 30.01 0.858 30.58 0.870 30.67 0.873 30.33 0.855 30.61 0.871
gnd47 32.28 0.877 32.91 0.889 33.60 0.903 33.56 0.904 33.34 0.889 33.84 0.905
gnd48 32.81 0.935 33.38 0.924 35.70 0.954 35.53 0.954 35.05 0.933 35.93 0.952
gnd49 25.32 0.675 25.67 0.699 26.01 0.716 26.02 0.720 25.95 0.695 26.10 0.719
gnd50 27.40 0.695 27.71 0.735 27.97 0.742 28.04 0.750 27.77 0.714 28.00 0.743
gnd52 23.42 0.600 23.77 0.662 23.91 0.658 23.99 0.667 23.90 0.649 23.98 0.666
gnd53 30.95 0.864 31.51 0.885 32.11 0.895 32.21 0.898 32.03 0.888 32.45 0.904
gnd54 34.14 0.895 34.74 0.904 35.52 0.918 35.57 0.920 34.92 0.897 35.83 0.920
gnd55 27.12 0.742 27.63 0.790 27.91 0.792 28.03 0.800 27.89 0.783 28.05 0.799
gnd56 25.80 0.752 26.38 0.791 26.51 0.795 26.62 0.800 26.53 0.784 26.70 0.802
gnd57 22.39 0.677 23.06 0.726 23.22 0.729 23.25 0.733 23.33 0.729 23.42 0.741
gnd58 25.84 0.759 26.64 0.800 27.08 0.808 27.09 0.813 27.16 0.802 27.39 0.819
gnd59 28.80 0.841 29.57 0.865 29.99 0.878 30.00 0.880 29.98 0.867 30.24 0.884
gnd60 24.62 0.772 25.40 0.814 25.61 0.818 25.71 0.823 25.81 0.821 25.92 0.831
gnd61 21.76 0.713 22.69 0.758 22.71 0.761 22.73 0.762 23.00 0.776 23.07 0.781
gnd63 28.01 0.896 29.98 0.915 30.47 0.928 30.44 0.928 31.19 0.924 31.70 0.936
gnd64 27.84 0.807 28.79 0.831 29.17 0.840 29.28 0.844 29.23 0.832 29.53 0.845
gnd65 23.34 0.739 24.49 0.788 24.39 0.789 24.30 0.788 24.86 0.798 24.80 0.806
gnd66 27.50 0.853 28.97 0.878 29.31 0.890 29.47 0.892 29.53 0.887 29.90 0.898
gnd67 25.53 0.776 27.08 0.816 26.98 0.822 27.17 0.826 27.38 0.820 27.62 0.835
gnd68 23.28 0.771 24.38 0.804 24.40 0.813 24.61 0.819 24.81 0.806 25.08 0.825
gnd69 23.78 0.758 25.16 0.809 25.18 0.810 25.27 0.813 25.63 0.822 25.76 0.828
gnd70 21.53 0.703 22.81 0.753 22.91 0.761 22.88 0.762 23.26 0.761 23.36 0.775
gnd71 24.97 0.759 25.66 0.785 25.88 0.799 25.87 0.801 26.00 0.786 26.17 0.807
gnd72 23.80 0.726 24.70 0.785 24.75 0.781 24.83 0.785 24.96 0.785 25.07 0.798
gnd73 25.93 0.840 26.58 0.862 26.77 0.866 26.74 0.867 26.91 0.868 26.90 0.873
gnd74 24.29 0.716 24.70 0.750 24.96 0.759 25.03 0.764 24.94 0.747 25.08 0.766
gnd75 26.59 0.790 27.23 0.818 27.69 0.832 27.70 0.834 27.77 0.823 28.01 0.841
gnd76 28.14 0.801 28.45 0.829 29.10 0.840 29.21 0.845 29.10 0.835 29.38 0.852
gnd77 22.62 0.538 22.97 0.598 23.04 0.595 23.08 0.604 23.05 0.586 23.13 0.606
gnd79 24.31 0.625 24.68 0.660 24.91 0.671 24.91 0.674 24.93 0.657 25.06 0.677
gnd80 27.68 0.781 28.43 0.815 28.67 0.824 28.70 0.826 28.78 0.815 29.02 0.835

average 26.76 0.760 27.32 0.788 27.75 0.799 27.78 0.801 27.72 0.789 27.99 0.806
mean
run-time
[s]

- - 36.2 - 2.4 - 0.5 - 1353.8 - 1151.0 -

average,
LASSO

26.76 0.760 26.76 0.760 27.75 0.799 27.78 0.801 27.81 0.802 27.88 0.795

mean
run-
time [s],
LASSO

- - - - 2.2 - 0.3 - 3.3 - 3.3 -

Table 4.6.: This table shows the evaluation of our bilevel sparse coding
algorithms compared to the works of Yang et al.[YWHM10],
Zeyde et al.[ZEP12] and Timofte et al.[TDG13] on the test
set “Li He” from [HQZ13] for a scaling factor of 3 .
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(a) original (b) Yang et al. 29.98dB (c) Zeyde et al. 30.47dB

(d) Timofte et al. 30.44dB (e) active set 31.19dB (f) smoothed l1,ε 31.70B

Figure 4.12.: High-resolution estimates of the gnd65 image upscaled by factor 3.
Yang et al. achieve a PSNR of 29.98dB, Zeyde et al. 30.47dB,
Timofte et al. 30.44dB while our active set achieves 31.19dB and the
smoothed l1,ε regularized method 31.70B. For this class of images
our methods outperform all others and reduce ringing artifacts.

system: Bicubic Yang et al. Zeyde et al. Timofte et al. Our Active Set Our Smoothed l1e
image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
baboon 20.05 0.732 22.62 0.745 22.73 0.742 22.68 0.739 22.83 0.759 22.71 0.745
barbara 20.06 0.648 25.05 0.751 25.23 0.742 25.06 0.731 25.45 0.789 25.18 0.747
bridge 20.17 0.790 23.64 0.817 23.92 0.820 23.81 0.817 23.98 0.828 23.88 0.821
coastguard 20.05 0.350 25.40 0.543 25.48 0.541 25.31 0.533 25.87 0.561 25.50 0.541
comic 20.08 0.535 22.88 0.678 23.10 0.678 23.06 0.675 23.25 0.697 23.19 0.686
face 20.40 0.235 28.91 0.653 28.79 0.639 28.51 0.624 29.76 0.694 28.82 0.644
flowers 20.16 0.360 26.16 0.695 26.35 0.692 26.19 0.681 26.74 0.732 26.41 0.697
foreman 20.22 0.245 28.50 0.728 28.67 0.714 28.39 0.695 29.59 0.790 28.73 0.722
lenna 20.01 0.567 28.54 0.777 28.52 0.758 28.26 0.745 29.48 0.828 28.59 0.767
man 20.31 0.686 25.90 0.808 26.04 0.801 25.90 0.793 26.41 0.836 26.10 0.807
monarch 20.02 0.571 27.63 0.784 27.73 0.763 27.46 0.748 28.62 0.842 27.95 0.773
pepper 20.08 0.561 28.92 0.784 28.90 0.766 28.52 0.751 30.00 0.839 28.97 0.775
ppt3 20.86 0.647 23.96 0.817 24.14 0.790 23.88 0.776 24.69 0.873 24.48 0.807
zebra 20.19 0.754 25.93 0.840 26.41 0.844 26.18 0.838 26.69 0.856 26.50 0.844
average 20.19 0.549 26.00 0.744 26.14 0.735 25.94 0.725 26.67 0.780 26.22 0.741
mean run-
time [s]

- - 180.9 - 8.8 - 0.9 - 690.1 - 1353.7 -

Table 4.7.: This table shows the evaluation of our algorithms on the de-
generate test set “Set14” for a scaling factor of 2. We see that
our active set method works best for noisy data.

4.5. Discussion

We evaluated our two algorithms on two distinct dataset and two upscaling factors

and presented the results. With all this data at hand we can make some basic

assumptions regarding the tested algorithms. In general the dictionaries trained

with the l1,ε regularized bilevel program gave superior results for most test cases.
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(a) original (b) Yang et al. 35.90dB (c) Zeyde et al. 39.14dB

(d) original cut (e) Yang cut (f) Zeyde cut

(g) Timofte et al. 39.40dB (h) active set 37.39dB (i) smoothed l1,ε 38.68dB

(j) Timofte cut (k) active set cut (l) smoothed l1,ε cut

Figure 4.13.: High-resolution estimates of the gnd28 image upscaled by factor 3.
Yang et al. achieve a PSNR of 35.90dB, Zeyde et al. 39.14dB,
Timofte et al. 39.40dB while our active set achieves 37.39dB and the
smoothed l1,ε regularized method 38.68dB. We see that the method of
Timofte et al. can infer more details at textured regions for example
the hairs of the girl.
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Figure 4.14.: This figures show the performance of the different methods compared
to bicubic interpolation upscaled by a factor of 3. We can see that our
l1,ε-regularized method achieves best overall performance in regard of
PSNR and the SSIM-index, while Timofte et al. are better when
bicubic interpolation performs well.
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Figure 4.15.: This figure shows the aggregated results for magnification factor of 3
on the test set “Li He”. We can see that our l1,ε-regularized method
achieves best overall performance in regard of PSNR and the SSIM-
index.

This algorithm is capable of inferring fine structured details while reducing ringing

and jaggies artifacts. This comes with the price of a rather slow run-time, although

there is still a lot of improvement possible. The active set bilevel program trains

the dictionaries such that they give overall smooth estimates with sharp edges and

also reduces ringing and jaggies artifacts. It seems to give equal results as system

solving the inverse problem formulation with Total Variation (TV) regularization.

But in comparison to Timofte et al. or the l1,ε-program it is not capable to infer fine
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(a) original (b) noisy (c) Yang et al.
25.40dB

(d) Zeyde et al.
25.48dB

(e) original cut (f) noisy cut (g) Yang cut (h) Zeyde cut

(i) original (j) Timofte et al.
25.31dB

(k) active set
25.87dB

(l) smoothed l1,ε
25.50

(m) original cut (n) Timofte cut (o) active set cut (p) smoothed l1,ε
cut

Figure 4.16.: High-resolution estimates of the noisy coastguard image upscaled
by factor 3. Yang et al. achieve a PSNR of 25.40dB, Zeyde et
al. 25.48dB, Timofte et al. 25.31dB while our active set achieves
25.87dB and the smoothed l1,ε regularized method 25.50. Due to
the high smoothing of the active set method, their results perform
best for noisy images.
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(a) original (b) Yang et al. (c) Zeyde et al.

(d) Timofte et al. (e) active set (f) smoothed l1,ε

Figure 4.17.: High-resolution estimates of the distorted BMW02 image upscaled
by factor 3. These images are already degenerated and therefor no
qualitative evaluation was performed. We see that all algorithms
yield equal results but subjectively our methods seem slightly better
than the others.

details which we see in the evaluated SSIM-index. In general our two algorithms

perform better for higher upscaling factors, namely the magnification factor 3. We

think the reason is our bilevel training scheme since the dictionaries are trained

such that they are optimal in both feature spaces individually and this fact is

more emphasized at higher scaling factors. Due to the comprehensive dataset

of “Li He” we could experience that some algorithms perform better for specific

classes of images. For example Timofte et al. perform better on images with faces

or animals where they can infer fine details. This class of images consists of many

textured regions including hair and fur. For other classes like medical images the

active set method proved to give good results. Since this type of images mainly

consist of flat regions separated by sharp edges the active set method performs well.

For degenerated noisy images the active set trained dictionaries can outperform
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all the others. As it does more smoothing then the others the noise in the images

gets suppressed rather then augmented. We can say that this methods is more

robust than others regarding the noise and would be the algorithm of choice for

noisy data. For the general class of natural images the l1,ε regularized program

would be our choice since it can outperform the others in regard of PSNR and

SSIM-index especially if higher upscaling factor are needed.

The main drawback our our bilevel program is its rather slow runtime. We only

see this as a small disadvantage because with bit more work the decomposition

algorithms can be implemented in parallel fashion on the Graphics Processing

Unit (GPU). This would lead to big improvements regarding the runtime of the

decomposition algorithms. A second solution to this problem would be to exchange

the sparse decomposition in the test scenario for a solver optimized for fast sparse

inference. Concluding, there exist a variety of state-of-the-art SR systems and

depending on the application and the type of images one can choose the appropriate

method. We showed that our SR systems perform well on the tested images with

different drawbacks and advantages over the other.
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5.1. Summary

This thesis covered a comprehensive review of SR methods and showed some fun-

damental algorithms for solving l1-regularized optimization problems often applied

in such tasks. We introduced sparse coding as a state-of-the-art method for SR and

illustrated the benefits and drawback of the jointly trained sparse representation

scheme developed by Yang et al.[YWHM10]. We took this work as a starting point

and improved their training scheme by embedding it in a bilevel formulation. We

showed the derivation of a bilevel program from the model to the implementation

and concluded this work with a comprehensive evaluation and comparison.

In the review of SR systems we first presented basic and advanced image in-

terpolation algorithms. We moved to SR methods based on the inverse problem

formulation followed by example based approaches. Recent example based systems

like Neighborhood Embedding (NE) lead to state-of-the-art results but needed a

large dataset in storage. As a method to solve this drawback, SR via sparse repre-

sentation was presented. The seminal work of Yang et al. [YWHM10] which first

introduced sparse coding for SR relied on a sub-optimal training scheme. This was

a major motivation for this thesis. For comparison we reviewed other SR methods

utilizing sparse representation like [ZEP12] or [TDG13]. Since convex optimization

plays an important role in our and other’s SR methods, we presented the basic

solvers used in our system.

64
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The main point of this thesis was the derivation of the bilevel training scheme

from the model to an applicable algorithm. This process needed careful attention

regarding the model and the used norms. This was an important lesson learned

during this thesis. For example, the sparse decomposition preceding the dictionary

update stage has to closely follow the underlying model to achieve convergence.

Any solver which is not based on the exact model e.g. Orthogonal Matching Pur-

suit (OMP) or the LASSO with the regularization in the constraint, simply can

not solve the problem modeled. This argument is one reason why our program is

slow compared to other sparse solvers which make significant simplification for the

benefit of a faster run-time. In the testing stage, for comparison we exchanged the

sparse decomposition solver (FISTA) for one with a faster run-time (LASSO),

but the quality of the results were not as good. In general a model should be versa-

tile but specific enough to account for the practical situations in use. In our case,

the use of a strongly convex regularization yielded a simple but computationally

challenging algorithm. The results achieved by this algorithm can outperform the

state-of-the-art SR systems and show the benefit of convex optimization.

The bilevel program presented in chapter 3 solves the training of two connected

dictionaries. The main benefit of this bilevel optimization procedure is its opti-

mality in the two feature spaces individually, the lr feature space and the hr

feature space. With decent simplification we could apply this training scheme to

l1-regularized lower-level problem statement. The resulting training scheme ben-

efits from the simplification in terms of the run-time with minor drawbacks in

regard of the quality of the results.

We have applied our bilevel optimization program to upscale digital images.

Qualitative and subjective evaluation was performed. We took a comprehensive

evaluation dataset and compared our algorithms to other SR systems based on

sparse coding. Due to a lack of time we could not run a full evaluation of the

parameter space and their influence on the results. We instead chose parameter

values like patch size or dictionary size based on available literature and compara-

ble systems. For initialization of our algorithm we took dictionaries trained with

[YWHM10] and could achieve improved results.
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5.2. Further Work

Single image SR based on Sparse Coding (SC) operate on patches rather than hole

images. We know from literature and from our own evaluation, that patch based

systems decrease their performance at patch borders specifically when higher patch

sizes are used. The patch-based system of Freeman et al.[FJP02] adds a proba-

bilistic model to take the spatial neighborhood into account and thus they could

increase the performance of estimated patches. We think that a related global

strategy could also improve our training scheme. Zeyde et al.[ZEP12] showed a

simple reformulation of dictionary learning problem to account for spatial neigh-

borhood without changing the patch-based dictionary learning scheme. They

added a patch-extraction operator in the problem formulation and could conse-

quently transform the problem to a global training scheme where the dictionaries

were learned on hole images. Such a formulation could also be applied to our

training scheme and improve our results as this could better reflect errors at patch

borders. A global training scheme also enables a system to be better trained on

specific images.

A minor drawback of our bilevel program is its rather slow run-time compared

to methods like [TDG13] or [ZEP12]. For the training stage, this should not

be a problem, since we can compute it off-line but for testing, a fast system is

preferred. We think of this only as a minor disadvantage since this problem can

be easily overcome by implementing FISTA and IPIASCO in parallel fashion on

the GPU. Such an implementation should lead to big run-time improvements and

lead the sparse decomposition stages to state-of-the-art performance regarding the

run-time.

Sparse Coding has already been applied to various tasks including image

reconstruction, image denoising, image deblurring[CDMBP11], inverse

half-toning[MBP12] or artistic transforms[WZLP12b]. Most of these tasks can be

modeled as a bilevel program and solved with our derivations, especially image

deblurring, inverse half-toning and artistic transforms. All of these methods

utilize two connected dictionaries with a common sparse vector. In principle,

problems within two feature spaces modeled as sparse representation can be

solved by our model with minimal changes.
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5.3. Conclusion

Concluding, we presented a SR method that exploits the power of bilevel pro-

gramming for dictionary learning. This is especially evident for SR with higher

magnification factors. Furthermore, modeling optimization problems with strictly

convex functions yield state-of-the-art results with all the benefits shipped with

convex optimization.
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Acronyms

Acronyms

BP Belief Propagation

FISTA Fast Iterative Shrinkage-Thresholding Algo-

rithm

FSIM Feature Structural Similarity

GPU Graphics Processing Unit

GSM Gradient Similarity

hr High Resolution

IPIASCO Inertial Proximal Algorithm for strongly con-

vex Optimization

IQA Image quality assessment

ISTA Iterative Shrinkage-Thresholding Algorithm

LARS Least-angle Regression

LASSO Least Absolute Shrinkage and Selection Oper-

ator

lBFGS Limited Broyden-Fletcher-Goldfarb-Shanno

LLE Locally Linear Embedding
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lr Low Resolution

LS Least-Squares

MAP Maximum A-posteriori Pobability

ML Maximum Likelihood

mr Mid Resolution

MRF Markov Random Field

NE Neighborhood Embedding

NEDI New Edge Directed Interpolation

NN Nearest Neighbors

NNLS Non-Negative Least Square

OMP Orthogonal Matching Pursuit

PCA Principal Component Analysis

PSNR Peak-Signal-to-Noise Ratio

QCQP Quadratically Constrained Quadratic Pro-

gramming

RLLR Regularized Local Linear Regression

RMS Root Mean Square Error

RR Ridge Regression

SAI Soft-decision Adaptive Interpolation

SC Sparse Coding

SPAMS Sparse Modeling Software

SR Super Resolution

SSIM Structural Similarity

SVD Singular Value Decomposition

SVM Support Vector Machine
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TV Total Variation
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system: Bicubic Yang et al. Zeyde et al. Timofte et al. Our Active Set Our Smoothed l1e
image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
gnd02 28.72 0.887 28.72 0.887 30.52 0.924 30.76 0.927 31.55 0.932 31.45 0.929
gnd03 28.65 0.831 28.65 0.831 29.79 0.873 29.85 0.876 30.03 0.877 29.96 0.870
gnd04 27.19 0.866 27.19 0.866 28.35 0.900 28.36 0.901 28.59 0.905 28.59 0.901
gnd05 27.35 0.889 27.35 0.889 28.97 0.922 28.96 0.922 29.43 0.927 29.44 0.924
gnd06 29.98 0.850 29.98 0.850 31.14 0.884 31.16 0.886 31.30 0.885 31.16 0.877
gnd07 30.22 0.919 30.22 0.919 32.06 0.943 32.04 0.943 32.60 0.945 32.54 0.942
gnd08 28.51 0.896 28.51 0.896 29.70 0.923 29.77 0.925 29.95 0.924 29.94 0.921
gnd09 30.53 0.922 30.53 0.922 32.44 0.948 32.29 0.945 32.90 0.951 32.83 0.949
gnd10 27.68 0.856 27.68 0.856 29.58 0.898 29.41 0.894 30.07 0.904 30.05 0.900
gnd12 29.69 0.841 29.69 0.841 31.03 0.883 31.22 0.889 31.30 0.890 31.16 0.883
gnd13 26.58 0.806 26.58 0.806 27.62 0.849 27.67 0.853 27.70 0.853 27.64 0.845
gnd14 26.61 0.765 26.61 0.765 27.51 0.816 27.64 0.823 27.64 0.823 27.60 0.812
gnd15 29.42 0.834 29.42 0.834 30.36 0.872 30.45 0.876 30.40 0.874 30.28 0.865
gnd16 31.19 0.872 31.19 0.872 32.08 0.898 32.11 0.900 32.07 0.894 31.94 0.889
gnd17 26.59 0.788 26.59 0.788 27.65 0.842 27.78 0.849 27.88 0.849 27.82 0.839
gnd18 24.76 0.772 24.76 0.772 25.61 0.820 25.71 0.826 25.81 0.827 25.78 0.819
gnd19 28.35 0.811 28.35 0.811 29.48 0.857 29.66 0.863 29.76 0.864 29.71 0.856
gnd20 29.46 0.864 29.46 0.864 30.35 0.896 30.46 0.900 30.50 0.899 30.39 0.892
gnd21 32.71 0.910 32.71 0.910 34.49 0.934 34.68 0.936 34.85 0.933 34.82 0.930
gnd23 31.45 0.938 31.45 0.938 34.18 0.956 34.04 0.956 34.56 0.954 34.89 0.955
gnd24 31.65 0.938 31.65 0.938 33.62 0.957 33.90 0.959 34.11 0.956 34.15 0.955
gnd25 42.43 0.979 42.43 0.979 43.53 0.984 43.81 0.984 42.47 0.977 42.47 0.977
gnd26 33.13 0.944 33.13 0.944 34.96 0.961 35.07 0.962 35.00 0.960 35.00 0.958
gnd27 33.07 0.916 33.07 0.916 34.46 0.939 34.60 0.941 34.57 0.934 34.49 0.930
gnd28 41.78 0.974 41.78 0.974 43.67 0.982 44.10 0.983 42.41 0.977 41.96 0.975
gnd29 38.75 0.973 38.75 0.973 40.92 0.980 40.99 0.981 40.19 0.974 39.96 0.975
gnd30 23.01 0.669 23.01 0.669 23.49 0.724 23.56 0.732 23.58 0.734 23.57 0.721
gnd31 28.08 0.807 28.08 0.807 29.15 0.845 29.06 0.844 29.34 0.847 29.30 0.841
gnd33 31.62 0.928 31.62 0.928 33.59 0.955 33.46 0.953 34.00 0.959 33.90 0.955
gnd34 26.31 0.805 26.31 0.805 27.35 0.846 27.34 0.847 27.60 0.852 27.53 0.845
gnd35 30.32 0.896 30.32 0.896 31.83 0.928 31.69 0.926 31.90 0.930 31.83 0.927
gnd36 28.23 0.863 28.23 0.863 29.58 0.900 29.62 0.902 29.92 0.908 29.83 0.901
gnd37 26.34 0.849 26.34 0.849 27.75 0.891 27.51 0.886 27.97 0.899 27.96 0.895
gnd38 26.21 0.785 26.21 0.785 27.29 0.841 27.40 0.847 27.45 0.850 27.39 0.841
gnd39 21.25 0.776 21.25 0.776 22.67 0.841 22.64 0.841 23.00 0.855 22.99 0.850
gnd40 25.82 0.816 25.82 0.816 27.42 0.865 27.41 0.866 27.79 0.872 27.80 0.866
gnd41 30.95 0.853 30.95 0.853 32.21 0.893 32.45 0.898 32.50 0.893 32.28 0.884
gnd42 32.83 0.880 32.83 0.880 33.61 0.902 33.70 0.905 33.52 0.900 33.39 0.894
gnd43 26.07 0.705 26.07 0.705 26.56 0.754 26.62 0.761 26.61 0.760 26.56 0.748
gnd45 36.73 0.969 36.73 0.969 38.94 0.978 39.15 0.979 38.84 0.974 38.84 0.973
gnd46 33.35 0.932 33.35 0.932 34.91 0.952 35.17 0.955 34.65 0.949 34.66 0.946
gnd47 35.80 0.944 35.80 0.944 37.78 0.962 37.83 0.963 37.74 0.960 37.56 0.957
gnd48 37.55 0.976 37.55 0.976 41.26 0.985 41.34 0.986 39.81 0.977 40.03 0.978
gnd49 27.77 0.808 27.77 0.808 28.90 0.852 28.97 0.856 28.95 0.853 28.91 0.844
gnd50 29.81 0.836 29.81 0.836 30.76 0.876 30.89 0.881 30.81 0.878 30.71 0.869
gnd52 25.86 0.781 25.86 0.781 26.77 0.833 26.89 0.839 26.86 0.842 26.85 0.832
gnd53 34.13 0.935 34.13 0.935 36.22 0.959 36.34 0.960 36.73 0.963 36.39 0.959
gnd54 37.43 0.950 37.43 0.950 39.53 0.967 39.65 0.968 39.60 0.964 39.33 0.961
gnd55 29.97 0.875 29.97 0.875 31.24 0.912 31.46 0.918 31.50 0.919 31.43 0.913
gnd56 28.72 0.878 28.72 0.878 30.03 0.913 30.14 0.916 30.18 0.916 30.15 0.911
gnd57 25.04 0.829 25.04 0.829 26.44 0.877 26.53 0.881 26.71 0.887 26.71 0.881
gnd58 28.72 0.878 28.72 0.878 30.33 0.914 30.36 0.917 30.47 0.918 30.48 0.913
gnd59 32.24 0.931 32.24 0.931 34.20 0.956 34.28 0.957 34.39 0.955 34.33 0.953
gnd60 27.98 0.898 27.98 0.898 29.76 0.932 29.92 0.935 30.18 0.939 30.23 0.937
gnd61 24.34 0.831 24.34 0.831 25.75 0.872 25.83 0.874 26.27 0.884 26.29 0.881
gnd63 32.34 0.960 32.34 0.960 36.43 0.977 36.21 0.978 36.93 0.976 37.56 0.976
gnd64 30.82 0.891 30.82 0.891 32.22 0.915 32.38 0.917 32.25 0.914 32.36 0.910
gnd65 26.20 0.872 26.20 0.872 28.11 0.913 27.98 0.914 28.92 0.921 29.11 0.920
gnd66 31.73 0.939 31.73 0.939 34.57 0.963 34.77 0.964 34.58 0.961 34.95 0.961
gnd67 29.16 0.891 29.16 0.891 31.50 0.927 31.53 0.928 32.03 0.931 32.19 0.927
gnd68 26.55 0.897 26.55 0.897 28.61 0.933 28.78 0.936 29.15 0.934 29.34 0.932
gnd69 26.90 0.868 26.90 0.868 28.88 0.906 28.92 0.908 29.41 0.916 29.54 0.912
gnd70 24.77 0.852 24.77 0.852 27.08 0.899 27.11 0.901 27.60 0.903 27.66 0.899
gnd71 27.86 0.876 27.86 0.876 29.52 0.913 29.61 0.915 29.99 0.918 29.92 0.913
gnd72 26.77 0.867 26.77 0.867 28.49 0.912 28.62 0.915 29.16 0.925 29.11 0.920
gnd73 28.89 0.917 28.89 0.917 30.61 0.941 30.60 0.942 30.97 0.946 31.14 0.945
gnd74 27.11 0.852 27.11 0.852 28.35 0.891 28.45 0.895 28.45 0.895 28.45 0.889
gnd75 29.91 0.905 29.91 0.905 31.87 0.938 31.97 0.941 32.59 0.943 32.63 0.938
gnd76 31.34 0.908 31.34 0.908 33.01 0.939 33.21 0.942 33.34 0.945 33.23 0.940
gnd77 24.53 0.715 24.53 0.715 25.27 0.775 25.35 0.782 25.34 0.786 25.35 0.775
gnd79 26.61 0.778 26.61 0.778 27.61 0.826 27.66 0.829 27.81 0.832 27.71 0.823
gnd80 30.33 0.884 30.33 0.884 31.90 0.920 32.03 0.923 32.45 0.927 32.30 0.922

average
LASSO

29.59 0.869 29.59 0.869 31.16 0.904 31.23 0.906 31.35 0.907 31.33 0.902

mean
run-time
[s],LASSO

- - 0 - 4.8 - 0.4 - 5.2 - 5.3 -

Table B.1.: This table shows the evaluation of our bilevel sparse coding
algorithms compared to the works of Yang et al.[YWHM10],
Zeyde et al.[ZEP12] and Timofte et al.[TDG13] on the test
set “Li He” from [TDG13] for a scaling factor of 2. We used
the solver of “cite spams” in combination with our trained
dictionaries.
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system: Bicubic Yang et al. Zeyde et al. Timofte et al. Our Active Set Our Smoothed l1e
image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
gnd02 26.23 0.796 26.23 0.796 27.18 0.835 27.19 0.834 27.50 0.842 27.62 0.843
gnd03 26.50 0.723 26.50 0.723 27.25 0.764 27.23 0.766 27.35 0.766 27.38 0.759
gnd04 24.99 0.763 24.99 0.763 25.67 0.799 25.66 0.797 25.69 0.801 25.71 0.797
gnd05 24.51 0.787 24.51 0.787 25.48 0.825 25.41 0.823 25.59 0.830 25.67 0.826
gnd06 27.46 0.739 27.46 0.739 28.21 0.776 28.17 0.777 28.22 0.774 28.22 0.765
gnd07 27.32 0.842 27.32 0.842 28.45 0.870 28.37 0.868 28.63 0.872 28.73 0.869
gnd08 25.93 0.809 25.93 0.809 26.79 0.844 26.78 0.844 27.02 0.849 27.20 0.846
gnd09 27.41 0.839 27.41 0.839 28.53 0.875 28.39 0.869 28.71 0.880 28.67 0.878
gnd10 24.65 0.737 24.65 0.737 25.74 0.783 25.52 0.773 25.94 0.787 26.15 0.791
gnd12 27.01 0.706 27.01 0.706 27.81 0.752 27.89 0.759 27.94 0.757 27.98 0.748
gnd13 24.03 0.653 24.03 0.653 24.62 0.700 24.65 0.704 24.57 0.701 24.68 0.691
gnd14 24.37 0.603 24.37 0.603 24.93 0.655 24.99 0.662 24.94 0.656 24.96 0.642
gnd15 26.97 0.701 26.97 0.701 27.52 0.742 27.57 0.748 27.49 0.740 27.44 0.727
gnd16 29.09 0.789 29.09 0.789 29.67 0.815 29.68 0.818 29.59 0.808 29.59 0.800
gnd17 24.31 0.625 24.31 0.625 24.81 0.674 24.87 0.682 24.91 0.677 24.89 0.664
gnd18 22.78 0.632 22.78 0.632 23.17 0.670 23.18 0.673 23.24 0.673 23.22 0.664
gnd19 26.01 0.669 26.01 0.669 26.63 0.715 26.69 0.721 26.73 0.719 26.70 0.705
gnd20 27.38 0.768 27.38 0.768 27.85 0.799 27.89 0.802 27.88 0.799 27.85 0.791
gnd21 29.95 0.838 29.95 0.838 31.20 0.866 31.23 0.868 31.41 0.866 31.50 0.863
gnd23 28.28 0.883 28.28 0.883 30.24 0.912 30.09 0.910 30.66 0.912 31.18 0.912
gnd24 28.69 0.879 28.69 0.879 29.86 0.902 29.94 0.903 30.05 0.902 30.20 0.900
gnd25 39.03 0.957 39.03 0.957 41.20 0.972 41.37 0.973 39.94 0.961 39.41 0.955
gnd26 29.76 0.882 29.76 0.882 31.28 0.912 31.28 0.912 31.29 0.911 31.43 0.908
gnd27 30.38 0.842 30.38 0.842 31.19 0.866 31.27 0.869 31.22 0.858 31.17 0.850
gnd28 37.70 0.941 37.70 0.941 39.14 0.954 39.40 0.956 38.20 0.946 37.99 0.941
gnd29 35.67 0.951 35.67 0.951 37.48 0.961 37.45 0.961 36.73 0.953 36.84 0.951
gnd30 21.69 0.520 21.69 0.520 21.95 0.564 21.99 0.572 21.98 0.567 21.97 0.553
gnd31 25.95 0.692 25.95 0.692 26.66 0.727 26.55 0.724 26.76 0.727 26.81 0.723
gnd33 28.35 0.836 28.35 0.836 29.79 0.880 29.73 0.879 29.89 0.884 29.95 0.880
gnd34 24.35 0.694 24.35 0.694 24.84 0.726 24.82 0.726 24.89 0.726 24.99 0.726
gnd35 27.63 0.796 27.63 0.796 28.77 0.840 28.60 0.836 28.67 0.839 28.78 0.837
gnd36 25.61 0.746 25.61 0.746 26.44 0.789 26.43 0.790 26.54 0.796 26.67 0.792
gnd37 23.76 0.719 23.76 0.719 24.56 0.764 24.46 0.759 24.59 0.771 24.65 0.765
gnd38 23.60 0.595 23.60 0.595 24.12 0.653 24.16 0.661 24.17 0.660 24.15 0.645
gnd39 18.38 0.561 18.38 0.561 19.00 0.623 18.97 0.622 19.07 0.640 19.13 0.634
gnd40 23.10 0.669 23.10 0.669 24.13 0.724 24.07 0.723 24.32 0.733 24.48 0.732
gnd41 28.37 0.725 28.37 0.725 28.91 0.757 28.97 0.761 28.95 0.751 28.86 0.738
gnd42 30.73 0.804 30.73 0.804 31.24 0.826 31.31 0.829 31.06 0.818 31.01 0.811
gnd43 24.66 0.567 24.66 0.567 24.95 0.610 24.97 0.617 24.94 0.608 24.90 0.594
gnd45 32.71 0.932 32.71 0.932 34.08 0.945 34.28 0.946 34.06 0.940 34.14 0.936
gnd46 29.45 0.837 29.45 0.837 30.58 0.870 30.67 0.873 30.43 0.868 30.43 0.860
gnd47 32.28 0.877 32.28 0.877 33.60 0.903 33.56 0.904 33.59 0.900 33.60 0.896
gnd48 32.81 0.935 32.81 0.935 35.70 0.954 35.53 0.954 35.18 0.943 35.65 0.943
gnd49 25.32 0.675 25.32 0.675 26.01 0.716 26.02 0.720 26.01 0.713 26.04 0.704
gnd50 27.40 0.695 27.40 0.695 27.97 0.742 28.04 0.750 27.94 0.739 27.86 0.724
gnd52 23.42 0.600 23.42 0.600 23.91 0.658 23.99 0.667 23.93 0.667 23.92 0.650
gnd53 30.95 0.864 30.95 0.864 32.11 0.895 32.21 0.898 32.31 0.901 32.22 0.895
gnd54 34.14 0.895 34.14 0.895 35.52 0.918 35.57 0.920 35.54 0.914 35.33 0.908
gnd55 27.12 0.742 27.12 0.742 27.91 0.792 28.03 0.800 27.97 0.798 27.94 0.785
gnd56 25.80 0.752 25.80 0.752 26.51 0.795 26.62 0.800 26.58 0.798 26.61 0.790
gnd57 22.39 0.677 22.39 0.677 23.22 0.729 23.25 0.733 23.31 0.739 23.40 0.733
gnd58 25.84 0.759 25.84 0.759 27.08 0.808 27.09 0.813 27.11 0.814 27.35 0.809
gnd59 28.80 0.841 28.80 0.841 29.99 0.878 30.00 0.880 30.09 0.880 30.10 0.874
gnd60 24.62 0.772 24.62 0.772 25.61 0.818 25.71 0.823 25.79 0.828 25.88 0.824
gnd61 21.76 0.713 21.76 0.713 22.71 0.761 22.73 0.762 22.96 0.778 23.08 0.779
gnd63 28.01 0.896 28.01 0.896 30.47 0.928 30.44 0.928 31.06 0.930 31.73 0.931
gnd64 27.84 0.807 27.84 0.807 29.17 0.840 29.28 0.844 29.21 0.841 29.46 0.836
gnd65 23.34 0.739 23.34 0.739 24.39 0.789 24.30 0.788 24.80 0.803 24.81 0.801
gnd66 27.50 0.853 27.50 0.853 29.31 0.890 29.47 0.892 29.46 0.892 29.85 0.893
gnd67 25.53 0.776 25.53 0.776 26.98 0.822 27.17 0.826 27.37 0.830 27.55 0.826
gnd68 23.28 0.771 23.28 0.771 24.40 0.813 24.61 0.819 24.80 0.819 25.07 0.815
gnd69 23.78 0.758 23.78 0.758 25.18 0.810 25.27 0.813 25.56 0.825 25.75 0.824
gnd70 21.53 0.703 21.53 0.703 22.91 0.761 22.88 0.762 23.22 0.769 23.39 0.769
gnd71 24.97 0.759 24.97 0.759 25.88 0.799 25.87 0.801 26.02 0.801 26.11 0.795
gnd72 23.80 0.726 23.80 0.726 24.75 0.781 24.83 0.785 24.96 0.795 25.02 0.789
gnd73 25.93 0.840 25.93 0.840 26.77 0.866 26.74 0.867 26.87 0.872 26.88 0.869
gnd74 24.29 0.716 24.29 0.716 24.96 0.759 25.03 0.764 24.97 0.762 25.02 0.754
gnd75 26.59 0.790 26.59 0.790 27.69 0.832 27.70 0.834 27.83 0.836 27.92 0.830
gnd76 28.14 0.801 28.14 0.801 29.10 0.840 29.21 0.845 29.20 0.846 29.22 0.841
gnd77 22.62 0.538 22.62 0.538 23.04 0.595 23.08 0.604 23.09 0.605 23.09 0.589
gnd79 24.31 0.625 24.31 0.625 24.91 0.671 24.91 0.674 24.97 0.673 25.01 0.664
gnd80 27.68 0.781 27.68 0.781 28.67 0.824 28.70 0.826 28.88 0.830 28.91 0.824

average
LASSO

26.76 0.760 26.76 0.760 27.75 0.799 27.78 0.801 27.81 0.802 27.88 0.795

mean
run-time
[s],LASSO

- - 0.0 - 2.2 - 0.3 - 3.3 - 3.3 -

Table B.2.: This table shows the evaluation of our bilevel sparse coding
algorithms compared to the works of Yang et al.[YWHM10],
Zeyde et al.[ZEP12] and Timofte et al.[TDG13] on the test
set “Li He” from [TDG13] for a scaling factor of 2. We used
the solver of “cite spams” in combination with our trained
dictionaries.
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