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Introduction

Energy storage will play a key role in developing an electricity system based
on renewable energy. Generally, renewable energy systems are vitiated by
the variable availability of the resources. The problem is that rises in energy
generation do not necessarily correspond to rises in demand and vice versa.
Therefore, energy storage is essential to balance supply and demand, as it
can grant a back-up to intermittent renewable energy.
The efficient usage of energy storage systems in electricity distribution net-
works could significantly reduce costs and stabilize market prices. Further-
more, it could improve the security and efficiency of electricity transmission.

Currently, 99% of the worldwide storage capacity is represented by Pumped
Hydro Storage Systems [14]. This form of energy storage was particularly
attractive when the electricity network was composed of distributed grids
with weak interconnection.
Nowadays other forms of storage, for instance batteries or chemical storage,
are required to maximize the efficiency of a highly interconnected network.
Unfortunately, their usage is still minimal or at an early stage of development.

The Thermal Storage System treated in this master thesis offers a rela-
tively cheap way of storing energy as it allows to store the thermal energy
itself. It is particularly interesting for solar thermal power plants. In this
case the Thermal Storage System must provide energy when the solar radi-
ation is not capable to fulfill the demand.
A huge disadvantage of this system is that it is not possible to exploit its
entire capacity and the heat stored in it cannot be fully recovered. In this
master thesis, we want to cope with this inconveniences by controlling the
system.
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4 INTRODUCTION

As a start, in chapter 1 the concept of Thermal Storage System with
packed bed is exposed. It is a thermally isolated cylinder containing a crushed
material with a high thermal capacity. A fluid flowing through the cylinder
exchanges thermal energy with the crushed material, where it is then stored
to shift its delivery. A prototype of such a system was built in the course of
the ESTATE lab project at the University of Cagliari. This laboratory plant
will be the system to be controlled in this master thesis.
The main problem of this specific storage concept is that it’s not possible
to exploit the entire capacity during the charging phase. Furthermore, only
a fraction of the energy stored in the cylinder can be later extracted. The
principle aim of this master thesis is to optimize the charging efficiency by
means of control.

In chapter 2 a mathematical model describing the charging dinamics of
the Thermal Storage System is derived. The partial differential equations
obtained cannot be solved analytically and must therefore be solved numeri-
cally. A discrete-time model is obtained as well as a continuous-time model.
The models are then validated on the laboratory plant.

In order to understand the dynamics of the system, in chapter 3 some
open-loop experiments are held on the numerical models. The results show
that the charging efficiency can be improved choosing appropriate input
trends.
Moreover, the desired behavior of the controlled system is outlined. There-
fore, control variables and system outputs are specified.

Chapters 4, 5 and 6 deal with control methods to improve the charging
performance of the Thermal Storage System.
In chapter 4 the system is modeled as as a chain of first-order stable systems.
The system is then controlled by a PI controller with variable-time Smith
predictor, where the feedback variable is obtained by switching between the
various outputs of the chain.
To control the system by means of Model Predictive Control, in chapter 5,
the system is identified as a nonlinear ARMAX-model. To do so, for various
constant inputs, linear ARMAX models are identified. Afterwords, the local
linear models are combined to a global nonlinear model. In appendix A a
Monte-Carlo method was performed to describe the probability for the model
to be stable using this approach.
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In chapter 6 the system is controlled by a Fuzzy controller. As there is only
one input that must control more than one output, the input is obtained as
a weighted average over various Fuzzy controller outputs.

Finally, the achievements are summarized in the conclusive chapter.





Chapter 1

System description

The scientific name of the storage system to be controlled in this thesis is
Packed Bed Energy Storage System. It is principally meant for storing ther-
mal energy of solar thermal power plants. As in this case there is no need
to convert the energy, the losses incurred by energy transformation can be
prevented. It is a relatively cheap method of storing the energy, while for
example storing electricity is much more expensive. [5]
This storage system is mostly applied for short-therm energy storage, for in-
stance to smooth out the plant output during intermittently cloudy weather
conditions. Hence, times of mismatch between energy supply by the sun and
energy demand can be reduced.

1.1 General operation mode

The mode of operation of this specific storage system is very simple and is
shown in figure 1.1. The Thermal Storage System consist of a vertically
placed thermally isolated cylinder. The entire volume of the cylinder is filled
with small balls with a high thermal capacity. As there is a significant void
fraction between the balls, they form a porous packed bed. If there is more
thermal energy available than needed, a hot liquid is introduced into the
top of the cylinder and it gradually conveys the heat to the balls. While
the upper part of the cylinder is heated, the lower part still has the initial
temperature of the balls. This results in a temperature gradient through the
coil, which is called thermocline. Therefore, the fluid that exits from the

7



8 1.2. DESIGN CRITERIA

Figure 1.1: Scheme of the energy exchange in the Thermal Storage System

bottom of the cylinder is cold.
As soon as energy is demanded, for example because the sun radiation is lim-
ited or non-existing, a cold liquid is sent through the bottom of the cylinder.
While flowing through the coil, the liquid absorbs the thermal energy stored
in the balls and the heated liquid exits from the top of the cylinder.

1.2 Design criteria

The selection of the appropriate system is a compromise between cost and
benefit. The cost of such a system mainly depends on the storage material
itself, the heat exchanger for charging and discharging the system and the
cost for the space and enclosure for the Thermal Storage System.
The key issue of the design of such a thermal storage system is the amount
of energy that it can store and provide, which mainly depends on the choice
of the material of the packed bed. It must have a very high thermal capacity,
but must be resistant to high temperatures. Other crucial requirements on
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the system behavior are: [5]

• Good heat transfer from fluid to the storage medium

• The charging and discharging procedure should be completely reversible
for a high number of cycles

• The thermal losses should be negligible

• The system should be easy to control

1.3 Laboratory plant

In the course of the ESTATE-LAB project, a prototype of a Packed Bed
Energy Storage System was built according to the design standards in [2].
The project is founded by the MIUR (the Italian Ministry of Education,
Universities and Research) and its overall aim is to develop technologies for
solar thermal power plants. It is particularly interesting for Sardinia, where
the average yearly sun radiation is 1800kWh/m2. [2]
The ESTATE-LAB project involves the following institutions: [8]

• Project coordinator: CRS4

• Sardegna Ricerche

• University of Cagliari: Institute of Mechanical Engineering and Insti-
tute of Electrical and Electronical Engineering

• R.T.M S.p.A.

• Sapio S.r.l.

The laboratory plant, which is shown in figure 1.2, is located at the Campus
of Monserrato in Cagliari.
The space in the laboratory occupied by the system is approximately 15m2,
while it’s height is almost 4m. The cylinder has a diameter of approximately
60 cm and is 1.8m tall. To minimize the thermal losses, the cylinder is en-
closed by a 10 cm thick insulation wall, which is composed of stone wool with
a protecting galvanized steel laminate.
The upper and lower end of the cylinder are delimited by very dense grids,
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Figure 1.3: SUPPORBIT: aluminum oxide balls

which prevent the balls from obstructing the pipes. Adjacent to the grid,
diffusers are placed in order to spread the mass flow coming from the pipes
to the entire section of the cylinder.
The storage material selected is called SUPPORBIT and is shown in pic-

ture 1.3. It consists of small balls mostly composed of aluminum oxide. The
chemical and thermophysical properties will be treated extensively in section
2.2.

During the charging phase, a compressor, which is placed outdoors, pumps
a specific mass flow into a pipe. There it is measured by a flow meter. The
T-valve 3 redirects the flow to the heater, where the flow absorbs thermal
energy and reaches a set temperature. The hot flow is then sent to the T-
valve 2 which redirects it to the top of the thermally isolated cylinder. The
cold flow that exits from the bottom of the coil is driven from the T-valve 1
to the chimney, which releases the fluid outdoors.
For discharging the system, the T-valves 1 and 3 are inverted. The compres-
sor pumps the mass flow into the pipe, but instead of reaching the heater, it
goes straight to the bottom of the cylinder. The hot flow that comes out of
the upper part of the coil, is driven back to the heater through the T-valve 2.
The same thermal energy, which was used to charge the coil, is now available.
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In the next chapter, the thermophysical properties of the materials will
be discussed in detail and the mathematical model of the Thermal Storage
System is derived.

1.4 Performance

Considering the operation mode and the thermophysical properties exposed
in the next chapter, the maximal energy capacity of this specific Thermal
Storage System is

Emax = 37kWh.1 (1.1)

To store this amount of energy in the cylinder, the entirety of the balls con-
tained in it must be at the temperature of the hot fluid. As the axial direction
of the coil has a temperature gradient, this can only happen if we allow that
energy is wasted through the fluid that exits from the bottom of the cylin-
der.
On the other hand, if we stop the charging procedure as soon as the exit
flow experiences some temperature change, only a minor percentage of the
capacity can be exploited. Similarly, while discharging the system, we don’t
allow the exit flow to be colder than the fluid used to charge the coil. This
reduces once more the energy that is available after one cycle.
If we perform more charging-discharging cycles on the system, these percent-
ages decrease gradually. After a certain number of cycles the efficiency of the
system is close to zero. In [2] the system is submitted to 10 consecutive cy-
cles using a constant mass flow. During the first charging procedure, 62.19%
of the cylinder can be charged. Unfortunately, it is only possible to recover
38.15% of the stored energy, that is 23.73% of the entire storage capacity.
After 10 cycles, only 0.87% of the capacity is available to store energy and
only the amount of energy corresponding to 0.8% of the entire storage ca-

1This data arises from:

Emax = CV,b(Thot) · (Thot − Tcold) · Vb · ρb

Vb = ǫ

(
D

2

)2

πL

with all the parameters reported in 2.2.
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pacity can be recovered.

The ultimate aim of this master thesis is to improve the efficiency of the
Thermal Storage System by means of control. In this case, only the charging
phase of the system will be discussed.





Chapter 2

Modeling

In this chapter a mathematical model for the Thermal Storage System (TSS)
is described. As there does not exist an analytical solution to the model equa-
tions, the simulation of the system will be based on a numerical calculation.
The simulation results will be then compared to laboratory measurements.

2.1 Mathematical model of the TSS

As previously mentioned, the Thermal Storage System consists of a thermally
isolated cylinder filled with small balls with a high thermal capacity. A hot
liquid flows through the cylinder and conveys the thermal energy to the balls
in order to be stored. As soon as the energy is requested, a cooler liquid is
sent through the coil so that it absorbs the heat stored in the balls.
The mathematical model used is based on Schumann’s equations for heat
transfer in a porous prism [7]. It is a so-called LTNE (Local Thermal Non-
Equilibrium model), which means that the temperature of the packed bed
and of the fluid are considered to be unequal at each point. The problem is
to find the distribution of the temperature of the packed bed and of the fluid
for all time. To do so we assume that:

• The temperature gradient in radial direction is zero at each time

• The cylinder is perfectly thermally isolated

• The balls are small enough or have a sufficiently high thermal diffusivity
to assure that each ball is at a uniform temperature at each time instant

15
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A

A

x=0

x
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V

dV

x=L

Figure 2.1: The axial direction x of the volume V is divided into infinitesimal
dx

• The conduction in the fluid itself and in the solid itself can be neglected
with respect to the transfer of heat from fluid to solid

• The heat transfer rate from fluid to solid at any point is proportional
to the average difference in temperature between fluid and solid at that
point

• Thermal expansion can be neglected in both fluid and solid

As a start, the axial direction of the coil is divided into infinite disks as shown
in figure 2.1. Each disk has a volume equal to dV = A · dx, where A is the
base area of the cylinder and dx is an infinitesimal part of the height of the
cylinder. Considering that x is the direction of the flow and x = 0 is set to
the base of the cylinder, for each disk the law of conservation of energy can
be written for both fluid and solid: [6]

q̇f = ρf · A · dx · ǫ · CV,f ·
∂Tf

∂t
+ ṁf · CP,f ·

∂Tf

∂x
· dx, (2.1)

q̇b = ρb · A · dx · (1− ǫ) · CV,b ·
∂Tb

∂t
, (2.2)
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where

• the subscript b refers to the bed, hence the solid and the subscript f
refers to the fluid

• q̇ in [W] is the power exchanged between liquid and solid

• ρ in [kg/m3] is the volumetric mass density

• A in [m2] is the base of the cylinder

• ǫ ∈ [0, 1] is the porosity of the cylinder, i.e. the percentage of cylinder
filled by air.

• CV in [J/(kg ·K)] is the specific heat at constant volume

• CP in [J/(kg ·K)] is the specific heat at constant pressure

• T in [K] is the temperature

• ṁf in [kg/s] is the mass flow

• t in [s] is the time

• x in [m] is the distance in the axial direction

As the cylinder is thermally isolated it is obvious that power can only be
exchanged between fluid and solid and the only supply of power is the mass
flow ṁf .
Alternatively, the power exchange between liquid and solid can be written in
terms of heat transfer:

q̇f = h ·N · As(Tb − Tf ), (2.3)

q̇b = h ·N · As(Tf − Tb), (2.4)

where

• the subscript s refers to a single ball, hence As in [m2] is the surface
of a single ball

• h in [W/(m2 ·K)] is the heat transfer coefficient

• N is the number of balls contained in the volume dV
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Notice that the power exchange is proportional to the temperature gap be-
tween liquid and solid in each point.
Combining (2.1) with (2.3) and (2.2) with (2.4) we get

ρf · A · dx · ǫ · CV,f ·
∂Tf

∂t
+ ṁf · CP,f ·

∂Tf

∂x
· dx = h ·N · As(Tb − Tf ), (2.5)

ρb · A · dx · (1− ǫ) · CV,b ·
∂Tb

∂t
= h ·N · As(Tf − Tb). (2.6)

Dividing both equations by dV = A · dx yields

ρf · ǫ · CV,f ·
∂Tf

∂t
+ ṁf · CP,f ·

∂Tf

∂x

1

A
=

h ·N · As

dV
︸ ︷︷ ︸

hV

(Tb − Tf ), (2.7)

ρb · (1− ǫ) · CV,b ·
∂Tb

∂t
=

h ·N · AS

dV
︸ ︷︷ ︸

hV

(Tf − Tb). (2.8)

Here hV in [W/(m3 ·K)] is the heat transfer coefficient per unit volume,
which can be reduced to:

hV =
hNAS

dV

(∗)
=

hNAS(1− ǫ)

NVS

(∗∗)
=

4π(dS/2)
2

4
3
π(dS/2)3

h(1− ǫ) =
6h(1− ǫ)

dS
, (2.9)

where dS in [m] is the average diameter of the balls. The term N has disap-
peared from the formula; this is essential as it’s not possible to “count” the
balls contained in an infinitesimal volume.
In (2.9) step (*) can be achieved considering that one single ball has a volume
of VS and that there are N balls in the volume V , hence

VS ·N = dV · (1− ǫ) → dV =
VS ·N

(1− ǫ)
. (2.10)

Step (**) instead uses the formula for the volume and the surface of a ball
with diameter dS and radius rS.

1

The main difficulty in calculating hV as shown in (2.9) is to specify the
heat transfer coefficient h. To do so, one of the various empirical correlations

1VS = 4

3
πr3S , AS = 4πr2S
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between the dimensionless Nusselt, Reynold and Prandtl numbers will be
used.
The Reynolds number is defined as the ratio of momentum forces to viscous
forces. A low Reynolds number is characteristic for smooth and constant flow
motion. Turbulent flow with eddies and vortices occurs at high Reynolds
numbers.
The Nusselt number is the ratio of convective to conductive heat transfer
at the boundary between the solid and the fluid. A larger Nusselt number
corresponds to more active convection, hence to a higher Reynolds number.
Finally, the Prandtl number defines the ratio of momentum diffusivity to
thermal diffusivity.

Among the various relations between the three numbers, it is shown that
for the specific case of a Thermal Storage System with packed bed, the more
suitable is the following:

NuDS = 2 + 1.1 · Pr1/3 · Re0.6DS, (2.11)

where the subscript DS refers to the diameter of the balls.
The expressions for each number are:

NuDS =
h · dS
kf

, (2.12)

Pr =
CP,f · µf

kf
, (2.13)

ReDS =
ρf · υ · dS

µf

, (2.14)

where

• kf in [W/(m ·K)] is the thermal conductivity of the fluid

• µf in [Pa · s] is the dynamic viscosity of the fluid

• υ in [m/s] is the average velocity of the fluid inside the coil

We need to write the velocity υ in equation 2.14 in terms of the mass
flow ṁf . To do so, let’s define the superficial mass velocity Gf :

Gf := ρf · υ =
ṁf

A
. (2.15)



20 2.2. PHYSICAL PARAMETERS OF THE MODEL

Inserting (2.12), (2.14) and (2.13) into (2.11) and rearranging it, we get
an expression for h that contains only known terms:

h =
kf
dS

(

2 + 1.1 ·

(
CP,f · µf

kf

)1/3

·

(
ṁf · dS
A · µf

)0.6
)

. (2.16)

At this point, it is possible to summarize the entirety of differential equa-
tions that describe the trend of both temperatures Tf and Tb over time for
an infinitesimal volume dV :

∂Tf

∂t
= −

ṁf · CP,f

ρf · ǫ · CV,f · A

∂Tf

∂x
+

hV

ρf · ǫ · CV,f

(Tb − Tf ), (2.17)

∂Tb

∂t
=

hV

ρb · (1− ǫ) · CV,b

(Tf − Tb), (2.18)

hV =
6h(1− ǫ)

dS
, (2.19)

h =
kf
dS

(

2 + 1.1 ·

(
CP,f · µf

kf

)1/3

·

(
ṁf · dS
A · µf

)0.6
)

. (2.20)

Unluckily, this mathematical model cannot be solved analytically and
therefore it is necessary to realize a numerical model for simulating the be-
havior of the Thermal Storage System. This will be the topic of the next
sections.

2.2 Physical parameters of the model

Before creating the numerical model of the Thermal Storage System, it is
important to fix the physical parameters used for both fluid and balls and
the geometrical properties of the system.

Let’s start with the geometrical properties of the cylinder and of the balls
contained in it: [8][2]

• Length of the coil: L = 1.8m

• Diameter of the coil: D = 0.584m

• Average diameter of the balls dS = 8mm. (between 7mm and 9mm)
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• Porosity of the packed bed ǫ = 0.39

The calculation of the porosity is quite difficult because not all the balls are
the same size. Here it is based on a statistical approach as shown in [10].
In addition, there are some control specifications that must be satisfied. Due
to the real system there are some restrictions on the mass flow:

• Lower limit for the mass flow: ṁf,MIN = 0.7kg/s

• Upper limit for the mass flow: ṁf,MAX = 0.26kg/s

The temperatures of the hot mass flow Thot and of the cold mass flow Tcold

(hence the temperature of the coil before starting the charging phase) can
be chosen arbitrarily. For this master thesis the following temperatures are
used:

• Hot mass flow: Thot = 237oC

• Cold mass flow: Tcold = 38oC

Let’s continue with the physical properties of the air, that is the fluid
that we use for the Thermal Storage System. The choice of the material is
based on the fact that it’s cheap, permanently available and eco-sustainable.
All thermophysical properties of the air are assumed to be dependent on the
temperature Tf . Tabular 2.1 contains all the coefficients for various tempera-
tures at atmospheric pressure ([4]). For all coefficients a polynomial fitting is
done; the use of a look-up table is much slower and less efficient in Simulink.
For the same reason the order of the polynomial should possibly be small. It
is shown that for the various coefficients a polynomial of 1st or 2nd order is
sufficient to achieve a good model. Figure 2.2 compares the interpolation of
the values in tabular 2.1 to the polynomial fitting.
At that point, only the physical properties of the packed bed are missing.

The material chosen for the balls is SUPPORBIT, which is mostly com-
posed of aluminum oxide. See table 2.2 for the chemical composition. [8]
The thermophysical properties of aluminum oxide (Al2O3) are used to model
the SUPPORBIT ([4]). The density is assumed to be constant for all tem-
peratures, the specific heat instead varies with the temperature (see table
2.3). Figure 2.2 shows the data for the specific heat and the fitting with a
polynomial of 2nd order.
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Coefficient ρf CV,f · 10
−3 CP,f · 10

−3 kf · 10
2 µf · 10

5

Unit [kg/m3] [J/kg ·K] [J/kg ·K] [W/m ·K] [Pa/s]
1.85oC 1.2840 0.7167 1.0038 2.428 1.725
26.85oC 1.1770 0.7178 1.0049 2.624 1.846
51.85oC 1.0860 0.7192 1.0063 2.816 1.962
76.85oC 1.0090 0.7211 1.0082 3.003 2.075
101.85oC 0.9413 0.7235 1.0106 3.186 2.181
126.85oC 0.8824 0.7264 1.0135 3.365 2.286
176.85oC 0.7844 0.7335 1.0206 3.710 2.485
226.85oC 0.7060 0.7424 1.0295 4.041 2.670
276.85oC 0.6418 0.7527 1.0398 4.357 2.849
Pol. degree 2 2 2 1 1

Table 2.1: Thermophysical properties of air at various temperatures at atmo-
spheric pressure

Material Composition in [%]
Al2O3 ≥ 89.5
SiO2 ≥ 6.5
MgO + CaO ≥ 5.2
BaO ≥ 0.6
Fe2O3 ≥ 0.3
Na2O +K2O ≥ 0.6

Table 2.2: Chemical composition of the SUPPORBIT

Coefficient CV,b · 10−3 ρb
Unit [J/kg ·K] [kg/m3]
24.9oC 0.7822 3600
26.9oC 0.7850 -
99.9oC 0.9014 -
126.9oC 0.9420 -
199.9oC 1.0168 -
226.9oC 1.0467 -
Pol. degree 2 -

Table 2.3: Thermophysical properties of aluminum oxide at various temperatures
at atmospheric pressure
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Figure 2.2: Thermophysical properties of air and aluminum oxide at atmospheric
pressure. Actual data compared to a polynomial fitting

2.3 Numerical model of the system

The mathematical model for the trend of the temperatures Tf and Tb in
the infinitesimal volume dV is described with the equations (2.17), (2.18),
(2.19) and (2.20).
Extracting the following coefficients

C1(ṁf , Tf ) =
ṁf · CP,f

ρf · ǫ · CV,f · A
in
[m

s

]

, (2.21)

C2(ṁf , Tf ) =
hV

ρf · ǫ · CV,f

in

[
1

s

]

, (2.22)
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C3(ṁf , Tf , Tb) =
hV

ρb · (1− ǫ) · CV,b

in

[
1

s

]

, (2.23)

the equations (2.17) and (2.18) can be rewritten as follows:

∂Tf

∂t
= −C1

∂Tf

∂x
+ C2(Tb − Tf ), (2.24)

∂Tb

∂t
= C3(Tf − Tb). (2.25)

The equation cannot be solved analytically because the coefficients C1,
C2 and C3 depend on Tf , Tb and ṁf .

To find a numerical solution to the system of differential equations, a
Finite Element Method is used. The system contains derivatives with re-
spect to the time t and to the distance x, thus two different approaches of
discretization are proposed in the next sections:

1. Discretize both t and x → Lax-Wendroff method

2. Discretize only x, while t is continuous

To discretize the function domain, all the derivatives can be substituted
by a proper difference quotient. There are various ways to approximate, for
example, a first order derivative:

• Forward finite difference:
(
∂u
∂x

)

i
≈ ui+1−ui

∆x

• Backward finite difference:
(
∂u
∂x

)

i
≈ ui−ui−1

∆x

• Centered finite difference:
(
∂u
∂x

)

i
≈ ui+1−ui−1

2∆x

In general, backward finite difference is used for derivatives with respect to
the time, while for derivatives with respect to the distance usually a centered
finite difference is used.
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pivot point

Figure 2.3: Grid for both x and t discretization

2.3.1 Lax-Wendroff method

To discretize the model temporary and spatially, the Lax-Wendroff method
is used. This model has a second order accuracy for both t and x. Another
advantage of this method is that stability is guaranteed unless a CFL condi-
tion does not hold.

Figure 2.3 shows the grid of discretization for both variables. Each node
u of the grid carries two indexes:

un
i = u(x = i ·∆x, t = n ·∆t),

i ∈ [0, 1, ...,M ], n ∈ [0, 1, ..., nend],
(2.26)

with boundary values

x0 = 0cm,

xM = L,
(2.27)

and initial value
t0 = 0s. (2.28)

To derive the numerical model, let’s start from the convection equation

∂Tf

∂t
= −C1

∂Tf

∂x
+ C2(Tb − Tf ) (2.29)
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and derive both parts with respect to t:

∂2Tf

∂x∂t
= −

1

C1

∂2Tf

∂t2
+

C2

C1

∂(Tb − Tf )

∂t
(2.30)

and with respect to x, respectively:

∂2Tf

∂t∂x
= −C1

∂2Tf

∂x2
+ C2

∂(Tb − Tf )

∂x
. (2.31)

Assuming that the function Tf is differentiable on its whole domain2 , the
right part of the two equations (2.30) and (2.31) can be combined to:

∂2Tf

∂t2
− C2

1

∂2Tf

∂x2
= +C2

∂(Tb − Tf )

∂t
︸ ︷︷ ︸

≈0

−C2C1
∂(Tb − Tf )

∂x
︸ ︷︷ ︸

≈0

. (2.32)

Equation (2.32) is an inhomogeneous wave equation. Fo sake of simplifi-
cation, it can be assumed that the difference between the temperature of the
air and of the balls (Tb−Tf ) does not vary significantly (neither spatially nor
temporary) during a the short time ∆t. Hence, the right part of the equation
can be set to zero and the wave equation is homogeneous now:

∂2Tf

∂t2
= C2

1

∂2Tf

∂x2
. (2.33)

At this point, let’s develop the function Tf at the point (x, t+∆t) in Taylor
Series:

Tf (x, t+∆t) = Tf (x, t) +
∂Tf (x, t)

∂t
∆t+

∂2Tf (x, t)

∂t2
∆t2

2!
+ ... (2.34)

Inserting (2.29) and (2.33) in (2.34) and neglecting the terms of more than
2nd order leads to:

Tf (x, t+∆t) = Tf (x, t) +

(

−C1
∂Tf

∂x
+ C2(Tb − Tf )

)

∆t

+

(

C2
1

∂2Tf

∂x2

)
∆t2

2!
.

(2.35)

2If a function u(x, t), [x, t] ∈ D is differentiable in (x0, t0) ∈ D, then uxt(x0, t0) =
utx(x0, t0)
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Figure 2.4: Iterative Lax-Wendroff procedure

The derivatives with respect to x can be replaced by the centered finite
differences

(ux)
n
i ≈

un
i+1 − un

i−1

2∆x
, (2.36)

(uxx)
n
i ≈

un
i+1 − 2un

i + un
i−1

∆x2
, (2.37)

with the following result:

Tf
n+1
i = Tf

n
i + C2 · (Tb

n
i − Tf

n
i )∆t− C1 ·∆t

(
Tf

n
i+1 − Tf

n
i−1

)

2∆x

+
∆t2C2

1

2!
·

(
Tf

n
i+1 − 2Tf

n
i + Tf

n
i−1

)

∆x2
.

(2.38)

Here, the time t and the distance x have been replaced by the discrete val-
ues n and i. Equation (2.38) describes how Tf at some discretization point
(n + 1, i) can be iteratively calculated from Tf

n
i , Tf

n
i+1, Tf

n
i−1 and Tb

n
i . Of

course this is only possible if the initial conditions and the boundary condi-
tions are known. See figure 2.4 for a graphical explanation of the procedure.
The calculation of the variable Tb is still missing. Therefore the forward

finite difference (
∂Tb

∂t

)n

i

≈
Tb

n+1
i − Tb

n
i

∆t
(2.39)

is used in order to discretize equation (2.25), which results in:

Tb
n+1
i = Tb

n
i + C3∆t(Tf

n
i − Tb

n
i ). (2.40)

For the pivot point corresponding to the last spatial discretization point
i = M with xM = L, it is necessary to find a different correlation. The reason
is that i = M +1 does not exist, and hence the iteration for calculating TfM
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Figure 2.5: Iterative Lax-Wendroff procedure for i = M

and TbM must depend only on Tf and Tb with i ≤ M (see figure 2.5 ). The
equation for Tf used in this case is3:

Tf
n+1
M = Tf

n
M + C2 · (Tb

n
M − Tf

n
M)∆t− C1 ·∆t

(
Tf

n
M−2 − 4Tf

n
M−1 + 3Tf

n
M

)

2∆x

+
∆t2C2

1

2!
·

(
Tf

n
M−2 − 2Tf

n
M−1 + Tf

n
M

)

∆x2

(2.41)

The equation for Tb instead is unchanged.
Before continuing with the modeling, the stability of the numerical model is
briefly discussed.

Stability of the Lax-Wendroff method

If the Lax-Wendroff discretization is done on the system

∂Tf

∂t
= −C1

∂Tf

∂x
∂2Tf

∂t2
= C2

1

∂2Tf

∂x2

(2.42)

there exists a test to assure the stability of the numerical model: the Courant-
Friedrichs-Lewy number (CFL) must be smaller than 1: [12]

CFL =
C1∆t

∆x
≤ 1 → ∆t ≤

∆x

C1

. (2.43)

3Here, for the term (ux)
n
M a backward difference approximation with second order error

is used. For the second derivative instead, it was assumed that (uxx)
n
M ≈ (uxx)

n
M−1
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Consider a wave moving across a discrete spatial grid. If we want to compute
the amplitude of the wave at discrete time steps with constant sample time,
then the sample time must be smaller than the time for the wave to reach
an adjacent grid point.
This means that the discretization ∆x can be chosen arbitrarily in order to
achieve the accuracy needed. Instead ∆t depends on the previous choice.
As mentioned previously, the temperature can be measured at 19 different
points through the laboratory plant. The first sensor is placed at x = 0 cm
and the last one at x = 180 cm = L.4 That means that there is a sensor
each 10 cm.
A good compromise between accuracy and model efficiency is the choice to
discretize the gap between two sensors 4 times, i.e:

∆x = 2.5 cm (2.44)

Thus, the model can be viewed as a state-space model with (4 · 18) state-
variables for describing the temperature Tf and the same amount for Tb.
Overall, there are 144 variables.

To determine the sample time ∆t let’s have a look at figure 2.6. It shows
how C1(ṁf , Tf ) varies with the temperature of the fluid for different values of
the mass flow, including the minimum and maximal flow. It is clear that C1

is both proportional to the temperature and to the mass flow. That means
that its maximum value is at:

C1,MAX = C1(ṁf,MAX , Thot) = 5.03m/s (2.45)

To make sure that the CFL holds anytime, the following must be true:

∆t ≤
∆x

C1,MAX

= 0.00497 s (2.46)

After doing some experiments on the model, though, it was found that the
discretization using the sample time ∆t = 0.004 s is not stable for high mass
flows. This could be due to the fact that we are not considering the homoge-
neous system (2.42), but there is an additional term. All experiments held
were stable using ∆t = 0.0025 s instead.

A possible choice for the discretization is therefore:

4Remember the assumption that the temperature does not vary in radial direction
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Figure 2.6: Coefficient C1 over temperature Tf for various values of the mass
flow ṁf

• ∆t = 0.0025 s

• ∆x = 0.25 cm

Initial conditions and Boundary conditions

For a Simulink -implementation of the Thermal Storage System there are still
some specifications needed.

First of all, boundary conditions and initial conditions must be set. The
initial conditions for the fluid and the packed bed are:

• Tf (t = 0) = Tcold

• Tb(t = 0) = Tcold

The only boundary condition that is needed to solve the iterative problem is
Tf (x = 0). All other boundaries are free.
It would seem quite obvious that the temperature of the fluid at the beginning
of the coil is be equal to the temperature of the hot flow passing through the
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Figure 2.7: Boundary condition Tf (x = 0, t)

coil. The problem is that the flow, before reaching the coil, must pass through
a diffuser that “delays” the reaching of the temperature Thot. For this thesis
we will assume that the delay does not depend on the mass flow and hence
the boundary condition Tf (x = 0, t) will be set equal to the temperature
measured in a laboratory experiment from the sensor placed at x = 0 cm.
Thus, the boundary condition is time-dependent(see figure 2.7). It is clear
that:

• Tf (x = 0, t = 0) = Tcold

• Tf (x = 0, t → ∞) = Thot

2.3.2 Continuous-time x-discretization

Here a different approach for solving the differential equations 2.24 and 2.25

is proposed. Instead of discretizing both variables x and t, here the time is
continuous, while only x is divided into finite elements.
Each time-continuous u(t) carries a single index:

ui(t) = u(x = i ·∆x, t)

i ∈ [0, 1, ...,M ], t ∈ [0, tend]
(2.47)
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with boundary values

x0 = 0cm,

xM = L.
(2.48)

Equation 2.25 does not contain any derivative with respect to x and
remains hence unchanged. To discretize equation 2.24, the derivative with
respect to x is replaced by a centered finite difference, which results in

∂Tf i

∂t
= −C1

(
Tf i+1 − Tf i−1

2∆x

)

+ C2(Tbi − Tf i) (2.49)

For the last discretization point i = M , insted, a backward finite difference
is used:

∂TfM

∂t
= −C1

(
TfM − TfM−1

∆x

)

+ C2(TbM − TfM) (2.50)

The initial conditions and boundary conditions are the same as for the Lax-
Wendroff discretization.
The discretization ∆x can be chosen arbitrarily and the model is always
stable.

2.4 Model vs. plant

At this point the two numerical model can be used for testing their validity
and accuracy.
This can be done by comparing the simulation results with the measure-
ments of a laboratory experiment on the real plant for a certain input. Let’s
consider for example the charging procedure of the Thermal Storage Sys-
tem being at a temperature Tcold, using as an input the constant mass flow
ṁf = 0.15kg/s at a temperature Thot. We will assume that the sensors of
the plant measure the temperature of the fluid, hence Tf .
Figure 2.8 shows for both numerical models with ∆x = 0.025m the temper-
ature measured over time by the 19 sensors placed all over the coil compared
to the simulated temperature. The errors

e(T0) = T0sim − T0lab

e(T1) = T1sim − T1lab

e(T2) = ...

(2.51)
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Figure 2.8: Comparison between laboratory measurements on the real plant
and simulated model. Charging procedure of the Thermal Storage System with
constant flow ṁf = 0.15kg/s. First graph: Lax-Wendroff method. Second graph:
Continuous-time x-discretization

are reported in figure 2.9, respectively.
The error e(T0) is equal to zero because the laboratory measurement was used
as the boundary condition. Looking at the first graph,corresponding to the
Lax-Wendroff method, we can see that for the following measurement points
the simulated temperature is a little bit higher than the actual temperature
till they reach approximately 140oC. Afterwords the simulated temperature
is slightly lower than it should be, but quite accurate. This imprecisions
could be due to quantization errors. The asymptotical behavior of the model
is very good, as

e → 0 for t → ∞. (2.52)
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Figure 2.9: Error between laboratory measurements on the real plant and sim-
ulated model. Charging procedure of the Thermal Storage System with con-
stant flow ṁf = 0.15kg/s. First graph: Lax-Wendroff method. Second graph:
Continuous-time x-discretization

The error e(T6) is quite big, but it looks like this is due to a measurement
error and not related to modeling. It is possible that the sensor was placed
around x = 63 cm instead of being at x = 60 cm. Therefore this error will
not be taken into account in the following considerations.
The maximal error is

eMAX = 9oC (2.53)

which results in a percentage error of

eMAX,% =
eMAX

Thot − Tcold

· 100% = 4.52%. (2.54)
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However, the mean absolute error for a simulation of 4700s is:

eMEAN = 1.3oC → eMEAN,% =
eMEAN

Thot − Tcold

· 100% = 0.65%. (2.55)

Figure 2.10 shows the temperature distribution in the coil measured at 500 s
time intervals. It is clear that the state of charge of the model is higher than
the s.o.c. of the plant at each time instant. This can be due to the losses that
were neglected in the model. However we can see that the model accuracy
gets better after a certain settlement. Additionally, note the higher error at
x = 60 cm.
The second graph of each pictures refers to the simulation results on the
time-continuous model with x-discretization. We can see that in general this
model is better than the previous one for lower temperatures, while it has a
worse behavior for t → ∞. Here the errors are:

eMAX = 7.25oC → eMAX,% = 3.64%, (2.56)

eMEAN = 1.1oC → eMEAN,% = 0.55%. (2.57)

All in all we can say that both models lead to a good result. For all the
following experiments the first model will be used.
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Figure 2.10: Temperature distribution in the coil at various time-steps. Com-
parison between laboratory measurements on the real plant and simulated model.
Charging procedure of the Thermal Storage System with constant flow ṁf =
0.15kg/s. First graph: Lax-Wendroff method. Second graph: Continuous-time
x-discretization



Chapter 3

Why control?

3.1 Experiments on the model

The model built with the specifications exposed in chapter 2 can now be
used for doing some experiments in order to understand the behavior of the
system.

3.1.1 Experiments with constant inputs

As a start, some experiments with a constant input ṁf are carried out.
Figure 3.1 shows the evolution of the temperatures of the fluid and of the
balls for each 10 cm for three different constant flows.

First of all let’s do a consideration on the difference between the tem-
perature of the fluid Tf and the temperature of the balls Tb. As we could
imagine, Tb is always a little bit lower than Tf . It is understood that when
the hot flow enters the coil, it takes some time for the balls to be heated. The
temperature gap for each measurement point is graphically shown in figure
3.2. Notice that the gap is higher for lower x and that they are asymptoti-
cally zero.
Getting back to figure 3.1, notice that the temperatures can only increase
and never drop. Even if the flow is lowered, it is never possible to drop the
temperature, because the input-flow will always be at a constant tempera-
ture Thot. In addition, we can clearly see that the final stable value does not
depend on the flow, but is always equal to Thot. We will see that these two

37
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Figure 3.1: Evolution of the temperature of the fluid and of the balls for three
different constant inputs: ṁf = 0.09kg/s, ṁf = 0.15kg/s and ṁf = 0.21kg/s
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Figure 3.2: Temperature gap between the fluid and the balls for the constant
input ṁf = 0.15kg/s

properties of the system will make the control of the system a bit challenging.
On the other hand, it is clear from the graphics that the duration of the charg-
ing phase is indirectly proportional to the strength of the flow. Throughout
the whole thesis we will assume that the system is charged when the tem-
perature of the fluid at the end of the cylinder (x = 180 cm) will rise by

∆Tcharged = 7.5oC. (3.1)

With this assumption the charging-duration depending on the flow is
depicted in figure 3.3. For the minimum mass flow the charging proce-
dure lasts more than three times longer than with the maximum mass flow
(10500 s ≈ 3h vs. 2700 s ≈ 3/4h). The dependence can be approximated
with a polynomial of 3rd degree.

At that point one could inadvertently conclude that the charging with
a higher mass flow is in general favorable. The problem is that a higher
mass flow leads to a worse charge distribution over the coil. As previously
mentioned we assume the system to be fully charged as soon as Tf,18 ≥
Tcold +∆Tcharged. At that time tcharged we measure the percentage of charge
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Figure 3.3: Charging duration of the model for different constant mass flows.
The system is assumed to be charged as soon as Tf,18 ≥ Tcold +∆Tcharged.

in the coil considering the temperature of the balls:

%charged =

(∫ L

0

Tb(tcharged, x) dx− Tcold

)

·
100

(Thot − Tcold) · L
. (3.2)

Figure 3.4 shows the charging percentage for various constant mass flows
which can be approximated by a 2nd order polynomial. The percentage varies
between 72.3% for the minimum mass flow and 63.8% for the maximum mass
flow.
That means that there will always be a compromise between a better charge
distribution and the charging duration.
All the pairs (tcharged, %charged) are summarized in table 3.1.

3.1.2 Other experiments

As explained in the previous section the quality of an experiment is measured
in terms of the duration and the charging percentage. The duration should
be possibly short and the percentage high.
In addition to the experiments with constant mass flow, other experiments
were held in order to try to achieve better results.
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Figure 3.4: Charging percentage of the model for different constant mass flows.
The system is assumed to be charged as soon as Tf,18 ≥ Tcold +∆Tcharged.

tcharged in [s] %charged

ṁf = 0.07kg/s 10482 72.3
ṁf = 0.09kg/s 8069 70.83
ṁf = 0.12kg/s 5978 68.87
ṁf = 0.15kg/s 4735 67.1
ṁf = 0.165kg/s 4286 66.27
ṁf = 0.18kg/s 3943 65.98
ṁf = 0.21kg/s 3359 64.56
ṁf = 0.24kg/s 2966 64.2
ṁf = 0.26kg/s 2727 63.61
Experiment 1 6840 66.69
Experiment 2 6579 70.19
Experiment 3 4390 68.5

Table 3.1: Duration of charging phase and percentage of charge for various ex-
periments
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Figure 3.5: Experiment 1: input ṁf and output Tf
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Figure 3.6: Experiment 2: input ṁf and output Tf
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Figure 3.7: Experiment 3: input ṁf and output Tf

Experiment 1 uses ṁf,MAX for the first part of the experiment and then it
decreases quite fast to ṁf,MIN , which is held till the end of the experiment.
The switch between the two constant values occurs at

tswitch ≈ tcharge(ṁf,MAX)/2 (3.3)

and lasts 200s. See figure 3.5 for the input-output of the experiment.
On the contrary, Experiment 2 (see figure 3.6) uses first the low values for
the mass flow and then it increases to the higher value. Here the switch
happens at

tswitch ≈ tcharge(ṁf,MIN)/2 (3.4)

and lasts as well 200s.
Experiment 3 (figure 3.7) as well starts from the lower value and increases,
but in that case the switch is at 100s and lasts almost till the end of the
experiment (4500s).
All the pairs (tcharged, %charged) corresponding to the three experiments are
reported in table 3.1.

To measure if the experiments give better results than the experiments
with constant input, figure 3.8 compares the pairs (tcharged, %charged) for con-
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Figure 3.8: Compare the results of the experiments with constant mass flow
(black line) with the three experiments of section 3.1.2. The pairs that lie above
the line are ‘worse’ experiments, the ones over it are ‘better’ experiments

stant mass flow with the pairs of the last three experiments. We can say that
all the pairs that lie above the black line are ‘worse’ charging procedures and
the ones that lie over it are ‘better’ results. We can clearly see that Experi-
ment 1 is not suitable, as it takes 2340 s ≈ 40min more to achieve the same
percentage as with constant mass flow.
Experiment 2 instead leads to good results. Here it takes 810 s ≈ 15min

less to achieve the same percentage as with a constant input.
Experiment 3 gives even better results: it takes 1300 s ≈ 22min less to get
the same percentage as with constant mass flow.
The experiments show that it should be avoided to decrease the mass flow
during the charging phase. Instead, it is profitable to increase it gradually.
The problem is that there is always a compromise between charging duration
and distibution.



CHAPTER 3. WHY CONTROL? 45

3.2 Control specification

All the experiments listed in the last section were performed in open-loop.
That means that the the outputs or state-space variables do not affect the in-
put during the experiment. The measurements of an experiment were merely
used to decide the input of the next experiment.
In the next chapters various closed-loop control strategies are applied to the
model in order to improve its performance. That means to achieve a higher
charging percentage in a shorter time.

3.2.1 Input, output and state-vector

In section 2.3 the x- and t-discretized model for the Thermal Storage System
is deduced. The iterative model obtained is rewritten here1:

Tf
n+1
i = Tf

n
i + C2 · (Tb

n
i − Tf

n
i )∆t− C1 ·∆t

(
Tf

n
i+1 − Tf

n
i−1

)

2∆x

+
∆t2C2

1

2!
·

(
Tf

n
i+1 − 2Tf

n
i + Tf

n
i−1

)

∆x2
,

(3.5)

Tb
n+1
i = Tb

n
i + C3∆t(Tf

n
i − Tb

n
i ). (3.6)

As previously explained, choosing ∆x = 2.5 cm, it can be viewed as a state-
space model with 144 state-space variables describing Tb and Tf at the dis-
cretization points.

To perform a control it is important to know the inputs of the system
which are manipulable. This inputs are called control variables. In this case
the only control variable is the mass flow ṁf .

2 The mass flow does not
appear directly in equations (3.5) and (3.6), but the coefficients C1, C2 and
C3 depend on it.

The only outputs of the system are the temperatures of the fluid

Tf measured every 10cm. The control variable can depend on this out-
put. The temperature Tb instead is not available for the feedback because

1Initial conditions and boundary conditions are needed
2Remember that the temperature of the mass flow during the charging phase is fixed

at Thot and cannot vary.
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CONTROL PLANT

Figure 3.9: General control scheme of the Thermal Storage System

it cannot be measured on the real plant, as well as Tf at the remaining dis-
cretization points. See figure 3.9 for a general control scheme.
The main difficulty performing the control is that there is only one output
that must control 19 outputs. Such a system is called SIMO-system (Single
Input, Multiple Output). Actually the input must control an infinite number
of outputs, because in fact the variable Tf is continuous over the length of
the coil. As there are only a finite number of sensors, the continuous variable
will be controlled by controlling only the samples available.

Another difficulty of controlling the system is announced in the following.
Let xk ∈ R

nx1 be the state-vector, uk ∈ R
mx1 the input and yk ∈ R

px1 the
output of the system. It is not possible to write the system given by (3.5)
and (3.6) in the following way, which is required for many control methods:

xk+1 = f(xk) + g(xk)uk

yk = h(xk)
(3.7)

Instead, the model is of this type:

xk+1 = f(xk,uk)

yk = h(xk)
(3.8)

We will see in the next chapters that this fact will hamper a lot the control
procedure.
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3.2.2 Reference temperature

To perform the control of a system, it is important to know how we want
the model to behave. In that case the temperature Tf at the measurement
points should be possibly similar to a set reference temperature.
Consider the graphs in figure 3.10. The graphs on the left show the tem-
perature Tf

3 over time with the respective distibution over the coil after the
charging phase. All experiments have the same charging duration.
The graphs on the first line refer to an experiment with constant mass flow,
which was treated extensively in the previous section.
The graphs on the second line show the ideal charging of the Thermocline.
We can clearly see that first of all the temperature T0 reaches gradually its
peak value Thot. Only afterwords, the temperature T2 starts to increase. Sim-
ilarly, T4 increases only once T2 is set to Thot. In that way at each time step
one part of the coil is ‘hot’ and the remaining part is ‘cold’; the transition
between the two parts is prompt. In this case the coil can be fully charged
and the percentage of charge is close to 100%.
As this is quite unrealistic, what we want to reach is a behavior that is sim-
ilar to the graph in the third line. Here all the temperatures increase in a
very steep way and there is only a small overlap between the time intervals
where the various temperatures increase. We see that this leads to a very
good charging distribution over the coil. In the experiment with a constant
mass flow instead, the temperatures with a higher index increase with a small
velocity and have a very high overlap. Thus, the reference temperatures used
for the various control theories in this thesis will be similar to the ones in
the third line of figure 3.10.

3For all the graphs only the outputs with an even index are used: i.e. T0, T2, T4, etc.
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Figure 3.10: The figures on the left show the temperature Tf over time with, on
the right, the respective Tf distribution after the charging phase. The charging
duration is the same for all three cases. First line: constant mass flow. Second
line: ideal case. Third line: sub-optimal ideal case



Chapter 4

PI controller

In this chapter, first of all the system is simplified to a linear model contain-
ing only stable poles and constant delays. The poles vary with the input and
are identified using a “visual” approach.
This model is then controlled by a PI controller combined with a Smith-
predictor with variable delay. As there is only one input but multiple out-
puts, the control feedback switches between the output variables.
Unfortunately this approach does not lead to a good result, because one con-
trol variable cannot simultaneously control the spatial and temporal behavior
of more than one output.

4.1 First-order identification

As previously mentioned, the temperature of the Thermal Storage System
can be measured by 19 sensors placed through the axial direction of the coil.
The first sensor, which measures the temperature Tf 0, is placed at x = 0 cm,
while the last sensor for Tf 18 is placed at x = 180 cm. The distance between
two neighboring sensors is always 10 cm.1 To identify a model that can be
used for the continuous-time PI control, each volume between two sensors is
modeled as a separate transfer function as shown in 4.1.

The transfer function P1(s) relating the input ṁf to (T1 − Tcold) will be

1Throughout this chapter the subscript f will be omitted, hence, Ti = Tf i
.

49
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x
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Figure 4.1: Scheme of model identification for the PI-control

identified as a first-order system with constant delay:

P1(s) = G(ṁf )
1

1 + sτ(ṁf )
︸ ︷︷ ︸

P0(s)

e−sτP1 (4.1)

with parameters G(ṁf ) and τ(ṁf ) depending on the mass flow, while τP1
is

assumed to be constant for the whole range of the mass flow.
The following transfer functions Pi(s) will be modeled as:

PD(s) = Pi(s) =
1

1 + sτD(ṁf )
∀i = 2, 3, ...18 (4.2)

with parameter τD(ṁf ) depending on the mass flow. It is trivial that the
gain of these transfer functions must be unitary.
Hence, the relation between the input ṁf and a temperature Ti with i =
1, 2, ..., 18 is defined as:

Ti(s) = Pṁf→Ti
(s)ṁf + Tcold = P1(s)PD(s)

i−1ṁf + Tcold. (4.3)

The parameters of the transfer functions were first of all identified for the
constant inputs

ṁf ∈ {0.07, 0.12, 0.15, 0.18, 0.24, 0.26} kg/s (4.4)
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Figure 4.2: Parameters of the identified first-order transfer functions with delay.
The dependance of the parameters on the input ṁf can be described analytically
or approximated by a polynomial of 3rd order.

using the simulation results of the discrete-time numerical model derived in
2.3.1. Then a polynomial fit of 3rd order was performed on the single pa-
rameters in order to obtain an identified model which is valid on the whole
input-range.

The single parameters, which are reported in figure 4.2, were identified
as explained in the following points.

Delay of the transfer function P1(s) → τP1

This delay is assumed to be constant for all inputs, i.e.:

τP1
= 250 s. (4.5)
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Figure 4.3: Comparison between the identified model and the numerical model
for the constant input ṁf = 0.15kg/s

DC-gain of the transfer function P1(s) → G(ṁf )

As mentioned in the previous chapter, for all inputs the output-temperatures
increase from the value Tcold to Thot. This means that the the DC-gain can
be written analytically as:

G(ṁf ) =
(Thot − Tcold)

ṁf

=
(199oC)

ṁf

. (4.6)

Time constant of the transfer function P1(s) and time constant of

the transfer functions PD(s) → τ(ṁf ) and τD(ṁf )

For all constant inputs both time constants were chosen so that the temper-
atures Ti of the identified model are exactly equal to the respective temper-
ature of the numerical model when they both reach the value

Tmean =
Thot − Tcold

2
+ Tcold. (4.7)

As an example, figure 4.3 compares the temperature behavior of the numeri-
cal model and of the identified model for the constant input ṁf = 0.15kg/s.
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In this case the time constants are

τ(ṁf = 0.15kg/s) = 500 s, (4.8)

τD(ṁf = 0.15kg/s) = 371 s. (4.9)

We can clearly see how the constant delay τP1 affects the temperatures
of the identified model. Furthermore, notice that all the temperatures of the
identified model and of the numerical model intersect each other exactly at
Tmean.
The identified values of τ(ṁf ) and τD(ṁf ) depending on the mass flow are
shown in figure 4.2. Both dependencies can be approximated to a 3rd order
polynomial.

Stability

The stability of the identified model is guaranteed because it contains only
poles lying in the left-half plane.

4.2 PI controller and Smith-predictor

As we have seen, the system is stable for the whole input range. In addition,
the maximal stable value depends only on the choice for the temperature
Tcold and is the same for all inputs. Therefore, in this case, the PI controller
doesn’t have to stabilize the system nor to track a reference signal.
For the control it is assumed that the transfer functions PD(s) identified in
the previous section can be approximated by a time delay:

PD(s) =
1

1 + sτD(ṁf )
≈ e−sτD(ṁf ). (4.10)

The transfer functions relating ṁf to Ti become then, for i = 1, 2, ..., 18:

Pṁf→Ti
(s) = P1(s)PD(s)

i−1

≈ G(ṁf )
1

1 + sτ(ṁf )
︸ ︷︷ ︸

P0(s)

e−s(τP1
+(i−1)τD(ṁf )). (4.11)

The transfer function (4.11) is a first-order system with delay, where the
gain, the pole and the delay depend on the input.
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Figure 4.4: Block diagram in Simulink for the PI control combined with a Smith
predictor

To control the system, a PI controller combined with a Smith predictor is
used. At the beginning, the feedback variable for the control is the temper-
ature T1. In this case the delay of the model is equal to τP1

. As soon as the
feedback variable satisfies some condition, such as having reached a certain
rising percentage, the feedback switches to the next control variable, in this
case T2. At that point the system is controlled with the same PI controller,
but the delay that must be taken into account by the Smith predictor is now
equal to τP1

+ τD(ṁf ). This procedure lasts until the system is fully charged.
See figure 4.4 for the Simulink block-diagram used to perform the PI control
combined with a Smith Predictor.

Parameters for the PI and for the Smith predictor

The PI controller that has to control the transfer function

P0(s) = G(ṁf )
1

1 + sτ(ṁf )
(4.12)
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is of the type:

C(s) = VC
τCs+ 1

c
. (4.13)

A good choice for placing the zero is

τC = τ(ṁf ). (4.14)

Due to causality the controller cannot depend on its output. Therefore it
was chosen to use the value of τ(ṁf ) linearized around the mean value of the
input

ṁf,MEAN =
ṁf,MAX − ṁf,MIN

2
+ ṁf,MIN = 0.165kg/s (4.15)

which results in
τC = τ(ṁf,MEAN) = 450s. (4.16)

The same linearization will be done for setting the gain of (4.13). The cutoff
frequency will be equal to

ωc = G(ṁf,MEAN)GC . (4.17)

Choosing the desired rise time tr, the gain of the controller can be calculated
as follows:

GC =
1.5

tr ·G(ṁf,MEAN)
=

1.5

tr · 1206
. (4.18)

Similarly, the delay considered by the Smith predictor is

di,SMITH = τP1
+ (i− 1)τD(ṁf,MEAN) = [250 + (i− 1)370] s (4.19)

where i is the index of the temperature being currently the feedback variable.
The parameters of the transfer function P0(s) depend on the input and its
non-linearity will be included into the block diagram.
Furthermore, a simple Anti-Wind-Up was integrated into the PI-controller.
A huge variety of switching conditions could be used to perform the control,
for example:

1. SWITCH as soon as the current feedback variable reaches 70% or 80%

2. SWITCH as soon as the next feedback variable reaches 30% or 20%

In addition, it is possible to choose to increase the index i always by 1, or
for example by 2, skipping half of the outputs.
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Figure 4.5: Simulation experiment 1 with PI controller and Smith predictor.
Identified model

4.2.1 Simulation examples

Two different simulation experiments are shown in this section.

1. The results of the first experiment, which was held on the identified
model, are shown in figure 4.5 . The parameters used for the control
are the following:

• Rise time: tr = 150 s

• Switch as soon as the next feedback variable reaches 30%

• Increase the index of the feedback variable by 1

2. The second simulation was performed on the numerical model of the
Thermal Storage System (figure 4.6). The parameters used for the
control are the following:

• Rise time: tr = 100 s
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Figure 4.6: Simulation experiment 2 with PI controller and Smith predictor.
Continuous time numerical model

• Switch as soon as the current feedback variable reaches 70%

• Increase the index of the feedback variable by 2

The charging performance of this simulation is:

(tcharged,%charged) = (4447 s, 65.8%) (4.20)

4.2.2 Restrictions of controlling the Thermal Storage

System using a PI controller

As we have seen in the previous section 4.2.1, the control did not increase
the charging performance. The problem is that, as we are dealing with a
SIMO (Single Input, Multiple Output) system, only one input has to control
more than one independent output. Hence, the PI controller cannot simulta-
neously control the temporal and the spatial behavior of the system. When
one output is connected to the input through a feedback, the PI can control
temporary this single input. The PI cannot, instead, control what happens
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to the remaining outputs; this is the spatial behavior of the system.
We can clearly see, in figure 4.6, that at the first switching point, the output
T1 was highered very fast. In the mean time, though, the following outputs
and as well T3, which is the next feedback variable, have already increased
significantly, while they should instead still be close to Tcold.
Therefore, in the next chapter, an optimal control was performed. The op-
timal control can include in the cost function both temporal and spatial
behavior of the system.



Chapter 5

Model predictive control

In this chapter the procedure for performing a linear Model Predictive Con-
trol (MPC) is outlined.
Then, ARMAX-identifications are done for various input-output pairs, in or-
der to create an ARMAX model with parameters varying with the input.
This model is then used for the linear MPC of the system. Unluckily, the
results are not as expected because there is a significant difference between
prediction and actual behavior of the model.

5.1 MPC - theory

Model predictive control is a discrete time optimal control. The controller
relies on a dynamic model of the plant which is usually determined by iden-
tification. Usually the identified model provides an adequate control of the
system.
In each sampling instant, the MPC optimizes a finite time-horizon, but im-
plements only the current timeslot. Then, for the next time step, the horizon
is shifted by one time step and a new optimization is performed. The op-
timization tries to minimize the error between some reference function (for
the output or for the state vector) and the predicted behavior of the system
based on the identified model. Hence, the control is based on a prediction,
but for each time step, the current behavior of the system is taken into ac-
count. This must be done due to possible identification errors.

59
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5.1.1 Linear MPC

Here the approach for the LINEAR Model Predictive Control is described.
First of all a time dependent reference rk for each output of the identified
model must be defined. Then a prediction horizon np must be chosen, which
defines the number of time steps on which the error is optimized. The opti-
mization variables are the inputs for each time step of the prediction horizon.
Additionally, in order to decrease the computational effort, it can be chosen
to set an optimization horizon no, after which the optimization variables
are held constant. After each optimization, only the first value of the op-
timization variables is injected into the system, while a new optimization
is performed. Be aware that the optimization must be performed within a
single sampling interval.

Let
xk+1 = Axk +Buk

yk = Cxk

(5.1)

be a linear discrete-time ARMAX system where

• xk ∈ R
nx1 is the state space vector of the system

• uk ∈ R
mx1 is the input of the system

• yk ∈ R
px1 is the output of the system

• A ∈ R
nxn

• B ∈ R
nxm

• C ∈ R
pxn

Defining

∆uk := uk − uk−1, (5.2)

the first iteration step of the system can be rewritten as:

xk+1 = Axk + Buk

= Axk + Buk−1 + B∆uk

yk+1 = Cxk+1.

(5.3)
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It was chosen to use the ∆ui with i = 1, 2, ..., no as optimization variables.
The result (5.3) is then used for calculating the next iteration step:

xk+2 = Axk+1 + Buk+1

= Axk+1 + Buk−1 + B∆uk + B∆uk+1

= A2xk + ABuk−1 + AB∆uk +Buk−1 + B∆uk + B∆uk+1

= A2xk + (AB + B)uk−1 + (AB + B)∆uk + B∆uk+1

yk+2 = Cxk+2.

(5.4)

We can see that the output yk+2 only depends on the known system matrices,
the current state xk, the initial input-value uk−1 and on the optimization
variables.
The same procedure is done for no steps with the final result:

xk+no
= Anoxk + (Ano−1 + Ano−2 + ...+ I)Buk−1+

+
no∑

j=1

(Ano−j + Ano−j−1 + ...+ A+ I)B∆uk+j−1

yk+no
= Cxk+no

.

(5.5)

Setting ∆ui = 0 for i ≥ no, after (np − no) more steps we get:

xk+np
= Anpxk + (Anp−1 + Anp−2 + ...+ I)Buk−1+

+
no∑

j=1

(Anp−j + Anp−j−1 + ...+ A+ I)B∆uk+j−1

yk+np
= Cxk+np

.

(5.6)

At that point we want to summarize all np iteration steps and rewrite them
in a matrix form. To do so let’s define the vector of the outputs and of the
optimization variables:

yk+1
︸︷︷︸

(p·np x 1)

:=








yk+1

yk+2
...

yk+np







=








Cxk+1

Cxk+2
...

Cxk+np







, ∆uk

︸︷︷︸

(m·no x 1)

:=








∆uk

∆uk+1
...

∆uk+no−1







.

The entirety of the iteration steps can be summarized as follows:

yk+1 = Fxk +Guk−1
︸ ︷︷ ︸

=gk

+H∆uk, (5.7)
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being F , G and H known matrices as they contain only the known system
matrices A, B and C:

F(npp xn) :=








CA
CA2

...
CAnp







, G(npp xm) :=









C(I)B
C(A+ I)B

...

C
(
∑np−1

i=0 Ai
)

B









H
︸︷︷︸

(npp xnom)

:=
















C(I)B 0 · · · 0

C(A+ I)B C(I)B 0
...

...
...

. . . 0

C
(∑no−1

i=0 Ai
)
B C

(∑no−2
i=0 Ai

)
B · · · C(I)B

C (
∑no

i=0 A
i)B C

(∑no−1
i=0 Ai

)
B · · · C(A+ I)B

...
...

. . .
...

C
(
∑np−1

i=0 Ai
)

B C
(
∑np−2

i=0 Ai
)

B · · · C
(
∑np−no

i=0 Ai
)

B
















.

In equation (5.7)

• yk+1, xk and uk−1 are known or measurable → gk is known

• ∆uk is to be searched → optimization vector

In order to perform the MPC optimization, for the vector yk+1 a corre-
sponding reference output rk+1 must be defined:

rk+1
︸︷︷︸

(p·np x 1)

:=








rk+1

rk+2
...

rk+np







.

At that point, let’s define the (known) error ek as the difference between the
system behavior for ∆uk = 01 and the reference output:

ek := gk − rk+1. (5.8)

1This corresponds to the system if it is not controlled
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Choosing the symmetric and positive definite matrices Q and R

Q(npp xnpp) :=






Q(p x p) 0 0

0 Q(p x p)
. . .

0
. . . . . .




 (5.9)

R(nom xnom) :=






R(m xm) 0 0

0 R(m xm)
. . .

0
. . . . . .




 (5.10)

the scalar function to be minimized can, for example, be written as:

J(∆uk) = (yk+1 − rk+1)
TQ(yk+1 − rk+1) + (∆uk)

TR(∆uk). (5.11)

Here the difference between system output and reference output is min-
imized, as well as the variation of the control variable uk. The matrices Q
and R define the weigths on the errors.
Using (5.7) and (5.8), the (5.11) becomes:

J(∆uk) = (ek +H∆uk)
TQ(ek +H∆uk) + (∆uk)

TR(∆uk)

= eTkQek + (H∆uk)
TQek + eTkQH∆uk

+ (H∆uk)
TQ(H∆uk) + (∆uk)

TR(∆uk).

(5.12)

As the function is scalar, its summands can arbitrarily be transposed. In this
case

eTkQH∆uk
scalar
−−−→ (eTkQH∆uk)

T = (H∆uk)
TQek (5.13)

leads to

J(∆uk) = ∆u
T

k (H
TQH +R)∆uk + 2∆uk(H

TQek). (5.14)

The term eTkQek was removed because it does not depend on the optimization
variables.

Constraints

The main advantage of MPC is that constraints on input and on state-vector
can easily be integrated into the optimization problem.
Here we will only consider the constraints on the input, such as:

uMIN ≤ uk ≤ uMAX ∀ k ≥ 0. (5.15)
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For all steps of the prediction horizon, the constraints can be rewritten in
terms of ∆uk like

uMIN ≤ uk = uk−1 +∆uk ≤ uMAX

uMIN ≤ uk+1 = uk−1 +∆uk +∆uk+1 ≤ uMAX

...

uMIN ≤ uk+no−1 = uk−1 +∆uk + ...+∆uk+no−1 ≤ uMAX ,

(5.16)

what can be summarized as follows:

uMIN ≤ Luk−1 +M∆uk ≤ uMAX , (5.17)

where

L
︸︷︷︸

(nom xm)

:=






I(m xm)
...

I(m xm)




 , M

︸︷︷︸

(nom xnom)

:=








I(m xm) 0 · · · 0

I(m xm) I(m xm) 0
...

...
...

. . . 0

I(m xm) I(m xm) · · · I(m xm)







.

Equation 5.17 can be rewritten as linear matrix inequality (LMI)

W∆uk ≤ ω, (5.18)

being

W(2nom xnom) :=

[
−M
M

]

, ω(2nom x 1) :=

[
−uMIN + Luk−1

uMAX − Luk−1

]

. (5.19)

The optimization problem that must be solved for each step of the MPC
can finally be established:

minimize
∆uk

∆u
T

k (H
TQH +R)∆uk + 2∆uk(H

TQek)

subject to W∆uk ≤ ω
(5.20)

This type of optimization problem is a so called Quadratic Programming
(QP):

minimize
x

xTAx+ 2xT b

subject to Cx ≤ y.
(5.21)
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The huge advantage of such a problem is that the function that must be
minimized, as well as the domain, is convex. This means that any minimum
of the function is as well the global minimum. The computational effort is
relatively low and there exist a huge variety of methods which can easily
solve the optimization.

5.2 ARMAX-Identification

As mentioned in the previous section, in order to perform the MPC, a linear
ARMAX-model of the system is needed:

xk+1 = Axk + Buk

yk = Cxk.
(5.22)

In chapter 2, a nonlinear discrete-time numerical model of the laboratory
plant was derived. It can be rewritten in the form:

xk+1 = f(xk,uk)

yk = Cxk.
(5.23)

This model cannot be used for the linear MPC. Therefore we must perform
an estimation on the model in order to get a model like (5.22). It is clear that
the estimation cannot be a linear model which describes the system behavior
for all possible inputs, therefore the aim is to find an ARMAX-model with
the matrix parameters varying with the input, i.e:

xk+1 = A(uk)xk + B(uk)uk

yk = Cxk.
(5.24)

To do so, a black-box approach is used; that means that the estimation is
only based on input-output pairs and not on some previous knowledge of the
model. In this case the MATLAB-function armax was used.2 The parameters
used for the estimation are extensively explained in the following sections.

2The principle behind the armax function is to do a least square minimization of the
error between measured output and predicted output.
The estimator ŷ for the output y is defined as:

ŷ(k) = A(z)y(k) +B(z)u(k)
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5.2.1 Definition of model parameters for the linear sys-

tems

To get the matrices A(uk) and B(uk) depending on the input uk, first of all
the range of the input [uMIN ,uMAX ] is divided into r parts. For each part a
linear systems is estimated that is assumed to be valid in the entire interval.
Then, an analytical relation (or at least a piecewise-defined function) that
describes how the parameters vary with uk must be found.

Inputs

First of all, r = 9 different estimations were performed on input-output pairs
with inputs:

uk,q = δ−1,k · q + ϑk q ∈ Q.3 (5.25)

where ϑk is a triangle wave with period p = 2000 s and amplitude a =
0.01kg/s, defined as:

ϑk :=

∣
∣
∣
∣
2

(
t

p
−

⌊
t

p
+

1

2

⌋)∣
∣
∣
∣
.4 (5.26)

The constant value q is chosen from the ordered set Q containing r = 9
elements:

Q = {q1 < q2 < ... < qr} =

= {0.07, 0.095, 0.12, 0.15, 0.165, 0.18, 0.21, 0.24, 0.26} kg/s.
(5.27)

The values of Q are almost equispatially distributed and cover the whole
domain of uk, including both maximum and minimum value.

with
A(z) = a1z

−1 + ...+ ana
zna , B(z) = b1z

−1 + ...+ bnb
znb .

Note that the regressor of the estimator is not the estimator itself, but the output y.

The model parameters p =
[
a1 · · · ana

b1 · · · bnb

]T
are found by minimizing the

function

f(p) =

N∑

k=1

(ŷ(k)− y(k))2

3The function δ
−1,k is the step function defined as: δ

−1,k =

{

1 for k ≥ 1

0 elsewhere
4The function f(x) = ⌊x⌋ is the floor function and is defined as max {k ∈ Z|k ≤ x}
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Figure 5.1: Input functions uk,q with q = 0.12kg/s, q = 0.15kg/s and q =
0.165kg/s used for ARMAX-identification

The triangle wave was added to the step functions to perform an estimation
that is valid in a neighborhood of the constant value q.
Figure 5.1 shows the three inputs (5.25) with q = 0.12kg/s, q = 0.15kg/s
and q = 0.165kg/s, respectively.

Outputs

As a compromise between the order of the ARMAX-model and control accu-
racy, not the entirety of the outputs5 was used for the estimation, but only
the 7 outputs placed at:

xarmax =
[
10 30 60 900 120 150 180

]T
cm. (5.28)

These outputs will be called Ti,ax with i = 1, 2, ..., 7. The output mea-
sured at x = 0 cm was not used because it represents the boundary condition
which is the same for all inputs. It is highly important, instead, that the tem-
perature measured at x = 180 cm is included, because it is the temperature
that determines when the coil is assumed to be fully charged.

5The outputs are the temperatures of the fluid flowing through the coil, hence Tf
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Sample time

The sample time used is Ts = 5 s. It was deliberately chosen to use a low
sampling frequency, because in general the system dynamics are slow and
the sufficient time for the optimization must be assured.

Order of the ARMAX-model

The ARMAX-model has the following form:












I(7 x 7) +








A11(z) A12(z) · · · A17(z)

A21(z) A22(z)
. . .

...
...

. . . . . .
...

A71(z) · · · · · · A77(z)








︸ ︷︷ ︸

A(z)




















T1,ax

T2,ax
...

T7,ax







=








B1(z)
B2(z)

...
B7(z)








︸ ︷︷ ︸

B(z)

ṁf .

(5.29)
The parameters and the order n of all the components of the matrices A(z)
and B(z) are defined as:

Aij(z) = aij,1z
−1 + aij,2z

−2 + ...+ aij,nz
−n,

Bi(z) = bi,1z
−1 + bi,2z

−2 + ...+ bi,nz
−n.

(5.30)

After various experiments, the orders chosen for both matrices are:

nA(z) =













1 0 0 0 0 0 0
2 2 0 0 0 0 0
2 2 2 0 0 0 0
2 2 2 2 0 0 0
2 2 2 2 2 0 0
2 2 2 2 2 2 0
2 2 2 2 2 2 2













, nB(z) =













2
1
1
1
1
1
1













. (5.31)

First of all, note that all the outputs Ti,ax can only depend on the outputs
Tj,ax with j ≤ i. It is clear that a temperature at the end of the coil can
depend on a temperature at the beginning of the coil, but not vice versa.
Secondly, it was chosen to obtain a system without feedthrough.6

6The system
x[n+ 1] = Ax[n] +Bu[n]

y[n] = Cx[n] +Du[n]
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Realization and State variables

The minimal realization of the ARMAX system obtained has 14 state-space
variables and could be easily computed using MATLAB. The problem con-
cerning the minimal realization is that we don’t know what the single state-
space variables (except from the ones that are the outputs) describe. In
section 5.1, though, it was explained that for each step of the MPC the vec-
tor xk must be known or measurable even on the numerical model or on the
plant.
Therefore a realization with 15 state-space variables is used, where each vari-
able is measurable or can be obtained by the previous measurements. Using
the parameters of (5.29) which are defined as (5.30), the realization is:

xk+1 = Axk + Buk

yk = Cxk,
(5.32)

with

A =




















a11,1 0 · · · 0 0 0 · · · 0 b1,2

a21,1 a22,1
. . .

... a21,2 a22,2
. . .

... 0
...

. . . . . . 0
...

. . . . . . 0
...

a71,1 a72,1 · · · a77,1 a71,2 a72,2 · · · a77,2 0
1 0 · · · 0 0 · · · · · · 0 0

0
. . . . . .

...
...

...
...

...
. . . . . . 0

...
...

...
0 · · · 0 1 0 · · · · · · 0 0
0 · · · · · · 0 0 · · · · · · 0 0




















, (5.33)

B =



















b1,1
b2,1
...

b7,1
0
...
...
0
1



















, C =
[
I(7 x 7) 0(7 x 8)

]
, xk =


















T1,ax

T2,ax
...

T7,ax

x1,ax

x2,ax
...

x7,ax

xu,ax


















[k]. (5.34)

with D = 0 is a system without feedthrough
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The first 7 states are directly measurable, because they are at the same
time system outputs. The next 7 states are measurable as well, because they
are the first 7 states with a unit delay:








x1,ax

x2,ax
...

x7,ax







[k + 1] =








T1,ax

T2,ax
...

T7,ax







[k]. (5.35)

The last state instead is the input with a unit delay:

xu,ax[k + 1] = u[k]. (5.36)

Nomenclature

All linear ARMAXmodels obtained will be referred to asAXq = ss(Aq, Bq, C,D),
for example AX0.07. The respective matrices of the system will be A0.07 and
B0.07.

5.2.2 Identification results of the linear systems

The accuracy of the identified linear ARMAX models is discussed here. All
ARMAX models were obtained like explained in 5.2.1 using a triangle func-
tion as an input. Figure 5.2 shows three tests performed on the linear models
AX0.07, AX0.165 and AX0.26 using the corresponding CONSTANT test func-
tions. The graphs compare the ARMAX model outputs with the output of
the numerical model described in section 2.3.

The main difficulty of the identification procedure was to define parame-
ters for the identification which give good results for the whole range of the
input. We can see for example that for low mass flows the errors are higher
than for higher mass flows, whereas the undershoot is almost negligible for
low mass flows, but significant for higher ṁf . For higher mass flows the
outputs have undesired oscillations while they should instead be constant at
Tcold. For the whole range overshoot phenomena do not occur. Table 5.1

summarizes some important properties of the identification error, defined as

eident = Tax − Tf,num, (5.37)

such as:
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Figure 5.2: Test on the ARMAX models AX0.07, AX0.165 and AX0.26. The AR-
MAXmodels are tested with the constant inputs ṁf = 0.07kg/s, ṁf = 0.165kg/s
and ṁf = 0.26kg/s, respectively. The results are compared to the numerical
model described in section 2.3.
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eMAX in [%] eMEAN in [%] e∞,MEAN in [%] us in [%]
AX0.07 25.55 1.77 1.38 0.55
AX0.165 14.87 0.7178 0.86 0.49
AX0.26 13.54 1.67 0.52 2.56

Table 5.1: ARMAX Identification: error properties

• The maximal percentage error: eMAX = max |e|
Thot−Tcold

· 100%

• The mean absolute value of the error: eMEAN = mean|e|
Thot−Tcold

· 100%

• The percentage error for t → ∞: e∞,MEAN = mean|et→∞|
Thot−Tcold

· 100%

• The undershoot percentage: us = min(Tax)−Thot

Thot−Tcold
· 100%

In general the errors are negative; that means that the ARMAX models
are slower than the numerical model. This could be solved by using a higher
order for the ARMAX model, which would unfortunately lead to stronger
oscillations.
The biggest error is the one corresponding to the first output. This error is
similar to a delay and probably this delay is transmitted to all the following
outputs.

5.2.3 Combination of the linear systems

After estimating the 9 linear ARMAX models that describe the behavior of
the model for some set input, it is necessary to find a relation that describe
how the parameters of the matrices A and B vary with the input ṁf .

7 Each
parameter of A and B, except from the ones that are equal to 0 or 1, can be
written as a (9 x 1)-vector:

aij,ax =
[
a0.07 a0.095 a0.12 a0.15 a0.165 a0.18 a0.21 a0.24 a0.26

]T

ij,ax

bl,ax =
[
b0.07 b0.095 b0.12 b0.15 b0.165 b0.18 b0.21 b0.24 b0.26

]T

l,ax
.

7The matrix C is the same for all inputs
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In figure 5.3, as an example, the four vectors corresponding to the parameters
a55,1, a75,2, b1,1 and b5,1, respectively, are described. The vectors of the first
two graphs show a “regular” dependence on the mass flow. In the third and
fourth graph, the elements of the vectors are almost randomly distributed.
Three different procedures to describe some correlation in the vectors aij,ax

and bl,ax are proposed in the following.

Combination by polynomial fitting → UNSTABLE

The first attempt to describe the parameters depending on the input was
done using a polynomial fitting.
To do so the parameters were divided into three groups:

• Parameters with a small mean value:

|mean(aij,ax)| ≤ ǫmean, |mean(bl,ax)| ≤ ǫmean.

These parameters are assumed to be constant and equal to the mean
value.

• Parameters with a small variance:

var(aij,ax) ≤ ǫvar, var(bl,ax) ≤ ǫvar.

These parameters are as well assumed to be constant and equal to the
mean value.

• Parameters that do not belong to neither of the previous groups are
fitted with a polynomial of nth order.

The variables ǫmean, ǫvar and n can be chosen arbitrarily.
A polynomial fitting of 4th order of some of the vectors is shown in figure
5.3. For the vectors a55,1,ax and b1,1,ax the fit is quite accurate. For the
vectors a75,2,ax and b5,1,ax, instead, the vector can badly be described by a
polynomial function. Unlike the vector b5,1,ax, the vector a75,2,ax has a high
variance and the polynomial fit leads to major errors.
It is clear that the system obtained can be described analytically and would
therefore be useful for various control methods.
This procedure, though, did not lead to a stable system for the majority of
the inputs. Even setting ǫmean = ǫvar = 0 and choosing a high order n, it
was not possible to obtain a stable system. The poles of the various linear
ARMAX models are very close to the unity circle and hence even a very
slight perturbation of the parameters can make the system unstable.
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Figure 5.3: Example: the four vectors corresponding to the parameters a55,1,
a75,2, b1,1 and b5,1 with respective linear interpolation and polynomial fitting of
4th order
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Figure 5.4: Triangle functions used for linear interpolation

Combination by interpolation → ACCURATE

The second procedure for combining the linear ARMAX models was to per-
form a linear interpolation for all the vectors aij,ax and bl,ax. The problem
behind this procedure is that the model obtained is only piecewise analyti-
cal. The triangle functions λq(ṁf ) used for linear interpolation are shown in
figure 5.4, being

q ∈ Q = {0.07, 0.095, 0.12, 0.15, 0.165, 0.18, 0.21, 0.24, 0.26} .

The nonlinear ARMAX-model can now be written as:

xk+1 =

[
∑

q∈Q

Aq · λq(uk)

]

xk +

[
∑

q∈Q

Bq · λq(uk)

]

uk

yk = Cxk.

(5.38)

In this case it is clear that, ∀g ∈ Q :

[
∑

q∈Q

Aq · λq(ug)

]

= Ag,

[
∑

q∈Q

Bq · λq(ug)

]

= Bg. (5.39)
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An example of linear interpolation is shown in figure 5.3.
To do a stability test the input domain [uMIN , uMAX ] was divided into
N = 1000 parts and an eigenvalue test was done for each discretization
point. As the system was stable for each discretization point, we can assume
that the model is stable on the whole domain.
However, in general, it is not assured that this approach leads to a stable
model. In appendix A, a Monte Carlo method was held in order to compute
the probability of obtaining a stable model with this approach.
For each discretization point the final stable value of all outputs was com-
puted and is shown in figure 5.5. The actual final value of the laboratory
plant and of the numerical system is Thot. The dashed vertical lines are
placed at the ṁf which correspond to a liner ARMAX model AXq, q ∈ Q.
It is clear that the gain is a little bit overestimated even for these values; the
values between the points q ∈ Q are even more overestimated. In general the
error is smaller for higher mass flows and for Ti,ax with a small i. All in all
it’s a good result because the percentage errors

et→∞,% =
T (t → ∞)

Thot − Tcold

· 100 (5.40)

are inside the range of [0.5%, 2.2%].

Combination by Gaussian interpolation → ANALYTICAL

Another possible way of combining the linear ARMAX models is to perform
a Gaussian interpolation on the parameters. The procedure is similar to the
linear interpolation, but here Gaussian functions are used instead of triangle
functions. The functions, which are shown in figure 5.6, are defined as:

γq(ṁf ) = exp

{

−
1

2

(
ṁf − q

σ

)2
}

∀q ∈ Q, (5.41)

with variance

σ =
1

r − 1

r−1∑

i=1

(qi+1 − qi) with Q = {q1 < q2 < · · · < qr} . (5.42)
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The nonlinear ARMAX-model can be written analytically for the whole input
range as:

xk+1 =

∑

q∈Q Aq · γq(uk)
∑

q∈Q γq(uk)
xk +

∑

q∈Q Bq · γq(uk)
∑

q∈Q γq(uk)
uk

yk = Cxk.

(5.43)

Unlike the case with linear interpolation, in this case, ∀g ∈ Q :
∑

q∈Q Aq · γq(ug)
∑

q∈Q γq(ug)
6= Ag,

∑

q∈Q Bq · γq(ug)
∑

q∈Q γq(ug)
6= Bg. (5.44)

Here as well the stability was confirmed by the eigenvalue test on N =
1000 discretization points. The final stable values at these points are shown in
figure 5.7. We can clearly see that for some inputs the gain is overestimated,
while for other inputs it is underestimated. The percentage error defined in
(5.40) varies for the whole output range between 0% and 4.5%. This error
is much bigger than the one given by the linear interpolation; in general this
model has a worst accuracy.

5.3 Linear MPC for the Thermal Storage Sys-

tem

In section 5.1, the procedure for MPC applied to a linear ARMAX-model is
explained. It is highly important that the model is linear, because in that
case the optimization problem is a convex program and can hence be easily
solved.
The identification of the Thermal Storage System proposed in section 5.2

leads to an ARMAX-model with parameters varying with the input:

xk+1 = A(uk)xk +B(uk)uk

yk = Cxk.
(5.45)

The matrices of the ARMAX-model were constructed in a way that as-
sures that the state-vector can be obtained by knowing the output, which is
measurable.
Even though it cannot be described analytically, the model obtained by per-
forming a linear interpolation led to the most accurate model and will there-
fore be used for the MPC.
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Figure 5.7: Final stable value of the outputs of the ARMAX model obtained by
Gaussian interpolation

For the control of the Thermal Storage System, for each step the optimiza-
tion was done on the linear ARMAX-model obtained by linearizing the model
(5.45) around the current input. This means that the MPC is based on a
linear prediction, but for each step the linear model used is updated.
Algorithm 1 explains the whole procedure used for performing the MPC.
The algorithm was implemented using Simulink : see figure 5.8 for the block
diagram. The optimization problem (5.46) was solved using the MATLAB-
Toolbox YALMIP. [13]

5.3.1 Control specifications

Before showing some control examples using linear MPC, some control spec-
ifications are still needed.

Reference temperature

First of all the reference temperature must be set. In section 3.2.2, it was
exposed how the reference must be set in order to achieve a good charging
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Figure 5.8: Block diagram in Simulink for the linear MPC with system update
at each step

performance. For the MPC, for example, a piecewise linear function for rk is
used like shown in the first graph of figure 5.9. Each element of the vector
function rk starts at Tcold and reaches finally Thot. The degrees of freedom
for this functions are:

• The time at which the function starts to increase: tstart,i, i = 1, 2, ..., 7.
It is necessary that:

tstart,i−1 ≤ tstart,i ≤ tstart,i+1.

The parameter tstart,7 will approximately be equal to tcharged. There-
fore this parameter must be set somewhere between the minimal time
of charge and the maximal time of charge. As explained in section
3.1, these time of charge occur if the thermocline is charged with the
constant mass flow ṁf,MIN and ṁf,MAX , respectively.
Defining

∆tcharged,i := tstart,i+1 − tstart,i, (5.47)
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Algorithm 1 Linear MPC with system update at each step

Require: rk, C, Q, R, W , ω, no, np, kend, n = 15, m = 1, p = 7, Ts = 5

1: Initialize: uk−1, xk =
[
Tcold · · · Tcold uk−1

]T

2: Calculate A(uk−1) and B(uk−1) using the estimated ARMAX-models
combined by linear interpolation

3: Calculate the matrices H, F and G from A(uk−1), B(uk−1) and C
4: Calculate gk = Fxk +Guk−1 and ek = gk − rk+1

5: while t < Ts do

6: Get ∆uk by solving the optimization problem:

minimize
∆uk

∆uk
T
(HTQH +R)∆uk + 2∆uk(H

TQek)

subject to W∆uk ≤ ω
(5.46)

7: end while

8: if t = Ts then

9: ∆uk = ∆uk−1

10: end if

11: Select the element ∆uk and calculate uk = uk−1 +∆uk

12: Measure yk+1 → Calculate xk+1

13: Wait until t = Ts → set uk as the input of the plant
14: Set: k = k + 1, t = 0
15: if k ≤ kend then

16: go to 2

17: end if

18: return

in order to make the reference temperature more realistic, it is advised
to set

∆tcharged,i ≥ ∆tcharged,i+1 ≥ · · · for i = 1, 2, ..., 6 (5.48)

• The slope of the function: si, i = 1, 2, ..., 7. A possible choice is to use
the same value for all functions
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Figure 5.9: Example for the reference temperature with respective weighting
errors used in MPC

Matrix Q

The weighting matrix Q(p x p) must be chosen positive definite. A good choice
can be to use a diagonal matrix with positive, time-variant elements:

Q(p x p) =








ǫ1,k 0 · · · 0

0 ǫ2,k
. . .

...
...

. . . . . . 0
0 · · · 0 ǫ3,k







. (5.49)

A possible choice for the functions ǫi,k is shown in the second graph of figure
5.9. Here, trapezoidal curves were used, but it could be a triangular function
or a Gaussian function instead.
It is important that an error ei = yi− ri is weighted more when the reference
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function is about to raise. Therefore, the value of ǫi is higher (up to ǫMAX) in
a neighborhood of the corresponding tstart,i. Afterwords the function should
possibly decrease to a nonzero value ǫMIN .

Matrix R

Being m = 1, the matrix R, which weights the ∆uk, is a scalar: R = ǫR.
Due to a correct optimization, it is important to choose a proper order of
magnitude for the ǫR. For example, if we want to weight the ∆uk d times
less than a single error ei = yi − ri, the following must be true:

êi
2 · ǫMAX,Q ≈ d · ∆̂u

2
· ǫR·, (5.50)

where êi and ∆̂u are approximate guesses of the errors.

Horizons np and no

The prediction horizon np should possibly be high enough to include at least
the dynamics of two neighboring reference temperature. For the reference
temperature in figure 5.9, for example, this is assured if:

np ≥
1100

Ts

= 220. (5.51)

The optimization horizon no can be smaller than the prediction horizon, for
example equal to np/2 or np/4.

5.3.2 Control examples

The first experiments of MPC were done on the nonlinear ARMAX-model
instead of on the numerical model. Figure 5.10 shows the simulation for the
case

no = 50

np = 400

[ǫQ,MIN , ǫQ,MAX ] = [2, 60]

ǫR = 4 · 106,

(5.52)

whereas figure 5.11 refers to the case
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Figure 5.10: MPC applied to the nonlinear ARMAX-model. Simulation ex. 1

no = np = 50

[ǫQ,MIN , ǫQ,MAX ] = [2, 60]

ǫR = 4 · 107.

(5.53)

We see that by setting the ǫR higher, the chattering of the input has disap-
peared.
The charging time and charging percentage of the two experiments are

(tcharged,%charged) = (3810 s, 58.56%) (5.54)

and
(tcharged,%charged) = (3980 s, 63.4%), (5.55)

respectively. Unfortunately, both charging performances are worse than the
ones obtained for the experiments with constant mass flow. Even looking
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Figure 5.11: MPC applied to the nonlinear ARMAX-model. Simulation ex. 2

at the simulation results we can see that the output does not track the
reference output. It seems, instead, that the evolution of the output happens
randomly. In the next section, it is explained why the MPC did not improve
the charging performance of the system.

5.3.3 Restrictions of controlling the Thermal Storage

System using MPC

The linear MPC does not work for this ARMAX-model because there is a
significant difference between the predicted behavior of the system and its
actual behavior.
See the signals in the first graph of figure 5.12. The temperature Tṁf=0.15kg/s

is the output of the nonlinear ARMAX-model if the input ṁf = 0.15kg/s is
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Figure 5.12: First graph: System output for an abrupt change of the input
compared to its predicted value for A and B both linearized. Second graph: System
output for an abrupt change of the input compared to its predicted value for A
linearized and B(ṁf ) nonlinear.

held constant through the experiment. The signal Tactual shows how the sys-
tems behaves if at the time tswitch the input changes abrupt to ṁf = 0.18kg/s
in order to be kept there. The signal Tprediction is the prediction of what hap-
pens if the input is switched. The MPC performs the optimization only
considering this prediction, that is obviously wrong. First of all the pre-
dicted final stable value is significantly wrong. Secondly, the prediction does
not know that the temperatures are bound to increase faster if the input is
suddenly switched to a higher input.
We can affirm that the linear MPC will not be able to control the system
with such a wrong prediction.
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This means that in order to get better results, the non-linearity of the
ARMAX-model must be taken into account while performing the optimiza-
tion; that is a nonlinear MPC. Probably it would be enough to consider the
non-linearity of the matrix B(ṁf ), while using the linearized matrix A. The
prediction in this case is shown in the second graph of figure 5.12. We can
see that, except for the last output, the prediction is quite accurate and sat-
isfactory.
Unfortunately, as explained in the next section, if we have to take into ac-
count the nonlinearity of B, the optimization problem is no longer convex.

5.4 Nonlinear MPC for the Thermal Storage

System

Some attempts to control the Thermal Storage System with nonlinear MPC
methods were done during this thesis, but are only briefly discussed here.
In general we can affirm that it is difficult to apply such a method to this
system, because the two available stable nonlinear ARMAX-models are not
suitable.
The nonlinear ARMAX model obtained by linear interpolation is only piece-
wise analytical and would therefor lead to a piecewise defined non-convex
optimization problem.
On the other hand, the nonlinear ARMAX model obtained by gaussian in-
terpolation can be described analytically, but the dependence on the op-
timization variables is highly nonlinear, which leads to a highly nonlinear
optimization problem.





Chapter 6

Fuzzy control

In this chapter the procedure of applying a Fuzzy controller to the Thermal
Storage System is exposed.
As this control method is not model-based there is no need to perform an
identification: a good knowledge of the black-box behavior of the system is
sufficient.
Usually this control method is suitable for systems with the same amount of
inputs and outputs. Thus, in this case the control input will be calculated
as an average of the control terms of all the multiple outputs.

6.1 Fuzzy control of the Thermal Storage Sys-

tem

The Fuzzy control of the Thermal Storage System was done by using the
MATLAX Fuzzy Toolbox. In order to decrease the degrees of freedom, the
method used is the so called Sugeno-Tagaki Fuzzy control.
First of all, we need to know if the output of the system is proportional to the
input or not. This information can usually be obtained by simple experiment
or by an overall knowledge of the system behavior.
Usually the Fuzzy control is performed on discrete-time SISO-systems or on
MIMO-systems with uncoupled outputs. The system to be controlled has
only one input, but 19 outputs. To overcome this hindrance, the control
input will be calculated as a weighted average of the control terms of the
multiple outputs, or of a part of the outputs. That means that each output
can separately send some sort of command to the input, e.g. ‘raise’, ‘lower’

89
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or ‘keep’. The input will consider all the commands and obey to what the
majority of the outputs told him to do.

6.1.1 Outputs and output reference

Only 7 of the 19 available outputs were used for the control. These are the
outputs placed at:

xfy =
[
10 30 60 900 120 150 180

]T
cm (6.1)

These outputs will be referred to as Tfy,i, with i = 1, 2, ..., 7.

The reference for these outputs could be similar to the sub-ideal behavior
shown in the third graph of figure 3.10. Alternatively we could use the same
one as for the MPC, as exposed in section 5.3.1.
Generally, the experiments have shown that the reference temperature must
be “realistic”. If the reference temperature is chosen too ideal, the system
won’t be able to track the reference.

6.1.2 Mapping rules

Defining the tracking errors between reference temperature and actual tem-
perature as

e =






e1
...
e7




 =






Tr,1
...

Tr,7




−






Tfy,1
...

Tfy,7




 (6.2)

for both first order and second order Fuzzy control, some mapping rules can
be set.

First order Fuzzy control

We know that if the input of our system is highered, then all the outputs
are bound to increase faster. On the contrary, if the output is lowered, then
all the outputs keep increasing, but slower.1 This means that if an output
Tfy,i is lower (higher) than its reference value Tr,i, then the output must be

1The outputs can only grow, but never drop.
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increased (decreased).

Fist of all let’s define
uk+1 = uk +∆uk. (6.3)

Choosing proper membership functions for the error, for each of the 7
outputs the mapping rules of the Fuzzy control can be described as:

1. If ei is negative then ∆ui,1 = uN

2. If ei is small then ∆ui,2 = 0

3. If ei is positive then ∆ui,3 = uP

where uN < 0 and uP > 0.
The ∆ui is then

∆ui =
s1 ·∆ui,1 + s2 ·∆ui,2 + s3 ·∆ui,3

s1 + s2 + s3
(6.4)

where sj with j = 1, 2, 3 are the truth contents of the mapping rules 1, 2 and
3.
The global result is thus calculated as a weighted average of all Fuzzy outputs,
like:

∆u =

∑7
i=1 ∆uiǫi
∑7

i=1 ǫi
, (6.5)

where ǫi are the weights that can be time-dependent.
The input is then calculated for each time step as (6.3).

Second order Fuzzy control

To perform a second order Fuzzy control, even the variation of the input
must be taken into account, i.e. the variation of the tracking error.
As the Fuzzy control is a discrete-time control, the variation is assumed to
be equal to the backward finite difference of the error:

ė ≈
ek − ek−1

Ts

(6.6)

Being uNN < uN < 0 and uPP > uP > 0, the mapping rules of the second
order Fuzzy control are:
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1. If ei is negative and ėi is negative then ∆ui,1 = uNN

2. If ei is negative and ėi is small then ∆ui,2 = uN

3. If ei is negative and ėi is positive then ∆ui,3 = 0

4. If ei is small and ėi is negative then ∆ui,4 = uN

5. If ei is small and ėi is small then ∆ui,5 = 0

6. If ei is small and ėi is positive then ∆ui,6 = uP

7. If ei is positive and ėi is negative then ∆ui,7 = 0

8. If ei is positive and ėi is small then ∆ui,8 = uP

9. If ei is positive and ėi is positive then ∆ui,9 = uPP

Here, it was chosen to calculate the and using the product-function.
The ∆ui and the ∆u are computed like for the first order case.

6.1.3 Simulation example

A huge amount of experiments have shown that in general the second order
Fuzzy control leads to better results than the first order control. In addition,
it was observed that it is better to set all the ǫ equal and constant.
A simulation example with these properties is exposed in the following. The
experiment was held on the discrete-time model obtained by Lax-Wendroff
discretization with a sample time dt = 0.0025 s for the model and Ts = 1s
for the control. Other control specifications are:

• The reference temperatures are obtained considering an experiment on
the numerical model with constant input ṁf = 0.12kg/s. The first
output Tr,1 will be set equal to the measured output at x = 20 cm. For
the following reference temperatures a shifted version of it is used.

• The membership functions for e and ė were chosen trapezoidal and are
shown in figure 6.1.

• uPP = 0.01, uP = 0.005, uN = −uP and uNN = −uPP .
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Figure 6.1: Membership functions of the tracking error and its derivative used
to perform a second order Fuzzy control

The graphical results of the simulation are shown in figure 6.2. We can see
that till 2500 s the tracking is satisfactory. Afterwords, the tracking errors
increase significantly. This happens because after some time there are too
many Fuzzy subsystems sending contradictory commands to the input. For
example, at 3500s, the error e3 is positive and would like to higher the input,
while e4 is negative and tries to lower the input.
The charging performance in this case is

(tcharged,%charged) = (6496 s, 69.72%) (6.7)

Let’s compare this result with the charging performances for experiments
with constant input in figure 3.8. We can assert that this specific experiment
led to a better charging distribution (+0.25%) for the same charging duration.
Similarly, to achieve the same percentage it takes 215 s less.
It is obvious that somehow the tracking was successful, but personally I don’t
think that the control has contributed into achieving a (very slightly) better
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Figure 6.2: Simulation example: Second order Fuzzy control applied to the
numerical model obtained by Lax-Wendroff discretization

charging performance. It is more likely that this improvement is given by the
fact that the average derivative of the mass flow in figure 6.2 is positive. In
section 3.1.2, some open-loop experiments were held on the numerical model,
which have shown that in general a gradually increasing input is profitable.



Conclusion

In the introduction of this master thesis, the importance of using energy
storage systems for developing renewable energy systems was expound. In
electricity systems based on renewable energy, the sources are only intermit-
tently available, while the system must satisfy a constant electricity demand.
Therefore, an efficient usage of energy storage systems is essential to provide
a back-up to intermittent renewable energy.

The Packed Bed Energy Storage System treated in this master thesis,
offers a relatively cheap way of storing energy. Its storage capacity merely
depends on the choice of the storage medium and on the size of the system
itself. We have seen, though, that only a part of its storage capacity can be
exploited during the charging phase, and only a fraction of the stored energy
can be fully recovered. That means that the charging and discharging pro-
cedure are non completely reversible, which dramatically affects the storage
capacity for a higher number of charging-discharging cycles.
Another crucial requirement on the system are the thermal losses to be neg-
ligible. To derive a mathematical model of the system, this was assumed to
be true. The simulation results were then compared to real laboratory mea-
surements and it was shown that the model is quite accurate. This means
that the thermal losses of the laboratory plant are negligible for short-therm
storing.

The principal aim of this work was to improve the charging performance,
which means to exploit the available storage capacity, of such a system by
means of control.
To investigate the system behavior, a mathematical model of the system was
derived. As it was not possible to solve the model equations analytically, the
solution is based on a numerical approach.
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Experiments held on the mathematical model using different constant mass
flows have shown that by using a lower mass flow the capacity can be best
exploited, with the huge disadvantage that the charging procedure is much
slower. Using a higher mass flow the charging duration is shorter, but the
charging distribution in the system is much worse.
However, it has been shown by numerical investigations that non constant
flow profiles can improve the charging performance compared to the constant-
flow scenario. In general, it is profitable to start the experiment with a lower
mass flow and increase gradually the input throughout the charging proce-
dure.

While open-loop experiments have shown some improvements of the charg-
ing performance, was the attempt to control the system rather unsuccessful.
The main problem arises because the mass flow alone is supposed to control
the temperature distribution in a volume. Basically, one single control vari-
able must control a very high number of outputs.
Furthermore, the available model of the system is highly nonlinear and non-
affine in the control.
It was shown that the PI controller is not suitable for such a problem, be-
cause it cannot control simultaneously the temporal and spacial behavior of
the system. For the same reason, a Fuzzy controller is not capable to per-
form a satisfactory tracking of a reference signal; there are too many Fuzzy
subsystems sending contradictory commands to a single control variable.
To take into account the temporal and spacial behavior of the system, model-
based optimal control strategies such as the Model Predictive Control appear
to be a promising class of approaches to be considered. Unfortunately, the
linear MPC did not give a good result because there was a mismatch between
the prediction and the actual behavior of the system. On the other hand,
nonlinear MPC strategies are difficult to implement because for this specific
system the optimization problems to be solved are highly nonlinear or only
piecewise defined.

Finally, we can say that the control results did not meet the expectations
and could not improve the system behavior. This is due to the complex
system dynamics and to the fact that there is only a single control variable
available to steer the system.



Appendix A

Empirical theory: Linear

interpolation of parameters of

characteristic polynomial

In section 5.2.3, a nonlinear ARMAX-model for the Thermal Storage System
was estimated in two steps:

1. For some constant values of the input, linear ARMAX-models of the
same order were estimated

2. The nonlinear ARMAX-model was built by linear interpolation be-
tween the parameters of the matrices of the linear-ARMAX models.

The nonlinear ARMAX-model resulted to be stable for the whole input range.
Here we want to find out if this is always valid.

Problem

Let

a(z) = zn + an−1z
n−1 + ...+ a0, b(z) = zn + bn−1z

n−1 + ...+ b0 (A.1)

be the characteristic polynomial of the discrete-time BIBO-stable systems
sysa and sysb, respectively. Both systems have the same order.
Consider the system with characteristic polynomial

c(z) = zn + cn−1z
n−1 + ...+ c0 (A.2)
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where the parameters are given by interpolating the parameters of the two
systems sysa and sysb, i.e.

ci(u) =
bi − ai
ub − ua

u−
ubai − uabi
ub − ua

, ∀i = 0, 1, ...n− 1, u ∈ [ua, ub] . (A.3)

Without loss of generality, we will set ua = 0, ub = 1 and hence the parame-
ters of c(z) can be rewritten as:

ci(u) = (bi − ai) u− ai, ∀i = 0, 1, ...n− 1, u ∈ [0, 1] (A.4)

Is the system with characteristic polynomial (A.2) BIBO-stable?

Empirical solution

A Monte-Carlo approach was used to find out the probability that the pro-
cedure of interpolating two linear systems lead to a stable system.
To do so, two non-correlated characteristic polynomials of order n containing
the following roots were built:

•
⌊
n
2

⌋
complex roots ri = |ri|e

−jρi with 0 ≤ |ri| < 1 and 0 ≤ ρi < 2π
randomly chosen ∀i

• the respective complex conjugate roots

• n− 2
⌊
n
2

⌋
real roots −1 ≤ ri ≤ 1 were randomly chosen ∀i

At that point, the characteristic polynomial c(z) is built according to (A.2).
For N = 1000 discretization points in the interval u ∈ [0, 1], an eigenvalue
test was done to see if the system is stable.
This procedure was repeated M = 200 times and the probability of obtain-
ing a stable system with this approach can be assumed to be equal to the
percentage of experiments which led to a stable system ∀u ∈ [0, 1]. The
computed probabilities are shown in figure A.1 as Experiment 1. It is shown
that for a system of 2nd order stability is guaranteed, while the probabil-
ity decreases for higher orders. The percentage corresponding to the order
n = 14 of the ARMAX-models identified for the Thermal Storage System
is 43.5%. As 9 linear interpolations were performed, the probability that
the nonlinear ARMAX-model is stable on the whole input range is around
0.0558%. At that point we could ask ourselves if we have just been “lucky”
that the nonlinear ARMAX-model of the Thermal Storage System turned
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Figure A.1: Probability of getting a BIBO-stable system by linear interpolation
of the parameters of two BIBO-stable characteristic polynomial. The probability is
expressed as a percentage and is computed for various orders n of the characteristic
polynomial.

out to be stable. We can assume, though, that there is some likelihood or
correlation between two neighboring linear ARMAX-models. That could be
the reason for the system to be stable.
Therefore, two more experiments were performed where there is some corre-
lation between the characteristic polynomials a(z) and b(z). Here, the roots
of a(z) were chosen randomly. The roots of b(z), instead, are the roots of
a(z) with a variation (∆ri,∆ρi) chosen randomly for each root. Of course it
was assured that the variation does not make the single roots unstable. For
Experiment 2 in figure A.1 the maximal variation was:

∆ri,MAX = 0.2

∆ρi,MAX =
1

8
πrad

(A.5)
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whereas for Experiment 3 it was:

∆ri,MAX =
∆ri,MAX

2
= 0.1

∆ρi,MAX =
∆ρi,MAX

2
=

1

16
πrad

(A.6)

We can see that the probability of stability increases significantly if there
is some likelihood between the roots of the two characteristic polynomials.
Therefore, if the interpolated ARMAX-model turns out to be unstable, a
possible approach can be to increase the distance between two neighboring
linear ARMAX-models in order to increase the likelihood between two models
that are to be interpolated.
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