

1

Kurzfassung

Ziel dieser Masterarbeit war die Entwicklung einer Platform, die man als Basis für einen mod-
ernen Tauchcomputer verwenden kann. Die erste Phase des Projekts umfasst die Gestaltung
des Tauchcomputers, betrachtet von zwei Standpunkte: Hardware und Software. In der zweiten
Phase hat man sich mit der Umsetzung von diesen beiden Aspekte beschäftigt. Es wurden
industriekonformen Bauteile verwendet, inklusive ARM-Prozessor, einen Touchscreen der unter
Wasser funktioniert, DDR3 Arbeitsspeicher, hochpräzise Sensoren, usw.
Außerdem wurde ein Linux-basiertes Betriebssystem in Betrieb genommen. Während der Um-
setzungsphase dieser Arbeit wurden mehrere Proof of Concept Software-Module implementiert.
Die Ergebnisse der Masterarbeit geben wertvolle Informationen, wie man die Tauchcomputer
Modernisierung schaffen kann, indem man die Weiterentwicklung von anderen Technologien wie
die Halbleiter-, Sensor-, Anzeige-, Software-, und Batterietechnologie ausnutzt.

2

Abstract

The purpose of this project was to design and build a platform which can be utilized for a modern
era dive computer. The first phase of the project includes the design of the dive computer,
from two standpoints: hardware and software. The second phase was the implementation and
integration of the these two aspects. As for the components, industry compliant parts were used,
ranging from an ARM based processor to the high precision sensors. On top of these parts,
a Linux based operating system was used. During the implementation phase of this project,
several proof of concept software modules were implemented. This research will provide valuable
information on how we can modernize the dive computers, with the use of the progress made in
other technologies like the semiconductor, sensor, display, software, and battery technology.

3

Danksagung

Diese Masterarbeit wurde im Studienjahr 2014/2015 an dem Institut für Technische Informatik
und an dem Institut für Elektronik an der Technischen Universität Graz durchgeführt.

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich während der Anfertigung
dieser Masterarbeit unterstützt und motiviert haben.

Zuerst gebührt mein Dank Herr Ass.Prof. Christian Steger, der meine Masterarbeit betreut und
begutachtet hat. Für die hilfreichen Anregungen und die konstruktive Kritik bei der Erstellung
dieser Arbeit möchte ich mich herzlich bedanken.

Ebenfalls möchte ich mich bei Univ.-Prof. Deutschmann Bernd und Ass.Prof. Gunter Winkler
bedanken, die mir mit viel Hilfsbereitschaft zur Seite standen. Bedanken m0̈chte ich mich fr die
zahlreichen Ideen, die dazu beigetragen haben, dass diese Masterarbeit in dieser Form vorliegt.

Außerdem gebührt mein Dank Herr Dr. Arne Sieber von der Firma Seabear Diving Technology
GmbH aus Graz, der für die Material- und Bauteilkosten gesorgt hat.

Ich bedanke mich auch bei den Mitarbeitern des Institutes für Elektronik, die mir bei der
praktischen Umsetzung einigen Aspekten dieser Arbeit geholfen haben.

Abschließend möchte ich mich bei meinen Eltern Vahid und Enisa bedanken, die mir mein
Studium durch ihre Unterstützung ermöglicht haben und stets ein offenes Ohr für meine Sorgen
hatten.

Graz, im November 2015 Irfan Sehic

Contents

1 Introduction 13

2 Related Work 15

3 State of the Art 17

3.1 Modern Dive Computers . 17

3.1.1 Suunto Eon Steel . 17

3.1.2 Seabear H3 . 19

4 Hardware Design of a Dive Computer 21

4.0.3 Microprocessing Unit . 22

4.0.4 Display . 25

4.0.5 Real Time Clock . 26

4.0.6 Permanent Data Storage . 26

4.0.7 Touchscreen . 28

4.0.8 Wireless module . 28

4.0.9 Main Memory . 29

4.0.10 Sensors and Sensor Interfacing . 30

4.0.11 Powering and PMIC . 33

4.0.12 JTAG and Testing . 34

4

5

5 Software Design of a Dive Computer 35

5.1 Software Requirements . 35

5.1.1 Linux as Operating System . 36

5.1.2 Kernel Modules and Drivers . 37

5.1.3 Booting . 38

5.1.4 Graphics . 39

5.1.5 Kernel Build System . 39

5.1.6 Real Time Operating System Properties and Requirements 40

5.2 Sensors and Sensor Interfacing . 41

5.2.1 MS5803, Pressure and Temperature Sensor 41

5.2.2 LSM303D, Compass Module and its Implementation 43

5.3 Software Modules Available to the User . 45

5.3.1 Graphical User Interface for Data Representation 45

5.3.2 Various Helping Utilities . 46

6 Hardware Implementation 47

6.1 Hardware Design Guidelines and Precautions . 47

6.1.1 Electromagnetic Interference and How to Prevent it 47

6.2 AM335x Starter Kit as a Reference Design . 50

6.2.1 EVM-SK Power Consumption . 51

6.3 Implementation and Integration of the Dive Computer Subsystems 51

6.3.1 Sitara ARM Cortex-A8 AM335x Processor 52

6.3.2 DDR3 SDRAM . 56

6.3.3 SD Card Interface . 59

6.3.4 JTAG . 61

6

6.3.5 Wireless Module . 61

6.3.6 LSM303D, Compass Module . 62

6.3.7 MS5803, Pressure and Temperature Sensor 64

6.3.8 Power Supply and Power Management . 64

6.3.9 LCD and Touchscreen Implementation . 64

6.3.10 Overview of the Finished Board . 66

7 Software Implementation 73

7.1 Configuring the Hardware . 73

7.1.1 Device tree . 73

7.1.2 Boot Source Configuration . 75

7.1.3 EMIF Module Configuration . 76

7.2 Buildroot . 79

7.2.1 Software Configuration for the WiFi Module 80

7.3 Sensors Driver Implementation . 81

7.3.1 Pressure and Temperature Sensor Driver 81

7.3.2 eCompass Driver . 82

7.3.3 QT GUI Implementation and Driver Integration 83

7.3.4 Services Offered over WiFi . 85

7.4 Software Tools Offered by Linux . 85

7.4.1 Using Power Saving Mechanisms in Linux 86

7.4.2 Suspend to RAM . 87

8 Future Work 89

8.1 Full Featured Dive Computer Software . 89

7

8.1.1 GUI Concept . 89

8.1.2 Desirable Dive Computer Features . 90

8.2 Hardware Changes . 91

9 Conclusion 92

A Abbreviations 94

Content 95

List of Figures

3.1 Suunto Eon Steel dive computer . 18

3.2 Suunto Eon Steel dive mode . 18

3.3 Seabear H3 dive computer . 19

4.1 AM335x ARM processor block diagram . 23

4.2 AM335x real time clock functional diagram . 27

4.3 MMC/SD interfacing in 4-bit mode . 27

4.4 Touchscreen module and a transparency test . 28

4.5 WiFi module by Acme Systems . 29

4.6 MS5803, pressure and temperature sensor block diagram 31

4.7 LSM303D eCompass module block diagram . 32

4.8 LSM303D, eCmpass module pins and detection directions 32

5.1 Linux system layers . 37

5.2 Linux kernel structure . 38

5.3 Linux framebuffer and LCD controller overview 40

6.1 Loop area between IC and a decoupling capacitor 49

6.2 AM335x Starter Kit block diagram . 50

6.3 AM335x Starter Kit bottom layer . 51

8

9

6.4 AM335x pinout on bottom, SIG1 and SIG2 layers 54

6.5 AM335x decoupling capacitors . 55

6.6 AM335x crystals schematics . 56

6.7 Hardware layout the AM335x and the DDR3 SDRAM 58

6.8 Board cut-out of the DDR3 SDRAM, bottom and top layers 58

6.9 Interface between the AM335x and the SD Card slot 60

6.10 SD card slot soldered on the board . 60

6.11 JTAG interface schematics for our board . 61

6.12 XDS200 JTAG probe connected to our board . 61

6.13 Schematics for the eCompass module . 63

6.14 PCB design for the eCompass module . 63

6.15 Schematics for the pressure and temperature sensor module 64

6.16 Schematics for the LCD module . 65

6.17 Schematics for the resistive touchscreen . 66

6.18 Resistive touchscreen conceptual design . 67

6.19 AM335xbottom and top layers of the prototype board 68

6.20 AM335xSIG1 and SIG2 layers of the prototype board 68

6.21 Front side of the board, with LCD and touchscreen attached to it 69

6.22 Back side of the board . 69

6.23 Measuring the SD card SPI clock signal on first prototype board 70

6.24 First build prototype with improvised SD card connector 70

6.25 Workspace for power measurement . 71

6.26 Workspace for software development . 71

6.27 Second prototype with LCD with wrong timing config connected to it 72

10

7.1 Schematics for the pressure and temperature sensor module 80

7.2 Qt application dive mode, a proof of concept . 85

8.1 Surface mode concept . 90

8.2 Dive mode concept . 90

8.3 Dive mode concept with a triggered alarm . 91

List of Tables

4.1 Micro processing unit candidates for the dive computer 22

4.2 1Gb and 2Gb DDR3 solutions by Micron and their addressing 30

4.3 AM335x power supply rails [1] . 33

5.1 MS5803 command structure . 42

5.2 MS5803 calibration data . 42

5.3 MS5803 pressure and temperature data after conversion 43

5.4 MS5803 pressure and temperature calculation . 43

5.5 LSM303D configuration register fields and values [2] 44

5.6 LSM303D accelerometer and magnetometer value registers 45

6.1 AM335x power domains . 52

6.2 VDD CORE operating points [1] . 53

6.3 VDD MPU operating points [1] . 53

6.4 Valid combinations for operating points [1] . 53

6.5 AM335x decoupling capacitors . 55

6.6 Micron DDR3 SDRAM pin assignment [3] . 57

6.7 SD card pinout . 59

6.8 TSC ADC SS subsystem external interface signals 62

11

12

7.1 SDRAM CONFIG register fields and their description [1] 76

7.2 SDRAM CONFIG register values for MT41J128M-125 (2Gb) 77

7.3 SDRAM CONFIG register values for MT41J64M16-15E (1Gb) 78

7.4 DDR3 ratio seed spreadsheet values for MT41J64M16-15E 79

7.5 DDR3 timing register values for MT41J64M16-15E 79

7.6 Commands used in MS5803 driver [4] . 82

7.7 Operating points for AM335xas defined in the device tree 86

Chapter 1

Introduction

A dive computer and a decompression table share a common purpose. They both allow the
diver to determine the decompression schedule for a certain dive profile and the breathing gas.
The advantage of the dive computer lies in the fact that it performs a continuous calculation
of the partial pressure of inert gases based on the actual time and depth profile of the dive [5],
whereby a decompression table assumes a square dive.

There is an abundance of dive computers on the market, ranging from entry-level ones, to those
used by the army. They differentiate in various features, like the maximum depth they operate
at, battery life, gas mixtures and decompression algorithms supported, etc.

In this paper, we present a hardware and software platform, which can be used as a basis for
a dive computer. From the hardware point of view, it features an AM335x microprocessor unit
(MPU) with its required peripherals, such as a power management unit (PMIC), and necessary
sensors including a compass and a barometer. It also includes a a 3.5′′ LCD, a touchscreen, a
wireless module which can be used to exchange data with the PC, and an SD card which holds
the Linux kernel and the filesystem.

From the software standpoint, the dive computer features a Debian Linux distribution with an
emphasis on a short boot time and reliability. On top of Linux, custom components are present,
such as a proof of concept graphical user interface (GUI), drivers for the sensors, and several
other software modules. The interestingness of the dive computer also lies in the fact that it
features a touchscreen which can be operated under water, since it is filled with oil, which does
not compress as much as air, when under pressure.

It is also noteworthy that an important concern during our design was the battery life of the
dive computer, as the hardware components, if not properly optimized, can draw a lot of power,
which can reduce the dive time.

As a starting point for the development of our system, an evaluation board called AM335x
Starter Kit, by Texas Instruments was chosen. The AM335x Starter Kit provides an affordable
platform for the evaluation of the Sitara ARM Cortex-A8 AM335x [6], which we decided to use
in our design. Texas Instruments provided schematics and the board layout files, which were

13

CHAPTER 1. INTRODUCTION 14

then used to develop a custom board for the dive computer.

For the development of the dive computer, the AM335x Starter Kit was stripped off the un-
necessary features, such as the dual Gigabit Ethernet controller, audio codec, USB hub, etc.
A different DDR3 chip with less capacity than the one used in the AM335x Starter Kit design
was chosen in our design. Besides this, appropriate sensors for pressure and temperature, and
a compass module were integrated in the system. A WiFi module, 3.5′′ LCD and a touchscreen
were used as output and input for the data.

As for the software aspect, we used Debian as our operating system, since it offered us plenty
room for customizability. Several software modules were then implemented on top of the oper-
ating system, which showed the possibilities of the hardware. These modules include the GUI,
reading out the sensor data, and accessing some of the boards features over the WiFi. Other
software aspects, like customizing the bootloader, configuring the kernel for the hardware, were
of no less importance either.

For such a device, power consumption is also of importance, since it runs on a limited power
supply, i.e. a battery. For this reason, we also looked into the power saving capabilities of the
hardware we used, specifically the AM335x and the DDR3 memory.

This paper is divided in several chapters. Chapter 2 gives an insight in the work related to
our project. Chapter 3 gives a glimpse in the modern dive computers. Chapter 4 and 5 give
information about the hardware and software design of the dive computer platform, respectively,
and Chapters 6 and 7 show how the implementation of the ideas from the design phase went by.
In Chapter x, we inform the reader on the eventual path this project might go.

In Chapter 9, we draw some conclusions from this work.

Chapter 2

Related Work

This chapter investigates the work related to the content of this paper, from the hardware and
software points of view.

Albeit, finding scientific papers whose content directly deals with the same matter to ours,
namely, developing a hardware and software platform for a dive computer, was not an easy task,
as most of such works are done commercially, so their implementation is kept private.

For this reason, we turned to the resources which discuss more general topics which appear in
our work. We found a lot of information concerning the software aspect of our work, such as the
books about Linux for embedded systems and its optimization. We also found a lot of general
information about designing printed circuit boards (PCB) and guidelines for various aspects
such as a high-speed design, routing guidelines, etc. We first focus on the software resources
which were useful to us during the course of this project.

Building Embedded Linux Systems [7], a book by Yaghmour, K. et al. offered an in-depth guide
to understanding and building embedded systems based on Linux. This book was a good guide
on how to configure and use the packages needed for compiling, configuring and testing Linux
based operating systems. It provides a good documentation on basic concepts such as a processor
architecture, cross compiling, a general overview of an embedded Linux system, and its real life
application. Besides the general concepts, we got a deeper understanding of the importance of
the Linux kernel, and what its role is. Since configuring and tailoring the kernel to our needs
is a no trivial task, this book served as a good information source on what kernel versions are
available, and how to pick a suitable version for our embedded device, and how to configure it
properly. Besides the kernel, we also acquired a good understanding of the root filesystem, and
what the purpose of the filesystem is. Basic concepts like the location of the binaries, bootloader
files, configuration files, device and media mount points were also of importance to us. The book
also gives a vague overview of the bootloader, and what role it plays.
Another good read about Linux for embedded systems was Linux for Embedded and Real-time
Applications [8], by Abbott D. Similar to the first book, it gave us another good reference for
general information on the operating system we have chosen, Linux. These two books were
important for our understanding of how the operating system interacts with hardware, and
how the filesystem interacts with Linux. This way, we can successfully integrate this important

15

CHAPTER 2. RELATED WORK 16

building block in our project.

As for the hardware development, we found many resources concerning both the general refer-
ences for PCB design, but also some more specific topics, like a high-speed design, which we will
need when dealing with the processor and RAM, and design guidelines for certain interfaces like
the Joint Test Action Group (JTAG) interface, or Inter-Integrated Circuit (I2C) interface.
The Art Of Electronics, 2nd Edition [9], was a great reference book concerning electronics. It
provides an in-depth information starting from the basics, to the more advanced topics. This
book was used as a general reference to fill in the blanks in topics which were directly related
to our work.
One of the most useful resources for the PCB design we had a chance to use were the lecture ma-
terials for the lecture Development of Electronic Systems at the Technical University of Graz,
held by the professors of the Institute for Electronics. The main idea of the lecture was the
development of market-ready electronic devices. Several topics were interesting for our work,
including the development of hardware which respected the laws of electromagnetic compati-
bility (EMC), security and reliability. Other topics, such as component placement and board
zoning, micro controllers, sensors and sensor interfaces were also interesting as an entry point for
a deeper understanding of these broad topics. We go in depth about these materials in Chapter
6.1.
Another important resource for the PCB design we found useful is a collection of guidelines
provided by Texas Instruments [10]. This relatively short read is a good resource which gives
many practical guidelines and information which needs to be considered while designing a PCB.
Topics such as the the causes of electromagnetic interference (EMI), board layout planning,
information about electric signals were all covered by this work.

Deco for Divers [11] was a good informal read about diving and decompression, This book gives
a comprehensive guide to the basics of decompression theory, and is targeted to an average diver.
From this guide, we were able to extrapolate what information should be provided by a dive
computer, and how this information is used by the computer and the diver.

Chapter 3

State of the Art

In this chapter, we briefly review the products on the market which are related to the one we are
presenting in this paper. This includes several dive computers which are conceptually similar,
i.e. have a large LCD, and offer an appealing user interface.

3.1 Modern Dive Computers

The first device that comes to mind in a discussion about modern dive computers is the Suunto
Eon Steel. Besides this one, Seabear H3 is also a notable example of what a modern dive
computer should offer. We will present these two devices in Chapter 3.1.1 and Chapter 3.1.2
respectively.

3.1.1 Suunto Eon Steel

Suunto Oy is a company with a long tradition, located in Vantaa, Finland, and it has more than
300 employees worldwide.
This company is known for its multi-functional electronic wristwatches, which provide a variety
of sensors and functions, such as a compass, altitude, GPS location, etc. Suunto also makes dive
computers, and has several of them in their portfolio. The one that is of most interest to us is the
Eon Steel, visible in Figure 3.1. As we see in the Figure 3.1, this dive computer has a relatively
large display with sharp colours. Besides the display, we also see three buttons on the front side.
Looking through the manual gave us a good information on what this device can offer. It has
two main views in surface and dive mode, and several other where some sensor data is shown,
such as the compass. Switching between the surface and dive mode is done automatically if the
device is deeper than 1.2 meters in water [12]. When the device is under water, the interface
changes to the dive mode, shown in Figure 3.2. The interface we see uses neon colours which
are well visible on a black surface. Here we see the actual depth, active gas, dive time, tank
pressure, and some other important parameters. The bar on the side indicates the ascent rate.

17

CHAPTER 3. STATE OF THE ART 18

Figure 3.1: Suunto Eon Steel dive computer [12]

Figure 3.2: Suunto Eon Steel dive mode [12]

CHAPTER 3. STATE OF THE ART 19

Figure 3.3: Seabear H3 dive computer [13]

This dive computer has colour coded alarms, warnings and notifications. If the diver breaks the
decompression ceiling or the partial oxygen pressure is not in a safe margin, an alarm will be
shown.

Besides these user interface elements which show the information, the Suunto Eon Steel offers
a wide variety of options, such as using a customized GUI which can be customized on a PC,
viewing diving history, setting gas mixtures and so on.

3.1.2 Seabear H3

Seabear GmbH is a young company situated in Graz, Austria. They specialize in dive computer
research and development. The dive computer of a particular interest to us is the Seabear H3.
It features a 1.7′′ OLED screen protected by a sapphire window. The case is made of a 316L
stainless steel.
We see a Seabear H3 unit in Figure 3.3. An interesting fact about the H3 is the fact that it
has an NFC chip on-board, where the diver can store one of the dive logs on the H3, which can
than be read out by an near field communication (NFC) equipped smart phone.
There are two sensors mounted on the H3 PCB, namely a pressure sensor and an compass. The
hardware is powered by a 400 mAh Li-Ion battery. As for the software, this dive computer also
offers several screens to choose from. When diving, one screen gives an overview of the most im-
portant parameters, like the depth, no-stop time, dive time and so on. Besides this screen, there
are several others. One can e.g. choose the layout with the compass while underwater. As for
the decompression algorithm, H3 uses a Buehlmann ZH-L16 algorithm with gradient factors [13].

Other options, like an automatic activation of the dive mode at a certain depth, a logbook,
setting various gas mixtures, are similar to the Suunto Eon Steel, and other dive computers on

CHAPTER 3. STATE OF THE ART 20

the market.

Chapter 4

Hardware Design of a Dive
Computer

This section covers the hardware considerations which were made during the design phase of
the dive computer. Such considerations include a proper selection of an MPU, main memory,
sensors, input methods, and other sub-modules which are necessary for the functionality of an
embedded system.

There were several criteria during the selection of components, ranging from power consumption,
availability, testability, costs, and software environment surrounding them. Also, it is clear that
there are certain size and weight constraints bound to such a product. Since the display should
be proportional in size to the dive computer, a small dive computer might not be usable in
water, as the readings on the display would be intelligible. On the other hand, a large device
would be bulky. It would also draw more power, and would affect the buoyancy of the diver.

An LCD, which were to be used, needed to satisfy a trade-off between power consumption and
a good data representation.

To fulfil its task of determining the decompression schedule for a dive profile, the dive computer
needs sensors which would make the reading of the environment data possible. These sensors
include a compass and a pressure sensor. The sensors need to have a certain accuracy and
respect the size and power constraints.

A storage medium is required, where the firmware, algorithms, dive logs, etc. would be perma-
nently stored.

As an input method, a 3.5′′ touchscreen which works under water will be used.

For the data transfer and communication to the users PC, a WiFi module will be used, which
will then work in access point mode.

The core of the system is the MPU, which would, at a certain rate, read out the sensors, and

21

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 22

present relevant data on the display. The MPU needed to support certain protocols, which make
the communication to the sensors, LCD, and the storage medium possible.

It is also worth noting that all the components must be available on the market in the next 5-6
years, as changing either one of the components might be expensive.

This chapter is divided in several sub-chapters, each covering an important hardware aspect of
the device. Firstly, we will introduce the requirements for a microprocessing unit, which are
given in Chapter 4.0.3. Display considerations are given in Chapter 4.0.4. Chapter 4.0.8 gives
more information on the module used for WiFi communication.
In Chapter 4.0.6, things concerning the permanent data storage are explained, and Chapter 4.0.7
gives information about the touchscreen. The main memory of the system is explained in
Chapter 4.0.9. For testing purposes, a JTAG interface is also necessary, and its description is
given in Chapter 4.0.12.

4.0.3 Microprocessing Unit

As previously noted, an MPU which supports certain communications interfaces including 24-
bit RGB interface, serial peripheral interface (SPI), analogue-to-digital converter (ADC), for the
touchscreen, and I2C was needed. For this reason, the MPU was the first component which
was chosen. Since ARM is one of the leading processor designers which offers a wide variety of
processor designs, a decision was made to pick one of the ARM based processors.

Certain criteria like software and tool ecosystem, reference implementation flows and a well-
understood and documented processor were applied.

Possible MPU candidates, picked from a wide variety of processors, which fulfilled our require-
ments are visible in Table 4.1.

Vendor MPU family Processor core Architecture

Freescale i.MX51 ARM Cortex-A8 ARMv7-A

Texas Instruments Sitara ARM Cortex-A8 ARMv7-A

Samsung S3C6410 ARM11 ARM11

Table 4.1: Micro processing unit candidates for the dive computer

These chips are quite similar in terms of what they offer. They all target environments where a
rich operating system, high performance and low-power footprint are needed.
The AM335x from Texas Instruments Sitara family was chosen for the reason of a good support
in terms of software and reference documents. The application examples for the Sitara family
state that it is targeted towards retail, industrial and medical application, and single board
computing. Texas Instruments gives several concrete usages for the AM335x , including building
and home automation, industrial communication, single board computers, data concentrator,
etc. [14].

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 23

Figure 4.1: AM335x ARM processor block diagram [6]

A block diagram for the Cortex-A8 based AM335x MPU is given in Figure 4.1.
As we see in Figure 4.1, the AM335x comes with a lot of features. It supports a clock frequency
of up to 800MHz, which is too much for us, but the lowest operating frequency is 275MHz, which
will fit our needs in terms of speed requirements. The AM335x has a wide range of periphery
it can support. For us relevant are the 24-bit RGB interface, a touchscreen controller, 2 SPI
buses, 3 I2C buses, and the memory interfaces for DDR2 and DDR3. Besides this, there is a
support for MMC/SD cards and a NAND flash.

The AM335x comes in several configurations. They differ in the frequency range they are
designed for, presence of the 3D graphics accelerator chip, and the I/O supply voltage. For
example, the AM3352, which is on the lowest end of the portfolio, is capable of running at
frequencies of 300 MHz, 600 MHz, 800 MHz and 1 GHz, while the highest end AM3359 runs at
800 MHz. Compared to AM3359, the AM3352 also lacks the 3D graphics accelerator chip.

We decided to use the AM3352 for several reasons, including the lower clock frequency, and the
lack of unnecessary features like a 3D graphics accelerator. The lower frequency will help us
reduce the power consumption.

As for the software and product support, Texas Instruments offers many resources, including
a community forum, free MPU samples, power distribution switches, reference designs for var-
ious peripherals including DDR memory, power management ICs specifically designed for this
processor, and so on. Several evaluation boards were also offered by TI for the AM335x family:

• BeagleBone Black

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 24

• AM335x Starter Kit (low cost starter kit)

• AM335x EVM (full featured AM335x EVM)

To test the capabilities of the processor, we used the AM335x Starter Kit.

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 25

4.0.4 Display

Next in line to choose is the display, where the information will be presented to the user.
When choosing the right display, several aspects must be considered. The first aspect are the
optical properties of the display. The display which would have to have the right size, since the
touchscreen which is used only comes in one size, namely 3.5′′.
The contrast and the viewing angle would also need to be satisfying, as the application area
is outdoors, underwater. The second aspect is a module with a well-known interface. Either a
display with an SPI interface is used, or an LCD with a 24-bit RGB interface. The AM3352
supports both ways, but in practice, the industry dictates that a 24-bit RGB interface is used,
since the other option with the SPI is mainly targeted to hobbyists, and the LCD modules are
discontinued after a few years. Still, we decided to explore both options for the sake of research.

An open-source library by a Github member notro called fbtft offers a wide portfolio of the Linux
framebuffer drivers for the most common TFT LCD controllers. There are a lot of displays of-
fered which use one of these controllers, some of them even satisfying our criteria in terms of
size and optical properties, but for the aforementioned reason of availability in the future, we
decided not to explore this option any further.
The other option of using a display with a 24-bit RGB interface was picked. A display called
P320X-35ALWS, by a company called Electronic Assembly was recommended to us by a com-
pany well versed in this matter, so a decision was made to use this particular display.
Main features of the display are [15]:

• 3.5′′ diagonal screen size

• 320 * (R * G * B) * 240 dots

• Sunlight visible

• White LED backlight

• 24-bit RGB interface, HSYNC, VSYNC, SPI

• Himax HX8238-D controller

• conforms ROHS

The outline dimension of the LCD module is 76.9mm (W) * 63.9mm (L) * 3.2mm (H) with
an active area of 70.08mm (W) * 52.56mm (L). The digital power supply voltage ranges from
3.0V to 3.6V. The backlight supports max. 21V, with a typical voltage of 19.2V, with a forward
current of 20mA.

Since the 24-bit RGB interface is naturally supported by Linux, we only need to send the
data over it at the correct clock speed, so the software main concern for this display is the
initialization. For example, some displays must be initialized over SPI. Luckily, in our case, the
Himax HX8238-D controller found in the LCD we will use includes a Power on Reset circuitry,
so all internal circuitry will initialize when the power is applied to it. So, to use our display, we
just need to match the signals from the LCD controller of AM335x and our LCD module.

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 26

As for powering the backlight, we will require a buck-boost converter with the above mentioned
parameters.

4.0.5 Real Time Clock

A real time clock (RTC) is considered a default part of any MPU, but it can also be realised
in a form of a separate integrated circuit (IC). It is present in devices which need to precisely
track the passage of time.
When the device is powered off, the RTC still needs to continue tracking time. For this matter,
it usually has its own backup battery, so it can continue working when the primary source of
power is turned off. If a CPU switches the system to a lower power state because it is idle, or
the battery is empty, the RTC can continue the task of tracking time.

We consider an RTC to be an important part of our design, since we can use it to wake up
the board, or trigger periodical actions. An important task of an RTC IC is providing timed
interrupts. The engineer can either define periodical interrupts, or alarms at a certain time.
Provided it has enough power, it can track the passage of time for several years.

The AM335x has a real time clock subsystem (RTCSS), which enables it an easy tracking of
time and date. Using RTCSS, it is also possible to generate real time interrupts, which can
occur every second, minute, hour, or day, depending on how the user defined it. It can also be
used to wake up the rest of the board from a power down state - a feature which might be useful
for a dive computer.
For the clock reference, three options are offered. It can be sourced by an external crystal, an
external 32.768kHz oscillator, or from a Peripheral Phase Locked Loop (PLL). If a crystal is
used, RTC XTALIN pin is used as the input to the on-chip oscillator, and RTC XTALOUT is
the output back to the crystal. RTC OSC REG register can be used to disable the oscillator. If
an external 32.768kHz clock oscillator is used, only RTC XTALIN pin is connected. The source
of the RTC is selected by SEL 32KCLK SRC bit in the OSC CLK register [1].

The functional block diagram of the AM335x RTC is seen in Figure 4.2. timer intr pend is a
timer interrupt, generated periodically, and
alarm intr pend is an alarm interrupt. They are both generated by the RTC.

4.0.6 Permanent Data Storage

To permanently store the bootloader, Linux kernel and the filesystem, a non-volatile data storage
is needed. Since our device is power and size constrained, viable options were either a flash
storage or an SD card.

The AM335x has a NAND controller with 16-bit Error Code Correction (ECC), so a NAND
flash of a considerate capacity sounds like a good option. Unfortunately, due to time and tool
limitations, we decided to use the SD card as our non-volatile memory, since its implementation
is much simpler, but at one small cost: a reduced speed of data transfer.

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 27

Figure 4.2: AM335x real time clock functional diagram [1]

Figure 4.3: MMC/SD interfacing in 4-bit mode

The AM335x comes with three MMC/SD controllers [1]. The MMC/SD protocol performs the
necessary communication between the card and the MMC/SD controller.
It can be configured to work as an MMC or SD controller, based on the type of card we use.
There are several modes which can be used while interfacing this type of storage, depending on
the number of data pins one uses. SD cards can use one, four or eight data lines. MMC cards
support one and four data lines. The configuration we decided to use was an micro SD card with
four data lines. The interfacing is then given in Figure 4.3. As visible in the Figure 4.3, there
are four data lines, a clock signal used for a synchronized communication, and a command signal
line, over which the commands are exchanged between the controller and the card. Besides these
6 signals, an SD card also requires a 3.3V voltage source and a ground pin.

The MMC/SD controller of AM335x has a built-in 1024 byte buffer for reading and writing, and
supports up to 24Mbyte/sec transfer in 4-bit mode.

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 28

Figure 4.4: Touchscreen module and a transparency test

4.0.7 Touchscreen

A resistive touchscreen is an input device which is usually placed over an LCD. It is a glass
panel whose touch area covers the viewable area of the display. This type of sensor is ubiquitous
nowadays. If a product has an LCD and expects an input from the user, there is a high
probability it also uses a touchscreen.
Several technologies exist which enable this technology, and in one way or another, they rely
on the voltage change to determine the location of the touch. Most common touch sensor
technology which is often encountered in embedded systems such as ATM’s, restaurants, older
smartphones, etc., are mostly resistive [16].
In our design, we will also use a resistive touchscreen. Instead of air between the layers, it is
filled with oil, so it will work under pressure, and the layers will not short circuit.
The 3.5′′ module we will use is shown in Figure 4.4, where we do a small transparency test.

4.0.8 Wireless module

Enabling a communication between a PC and the dive computer is also an important aspect we
must consider. This way, we give the user a way to access their data (e.g. divelogs), make data
backups, and do some basic configuration from their PC (like recalibrating the touchscreen or
updating the software).
For this matter, a WiFi module will be integrated in our design, which will be used in access
point mode. After some research, we found a module which suits our needs in terms of features,
size and long-term availability.

We decided to use an OEM WiFi solution by Acme Systems, an Italian company which specializes
in embedded hardware and software solutions. The module used is the WiFi-2-IA, and it can
be seen in Figure 4.5. It has an on-board antenna, with a range of up to 3 meters [17], which
perfectly suits our needs.
It uses a RaLink RT5370 system on chip (SOC). It is a very popular SOC, and there are several
vendors which offer a module where RaLink RT5370 is used, one of them being the one we

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 29

Figure 4.5: WiFi module by Acme Systems [17]

picked.
This module can be soldered directly to the PCB, and it has a 6 pins with a 2mm pitch. It uses
a USB 2.0 as a means of communication, and requires a 3.3V power source.

4.0.9 Main Memory

Every computer needs a working memory where the kernel is loaded, and where the program
code is stored, so a consideration was needed to choose a fitting solution in a form of a DDR
memory chip.
The AM335x Starter Kit has an DDR3 SDRAM chip on-board.
DDR3 SDRAM uses a double data rate architecture to achieve high-speed operation. The dou-
ble data rate architecture is an 8n-prefetch architecture with an interface designed to transfer
two data words per clock cycle at the I/O pins. A single read or write operation for the DDR3
SDRAM effectively consists of a single 8n-bit-wide, four-clockcycle data transfer at the internal
DRAM core and eight corresponding n-bit-wide, onehalf-clock-cycle data transfers at the I/O
pins [3].
The AM335x External Memory Interface (EMIF) is used for interfacing various memory types,
like mDDR, DDR2 and DDR3. It has a 16-bit wide datapath to the external SDRAM memory,
and an addressability of 1Gb. It is heavily customizable, as it offers a flexible bank/row/column/chip-
select address multiplexing schemes, various Column Access Strobe (CAS) latencies, page sizes
of various sizes and so on.
In the AM335x Starter Kit design, a DDR3 chip by Micron is used. Due to our lack of experience
with high-speed design, we decided to keep the DDR3 chip, and just swap the 2Gb chip mounted
on AM335x Starter Kit, with a 1Gb chip with the same pin layout but a lower speed rate and
price. We will also get a chance to understand the software aspect of interfacing a DDR3 chip,
since we will have to reconfigure the software module which takes care of interfacing the main
memory.
Let us take a look at 1Gb and 2Gb DDR3 solutions by Micron in Table 4.2, and how they are
addressed. The 2Gb solution was used by on the AM335x Starter Kit. As one can see, The 1Gb
option requires one less signal (The 13th signal for row addressing).

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 30

Parameter 64 Meg x 16 (1Gb) DDR3 chip 128 Meg x 16 (2Gb) DDR3 chip

Memory layout 8 Meg x 16 x 8 banks 16 Meg x 16 x 8 banks

Refresh count 8K 8K

Row addressing 8K (A[12:0]) 16K (A[13:0])

Bank addressing 8 (BA[2:0]) 8 (BA[2:0])

Column addressing 1K (A[9:0]) 1K (A[9:0])

Page Size 2KB 2KB

Table 4.2: 1Gb and 2Gb DDR3 solutions by Micron and their addressing

As for the AM335x Starter Kit, the evaluation kit we use, a 2Gb chip by Micron is used on the
board. Only 265Mb of this chip are used, as defined in the device tree of the EVM-SK. The
reason for this is the fact that there is only one Chip Select (CS) pin, so only one DDR bank
can be used, and the size of one bank of the chip is 256Mb.
DDR is high-speed, with a complex design and test flow. It also requires personnel with highly
specialized skills and expensive simulation and testing tools. Implementing a DDR2 IC on our
board would considerably reduce power consumption, but it would require simulations, evalua-
tions, EMI compliance testing and so on, all with unavoidable iterations of such processes. This
would extend the scope of this work tremendously. For this matter, we decided to stick with the
working memory layout and chip used on AM335x Starter Kit. Thus, we can choose any of the
Micron DDR3 chips, since they are share the same pin layout. We will use the MT41J64M16JT-
15E, a slower chip with less capacity.

4.0.10 Sensors and Sensor Interfacing

A purpose of a dive computer is mainly to track the dive profile of the diver, by means of mea-
suring time and pressure.
The surrounding pressure is used to track the partial pressure of gases in the human tissue.
Besides the pressure, a dive computer measures the water temperature, to e.g. notify the user of
the extreme temperatures, or to make a more accurate calculation of the partial pressure in the
tissue. These measurements are, combined with the decompression algorithm, used to calculate
the partial pressure of inert gasses in the divers tissue.
Besides the information needed for the decompression algorithm, a module necessary for navi-
gation, such as a compass, is needed.
For this reason, several types of sensors will be mounted on the board: MS5803, a pressure and
temperature sensor, and LSM303D, a 3D magnetometer and 3D accelerometer.

4.0.10.1 MS5803, Pressure and Temperature Sensor

A sensor module which will be employed on our board is the MS5803 pressure and temperature
sensor. It fulfils the requirements of the dive computer, as it offers a satisfiable precision, fast
conversion and low power modes. It has an operating voltage in range of 1.8 to 3.6V, and an

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 31

Figure 4.6: MS5803, pressure and temperature sensor block diagram [4]

operating range of 0 to 30bar for the pressure, and -40 to +85◦C for the temperature sensor [4].
It is also hermetically sealable. On top of that, the communication protocol is simple, without
the need to program internal registers in the device. The device can be interfaced with the I2C
and SPI.
The resolution of the data is 24 bits. This high resolution offers us a chance to use the pressure
sensor to measure the depth, with a promised water depth resolution of 2.5cm.
In Figure 4.6 a block diagram for the MS5803 is visible. In the block diagram, a simple nature
of the sensor is shown. A piezo-resistive sensor provides the analogue data which is converted
to 24-bit digital value.
We will use I2C to interface this module.

4.0.10.2 LSM303D, Compass Module

Another sensor which which will be used in the design is an eCompass module. The technical
info about the module stems from the datasheet.
The LSM303D is a chip developed by STMicroelectronics, and it is a solution which offers a
temperature sensor, a 3D digital linear acceleration sensor and a 3D digital magnetic sensor.
There were several reasons to choose this chip. It provides all the necessary sensors for a digital
compass, has compact size (3x3x1mm), it offers several power profiles, and has a fairly high data
resolution. The communication between the MPU and the LSM303D is done over the I2C or
the SPI interface [2].
In Figure 4.7 a block diagram for the LSM303D is shown. The block diagram shows the intuitive
nature of the sensor. There are two inputs for the accelerometer and the magnetometer. This
analogue input is then converted by an ADC. The data is then processed by the control logic
which forwards it to the MPU over the I2C or the SPI interface.
In Figure 4.8 a pin description, and the direction of detectable orientations and magnetic fields
of the chip are shown.

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 32

Figure 4.7: LSM303D eCompass module block diagram [2]

Figure 4.8: LSM303D, eCompass module pins and detection directions [2]

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 33

4.0.11 Powering and PMIC

In this chapter, the powering requirements for the MPU and other components we introduced
earlier will be discussed. We start of by giving information about the power supply rails of the
MPU, which is given in Table 4.3.

Signal Description Voltage

VDD CORE Core domain 0.95V-1.1V

VDD MPU MPU domain 0.95V-1.325V

VDDS RTC RTC domain 1.8V

VDDS DDR DDR IO domain (DDR2 / DDR3) 1.8V/1.5V

VDDS Dual voltage IO domains 1.8V

VDDS SRAM CORE BG Core SRAM LDOs, Analogue 1.8V

VDDS SRAM MPU BB MPU SRAM LDOs, Analogue 1.8V

VDDS PLL DDR DPLL DDR, Analogue 1.8V

VDDS PLL CORE LCD DPLL Core and LCD, Analogue 1.8V

VDDS PLL MPU DPLL MPU, Analogue 1.8V

VDDS OSC System oscillator IOs, Analogue 1.8V

VDDA1P8V USB0/1 USB PHY, Analogue, 1.8V 1.8V

VDDA3P3V USB0/1 USB PHY, Analogue, 3.3V 3.3V

VDDA ADC ADC, Analogue 1.8V

VDDSHVx Dual Voltage IO domain 1.8/3.3V

Table 4.3: AM335x power supply rails [1]

We see that the power rails required for the MPU are either 1.8V or 3.3V. The CORE and
MPU domain require a variable voltage range between 0.95V and 1.1V and 0.95V and 1.325V
respectively, depending of the clock frequency. These voltages will be provided by a PMIC.

The TPS65910x IC is the one used for AM335x Starter Kit. It is designed specifically for
AM335x, and can provide all of the power rails listed in Table 4.3, from both voltage and
amperage perspective. It is designed for applications powered by one Li-ion or Li-ion polymer
batteries, or a 5V input. It has three step-down converters, one step-up converter, and eight
low-dropout regulators. These regulators are controllable by an I2C interface. The PMIC has
an embedded power controller to manage the power sequencing of the OMAP systems such as
the AM335x.

The DDR subsystem will also be powered by the PMIC with dedicated power rails for it.

The eCompass module has a supply voltage range ranging from 2.16V to 3.6V, so we will be
able to supply it by one of the VDDSHVx power domains. One of these domains will also be
used for the sensors.
The digital domain of the LCD module has a typical supply voltage of 3.3V, and will also be
powered by one of the VDDSHVx domains.

CHAPTER 4. HARDWARE DESIGN OF A DIVE COMPUTER 34

On the other side, the display backlight typically needs 19.2V, so we will need to use a buck-boost
converter rated to this voltage and current to power it properly.

This PMIC also has an RTC subsystem, but for our purpose, it is not precise enough, so it will
not be considered in our design.

4.0.12 JTAG and Testing

As it can be quite tedious to find an error in a complex system where both hardware and software
are developed at the same time, a way to test the PCB and the low-level code running on it is
needed.

For this matter, we will use JTAG which is the de facto standard to debug integrated circuits.
It is covered by the IEEE 1149.1 standard. Practically, JTAG allows engineers to perform single
stepping, setting hardware and software breakpoints, viewing memory content and register values
of the MPU [18], and so on.

Designing for testability is a major concept which must not be overlooked. To test the system,
we must put it in a known state, and supply it known test data. We can then observe the
output data, and see if the system performs as we designed it. This is the only way to know if
the system does what it should. Mostly all processors implement this standard, and AM335x is
no exception.

Texas Instruments provides comprehensive guides on how to use the JTAG interface and what
guidelines need to be followed while designing the circuit. Luckily, the schematics and the
guidelines for the connection between the JTAG header and the AM335x was given by TI, so
implementing a JTAG interface should not be a difficult task.

This concludes the section of the work which deals with the hardware design of our dive com-
puter. In the next section, we will discuss the software design, both on low level, dealing with
hardware, and the applications and utilities available to the user.

Chapter 5

Software Design of a Dive Computer

In this chapter, the software requirements for the dive computer are presented. These require-
ments were then used as a guideline and a reference during the implementation of the software
modules for the dive computer.
Chapter 5.1 gives an overview of the requirements, Chapter 5.1.1 introduces Linux based Debian
as our operating system.
Chapter 5.2 gives more information about the software aspect of the sensors implementation,
and Chapter 5.3.1 will introduce with software utilities which will be implemented, and the
simple GUI where the sensor data, is shown is introduced. Be advised that in this section we
only introduce the conceptual idea of the software modules we plan on implementing. More
details and the implementation can then be obtained from Chapter 7.

5.1 Software Requirements

One of the reasons to use such a feature rich processor like AM335x was the fact that there was
a good software environment surrounding it.
Several operating systems were already ported to it. Notable are Windows Embedded CE,
Android, and Linux [6].
For our work, Linux as an operating system was a good option, as it is freely available, and it
can be easily modified and adapted to the needs of our board.
There is a GNU ARM toolchain for this platform too. Since we will use Linux, an integration
of the drivers for the sensors, display and other periphery is easier than working on bare silicon,
where there is no abstraction layer such as the kernel.

A bootloader was also required, as it loads the Linux kernel and the filesystem from the storage
medium to the working memory.
A bootloader is the first piece of software loaded to the (internal) RAM by BIOS. It then prepares
the environment so the kernel can be loaded to the main memory, and get started. Preparing
the environment includes initializing certain submodules such as the external RAM, power man-
agement unit and so on. Since most modern processors include some sort of multiplexing and

35

CHAPTER 5. SOFTWARE DESIGN OF A DIVE COMPUTER 36

configuration of I/O pins, the bootloader also takes care of the pin setup.

Information about the board is contained in a so called device tree file. This file is a data
structure which describes the hardware on the board. So, instead of hard coding this information
in the OS or the bootloader, this data is passed to bootloader during boot time [19].

After getting a short overview of the operating system and the boot process, we will now give a
more thorough information about some important aspects of Linux, which directly concern our
work.

5.1.1 Linux as Operating System

The initial release of MINIX, a Unix-like operating system happened around 30 years ago. It
was created by Andrew S. Tanenbaum for an educational purpose, which, with a release of
MINIX 2005, shifted to the creation of a reliable microkernel OS which would be used not just
in academia, but also in the industry.
This open source OS inspired Linus Torvalds who initially released Linux in 1991. When intro-
duced, it was specifically targeted to desktop PCs with an Intel 80x86 architecture. Torvalds
said ′′Linux will never run on anything but a PC with an IDE hard disk since that is all that
I have.′′. Since then, this quote proved to be wrong, as Linux quickly evolved from a one-man
project to a world-wide project which involved thousands of developers.
Nowadays, Linux based operating systems are prevalent in the embedded world, ranging from
consumer electronics to medical devices. Its open source nature allowed it to be ported to a lot
of platforms, like ARM, AVR32, x86 and so on.
Another reasons for a high popularity of Linux is the fact that it requires no royalties or fees, as
long as the licensing technicalities are respected. The reason for this lies in the fact that Linux,
in its early days, adopted the General Public Licence (GPL) which protected the Linux kernel
from the commercial exploitation.

5.1.1.1 Overview of Linux

As Tanenbaum [20] says, a Linux system is regarded as a pyramid.
At the bottom of the pyramid is the hardware (CPU, memory, I/O devices).
On top of the hardware, the operating system is running, whose function is to manage the
hardware resources and to provide system calls for the programs. The system calls then enable
creation and management of files, processes and other resources.
These layers of the Linux system are presented in Figure 5.2. As we see in the Figure 5.2, the
user applications are executed at the top, where the user (i.e. the application) resides.
Worth noting is also the glibc library, a GNU implementation of the C standard library, which
also nowadays supports the C++. This library defines the system calls and other functionalities
like open, malloc, printf , exit, etc.
At the top of the Linux kernel is the system call interface. Under this layer, an architecture-
independent kernel code resides. Under the kernel code lies the Board Support Package (BSP),
which is the architecture dependent code.

CHAPTER 5. SOFTWARE DESIGN OF A DIVE COMPUTER 37

Figure 5.1: Linux system layers [20]

The three pillars of the kernel are the I/O component, the memory management component and
the process management component. At its lowest level, the kernel contains interrupt handlers,
which are a primary way of interfacing with devices. When an interrupt occurs, a dispatching
mechanism is triggered.

The I/O component contains the kernel code which is used for interaction with devices and
performs network and storage I/O operations. For example, at the top level, an I/O interaction
happens with a file, and on the lowest level, the the I/O operations pass through a device driver.

Memory management takes care of the virtual to physical memory mapping, taking care of the
cache of recently accessed pages, and an employment of a swapping algorithm.

The far right pillar, the process management, intuitively takes care of the processes, their creation
and termination. A part of this component is also the scheduler which schedules the executable
entities (processes and threads).

On top of these components is the system call interface, which provides a transition from the
user space to protected kernel mode, and passes the control of the application execution to one
of the above mentioned components.
A nice visualisation of these components is provided in Figure 5.2.

5.1.2 Kernel Modules and Drivers

A module is a file which contains compiled code which extends the functionality of the kernel.
They are used to support new hardware, or to add a new pack of system calls.
They can also be statically bound to the kernel, or dynamical loaded by the modprobe utility in

CHAPTER 5. SOFTWARE DESIGN OF A DIVE COMPUTER 38

Figure 5.2: Linux kernel structure [20]

userspace. Both of these approaches have their advantages and disadvantages.
The advantage of a loadable module is the fact that not all possible modules have to be included
in the OS, and thus loaded to the main memory where they would waste resources. On the other
side, for the embedded systems, where devices and their drivers are known a priori, binding the
modules statically might prove beneficial, as we do not have to bother with dynamic kernel
modules [21].

Device drivers, as a part of standard practice, are built as kernel modules. It is said that ′′Device
drivers take on a special role in the Linux kernel. They are distinct black boxes that make a
particular piece of hardware respond to a well-defined internal programming interface; they hide
completely the details of how the device works. User activities are performed by means of a
set of standardized calls that are independent of the specific driver; mapping those calls to
device-specific operations that act on real hardware is then the role of the device driver. This
programming interface is such that drivers can be built separately from the rest of the kernel
and plugged in at runtime when needed. This modularity makes Linux drivers easy to write, to
the point that there are now hundreds of them available.′′ [22].

5.1.3 Booting

In this part, we explain in more detail how an embedded system using Linux boots, i.e. initializes
the system.

Low-level booting is architecture specific. For example, the AM335x has 176kb of internal boot
ROM, where the first stage bootloader is stored. It is also referred to as the Initial Program
Loader (IPL). The purpose of the bootloader is to set up the basic peripherals, such as the I2C
controller. This way, the communication between the AM335x and its I2C peripherals, such
as the PMIC is enabled.
Other than that, peripherals from which the second bootloader will be loaded are also initialized.

CHAPTER 5. SOFTWARE DESIGN OF A DIVE COMPUTER 39

This can be the SD card, NAND flash and so on. The boot source is set by the SYSBOOT[15:0]
bits.
After the IPL has done the basic initialization, it is time to load the second boot loader. In our
case, this is the U-Boot boatloader.

During the first stage bootloader, SPI is used for the communication with the SD card. The
reason is the fact that the MMC/SD interface has not yet been initialized.
Out of the 128kb RAM AM335x has, 18kb are used by the IPL. The rest can be used by U-Boot,
but since its binary is bigger than 110kB, it cannot be fully loaded to this memory. For this
reason, a solution was devised by the TI engineers, and their version of U-Boot has a two stage
design, i.e. two binaries are generated after the bootloader is compiled.
The first binary is the Minimal Bootloader (MLO), which, among other things, initializes the
DDR chip. This way, there is practically unlimited space for the second binary, the U-Boot, to
get loaded to, and get executed.

After U-Boot is loaded, it prepares the rest of the hardware for the Linux kernel. This includes
loading of the device tree, where the platform information is present, and copying Linux binary
from the boot source (SD card) to the DDR3 chip. It then gives the control to the kernel.

5.1.4 Graphics

Since we will be using an LCD module to display the data, we must have an idea how graphics
in Linux kernel work, For this reason, we briefly introduce the framebuffer concept.
The kernel documentation [23] states that framebuffer is a device which abstracts the graphics
hardware (like an LCD panel), and allows the software to access this hardware through a well-
defined interface. This way, the application software (e.g. an X11 server) does not need to
know anything about the hardware details. The framebuffer is accessed through a device node,
usually located in the /dev directory, i.e. /dev/fb*.
It is a memory device - and there is a portion of memory in the RAM reserved for the framebuffer,
which is then written to the hardware by the LCD controller by using Direct Memory Access
(DMA), thus not putting a big load on the CPU, since it only needs to fill the memory designated
for the framebuffer data.
The main parts of the kernel responsible for the framebuffer are given in Figure 5.3. We see
here the components which are necessary for a functioning system. In some cases, a low-level
LCD driver is needed, e.g. if the panel requires a special initialization sequence over SPI or
I2C. Most of the panels which offer a parallel LCD interface, which we also use, do not require
any special initialization procedure, and other interfaces are only used to change settings like
brightness, gamma correction, and so on.

5.1.5 Kernel Build System

In order to suit the Linux kernel to our board, we will need to undertake a certain amount of
customization.
Configuring the Linux kernel is rather simple, if we know what we want to do. For example, ex-
ecuting ′′make ARCH=arm menuconfig′′, a series of options, which are grouped in individual

CHAPTER 5. SOFTWARE DESIGN OF A DIVE COMPUTER 40

Figure 5.3: Linux framebuffer and LCD controller overview [24]

menus and submenus, are shown, and depending of the architecture selected, like in our case,
ARM, relevant hardware support and kernel features are offered.
For each platform for which Linux kernel was ported to, a default configuration is given. We
can edit this configuration to suit our purpose. For example, we will have to include the WiFi
module driver in the kernel.

5.1.6 Real Time Operating System Properties and Requirements

There are certain time constraints bound to an operation of a dive computer.
Data collection must be done at a predefined interval, to ensure a correct calculation of the dive
profile. Software alarms which warn the user that something is wrong, such as a fast ascent rate
or low tank pressure, can also be triggered. All this requires a guarantee that the time dilatation
between an event and the execution of a relevant piece of code will be smaller than a certain
value. Usually these values are in a microsecond range.

Linux is not a real-time operating system (RTOS), and has no requirement to meet a certain
deadline for a task scheduling after an interrupt which happened.
Since we are talking about the microsecond delay between an interrupt and the execution, this
is not a problem, as the deadlines we deal with in our application are not that strict. A certain
amount of time dilatation can be tolerated when doing data collection, and as for the alarms,
even a few seconds are acceptable, since the algorithms which calculate the values which trigger
these alarms already have some sort of tolerance and inaccuracy to them.

For this reason, we deem that Linux can satisfy our time constraints. When designing such a
system, it is important to create a code which is without any critical bugs, which might cause
the dive computer to become unresponsive, by e.g. crashing the kernel.

CHAPTER 5. SOFTWARE DESIGN OF A DIVE COMPUTER 41

5.2 Sensors and Sensor Interfacing

The main purpose of a dive computer is to track the dive profile, by means of measuring time
and pressure.
The environment pressure is used to track the partial pressure of gases in the human tissue. Be-
sides the pressure, a dive computer measures the water temperature, e.g., to notify the user of
the extreme temperatures, or to make a more accurate calculation of the partial pressure in the
tissue. These measurements are, coupled with the decompression algorithm, used to calculate
the partial pressure of inert gasses in the diver’s tissue.
Besides the information needed for the decompression algorithm, information necessary for nav-
igation such as compass is needed.
For this reason, several types of sensors will be mounted on the board. The first in line is
the MS5803, a pressure and temperature sensor, and LSM303D, a 3D magnetometer/ 3D
accelerometer.

5.2.1 MS5803, Pressure and Temperature Sensor

We now briefly introduce the software design concepts concerning the previously introduced
pressure and temperature sensor. Here, the interfacing, the mathematics behind the sensors,
and interfacing the modules will be explained.

In the previous section of the work, where we showed the hardware aspect of the modules, we
saw that it supports SPI and I2C. The interface used by us is the I2C. This interface is chosen by
pulling the Protocol Select (PS) pin of the sensor to 3.3V. The sensor can have two addresses,
depending of the CSB pin. If it is pulled high, the address is 0x76. If it is low, the address is
0x77. The reason for this feature is the fact that we can have two of these devices on the same
bus.
Basic five operations offered over the I2C interface are [4]:

• reset

• read calibration words (16-bit per word)

• D1 conversion (pressure)

• D2 conversion (temperature)

• read ADC result (24-bit pressure / temperature)

Size of each command is 8 bits. They are given in Table 5.1.

CHAPTER 5. SOFTWARE DESIGN OF A DIVE COMPUTER 42

Command Hexadecimal value

Reset 0x1E

Convert D1 (OSR=256) 0x40

Convert D1 (OSR=512) 0x42

Convert D1 (OSR=1024) 0x44

Convert D1 (OSR=2048) 0x46

Convert D1 (OSR=4096) 0x48

Convert D2 (OSR=256) 0x50

Convert D2 (OSR=512) 0x52

Convert D2 (OSR=1024) 0x54

Convert D2 (OSR=2048) 0x56

Convert D2 (OSR=4096) 0x58

ADC Read 0x00

PROM Read 0xA0 to 0xAE

Table 5.1: MS5803 command structure

Here, D1 represents the raw pressure value, and D2 is the temperature. OSR is the sample rate
for these values.

During the production of sensors, certain production errors need to be considered, i.e. every
sensor will provide a slightly different value in the same environment setup. For this reason, ev-
ery sensor is individually calibrated at two temperatures and two pressures. The result of these
calibrations are six coefficients (W1 - W6) which compensate the aforementioned production
errors. These values are stored in a 128-bit PROM. The micro-controller then reads out these
values then uses them in the conversion process for the pressure and temperature values. More
information about the values is given in Table 5.2 [4].

Variable Description Size in bits Min. value Max. value

W1 Pressure sensitivity (SENS) 16, unsigned 0 65535

W2 Pressure offset (OFF) 16, unsigned 0 65535

W3 Temperature coefficient 16, unsigned 0 65535
of pressure sensitivity (TCS)

W4 Temperature coefficient 16, unsigned 0 65535
of pressure offset (TCO)

W5 Reference temperature 16, unsigned 0 65535
(TREF)

W6 Temperature coefficient 16, unsigned 0 65535
of the temperature (TEMPSENS)

Table 5.2: MS5803 calibration data

It is clear that we will use an unsigned integer of 16-bit width for these values.
Table 5.3 shows us more information about the data which is read after the conversion.

CHAPTER 5. SOFTWARE DESIGN OF A DIVE COMPUTER 43

Variable Description Size in bits Min. value Max. value

D1 Pressure value 24, unsigned 0 16777216

D2 Temperature value 24, unsigned 0 16777216

Table 5.3: MS5803 pressure and temperature data after conversion

Here, an unsigned integer of 32-bit size will be used.
These values are used for conversion to actual usable information like in the flowchart shown in
Table 5.4.

Variable Description Size in bits Min. value Max. value

dT Difference between 25, signed -16776960 16777216
actual and reference
temperature,
dT = D2 - TREF

TEMP Actual temperature TEMP 41, signed -4000 8500
= 20◦C+ dT * TEMPSENS

OFF Offset at actual temp. 41, signed -8589672450 12884705280
OFF = OFFT1 + TCO * dT

SENS Sensitivity at actual temp. 41, signed -4294836225 6442352640
SENS = SENST1 +TCS * dT

P Temp. compens. pressure 58, signed 0 300000
P = D1 * SENS - OFF

Table 5.4: MS5803 pressure and temperature calculation

The values for temperature and pressure are stored in the variables TEMP and P.

5.2.2 LSM303D, Compass Module and its Implementation

Besides the driver for the pressure and temperature sensors, we will also need a driver which
interfaces the LSM303D eCompass module.
An ultra-compact module offered by STMicroelectronics is feature rich, and offers for us rele-
vant things like [2]:

• 3 channels for the magnetic field

• 3 acceleration channels

• SPI and I2C interface

• power-down mode / low-power mode

CHAPTER 5. SOFTWARE DESIGN OF A DIVE COMPUTER 44

This module can be used in various scenarios, including tilt-compensated compasses. The read-
ings from the accelerometer provide pitch and roll angles, which are then used to correct the
magnetometer data. This allows an accurate calculation of heading and yaw angles when the
module is not held parallel to the ground.
Now that we explained what this sensor can offer, we explain how we will interface it.
As for the interface, I2C will be used, and the module will be connected to the same bus as the
MS5803.
The slave address of the module is 0b00111xx. The xx bits are either 01. if the SDO pin
is connected to the voltage supply, and 10 if the pin is grounded. This way, we can use two
same modules on the same bus. This one address is used for both the accelerometer and the
magnetometer.

The LSM303D has plenty of configuration and output registers, each with an 8-bit width.
There are several configuration registers which we will have to configure. Things like enabling
the sensors, setting the data-rate, anti-alias filter bandwidth and such are done by writing proper
values to these registers.

In Table 5.5, we show the register address, the bit position, the description and the effect of the
settings we will have to undertake.

Register Bit field Value Result

CTRL1 ADDR[3:0] 0b0101 Accelerometer 50Hz ODR

CTRL1 AZEN 0b1 Acceleration Z-axis enabled

CTRL1 AYEN 0b1 Acceleration Y-axis enabled

CTRL1 AXEN 0b1 Acceleration X-axis enabled

CTRL2 FS[2:0] 0b01 +/- 4g accelerometer full scale

CTRL5 M RES[1:0] 0b11 Magnetometer high resolution

CTRL5 M ODR[2:0] 0b100 Magnetometer 50hz ODR

CTRL6 MFS[2:0] 0b00 +/- 2 gauss

CTRL7 MLP[2:0] 0b0 Magnetic data low power-mode off

Table 5.5: LSM303D configuration register fields and values [2]

After the sensor has been initiated, the configuration values which we acquired will be written
to the corresponding registers. After this, we are ready to read out the values prepared by the
accelerometer and the magnetometer.
For each magnetometer and accelerometer channel, there are two registers where the values are
stored, one for the low byte and one for the high byte. This leaves us with 12 registers shown
in Table 5.6.

CHAPTER 5. SOFTWARE DESIGN OF A DIVE COMPUTER 45

Register Address Description

OUT X L A 0x28 Accelerometer X channel, low byte

OUT X H A 0x29 Accelerometer X channel, high byte

OUT Y L A 0x2A Accelerometer Y channel, low byte

OUT Y H A 0x2B Accelerometer Y channel, high byte

OUT Z L A 0x2C Accelerometer Z channel, low byte

OUT Z H A 0x2D Accelerometer Z channel, high byte

OUT X H M 0x09 Magnetometer X channel, low byte

OUT X L M 0x08 Magnetometer X channel, high byte

OUT Y H M 0x0B Magnetometer Y channel, low byte

OUT Y L M 0x0A Magnetometer Y channel, high byte

OUT Z H M 0x0D Magnetometer Z channel, low byte

OUT Z L M 0x0C Magnetometer Z channel, high byte

Table 5.6: LSM303D accelerometer and magnetometer value registers

Reading out the data is straightforward.
To read out six accelerometer values, we transmit the address of the lower byte of its X channel.
Same goes for the magnetometer values, to read out six magnetometer values, we transmit the
address of the lower byte of its X channel. The module then in both cases transmits six values,
from low byte to high byte, first for X, then for Y, and then for the Z channel.

All this leads us to a conclusion that our code will first do an initialization of the module, a do
proper configuration. Then we will have a simple interface to read out the values and store then
in an array.

5.3 Software Modules Available to the User

In this part, we will introduce the reader to the software modules we plan on implementing
during the course of this work. These software modules will show the capacity our system has,
and can be considered as a proof of concept for what a modern dive computer should be able
to offer.

5.3.1 Graphical User Interface for Data Representation

Previously, we mentioned the sensors which will be used, and how we plan to implement them
in our system.
Although, the data which is acquired by the means of these sensors is important, it still needs
to be put in a context, and presented to the user in a meaningful way. The reason for this
approach is the fact that diving is a mentally challenging task, and requires focus at all times,
and by making a good GUI, we will reduce the amount of focus needed to understand the GUI,
and give the diver a chance to focus on the actual diving.

CHAPTER 5. SOFTWARE DESIGN OF A DIVE COMPUTER 46

For this matter, a proof of concept GUI will be developed, to show the possibilities of Linux
kernel and the Qt, framework we used.

A simple Qt application will be developed, merely to show the possibilities of the Qt for em-
bedded Linux, and the potential it has to offer in the industrial setting for which a product like
this one would be used.
The GUI area will be divided in three logical parts. One part will show the info about the
system, including the battery status and the state of certain modules, like WiFi. The second
part will show the sensor data, including pressure, temperature, alarms, and the compass infor-
mation.
The last part will offer some sort of functionality. By clicking a button, the user can toggle the
state of the WiFi module, recalibrate the touchscreen, and so on.
In the background, bash scripts will be implemented, which implement this functionality. They
will then be executed by the Qt app.

5.3.1.1 Qt Framework

The framework for the GUI, as mentioned before, will be Qt.
′′The Qt toolkit is a C++ class library and a set of tools for building multiplatform GUI programs
using a write once, compile anywhere approach. Qt lets programmers use a single source tree
for applications that will run on Windows 95 to XP, Mac OS X, Linux, Solaris, HP-UX, and
many other versions of Unix with X11. A version of Qt is also available for Embedded Linux,
with the same API.′′ [25].
Qt framework offers a broad API, and its availability for all the common platforms is what made
it popular.
Qt also features a language construct called Signals and Slots. It allows the communication
between the objects (GUI elements, classes, ...), which makes it easy to utilize the observer
pattern in an easy way. For example, If a GUI button was pressed, a signal will trigger a
function to be executed.

The most important feature of the Qt is the fact that it does not require a windows manager
to be running, like X11 windowing system. It can write directly to the framebuffer [26] we
introduced before.

5.3.2 Various Helping Utilities

Besides showing information about the environment, we also plan on implementing some features
which might come in handy for the potential user. For example, flashing the new firmware over
WiFi, changing settings, or reading out data like dive profiles. This will show how several
technologies, like a webserver, bash scripts and executables interact with each other, and how
this can be used.

Chapter 6

Hardware Implementation

This chapter gives an insight in how the hardware aspect of the dive computer was implemented.
Before we started the implementation, we got some information about the guidelines one should
follow while designing our PCB. Our findings about this topic are given in Chapter 6.1, In
Chapter 6.2, we briefly introduce the AM335x Starter Kit by Texas Instruments, the evaluation
module for the AM335x processor, which was used as a reference design for our board. Chapter
6.3 then thoroughly explains every aspect of the hardware implementation which was relevant
to the board.

6.1 Hardware Design Guidelines and Precautions

In this chapter, a short overview of the PCB design guidelines and precautions which were taken
during the customization of the AM335x Starter Kit board, is given.

The focus of these guidelines was reducing the electromagnetic interference (EMI) caused by
the board. Chapter 6.1.1 will explain what causes EMI, and will also present common pitfalls
concerning EMI during a PCB design which were avoided during the design stage of the project.

6.1.1 Electromagnetic Interference and How to Prevent it

To prevent EMI, it is required to know what it is, and what causes it in the first place.
EMI is defined as a disturbance of operation of an electronic device caused by an electromagnetic
field in the radio frequency (RF) spectrum that is caused by another electronic device or a natural
source. In a typical EMI setup, three major components are present [27]:

• source

• receptor

47

CHAPTER 6. HARDWARE IMPLEMENTATION 48

• coupling path

Source is the emitter of the noise, receptor is the device which receives the noise/interference,
and the coupling path transmits the interference signal from the source to the receptor.

The coupling path can either be conductive, inductive or capacitive.
Conductive coupling, or direct coupling is about direct way of transferring the signal via a
conductive medium. Inductive coupling, or magnetic coupling path is associated with a region
where the magnetic field is dominant. In this case, the source and receptor are less than a
wavelength separated. In capacitive, or electric coupling, the source and receptor are less than
a wavelength apart, but the dominant part of the EM field is the electric field.
The goal was a custom board whose design respected the three EMC criteria:

• it does not interfere with the operations of other systems

• it is immune from the emissions of other systems

• it does not interfere with its own operation

To achieve this goal, we took a look in to what causes electromagnetic emission (EME). These
sources for EME are:

• integrated circuits

• trace loops on the PCB

• attached cables

An IC is complex system, with many loops inside it, which act as antennas when current passes
through them. The sane concept can be applied to the trace loops on the PCB. They are
considered good antennas, as they create a much bigger surface then the loops in an IC, so we
must consider them in our design.
The attached cables also act as antennas. There are two antenna types which we consider, which
radiate an EM field [28]:

• loop, differential-mode radiation

• dipole, common-mode radiation

Since differential-mode currents flow in opposing directions, their radiated electric fields subtract,
producing a small electric field because the traces are not perfectly parallel.
The common-mode current, on the other hand, flows in the same direction through two traces,
so the fields they generate adds up. This leaves to a conclusion that common-mode radiation
poses a bigger problem for EMC.
When it comes to avoiding differential-mode radiation, certain guidelines are to be followed,

CHAPTER 6. HARDWARE IMPLEMENTATION 49

Figure 6.1: Loop area between IC and a decoupling capacitor [28]

because above a certain frequency, the current takes the path of the least impedance (smallest
area between the forward and return paths).
For this matter, we must take a look into the current return path. The loop area between the
signal trace and the trace between the grounds of the two devices which share the signal trace
must be minimized, if EMC is desired. This leaves us with a smaller loop area and a weaker
EM field which is generated.

A common source of loop areas can be vias which are serialized on the PCB, so they create a
slot in the layer. This causes the (return) current to make a detour, and a bigger loop area is
created.
This leaves us with a conclusion that precautions must be taken so no slot antennas appear on
the PCB. Potential areas where this can happen is the LCD connector, or any place where a lot
of vias in a dense area are present.

Precaution must also be taken when using decoupling capacitors. This case is visible in Fig-
ure 6.1. The same principle applies here, the loop area must be minimized.
Besides these precautions, some rules of thumb will be followed while designing our board, such
as

• good floorplanning, i.e. placement of various subsystems in their own zones before routing

• ground and power planes next to each other, for an extra capacitor

• make the current return path as short as possible

• avoid slots in planes

• signal traces of an interface must be matched in length

• high speed traces routed first and with minimal number of vias

This way, we hope to design a board with a low EMI.

CHAPTER 6. HARDWARE IMPLEMENTATION 50

Figure 6.2: AM335x Starter Kit block diagram

6.2 AM335x Starter Kit as a Reference Design

Now that we have covered the guidelines we will follow during our design, it is time to introduce
our starting point for our hardware design, the AM335x Starter Kit. The AM335x Starter Kit is
a product offered by Texas Instruments. It provides an affordable platform for the evaluation of
Sitara ARM Cortex-A8 AM335x processors (AM3352, AM3354, AM3356, AM3358). It features
ready-for-production hardware, and is well supported from the software standpoint, which makes
it ideal for our design.
The starter kit was used as the starting point for the PCB development because the schematics,
bill of materials, and the PCB layout were provided free of charge, and can be used for academic
and commercial projects.

This section will shortly cover the details of the EVM-SK and the included components.
A functional block diagram of the AM335x Starter Kit is shown in the Figure 6.2. Here, we
see a feature rich system, with a useful periphery whose job is to show the capability of the
AM335x. There are in total two USB interfaces, a WLAN/Bluetooth module, an LCD and a
touchscreen module.
Besides this, the board has an Ethernet controller and an audio codec, and an SD card interface.
Besides this periphery, a PMIC which we will also integrate in our design is present on the board.
The schematics of our board rely on the schematics provided for the AM335x Starter Kit. The
AM335x layout and its pinout, DDR3 and AM335x interfacing, the powering subsystem and
the LCD backlight controller were used as a reference throughout our design. As for the PCB

CHAPTER 6. HARDWARE IMPLEMENTATION 51

Figure 6.3: AM335x Starter Kit bottom layer

layout, the traces between the DDR3 IC and AM335x were copied to full extent, because of the
fragile nature of the high speed signals.
In Figure 6.3, we see the bottom layer of the AM335x Starter Kit where we labelled some
important submodules. Label 1 shows the position of the AM335x, whereby label 2 shows where
the DDR3 chip is. Between these two ICs, there are signal traces on the signal layers. Number 3
shows the position of the PMIC. Number 4 represents the JTAG interface, and numbers 5 show
where two Ethernet controllers are placed. Label 6 shows the position of the SD card socket,
and number 7 designates the position of the USB controller. Number 8 is the voltage source for
the WLAN/Bluetooth module labelled by 9.

6.2.1 EVM-SK Power Consumption

As one of several evaluation steps we performed on the AM335x Starter Kit, power consumption
was one of them. The measurement method was straightforward. We used a power supply to
power the unit with 5V, and we were able to read out the power consumption of the AM335x
Starter Kitwhen the processor was clocked at 275Mhz. 0.32A were drawn with display attached,
and 0.2A without the display.

6.3 Implementation and Integration of the Dive Computer Sub-
systems

In this section, implementation and integration of every subsystem, like the MPU, DDR3 mem-
ory, LCD module, and other periphery, is given. Information included here are the schematics,
explanation of the schematics, and other important information for the particular subsysten.

CHAPTER 6. HARDWARE IMPLEMENTATION 52

6.3.1 Sitara ARM Cortex-A8 AM335x Processor

The microprocessor unit used for the AM335x Starter Kit is the AM3358ZCZ.
The ZCZ suffix means a 15x15mm package is used, with a 0.8mm clearance between the ball
grids. In total, there are 18x18 balls (pins).

The MPU requires a 24Mhz crystal to derive the main clock, which is mounted close.

A substantial amount of pinout configuration of the AM335x can be defined in software, which
is then parsed by the bootloader. Pins which cannot be configured are the pins responsible for
the powering of the AM335x submodules. As for the PCB layout,four layers are used to access
all the pins of the MPU: two signal layers, the top layer and the bottom layer.

A good starting point in explaining how the layout was done for the MPU, we will start by
explaining the power domains of AM335x used in the design. These are listed and explained in
Table 6.1

Power domain Supply voltage for Min. (V) Max. (V)

VDD CORE core domain -0.5 1.5

VDD MPU MPU domain -0.5 1.5

VDDS DDR DDR IO -0.5 2.1

VDDSHVx dual-voltage IO domain -0.5 3.8

VDAC dual-voltage IO domain -0.5 2.1

VDDS RTC RTC domain -0.5 2.1

VDDS OSC system oscillator -0.5 2.1

VDDA ADC ADC domain -0.5 2.1

VDDA1P8V USBx USBPHY -0.5 2.1

VDDA3P3V USBx USBPHY -0.5 4

DDR REF DDR SSTL and -0.3 1.1
HSTL reference voltage

Table 6.1: AM335x power domains

Also noteworthy are the operating performance points (OPP) of the MPU. AM335x has several
OPPs. The operating conditions for VDD CORE are visible in Table 6.2 and in Table 6.3 for
VDD MPU, for the ZCZ package.
The frequencies designate the maximum operating performance for the given OPP.

CHAPTER 6. HARDWARE IMPLEMENTATION 53

OPP VDD CORE Voltage DDR3 (MHz) L3 and L4

OPP100 Min.: 1.056V 400Mhz 200MHz
Nom.: 1.1V and 100Mhz
Max.: 1.144V

OPP50 Min.: 0.912V - 100MHz
Nom.: 0.950V and 50Mhz
Max.: 0.988V

Table 6.2: VDD CORE operating points [1]

OPP VDD MPU Voltage ARM (A8)

Turbo Min.: 1.210V 720MHz
Nom.: 1.260V
Max.: 1.326V

OPP120 Min.: 1.152V 600MHz
Nom.: 1.200V
Max.: 1.248V

OPP1001 Min.: 1.056V 500MHz
Nom.: 1.1V
Max.: 1.144V

OPP1002 Min.: 1.056V 275MHz
Nom.: 1.100V
Max.: 1.144V

Table 6.3: VDD MPU operating points [1]

For VDD MPU, OPP1002 is only supported on some devices capable at running at 275MHz.
A valid combination of these OPPs is seen in Table 6.4.

VDD CORE VDD MPU

OPP50 OPP1002

OPP100 OPP1001

OPP100 OPP120

OPP100 Turbo

Table 6.4: Valid combinations for operating points [1]

After this introductory part where important concepts like power domains and operating points
were introduced, we will now talk about the actual implementation of the MPU on the board.
In Figure 6.4, wee see how the pinout of the pads was achieved, on three layers: the bottom
layer and the two signal layers.
The area on top layer close to AM335x is used for the decoupling of various power domains of
the processor. The capacitors used are in the microfarad range. A snapshot of the top layer and

CHAPTER 6. HARDWARE IMPLEMENTATION 54

Figure 6.4: AM335x pinout on bottom, SIG1 and SIG2 layers

CHAPTER 6. HARDWARE IMPLEMENTATION 55

Figure 6.5: AM335x decoupling capacitors

the capacitors used are visible in Figure 6.5. The capacitors for power domains where currents
at a higher frequency caused by clocking are present, the capacitors are of a small package, and
the loop area is kept as small as possible. The larger capacitors on the upper part of the figure
which are used to decouple the power domains such as one used for pullup for I2C bus.
The capacitors used to decouple the AM335x power domains are listed in Table 6.5

Power domain 0.01µF 10µF

VDD CORE 8 1

VDD MPU 5 1

VDDS DDR 19 2

VDDSHV(1-5) 2 1

VDDSHV6 6 1

VDAC 4 1

Table 6.5: AM335x decoupling capacitors

Another interesting concept are the crystals used for the clock generation in AM335x. Their
schematics are depicted in Figure 6.6. Y6 is the main crystal with a resonant frequency of
24Mhz. Also, the crystal loading capacitors are visible in the schematics. Their dimension is
15pF . The second crystal oscillates at 32.768KHz, and its capacitors have a capacitance of 22pF .
The AM335X OSC0 IN and AM335X OSC1 IN are the oscillator frequency inputs and AM335X OSC0 OUT
and AM335X OSC1 OUT are the oscillator frequency outputs.
Since all subsystems are in one way or another connected to the MPU, we will explain the
interface for the subsystem in question in its own chapter.

CHAPTER 6. HARDWARE IMPLEMENTATION 56

Figure 6.6: AM335x crystals schematics

6.3.2 DDR3 SDRAM

Another component used for AM335x Starter Kit which is of a particular interest is the
MT41J128M16JT-125 chip by Micron, a 2Gb DDR3 SDRAM chip. We will shortly explain
the functionality of this chip, as we will use a similar one in our design. The differences will be
given in the appropriate chapter.

Internally, it is configured as 16Mb x 16 x 8 banks [3]. It needs 14 bits for the row addressing, 3
bits for bank addressing, and 10 bits for the column addressing. Its page size is 2 KB, and the
chip features a data rate of 1600 MT/s.

Generally, DDR3 SDRAM uses a double data rate architecture to achieve high-speed operation.
The DDR3 SDRAM operates from a differential clock (CK and CK#). When CK goes HIGH
and CK# goes LOW, this is referred to as a positive clock edge. Control, command, and ad-
dress signals are registered at every positive edge of CK. Input data is registered on the first
rising edge of differential data strobe (DQS) after the WRITE command, and output data is
referenced on the first rising edge of DQS after the READ command.
An overview of the pins of the Micron chip are visible in Table 6.6.

CHAPTER 6. HARDWARE IMPLEMENTATION 57

Pin name Type Description
D[15:0] I/O Data I/O
A11, A10/AP, A[9:0] address and auto precharge bit (A10) for READ/WRITE commands
BA[2:0] Input Bank address inputs
CK, CK# Input Clock: CK and CK# are differential clock input
CKE Input Clock enable
CS# Input Chip select
DM Input Input data mask
ODT Input On-die termination
RAS#, CAS#, WE# Input Command inputs
RESET# Input Reset: RESET# is an active LOW CMOS input.
DQ[3:0] I/O Data input/output: Bidirectional data bus for the x4 configuration.
DQ[7:0] I/O Data input/output: Bidirectional data bus for the x8 configuration.
DQS, DQS# I/O Data strobe
TDQS, TDQS# Output Termination data strobe
VDD Supply Power supply: 1.5V ± 0.075V.
VDDQ Supply DQ power supply
VREFDQ Supply Reference voltage for data
VSS Supply Ground.
VSSQ Supply DQ ground
ZQ Reference External reference ball for output drive calibration
NC - No connect
NF - No function

Table 6.6: Micron DDR3 SDRAM pin assignment [3]

The hardware layout for the signal traces was probably done by an autorouter, as the trace
lengths for the signals are almost the same for the data and clocks. Figure 6.7 shows the relative
position of the chip and AM335x, and their connection. Here, number 1 represents the position
of the DDR3 chip on the bottom layer. Number 2 is where the MPU is located.
Numbers 3 and 4 show where the signal termination of the data signals takes place. For high-
frequency signals such as data and clock signals, where the propagation delay is relatively large
compared to the rise time of the signal, distortions of the signal occur. To reduce these dis-
tortions, ringing and reflections, we need some sort of impedance continuity throughout the
signal line. We do this by, e.g. introducing an equivalent amount of impedance at the point
of discontinuity. Lower termination resistors provide better signal stability, at the cost of more
power consumption. For the termination of the DDR3 chip, 33Ω resistors are used. TPS51200
by Texas Instruments is used as the termination regulator, and VAUX33 is used for its power
supply.

Input reference voltage is VDDS DDR divided by 2, and output reference voltage is the DDR VREF.
DDR VTT EN is connected to the enable pin, and is controlled by AM335x.
Figure 6.8 shows the physical appearance of the chip on the board. Here, we see the chip, and
the termination resistor arrays.
The clock signals CK and CK# are coupled with a capacitor, to improve signal quality.
The AM335x has an EMIF which supports 16 bit data path to an external SDRAM memory
including mDDR, DDR2 and DDR3.
DDR CKE is pulled to DGND to enable self refresh.
The signals which are directly connected between the MPU and the DDR3 SDRAM are:

• DDR RESETn, DDR CLK, DDR CLKn, DDR CSN0, DDR RASN,

• DDR CASN, DDR WEn, DDR DQS0, DDR DQSN0, DDR DQS1,

CHAPTER 6. HARDWARE IMPLEMENTATION 58

Figure 6.7: Hardware layout the AM335x and the DDR3 SDRAM

Figure 6.8: Board cut-out of the DDR3 SDRAM, bottom and top layers

CHAPTER 6. HARDWARE IMPLEMENTATION 59

• DDR DQSN1, DDR D[15:0], DDR A[14:0], DDR BA[2:0],

• DDR ODT, DDR DQM1, DDR DQM0, DDR CKE

VDDQ is powered by VDDS DDR, and so is the VDD. VREFCA is connected to DDR VREF,
which is provided by the previously mentioned TPS51200.

6.3.3 SD Card Interface

Now, we will explain how the SD card socket is interfaced.
The SD card socket connected to the MMC0 port of the MPU, and the socket used is SCHA5B0200.
The pin assignment of an SD card is shown in Table 6.7.

Since the communication with the SD card is done via two interfaces, SPI and MMC, in two
different stages of booting, we show both pin assignments.

Pin SD interface SPI interface

1 DAT2

2 CD/DAT3 CS

3 CMD SDI

4 VCC VCC

5 CLK SCLK

6 GND GND

7 DAT0 SDO

8 DAT1

Table 6.7: SD card pinout

The schematics how the SD card is connected to the MMC0 port are shown in Figure 6.9.
Inherently, there is nothing complicated here. In the lower left corner, the connector and the SD
interface signals are shown. They are pulled high to VDDSHV4, and connected to the AM335x
MMC interface. Besides this, an ESD protection is also incorporated for all the SD signals. The
module which takes care of this is shown in upper right corner, and its name is TPD6E001. It
offers a low capacitance +/-15-kV ESD-protection diode array for high speed communication
lines. There is also an ESD protection for the CS line signal, the TPD2E001.

In Figure 6.10, we see the SD card connector soldered to top side of the board, with an SD card
in it. Also, we see the bottom of the PCB, where two ICs responsible for the ESD protection
are visible.

CHAPTER 6. HARDWARE IMPLEMENTATION 60

Figure 6.9: Interface between the AM335x and the SD Card slot

Figure 6.10: SD card slot soldered on the board

CHAPTER 6. HARDWARE IMPLEMENTATION 61

Figure 6.11: JTAG interface schematics for our board

Figure 6.12: XDS200 JTAG probe connected to our board

6.3.4 JTAG

For the debugging purposes of our design, we will implement a JTAG header.
The schematics we came up with for the JTAG interface are visible in Figure 6.11. Here, we see
a 20 pin header JTAG interface, with standard JTAG signals, which are then routed directly
to the board. We had to make sure the data signals TD0, TRSTN, TDI, TCK, EMU0, TMS
and EMU1 all have the same trace length. In our case, the length of the traces was around 95
millimetres.
We will use the XDS200 JTAG Probe by TI, with a 20 pin header. In Figure 6.12 we see the
connected probe and our board. We used the probe to get the board to boot, since there were
some hardware issues with the board.

6.3.5 Wireless Module

As mentioned in the chapter where we wrote about the hardware design, we decided to use a
WiFi module based on RaLink RT5370 SoC.
The dimensions of the module are 14 mm x 27 mm x 3 mm (WxLxH).

CHAPTER 6. HARDWARE IMPLEMENTATION 62

We decided not to solder the module on the PCB for space purposes. The module will rather
be placed next to the board in the final product. This way, the height of the computer will not
be affected.
For the communication between the AM335x and the module, we will use one of the USB inter-
faces of the MPU, and for on/off functionality, we will use a GPIO pin.
Since we are not using the WSP function, we will pull this terminal to the power supply, because
the pin is an active low [17].
The pinout of the module is given in Table 6.8.

Pin name Description

WIFI TXEN RF on/off

VCC 3V3 Power supply

USB D- USB Data signal

USB D+ USB Data signal

GND Ground terminal

NC Not used

WSP WSP function (inverted logic)

Table 6.8: TSC ADC SS subsystem external interface signals

Interfacing the module should be fairly easy, since we only need to connect USB differential pair
data signals to the data terminals of the module, and provide 3.3V voltage source to the module.

6.3.6 LSM303D, Compass Module

The hardware implementation of the eCompass module we decided to use will be explained
now.
This module supports I2C and SPI interfaces [2]. We will use the I2C interface in our
implementation.
The LSM303D is factory calibrated to be powered by 2.5V, but it supports a supply voltage in
range between 2.16V and 3.5V, so we will use the 3.3V voltage supply. This module requires two
capacitors. The reservoir capacitor has a nominal value of 4.7µF , and the set/reset capacitor
has a value of 0.22µF . We decided to stick with these values. To prevent coupling and skewing
of the values of the magnetic field read by the module, we set a margin of 5 millimetres between
the IC and the capacitors.
We will use the first I2C interface of AM335x. The schematics for the module implementation
can be obtained from Figure 6.13. How these schematics were utilized during the PCB design,
can be seen in Figure 6.14. We see the positions of the capacitors, and we see the I2C traces
on the bottom.
The module is placed on the bottom side with the rest of the active components.

CHAPTER 6. HARDWARE IMPLEMENTATION 63

Figure 6.13: Schematics for the eCompass module

Figure 6.14: PCB design for the eCompass module

CHAPTER 6. HARDWARE IMPLEMENTATION 64

Figure 6.15: Schematics for the pressure and temperature sensor module

6.3.7 MS5803, Pressure and Temperature Sensor

Besides the eCompass, we use the sensor for pressure and temperature. This module also
supports I2C for communication, and we will use the same I2C bus as for the eCompass module,
i.e. the first one. We pull the protocol select (PS) signal to high, to select I2C. The CS signal
is pulled to the ground, to select the 0x76 address for the module [4].
In Figure 6.15, we show how this module looks in reality. It has a significant height profile, and
we placed it on the same size as other active components.

6.3.8 Power Supply and Power Management

The EVM-SK is powered by a 5V power supply, which is provided as the power input to the
Power Manager TPS65910. The TPS65910 takes care of the power requirements and power
sequencing of the AM3358. The PMIC is controlled by AM3358 via I2C.
TPS65910 device is an integrated PMIC dedicated to applications powered by Li-ion battery,
or a 5V input. It has three step-down converters, one step-up converter, and eight LDOs [29].
Two of the step-down converters provide power for dual processor cores. The third converter
provides power for the I/Os and memory in the system.
We will slightly modify the layout of the PCB concerning the powering of MPU and the periph-
erals, specifically the position of the PMIC relative to the other components. Other than that,
the PMIC configuration and the connection with the MPU and the DDR IC will stay the same.

6.3.9 LCD and Touchscreen Implementation

An LCD module we decided to use is the P320X-35ALWS by Electronic Assembly. Internally, it
has an HX8238-D controller, and is interfaced over 24-bit RGB interface. Besides this interface,
SPI interface is also present, but is merely used for changing display settings, and is not crucial
for the functioning of the display or showing an image on it.
For this interface, we use the following signals between the AM335x and the LCD: HSYNC,
VSYNC, DATA[23..0], CLK, and DISEN.
The 24-bit wide RGB signals, control signals and touch screen signals are terminated in a flex
PCB with a 40 pin connector connected to board.
In Figure 6.16, the schematics of the interface between the AM335x and the LCD module are
given.

CHAPTER 6. HARDWARE IMPLEMENTATION 65

Figure 6.16: Schematics for the LCD module

On the left side, we see the data signals, which are connected to the LCD module via 33Ω
termination resistors. The We also notice the control signals of the LCD controller on the
bottom, and how they are connected to the display. The connector for the display will be
placed on the top side with the active components. When the LCD is attached, the cable will
wrap around the board, and the backplate of the display will cover the other side of the board,
where the passive components are.
As for the powering of the controller, a voltage of 3.3V is required, and the typical power
consumption is around 9mA.
As for the backlight, a voltage in range of 19.2V to 21V is needed, and the typical current
supplied to it should not exceed 48mA.
Enable pins of both step-down and buck-boost converter are connected to VMMC power rail of
the AM335x.
As for the buck-boost converter, the enable pin only charges the outer capacitor. Full operation
is enabled by the LCD BACKLIGHTEN pin coming from the AM335x.

CHAPTER 6. HARDWARE IMPLEMENTATION 66

Figure 6.17: Schematics for the resistive touchscreen

6.3.9.1 Resistive Touchscreen

Besides the LCD module, we use 4 pin resistive touch screen which works under water. Inter-
facing this screen is fairly easy, we just need to connect the four analogue signals to the ADC
module pins A0 to A3 of the AM335x. This is shown in Figure 6.17.
A resistive touchscreen consists of several layers. On the top and bottom side, conductive lay-
ers which are made of Indium-Tin-Oxide (ITO), a transparent conductive material are present.
Between these layers, an insulating layer of air (or in our case, oil) is present. Besides these
thee basic layers, other layers may be employed (on the outside) to ensure the sturdiness of the
sensor.
There are four wires connected to the ITO layers. On the right and the left side of the X layer,
and upper and lower side of the Y layer. When a touch is performed, the top and bottom layers
touch. Since voltage is applied to one of the layers, a voltage divider is created.

To calculate the Y coordinate of the touch, X right is driven to a known voltage, and X left
wire is driven to ground. When a touch occurs, a voltage drop is read, and used to derive the
Y coordinate, i.e. the ratio of the measured voltage to the drive voltage applied is equal to the
ratio of the y coordinate to the height of the touchscreen [30].
The same is done for the Y layer, to read the X coordinate. This coordinate pair gives us an
approximate position of the touch. This concept is visible in Figure 6.18.

To implement a touchscreen sensor interrupt, a pull up resistor, whose resistance must be higher
than the one of the touch sensor is used. A positive voltage is applied to Y+ through a pull up
resistor, and X- is driven to ground. With no touch present, Y+ is pulled to positive voltage.
In case there is a touch, Y+ is pulled to ground.

6.3.10 Overview of the Finished Board

This short chapter will now visually present the board which was made during the course of this
work.
In Figure 6.19, we see the bottom and top layers of the our board. Number 1 shows where the
AM335x is placed. Number 2 tells us where we placed the DDR3 chip. Next up is the PMIC

CHAPTER 6. HARDWARE IMPLEMENTATION 67

Figure 6.18: Resistive touchscreen conceptual design

labelled by a 3. SD card socket is labelled by a 4 on the left side, and on the right side of the
figure, number 4 shows the position of the pull up resistors for the SD card signals, and its ESD
protection.
Number 5 shows the position of the USB hub. Sensors are placed around number 6 - compass
on the left side, and the pressure and temperature sensor on the right. Number 7 on the left
side is the position of the LCD connector, and on the right side, the position of the backlight
circuitry.
Label 8 shows us the position of the JTAG connector, and number 9 is the touchscreen connector.
In Figure 6.20, we see the signal layers. Here we see how these subsystems are interconnected.
In Figure 6.21, the front side of board with an LCD and the touchscreen are visible.
In Figure 6.22, the back side of the board is visible. Here, the most notable component is the
JTAG connector.
We also made some pictures during the hardware debug phase. In Figure 6.23 we see the SPI
clock measured on the SD card.
In Figure 6.24, we see this first built prototype, where we improvised with an SD card adapter,
instead of the socket, which was not available at the time.
The workspaces for the soldering and power measurement, and for the software development are
visible in Figure 6.25 and Figure 6.26, respectively. In Figure 6.27, we see an LCD attached
to the board, whose timings were not properly configured at the time, so a distorted image was
shown.

CHAPTER 6. HARDWARE IMPLEMENTATION 68

Figure 6.19: AM335xbottom and top layers of the prototype board

Figure 6.20: AM335xSIG1 and SIG2 layers of the prototype board

CHAPTER 6. HARDWARE IMPLEMENTATION 69

Figure 6.21: Front side of the board, with LCD and touchscreen attached to it

Figure 6.22: Back side of the board

CHAPTER 6. HARDWARE IMPLEMENTATION 70

Figure 6.23: Measuring the SD card SPI clock signal on first prototype board

Figure 6.24: First build prototype with improvised SD card connector

CHAPTER 6. HARDWARE IMPLEMENTATION 71

Figure 6.25: Workspace for power measurement

Figure 6.26: Workspace for software development

CHAPTER 6. HARDWARE IMPLEMENTATION 72

Figure 6.27: Second prototype with LCD with wrong timing config connected to it

Chapter 7

Software Implementation

In this chapter, we briefly explain what software modules were implemented in the course of this
work.
Besides the newly implemented software, like the Qt application, some of the pre-existing soft-
ware modules were changed to suit the needs of out board.

We give more information about the software adaptation made to the bootloader provided by TI,
and the operating system. Besides this, we explain the implementation of the software modules
which are directly used by the user, which were shortly introduced in Chapter 5.

The chapter is divided as follows: In Chapter 7.1, we talk about the device tree adaptation to
our board, configuration of the bootloader including the main memory configuration, and the
configuration of Linux.

In Chapter 7.3, we introduce the implementation of the drivers for the pressure and temperature
sensor, and the eCompass, the Qt application, and in Chapter 7.4, we will give a brief overview
of some of the useful tools which are offered by the Linux kernel, and we will explain their
purpose and how to use them.

7.1 Configuring the Hardware

This chapter explains the adaptation which had to be made to the software which serves as the
abstraction layer between the operating system and the hardware. This includes the device tree
and the bootloader.

7.1.1 Device tree

As our starting point for our board’s device tree, we will use the device tree written for AM335x
Starter Kit. In Linux kernel code, it is located in arch/arm/boot/dts/am335x-evmsk.dts. It

73

CHAPTER 7. SOFTWARE IMPLEMENTATION 74

includes all of the periphery which is present on the AM335x Starter Kit.
The nodes in the device tree include the CPU, memory, battery regulators, status LED’s, GPIO
buttons, LCD panel and backlight, sound, UART, I2C, USB, PMU, MMC, touchscreen interface,
and the pinmux configuration.

For the most part, we will keep the device tree, as most of the hardware is the same, but we will
need to remove some nodes from it. We will also introduce some minor changes on our own, like
the LCD panel timing configuration, and the I2C chips we will use.
We will not embed the finished device tree in this document, as it would span to more than 5
pages. Rather than that, some snippets will be shown and briefly explained, just for the sake of
understanding on what was done.
The device tree document starts with several statements which include other device tree files.
The important one is the am33xx.dtsi, which is the device tree included file which contains the
device tree source for the AM3xx SoC, ranging from the definition of the CPU core, to all the
interface configurations it offers.
In the am335x− evmsk.dts file, the CPU configuration is expanded by adding the cpu0-supply
entry and the vdd1 reg, which is a regulator for VDD MPU domain controlled by the PMU.

#inc lude ”am33xx . d t s i ”
#inc lude <dt−bind ings /pwm/pwm. h>
#inc lude <dt−bind ings / in t e r rupt−c o n t r o l l e r / i r q . h>

{
model = ”TI AM335x EVM−SK” ;
compatible = ” t i , am335x−evmsk ” , ” t i , am33xx ” ;

cpus {
cpu@0 {

cpu0−supply = <&vdd1 reg >;
} ;

} ;

memory {
dev i c e type = ”memory ” ;
reg = <0x80000000 0x10000000>; /∗ 256 MB ∗/

} ;

. . . .

Next up is an example on how the LCD panel and backlight are configured. The values for the
timings were taken from the datasheet of the panel we used.
This is an example on where our device tree differs from the AM335x Starter Kitdevice tree.
We see the definition of the resolution of the display, and the timing values.

back l i gh t {
compatible = ”pwm−back l i gh t ” ;

CHAPTER 7. SOFTWARE IMPLEMENTATION 75

pwms = <&ecap2 0 50000 PWM POLARITY INVERTED>;
b r i ghtnes s− l e v e l s = <0 58 61 66 75 90 125 170 255>;
d e f au l t−br ightnes s−l e v e l = <8>;

} ;

panel {
compatible = ” t i , t i l c d c , panel ” ;
p i n c t r l−names = ” d e f a u l t ” , ” s l e e p ” ;
p i n c t r l −0 = <&l c d p i n s d e f a u l t >;
p i n c t r l −1 = <&l c d p i n s s l e e p >;
s t a t u s = ”okay ” ;
panel−i n f o {

ac−b ia s = <255>;
ac−bias−i n t r p t = <0>;
dma−burst−sz = <16>;
bpp = <32>;
fdd = <0x80>;
sync−edge = <0>;
sync−c t r l = <1>;
r a s t e r−order = <0>;
f i f o −th = <0>;

} ;
d i sp lay−t imings {

320 x240 {
hac t ive = <320>;
v a c t i v e = <240>;
hback−porch = <40>;
h f ront−porch = <8>;
hsync−l en = <4>;
vback−porch = <12>;
v f ront−porch = <4>;
vsync−l en = <10>;
c lock−f r equency = <2000000>;
hsync−a c t i v e = <0>;
vsync−a c t i v e = <0>;

} ;
} ;

} ;

7.1.2 Boot Source Configuration

The AM335x processors support multiple boot sources for the second stage bootloader. The
boot mode is defined by the pull up/down resistor combinations on the SYS BOOT pins, which
are multiplexed with the LCD DATA0...LCD DATA15 pins. These configuration pins are parsed
when PORz pin is low.

CHAPTER 7. SOFTWARE IMPLEMENTATION 76

The AM335x bootloader can be loaded over MMC/SD, SPI, Universal Asynchronous Receiver/-
Transmitter (UART), etc.
The SYS BOOT configuration on the AM335x Starter Kit is as follows: MMC0, SPI0, UART0,
USB. We will keep this order, and we also boot from the SD card.

7.1.3 EMIF Module Configuration

This section will explain the external memory interface module configuration for a proper in-
terfacing of the DDR memory. As explained in Section 4.0.9, several memory types can be
interfaced by EMI, including LPDDR, DDR2 and DDR3. In our case, we use a DDR3 memory
chip, so we will explain the steps taken to configure EMIF for DDR3.

7.1.3.1 EMIF Register Description

As a first step of the EMIF configuration, the SDRAM CONFIG register at an address 0x4C000008
needs to be configured. The values in this register are used to initialize the memory module,
and the values are then written to proper registers in the DDR3 memory device [1]. The values
in this register are explained in Table 7.1.

Register bit Register field Description

31-29 REG SDRAM TYPE Memory type: LPDDR1 (mDDR) = 1,
DDR2 = 2, DDR3 = 3

28-27 REG IBANK POS Internal bank position

26-24 REG DDR TERM DDR2 and DDR3 termination resistor value

23 REG DDR2 DDQS Set to 1 when using DDR2/DDR3
for differential DQS

22-21 REG DYN ODT These bits are only used in DDR3 mode

20 REG DDR DISABLE DLL Set to 0 for normal operation

19-18 REG SDRAM DRIVE For DDR2, set to 0 for full drive strength

17-16 REG CWL CAS Write Latency; Only used
in DDR3 mode

15-14 REG NARROW MODE Set to 1 for 16bit mode

13-10 REG CL CAS Latency

9-7 REG ROWSIZE sets the number of row address bits

6-4 REG IBANK sets the number of banks

3 REG EBANK external chip select setup

2-0 REG PAGESIZE sets the number of column address bits

Table 7.1: SDRAM CONFIG register fields and their description [1]

CHAPTER 7. SOFTWARE IMPLEMENTATION 77

7.1.3.2 EMIF Register Configuration for MT41J128M-125 (2Gb)

The Starter Kit uses a MT41J128M-125 chip my Micron with 2Gb capacity. The values calcu-
lated for this chip are given in Table 7.2

Register field Value Explanation

REG SDRAM TYPE 3 DDR3

REG IBANK POS 0 first bank

REG DDR TERM 1 RZQ2

REG DDR2 DDQS 1 differential DQS

REG DYN ODT 2 Dynamic ODT RZQ4

REG DDR DISABLE DLL 0 enable DLL

REG SDRAM DRIVE 0 drive strength RZQ7

REG CWL 0 CAS write latency 7

REG NARROW MODE 1 16bit data bus width

REG CL 2 CAS latency of 9

REG ROWSIZE 5 14 row bits

REG IBANK 3 8 banks

REG EBANK 0 1 chip select

REG PAGESIZE 2 10 column bits

Table 7.2: SDRAM CONFIG register values for MT41J128M-125 (2Gb)

The value for the SDRAM CONFIG we get for this chip is thus
0b01100001110000000100101010110010 or 0x61C24AB2.

7.1.3.3 EMIF Register Configuration for MT41J64M16-15E (1Gb)

The register value for the MT41J64M16-15E, the chip with 1 Gb capacity, used on our board is
derived from the values in Table 7.3.

CHAPTER 7. SOFTWARE IMPLEMENTATION 78

Register field Value Explanation

REG SDRAM TYPE 3 DDR3

REG IBANK POS 0 first bank

REG DDR TERM 1 RZQ2

REG DDR2 DDQS 1 differential DQS

REG DYN ODT 2 Dynamic ODT RZQ4

REG DDR DISABLE DLL 0 enable DLL

REG SDRAM DRIVE 0 drive strength RZQ7

REG CWL 0 CAS write latency 7

REG NARROW MODE 1 16bit data bus width

REG CL 2 CAS latency of 9

REG ROWSIZE 4 13 row bits

REG IBANK 3 8 banks

REG EBANK 0 1 chip select

REG PAGESIZE 2 10 column bits

Table 7.3: SDRAM CONFIG register values for MT41J64M16-15E (1Gb)

We see that the difference to the 2Gb chip is in the number of row bits.
The value for the SDRAM CONFIG we get for this chip is
0b01100001110000000100101000110010 or 0x61c04a32.

7.1.3.4 DDR3 Timing Settings

Besides the SDCFG register, DDR timing values also need to be properly configured. For this
matter, TI provided a spreadsheet file. This file can be used to automatically derive values
for SDRAM TIMING1, SDRAM TIMING2 and SDRAM TIMING3 variables in the bootloader
code.
The values which need to be inserted in this file must be obtained from the datasheet for the
MT41J64M16-15E chip. Field names and values which need to be entered in the spreadsheet
are visible in Table 7.4.

CHAPTER 7. SOFTWARE IMPLEMENTATION 79

Register name Bit length DDR3 symbol Value Unit

REG T RP 4 tRP 13.5 ns

REG T RCD 4 tRCD 13.5 ns

REG T WR 4 tWR 15 ns

REG T RAS 5 tRAS 36 ns

REG T RC 6 tRC 49.5 ns

REG T RRD 3 tRRD 4 ns

REG T WTR 3 tWTR 4 ns

REG T XP 3 tXP 3 ns

REG T ODT 3 ODTlon 3 tCK

REG T XSNR 9 tXS 120 ns

REG T XSRD 10 tXSDLL 512 tCK

REG T RTP 3 tRTP 4 tCK

REG T CKE 3 3 tCKE tCK

REG T PDLL UL 4

REG T ZQCS 6 tZQCS 64 tCK

Table 7.4: DDR3 ratio seed spreadsheet values for MT41J64M16-15E

The values for the timing registers we end up with, when we enter them in the file, are given in
Table 7.5.

Register name Value

SDRAM TIMING1 0x0888A39B

SDRAM TIMING2 0x26247FDA

SDRAM TIMING3 0x501F821F

Table 7.5: DDR3 timing register values for MT41J64M16-15E

This concludes the part about the DDR configuration.

7.2 Buildroot

We used Buildroot to generate the embedded Linux image, which we then flashed to our SD
card.

It is said that Buildroot is a set of Makefiles which automate the process of building of the com-
plete Linux environment, starting from bootloader, to the kernel we configured, to the filesystem.
It is a convenient system, where one can configure what bootloader to use for a specified plat-
form, set up the boot arguments, the path to the device tree, kernel tree, and even checkout a
certain revision.

CHAPTER 7. SOFTWARE IMPLEMENTATION 80

Figure 7.1: Schematics for the pressure and temperature sensor module

After the bootloader and kernel were chosen and configured, we can choose what userspace
programs we want to include in our system. The applications are divided in a category, and
picking the right ones we needed (e.g. Qt framework, some utilities we used, RaLink firmware
and so on) was self-explanatory.

A welcome screen of a Buildroot can be seen in Figure 7.1.

Buildroot is suitable for this type of projects, since the generated result (image) is as small as
possible, and boots fast, since only the necessary modules are loaded during boot.

Buildroot is free and open-source software, maintained by Peter Korsgaard and licensed under
version 2 or later of the GNU General Public License (GPL).[4] The project started in 2001,
with initial intentions to serve as a testbed for uClibc. New releases are made available every
three months [31].

7.2.1 Software Configuration for the WiFi Module

For some of the hardware we mentioned in the chapter about the hardware design, we will
require some configuration steps for the Linux kernel. For our WiFi requirements, we are using
a RaLink RT5370 based chip. Linux kernel supports the RaLink 802.11n USB chipsets since
version 2.6.31. Among these devices is our RT5370 [32].
The driver in question is the rt2800usb. It is already in the kernel main tree. so we will need
to include this driver in our kernel. Since we have the USB1 interface ready on our board, we
must also make sure the USB Wireless Device Management is supported.
In the userspace, we will require the RaLink firmware. The package we need is called firmware−
ralink firmware. It is closed source, and contains the binary firmware for the wireless card we
using.
We will be using the WiFi in access point mode, so we will need some basic network interface
configuration, by editing the /etc/network/interfaces file, and setting the IP address and netmask

CHAPTER 7. SOFTWARE IMPLEMENTATION 81

for it.
Enabling the driver and the firmware for the WiFi module will allow us to use the WiFi on our
board, but to add usefulness to it, we will need a server to which the clients will connect, and
browse the files, or upload a new software version. We write about the server in Chapter 7.3.4.

7.3 Sensors Driver Implementation

In this part, we give an overview of the implementation of the user-space drivers for the eCom-
pass and the pressure and temperature sensor. These drivers serve as the interface for the
modules which need to communicate with these devices. Besides the drivers, we introduce the
Qt application which was made during the course of this work.

7.3.1 Pressure and Temperature Sensor Driver

Here, we will briefly introduce the software implementation of the sensor for the pressure and
temperature used on the board. The implementation of the driver was done in C++. A single
class called MS5803 was implemented.
The following, summarized header file gives us the information on the member variables and
functions used.

c l a s s MS5803
{

p r i v a t e :
i n t i 2 c f d ;
u i n t 1 6 t c a l i b c o e f f [NUM CALIB] ;
u i n t 3 2 t r ead va lue (u i n t 8 t command) ;
i n t r e a d c a l i b r a t i o n d a t a (void) ;
void c o n v e r t s e n s o r v a l u e s (u i n t 3 2 t press raw , u i n t 3 2 t tem raw , i n t 3 2 t ∗ pressure , i n t 3 2 t ∗ temperature) ;

pub l i c :
MS5803 () ;
˜MS5803 () ;
i n t ms5803 in i t (const char ∗ f dev , unsigned char address) ;
i n t ms5803 ge t s en so r va lue s (i n t 3 2 t ∗ pressure , i n t 3 2 t ∗ temperature) ;
i n t ms5803 c lose () ;

}

We also define some commands which are sent to the module. These are give in Table 7.6.

CHAPTER 7. SOFTWARE IMPLEMENTATION 82

Command Value Description

OSR 4096 PRESS 0x48 Convert D1 with
highest resolution (4096)

OSR 4096 TEMP 0x58 Convert D2 with
highest resolution (4096)

PROM READ START 0xA0 PROM read start address

RESET COMM 0x1E Reset

Table 7.6: Commands used in MS5803 driver [4]

The bus used in our application is located on path /dev/i2c− 1.
i2c fd holds the number of the I2C file descriptor, which is used by other functions to access
the I2C bus. This way, the driver can write to, and request data from sensor.
By calling ms5803 init, the I2C bus is set up, the sensor is reset, and the read calibration data
function is called. In this function, calibration data is read out and stored in calib coeff array.
Reading pressure and temperature values is done by calling
ms5803 get sensor values, which reads out uncompensated pressure and temperature data,
then calls convert sensor values to compensate the values.
When done using the driver, the caller should call ms5803 close to close the file.
Initially, this was a standalone executable, but was later integrated in the Qt application which
will later be more expanded upon.

7.3.2 eCompass Driver

As for the eCompass driver implementation, it is similar to the pressure and temperature sensor.
They both use the same way of communication over the I2C interface. The difference is in the
commands which are sent to the sensor, and in the values the driver receives back.
Here, we have an overview of the LSM303 class, and the member functions it has.

c l a s s LSM303
{

#d e f i n e ACC REG 0x30>>1;
#d e f i n e MAG REG 0x3C>>1;

pub l i c :
enum r e g i s t e r a d d r
{

// r e g i s t e r addre s s e s
. . .

}
vector<i n t 16 t> a c c v a l ;
vector<i n t 16 t> mag val ;

CHAPTER 7. SOFTWARE IMPLEMENTATION 83

void i n i t () ;

void w r i t e r e g i s t e r (u i n t 8 t addr , u i n t 8 t reg , u i n t 8 t va l) ;
void r e a d r e g i s t e r (u i n t 8 t addr , u i n t 8 t reg , u i n t 8 t nr byte s) ;

void r e a d a c c e l v a l u e s () ;
void read mag values () ;

f l o a t heading () ;

The implementation was done in C++. Member variables acc val and mag val hold the read
data from the accelerometer and magnetometer respectively. Each of the sensors sends 6 bytes
of data, 2 bytes for each axis. A high and low byte value of an axis are then stored in an signed
integer, since the values are two’s complement.
The init() function initializes the I2C bus, and tries to establish a communication with the
sensor. If the communication is successful, configuration values are written in the respective
registers. write register(...) function is used to write a value val to a sensor with address addr,
to register reg. We use the function read register(...) to read nr bytes many bytes from a sensor
on address addr, after we send it a command reg. read accel values() is a wrapper for these two
functions with which we read out the 6 bytes for the accelerometer values. read mag values()
helps us read out the 6 bytes for the magnetometer.
The read out values are stored in their respective vectors we explained earlier.
With the heading() function, we calculate the angular difference between the vector sensor is
pointing to, and the north vector, in the horizontal plane, in degrees. To do this, first we find
the North vector with the calibration data. Acceleration data is then used to determine the
vector pointing upwards.
Cross product of north vector and this vector is the vector pointing east. The vector pointing
east and the one pointing north form the horizontal plane. The vector the sensor is pointing to
is projected to this plane, and the angle between the projected vector and projected north is
calculated and returned.

7.3.3 QT GUI Implementation and Driver Integration

As noted in Chapter 5.3.1, a proof of concept GUI, which shows the capability of Qt, with some
functionality exposed to the user, will be implemented.
For this matter, QT framework for embedded systems was used, and a small Qt application was
implemented.
We used Qt Creator for this task, which is an IDE tailored to the needs of Qt developers.
For our application, we used QtCore and QtGui modules offered in the framework. All other
modules rely on QtCore. It offers the already mentioned concept for the object communication
called signals and slots, and QtGui is the GUI tool-kit offering the graphical components for the
design [25]. In our project, we have several files:

• DiveComp.pro

• Makefile

CHAPTER 7. SOFTWARE IMPLEMENTATION 84

• main.cpp

• ms5803.cpp

• ms5803.h

• lsm303.cpp

• lsm303.h

• main screen.cpp

• main screen.h

• main screen.ui

• gas chooser.cpp

• gas chooser.h

• gas chooser.ui

The main.cpp contains the apps’ starting point, the main() function. Here, we initialize the
pressure sensor, and start our GUI. The ms5803.cpp and ms5803.h contain the pressure and
temperature sensor driver. lsm303d.cpp and lsm303.h contain the code for the eCompass sensor.
These sensors use the same bus, so only one initialization of the bus is needed, whose file
descriptor is then shared.
The main screen* files hold the functionality of the main screen, where we show some basic
data, and gas chooser* files are responsible for the menu where the user can change the gas they
are using.
The .ui file is an XML file holding the information about the graphical layout of the elements
on the screen.
In the main screen.cpp we used signals for buttons which can be pressed, and implemented
functions which will we called when a signal occurs.
After we cross-compiled our application for the target, we need to run it.
A Qt application needs a server application to be running on an embedded device, or it can be
a server application itself. We make our application a server application by using the −qws flag
when starting the application.
The app is started in background by typing

export QWS MOUSE PROTO=Ts l ib : / dev/ input / event0
. / DiveComp −qws &

QWS MOUSE PROTO is the environment flag which specifies the driver for pointer handling.
In our case, this is the touchscreen. DiveComp is the name of the compiled executable, which
is executed with the −qws flag, so DiveComp− qws. A screenshot of the start screen is visible
in Figure 7.2
Here, we see the current dive time, depth, the gas which is used, and the no-dive time dummy
values.
On the right side, we see four buttons: settings, gas settings, compass and a log book. When
the settings button is pressed, a shell script to toggle WiFi state is executed. This shows how

CHAPTER 7. SOFTWARE IMPLEMENTATION 85

Figure 7.2: Qt application dive mode, a proof of concept

we can interact with Linux command tools and bash scripts.
Besides the settings and gas settings buttons, where the gas can be changed, these are dummy
buttons, i.e. they lack functionality.

7.3.4 Services Offered over WiFi

As a proof of concept of what can be done over WiFi, a small software app was implemented
during the course of the project. The basic idea was to configure the WiFi module in the Access
Point mode, where the user can connect with their PC or smartphone. We implemented a small
NodeJS server.
The server offers a static HTML web page, with some JavaScript code embedded in it. The user
can, by clicking a button, trigger a bash script which is present on the dive computers filesystem.
Several examples include recalibrating the touchscreen, or updating the kernel by uploading a
compressed file with the device tree, bootloader and kernel binaries.

7.4 Software Tools Offered by Linux

In this part, we explain some of the drivers found in the kernel, which could be useful for
embedded symbols.

CHAPTER 7. SOFTWARE IMPLEMENTATION 86

7.4.1 Using Power Saving Mechanisms in Linux

Power management is important in embedded systems running on a limited power supply, like
a battery.
There are several mechanisms for power management offered by Linux kernel in userspace, which
are supported by the AM335x processors. The tools used in our work are cpufreq, governors,
and sleep states.

7.4.1.1 CPU frequency scaling

In general, CPU frequency scaling enables Linux to increase or decrease the clock speed of the
CPU (VDD CORE), to increase performance, or to save power, respectively. CPU scaling is
implemented in the kernel for various architectures, including ARM, and this is referred to as
the cpufreq framework.
AM335x also supports this framework by stating its operating points in the device tree. In
arch/arm/boot/dts/am33xx.dtsi, operating points for the processor are defined, and are given in
Table 7.7.

kHz uV
720000 1285000
600000 1225000
500000 1125000
275000 1125000

Table 7.7: Operating points for AM335xas defined in the device tree

An essential part of the cpufreq framework are the governors. Governors are so called power
schemes for the CPU. They offer some sort of of abstraction, and adjust the values for the clock
and voltage [33]. Several governors are offered by the kernel, and they each come with their
advantage and disadvantage. For example, the performance governor always lets the CPU run
at the maximum frequency. On the other side, powersave lets the CPU run at the minimum
frequency. The default governor is userspace, where the CPU frequency is user-defined (but
still choosen from a pool of available frequencies).

When we include the cpufreq driver in the kernel, cpufreq driver is then available in userspace
in /sys/devices/system/cpu/cpuX/cpufreq/.
Viewing all supported governors is done by executing

cat / sys / d e v i c e s / system /cpu/cpu0/ cpuf req / s c a l i n g g o v e r n o r

Setting the governor is not complicated:

echo $governor > / sys / d e v i c e s / system/cpu/cpu0/ cpuf req / s c a l i n g g o v e r n o r

If we set the userspace governor, we can set any of the frequencies offered by the CPU. To see
available frequencies, we execute

CHAPTER 7. SOFTWARE IMPLEMENTATION 87

cat / sys / d e v i c e s / system /cpu/cpu0/ cpuf req /
s c a l i n g a v a i l a b l e f r e q u e n c i e s

Current CPU frequency can be shown with

cat / sys / d e v i c e s / system /cpu/cpu0/ cpuf req / s c a l i n g c u r f r e q

Setting the minimum or maximum CPU frequency is done with

echo 275000 > / sys / d e v i c e s / system /cpu/cpu0/ cpuf req / s c a l i n g s e t s p e e d
echo 720000 > / sys / d e v i c e s / system /cpu/cpu0/ cpuf req / s c a l i n g s e t s p e e d

Processor voltage is adjusted accordingly.
To manually set the VDD CORE voltage to, e.g. 0.95V or 1.1V, we may use

i 2 c s e t −f 0 0x2D 0x25 0x1F
i 2 c s e t −f 0 0x2D 0x25 0x2B

0x2D is the address of the PMIC module, and this command writes the wanted voltage in the
register at addres 0x25, the VDD2 OP REG.

We use the powersave governor.
Unfortunately, we cannot go below the minimum voltage defined in the device tree, because the
several submodules are not supported when in a lower voltage range, since we are then in the
OPP50 state. Several peripherals and features are not supported when operating in OPP50.
Among these are for us relevant DDR3 and LCDC in LIDD mode [1]. For this reason, we must
remain in the OPP100 voltage range.

7.4.2 Suspend to RAM

Another important concept are the sleep states. AM335x, just like many other devices, support
several sleep modes. This way, the system can transition to a lower power state, if some func-
tionalities are not needed.
We use the Suspend to RAM state, where most parts of the CPU are not powered, and RAM
is kept in the self refresh state, where its content is preserved. This makes a fast restoration of
machine state possible, since userspace and kernel do not have to be loaded again from the SD
card to the working memory.
We enter the Suspend to RAM state with

echo mem > / sys /power/ s t a t e

Waking up the CPU can be done by GPIO0 and touchscreen interfaces.
To enable waking up from touchscreen touch, we must execute

echo enabled > / sys / d e v i c e s / plat form /omap/ t i t s c a d c /power/wakeup

CHAPTER 7. SOFTWARE IMPLEMENTATION 88

before going to sleep.
To wake up by the RTC, we use the rtcwake utility. Here, we set the time when we want to
wake up the CPU, and the state we want to transition into, i.e. the state we want to be awaken
from.
We do this with

rtcwake −d /dev/ r t c0 −m mem −s 20

In this example, we will wake up in 20 seconds from the SuspendtoRAM state.

Chapter 8

Future Work

In this section, we will give some information on how we plan to proceed with this project, after
the academic part has been finished.
First of, a dive computer requires an user interface which offers more then just sensor values,
if we want this product to be used commercial. For this matter, we present a small concept
GUI, where we show our perspective on how such a GUI might look like, and what it should offer.

8.1 Full Featured Dive Computer Software

In order to keep the project in a manageable size, a full featured GUI was not required by the
contracting authority, and was thus not implemented.
Such a GUI would include more features, like an appealing and user friendly interface, customiz-
ability for the information shown, and so on.

8.1.1 GUI Concept

We will now merely present a concept of this GUI. The reason for the large size of the project
is not the GUI, but the algorithms which would have to be developed for this functionality to
be achievable.
As for the GUI concept, there would be an area in the top of the display, where the meta
information about the battery, WiFI status and no fly time will be shown. This area would be
present all the time.
For the rest of the screen, the GUI would have two different states: the surface mode, and the
dive mode.
In the surface mode, when the watch is not in water (e.g. environment pressure below 1.1
bar), information such as time and date, compass, gas type and temperature would be shown.
Figure 8.1 gives a graphical representation of the surface mode concept.

89

CHAPTER 8. FUTURE WORK 90

Figure 8.1: Surface mode concept

Figure 8.2: Dive mode concept

In the second mode, called the dive mode, a diving related information would be shown. This
information consists, among other things, of the gas mixture type, depth, temperature, dive time,
compass, time until decompression is needed, and so on, depending on the users preferences.
Figure 8.2 shows the dive mode concept.
As one can see, the two states share a subset of information, so they would be shown at all
times, and their position on the screen would be fixed, to lessen the confusion of the user.
We also introduce the concept of alarms. For example, if the diver is ascending too fast, or their
tank pressure is lower than a predefined limit, a visual alarm might be shown. This is shown in
Figure 8.3.

8.1.2 Desirable Dive Computer Features

Some features we would like to see implemented for the dive computer are:

• Alarms (depth, pressure, tank pressure, heart rate, hypothermia danger, ...)

• Time until flight allowed

• Programmable safety stops

CHAPTER 8. FUTURE WORK 91

Figure 8.3: Dive mode concept with a triggered alarm

• Deco algorithms with various gas mixtures

• Dive simulator (user creates a dive profile and simulates it)

• Dive log viewer

• Following a compass direction ...

8.2 Hardware Changes

Besides the implementation of the software features, some changes in the hardware design would
also be desired. For example, instead of using a DDR3 chip for our main memory, we would use
slower and less power-hungry DDR2 chip. The initial reason we decided to use DDR3 was the
lack of experience with interfacing high speed devices.

Chapter 9

Conclusion

Here, we will tie together the thesis statement, issues we encountered during this work, and we
will draw some conclusions about this project, and what we have learned from it.

During this project, we build a hardware and software platform which can be used for a dive
computer.

We based our hardware design on an evaluation board by Texas Instruments, which was then
adapted to our needs, in terms of removing unneeded hardware, and adding our own. Me made
a platform which supports a large LCD, with a touchscreen which is capable of working under
water. Several sensors were also incorporated, which can be used by the diving software to
calculate important parameters for the divers. Also, accessing the data like the logbook would
be easy, via WiFi.

Besides the hardware aspect, we also had the software aspect to take care of. For this matter, we
incorporated a rich OS in our project, which then served as the abstraction layer to the software
modules we build, like the sensor drivers and the GUI application. These software modules
served as a proof of concept for what can be implemented on a hardware platform we built.

This research gave us a good insight on how we can modernize the dive computers, with the help
of other supporting technologies including semiconductor, sensor, display and battery technology.

The integral stages of this project were the layouting of the PCB, configuring and implementing
the software, and assembling the PCB. All of these stages require a highly skilled personnel, if
a guarantee is needed that a project will succeed.

Several issues were encountered during the project, e.g. issues with the components not being
soldered properly, or misbehaving software. Several components did not work as expected,
like the LCD. The problem is either in the layout, soldering, or in the configuration. Many
dimensions of the problem, and not being able to pinpoint it in a short period is a good example
which shows how difficult embedded systems development is.

We have learned a lot from this project, starting from the basic concepts concerning hardware

92

CHAPTER 9. CONCLUSION 93

and software, but also a general overview of how a project of this type needs to be managed.
We also gained a good insight in many topics concerning embedded systems, communication
protocols and designing a PCB. Besides this, we realized how powerful Linux is for embedded
systems, and what potential it has to offer in the embedded world.

Appendix A

Abbreviations

GUI Graphical user interface
MPU Microprocessor unit
PCB Printed circuit board
PMIC power management integrated circuit
JTAG Joint Test Action Group
I2C Inter-integrated circuit interface
EMI Electromagnetic interference
EMC Electromagnetic compatibility
LCD Liquid crystal display
SPI serial peripheral interface
RTC Realtime clock
IC Integrated circuit
RTCSS Realtime clock subsystem
PLL Peripheral Phase Locked Loop
ECC Error code correction
SOC system on chip
EMIF External memory interface
CS Chip select
CAS Column access strobe
ADC Analogue-to-digital converter
OS Operating system
BSP Board support package
IPL Initial program loader
MBO Minimal bootloader
DMA Direct memory access
RTOS Real-time operating system
PS Protocol select
RS Radio frequency
OPP Operating performance points
DQS Differential data strobe
UART Universal asynchronous receiver/transmitter

94

Bibliography

[1] Texas Instruments. AM335x Sitara Processors Datasheet. http://www.ti.com/lit/
ds/sprs717h/sprs717h.pdf, 2015. [Online; accessed 16-Dec-2015].

[2] ST Microelectronics. Ultra-compact high-performance eCompass module: 3D accelerom-
eter and 3D magnetometer. http://www.st.com/web/en/resource/technical/
document/datasheet/DM00057547.pdf, 2015. [Online; accessed 16-Dec-2015].

[3] Micron. 2Gb: x4, x8, x16 DDR3 SDRAM Datasheet. https://www.micron.com/˜/
media/documents/products/data-sheet/dram/ddr3/2gb_ddr3_sdram.pdf,
2015. [Online; accessed 16-Dec-2015].

[4] Measurement Specialities. MS5803-01BA Miniature Variometer Module. http://www.
meas-spec.com/downloads/MS5803-01BA.pdf, 2015. [Online; accessed 16-Dec-
2015].

[5] MA Lang and RW Hamilton Jr. Proceedings of the AAUS dive computer workshop. page
231, 1989.

[6] Texas Instruments. AM335x Overview. https://www.ti.com/lsds/
ti/processors/sitara/arm_cortex-a8/am335x/overview.page?
paramCriteria=no, 2015. [Online; accessed 16-Dec-2015].

[7] Karim Yaghmour, Jonathan Masters, and Gilad Ben. Building Embedded Linux Systems,
2Nd Edition. O’Reilly & Associates, Inc., Sebastopol, CA, USA, second edition, 2008.

[8] Doug Abbott. Linux for Embedded and Real-Time Applications. Butterworth-Heinemann,
Newton, MA, USA, 2003.

[9] P. Horowitz and W. Hill. The Art of Electronics. Cambridge University Press, New York,
NY, USA, 1989.

[10] Texas Instruments. PCB Design Guidelines For Reduced EMI. http://www.ti.com/
lit/an/szza009/szza009.pdf, 1999. [Online; accessed 16-Dec-2015].

[11] Powell Mark. Deco for Divers: A Diver’s Guide to Decompression Theory and Physiology.
AquaPress, 2014.

[12] Suunto. SUUNTO EON STEEL 1.1 User Guide. http://ns.suunto.com/Manuals/
EONSteel/Userguides/Suunto_EONSteel_UserGuide_EN.pdf, 2015. [Online; ac-
cessed 16-Dec-2015].

95

BIBLIOGRAPHY 96

[13] Seabear GmbH. H3 User Manual. http://www.seabear-diving.com/downloads/
manuals/H3/index.html?cover.htm, 2015. [Online; accessed 16-Dec-2015].

[14] Texas Instruments. ARM Processors Selection Guide. http://www.ti.com/lit/sg/
sprt596f/sprt596f.pdf, 2015. [Online; accessed 16-Dec-2015].

[15] Electronic-Assembly. P320X-35ALWS Datasheet. http://www.lcd-module.de/eng/
pdf/grafik/p320x-35a.pdf, 2015. [Online; accessed 16-Dec-2015].

[16] Geoff Walker. A review of technologies for sensing contact location on the surface of a
display. Journal of the Society for Information Display, 20(8):413–440, 2012.

[17] Acme Systems. WIFI-2 - OEM WiFi USB module. http://www.acmesystems.it/
WIFI-2, 2015. [Online; accessed 16-Dec-2015].

[18] Johnson Randy and Intel Christie Stewart. JTAG 101, IEEE 1149.x and Soft-
ware Debug. https://www-ssl.intel.com/content/dam/www/public/us/en/
documents/white-papers/jtag-101-ieee-1149x-paper.pdf, 2015. [Online; ac-
cessed 16-Dec-2015].

[19] Petazzoni Thomas. Your new ARM SoC Linux support check-list. http://elinux.org/
images/a/ad/Arm-soc-checklist.pdf, 2015. [Online; accessed 16-Dec-2015].

[20] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper Saddle
River, NJ, USA, 3rd edition, 2007.

[21] Peter Jay Salzman. The Linux Kernel Module Programming Guide. CreateSpace,
Paramount, CA, 2009.

[22] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers, 3rd
Edition. O’Reilly Media, Inc., 2005.

[23] Buell Alex. Framebuffer HOWTO. www.tldp.org/HOWTO/Framebuffer-HOWTO/,
2010. [Online; accessed 16-Dec-2015].

[24] Atmel. AVR32416: AVR32 AP7 Linux LCD Panel Customization. http://www.atmel.
com/images/doc32105.pdf, 2008. [Online; accessed 16-Dec-2015].

[25] Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with Qt 3. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2004.

[26] Qt Foundation. Qt Documentation. http://doc.qt.io/qt-4.8, 2008. [Online; ac-
cessed 16-Dec-2015].

[27] Freescale Semiconductor. Designing for Board Level Electromagnetic Compati-
bility. https://cache.freescale.com/files/microcontrollers/doc/app_
note/AN2321.pdf?pspll=1, 2008. [Online; accessed 16-Dec-2015].

[28] Soeser Peter Stoeckler Gerhard Winkler Gunter Deutschmann Bernd, Eichberger Bernd.
Lecture Notes on Development of Electronic Systems. https://online.tugraz.at/
tug_online/lv.detail?clvnr=178781, 2008. [Online; accessed 16-Dec-2015].

[29] Texas Instruments. TPS65910x Integrated Power-Management Unit Top Specification.
http://www.ti.com/lit/ds/symlink/tps65910.pdf, 2008. [Online; accessed 16-
Dec-2015].

BIBLIOGRAPHY 97

[30] Downs Rick Osgood Skip, Ong CK. Touch Screen Controller Tips. http://www.ti.
com/lit/an/sbaa036/sbaa036.pdf, 2000. [Online; accessed 16-Dec-2015].

[31] Buildroot Documentation. The Buildroot user manual. http://buildroot.uclibc.
org/downloads/manual/manual.html, 2015. [Online; accessed 16-Dec-2015].

[32] Debian Wiki. rt2800usb. https://wiki.debian.org/rt2800usb, 2008. [Online;
accessed 16-Dec-2015].

[33] Brodowski Dominik. Linux CPUFreq. https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt, 2008. [Online; accessed 16-Dec-2015].

