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Abstract

The aim of 3D reconstruction is to infer 3D geometry of the scene from a given set of

2D images. Being one of the most fundamental problems in computer vision, many algo-

rithms have been developed in the last years to solve this problem on desktop computers.

Modern mobile devices such as tablets and smartphones, however, deliver unprecedented

computational power in everyone’s pocket making it possible to tackle this problem on

mobile platforms as well.

The aim of this master’s thesis is to create the fundamental building blocks: dense

tracking and dense depthmap computation, for a novel reconstruction system on mobile

devices. The developed tracking system operates directly on images without an interme-

diate representation like keypoints. Depthmaps are computed by using a dense multi-view

stereo algorithm and optimized by minimizing a global spatially regularized energy func-

tional. Using the graphics processing unit (GPU ) and highly parallelized state-of-the-art

algorithms on these mobile devices, enables us to perform high quality, dense depthmap

computations within several seconds.

Keywords. 3D reconstruction, mobile, interactive, stereo, dense tracking, total varia-

tion, convex optimization, GPU
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Kurzfassung

Das Ziel der 3D Rekonstruktion ist die Berechnung der 3D Geometrie einer Szene, aus

einer gegebenen Menge von 2D Bildern. Da dies eines der fundamentalen Probleme in der

digitalen Bildverarbeitung darstellt, wurde in den letzten Jahren eine Vielzahl von Algo-

rithmen entwickelt, die das Problem mit leistungsstarker Desktop Hardware lösen. Mod-

erne mobile Geräte wie Tablets und Smartphones liefern jedoch eine noch nie dagewesene

Rechenleistung in jedermanns Hosentasche und machen es nun möglich, diese Aufgaben-

stellung auch auf mobilen Plattformen zu lösen.

Das Ziel dieser Masterarbeit ist die Entwicklung der Grundbausteine dichtes Kamera-

Tracking und dichte Tiefenkartenberechnung, für ein neuartiges Rekonstruktionssystem

auf mobilen Geräten. Das entwickelte Tracking-System arbeitet direkt auf den Bildern

ohne Verwendung einer Zwischenrepräsentation wie Schlüsselpunkten. Tiefenkarten wer-

den über einen dichten Stereo Algorithmus berechnet und mithilfe eines räumlich reg-

ularisierten Energiefunktionals global optimiert. Erst die Verwendung des Grafikprozes-

sors mobiler Endgeräte und der Einsatz von modernsten, hochparallelisierten Algorithmen

ermöglicht die Berechnung von dichten und qualitativ hochwertigen Tiefenkarten innerhalb

weniger Sekunden.

Schlüsselwörter 3D Rekonstruktion, mobil, interaktiv, Stereo, dichtes Tracking, Total

Variation, Konvexe Optimierung, GPU
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1
Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Motivation

Figure 1.1: Given a set of 2D images, our system performs dense tracking in real-time and
computes high quality depthmaps of the scene within several seconds on a mobile device.

State-of-the-art mobile devices like smartphones and tablets are nowadays equipped

with all kind of sensors and very powerful processing units to gather information about

the environment. The most powerful sensors are cameras since they deliver a huge amount

of information at high frequency. However, for numerous applications like image segmen-

tation, pose estimation or object detection, it is crucial to have 3-dimensional information

about the world.

1



2 Chapter 1. Introduction

By taking a picture, the 3D world gets projected onto the 2D image plane resulting

in an information loss during the projection. In contrast, the goal of a visual based

reconstruction system is to deduce the 3D scene structure given a set of 2D images. Due

to the information loss during the projection the reconstruction is generally known to

be a hard and ill-posed problem where the uniqueness and existence of a solution is not

guaranteed.

3D reconstruction actually involves several tasks including image acquisition, pose

estimation and the depth computation or reconstruction itself. Using this technology

on mobile devices opens up a great variety of unforeseen applications, where augmented

reality (AR) probably has the biggest potential. By knowing the 3D geometry of the

scene, all kinds of computer generated content can interact with the real world. The own

living room could be used e.g. as a landscape within an AR game. In order to fully

exploit these new possibilities, it is crucial to have accurate, high quality reconstructions.

Therefore, the key requirements are a robust tracking system and a high quality dense

depth computation algorithm.

1.2 Contributions and Outline

The goal of this master’s thesis is to create the fundamental building blocks: dense

tracking and dense depthmap computation, for a novel reconstruction system on

mobile devices. Using the graphics processing unit (GPU ) and highly parallelized

state-of-the-art algorithms on these devices, enables us to perform high quality

reconstruction just within several seconds. The system is run on an Android1 platform

and the user simply captures a sequence of images while moving the device. After that,

the reconstruction starts and the system shows in an interactive way how the 3D model

of the captured scene emerges. This usecase is easy enough for everyone since no special

know-how or experience is needed. Therefore, anyone’s smartphone or tablet can be used

as a 3D scanner, delivering high quality depthmaps on the fly.

This thesis is structured as follows: Chapter 2 gives an overview of fundamental meth-

ods needed for 3D reconstruction and related work on mobile devices and desktops, since

1https://www.android.com/



1.2. Contributions and Outline 3

the latter one formed the principles used on mobile platforms. Chapter 3 explains our ap-

proach, including dense tracking, dense depthmap computation. This chapter is followed

by a chapter, where we give details about the implementation. In chapter 5 we evaluate

our system and discuss the results. Finally, chapter 6 gives a conclusion and an outlook

on future work.





2
Related Work

Contents

2.1 Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Dense Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 18

This section gives an overview and introduction of related work on dense 3D reconstruc-

tion on mobile and also desktop platforms since the latter one formed the basic principles.

First, the camera and distortion models are discussed, followed by internal camera calibra-

tion. Next, epipolar geometry and triangulation methods are reviewed leading to external

camera calibration and, more generally, to simultaneous location and mapping (SLAM).

Here, traditional probabilistic and more recent geometric SLAM approaches are shown.

Finally, dense reconstruction methods with special emphasis on real-time performance and

state of the art mobile approaches are discussed.

2.1 Camera Model

The pinhole camera model is a common model of an ideal camera and follows the principle

of central projection. A point in 3D space X = [X,Y, Z]T ∈ R3 gets mapped onto a 2D

point on the image plane at depth f with homogeneous coordinates x = [x, y, w]T ∈ R2

where x = fX/Z, y = fY/Z, w = f .

This projection is characterized completely by only 5 parameters, which are called the

5



6 Chapter 2. Related Work

intrinsic parameters of the camera, also known as the camera calibration matrix K ∈ R3×3

K =


fx γ px

0 fy py

0 0 1


where f is the focal length, fx, fy are the focal length multiplied with the pixel scale

factors mx,my, γ is the skew factor and p = (px, py)
T is called the principal point. The

projection itself may now be written as

x = KX (2.1)

The focal length f is the distance between the pinhole (camera center) and the

image plane. γ, the axis skew factor, models shear distortion of the projected image.

This parameter is usually 0 and can therefore be neglected. The principal point p

describes the point of intersection between the cameras principal axis and the image

plane. See Figure 2.1 for an illustration. Note that in a true ideal camera fx and

fy take the same value but due to flaws in the digital camera sensor, non uniformly

scaling in post processing or unintentional lens distortion they might differ from each other.

Figure 2.1: Pinhole camera model which depicts the projection of the 3D point X onto the
point x on the image plane. Furthermore the pinhole C, focal length f and principal point p are
illustrated. Note that in a real camera system the image plane lies behind the pinhole and the
resulting image is 180 degrees rotated. (Figure taken from [17]).

Furthermore it is to mention that not only fx and fy and the principle point p might

differ from each other, but that a camera generally also shows lens distortion due to

different constraints in the manufacturing process of the camera lens. The most significant

Reference:

Hartley, R. I. and Zisserman, A. (2004)Multiple View Geometry in Computer Vision



2.1. Camera Model 7

effect is the radial lens distortion (dr) which means that straight lines in the real world get

projected to curves on the image plane. If the lens is not mounted exactly in the center

tangential lens distortion (dt) is the result. See Figure 2.2 for an illustration. In order

to compensate for lens distortion, dr and dt are modeled as a non-linear function of the

projected image coordinates. One of the most common models, that is also used in this

work, is a standard polynomial model, first introduced in [1]. A pixel x is undistorted by

x′ = x
(
1 + k1r

2 + k2r
4
)

+ 2p1xy + p2(r2 + 2x2)

y′ = y
(
1 + k1r

2 + k2r
4
)︸ ︷︷ ︸

dr

+ 2p2xy + p1(r2 + 2y2)︸ ︷︷ ︸
dt

(2.2)

where x′ = [x′, y′]T is the undistorted pixel position, k1, k2, p1, p2 are the four distortion

parameters and r2 = x2 + y2.

Figure 2.2: The effects of radial and tangential lens distortion is shown. The ideal projected point
position is shown as point x′ but due to radial and tangential distortion effects the projection results
in the point x.

In contrast to intrinsic, the extrinsic camera parameters describe the rotation and

translation of the camera in the Euclidean coordinate system. Specifically, such a trans-

formation is denoted by

• t, a 3× 1 translation vector representing the camera translation

• R, a 3× 3 rotation matrix defining the orientation of the camera coordinate system

which together form the 3 × 4 exterior or camera pose matrix C = [R | t]. Thus, let

Xworld = [Xw, Yw, Zw,Ww]T be a point in the world coordinate frame, then Xcam =

Reference:

Brown, Duane C. (1971)Close-range camera calibration
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[Xc, Yc, Zc,Wc]
T is the representation of the same point in the camera coordinate frame

Xcam =

R t

03 1

Xworld. (2.3)

Figure 2.3 depicts the transformation between world and camera coordinate frames.

Figure 2.3: Relationship between world and camera coordinate systems.

Combining 2.1 and 2.3 leads to the full linear mapping between an homogeneous point

X in 3D world space and its corresponding homogeneous point x on the image plane:

x = KR[I | RTt]X

where R[I | RTt] = [R | t] = C which leads to the projection matrix P = K[R | t] = KC

that gives

x = PX

2.2 Camera Calibration

As we have seen a pinhole camera model consists of the 2, internal and external, camera

parameters. Camera calibration is now referred to as the process of determining these

values. This can be achieved by finding internal and external parameters separately from

each other or by jointly calibrating them together [16, 32]. In that case the projection

matrix P is estimated and since P = KC and C = [R | t] all relevant information can be

decomposed afterwards.

Reference:

 ()



2.2. Camera Calibration 9

2.2.1 Internal Camera Calibration

The procedure of finding the internal camera calibration matrix K is called internal camera

calibration or simply camera calibration. We therefore call a camera with known K a

calibrated camera.

When dealing with 3D reconstruction from a given set of 2D images a calibrated

camera is a crucial requirement in order to get meaningful results. The reason for this is

the projective ambiguity, which means that only intersection and tangency is preserved or

as [17] say, that the angle between a pair of rays can not be measured (see Figure 2.4).

Figure 2.4: Projective ambiguity since intrinsic camera parameters K are unknown. (Figure
taken from [17]).

In contrast, when K is known only rotation, translation and scaling are free parameters

in the reconstruction step since the angle between a pair of rays has to be preserved, which

is also known as the similarity ambiguity (see Figure 2.5).

Camera calibration is the process of estimating a model for an uncalibrated camera. In

order to find these parameters, real world 3D calibration objects and their specifications are

needed so that 3D point to 2D pixel correspondences can be established. The calibration

procedure may be categorized according to the dimensions of the calibration target:

• 3D based calibration, a 3D object is observed whose geometry is known very

precisely [9].

• 2D based calibration, instead of observing a 3D object a simple planar pattern is

observed from several different angles [39, 40]

Reference:

Hartley, R. I. and Zisserman, A. (2004)Multiple View Geometry in Computer Vision
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Hartley, R. I. and Zisserman, A. (2004)Multiple View Geometry in Computer Vision
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Faugeras, Olivier (1993)Three-dimensional Computer Vision: A Geometric Viewpoint

Reference:
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• Self calibration, instead of using any calibration target at all solely image infor-

mation is used to perform the camera calibration [16, 32].

Figure 2.5: Similarity ambiguity since intrinsic camera parameters K are known. The angle
between rays can be measured and only rotation, translation and scaling are variable. (Figure
taken from [17]).

If possible, a calibration object should be used since the mathematical problem that natu-

rally arises in self calibration is much harder to solve due to the larger number of variables

that need to be estimated.

2.2.2 Epipolar Geometry

Given a two camera system (stereo vision) with corresponding 2D image projections of

the 3D world, its geometry is called epipolar geometry. Referring to Figure 2.6, a 3D

point X is observed by 2 cameras from distinct positions C1 and C2 in 3D space. The

corresponding 2D projection x1 in the first image and x2 in the second image fulfill a

number of constraints which are defined by the epipolar geometry. Intersecting the line

joining the two camera centers C1 and C2 with both camera images result in the so-called

epipoles e1 and e2. C1, C2 and the 3D point X form together the epipolar plane π. The

epipolar line is formed when a given image point and the corresponding epipole are joined

or formulated alternatively, when the epipolar plane and the image plane are intersected.

Knowing solely the camera position C1 and coordinates of the 2D projection x1 it is

impossible to reconstruct the original 3D point X due to the fact that its depth is unknown.

Reference:

 ()
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Figure 2.6: Epipolar geometry with camera centers C1, C2 and their relative pose [R | t]. C1,
C2 and 3D point X (but also the projections x1, x2 and the epipoles e1 and e2) lie on a common
epipolar plane π. The point x1 is mapped to the epipolar line lx1

and the epipolar constraint
xT
2 Fx1 = 0 is fulfilled.

It is only known that X has to lie on the viewing ray defined by C1 and x1. The point x2

on the other hand fulfills the so-called epipolar constraint which states the x2 has to lie on

the epipolar line lx1 . As mentioned before lx1 is formed by intersecting the epipolar plane

π with the second image plane. Furthermore corresponds the 2D projection x1 to all 3D

points on the viewing ray between C1 and x1 which means that the projection of all that 3D

points onto the second image plane result exactly in lx1 . Therefore a point x1 on the first

image plane defines a corresponding epipolar line in the second image. Mathematically,

the epipolar constraint is expressed by the fundamental matrix F ∈ R3×3 :

xT
2 Fx1 = 0 (2.4)

since the mapping between points and lines is represented by the fundamental matrix

lx1 = Fx1 (2.5)
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and it’s known from projective geometry that a point x lies on a line l when xTl = 0 is

fulfilled. Note that F is independent from the scene structure since it is computed solely

from image points [17].

2.2.3 Triangulation

Given the 2D projections x1 and x2, the camera positions C1 and C2 and a known

camera calibration matrix K one can find the corresponding 3D point X. This is done by

intersecting the viewing rays defined by C1,x1 and C2,x2 respectively. This process is

commonly referred to as Triangulation.

In the absence of noise the epipolar constraint is fulfilled and thus the problem is

trivial to solve (see Figure 2.6). For real cameras this is commonly not the case and

noise is present due to flaws in the lens manufacturing process, imperfect measurements

etc. In that case the viewing rays will generally not meet and therefore the best point of

intersection has to be found by using more robust and sophisticated approaches.

The midpoint method introduced by [30] is a well known and widely used method where

the midpoint of the common perpendicular to the two viewing rays is computed. The

polynomial method [15] is an optimal method of triangulation and seeks the points x′1 and

x′2 that globally minimize the cost function

d(x1,x
′
1)2 + d(x2,x

′
2)2

where d(x,y) is the Euclidean distance, subject to the epipolar constraint 2.4. The mini-

mization problem gets reformulated to

d(x1, λ1)2 + d(x2, λ2)2

where λ1 and λ2 are all possible choices of corresponding epipolar lines and finally a

sixth-order polynomial is solved.

2.2.4 External Camera Calibration

Given a camera calibration matrix K and a set of correspondences between 3D points Xi

and 2D projections xi the process of finding the rotation matrix R and translation vector

t of a calibrated camera with reference to some world coordinate system is referred to as

external camera calibration or often called by the more intuitive term pose estimation.

Reference:

Hartley, R. I. and Zisserman, A. (2004)Multiple View Geometry in Computer Vision
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Although it is possible to estimate the pose of an uncalibrated camera [16, 32], the knowl-

edge of K makes the problem mathematically easier. Instead of estimating the full camera

projection matrix P = KC, merely the camera pose C = [R | t] has to be found. In other

words, the degrees of freedom (DOF ) drop from 11 for P to 6 for C since K gives an

additional 5 DOF for intrinsic parameters. The perspective n-point problem (PnP) [10]

states that the rotation R and translation t of a calibrated camera can be estimated given

n xi ↔ Xi point correspondences. Since a calibrated camera is used and K is known, the

angle θ between two viewing rays can be measured (see Figure 2.7). PnP uses solely this

information:

d2
12 = CX

2
1 + CX

2
2 − 2CX1CX2cosθ12

Figure 2.7: Perspective n-point problem uses the fact that the angle between rays can be mea-
sured.

A minimum of n >= 3 is needed to perform the pose estimation. Therefore the term per-

spective 3-point problem (P3P) was introduced [10]. Using only 3 point correspondences

P3P will give typically two but up to four solutions. P4P though, is already overdeter-

mined and a unique solution can be found in case of coplanarity of the points Xi. In case

of non-planarity P3P is performed four times and a consensus between the solutions is

found. Since then, their generalized approach of finding consensus between solutions is

known as random sample and consesus (RANSAC ).

Reference:

 ()
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2.3 SLAM

In section 2.2 we have seen how 3D points of the scene can be computed if the camera poses

are known and vice versa, how the camera poses are estimated if the 3D scene is known.

The question that naturally arises now is how one can calculate 3D points and camera

poses in an unknown environment. That means that neither a 3D model of the region of

interest, nor the camera pose is given a priori. This circumstance is generally known as

a chicken-egg-problem since one needs a 3D model in order to perform the localization or

pose estimation. On the other hand has the camera pose to be known to compute the

mapping or 3D reconstruction. Therefore both distinct parts are dependent on each other

but none of them is existing at the beginning. In literature, this problem of simultaneously

performing pose estimation and map building is called Simultaneous Localization And

Mapping (SLAM ). Even though the expression SLAM got coined by research in the field

of mobile robotics the same topic was studied in another field of computer vision, the

photogrammetry. Here the problem is known as structure from motion (SfM ) where the

aim is to build a map from measurements taken by a moving sensor. The main difference

to traditional SLAM is though, that the processing time and the actual sensor trajectory

are negligible. Furthermore, most SfM algorithms are batch based which means that an

incremental map building is not required. Therefore SfM is often found in offline working

approaches.

2.3.1 Probabilistic Approach

Probabilistic SLAM algorithms are jointly estimating the pose and the map using a single

probabilistic formulation. In [7] an introduction to SLAM given and the probabilistic

form of the SLAM problem is described. SLAM got coined by research in the field of

mobile robotics, where the autonomous movement of a robot in an unknown environment

is a major task. The estimate of the pose and landmark positions (map) is given by the

conditional joint probability

P (xk,m | z0:k,u0:k,x0) (2.6)

where xk is a state vector describing the robot orientation and location at time k, m

is the map (set of all landmarks), z0:k are landmark observations, u0:k is the history of

Reference:

Hugh Durrant-Whyte and Tim Bailey (2006) Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms
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input controls and x0 is the initial state of the robot [7]. Furthermore an observation

model and a motion model are defined and 2.6 is computed by these two quantities. The

observation model describes the probability of making an observation zk, if the robots

pose xk and landmark locations m are known in the form P (zk | xk,m). The motion

model P (xk | xk−1,uk) describes the probability of the new pose xk given only the old

vehicle position and orientation xk−1 and input control uk. From that it can be seen that

the pose transition is assumed to be a Markov process since not the whole vehicle pose

history is used for computation but only the immediate preceding pose at time k − 1.

In order to solve the probabilistic SLAM problem several different approaches have

been introduced. A commonly used way is to represent the observation and motion model

as a state-space model with additive gaussian noise where then an extended kalman filter

(EKF ) [26] can be applied [6]. The observation model is then defined in the form

P (zk | xk,m)⇐⇒ z(k) = h(xk,m) + vk

where h(·) is a function that describes the geometry of the observation and vk is zero mean

uncorrelated gaussian noise of the landmarks with a covariance matrix Rk. The motion

model is now described as

P (xk | xk−1,uk)⇐⇒ xk = f(xk−1,uk) + wk

where f(·) models the robots motion and wk is zero mean uncorrelated gaussian noise of

the robots kinematic with a covariance matrix Qk. The main drawback of this approach

is that during the observation update step the covariance matrices and all landmarks

have to be recalculated every time a new observation is made. This makes this approach

computationally extremely expensive. Due to various optimizations real-time EKF-SLAM

systems with several thousands of landmarks have been implemented though [14, 22].

Another important alternative to EKF-SLAM is to represent the motion model as a

set of discrete sample points that follow a non-gaussian probability distribution. This

approach is known as FastSLAM or Rao-Blackwallized particle filter [27]. In their work,

they divide the SLAM problem in two separate parts. First the localization of the vehicle

is performed using a particle filter. Secondly, the feature estimation depending on the

robot’s pose is done by using a Kalman filter conditioned by the pose. This combination

of the two, Kalman and particle, filters is known as the Rao-Blackwallized particle filter.

Reference:

Hugh Durrant-Whyte and Tim Bailey (2006) Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms

Reference:

 ()

Reference:

Dissanayake, M.W.M.G. and Newman, P. and Clark, S. and Durrant-Whyte, H.F. and Csorba, M. (2001)A solution to the simultaneous localization and map building (SLAM) problem

Reference:

 ()

Reference:

Michael Montemerlo and Sebastian Thrun and Daphne Koller and Ben Wegbreit (2002)FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem



16 Chapter 2. Related Work

By using a tree structure the computational cost could be reduced but the approach still

remains computationally costly [27].

All previously discussed SLAM methods assume that a robot is exploring an unknown

environment which means that all kinds of odometry data or accurate depth measurements

from active range sensors are given. The basic principles of SLAM can be nevertheless

also applied on pure visual systems (VSLAM). In that case there is only a single sensor

given, the camera. This circumstance makes the problem a lot more challenging since

all informations have to be extracted from images alone and one has to deal with high

input frame rates and motion blurred images due to fast camera movements or too slow

shutter speed. Fast VSLAM was one of the first visual SLAM systems using solely a single

camera [5]. They were able to estimate the ego-motion of the camera in real-time through

an unknown scene using a commodity desktop PC.

2.3.2 Geometric Approach

Inspired by optimization techniques which were used by structure from motion ( SfM )

systems, geometric SLAM algorithms are the second important class of SLAM systems.

Instead of using a probabilistic formulation, the SLAM problem is reformulated as an

optimization problem which can be solved by using a least-square solver which is today

better known as bundle adjustment. By minimizing the reprojection error of 3D scene

points within several camera views a geometric constraint is incorporated. This means that

all 3D points as well as all camera poses are refined simultaneously within one optimization.

The main drawback of this method is that the computational effort is large and therefore

bundle adjustment is often found in offline SfM systems.

In order to compensate for this, Parallel Tracking and Mapping (PTAM ) introduced

by [19] divided the SLAM problem into two distinct parts running in two separate threads.

This marked a change in the way how VSLAM systems are build because now tracking and

mapping were not tightly coupled anymore, i.e. both parts are not performed together at

each frame. This is beneficial since the mapping part is especially computationally costly

and can therefore not be performed in real-time. The tracking thread on the other hand

runs at 30Hz, delivering fast and accurate pose estimations using the current map. In the

beginning the map is built by a stereo initialization procedure and afterwards the map is

extended whenever the camera explores new regions. In order to reduce the computational

Reference:
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complexity this map extension is performed only at keyframes. Matching of corresponding

points in other keyframes is done by using patch-based correlation. Finally, the accuracy

of the map is further improved at each map update by bundle adjustment optimization of

a fixed number of keyframes. Even though PTAM is capable of building a map consisting

of several thousand 3D points and tracking them in real time, the reconstruction is still

considered as being sparse (see Figure 2.8).

Figure 2.8: The map generated by PTAM contains nearly 3000 points, whereas about 1000 are
attempted to be found in the current frame. Finally, 660 are successfully observed and shown as
dots. Furthermore is the dominant plane shown as a grid. (Figure taken from [19])

2.3.2.1 Mobile Approach

In [20] the basic PTAM framework got adopted to work on mobile phones. Due to hardware

limitations of the phones available at the time of publishment (Apple iPhone 3G1) the

original concept had to be changed. Instead of a two-threaded system running on a

multi-core CPU, tracking and mapping are performed still in two separate threads but

on a single core. Therefore the bundle adjustment only runs in the time gaps where the

tracking thread is waiting for a new frame. Furthermore, only several tens or hundreds

of points are mapped and tracked resulting in poor pose estimation and reconstruction

quality.

1https://www.apple.com/
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With the evolution in mobile hardware, multi-core CPUs are nowadays available on

mobile devices too. This fact is used in [24] - mapping and tracking are decoupled and

run on different cores resulting in a better performance than in [20].

2.4 Dense Reconstruction

All previously reviewed methods work in a two-step scheme. First, discrete feature obser-

vations have to be extracted from the images and matched to each other. Second, the pose

estimation is then done using solely this set of observations - the original images itself are

not used anymore. This additional abstraction step reduces the problem’s overall complex-

ity enormously but also brings major drawbacks with it. Depending on the feature type,

typically only image corners, line segments or blobs are extracted, the rest of the image

is neglected. Furthermore these extracted features have then be matched to each other

requiring computationally rich scale- and rotation-invariant feature descriptors but also

outliers have to be eliminated using robust methods like RANSAC. Regarding reconstruc-

tion, the most obvious drawback is though, that the reconstruction of all keypoint-based

approaches is sparse. To overcome this problem [28] generate a base mesh from the sparse

point set of PTAM’s map and gradually refine it using dense depth estimations from a

variational optical flow. The main problem of this approach is though, that concavities

which are not captured by the extracted base mesh may not be recovered in the following

dense refinement procedure.

In order to counteract the drawbacks of feature point based approaches, dense monoc-

ular SLAM methods have been proposed [25]. See Figure 2.9 for a comparison between

dense and sparse methods. The main difference is that the additional feature extraction

step is not performed but instead these methods work directly on the images itself, for

both localization and mapping. First, the scene is modeled as a dense surface rather than

just a set of points. Second, localization or tracking is done using whole image alignment.

In that way the need of discrete feature observations is removed and all information avail-

able in the image can be used resulting in a significantly improved tracking accuracy and

robustness. Dense Tracking and Mapping (DTAM ) [29] is the dense counterpart to PTAM

and can be seen as an improved version of it. The surface model is created by using a

multiview stereo algorithm from up to hundreds of small baseline images with a global
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Figure 2.9: Comparison of dense and sparse reconstruction methods. On the top right, the semi-
dense approach has dense depth data in information rich image regions, i.e. edges and corners [8].
The bottom line shows feature-based depthmap [19], a fully dense depthmap [25] and the ground
truth RGB-D data [37]. (Figure taken from [8])

spatially regularized energy functional that gets minimized in a non-convex optimization

framework. In comparison to PTAM they showed that especially under difficult condi-

tions like camera defocus or motion blur DTAM does not loose tracking due to the huge

amount of data generated by this dense approach. However, real-time performance is only

achieved using a powerful desktop GPU.

In [8] a feature less, semi-dense approach was introduced where the depthmap is cal-

culated only in image regions which carry information, i.e. edges and corners. Due to the

reduced amount of data and a probabilistic depthmap representation, real-time perfor-

mance was achieved on a commodity CPU . The main purpose of this method is though a

real-time monocular visual odometry system, rather than a reconstruction system.

2.4.1 Mobile Approach

Lately, dense reconstruction methods were also proposed for mobile platforms. The semi-

dense system of [8] got adopted to work on Android2 systems [35]. This is achieved by

2https://www.android.com/

Reference:

Engel, J. and Sturm, J. and Cremers, D. (2013)Semi-dense Visual Odometry for a Monocular Camera

Reference:

Georg Klein and David Murray (2007)Parallel Tracking and Mapping for Small AR Workspaces

Reference:

L. Matthies and R. Szeliski and Takeo Kanade (1988)Incremental Estimation of Dense Depth Maps from Image Sequences

Reference:

J. Sturm and N. Engelhard and F. Endres and W. Burgard and D. Cremers (2012)A Benchmark for the Evaluation of RGB-D SLAM Systems

Reference:

Engel, J. and Sturm, J. and Cremers, D. (2013)Semi-dense Visual Odometry for a Monocular Camera

Reference:

Engel, J. and Sturm, J. and Cremers, D. (2013)Semi-dense Visual Odometry for a Monocular Camera

Reference:

Engel, J. and Sturm, J. and Cremers, D. (2013)Semi-dense Visual Odometry for a Monocular Camera

Reference:

T. Schöps and J. Engel and D. Cremers (2014)Semi-Dense Visual Odometry for AR on a Smartphone

https://www.android.com/


20 Chapter 2. Related Work

lowering the image resolution from 640×480 to 320×240 used for mapping. The tracking

follows, like in the original system, a pyramid scheme in order to handle larger inter-frame

motions. But due to the lower processing power of the mobile CPU, the largest pyramid

level was reduced even further to a resolution of 160×120 to ensure real-time performance.

Furthermore, all computation-heavy algorithmic steps which are suited for parallelization

are optimization using SIMD parallelization. On ARM3 processors, this functionality is

achieved by NEON instructions. Finally, a low resolution collision mesh is generated out

of the semi-dense depthmap giving a virtual vehicle the possibility to interact with the

real world.

In [38] the inertial measurement unit (IMU ) is used additionally to the image informa-

tion to improve tracking accuracy. Also, the map has to be initialized using a two-view-

initialization. ORB features [33] are extracted, matched and outliers are removed using

RANSAC in combination with the 5-point algorithm. Finally, the initial map is subse-

quently refined with bundle adjustment making the initialization computationally costly.

Depthmaps are computed using a multi-resolution scheme but the final reconstructed 3D

model is still sparse. In [21] the method of [38] got further improved resulting in an

increased reconstruction accuracy. The system is still point cloud-based, though.

3https://www.arm.com/
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Our approach of dense reconstruction on mobile devices is presented in this section.

We first give an overview of the system before the individual parts are described in more

detail. These include dense camera pose tracking with all mathematical properties needed,

a multiview stereo algorithm used for bootstrapping the system, an adaptive stereo algo-

rithm to improve the initial depthmap and an optimization algorithm that minimizes a

global spatially regularized energy functional.

3.1 System Overview

Our system performs dense tracking and dense depthmap creation of a given set of images

on an Android tablet. The input images can originate from either precaptured frames

or from the live camera stream. Figure 3.1 shows the principal process flow of our sys-

tem. Once the input frame source is selected and the images are captured, a keyframe is

chosen. Starting with a random or homogeneous initial depthmap the tracking for every

frame in the sequence is performed. Now a coarse depthmap is calculated using the first

rough pose estimates. From here on the iterative procedure starts, all frames are tracked

21
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again with the newly computed depthmap and depending on the computing stage either

a coarse depthmap is generated again or a more sophisticated algorithm for depthmap

generation is performed. This can be an adaptive stereo algorithm which improves the

initial depthmap or an optimization algorithm that minimizes a global spatially regularized

energy functional.

Figure 3.1: System overview

The system itself consists of three separate threads. The first one is responsible for

the live camera stream and enqueues incoming frames into an input buffer. The second

thread is handling all tasks regarding GUI in- and output. The third thread performs the

actual computations, namely dense frame tracking and depthmap generation. For this

thesis we made the decision to perform both tasks in one thread on the GPU. The main

reasons for this are ease of implementation and the non-vital necessity of running tracking

and mapping really simultaneously because in this work we capture a set of frames and

perform all computations iteratively afterwards. CUDA1 is used for all general purpose

computations (GPGPU ) on the graphic chip.

1http://www.nvidia.com/object/cuda_home_new.html

http://www.nvidia.com/object/cuda_home_new.html
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3.2 Dense Tracking

Given a reference image Iref and a current image I, the goal of dense tracking is to estimate

the camera motion by aligning the images Iref and I. For this, assumptions have to be

made. This approach is based on the photo consistency assumption, which is illustrated

in Figure 3.2. The photo consistency assumption states that a 3D world point X observed

by two cameras results in the same brightness in both camera images. Therefore it is

defined as

Iref (x) = I(τ(x, ξ)) (3.1)

where x = [x, y]T ∈ R2 are 2D pixel coordinates, I(x) is the current image at pixel location

x, Iref (x) is the reference image at pixel location x, ξ = [w1, w2, w3, w4, w5, w6] ∈ R6 is

a 6-dimensional vector in the se(3) Lie algebra defining the minimal representation of a

rigid body transformation and τ(x, ξ) is the transformation function that takes a pixel

x from one image to the other using the transformation parameters ξ. In the following

sections we follow [18, 23, 29].

Figure 3.2: Photo consistency assumption - an observed 3D world point X yields the same
brightness in both images Iref and I. The aim is to find the transformation parameters ξ such
that the warped image matches the other one.

Using 3.1, an optimization model seeks to find now the optimal transformation between

those two images by minimizing

min
ξ
‖I(τ(x, ξ))− Iref (x)‖2 (3.2)

which means that we are aligning the image Iref and I by minimizing the photometric
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error. The transformation or warping function is defined as

τ(x, ξ) = π(g(G(ξ), d(x)π−1(x))). (3.3)

The projection function π(X) is projecting the 3D point X onto the image plane and

is given by π(X) = P(KX) =
[
fxX
Z + px,

fyY
Z + py

]T
, where K is the intrinsic camera

calibration matrix, fx,y is the pixel scaled focal length, px,y is the principal point and P(·)

is the projection function that takes homogeneous coordinates to euclidean coordinates

by dividing by the last coordinate. π−1(x) is the inverse projection function defined as

π−1(x) = K−1


x

y

1

. The depth is given by the depthmap d which corresponds to the

reference image Iref . We can therefore now define X = d(x)π−1(x), that is the 3D point

X constructed by projecting the pixel coordinate x to the depth d(x). G(ξ) = e[ξ]×

is the exponential map that associates elements of the se(3) Lie algebra to elements of

the underlying SE(3) Lie group. The actual transformation of the 3D point X with

transformation matrix T ∈ SE(3) is denoted by g(T,X) = TX. With that being known

the transformation function defined in (3.3) can be written shorter as

τ(x, ξ) = π(g(G(ξ),X)). (3.4)

3.2.1 Inverse Compositional Model

Since (3.2) has to be solved iteratively, the minimization problem has to be reformulated

and therefore different models are used. As we will see later in 3.2.2, an iteratively re-

weighted least squares (IRLS ) algorithm will be applied to solve the problem. Here, the

model choice is crucial since some formulations need computationally expensive Jacobian

recalculations in every iteration of the IRLS algorithm. The forward additive model is

defined as min
δξ
‖I(τ(x, ξ0 +δξ))− Iref (x)‖2 and seeks to find incremental update steps δξ

of the transformation parameters ξ, given some initial estimate ξ0. The forward composi-

tional model is defined similarly as min
δξ
‖I(τ(τ(x, δξ), ξ0)− Iref (x)‖2. Both models have

the drawback that the Jacobian has to be recalculated in every iteration, though.
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Therefore, we chose the inverse compositional model which is defined as

min
δξ
‖Iref (τ(x, δξ))− I(τ(x, ξ0))‖2. (3.5)

Compared to the forward additive or forward compositional model the roles of the current

image and the reference image are switched and both are transformed. This means that

the inverse model seeks for an incremental update making the reference image more similar

to the current image, which also gets transformed with the current estimate. From here on

the transformation is updated according to ξk+1 = ξk � (δξ)−1 and the whole procedure

is run iteratively. Since both, ξk and δξ, are elements of the Lie algebra, a composition

of two transformations, defined by the Lie algebra group product, is denoted by the �

operator. Note, that an inverse update step (δξ)−1 has to be added since the incremental

update is performed on the reference image and not on the current image. Since (3.5) is

non-convex and non-linear in the argument ξ, we linearize around δξ = 0 by computing

the first order Taylor approximation and get

Iref (τ(x, δξ)) ≈ Iref (τ(x, 0)) +
∂Iref (τ(x, δξ))

∂δξ

∣∣∣∣∣
δξ=0

δξ (3.6)

The derivative can be further expanded using the chain rule

∂Iref (τ(x, δξ))

∂δξ

∣∣∣∣∣
δξ=0

=
∂Iref

∂T (x, δξ)

∣∣∣∣∣
T=T (x,0)=x

∂τ(x, ξ)

∂ξ

∣∣∣∣∣
ξ=0

= ∇Iref
∂τ(x, ξ)

∂ξ

∣∣∣∣∣
ξ=0

(3.7)

The first part is simply the gradient of the reference image, it will be denoted by∇Iref . The

second term is the derivative of the transformation w.r.t. the transformation parameters

ξ evaluated at ξ = 0. By using the definition of the transformation given in (3.4) and

applying the chain rule, the derivative expands to

∂τ(x, ξ)

∂ξ)

∣∣∣∣∣
ξ=0

=
∂π

∂g

∣∣∣∣∣
g=g(G(0),X)

∂g

∂G

∣∣∣∣∣
G=G(0)

∂G(ξ)

∂ξ

∣∣∣∣∣
ξ=0

. (3.8)

Now we will address each individual term in (3.8). The first one is the derivative of the
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projection π which is given by

Jπ =
∂π

∂g

∣∣∣∣∣
g=g(G(0),X)

=
∂π(X)

∂X
=

fxZ 0 −fxX
Z2

0
fy
Z −fyY

Z2

 (3.9)

Next, there is the derivative of the transformation of the 3D point X (see (A.4), (A.5))

Jg =
∂g

∂G

∣∣∣∣∣
G=G(0)

=
∂IX

∂I
= XT ⊗ I3×3 (3.10)

Next one is the derivative of the exponential map evaluated at ξ = 0 which is derived in

detail in (A.15)

JG =
∂G(ξ)

∂ξ

∣∣∣∣∣
ξ=0

=
∂e[ξ]×

∂ξ

∣∣∣∣∣
ξ=0

=


03×3 −[e1]×

03×3 −[e2]×

03×3 −[e3]×

I3×3 03×3

 (3.11)

We saw now that the individual Jacobians do not depend on ξ and therefore the full

Jacobian can be precomputed once for all iterations. It is given by

J = ∇Iref
∂τ(x, ξ)

∂ξ

∣∣∣∣∣
ξ=0

= ∇IrefJπJgJG =

= ∇Iref

fxZ 0 −fx XZ2 −fxXYZ2 fx(1 + X2

Z2 ) −fxY
Z

0
fy
Z −fy YZ2 −fy(1 + Y 2

Z2 ) fy
XY
Z2

fyX
Z

 (3.12)

3.2.2 Optimization

As mentioned in 3.2, we assume that the photo consistency assumption holds. This means

that for all n pixels xj with j = 1, ..., n in the image, (3.1) equally holds. Based on this we

define the residual of j-th pixel as the brightness difference between the reference image

and the current image as

rj(ξ) = I(τ(xj , ξ))− Iref (xj). (3.13)

Ideally, all residuals would be zero. A true camera, however, produces sensor noise leading

the residuals to follow a probabilistic sensor model p(rj | ξ) distribution. We follow [18]

Reference:

Christian Kerl and JÃ¼rgen Sturm and Daniel Cremers (2013)Robust odometry estimation for rgb-d cameras
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and assume t-distributed errors. Their analysis showed that a normal distribution or Tukey

weights poorly fit the data (see figure 3.3). Since the t-distribution covers outliers with its

heavy tails, it is well suited to model distributions with outliers included. Furthermore,

the t-distribution gives the possibility to specify a degrees of freedom ν of the distribution,

in addition to the mean µ and the variance σ2.

The weighting function w(r) which is derived from t-distribution is defined as

w(rj) =
∂ log p(rj)

∂rj

1

rj
=

ν + 1

ν +
( rj
σ

)2 (3.14)

where the variance σ2 is calculated with

σ2 =
1

n

∑
j

r2
j

ν + 1

ν +
( rj
σ

)2 . (3.15)

Note that the function is defined recursively and therefore has to be solved iteratively.

Figure 3.3: [18] analyzed the error probability distributions. Normal distribution and Tukey
weights fit the data, in comparison to the t-distribution, poorly. (Figure taken from [18]).

Reference:

Christian Kerl and JÃ¼rgen Sturm and Daniel Cremers (2013)Robust odometry estimation for rgb-d cameras

Reference:

Christian Kerl and JÃ¼rgen Sturm and Daniel Cremers (2013)Robust odometry estimation for rgb-d cameras
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3.2.2.1 Algorithm

For optimization, we start from (3.2), define the weighting diagonal matrix W with Wjj =

w(rj) and use our residual definition (3.13) to write

min
ξ

1

2
‖W1/2r(ξ)‖2 (3.16)

and replacing r(ξ) with the linearized version yields in

min
ξ

1

2
‖W1/2r(ξ)‖2 ≈ 1

2
‖W1/2(r(ξ0) + J(ξ − ξ0))‖2 =

1

2
‖W1/2(r(ξ0) + J(∆ξ))‖2 (3.17)

where ∆ξ = ξ − ξ0. By looking at (3.17) we see that it is the weighted least-squares

solution of the linear system W(Ax + b) = 0, where A = J, x = ∆ξ and b = r(ξ).

Therefore, we solve it by deriving w.r.t ∆ξ and setting to zero

∂ 1
2W‖J∆ξ + r(ξ0)‖2

∂∆ξ
= JTW(J∆ξ + r(ξ0)) = JTWJ∆ξ + JTWr(ξ0) = 0

JTWJ∆ξ = −JTWr(ξ0)

∆ξ = −(JTWJ)−1JTWr(ξ0).

(3.18)

Note that here a huge performance gain can be achieved. The Jacobian matrix J ∈

RMN×6 has dimensions MN × 6 where M is the height and N the width of the image.

JTWJ ∈ R6×6, on the other hand, is much smaller. Here we want to point out that the

product JTWJ can be computed without storing the potentially huge matrix J explicitly.

This is achieved by summing the outer products of the rows of J, i.e.

JTWJ =
∑

WjjJ
T
j Jj (3.19)

where Jj is the j-th row of J. Furthermore, we know JTWJ is symmetric, which means

that we can improve the performance even further since we need to compute and store

only to upper/lower triangular part having solely 21 instead of 36 values.

3.2.2.2 Multi Level Tracking

The linearization performed in (3.17) is only valid for small ξ. This means that only small

translational and rotational motions can be handled. In order to overcome this drawback,
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we apply a coarse-to-fine scheme by using image pyramids. The lowest layer gets initialized

with the original image having M ×N pixels. A scaling factor α; 0 < α < 1 specifies how

much the image resolution is reduced in each layer with Mi+1 = αMi and Ni+1 = αNi.

After determining the image resolution on the higher level, the intensity image get scaled

down using bilinear interpolation. For the depth pyramid another scaling method is used.

Here a k × k window is used to count the number of entries having a valid depth value,

i.e. z > 0. Now the depth image gets downsampled and normalized by that number. In

that case we are not introducing non-existing depth values during scaling. The scaling is

repeated until a defined minimum size is reached.

Figure 3.4: Schematic illustration of an image pyramid with four levels. Each level gets scaled
down by scaling factor α until a defined minimum size is reached. Tracking starts at the highest
level and uses the current estimate as an initialization for the next level.

The tracking algorithm starts now on the highest level having the lowest resolution.

This way, big motions can be detected, although the estimates are still imprecise. After

the algorithm converged on the higher level, it continues with the next level using the

current estimate determined in the higher level as an initial estimate. Finally, the lowest

level with the original image is processed.
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3.3 Depthmap Generation

When computing the depth of a scene a large amount of data is always beneficial in order

to be robust and get high quality results. Therefore one can roughly choose between two

types of approaches when real-time requirements have to be met. Either a lot of fast but

relatively inaccurate depthmaps are computed using simple two-view stereo algorithms,

which are then fused together in a 3D reconstruction volume increasing the robustness

and reconstruction quality. Or more information from multiple images is used already

in the depthmap generation step using muli-view stereo algorithms. Since the resulting

depthmaps can be again fused in a volume, multi-view stereo algorithms have a higher

potential to deliver good results. Therefore, we seek a stereo algorithm with the following

properties:

Multi-view

The algorithm should use the information of multiple images but it should be possible

to get meaningful results from solely an image pair.

No preconditions

The stereo algorithm should not assume that the input images meet any kind of

preconditions like rectification, no blur etc.

Illumination changes

Since the system is used in mobile devices the user might operate near to a window

or lamp, therefore the algorithm must be robust against illumination changes.

Large baseline

Robustness against large baselines is required because it cannot be predicted how

fast the user will move the device.

Computation speed

For running the system on a mobile device, the stereo algorithm needs to be fast

since computing capabilities are limited.

The planesweep algorithm introduced in [3] fits these requirements. In the work of [4], the

system got adopted and they showed that the algorithm can be run parallelized, decreasing

the computation time even further.

Reference:

Collins, R.T. (1996)A space-sweep approach to true multi-image matching

Reference:

Cornells, N. and Van Gool, L. (2005)Real-time connectivity constrained depth map computation using programmable graphics hardware
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3.3.1 Planesweep

Figure 3.5: Planesweep (Figure adapted from [4]).

The planesweep is a well known stereo algorithm and it works, as its name suggests, by

sweeping a number of planes through the 3D space. The basic principle of the algorithm

is the following (see Figure 3.5 for an illustration). Starting from the reference image

plane, other planes are located parallel to it at different depths by following the z-axis

of the reference coordinate system. The inserted planes are bound within a Znear and

Zfar plane, which define the volume. For each depth, a homography is calculated between

the corresponding plane and each of the sensor images (therefore the camera pose has to

be known for each image). The algorithm measures now the similarity error between the

reference image and each of the sensor images transformed to the planes at different depths.

This makes sense, because as the surface of an object in the scene is passed through by a

plane, the projected pixel values of the reference image and the sensor images transformed

onto that plane match. In that way a cost volume is built up with the similarity errors

at different depths. Finally, the depth of the plane, for which the cost is minimal, is

assigned to each pixel individually. This is generally known as the winner takes all (WTA)

algorithm.

Reference:

Cornells, N. and Van Gool, L. (2005)Real-time connectivity constrained depth map computation using programmable graphics hardware
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3.3.1.1 Homography Calculation

Given a reference camera at origin Cref = [I | 0], a point x = [x, y, z]T in the reference

view, a plane π = (vT, 1)T and a second sensor camera with arbitrary position and

orientation in 3D space Csens = [Rsens | tsens]. The homography H induced by the plane

π is now calculated by back-projecting x and calculating the point of intersection with π

resulting in an intersection point Xπ. Xπ is now projected into the second camera Csens

resulting in a point on the second image plane x′ (Figure 3.6 is depicting the process).

Figure 3.6: Homography induced by a plane. (Figure adapted from [17]).

The composition of the perspectivities between the two image planes and π is the

homography H and is given by

x = HrefπXπ

x′ = HπXπ = HπH
−1
refπx = Hx

(3.20)

Now we know how the homography is theoretically built. We will see now how to

actually compute H. The reference camera is at the origin, therefore all points on the

ray X = (xT, α) project to x, where α parameterizes the 3D points on the viewing ray.

Since we wish to find the point of intersection Xπ between the ray X and the plane π,

πTX = 0 must hold. This determines now α to −vTx and the point of intersection

Reference:

Hartley, R. I. and Zisserman, A. (2004)Multiple View Geometry in Computer Vision
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Xπ = (xT,−vTx)T. The projection into the second view is therefore given by

x′ = [R | t]Xπ

x′ = Rx− tvTx = (R− tvT)x = Hx
(3.21)

where the homography is given by H = (R−tvT). If both images originate from the same

calibrated camera, the intrinsic calibration matrix K can be used to get the homography

for image pixel correspondences by

H = K(R− tvT)K−1. (3.22)

In the general case, the reference camera does not necessarily have to be at the origin

but can be located and rotated arbitrarily in the 3D space, i.e. Cref = [Rref | tref ]. By

calculating the relative motion Rrel, trel between the reference and sensor camera and by

using that in 3.22, the homography for the general case can be computed. The relative

motion is given by

Rrel = RsensR
−1
ref (3.23)

trel = tsens −Rreltref . (3.24)

Since the reference camera is not anymore in the origin, the sweeping planes have to

be defined also in the coordinate system of the reference camera. With an unit vector

v = [0, 0, 1]T along the z-axis and a distance z, the planes are now defined with π(z) =

(vT,−z)T = (v
T

−z , 1)T (see Figure 3.6). Using this and (3.23), (3.24) the homography for

the general case is finally defined by

H = K

(
Rrel −

trelv
T

−z

)
K−1. (3.25)

3.3.1.2 Matching Methods

The planesweep algorithm measures the similarity error between the reference image and

each of the sensor images mapped to the planes at different depths. The specific matching

method defines how the similarity for a given pixel is actually computed between the two

images. The following listing shows which matching methods are used in this work:
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Single Pixel

Single pixel matching is the simplest method where the absolute difference of the

pixel values in the two images give the cost: c = |Iref (x, y)− Isens(x, y)|

Figure 3.7: Single pixel matching

1 × 5 Epipolar Window

This is method requires the computation of the epipolar line in the reference im-

age. This is done by calculating the plane spanned by the two camera centers

and the current pixel. This plane is then intersected with the reference’s image

plane (see 2.6). The matching cost is then given by the absolute difference of

the interpolated pixel values within the 1 × 5 window W along the epipolar line:

c =
∑

x,y∈W |Iref (x, y)− Isens(x, y)|

Figure 3.8: 1× 5 epipolar window matching

3 × 5 Epipolar Window

Similar to the forgoing method with the only difference that the matching window

W is now 3 × 5. Using a bigger window makes the matching more robust but fine

details are lost. The cost is again given by: c =
∑

x,y∈W |Iref (x, y)− Isens(x, y)|

Figure 3.9: 3× 5 epipolar window matching
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3 × 3 Zero Mean

Using a 3× 3 zero mean method as a similarity measure makes the matching more

robust against lighting changes. The matching cost is given by:

c = |(Iref (x, y)− Īref (x, y))− (Isens(x, y)− Īsens(x, y))|

where Īref , Īsens are the 3 × 3 mean images. Note that we are precalculating the

mean images to speed up the computation, therefore the window is aligned along

the image.

Figure 3.10: 3× 3 zero mean matching

3.3.1.3 Speedup

The planesweep algorithm places planes at different depths parallel to the reference image

plane. Afterwards, a homography is calculated for each depth and for each sensor image.

Having d depth planes and n sensor images, d × n homographies have to be computed.

This can be reduced to 2×n computations by using the following idea. Since the inserted

planes are following the z-axis of the reference coordinate system, they lie on a line. This

means that the mapping by the homography H of the point x in each depth plane onto

one sensor image, results in points which lie again on a line. When the inserted planes

are equidistant to each other, their mappings in the sensor image are not. Mappings of

far planes are located closer to each other. By using an inverse step size for the distance

between the planes in 3D space, equidistant projections can be achieved. The inverse step

size zinv is defined as

ψfar =
1

znear

ψnear =
1

zfar

zinv =
ψfar − ψnear

d

(3.26)
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where znear and zfar are the depth values of the near and far planes and d is the number

of inserted planes. Now the homography H0 for the first plane is calculated and also the

homography H1 for the second plane, which is zinv away from the first one. The 2D point

x = (x, y)T in the reference image gets transformed by H0 and H1 resulting in 2D point

x0 and x1 in the sensor image. The displacement vector v within the sensor image is

therefore given by their difference, i.e. v = x1−x0. The projections of the different depth

planes can therefore be calculated easily by starting at x0 and going n times the vector v.

Figure 3.11: Speeding up the planesweep by using an inverse step size between the planes in
3D space. This gives equidistant projections in the sensor image which gives a start point x0 and
a displacement vector v in the sensor image. By using x0 and v every depth mapping can be
computed easily.

3.3.2 Adaptive Planesweep

The cost volume used by the planesweep algorithm is defined by the near plane Znear

and the far plane Zfar and all inserted planes lie within that range. The resolution of

the depthmap is therefore depending on n, the number of planes inserted. Assuming

that the range between Znear and Zfar is not too big, n needs to be large, i.e. 1024 or

2048, in order to achieve smooth results. The obvious drawback is that the computation

time is increasing drastically, though. The idea behind the adaptive planesweep is that

homographies are calculated for each pixel individually. This means that the planes within
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the cost volume do not exist in the described way anymore. Instead of having one plane

per depth, m × n planes are used, where m and n are the image dimensions. So each

pixel has its own depth planes and therefore also its own near and far plane. The adaptive

planesweep follows an iterative scheme and is outlined in algorithm 3.1.

Algorithm 3.1 Adaptive planesweep algorithm

1: Calculate the initial depthmap using the basic planesweep algorithm as explained in

3.3.1

2: Set z0near = znear and z0far = zfar

3: Use the depthmap from step 1 and set it as the current depthmap DMcur

4: Apply a 3× 3 median filter to DMcur

5: Update Znear and Zfar based on DMcur, the shrinking factor β and the current

iteration j:

Znear(x, y) = min(z0near, max(z0far, DMcur(x, y)− β
j ))

Zfar(x, y) = min(Znear(x, y), max(z0far, DMcur(x, y) + β
j ))

6: Calculate new plane depths Zi(x, y) based on the updated [Znear,Zfar] range

7: Compute new current depthmap DMcur by using Zi(x, y) (rest stays the same as

explained in 3.3.1)

8: If depthmap is smooth enough return otherwise goto step 4

Since the near plane Znear and the far plane Zfar are adjusting adaptively, the range,

within which the depth planes are lying in, is shrinking. The shrinking speed is controlled

by the shrinking factor β. In order to stabilize the algorithm, outliers within the depthmap

are removed by applying a 3 × 3 median filter. In that case the near and far plane

adaptation gets more robust. By reducing the range, defined by Znear and Zfar, the

depthmap resolution is increasing whereas the computational time stays the same since

the number of inserted planes n stays the same.

3.3.3 Volume Optimization

The adaptive planesweep algorithm improves the quality of the coarse initial depthmap by

adjusting the near and far plane of the cost volume for each pixel adaptively and individu-

ally. For gradient rich image regions this approach works well since a lot of information is

available and furthermore, the amount of outliers is also decreased by a median filter. The
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Figure 3.12: Adaptive planesweep - the depth is assumed to be at z = 5 and shrinking factor
β = 1. In each iteration the depth resolution for the pixel gets increased because the near and far
plane adaptively adjusts.

problem of this approach is though, that each pixel is treated individually and no global

solution is found. This problem is especially notable in image regions with few features

since homogeneous regions do not give a discriminative enough photometric similarity.

Therefore, we mostly follow [29] where a total variational based approach is used to opti-

mize the depthmap where

• the data term is defined by the photometric similarity error

• the regularization term is defined by the smoothness constraint

So the key idea is that featureless image regions are more likely to result in false minima

and therefore a regularization term has to penalize deviations from a spatially smooth

depthmap but in the same time edges and discontinuities have to be preserved.

Figure 3.13: Featureless image regions are prone to false minima. The points a, b, c show different
well textured parts. The corresponding depthmap is depicted on the right.

In Figure 3.13 an inverse depthmap is extracted from the costvolume C which is built

by the planesweep algorithm. The inverse depth is calculated by taking the plane within

C where the matching costs are minimal, i.e. by computing arg min
z

C(x, z) for every

Reference:

Newcombe, Richard A. and Lovegrove, Steven J. and Davison, Andrew J. (2011)DTAM: Dense Tracking and Mapping in Real-time
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pixel x within the reference image. Since the matching cost within C is already the sum

of individual two view stereo matchings it contains more robust information. Using this,

the variational cost volume optimization model is given by

min
ψ

{∫
Ω
|∇ψ(x)|ε + λC(x,ψ(x)) dx

}
(3.27)

where ψ(x) : Ω → R is the depthmap, x ∈ Ω are pixel coordinates and Ω ⊂ R2 is the

image domain. The first term is the regularization term which enforces smoothness of the

solution by penalizing deviations from a spatially smooth depthmap. The second term is

the data term defined by the photometric similarity error within the cost volume C. The

regularization parameter λ is controlling the smoothness of the resulting depthmap.

3.3.3.1 Regularization

The choice of the regularizer is crucial since a reconstructed inverse depthmap of a typical

scene consists of smooth regions together with sharp discontinuities due to occlusions.

The Huber norm over the gradient of the inverse depthmap is used , i.e. |∇ψ(x)|ε ,since

it perfectly fits our needs. The Huber norm, a composition of two convex functions, is

defined as

|x|ε =


|x|22
2ε , if |x| ≤ ε

|x|1 − ε
2 , otherwise

(3.28)

where ε > 0 is a small parameter controlling the tradeoff between a quadratic regularizer

and a total variation (TV) regularizer. Therefore, if |∇ψ| ≤ ε a L2
2 norm is used, resulting

in a smooth reconstruction while otherwise a L1 norm allows sharp depth discontinuities at

depth edges. Compared to a pure TV regularizer the Huber norm has another advantage.

By setting ε to a small value the stair-casing effect is reduced (which is a typical artifact

of the TV regularizer).

3.3.3.2 Optimization

Figure 3.14 shows that the Huber norm is a convex function whereas the photometric

similarity error function is not, i.e. the composition of these two terms in (3.27) is a

non-convex function. In order to cope with that, several possible solutions exist. The
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Figure 3.14: Convex Huber norm versus non-convex photometric cost.

typical way to get a convex approximation is to linearize the cost volume. Afterwards this

approximation is solved iteratively within a coarse-to-fine pyramid scheme. The drawback

of this approach is though, that this might lead to a loss of details in the reconstruction.

Like [29], we follow another key observation. The data term can be globally optimized

by performing a trivial point-wise exhaustive search over the full range of possible inverse

depth values within the costvolume. Also, we can solve the convex regularization term

efficiently by using convex optimization algorithms. Finally, [36] showed that the energy

functional in (3.27) can be approximated by decoupling the data and regularization term.

In our case the coupling is achieved by using an auxiliary variable β : Ω → R. The

resulting variational optimization model is therefore given by

min
ψ,β

{∫
Ω
|∇ψ(x)|ε +

1

2Θ
(ψ(x)− β(x))2 + λC(x,β(x)) dx

}
(3.29)

where the coupling term A(x) = 1
2Θ(ψ(x)−β(x))2 is used to drive both, the original and

auxiliary variable, together, i.e. that ψ = β as θ → 0. If ψ = β is fulfilled, we see that

(3.29) results in the original optimization model (3.27). At a first glance it seems that the

model got more complicated now because instead of having one optimization problem in ψ

we have to solve two coupled optimization problems in ψ and β. In fact, the optimization

got easier as we will see now. Since we are optimizing for two variables, the optimization

process is split into two sub problems:

• The model can be globally minimized w.r.t. ψ. By looking at (3.29) we can see
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that the first two terms of the model,

∫
Ω
|∇ψ(x)|ε+A(x) dx, are a slightly modified

version of the TV-L2
2 ROF denoising model [34]. Since it is convex in ψ we can

perform an efficient optimization using a primal-dual approach [2].

• The model can be globally minimized w.r.t. β. Although it is non-convex in the

auxiliary variable β, the second two terms,

∫
Ω
A(x)+λC(x,β(x)) dx, can be globally

optimized by performing a trivial point-wise exhaustive search over the full range of

possible inverse depth values within the costvolume.

3.3.3.3 ROF Model

The first two terms of (3.29),

∫
Ω
|∇ψ(x)|ε + A(x) dx, are a slightly modified version of

the TV-L2
2 ROF denoising model. By setting λ = 1

2Θ , u = ψ, f = β and using a L1 norm

for the regularizer we finally arrive at the TV-L2
2 ROF image denoising model which is

defined as

min
u

{∫
Ω
|∇u|+ λ

2
(u− f)2 dx

}
(3.30)

We will first see how the standard ROF model is solved and afterwards show how to

handle the Huber norm for the regularization term. For optimization we use the first-

order primal-dual algorithms proposed in [2].

The primal-dual formulation of (3.30) is given by

min
u

max
||p||∞≤1

{
−
∫

Ω
u div p +

λ

2

∫
Ω

(u− f)2 dx

}
(3.31)

and the corresponding discretized version reads

min
u

max
p

{
− 〈u, div p〉+

λ

2
||u− f ||2 − I||p||∞≤1(p)

}
(3.32)

where f ∈ RMN ,u ∈ RMN are images of size M ×N , p ∈ RdMN is the dual variable with

d = 2 for 2D images and I(p) is the indicator function of the convex set. By defining the

non-linear functions G(u) = λ
2 ||u − f ||2 and F ∗(p) = I||p||∞≤1(p) the resolvent operators

for the primal and dual update can be computed.

The solution to the resolvent operator for the primal update is given as the point-wise
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update

u = (I + τσG)−1(ũ)⇐⇒ ui,j =
ũi,j + τλfi,j

1 + τλ
(3.33)

Since the constraint ||p||∞ ≤ 1 is modeled by the indicator function F ∗ for the dual

variable p, the resolvent operator reduces to a projection of the form

p = (I + σ∂F ∗)−1(p̃)⇐⇒ pi,j =
p̃i,j

max(1, |p̃i,j |)
(3.34)

3.3.3.4 Huber-ROF Model

The basic primal-dual ROF model (3.31) can be easily extended to use a Huber normed

regularizer [2]. For this, the non-linear function F ∗(p) = I||p||∞≤1(p) is replaced by

F ∗(p) = I||p||∞≤1(p) + ε
2 ||p||

2. Therefore the formulation of the primal-dual Huber-ROF

model is given by

min
u

max
p

{
− 〈u, div p〉+

λ

2
||u− f ||2 − I||p||∞≤1(p)− ε

2
||p||2

}
(3.35)

Since F ∗(p) got replaced, the resolvent operator for the dual update is now given by the

following point-wise update

p = (I + σ∂F ∗)−1(p̃)⇐⇒ pi,j =

p̃i,j

1+σε

max(1, | p̃i,j

1+σε |)
(3.36)

3.3.3.5 Final Algorithm

Algorithm 3.2 Final depthmap computation algorithm

1: Initialize ψ and β by finding the minimal matching costs within the cost volume C,

i.e. by computing arg min
z

C(x, z) for every pixel x.

2: Fix β and solve for ψ by using the primal-dual Huber-ROF model where the update

steps are given by (3.33) and (3.36).

3: Fix ψ and solve for β by performing a point-wise exhaustive search over β.

4: Update θ by θi+1 = θi(1− γn), i← i+ 1 and go back to step 2 if θi > θstop, otherwise

return.

The minimization itself is performed by optimizing for ψ and β alternately and consists
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of 4 steps. It is outlined in algorithm 3.2. The first step initializes the algorithm. Step

(2) − (4) are performed n times until a stopping criteria is fulfilled. The parameter θ

defines the coupling of ψ and β where a lower value of θ results in a tighter coupling. The

decreasing rate of θ is defined by γ where a higher value is decreasing θ faster.

3.3.3.6 Increasing Accuracy

The proposed volume optimization algorithm minimizes a global spatially regularized en-

ergy functional. Hence, the resulting depthmap contains a low amount of outliers but it

is still coarse unless we use a very high number of planes for the planesweep algorithm. In

order to counteract that problem we can increase the accuracy of the depthmap without

increasing the computational time. Figure 3.15 depicts the idea.

Figure 3.15: The minimum of a quadratic function constructed by the points around discrete
minimum ψmin of the auxiliary energy Eβ gives the optimal depth ψopt.

The energy for the auxiliary variable is given by Eβ(x) =

∫
Ω
A(x) + λC(x,β(x)) dx

and the coupling term is given by A(x) = 1
2Θ(ψ(x)−β(x))2. By computing the minimum

of a quadratic function constructed by the points around discrete minimum ψmin of the

auxiliary energy Eβ, we achieve subsample accuracy resulting in an optimal depth ψopt

for the pixel x. This is equal to performing a single Newton step of Eβ(x) around the

current discrete minimum ψmin which is given by

ψopt(x) = ψmin(x)−
∇Eβ(x)

∇2Eβ(x)
(3.37)

The geometric interpretation of the Newton’s method is that at each iteration the original

function is approximated around the current argument by a quadratic function and then

a step towards the extremum of that quadratic function is taken. Furthermore, if the

original function is quadratic, then the exact extremum is found in one step. As A(x) is

modelled well with a parabola around the current discrete minimum, one Newton step is
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performed.

3.4 Visualization

The proposed reconstruction system is working iteratively. Therefore, we keep the user

informed about the current state of the reconstruction by a live visual feedback. De-

pending on the user’s choice, either the depthmap itself or a 3D model, calculated by

back-projecting the depthmap into 3D space, is displayed. For the basic depthmap visu-

alization a simple linear interpolation is performed. The near plane Znear of the matching

cost volume is black whereas the far plane Zfar is white. Thus, the resulting visualization

is a linearly interpolated grayscale image.

For the 3D visualization, the depthmap first has to be back-projected into 3D space.

This is done by using the inverse projection function defined as π−1(x) = K−1


x

y

1

where

x = [x, y]T ∈ R2 are 2D pixel coordinates and K is the intrinsic camera calibration matrix.

The 3D model is now shaded by using the Phong shading model [31] which defines the

resulting pixel intensity by

Iout = Iaka + Iinkd cosφ+ Iinks cos
nθ

= Iaka + Iin [kd(L ·N) + ks(R · V )n]
(3.38)

where Ia is the intensity of the ambient light, ka is the material constant, Iin is the intensity

of the light source, kd is the diffuse reflexion constant, ks is the specular reflexion factor,

L is the light direction, N is the surface normal, R is the outgoing light direction and V

is the viewing direction. Finally, the 3D model can be also textured using the intensity

image of the reference view.
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(a) Depthmap - init stage (b) 3D - init stage

(c) Depthmap - adaptive planesweep (d) 3D - adaptive planesweep

(e) Depthmap - volume optimization (f) 3D - volume optimization

Figure 3.16: Depthmap and 3D visualization of the initialization stage, the adaptive planesweep
algorithm and the volume optimization algorithm.
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The implementation details of our system are discussed in this chapter. First, we

present our setup followed by our dense tracking implementation. We show two variants

of how we store the data in the memory and how the performance critical parts are handled.

Afterwards we present the depthmap generation and visualization parts. Finally, the whole

system is discussed.

4.1 Setup

For dense tracking and dense depthmap computation we use highly parallelized state-of-

the-art algorithms. To utilize all the resources of recent mobile devices, the GPU and the

CPU are programmed to run our algorithms. Therefore, we have two major requirements

which the device has to meet. First, we need a powerful GPU in order to have an interactive

system which is capable of reconstructing the scene from a given viewpoint just within

several seconds. Secondly, it must be possible to perform general purpose computations

on the GPU (GPGPU). This can be achieved on any modern mobile device using OpenGL

47
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ES1. Latest performance benchmarks showed that the Tegra K12 is currently one of the

most powerful chips available. Therefore, we chose the Nvidia Shield Tablet3 as our main

platform since it is equipped with the K1 chip. Another feature offered by this device is

the possibility to perform all GPGPU computations using CUDA4. This greatly fits our

needs and makes the tablet a state-of-the-art device for mobile graphics computations.

We use Android 5.0.1 as a target OS, CUDA for Android 6.0 and the Android Native

Development Kit (NDK)5 r10c for software development.

4.2 Dense Tracking

4.2.1 Memory

The actual dense tracking optimization is expressed in (3.18) and the corresponding calcu-

lation of the full Jacobian can be found in (3.12). We implemented two different versions

which either handle

• valid points (with a depth > 0)

• all points

in the computation of the Jacobian. Since we are using a weighting scheme during the

optimization, invalid points get downweighted and the final result is the same. The

difference between those two implementations lies in number of points to be processed

and therefore also in the number of memory accesses.

If all points are used, nicely aligned memory is given automatically by CUDA since we

are using CUDA textures. In the other case, valid points have to be computed first

and then stored in an appropriate memory structure. An illustration is given in Figure 4.1.

In (3.12) it can be seen that the 3D coordinates X,Y, Z, the pixels scaled focal lengths

fx, fy, the pixel location x, y and the spatial derivatives dx, dy are needed. Furthermore

we use one field v that signals if the point is valid or not. Since the focal length remains

1https://www.khronos.org/opengles/
2http://www.nvidia.com/object/tegra-k1-processor.html
3http://shield.nvidia.com/
4https://developer.nvidia.com/cuda-zone
5https://developer.android.com/tools/sdk/ndk/index.html
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Figure 4.1: Schematic illustration of the aligned memory structure.

the same after calibration we don’t have so save it for each point. What remains are 8

fields each taking 4 bytes. In order to reduce memory access we define the structure with

a 16 byte memory alignment, i.e. with align (16). In that way we can load the whole

structure with a two load instruction.

4.2.2 Speed

Our tracking system uses a coarse-to-fine scheme as described in 3.2.2.2. The algorithm

starts at the highest level of the pyramid which has the lowest resolution. Afterwards, it

uses the current estimate of that level as an initial estimate for the next level. By using

that, not only bigger translational and rotational motions can be handled, but also the

iterations in lower levels can be reduced which in turn speeds up the process. Furthermore,

we found empirically upper bounds for the maximum number of iterations for each pyramid

level which can be seen in table 4.1.

Level #Iterations

3 15
2 8
1 6
0 5

Table 4.1: Maximum number of tracking iterations per pyramid level.

The crucial part of the tracking system is given by (3.18). For n pyramid levels li with

i = 0, ..., n − 1 and t(li) maximal iterations per level, (3.18) has to be solved
∑n−1

i=0 t(li)

times. The computationally costly part is the calculation of JTWJ since the Jacobian

matrix J ∈ RMN×6 has dimensions MN × 6 where M is the height and N the width

of the image. By summing the outer products of the rows of J, as described in (3.19),
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the computation time can be decreased. Since it is obvious now that this summation

is the critical part of the whole tracking system, special attention has to be payed to

the implementation. As we are using CUDA we can perform a parallel reduction to

compute the sum efficiently. In order to exploit the full potential of the hardware our

implementation of the summation includes

• Complete loop unroll

• Template function

• The shuffle down command shfl down() of the Nvidia Keplar architecture

Since CUDA supports C++ template parameters on both, device and host functions,

we know the number of reductions that have to be performed. As template parameters

are evaluated at compiletime, a complete loop unroll is possible. Furthermore we also

know the upper bound, since the block size is limited by the GPU to 512 local threads.

We also use Keplars shuffle down command which saves additional shared memory access,

compared to the traditional shared memory implementation. As all instructions are SIMD

synchronous within one warp consisting of 32 threads, no further synchronization has to be

done. A schematic illustration of shfl down() with 8 threads can be seen in Figure 4.2.

Figure 4.2: Schematic illustration of shfl down() with 8 threads.

The complete function is given in listing 4.1. Note that the same function is also used

when computing JTWr(ξ0) of (3.18). In that way it is guaranteed that the computation-

ally heavy parts are calculated optimally on the GPU. The resulting system of equations

is small and easy to solve. Therefore we use the Sophus6 library which is computing the

6https://github.com/stonier/sophus
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solution on the CPU.

Listing 4.1: Local sum with unrolled loops and shuffle down command

1 template<unsigned i n t b lockS ize>

2 d e v i c e i n l i n e f l o a t l oca lSumShuf f l e ( v o l a t i l e f l o a t ∗ r , u int tID )

3 {

4 // reduct ion space − r

5 // l o c a l thread ID − tID

6

7 f l o a t localSum = r [ tID ] ;

8

9 // complete loop un r o l l

10 i f ( b l o ckS i z e >= 512)

11 {

12 i f ( tID < 256) r [ tID ] = localSum = localSum + r [ tID + 25 6 ] ;

13 sync th r ead s ( ) ;

14 }

15 i f ( b l o ckS i z e >= 256)

16 {

17 i f ( tID < 128) r [ tID ] = localSum = localSum + r [ tID + 12 8 ] ;

18 sync th r ead s ( ) ;

19 }

20 i f ( b l o ckS i z e >= 128)

21 {

22 i f ( tID < 64) r [ tID ] = localSum = localSum + r [ tID + 6 4 ] ;

23 sync th r ead s ( ) ;

24 }

25

26 // with in one warp (=32 threads ) i n s t r u c t i o n s are SIMD synchronous

27 // −> sync th r ead s ( ) not needed

28 // we use new kep la r s h u f f l e down commands to save shared memory ac c e s s

29 i f ( tID < 32)

30 {

31 localSum += r [ tID + 3 2 ] ;

32

33 localSum += sh f l down ( localSum , 16) ;

34 localSum += sh f l down ( localSum , 8) ;

35 localSum += sh f l down ( localSum , 4) ;

36 localSum += sh f l down ( localSum , 2) ;

37 localSum += sh f l down ( localSum , 1) ;
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38 }

39

40 sync th r ead s ( ) ;

41

42 re turn localSum ;

43 }

4.3 Depthmap Generation

The computation of the homography, which maps the sensor view onto the plane at depth

z is given by (3.25). We perform the computation of the relative rotation and relative

translation on the CPU using the Eigen7 library. Due to the adaptive planesweep algorithm

the homographies have to be calculated for each pixel individually since they can adjust

their near and far plane of the cost volume individually. This is done in parallel on

the GPU. Note that instead of saving the homographies explicitly we use the explained

speedup 3.3.1.3 and only save the starting point x0 and displacement vector v for each

pixel. Building up the cost volume by using one on the matching methods from 3.3.1.2

and the depth extraction by performing the WTA is performed completely on the GPU

as well.

The cost volume optimization is implemented straight forward. The computation of all

relevant parts as explained in 3.3.3 is again performed on the GPU using CUDA.

4.4 Visualization

For all kinds of visual outputs other than the user interface, we are using OpenGL. The

visualization of the depthmap is a simple grayscale image interpolated between znear which

is black and zfar which is white. For the 3D perspective we are back projecting the

depthmap into 3D space as explained in 3.4 and create a mesh out of these points. Each

pixel in the depthmap corresponds to one 3D point. In that case texture parameters

can be set conveniently allowing OpenGL to handle texture interpolation for zooming.

Furthermore, we display the camera positions of the sensor views as RGB crosses which

can be seen in Figure 4.3.

7http://www.eigen.tuxfamily.org/
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Figure 4.3: Camera positions of sensor views are displayed as RGB crosses.

4.5 System

In this section we illustrate the functionality of the complete system and how the individual

parts work together. A screenshot of our developed Android application can be seen in

Figure 4.4. By default, the system is using the internal camera to capture frames where

the time difference between them can be adjusted by the corresponding slider. In order

to reduce lighting changes the user can lock the camera exposure. After clicking Set

KF the capture process starts. The input can also be changed to a set of precaptured

images, which has to be selected in the menu, located in top right corner. After that,

the system selects the middle frame as the reference frame and starts tracking the input

frames with a homogeneous plane resulting in first rough pose estimates for the sensor

images. The user can now select one of the available matching methods 3.3.1.2. The cost

volume is built up and the depthmap is calculated using the WTA algorithm 3.3.1. For

visualization, either the grayscaled depthmap can be shown or two different 3D views 3.4

are available. In the interactive view, the mesh is recalculated and updated each frame,

making the system slow but the reconstruction can be seen live in 3D. The second 3D

view is only for displaying the actual depthmap in 3D. Here, tracking and depthmap

computation are turned off. Furthermore it is possible to select different viewing options

for the 3D view - a phong shaded model, a textured model or a combination of both. The

bottom row of buttons does not need any explanation since their names are self-explaining.

With the Auto Params toggle button the computation stages are changed automatically.
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First, the initialization phase is performed and then the system switches automatically

into the volume optimization phase where the volume optimization 3.3.3 is performed and

quadfitting 3.3.3.6 is activated.

Figure 4.4: Screenshot of the developed Android application.
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In this section we present the evaluation of our system. First, we give an explanation

of the evaluation setup and the used data. Next, the tracking accuracy of our system is

measured relative to ground truth camera poses. Furthermore, we see which parts of the

tracking system are computationally expensive through runtime measurements. Finally,

we investigate the influence of different reconstruction parameters on the depthmap results.

5.1 Setup

The evaluation of our system is performed on the hardware which was already described

in the implementation section 4.1.

In order to get consistent and comparable results, it is crucial that the movement of the

tablet and the camera input stream are the same for each run. Without special hardware

it would be impossible to perform this by hand. Therefore we are using different sets

of precaptured images. In order to evaluate the tracking part of our system separately,

we have to have ground truth depthmaps additionally to the precaptured image sets. In

that case the depthmap generation phase has no influence on the tracking results since it

55
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is bypassed. Since we did not have access to an external tracking system giving us the

ground truth camera pose, we are using external datasets.

(a) (b) (c)

(d) (e) (f)

Figure 5.1: (a)-(c): First, reference and last intensity image of the POVRay scene.
(d)-(f): Corresponding groundtruth depthmaps.

The first scene was created synthetically using POVRay1, a high quality raytracing

system which is capable of producing photo-realistic renderings. The scene itself was

created manually using online available POVRay scene description language models. In

order to get more realistic results, the camera trajectory was defined by real user camera

motions. Since the gaps between the individual camera motion samples were too big, new

motions were interpolated using the POVRay spline subsystem. Due to the enormous

computational resources needed by POVRay to simulate focal blur, we are using the

normal anti-aliasing method instead. It is also to mention that this set of images lacks

visual effects like motion blur due to its synthetic nature.

For the next scene the City of Sights [13] model was used. The images were captured

with a Point Grey Dragonfly2 camera where a 2.8mm wide angle lens was mounted. The

camera was pre-calibrated and the corresponding internal camera calibration matrix is

used. The groundtruth camera poses were computed by PTAM whereas the groundtruth

1http://www.povray.org/
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: (a)-(c): First, reference and last intensity image of the City of Sights scene.
(d)-(f): Corresponding groundtruth depthmaps.

depthmaps originate from [11, 12].

The last dataset used for the tracking evaluation is the ”Desk” scene of [37]. Here an

external tracking system provides groundtruth camera poses alongside the groundtruth

depthmaps which come from a Microsoft Kinect. This dataset is especially challenging

since the RGB camera of the Kinect is known to be noisy and it is also suffering heavily

from motion blur and rolling shutter effects.

The evaluation of the depthmap computation part will be done additionally with a set

of pre-captured images originating from the tablets live camera stream. In that way we are

simulating perfectly the usual usecase. Since the depthmap computation relies completely

on the quality of the tracking output, we are not evaluating the whole system, i.e. tracking

and depthmap computation together, again in detail. Instead, we are inspecting the

generated depthmap visually and also look at the results in 3D.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: (a)-(c): First, reference and last intensity image of the ”Desk” scene of [37].
(d)-(f): Corresponding groundtruth depthmaps.

5.2 Dense Tracking

We evaluate the dense tracking part of our system regarding the accuracy of the pose

estimates. For this three dataset with different properties are used. Furthermore, we give

timings and a correlation between tracking resolution and accuracy.

5.2.1 Accuracy

In this section we present the results of our system regarding accuracy of the dense tracking

part. An accurate tracking system is crucial in order to get good reconstruction results.

If the pose estimations are just slightly wrong, the epipolar constraint (see 2.2.2) is not

fulfilled and wrong stereo matching costs are calculated. Besides of the actual tracking

algorithm, the quality of the resulting pose estimates depends heavily on the input frames

and the depthmap of the reference frame. The used datasets, explained in 5.1, cover

perfect synthetic quality, high quality frames of a good external camera and inferior image

quality from a Kinect device.

For evaluation of the accuracy, we compute the relative error between the tracked
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camera pose and the given groundtruth pose. The error is expressed by two terms, the

positional and rotational error. The positional error is computed as the relative positional

error in % according to

epos =
||p− pgt||
||pgt||

· 100 (5.1)

where p is the position of the tracked camera and pgt is the position of the groundtruth

in the world coordinate system. The rotational error is computed as

erot = ||I−RgtR
T||F (5.2)

where I is a 3 × 3 identity matrix, R is the rotation of the tracked camera, Rgt is the

rotation of the groundtruth and || · ||F is the Frobenius norm.

In all three datasets we track 20 frames relative to the reference frame with index

10. Figure 5.4 shows the tracking results in terms of the positional and rotational error,

respectively. It is immediately obvious that the accuracy of the pose estimates for the

different scenes varies in magnitudes. Note that positional error values below 0.3% are

considered very accurate.

(a) (b)

Figure 5.4: All frames were tracked relative to the reference frame with index 10. (a)-(b) shows
the positional and rotational error.

In order to get a better understanding of the individual results, Figure 5.5, 5.6 and

5.7 show detailed results with different scales in the y-axis. Furthermore, the estimated

camera trajectories and the groundtruth are shown in 3D.
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(a) (b)

(c)

Figure 5.5: ”Desk” scene of [37] - all frames were tracked relative to the reference frame with index
10. (a)-(b) shows the positional and rotational error. (c) shows the estimated camera trajectory
(red) in comparison to the groundtruth (green).

(a) (b)

(c)

Figure 5.6: City of Sights scene - all frames were tracked relative to the reference frame with index
10. (a)-(b) shows the positional and rotational error. (c) shows the estimated camera trajectory
(red) in comparison to the groundtruth (green).
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(a) (b)

(c)

Figure 5.7: POVRay scene - all frames were tracked relative to the reference frame with index
10. (a)-(b) shows the positional and rotational error. (c) shows the estimated camera trajectory
(red) in comparison to the groundtruth (green).

The results show the importance of high quality input frames and an appropriate

depthmaps used for tracking. As expected, the rolling shutter and motion blur effects

of the desk scene decrease the tracking accuracy whereas the synthetic POVRay scene

delivers the best results. The tracking results are presented also numerically in table 5.1.

epos erot
avg RMS avg RMS

Desk 0.611 0.753 0.018 0.022
City of Sights 0.069 0.078 < 0.001 < 0.001

POVRay 0.010 0.011 < 0.001 < 0.001

Table 5.1: Average and RMS positional and rotational tracking error in %. Note that values
below 0.3% are considered as being very accurate.
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5.2.2 Speed

Tracking systems typically have to meet hard realtime requirements and therefore only

a timeframe of about 33ms is available (supposing that the system should run at 30Hz).

This section shows the timing results of our implementation. For evaluation, we average

the results of all three testing datasets where each dataset was tracked several hundred

times.

In 4.2.2, table 4.1 shows the upper bounds for the maximum number of iterations for

each pyramid level. These values were found as follows. The tracking update step is given

by 3.18 and the stopping criteria is defined as ||∆ξ|| < 10−4. Table 5.2 shows the average

and maximum number of iterations needed until the convergence criteria was fulfilled.

#Iterations
Level avg max

3 8.33 60
2 6.12 11
1 4.59 12
0 2.21 12

Table 5.2: Average and maximum number of iterations needed such that the stopping criteria
||∆ξ|| < 10−4 is fulfilled.

It can be seen that in average the algorithm converges after only some iterations even

though the maximum number might be a magnitude higher. Furthermore, lower levels

need less iterations since higher levels calculate the first rough pose estimates and the

lower ones only fine tune the result.

Timings of the individual levels are shown in table 5.3 and depicted in Figure 5.8.

Even though we are utilizing the GPU, the hardware resources on the mobile plattforms

are still limited. Therefore, the average total tracking time of our implementation is at

about 42ms.

Level Time[ms]

3 12.56
2 9.04
1 8.89
0 11.19

Total 41.68

Table 5.3: Timings of individual pyramid levels.
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Figure 5.8: Timings of individual pyramid levels compared to total timing.

A common approach to decrease the tracking computation time is to neglect the lowest

level and thus reduce the maximum resolution from 320 × 240 to 160 × 120. In our

case it would be possible to reduce the computation time from 42ms to 30ms. The

obvious drawback of this approach is that the tracking accuracy is suffering from the

reduced resolution. Figure 5.9 depicts the effects of reducing the pyramid levels (note the

logarithmic scale in the y direction).

(a) (b)

Figure 5.9: Reducing the number of pyramid levels from 4 to 3 reduces the computation time
but can drastically decrease the tracking accuracy (note the logarithmic scale in the y direction).

Our implementation shows a computational performance gain of 125% by reducing
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the pyramid levels from 4 to 3. At the same time the positional and rotational tracking

error increases nearly by 99% and 87%, respectively. Therefore, we do not reduce the

number of pyramid levels in our implementation but use the full 320× 240 resolution.

5.3 Depthmap Generation

5.3.1 Planesweep

The two most important parameters of the planesweep algorithm are the depth resolution,

i.e. the number of planes within the cost volume defined by Znear and Zfar and the number

of sensor views used to compute the costs within this volume. A low depth resolution

will deliver poor results since the resulting depthmap will be too coarse whereas a high

resolution increases the computational time. The number of views behave similar. More

views contain more information about the 3D scene structure and thus, we expect that

using more views will deliver better results. The results of our experiments are summarized

in Figure 5.10. As a measure of precision we took the percentage of pixels for which the

depth error is greater than a defined threshold w.r.t. the groundtruth depth. The error

threshold was set to 1% of the total depth range.

(a) Depth error vs. depth resolution (b) Depth error vs. number of views

Figure 5.10: Depth error rates for different number of planesweep planes and different number of
sensor views, respectively. For (a), the number of views was fixed to 20 whereas for (b), the depth
resolution was fixed to 64 steps.

One can see that a resolution below 32 steps delivers poor results whereas increasing

the resolution beyond 64 steps does not improve the quality significantly, while the compu-
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tational time is raised. The results for the number of views behave similar. As expected,

more views deliver better results. The matching costs for 20 and 50 views are shown in

detail in Figure 5.11. It can be seen that 20 views are already enough to achieve robust re-

sults although 50 views provide even more information. These experiments showed us that

a configuration of 32 planes and 20 views deliver good results while having an acceptable

computational load.

(a) 20 sensor views (b) 50 sensor views

Figure 5.11: Matching costs for 20 and 50 number of sensor views, respectively. The cost volume
contains 32 planes and the average cost is shown by the thick red line.

In Figure 5.10a we saw that increasing the number of steps for the planesweep

algorithm beyond 64 does not significantly increase the accuracy. Therefore we are

evaluating the adaptive planesweep only visually. Figure 5.12 shows the evolution of

the depthmap in 3D after different numbers of iterations. The first row depicts the

depthmap from the reference view whereas the second row shows the same depthmap

from another angle. The algorithm is initialized with a depthmap generated by the

standard planesweep using 8 planes and 20 sensor views. The following pictures show

the depthmap after 1, 4, and 50 iterations, respectively. As mentioned in 3.3.2, we

apply a 3 × 3 median filter on the depthmap in each iteration. On the one hand this is

reducing small outliers, i.e. little spikes in the depthmap but on the other hand one can

see the results are still not smooth because no global solution is found. The advantage

of this approach is though, that the computational load is not increased since a normal

planesweep algorithm is calculated in each iteration and only the volume boundaries

Znear and Zfar are adaptively adjusted for each pixel individually.
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(a) Initial depthmap (b) 1. iteration (c) 4. iteration (d) 50. iteration

(e) Initial depthmap (f) 1. iteration (g) 4. iteration (h) 50. iteration

Figure 5.12: Evolution of the depthmap using the adaptive planesweep algorithm. The algorithm
is initialized with a depthmap generated by the standard planesweep using 8 planes and 20 sensor
views. The first row shows the depthmap from the reference view after 0, 1, 4 and 50 iterations.
The second row shows the same depthmap from another angle.

Note that we did not evaluate the different matching methods separately. In our expe-

rience, it depends on the scene which one will work the best and the user can interactively

change the method. In general the single pixel matching gives the best details but also the

highest amount of outliers. The zero mean and other patch based methods have opposite

characteristics. Overall, single pixel and zero mean matching works best for most scenes.

5.3.2 Volume Optimization

In this section we will investigate the effects of different parameters on the proposed

volume optimization algorithm. The biggest influence on the resulting depthmap have the

regularization parameter λ which controls the smoothness of the result, θ which defines

the coupling of the depthmap and the auxiliary variable, γ which controls the speed by

which θ decreases and finally, the number of iterations.

For our first experiment we were building up the matching cost volume with the stan-

dard planesweep algorithm using 32 planes, 20 sensor views and single pixel matching. In

order to evaluate the effects of θ, γ and the number of iterations, we fixed λ = 7.2. The

results are summarized in Figure 5.13. The coupling term A(x) = 1
2Θ(ξ(x) − β(x))2 in
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Figure 5.13: Effects of different values of θ and γ on iterations and the resulting energy.

(3.29) is used to drive both, the original and auxiliary variable, together, i.e. that ξ = β

as θ → 0. The lower the starting value of θ, the tighter the coupling and the lower the re-

sulting energy at the beginning. γ is controlling the rate by which θ is decreasing. Here it

is other way around, the higher the value, the faster θ is decreasing. However, if the value

of γ is too high, θ is decreasing too fast and a certain solution is favored too early resulting

in lower quality reconstructions. By setting γ to smaller values, the reconstruction quality

is increased but at the same time the number iterations has to be raised for the algorithm

to converge. Since the computational resources on mobile devices are limited we are using

θ = 1, γ = 0.003 and 70 iterations (fat line in Figure 5.13). This configuration delivers

high quality results with a moderate computational load.

In the second experiment we investigated the effect of λ on the resulting depthmap.

For this, we used the same initial depthmap, fixed θ = 1, γ = 0.003 and used 70 iterations

in the calculation. Figure 5.14 depicts the results of different settings of λ. The lower

the value, the higher the smoothness of the resulting depthmap. However, by setting λ

too low, the regularization term is heavily penalizing deviations from a spatially smooth

depthmap resulting in a loss of detail. If the value of λ is too high though, the result is

not smooth enough and shows outliers. Therefore, we chose λ = 7.2 as a standard value

for our application.
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(a) Groundtruth (b) λ = 1.2 (c) λ = 7.2 (d) λ = 14.2

(e) Groundtruth (f) λ = 1.2 (g) λ = 7.2 (h) λ = 14.2

Figure 5.14: Effects of λ on the resulting depthmap. The lower the value, the higher the
smoothness of the result. While the first line shows a phong shaded model in 3D, the second line
shows the corresponding depthmap.

5.4 System

In this section we first evaluate two different methods of how the system can be boot-

strapped, i.e. how the initial depthmap is defined. Afterwards we show an exemplary run

of the complete system together with intermediate and final results. Finally, we provide

timings of the individual parts and also show a complete list of system parameters.

The bootstrapping is necessary because we do not have any prior knowledge about the

scene and we therefore have to assume an initial depthmap. The two main parameters

during the initialization phase are the number of planesweep planes and if a homogeneous

or random initial depthmap is used. Figure 5.15 summarizes our results. As a fidelity

measure we took the number of iterations needed until the depthmap was good enough such

that the average positional tracking error was below a threshold w.r.t. the groundtruth

camera positions. The positional error threshold was set to 0.5%. For evaluation we used

different scenes with 20 sensor views. The homogeneous depthmap is created by taking the

mean between Znear and Zfar, whereas the random depthmap randomly samples values

within that range. The best configuration delivers the homogeneous depthmap together

with 8 planesweep steps resulting in about 5 iterations, although it can be seen that the

random depthmap needs less iterations in general. Moreover, we encountered the problem
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Figure 5.15: Initialization with homogeneous and random depthmap together with different
numbers of planesweep steps.

that using a random initial depthmap might result in a tracking ambiguity where the

resulting cameras are inversely estimated. The result of this is, that the depthmap is also

estimated inversely meaning that near objects are far away and vice versa. Unfortunately

we did not find any pattern when this happens. We interpret the results in the way that

the coarse depthmap with 8 planes can adjust faster to the real depth in comparison to a

finer resolution, i.e. 32 steps. At the same time a depthmap with only 4 steps is too coarse.

Therefore, we use the configuration of 8 planesweep planes together with a homogeneous

depthmap.

An exemplary run, including timestamps, is depicted in Figure 5.16. The system

parameters used for the full system evaluation are shown in table 5.4 and the

corresponding performance timings can be found in table 5.5. We again used the City of

Sights scene, but this time with the Nvidia Shield tablet. At the beginning, the system

captures a set of 20 frames and the middle frame is used as the reference frame. An

initial homogeneous depthmap is used to bootstrap the system by tracking all frames

with that plane resulting in first rough pose estimates (see Figure 5.16a). A planesweep

algorithm with 8 steps is used to calculate coarse dephtmaps during the initial phase

to improve the tracking accuracy quickly (see Figure 5.16b, 5.16c, 5.16d). Note that

the initial camera poses are at identity in Figure 5.16a and how they adjust during the
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initialization phase in Figure 5.16d. From this point on, the volume optimization is

used to drastically improve the depthmap quality - outliers are removed and a spatially

smooth depthmap is created. The results are depicted without the quadratic function

fitting in Figure 5.16e and with it in Figure 5.16f. Furthermore, note how the camera

positions and orientations also improve during this phase since the tracking is now

based on a high quality depthmap. While Figure 5.16g, 5.16h, 5.16i show the grayscaled

depthmaps of the corresponding phase, Figure 5.16j, 5.16k, 5.16l depict the final result in

various ways.

Parameter Value

Device Nvidia Shield Tablet
Scene City of Sights
Image resolution 320× 240
# of pyramid levels 4
# of frames 20
Deptmap algorithm Planesweep
Matching method Single pixel
Initial depthmap type Homogeneous plane
# of iterations (initial phase) 5
# of iterations (volume optimization) 70
# of planes (initial phase) 8
# of planes (volume optimization) 32
Volume optimization λ 7.2
Volume optimization θ 1.0
Volume optimization γ 0.003

Table 5.4: Full system evaluation parameters

Operation Time [ms]

Track frame 42
Compute startpoint and displacement vector (planesweep speedup) 19
Planesweep 8 planes (initial phase) 29
Planesweep 32 planes (volume optimization) 90
Volume optimization 515

Table 5.5: System timings
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(a) Initial homogeneous plane -
0sec

(b) Other perspective of initial
phase - 4sec

(c) Other perspective of initial
phase - 4sec

(d) Initial phase - 4sec (e) Volume optimization - 7sec (f) Volume optimization +
quadfitting - 7sec

(g) Depthmap initial phase -
4sec

(h) Depthmap volume opti-
mization - 7sec

(i) Depthmap volume opti-
mization + quadfitting - 7sec

(j) Phong shaded result (k) Phong shaded + textured
result

(l) Textured result

Figure 5.16: An exemplary run and results of our system. Note how the camera positions adjust
due to the qualitatively increasing depthmap.
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6.1 Summary

In this master’s thesis a system for interactively generating high quality, dense depthmaps

on mobile devices like smartphones and tablets was developed. It has been shown that

the system can compute dense depthmaps from arbitrary geometry on-the-fly just within

several seconds. The developed tracking system operates directly on images without an

intermediate representation like keypoints. The proposed method adapts and combines

current state-of-the-art results from various computer vision research areas in a novel way.

Chapter 2 gives an overview and introduction of related work on dense 3D reconstruc-

tion on mobile and also desktop platforms since the latter one formed the basic principles.

The methodology of the high quality, dense depthmap computation system on mobile

devices is presented in chapter 3. Section 3.2 is devoted to dense tracking, where we

describe in detail the theory and each step of the algorithm. Furthermore we show how

larger motions can be handled and how the procedure can be sped up.

The generation of depthmaps is addressed in section 3.3. Here, the used multi-view

stereo algorithm is presented, alongside with pixel matching methods and a method of

speeding up the computation. Furthermore, an adaptive stereo algorithm is presented in
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section 3.3.2 as well an optimization algorithm that minimizes a global spatially regularized

energy functional on the GPU which is described in section 3.3.3.

Chapter 4 gives details about our setup and the implementation of all parts. Special

emphasis is placed on the way how the GPU is utilized to accelerate the tracking part of

the system.

Finally, the whole system is evaluated in chapter 5. All the different parts of the track-

ing and depthmap generation system are analyzed separately before a complete system

evaluation was performed.

6.2 Outlook

Our system can be improved and extended in several ways. Up to now, we built the

fundamental building blocks dense tracking and dense depthmap computation for a novel

mobile SLAM system. The fusion of multiple depthmaps within a single reconstruction

volume, in order to get a full 3D model, is still missing though. Moreover are both

parts running on the GPU in our implementation. Since the mapping part is typically

computationally more expensive, the tracking should be implemented on the CPU in order

to have all GPU resources free for the reconstruction.

The initialization procedure can be improved as well. Depending on the scene, both,

the homogeneous and random initialization, may need much more iterations until the

tracking accuracy improves. Therefore, we might change the initialization procedure to a

more sophisticated approach.

Todays smartphones and tablets are equipped with various sensors like accelerometers,

gyroscopes or GPS receivers. By using the accelerometer and the gyroscope we could esti-

mate the absolute reconstruction scale. The accelerometer also could be used to decrease

the tracking drift and to get weak initial estimates for the device translation whereas a

gyroscope could give good rotational initial estimates.

The quality of the resulting depthmap depends heavily on the input images. The used

planesweep algorithm is fast and delivers good results in information rich image areas but

fails in untextured regions. Our system can therefore handle untextured scenes only to a

certain degree. Furthermore are reflections a problem since we detect wrong motions in

these areas. Latest research results show that reflections can be detected. By neglecting
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the reflecting parts of the scene we might increase the reconstruction quality as well.





A
Dense Tracking Appendix

In reconstruction, visual odometry or generally, SLAM systems, one typically has to work

with different coordinate systems and points need to be transformed between them, e.g.

from a camera coordinate frame into a global world coordinate system. Rigid body trans-

formations are used to describe the position and rotation of camera poses. Although

a broad variety of representations exist for the rotational part it is crucial to choose a

minimal representation of the transformation when optimizing the set of transformation

parameters, like it is typically done in reconstruction systems. This means that no more

parameters than degrees of freedom should be present otherwise inefficient performance

or invalid configurations might be the result.

The SE(3) Lie group and se(3) algebra are one kind of representation which fulfills

that requirement. SE(3) group elements consist of a rotational and translational part

and are represented as 3 × 4 matrices C = [R | t] ∈ SE(3). This representation has 12

DOF, rotation and translation have only 6, though. Therefore the minimal representa-

tion of a rigid body transformation is given as a 6-dimensional vector in the Lie algebra

by ξ = [w1, w2, w3, w4, w5, w6] ∈ R6. A mapping function, the exponential map, defines

the mapping of elements from the algebra (6-dimensional vector) to the manifold (3 × 4

transformation matrices). The following sections elaborate the transformation and expo-

nential map derivative in detail which are used in the dense tracking optimization. This

is summary of the relevant parts of [23].
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A.1 Transformation Derivative

A homogeneous point X in 3D space is transformed by the 3 × 4 matrices C = [R | t] ∈

SE(3) by

X′ = CX =


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3



x1

x2

x3

1

 =


r11x1 + r12x2 + r13x3 + t1

r21x1 + r22x2 + r23x3 + t2

r31x1 + r32x2 + r33x3 + t3

 (A.1)

The same transformation defined in (A.1) can be rewritten. From the point X a matrix

M ∈ R3×12 is constructed:

M = [x1I3 | x2I3 | x3I3 | I3] (A.2)

where I3 ∈ R3×3 is the 3× 3 identity matrix. For matrices A ∈ RM×N and B ∈ RP×Q the

Kronecker matrix product denoted by A⊗B is the MP ×NQ block matrix:

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 (A.3)

Using (A.3) the definition of (A.2) can be conveniently written as M = XT ⊗ I3. For

matrices the vec(·) operator produces a vector by stacking the columns on top of each

other. This is convenient because derivatives of matrices become now standard Jacobians.

The parameter vector p = vec(C) ∈ R12 is constructed from the transformation matrix C

and finally (A.1) can be rewritten as
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X′ = Mp =


x1 0 0 x2 0 0 x3 0 0 1 0 0

0 x1 0 0 x2 0 0 x3 0 0 1 0

0 0 x1 0 0 x2 0 0 x3 0 0 1





r11

r21

r31

r12

r22

r32

r13

r23

r33

t1

t2

t3



(A.4)

Finally, the derivative of the transformation w.r.t. the parameters is given by

∂X′

∂C
=
∂Mp

∂p
= M (A.5)

A.2 Exponential Map Derivative

The exponential map associates elements of the Lie algebra (6-dimensional vector) to

elements of the underlying Lie group (transformation matrix). In the minimization step

where the optimal transformation parameters are found, the derivative of the exponential

map has to be determined, among others. In order to compute this, several preconditions

have to be met. First, the 6 rigid body transformation matrices parameterized by β are

specified:

x-axis: translation: M1 =


1 0 0 β

0 1 0 0

0 0 1 0

0 0 0 1

 rotation: M4 =


1 0 0 0

0 cos(β) −sin(β) 0

0 sin(β) cos(β) 0

0 0 0 1
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y-axis: translation: M2 =


1 0 0 0

0 1 0 β

0 0 1 0

0 0 0 1

 rotation: M5 =


cos(β) 0 sin(β) 0

0 1 0 0

−sin(β) 0 cos(β) 0

0 0 0 1



z-axis: translation: M3 =


1 0 0 0

0 1 0 0

0 0 1 β

0 0 0 1

 rotation: M6 =


cos(β) sin(β) 0 0

sin(β) cos(β) 0 0

0 0 1 0

0 0 0 1


Infinitesimal SE(3) motions are now found by differentiating these matrices w.r.t. β

and evaluating them at β = 0.

G1 = ∂M1
∂β

∣∣∣
β=0

=


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 G4 = ∂M4
∂β

∣∣∣
β=0

=


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0



G2 = ∂M2
∂β

∣∣∣
β=0

=


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 G5 = ∂M5
∂β

∣∣∣
β=0

=


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0



G3 = ∂M3
∂β

∣∣∣
β=0

=


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 G6 = ∂M6
∂β

∣∣∣
β=0

=


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


Elements of the Lie algebra se(3) are 6-dimensional vectors and are generated by

the generator matrices Gi, i = 1...6 by multiplying each vector component with one of

them. As mentioned above, the exponential map takes elements of the Lie algebra to the

corresponding manifold. The mapping is performed by calculating the matrix exponential,

which is defined as

eX = I + X +
1

2
X2 +

1

6
X3 + ... =

∞∑
k=0

1

k!
Xk. (A.6)
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Using (A.6) the exponential map is now defined as

exp : se(3) 7→ SE(3)

ξ 7→ e
∑6

i=1 wiGi

(A.7)

where ξ = [w1, w2, w3, w4, w5, w6] ∈ R6 is an element of the Lie algebra with motions

wi, i = 1...6. By looking at the generator matrices Gi it is easy to see that
∑6

i=1wiGi can

be also written in the form

6∑
i=1

wiGi =


0 −w6 w5 w1

w6 0 −w4 w2

−w5 w4 0 w3

0 0 0 0

 . (A.8)

By using the definition of the skew-symmetric matrix operator [·]×

v× =


v1

v2

v3


×

=


0 −v3 v2

v3 0 −v1

−v2 v1 0

 (A.9)

(A.8) can be written shorter as

6∑
i=1

wiGi =

[w4...6]× w1...3

0 0

 . (A.10)

We define [ξ]× =
∑6

i=1wiGi for notational convenience and finally get e[ξ]× , the expo-

nential map matrix constructed from the vector in the Lie algebra. For infinitesimal Lie

vectors δξ with weights wi < 1 the matrix exponential is approximated well by the linear

term

e[δξ]× = I +
6∑
i=1

wiGi = I + [δξ]×. (A.11)

The derivative of e[ξ]× at the point ξ = 0 can be now computed by expanding the

matrix using the vec(·) operator and making use of (A.11)

vec(e[ξ]×) = vec(I + [ξ]×) = vec(I) + vec([ξ]×) (A.12)
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and write using (A.10)

Mξ = vec([ξ]×)

M



w1

w2

w3

w4

w5

w6


= vec




0 −w6 w5 w1

w6 0 −w4 w2

−w5 w4 0 w3


 =



0

w6

−w5

−w6

0

w4

w5

−w4

0

w1

w2

w3



(A.13)

and solving for M results in

M =


03×3 −[e1]×

03×3 −[e2]×

03×3 −[e3]×

I3×3 03×3

 (A.14)

where e1 = [1, 0, 0]T, e2 = [0, 1, 0]T, e3 = [0, 0, 1]T. Although [ξ]× results in a 4×4 matrix

the last row was excluded since it is always 0 by definition.

Finally, the derivative of the exponential map at the origin, i.e. by evaluating it at

ξ = 0, is given by

∂e[ξ]×

∂ξ

∣∣∣∣∣
ξ=0

=
∂(I + [ξ]×)

∂ξ
=
∂[ξ]×
∂ξ

=
∂Mξ

∂ξ
= M. (A.15)

By computing the derivative at another point on the manifold it is possible to generalize

to arbitrary transformations e[ξ̂]× with ξ̂ 6= 0. Reason for this is the linearity and local

euclidean structure of the manifold SE(3). Given an infinitesimal Lie-vector ξ and an
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arbitrary transformation T = e[ξ̂]× we end up having e[ξ̂]× = e[ξ]×T. The derivative of the

exponential map evaluated at ξ̂ is therefore given by the derivative of the composition of

ξ and T evaluated at 0 and is written as

∂e[ξ̂]×

∂ξ

∣∣∣∣∣
ξ=ξ̂

=
∂e[ξ]×T

∂ξ

∣∣∣∣∣
ξ=0

=
∂e[ξ]×T

∂e[ξ]×

∂[ξ]×
∂ξ

∣∣∣∣∣
ξ=0

(A.16)

Since the zero Lie-vector ξ = 0 results in the identity transformation matrix I, i.e.

∂e[ξ]×

∣∣∣∣∣
ξ=0

= I, (A.16) can be rewritten as

∂e[ξ]×T

∂e[ξ]×

∂e[ξ]×

∂ξ

∣∣∣∣∣
ξ=0

=
∂QT

∂Q

∣∣∣∣∣
Q=e[ξ]×=I

∂e[ξ]×

∂ξ

∣∣∣∣∣
ξ=0

(A.17)

The first part is the derivative of QT, a composition of transformations, w.r.t. the trans-

formation Q = I is given by ∂QT
∂Q = TT ⊗ I3. The second term, the derivative of the

exponential map, has already been reviewed in eq. (A.11) - (A.14). Finally, the complete

derivative of the exponential map with an arbitrary transformation is given by

∂e[ξ̂]×

∂ξ

∣∣∣∣∣
ξ=ξ̂

= [TT ⊗ I3]


03×3 −[e1]×

03×3 −[e2]×

03×3 −[e3]×

I3×3 03×3

 =


03×3 −[r1]×

03×3 −[r2]×

03×3 −[r3]×

I3×3 −[t]×

 , T = e[ξ̂]× (A.18)

Summing up, depending on the point of evaluation, the derivative of the exponential map

is either given by (A.15) for ∂e[ξ]×
∂ξ

∣∣∣
ξ=0

, or by (A.18) for ∂e[ξ̂]×
∂ξ

∣∣∣
ξ=ξ̂

, ξ̂ 6= 0.
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AR Augmented Reality

CPU Central Processing Unit

DOF Degrees of Freedom

DTAM Dense Tracking and Mapping

EKF Extended Kalman Filter

GPGPU General Purpose Computation on Graphics

Processing Unit

GPS Global Positioning System

GPU Graphics Processing Unit

IMU Inertial Measurement Unit

IRLS Iteratively Reweighted Least Squares

P3P Perspective 3-Point

P4P Perspective 4-Point

PnP Perspective n-Point

PTAM Parallel Tracking and Mapping

RANSAC Random Sample Consesus

SfM Structure from Motion

SIMD Single Instruction Multiple Data

SLAM Simultaneous Location and Mapping

WTA Winner Takes All
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