
Liquid Diagrams

A Suite of Visual Information Gadgets

Martin Lessacher

Liquid Diagrams

A Suite of Visual Information Gadgets

Master’s Thesis

at

Graz University of Technology

submitted by

Martin Lessacher

Institute for Information Systems and Computer Media (IICM),
Graz University of Technology

A-8010 Graz, Austria

11th October 2010

© Copyright 2010 by Martin Lessacher

Advisor: Ao.Univ.-Prof. Dr. Keith Andrews

Liquid Diagrams

Eine Sammlung von Visualisierungsapplikationen

Diplomarbeit

an der

Technischen Universität Graz

vorgelegt von

Martin Lessacher

Institut für Informationssysteme und Computer Medien (IICM),
Technische Universität Graz

A-8010 Graz

11. Oktober 2010

© Copyright 2010, Martin Lessacher

Diese Arbeit ist in englischer Sprache verfasst.

Begutachter: Ao.Univ.-Prof. Dr. Keith Andrews

Abstract

Until now, information visualisation was largely used by academics and research companies, but is
becoming increasingly popular among a more general audience of computer users with a need or desire
to visualise their own data.

This thesis surveys existing online visualisation solutions and the technologies used to create them.
The thesis then describes Liquid Diagrams, an information visualisation framework written in Flex,
which enables information visualisation gadgets to be associated with user data and visualisations to
be created within the web browser. A suite of nine visualisations is currently implemented: line chart,
bar chart, pie chart, parallel coordinates, area chart, star plot, treemap, heatmap (choropleth map), and
voronoi treemap.

User data stored in a Google spreadsheet (or otherwise encoded within a web page) is used as the
data source and is interactively visualised. Users can configure aspects of each visualisation and can then
export high-quality raster graphic (PNG) and vector graphic (SVG) images of their visualisations.

Kurzfassung

Während die Visualisierung von Daten früher vorwiegend von Unternehmen und in der Forschung
eingesetzt wurde, findet sie heutzutage immer häufiger im Alltag von Personen Anwendung, welche ihre
persönlichen Daten visualisieren wollen.

Diese Arbeit verschafft einen Überblick über die derzeit verfügbaren Online-Softwarelösungen und
ihre zugrundeliegenden Technologien. Außerdem beschreibt die Arbeit ein Flex Framework namens Li-
quid Diagrams, welches die Erstellung von auf eigenen Daten basierenden Visualisierungs-Gadgets im
Web-Browser ermöglicht. Dabei stellt Liquid Diagrams neun verschiedene Visualisierungen zur Verfügung:
Linien Diagramm, Balken Diagramm, Kreis Diagramm, Parallel Coordinates, Flächen Diagramm, Star
Plot, Treemap, Heatmap (Choropleth Map) und Voronoi Treemap.

Als Daten zur Erstellung von interaktiven Visualisierungen dienen Daten, welche in Google Spreads-
heet enthalten oder auf Webseiten generiert werden. Dabei stehen dem Anwender viele Optionen zur
Gestaltung der Visualisierung und auch der Export als Rastergrafik (PNG) oder Vektorgrafik (SVG) zur
Verfügung.

Pledge of Integrity

I hereby certify that the work presented in this thesis is my own, that all work performed by others is
appropriately declared and cited, and that no sources other than those listed were used.

Place:

Date:

Signature:

Eidesstattliche Erklärung

Ich versichere ehrenwörtlich, dass ich diese Arbeit selbständig verfasst habe, dass sämtliche Arbeiten
von Anderen entsprechend gekennzeichnet und mit Quellenangaben versehen sind, und dass ich keine
anderen als die angegebenen Quellen benutzt habe.

Ort:

Datum:

Unterschrift:

Contents

Contents ii

List of Figures iv

List of Tables v

Acknowledgements vii

Credits ix

1 Introduction 1

2 Information Visualisation 3
2.1 Origins . 3

2.2 Definition and Principles . 3

2.3 Information Visualisation for the Masses . 5

2.4 Examples of Visualisations . 6

3 Technologies 15
3.1 HTML, JavaScript, DOM and AJAX . 15

3.2 Java . 16

3.3 Java FX . 17

3.4 Adobe Flex . 17

3.5 Adobe AIR . 17

3.6 Microsoft Silverlight . 18

3.7 Scalable Vector Graphics (SVG) . 19

4 Existing Visualisation Software 23
4.1 Standalone Visualisation Software . 23

4.2 Visualisation Libraries and Components . 23

4.3 Online Visualisation Software . 23

5 Flash and the Web 35
5.1 Adobe Flash . 35

5.2 Adobe Flex . 35

i

6 Liquid Diagrams Framework 39
6.1 Attaching Liquid Diagrams to Data Sources . 39

6.2 Framework Structure . 43

6.3 Framework Components . 51

6.4 Framework Functions . 60

7 Liquid Diagrams Visualisations 69
7.1 Line Chart . 69

7.2 Pie Chart . 69

7.3 Bar Chart . 71

7.4 Area Chart . 72

7.5 Parallel Coordinates . 73

7.6 Star Plot . 74

7.7 Tree Map . 78

7.8 Heat Map . 82

7.9 Voronoi Tree Map . 88

8 Selected Details of the Implementation 97
8.1 Squarified Tree Map Example . 97

8.2 Tree Structure . 102

8.3 Adding New SVG Maps . 104

8.4 SVG Parser . 107

8.5 Voronoi Construction Details . 108

9 Outlook 115

A User Guide 117
A.1 Gadget Installation . 117

A.2 Insertion . 119

A.3 Data Formats . 119

Bibliography 131

ii

List of Figures

2.1 Charts Drawn by William Playfair . 4
2.2 Information Visualisation Reference Model . 4
2.3 Charts Drawn by William Playfair . 7
2.4 Two Variants of Area Charts . 7
2.5 Illustration of Parallel Coordinates . 8
2.6 Example of Scatter Plot . 9
2.7 Illustration of Bubble Chart . 10
2.8 Radar Chart . 10
2.9 Composition of a Treemap . 11
2.10 Examples of Heat Maps . 12
2.11 Early Choropleth Maps of France . 12
2.12 Voronoi Diagram and Voronoi Treemap . 13
2.13 InfoSky . 14

3.1 Handling an Ajax Page Request . 16
3.2 Architecture of the Java Development Kit . 17
3.3 Adobe AIR Architecture . 18
3.4 Example of a Scaleable Vector Graphic . 19
3.5 SVG Browser Compatibility . 21

4.1 World Map and Tree Map with Many Eyes . 26
4.2 Some Charts Created by Google Charts . 27
4.3 Two Vsualisations created with Swivel . 28
4.4 Charts Created at Verifiable.com . 29
4.5 Choosing Gadgets in Google Docs . 29
4.6 Google Visualisation API Playground . 30
4.7 Charts and Printing in iCharts . 31
4.8 Charts Created with Gapminder World . 32
4.9 The OECD eXplorer . 33

5.1 Flash Object in HTML Page . 37
5.2 Flash Player Availability on Internet PCs . 37

6.1 Architecture of Data Sources . 40
6.2 Parallel Coordinates - A Tutorial . 43

iii

6.3 File Architecture of Liquid Diagrams Framework . 45

6.4 The Font Picker Component . 49

6.5 Display States of Side Panels . 52

6.6 Display States of Error Panel . 53

6.7 Legend Colour Distribution Types . 56

6.8 Quantile Distribution Popup . 56

6.9 Colour With and Without Brightness Manipulation . 57

6.10 Example of Colour Model . 58

6.11 The Tree View Component . 60

6.12 Different X-Label Styles. 61

6.13 Differences Between Export Functions . 63

7.1 Liquid Diagrams Line Chart . 70

7.2 Improvements to Pie Chart . 70

7.3 Liquid Diagrams Bar Chart . 71

7.4 Liquid Diagrams Area Charts . 72

7.5 Liquid Diagrams Parallel Coordinates . 74

7.6 Construction Star Plot Axes . 76

7.7 Star Plot . 77

7.8 Mapping Nodes to a Treemap Visualisation . 79

7.9 Treemaps using Different Algorithms . 81

7.10 Heatmaps using Different Colour Distributions . 85

7.11 Heatmap of Population of All Countries . 87

7.12 Construction Process of Heatmap . 88

7.13 A Simple Voronoi Diagram . 89

7.14 Voronoi Treemap Exports . 91

7.15 Voronoi Diagram Area Adjusting Process . 94

8.1 Construction of Squarified Treemap . 98

8.2 TreeNode ID Generation . 103

8.3 Newly Added Country Map . 107

8.4 Example of Winged-Edge Data Structure Mapping . 110

8.5 Point Position Determination for Polygons . 111

8.6 Adding a Generator to a Voronoi Diagram . 114

A.1 Inserting a Gadget in Google Spreadsheets. 118

A.2 Inserting a Gadget in Google Spreadsheets . 120

iv

List of Tables

2.1 Improvements in Cognition . 5

4.1 Comparison of the Online Visualisation Solutions . 25

6.1 Date Formats in Liquid Diagrams . 65

8.1 The Winged-Edge Data Structure . 110

8.2 Computation Results of Point Position Determination 112

A.1 Visualisations and their Data Format . 119

A.2 Chart Data Format . 120

A.3 Pie Data Format . 121

A.4 Multidimensional Data Format . 121

A.5 Hierarchical Data Format . 122

A.6 Geo Data Format - Two Fields . 122

A.7 Geo Data Format - Single Field . 123

v

vi

Acknowledgements

I wish to thank my advisor, Keith Andrews for his regular support and feedback during the course of this
and the two other projects I worked on under his supervision. I also want to thank him for correcting the
draft versions of this thesis.

Furthermore I want to thank my family and friends in supporting me throughout my study, especially
my girlfriend.

The most special thanks goes to my father, Friedrich Lessacher, who unremittingly supported me
during my years of study and througout my life and thus made this work possible.

vii

viii

Credits

I would like to thank the following individuals and organisations for permission to use their material:

• The thesis was written using Keith Andrews’ skeleton thesis [Andrews, 2006].

• Figure 3.5 is used with kind permission of Jeff Schiller.

ix

x

Chapter 1

Introduction

Data and its interpretation are an essential part of many kinds of information work. By interpreting data,
organisations and individuals are able to benchmark their efforts, enhance their workflows, and gener-
ate new ideas. According to Lyman and Varian [2003] the shear amount of data doubles every three years.

One possibility to facilitate the interpretation of data is to use information visualisation. Informa-
tion visualisation makes use of the human visual perception system to pre-attentively detect patterns and
changes in size, colour, shape, movement or texture [Shneiderman, 1996]. For example, it can be much
faster and easier to compare and analyse companies based on several indicators when looking at a graph-
ical representation of the data, rather than looking at a table of data.

Nowadays, information visualisation is increasingly popular and is not only used by companies and
academics, but also by individuals in their everyday life. People use visualisations to gain insight into
their own data and share the resulting visualisations with other users. The process of sharing leads to
social interaction, new knowledge and insights.

This thesis builds upon previous work by the same author. Lessacher [2009a] investigated a range of
visualisation solutions available to users and Lessacher [2009b] introduced the Liquid Diagrams frame-
work that enables the creation of highly interactive, user friendly visualisations. This thesis presents the
framework and its available visualisations. A summary of the Liquid Diagrams framework was published
at IV’10 [Andrews and Lessacher, 2010].

In Chapter 2 an overview of the history of information visualisation is given. The necessary tech-
nologies used to implement information visualisation solutions are discussed in Chapter 3. Chapter 4
takes a look at existing visualisation applications and software and points out their strengths and weak-
nesses. Chapter 6 introduces changes and additions to the Liquid Diagrams framework. It also provides
an overview of the existing visualisations in the Liquid Diagrams framework. In Chapter 8 a more de-
tailed description of the implementation of certain special functions and algorithms is given. Finally,
Chapter 9 is a brief review of possible future work.

1

2 1. Introduction

Chapter 2

Information Visualisation

“ A picture is worth ten thousand words.”

[Frederick R. Barnard (advertisement for Royal Baking Powder, 1921)]

2.1 Origins

As Card et al. [1999] states, one of the earliest attempts to use abstract visual properties to represent
data was carried out by William Playfair [1786]. Two of his charts are illustrated in Figure 2.1 and
are considered to be the foundation of classical methods for plotting data. In 1914 Brinton [1914], the
first American book on graphic techniques for business was published. It illustrated various visualisation
types and described how to optimally lay out visualisations. Jacques Bertin [1981] identified the basic
elements of diagrams and described a framework for their design and Edward Tufte [1983] led to the
development of principles of visual information design. According to Spence [2007] the field of infor-
mation visualisation greatly advanced over the last 20 years because of computational support. This is
due to the possibility to store vast amounts of data, powerful and fast computation, and the availability
of high-resolution displays.

2.2 Definition and Principles

Card et al. [1999, page 7] define information visualisation as “The use of interactive visual represen-
tations of abstract, nonphysically based data to amplify cognition”. This is illustrated in Table 2.1.
According to Spence [2007] information visualisation does not necessarily involve a visual experience
due to the fact that sound and other sensory modalities can be employed to represent data. Information
visualisation tries to make use of the human visual perception system to pre-attentively detect patterns
and changes in size, colour, shape, movement or texture [Shneiderman, 1996]. Ware [2004] states that
information visualisation is all about external cognition, due to its boost in the cognitive capabilities of
the mind. The sense of vision acquires more information than all other senses combined. If presented
well, this sheer quantity of information can be rapidly interpreted by the eye and the brain to detect pat-
terns of differences or changes over time. This also reveals problems and errors in the data set, making
visualisations invaluable in quality control. Ware [2004] also states that visualisations are made up of
symbols and differentiates between two different types of symbols:

• Arbitrary Symbols: Arbitrary symbols have no perceptual basis and thus need to be learned.
They are often based on culture and need to be standardised in order to be effective.

3

4 2. Information Visualisation

(a) The earliest published pie chart
by William Playfair in 1801.

(b) A chart using bars to show the price changes of a Quarter of
Wheat, and Wages of Labour by the Week, from 1565 to 1821.

Figure 2.1: Some of the first charts, drawn by William Playfair at the beginning of the 19th century
(images taken from Wikimedia [2010]).

Figure 2.2: The information visualisation reference model shown in Card et al. [1999].

• Sensory Symbols: Sensory symbols derive their expressive power without the brain having to
learn them. They are well matched to the early stages of neural processing, and,because all humans
have more or less the same visual system, they tend to be stable across individuals and cultures.
Thus using sensory symbols can produce better displays and better tools for thinking.

According to Ware [2004], human visual perception can be illustrated as a three-tiered information
processing model. In the first stage, billions of neurons work in parallel to rapidly extract features
(orientation, colours, and textures) from every part of the visual field. Thus, the information is acquired
in bursts, a snapshot for each fixation. In the second stage, visual field is divided up into simple patterns
and regions, based on the objects textures and colours. In the third stage, objects are held in visual
working memory by the demands of active attention which is determined by the preattentive processing.

Ware [2004] states that preattentive processing is probably the most important contribution which
vision science can make to data visualisation, because it enables things to be recognised “at a glance”.
Two factors are important in determining whether something stands out preattentively:

• The degree of difference between the target and non-targets.

• The degree of difference of non-targets from each other.

Unlike scientific visualisation, which is usually based on physical data, information visualisation
is based on abstract data. Therefore appropriate visual representations have to be designed [Andrews,
2009, page 1]. One way to compare and design visualisation systems is to use a reference model. The
information visualisation reference model was developed by Chi [1999]. The interpretation of this model

2.3. Information Visualisation for the Masses 5

Increased Resources
High-bandwidth hierarchical interac-
tion

The human moving gaze system partitions limited channel capacity so that it combines high spatial
resolution and wide aperture in sensing visual environments (Resnikoff, 1987).

Parallel perceptual processing Some attributes of visualizations can be processed in parallel compared to text, which is aerial.
Offload work from cognitive to percep-
tual system Expanded

Some cognitive inferences done symbolically can be recoded into inferences done with simple
perceptual operations (Larkin and Simon. 1987).

Expanded working memory Visualizations can expand the working memory available for solving a problem (Norman. 1993).
Expanded storage of information Visualizations can be used to store massive amounts of information in a quickly accessible form

(e.g., maps).
Reduced Search
Locality of processing Visualizations group Information used together, reducing search (Larkin and Simon, 1987).
High data density Visualizations can often represent a large amount of data in a small space Tufte. 1983).
Spatially indexed addressing By grouping data about an object, visualizations can avoid symbolic labels (Larkin and Simon.

1987).
Enhanced Recognition of Patterns
Recognition instead of recall Recognizing information generated by visualization is easier than recalling that information by

the user.
Abstraction and aggregation Visualizations simplify and organize information, supplying higher centers with aggregated forms

of information through abstraction and selective omission (Card. Robertson, and Mackinlay, 1991;
Resnikoff. 1987).

Visual schemata for organization Visually organizing data by structural relationships (e.g.. by time) enhances patterns.
Value, relationship, trend Visualizations can be constructed to enhance patterns at all three levels (Berlin, 1977/1981).
Perceptual Inference
Visual representations make some
problems obvious

Visualizations can support a large number of perceptual inferences that are extremely easy for
humans (Larkin and Simon. 1987).

Graphical computations Visualizations can enable complex specialized graphical computations (Hutchins. 1996).
Perceptual Monitoring Visualizations can allow for the monitoring of a large number of potential events if the display is

organized so that these stand out by appearance or motion.
Manipulate Medium Unlike static diagrams, visualizations can allow exploration of a space of parameter values and

can amplify user operations.

Table 2.1: How information visualisation amplifies cognition (taken from Card et al. [1999]).

by Card et al. [1999] is illustrated in Figure 2.2. First the raw data is transformed into a more structured
set of relations which are easier to map. These data tables are then mapped to visual structures. By adding
graphical parameters like size or position the visual structures are transformed to views. User interaction
is very important during the whole process, because the user determines the output. Interaction support
is just as important as the underlying visual representation [Andrews, 2009]. Ben Shneiderman [1996]
defined seven basic principles of user interactions in information visualisation systems. The first four
principles are known as Shneiderman’s “visual information seeking mantra”:

• Overview: Gain an overview of the entire collection.

• Zoom: Zoom in on items of interest.

• Filter: Filter out uninteresting items.

• Details-on-Demand: Select an item or group and obtain details as needed.

• Relate: View relationships among items.

• History: Keep a history of actions to support undo, replay, and progressive refinement.

• Extract: Allow extraction of sub-collections and query parameters.

2.3 Information Visualisation for the Masses

Until now information visualisation was often only used by academics and research companies to iden-
tify outliers, detect patterns or simply to improve performance. Nowadays, information visualisation is

6 2. Information Visualisation

growing more popular and thus is more present in everyday life [Kosara, 2007a]. People use it to visu-
alise and share their own data or to look at visualisations made by others, such as NameVoyager [GG,
2010] [Wattenberg, 2005]. This leads to communication and social interaction between people talking
about visualisations, leading to newly created knowledge and insights [Viégas, 2010].

The number of applications and web sites providing the ability to share, visualise, and explore data
has increased. There are many possibilities to visualise data without necessarily having special training
or knowledge.

2.4 Examples of Visualisations

2.4.1 Line Chart

Line charts were introduced by William Playfair [1786] and are most commonly used for time-based
data. Each line represents a different entity and is constructed by connecting several data points corre-
sponding to this entity. The characteristic line reveals trends over time, which is why line charts are very
popular for financial data.

2.4.2 Pie Chart

First seen in Playfair [1786] the pie chart is among the most simple and most popular type of chart. It
consists of a circle composed of several sectors, each representing a different entity. The area of each
sector represents its proportional significance. The larger the area of a sector, the larger its significance.
The main problem of pie charts is that if its sectors are roughly evenly distributed, it is very hard to
distinguish between their significance. There are many variants of pie charts, including for example 3D
pie charts and exploded pie charts.

2.4.3 Bar Chart

Bar charts also date back to Playfair [1786]. In a bar chart, each entity is represented by one or more
horizontal or vertical rectangles. The width or height of each rectangle is determined by its value and
indicates the entity’s influence. Bar charts are especially useful for comparing two or more values. Figure
2.3 illustrates a data set visualised by the three basic chart types introduced by Playfair.

2.4.4 Area Charts

Area charts are very similar to line charts. Like in line charts, the data points of each entity are drawn and
then connected by lines to give an entity characteristic line. The main difference is that the area beneath
the characteristic line is filled. The resulting areas can be easily compared. The benefit of line charts to
reveal trends in the data is maintained. The most common types of area charts are stacked area charts
and overlay area charts, both illustrated in Figure 2.4.

2.4. Examples of Visualisations 7

 IE 8 IE 7 Firefox Safari Opera
February 14,7 11 46,5 3,8 2,1
March 15,3 9,1 46,2 3,7 2,2
April 16,2 9,3 46,4 3,7 2,2
May 16 9,1 46,9 3,5 2,2

(a) Data table used for three visualisations. The
Data shows the browser usage for specific
months in 2010 (data taken from Refsnes Data
[2010]).

Internet Explorer 7 Firefox Safari Opera

Browser Statistics (March 2010)

(b) Pie charts are used to compare different entities
but lack comparability if two values are nearly
the same.

Internet Explorer 8 Internet Explorer 7 Firefox Safari

Opera

February

March
April

May

50

40

30

20

10

0

Month

Pe
rc

en
ta

ge

Browser Statistics (2010)

(c) Line charts reveal trends over time.

Internet Explorer 8 Internet Explorer 7 Firefox Safari Opera

February

March
April

May

50

40

30

20

10

0

Month

Pe
rc

en
ta

ge

Browser Statistics (2010)

(d) Bar charts are used to compare different entities.

Figure 2.3: Same data visualised by three different visualisation types. All of these visualisation
types date back to William Playfair [1786].

Product A Product B Product C Product D

Dec 2000

Dec 2001

Dec 2002

Dec 2003

Dec 2004

Dec 2005

Dec 2006

5,000

4,000

3,000

2,000

1,000

0

Month

Sa
le

s

Stacked Areachart

Product A

Product B

Product C

Product D

(a) Stacked areachart. In stacked area charts, the
values are drawn on top of each other. Thus the
height of the drawn values at a specific point in
time represents the sum of all the entities’ values
at this specific time.

Product A Product B Product C Product D

Dec 2000

Dec 2001

Dec 2002

Dec 2003

Dec 2004

Dec 2005

Dec 2006

2,000

1,600

1,200

800

400

0

Month

Sa
le

s

Overlay Areachart

Product A

Product B

Product C

Product D

(b) Overlay areachart. In overlaid area charts each
entity’s area is drawn as if there were no others,
resulting in overlapping diagrams. Each area is
drawn semi-transparently, so that underlying ar-
eas can still be seen. This variant can be very
useful for direct comparison of entities. Too
many overlapping entities can result in an over-
cluttered display.

Figure 2.4: Two different variants of area charts displaying the same data.

8 2. Information Visualisation

Cereals

R

A

Manufacturer

hot

cold

Type

160

50

Calories

6

1

Protein

5

1

Fat

320

15

Sodium

14

1

Fibre

23

5

Carbo

15

1

Sugar

3

1

Shelf

330

15

Potassium

100

25

Vitamins

1.5

.5

Weight

1.5

.25

Cups

Figure 2.5: The cereals data set shown in this parallel coordinates visualisation has 14 dimensions
(resulting in 14 axes and 398 records). Each data entity is shown as a characteristic
line of its values.

2.4.5 Parallel Coordinates

The parallel coordinates visualisation was invented in 1885 by Maurice [d’Ocagne, 1885] and later inde-
pendently rediscovered by Alfred Inselberg in 1959 [Inselberg, 1985] [Inselberg, 2009]. It is a popular
and effective way to visualise high-dimensional data. High-dimensional data can be imagined as a num-
ber of dimensions or attributes (for example for a car: speed, price, acceleration, ...) and appropriate data
entities or records (objects such as individual charts) containing one value for each of these dimensions.

The visualisation is constructed by dividing up the available space into N separate axes, where N
is the number of data dimensions. The highest and the lowest value of each dimension’s entities are
taken as the corresponding upper and lower axis limits. The next step is to take an entity, and draw its
values relative to the upper and lower boundary on the corresponding axis. Afterwards the data points
are connected by lines, leading to an entity characteristic line or polyline. This line drawing process is
then carried out for each entity.

Parallel coordinates are especially useful for detecting patterns and comparing individual data enti-
ties. In order to detect patterns it is very helpful to be able to rearrange specific axes. An example of a
parallel coordinates visualisation is shown in Figure 2.5.

2.4.6 Scatter Plots, Bubble Chart

According to Friendly [2008] the first semi-graphic scatterplot and correlation diagram was drawn in
1874 by Francis Galton. A scatter plot is a chart where the value of one dimension of a data entity is
drawn on the x-axis and another dimension on the y-axis. The point of intersection of these two values
is compared to intersection points of other data entities. This way the user is able to detect patterns, for
an example look at Figure 2.6.

Like a scatter plot, a bubble chart also uses two data dimensions to obtain a point of intersection.

2.4. Examples of Visualisations 9

10

Boston Consulting Group - Portfolio Analysis

G
ro

w
th

5

M
ar

ke
t G

0

210

Relative Market Share

Product A Product B Product C Product D Product E Product F

Cash CowsDogs

Stars?

Figure 2.6: This scatter plot displays a portfolio analysis of six different products. Each product
is one data entity. The two used dimensions of each entity are its market growth and
its relative market share. The point of intersection of both dimensions tells the user in
which stage the product is. According to the current stage he can initiate an appropriate
strategy.

The difference to scatter plots is that another dimension of the data is drawn into the chart as the size of
the intersection point. That way bubble charts contain three different dimensions of one data entity as
illustrated in Figure 2.7. The glyph drawn can be varied according to several dimensions: say by size,
colour, type. Hence five data dimensions could be represented: two in the x and y axes and three within
the glyph.

2.4.7 Star Plot (Radar Chart, Star Chart, Spider Chart)

Star plots date back to Mayr [1877]. Star plots are also called star diagrams or spider charts because they
look like a star or spider’s web. A radar chart is drawn as n-gon where the radial axes are categories (for
example years). Each category typically ranges from the outside (highest value) to the centre (lowest
value) of the n-gon and is symbolised by a line giving the chart its spider-web-like look. For each data
entity a line is drawn between the corresponding values of each neighbouring category. The result is a
star-like shape for each of the data entities which characterises them. This enables comparison between
the different data entities, as shown in Figure 2.8.

2.4.8 Tree Map

The treemap visualisation was invented by Ben Shneiderman in 1990 to visualize the space usage of his
hard disk in a compact and effective way [Shneiderman, 2008]. A treemap is a visualisation of hierar-
chical data by using nested rectangles. For each data item in the hierarchy a rectangle is drawn. All the
rectangles of one hierarchy level share the space of their common parent’s rectangle. The space that each
rectangle takes is determined by its proportion of the parent space. This is illustrated in Figure 2.9

Tree maps display data in a very space efficient way resulting in lots of displayable items on the

10 2. Information Visualisation

10

5

Product A

Product B

M
ar

ke
t

G
ro

w
th

Product C

Product D

Product E

Product F

0

210

 Relative Market Share

Cash CowsDogs

Stars?

Figure 2.7: The bubble chart looks nearly the same as the scatter plot. The main difference is the
size of the points of intersection. The point size is determined by a third dimension of
the data entity. In this example the size is given by each products profit values.

chevrolet chevelle malibu
ford torino 500
pontiac firebird
toyota corona hardtop
volkswagen super beetle
renault 12 (sw)

Cars

mpg [0 to 26]

cyl [0 to 8]

disp [0 to 307]

hp [0 to 130]

lbs [0 to 3,504]

accel [0 to 21]

Figure 2.8: The main structure of a radar chart looks like a spider web. In this example six cars
of the cars dataset are compared to each other. The connection of all values leads to a
star-like and characteristic shape for each car. Due to that shape they can be compared
to each other.

2.4. Examples of Visualisations 11

0 25 Colour: % Foreigners
Size: Area (ha)

Austrian Foreigner Statistics

Niederösterreich

Zwettl Mistelbach Gänserndorf

Amstetten Neunkirchen St. Pölten-Land

Scheibbs Melk Hollabrunn

Wr.Neustadt-Land

Lilienfeld

Krems-Land

Gmünd Horn

Baden

Waidhofen

Tulln

Korneuburg

Wien-U

Mödling

Steiermark

Liezen

Murau

Bruck an der Mur

Graz-Umgebung

Leoben

Judenburg Weiz

Hartberg Mürzzuschlag

Feldbach

Leibnitz

Voitsberg Knittelfeld

Graz

Tirol

Lienz

Innsbruck-Land

Schwaz

Imst

Landeck Reutte

Kitzbühel Kufstein

Oberösterreich

Gmunden Kirchdorf Vöcklabruck

Braunau am Inn

Freistadt

Steyr-Land

Rohrbach Urfahr-U

Schärding

Perg

Ried Grieskirchen

Linz-Land

Wels-Land
Linz

Kärnten

Spittal an der Drau Sankt Veit

Villach-Land

Wolfsberg

Völkermarkt Hermagor

Klagenfurt-L Feldkirchen

Villach

Salzburg

Zell am See

St. Johann im Pongau

Tamsweg

Salzburg-U

Hallein

Burgenland

Neusiedl Oberwart

Oberpullendorf

Güssing

Eisenstadt-U

Vorarlberg

Bludenz

Bregenz

Wien

Figure 2.9: A treemap visualisation of the percentage of foreigners in Austrian provinces and dis-
tricts. Each province takes its share of space according to its area. The colour coding is
given by the percentage of foreigners in the district. Vienna in the bottom right corner,
has the highest percentage of foreigners.

screen. By looking at the sizes of the rectangles the user is able to immediately spot outliers and by using
colour coding he is also able to detect patterns.

2.4.9 Heat Map (Choropleth Map)

A heatmap is a representation of data in two-dimensional areas. Each data entity is assigned a colour
corresponding to its value. The history of heatmaps can be traced back to Loua [1873] who introduced
colour shaded matrix display in 1873 (see Figure 2.10a). A typical type of a heatmap is a cluster
heatmap shown in Figure 2.10b. A cluster heatmap consists of a rectangular tiling with each tile shaded
on a colour scale [Friendly and Wilkinson, 2009]. Heat maps typically find application in web page
analysis and in molecular biology.

A choropleth map is a heatmap with cartographic areas. Choropleth maps display geographic areas
which are shaded to reflect a value assigned to this specific area. By doing so the choropleth maps are
designed to enhance the analysis of all kinds of geographical data like economical and statistical facts of
countries. The first choropleth map was introduced in 1826 by Dupin [1826] and displayed the distribu-
tion and intensity of illiteracy in France (shown in Figure 2.11a). Choropleth maps have been growing
more popular the past years.

2.4.10 Voronoi Diagram

According to Okabe et al. [2000] a Voronoi diagram is a concept that has been discovered many times
in many different disciplines and thus is known under many different names. A few of these names are
Voronoi diagrams (computational geometry), Wigner-Seitz zones (chemistry, physics), domains of action
(crystallography), Thiessen polygons (geography), and Blum’s transform (biology). A Voronoi tessela-
tion partitions the available space among a number of given sites, according to the nearest-neighbour rule.

12 2. Information Visualisation

(a) The first colour shaded matix display published
in Loua [1873]. This image is taken from
Friendly and Denis [2010].

(b) This cluster heatmap displays data extracted
from the StemBase database of gene expression
data. The image is taken from Wikimedia [2010].

Figure 2.10: This figure shows typical cluster heatmaps which display data in a two dimensional
map.

(a) The first choropleth map created by Dupin [1826]
in 1826 displays the distribution and intensity of
illiteracy in France.

(b) A thematic choropleth map by Guerry and Balbi
[1829] showing crimes against property in re-
lation to level of instruction by departments in
France.

Figure 2.11: Early choropleth maps displaying statistics of France and its departments. The images
are taken from Friendly and Denis [2010].

2.4. Examples of Visualisations 13

(a) The first Voronoi-like diagram
written and published by René
Descartes. It shows the dis-
position of matter in the Solar
System and its environs (image
taken from Okabe et al. [2000])

1 21 Colour: % Foreigners
Size: Area (ha)

Austrian Foreigner Statistics

Zell am See

St. Johann im Pongau

Tamsweg

Salzburg-Umgebung

Hallein

Salzburg

Neusiedl am See

Oberwart

Eisenstadt-Umgebung

Mattersburg

Oberpullendorf

Güssing

Jennersdorf

Eisenstadt

Rust

Wien

Bludenz

Bregenz

Feldkirch

Dornbirn

Gmunden
Kirchdorf an der Krems

Steyr-Land

Vöcklabruck

Braunau am Inn

Freistadt

Urfahr-Umgebung

Ried im Innkreis

Rohrbach

Grieskirchen

Schärding

Perg

Linz-Land

Wels-Land

Eferding

Linz

Wels

Steyr
Spittal an der Drau

Sankt Veit an der Glan

Villach-Land

Hermagor

Klagenfurt-Land

VölkermarktFeldkirchen

Wolfsberg

Villach

Klagenfurt

Schwaz

Innsbruck-Land

Lienz
Imst

Reutte

Kitzbühel

Landeck

Kufstein

Innsbruck

Liezen

Murau

Judenburg

Weiz

Graz-Umgebung

Bruck an der Mur

Leoben
Mürzzuschlag

Deutschlandsberg

Hartberg

Knittelfeld

Leibnitz

Voitsberg

Feldbach

Radkersburg

Fürstenfeld

Graz

Zwettl

Mistelbach

Amstetten

Gänserndorf

Baden

Scheibbs

Hollabrunn

Neunkirchen

Melk

St. Pölten-Land

Gmünd

Wiener Neustadt-Land

Waidhofen an der Thaya

Krems-Land

Tulln

Horn

Lilienfeld

Bruck an der Leitha

Korneuburg

Waidhofen

Mödling

Wien-Umgebung

St. Pölten

Wiener Neustadt

Krems

(b) A Voronoi treemap is very similar to a treemap. This Voronoi
treemap displays the same data set as the treemap in Figure 2.9
but uses polygons instead of rectangles to build up the diagram.

Figure 2.12: An ordinary Voronoi diagram is different than a Voronoi treemap because in the
Voronoi treemap the sites (generators) are weighted and several iterations have to
be undergone to reflect the proper area sizes like given by the data set.

The first published Voronoi-like diagram dates back to René [Descartes, 1644] in 1644, which
showed the disposition of matter in the solar system and its environs (shown in Figure 2.12a) [Okabe
et al., 2000]. According to [Aichholzer and Aurenhammer, 2002] the term Voronoi diagrams originated
from the Russian mathematician George Voronoi who is believed to be the first who formally introduced
the concept in 1908. In applications Voronoi diagrams are used for collision detection, motion planning,
associative file searching, clustering, scheduling, and crystal and cell growth [Telea and van Wijk, 2001].

The first use of Voronoi diagrams in information visualisation was in InfoSky [Andrews et al., 2002].
Infosky enables the exploration of large, hierarchically structured knowledge spaces illustrated in Fiugre
2.13. In InfoSky, area partitioning is done using modified, weighted Voronoi diagrams. The centroids
of subcollections are used to partition the polygon representing the parent collection into polygonal
sub-areas. The size of each sub-area is related to the total number of documents contained within the
corresponding subcollection.

The same idea was later called a Voronoi treemap by Balzer and Deussen [2005]. A Voronoi treemap
possesses the advantages of a normal treemap to display hierarchical data. Instead of using rectangles
to build up the visualisation the Voronoi treemap uses polygons instead. The benefit of polygons is that
the aspect ratio between width and height is not as limited as in treemaps [Balzer et al., 2005]. Another
benefit is that any shape like circles, triangles, and other polygonal shapes can be used as the Voronoi
maps main shape. An example for a Voronoi treemap can be seen in Figure 2.12b.

14 2. Information Visualisation

Figure 2.13: The interface of InfoSky, an application which enables the exploration of large, hierar-
chically structured knowledge spaces by using modified, weighted Voronoi diagrams.

Chapter 3

Technologies

This chapter gives an overview of existing technologies which enable the visualisation of data. This
includes both older technologies and more recent technologies.

3.1 HTML, JavaScript, DOM and AJAX

The Hypertext Markup Language (HTML) is the original markup language for web pages. Its first spec-
ification dates back to the year 1991. HTML uses a limited set of predefined tags to describe the content
of a web page. Since HTML was made to generate static content, it is rather unsuitable for visualising
data. Except for animated GIF images pure HTML supports no animations. More significantly, HTML
alone does not support any user interaction beyond a mouse click inside an image map.

JavaScript is a scripting language which can extend HTML to tackle one of its limitations — the
inability to support user interactions. JavaScript code is therefore into the HTML code allowing it to
register and handle user-triggered events. It is a client-side script and therefore executes within the web
browser on the computer of the user. Using JavaScript it is possible to access specific elements of the
web page, in particular form fields.

To gain access to all elements of a page, the document object model (DOM) is required [W3C,
2010a]. The DOM describes the elements of a web page. Using JavaScript it is possible to access
specific elements of the document and manipulate them, resulting in dynamic changes to the displayed
content. This extended web page is then called dynamic HTML, because it is capable of changing its
content in response to user input.

Although JavaScript and the DOM greatly enhance the functionality and capability of HTML, there
is still one downside. Each time the client-side content changes and new data from the server is needed,
a new HTTP request has to be sent to the server, which creates a new response page and sends the whole
page back to the client. This can lead to a large overhead of unnecessary data and to high client-side
loading times. Asynchronous JavaScript and XML (Ajax) is the solution to this problem. It allows the
client side to request only specific data and thus avoid a complete page refresh, as illustrated in Figure
3.1.

Using HTML in combination with JavaScript and AJAX, it is possible to implement interactive user-
friendly visualisations for the web. These technologies can be used by everyone without having to first
install special software. The user only has to have a JavaScript enabled browser.

However, there are some drawbacks too. JavaScript was originally developed by Netscape for its

15

16 3. Technologies

Figure 3.1: Client-Server architecture and communication using JavaScript and Ajax [taken from
[Davis and Phillips, 2008]].

Netscape Navigator. Microsoft later developed their own version of JavaScript - JScript - for Microsoft
Internet Explorer. This led to several problems concerning interpretation of JavaScript in different
browsers. Even nowadays, although W3C’s DOM was supposed to tackle this problem, there are still
differences in interpretation leading to different results and errors SELFHTML e.V. [2010].

Another drawback is that none of these technologies really focuses on graphical elements. There
are several JavaScript graphic libraries adding this support, but compared to other technologies which
focus on graphical elements and animations, they are not as powerful and simple to use. Ajax is mostly
intended for use across the internet, limiting its use on the local desktop Kosara [2007b].

3.2 Java

Developed by Sun Microsystems in 1991, Java is one of the most popular programming languages. Java
is object-oriented and has a very large function library. Java is also operating system independent. This
is achieved by compiling Java applications into a special byte code, which is then executed inside a Java
Runtime Environment (JRE). Applications written in Java and intended for use on the web are usually
called Java applets. These applets run client-side and thus are able to provide interactive features.

The major benefit of using Java to create visualisation gadgets is its huge function library. In its
6th version, the Java programming language has amassed a variety of powerful but easy-to-use libraries
(shown in Figure 3.2) including graphical libraries as well as libraries to support user interaction.

Another advantage is that because Java is a licensed product, the specifications are the same every-
where, leading to no problems concerning different programming and execution environments. A further
benefit of Java is that applets can be converted by open source tools to standalone platform-independent
applications which can be executed offline Boy and Senapati [2010].

However Java also has some downsides. The main reason why Java applets are not as often used as

3.3. Java FX 17

JDK

Java Language Java Language

Tools &
Tool APIs

java javac javadoc apt jar javap JPDA JConsole Java
VisualVM

Security Int'l RMI IDL Deploy Monitoring Troubleshoot Scripting JVM TI

JRE

Deployment
Technologies Deployment Java Web Start Java Plug-in

User
Interface
Toolkits

D2 avaJgniwSTWA

Accessibility Drag n Drop Input Methods Image I/O Print Service Sound

Java
SE
API

Integration
Libraries IDL JDBCTM JNDITM RMI RMI-IIOP Scripting

Other Base
Libraries

Beans Intl Support I/O JMX JNI Math

Networking Override
Mechanism Security Serialization Extension

Mechanism XML JAXP

lang and util
Base

Libraries

lang and util Collections Concurrency
Utilities JAR Logging Management

Preferences
API

Ref
Objects Reflection Regular

Expressions Versioning Zip Instrument

Java Virtual
Machine Java HotspotTM topstoH avaJMV tneilC TM Server VM

Platforms SolarisTM Linux Windows Other

Figure 3.2: The architecture of the Java Development Kit Version 6, with its tools, toolkits, and
libraries. (Image taken from Oracle [2010b]).

they could be, is the fact that the client needs to have the Java Runtime Environment installed to launch
the applets. While having a JRE installed was common some years ago, this is not the case nowadays
Kosara [2007b].

3.3 Java FX

JavaFX is Sun Microsystems answer to Adobe Flex and Microsoft Silverlight to develop rich internet
applications (RIAs) [Oracle, 2010a]. JavaFX has its own scripting language called JavaFX Script that
adds a new API with graphical and network functions. Java code can be integrated to make use of the
large Java API. The JavaFX applications are, like usual Java applications, transformed to Java bytecode
which is interpreted by the Java Runtime Environment, thus forcing the user to install the Java Runtime
Environment on the local computer.

3.4 Adobe Flex

Adobe Flex is an open source framework for building rich internet applications. For more information
on Flex see Chapter 5.

3.5 Adobe AIR

Adobe Integrated Runtime (AIR) helps to develop deployable desktop applications with Adobe Flash,
Adobe Flex, HTML or Ajax. According to Adobe [2010b] AIR gives developers access to a set of Adobe
AIR API functions that enable to access a broad variety of desktop functionality and resources (seen in
Figure 3.3) . This includes full local file access, drag-and-drop support, access to multiple servers and
other desktop applications, data base access, background processing, system notifications and more. AIR
applications can be directly deployed onto the desktop and executed without the need for a browser. To
be able to execute Adobe AIR applications the AIR runtime needs to be installed. This can be done when

18 3. Technologies

Figure 3.3: The integration of the Adobe AIR API (Image taken from Adobe [2010b]).

installing an application or prior to that by installing the runtime separately.

Like Adobe Flex, the AIR SDK is available without charge. The SDK can be used in combination
with any text editor to create applications. However the Adobe Flash Builder (formerly known as Flex
Builder), an integrated development environment (IDE) for the creation of rich internet applications is
subject to charge.

3.6 Microsoft Silverlight

In April 2007 Microsoft launched Silverlight, their answer to Adobe’s Flash and Flex. Like Flex, Sil-
verlight is also designed to enable developers to easily create rich internet applications. Silverlight uses
XAML (Extensible Application Markup Language) to describe vector graphics and animations. One
of the benefits of XAML is that the textual content created with Silverlight is searchable and indexable
by search engines. This is achieved by not compiling the textual content. JavaScript is used to access
XAML and to alter the document to achieve changes in the user interface.

The differences between Silverlight and Adobe’s Flex was summarised by nirajswami [2007] as:

• Indexable
The textual content of Silverlight applications is searchable by search engines. Adobe [2010g]
is also looking to enhance the search engine indexing of the Flash file format (SWF) to uncover
information that is currently undiscoverable by search engines.

• Not available for Linux
Although Microsoft intended to make Silverlight platform-independent, they have not fully achieved
this, because Silverlight is not available on Linux systems. A third-party corporation is currently
working on a Linux implementation of Silverlight called Moonlight Mono [2010].

• Not all image formats supported
Adobe Flash supports all common image types, Silverlight only supports PNG and JPG files.

3.7. Scalable Vector Graphics (SVG) 19

Figure 3.4: A rendering of the SVG code in Listing 3.1. The resulting image is fully scalable and
can be easily edited at a later time.

Prior to Silverlight version 3 there was no option to create Silverlight applications which support
offline use. The technology enabling this, called Silverlight Out of Browser (OOB), was introduced with
Silverlight 3. The difference between the Silverlight OOB and AIR was that Silverlight OOB ran in
the web browser’s sandbox thus limiting the possible actions to the browser level (no full file access)
[Steward, 2010]. With the recent release of Silverlight version 4 in April 2010 Microsoft addressed this
drawback and introduced a Fully Trusted OOB capability [Huckaby, 2010].

3.7 Scalable Vector Graphics (SVG)

Scalable Vector Graphics (SVG) is an XML-based language to describe two-dimensional graphics [W3C,
2010c]. The language is under development since 1999 by the World Wide Web Consortium (W3C) and
was introduced in September 2001 [W3C, 2010e]. As the name indicates the major benefit of Scalable
Vector Graphics is that they are completely scalable without loss of quality.

The language offers three types of elements to work with [W3C, 2010c]:

• Shapes: Shapes are the basic drawing elements like lines, curves or paths.

• Images: This element allows the import of an external image file into the SVG document.

• Text: Text is entered as plain text and rendered according to the attributes and properties.

Scalable Vector Graphics are not limited to static content. By scripting or embedding animation
elements, the drawings can be interactive and thus dynamic. According to the W3C [2010c] it is also
possible to access all elements, attributes and properties using the SVG Document Object Model (DOM).
An example of a Scalable Vector Graphic can be seen in Listing 3.1 and Figure 3.4.

There are basically two ways to create Scalable Vector Graphics. The first way is to manually create
the graphic by entering SVG tags in any text editor. The alternative is to draw the graphic using a graph-
ical SVG editor. The most common graphical SVG editors are Adobe Illustrator [Adobe, 2010d], Corel
Draw [Corel, 2010] and the freely available Inkscape [Inkscape, 2010]. While the creation of vector
graphics using graphical editors is easier and more comfortable, it can also lead to larger file sizes due to
unnecessary information added by the graphical editors. For example, the graphic shown in Figure 3.4
created with the code shown in Listing 3.1 only occupies 650 bytes, while the exact same result made

20 3. Technologies

1 <?xml version= ” 1 . 0 ” encoding=”UTF−8”?>
2 <!DOCTYPE svg PUBLIC ”− / /W3C / / DTD SVG 1 . 1 / / EN” ”http : / / www .w3 .org /Graphics /SVG

/ 1 . 1 / DTD /svg11 .dtd”>
3
4 <svg version= ” 1 . 1 ”
5 id=”Rectangles”
6 width=”530”
7 height=”395”
8 xmlns=”http : / / www .w3 .org / 2 0 0 0 /svg”>
9

10 <rect width=”300”
11 height=”231 .42857”
12 x=”3 .1428561”
13 y=”1”
14 style=”opacity : 0 . 5 ; fill : #ffb380 ;
15 stroke : # 0 0 0 0 0 0 ;stroke−width : 1px ;” / >
16
17 <rect width=”325 .71429”
18 height=”242 .85715”
19 x=”203 .14287”
20 y=”149”
21 style=”opacity : 0 . 5 ; fill : #aaccff ;” / >
22
23 <rect width=”262 .85715”
24 height=”248 .57143”
25 x=”114 .57142”
26 y=”63”
27 style=”opacity : 0 . 5 ; fill : #afe9c6 ;” / >
28 </svg>

Listing 3.1: A Scalable Vector Graphic (SVG) code to display three rectangles. The rendered result
can be seen in Figure 3.4.

3.7. Scalable Vector Graphics (SVG) 21

Figure 3.5: The SVG support of various browsers, according to Schiller [2010b]. The image is the
result of 280 SVG tests run by Schiller [2010a]. Each test is given a 2 pixel stripe in
the bar of each browser resulting in a browser characteristic bar.

with Inkscape results in 2,484 bytes.

Scalable Vector Graphics are usually used and shown in a browser. As stated in Schiller [2010b],
almost any major browser except Microsoft’s Internet Explorer 8 has native support for Scalable Vector
Graphics (see Figure 3.5). To display Scalable Vector Graphics in Internet Explorer 8, one of several
available plug-ins need to be installed (for example the Adobe SVG Viewer available at Adobe [2010e]).
However, as shown in Figure 3.5, Internet Explorer 9 will include much increased native support for
SVG.

22 3. Technologies

Chapter 4

Existing Visualisation Software

Due to the growing interest in visualising data more and more visualisation solutions are offered. Some
solutions only render a static image, while others offer interactivity to arouse interest in the data and
explore it. In this thesis, three different types of visualisation solutions are distinguished:

• Standalone visualisation software

• Visualisation libraries and components

• Online visualisation software

In this thesis the focus is set on online visualisation software, because the Liquid Diagrams Frame-
work belongs to this category. A detailed view of standalone visualisation software and visualisation
libraries and components can be found in Lessacher [2009a].

4.1 Standalone Visualisation Software

Standalone visualization applications do not require user’s to go online to visualize their data. Instead,
the application is launched locally on the user’s computer. Using an application offline has the advantage
that the user does not have to register or upload data. Standalone software is also usually much faster,
because all the data and components are already installed and accessible on the local computer.

4.2 Visualisation Libraries and Components

Visualisation libraries and components are special packages created by third parties which enable users
to embed third party charts into their web pages and web applications. Depending on the complexity
of the packages, the user has to have some experience with at least managing web space, uploading
files, and markup languages. In some cases, the user even needs to have experience in programming and
scripting languages. Thus visualisation libraries are not suitable for most users. However, when set up
by others (web developers, consultants...) these packages can be easily and effectively used by typical
web users.

4.3 Online Visualisation Software

Online visualisation software are web applications which can be executed online using a web browser.
One advantage of online visualisation software over offline visualisation software is that it does not have

23

24 4. Existing Visualisation Software

to be installed on the local computer and thus does not require space on the user’s hard disk. This is due
to the fact that the main files needed to execute the application are located on the server. In some cases,
the user has to install some software in advance on their local computer, like Adobe Flash Player or the
Java Runtime Environment. The size of these environments is generally very small and is needed often
by other applications too.

Another great benefit of online visualisation software is that it enables users to collaborate in creating
data and visualisations. Users can share their visualisations very easily with other people. Due to this
process of sharing, people communicate with each other and exchange experiences. Thus knowledge
and insight about data and its patterns is created. Nevertheless, this process of sharing can also be a
drawback, namely if users must share and publish their data to be able to create visualisations. This can
be a serious problem for internal and private data. A similar problem is that users usually have to register,
before being able to use online visualisation software. Depending on the internet connection speed of
users, load times of online visualisation applications can be very annoying. However, nowadays, most
connections are fast enough to avoid long load times.

A brief summary of all the online visualisation solutions discussed in this thesis can be seen in Table
4.1. The table distinguishes 8 different characteristics of online visualisation software:

• Technology: The technology used to implement the software. For more information on the bene-
fits and drawbacks of specific technologies, see Chapter 3

• Handling: Indicates how complex it is to create a customised visualisation. While some software
solutions enable the creation of visualisations with only a few mouse clicks, others require users
to enter source code.

• Interactivity: Highly interactive software supports Shneiderman’s “visual information seeking
mantra” [Shneiderman, 1996] and thereby enhances the users exploring experience.

• Social Interactivity:Software with high social interactivity enables the user to comment on and
take snapshots of visualisations and discuss them with a community. This greatly enhances the
insight of users for given visualisations and catalyses social activity.

• Own Data: This column indicates the possibility to use one’s own data. While some solutions
visualise uploaded data for free, the user is sometimes obliged to share the visualised data set.
Some solutions also offer the possibility to pay a fee and visualise data without sharing.

• Vector Export: Determines if the visualisation software supports the export of vector graphics.
This can be either achieved by providing an export function or by implementing the built in print
function of the browser.

• Image Export: The visualisation solutions capabilities of exporting the visualisation as an image
(any type).

• Visualisation Types: The basic visualisation types offered by the visualisation software. A plus
indicates that there are a few other visualisation types available which are combined using other
visualisations. For example horizontal bars and vertical bars would count as one.

4.3.1 IBM Many Eyes

In order to encourage sharing and conversation around visualisations, the Visual Communication Lab,
part of IBM’s Collaborative User Experience research group, was founded in 2004 IBM [2010b]. The

4.3. Online Visualisation Software 25

Solution Technology Handling Interactivity Social Own Vector Image Visualisation
Interactivity Data Export Export Types

IBM Many Eyes Java Easy High High Yes (Share) No Yes 14+
NY Times - Visualization Lab Java Easy High High No No No 14+
Google Image Charts Ajax Medium None None Limited No Limited 9
Swivel Ajax Easy Medium High Yes (Share) No No 5
Verifiable.com Flex ? Little None Yes (Share) No Yes 3+
Google Standard Gadgets Ajax Easy Little No Yes No No 12+
Google Interactive Charts Ajax / Flex Difficult Little No Yes No No 16+
iCharts Flex ? High Medium No (Pay) Yes Yes 3+
Gapminder (Site) Flex Easy High No No Yes Yes 1
OECD eXplorer Flex Easy High No Limited No Yes 4

Table 4.1: Comparison of the named Online Visulisation Software solutions

founder was Martin Wattenberg, a mathematician who is known for various visualisations including the
Name Voyager [Wattenberg, 2005]. Together with Fernanda B. Viégas he created Many Eyes in 2007
IBM [2010a].

Many Eyes is a web site where users can share and upload their data to create visualisations based
on that data. This process of sharing is obligatory if the user wants to visualise data. Nevertheless, it
enables to visualise data for free without any limitations. A focus of Many Eyes lies on social interac-
tions between the creators and viewers of visualisations. Many Eyes offers many functions to comment,
annotate and bookmark (create snapshots) visualisations. This increases social interaction and can also
be helpful to discover patterns gain deeper insight into visualisations and their data. According to Viégas
et al. [2007] the visualisations catalyse social activity.

In order to upload the data the user has to prepare it in a tab separated file, according to a specific
format. Due to the fact that Many Eyes offers sixteen different types of visualisations the formats needed
for the visualisations vary slightly. The data is uploaded by being pasted in the specific format into a spe-
cific text box at the upload site. Afterwards, the user has to fill out some text fields describing its content.
There is no way to change the data set later on, because Many Eyes includes no data editor like most
standalone applications. The data is also revealed to all other internet users and is even downloadable by
them.

Many Eyes offers many great looking visualisations including complex ones like tree maps, world
maps and scatter plots (see Figure 4.1). All visualisations are written in Java and are highly interactive.
The user has many options to rearrange, sort, and filter the data. One drawback of the visualisations is
that the user has to have the Java Runtime Environment installed to see the visualisation. Each user can
create all available visualisations from any uploaded data set by just selecting the dataset, selecting the
visualisation, and pressing the visualise button.

A major drawback of Many Eyes is that there is no support for exporting a visualisation as a vec-
tor graphic. The only way is to save a screenshot of the maximised content. Even when printing the
visualisation as PDF, the visualisation will be printed as a raster image rather than a vector graphic.

4.3.2 NY Times - Visualization Lab

The Visualization Lab is a special form of IBM’s Many Eyes hosted by the New York Times [2010]. It
has exactly the same visualisations as Many Eyes. The only difference is that the visualisations at the
Visualization Lab are only available for data sets uploaded by the NY Times. Thus, users are not able to
upload their own data sets.

26 4. Existing Visualisation Software

(a) A dataset containing movies visualized as a tree
map.

(b) Another type of visualisation available in Many
Eyes is the world map. The countries in the data
set are added by using their names or ISO codes.

Figure 4.1: Many Eyes offers lots of highly interactive Java written visualisations.

Thus there are by far not as many data sets available as in Many Eyes, but the existing data sets are
of high quality and trustable resources. Since this feature is free, it is a nice addition to the New York
Times web site, to be able to explore the original data associated with the hosted articles and facts on the
site.

4.3.3 Google Image Charts

The Google Chart API offers a simple way to dynamically create charts, called Google Image Charts,
which are static visulisations Google [2010b]. To create a chart the user only has to enter a specific URL
containing the location of the chart API, the diagram type and options into the address bar of the browser.
Figure 4.2 shows an example of such a URL.

Since the data to visualise is part of the URL, there is no way to import data from a file. The user has
to manually enter the data in the appropriate format through the URL in the address bar. There are nine
different types of visualisations available, each with a set of options to customise the chart. Although the
interface is kept very simple, there are some nice-looking charts, like radar charts and maps, available.
The resulting charts are not the prettiest, are limited in size, and having no vector graphics, but depend-
ing on the complexity of the URL (data, options) they are created in a few minutes. The chart is simply
drawn into the browser window, where it can be saved by taking a screenshot or using the browsers “Save
Image as..” function.

In addition, Google logs the used URL for internal debugging and testing purposes Google [2010c].
Since the data is also packed into the URL, one might conclude that Google is logging the user’s data.

4.3.4 Swivel

Swivel, like Many Eyes, is a web site where users can upload their data to visualise it Swivel [2010].
Founded in 2005 by two physics graduates swivel is a business with 10 employees and a business plan
Kosara [2007b].

In a addition to the standard Swivel, where users publish their data to visualise it without cost, there
is an option to create a private group. Private groups require a monthly payment according to the number
of spreadsheets and charts available to the group. The benefit of private groups is that the uploaded data

4.3. Online Visualisation Software 27

Figure 4.2: Google charts are very simple but easily created (Image taken from Google [2010b]).
The data is included in the callling URL.

is only available to members of the group.

In contrast to Many Eyes, Swivel is made using Ajax. The visualisations are neither as pretty nor as
interactive as in Many Eyes, but run in nearly every modern browser without requiring the user to install
additional environments. Swivel is also very limited in its visualisations. They only offer five different
types of visualisations (bar charts, pie charts, line charts, area charts and scatter plots).

In Swivel data sets can be imported from comma separated (csv) files or by using copy and paste into
a text box. After the import, the user does not choose a specific visualisation type, but instead Swivel
automatically creates several visualisations resulting in a much larger number of visualisations than data
sets. One benefit of this creation variant is that the user can simply switch between different visualisa-
tions by pressing the appropriate button.

In Swivel, users can comment on visualisations created by other users. In addition, they can directly
compare different data sets. They just have to choose another data set and the two data sets are visually
merged, as shown in Figure 4.3.

Swivel offers no export functions to obtain images of the visualisations. Except for the option to
maximize (to a predefined value) the visualisation, there is no option to resize the visualisation, because
it is not displayed as vector graphic.

4.3.5 Verifiable.com

Verifiable.com was a web site enabling anyone to create visualisations [Visible Certainty, 2010b]. Vis-
ible Certainty, owners of the web site, announced that it would close on 1st of August 2010, two years
after it launched in July 2008 [Visible Certainty, 2010a]. According to Kosara [2010] the site offered
two different user services. The first service was free of charge and allowed the users to share and upload
their data to visualise it. The second service was for paying customers and allowed them to keep their

28 4. Existing Visualisation Software

(a) This visualisation is a result of one of the fea-
tures of Swivel. It is a comparison of three dif-
ferent data sets.

(b) Here is another combination of data sets visu-
alised as bar graph. This visualisation shows how
the internet supplanted TV.

Figure 4.3: Swivel only supports four different types of visualisations two of them bar chart and
line chart are shown here.

data private. Compared to Many Eyes, Verifiable.com offered only three basic types of visualisation
(lines, points, and bars) and although the diagrams were written in Flex they were not as interactive as
the Java visualisations of Many Eyes. In contrast to Many Eyes and Swivel, Verifiable.com did not offer
social features like commenting on a visualisation.

A nice feature Verifiable.com offered was the editor for visualisations. By pressing the Edit button
displayed above the visualisation the user was able to change visual aspects of the visualisation. It was
possible to change the type of the visualisation, data colours, labels, and which data column was dis-
played along the axes. An example of the editor can be seen at Figure 4.4a.

In the editor, the visualisation is shown as a vector graphic and thus can be resized, but there is no
option to export the image as a vector graphic. The print option of the Flex right click menu has been
removed and the browser’s print function does not even include the graphic to its output. At least it is
possible to export a high resolution PNG image, like the one shown in Figure 4.4b.

4.3.6 Google Interactive Charts

Google Docs [Google, 2010d] is Google’s response to Microsoft’s Office Suite. As in Microsoft Office,
users can write texts, design presentations, and handle data using spreadsheets. The two main differences
to Microsoft Office are that Google Docs is completely free and is typically used online. This enables
the user to share documents with others, leading to interaction and collaboration.

One special feature of spreadsheets created with Google Spreadsheets is the ability to add charts in
the form of externally programmed gadgets. There are thirteen basic gadgets including pie chart, area
chart, and bar chart implemented by Google. Additionally, it is possible for every user to create and
publish their own gadgets, as demonstrated in Figure 4.5

4.3. Online Visualisation Software 29

(a) The visualisation editor offered by Verifi-
able.com. Several visual aspects like the type of
the visualisation or which data columns are dis-
played on the axes can easily be set.

(b) This high resolution export of a visualisation dis-
plays Charles Minard’s data set of Napoleon’s
1812 Russia campaign.

Figure 4.4: Verifiable.com offers an easy to use editor with the option to export PNG images.

(a) In Google Spreadsheets users can choose gad-
gets to visualise their data. In addition to gad-
gets written by Google, anyone can publish their
own gadgets to share with others. There is also
the possibility to choose specific gadgets located
somewhere in the web using the Custom option.

(b) An area chart gadget written by Google. The vi-
sualisation can be customised by editing parame-
ters when creating the gadget, or by pressing the
edit button in the top left corner of the gadget
window.

Figure 4.5: Google Spreadsheets are used online and can be linked to externally programmed vi-
sualisation gadgets.

Gadgets are special HTML and JavaScript applications which can be used on web pages like iGoogle,
Google Maps, and others [Google, 2010a]. The basic element of a gadget is its XML file which contains
all necessary information about how to process and render the gadget. Every XML file meeting Google’s
specifications can be added to a spreadsheet to visualise its data. It does not matter where the XML file
is located in the internet. There are a number of tutorials and standards written by Google on how to
implement visualisations as gadgets [Google, 2010e]. These tutorials include examples demonstrating
how to pass data from within spreadsheets in Google Docs to an external gadget. Each gadget must
document how it requires its data to be structured in the spreadsheet. Sometimes, the meaning of rows
and columns needs to be swapped (transposed).

Up to now, following groups or individuals have published gadgets for spreadsheets in Google Docs:

• Infosoft Global: Infosoft Global contributed three gadgets made with Adobe Flash or Flex. Al-
though Flash is known for its strengths in creating interactive applications, these gadgets do not
support user interaction. Infosoft Global also offers other libraries which enable the user to inte-

30 4. Existing Visualisation Software

Figure 4.6: The Google Visualisation Playground. On the left of the playground is a menu bar,
which is used to choose the visualisation type. The right side is used to display
JavaScript code, which can be altered to modify the visualisation shown at the bot-
tom.

grate charts into web pages.

• Viewpath: Viewpath [2010] offers Gantt charts.

• David Huynh and Timeline Fans: A timeline visualisation gadget.

• Greg Marra and Seth Glickman: A spider chart gadget.

• Yaar Schnitman: A simple treemap gadget.

4.3.7 Google Visualization Playground

Although the Google Visualization API would better fit into the category of visualisation libraries, it
is located in the online visualisations section because of the Visualisation Playground [Google, 2010f],
which offers more than 20 available visualisation types. The user can choose a visualisation and the cor-
responding JavaScript code for this visualisation is shown. By altering the code the user can customise
the visualisation and enter their own data. Since this code is written in JavaScript, it is necessary to know
at least some programming basics to successfully adapt the visualisation. It is also rather uncomfortable
to enter the data as code, making it hard to enter large amounts of data. There is no way to import data.
After adapting the code, the visualisation can be displayed by pressing the run button. An example is
shown in Figure 4.6.

The resulting visualisations are the same as the ones created with the Google Docs gadgets because
the Google Visualisation API is used. A gadget handles the JavaScript code for the user, making it easier
and more comfortable to create visualisations. The reason the playground is mentioned is that more
visualisations are available, some of which cannot be added using Google Docs gadgets.

4.3.8 iCharts

iCharts offers two services to visualise data. The first is to use the iCharts blog [iCharts, 2010a] where
new datasets are posted on nearly daily basis by selected people. There is no possibility to register and
upload one’s own data. The second option is to use the iCharts business service [iCharts, 2010b]. There
is no function to register for this service. There is also no information about pricing and conditions lo-
cated on the web page. The only way to subscribe and obtain a personal solution is to contact the creators
of iCharts via email. Nevertheless there are a few data sets and visualisations available to be looked at.

The web site appears to offer only three different types of visualisations: pie charts, bar charts, and
line charts. The visualisations use Flash Player, which suggest that they are written with either Adobe

4.3. Online Visualisation Software 31

Source : InternetWorldStats.com

World Internet Usage Statistics by Region

Figure 4.7: Chart examples hosted on the iCharts Site. Both charts were exported using the print
function to generate a vector graphic.

Flash or Adobe Flex. The charts appear to be slightly modified versions of the standard charts included
in Adobe Flex. The charts support some standard interactions like mouseover and clicking of elements,
as well as sliders to zoom the data range. There is also a print function included to print out the visu-
alisation. This is especially useful to obtain a vector graphic by using a PDF maker (shown in Figure 4.7).

A nice feature of iCharts is the possibility to embed the resulting chart into another web page. The
user is given the appropriate source code snippet, which can be pasted into other web pages to include
the chart. Social interactions like posting comments are also available.

4.3.9 Gapminder

Founded in February 2005 by Ola Rosling, Anna Rosling Rönnlund and Hans Rosling, the Gapmin-
der foundation developed the Trendalyzer software, which is known as Gapminder World since 2006.
Trendalyzer allows the exploration of statistical time series data in a highly interactive and animated
environment [Gapminder, 2010b].

In March 2007 the Trendalyzer software and some employees who worked for Gapminder were ac-
quired by Google. Google Docs now offers a standard gadget called Motion Chart which is very similar
to Gapminder World. To use this gadget is the only way to visualise private data. There are many datasets
at the Gapminder World homepage showing trends and statistical data, but they are all uploaded by the
site administrators [Gapminder, 2010a].

When the displaying a time series, a time bar at the bottom of the visualisation can be used to ex-
plore the data over a time period. It can also be animated using the play button. This is very useful when
analysing trends over time.

Using the print function of the browser the visualisations can be exported as vector graphic (examples
shown in Figure 4.8). Unfortunately, this only works properly for the visualisations on the Gapminder
homepage because the Google Gadgets version cuts off parts of the visualisation.

4.3.10 OECD eXplorer

According to the OECD [2010] Mikael Jern of the National Centre for Visual Analytics (NCVA) at
Linköping University released the preliminary version of the OECD eXplorer on the OECD website

32 4. Existing Visualisation Software

Chart Map Gapminder World

© Google 2008Terms of use

Trails

Afghanistan
Albania
Algeria
Angola
Argentina
Armenia
Aruba
Azerbaijan
Bahrain
Bangladesh
Belarus
Belize
Benin

Median age (years) lin

 Deselect al

Color

Select

StopPlay
1.46 B

0

Population, total
Size

Geographic regions

(a) A bubble chart displaying the litaracy rate of
women over the median ages.

Chart Map Gapminder World

© Google 2008Terms of use

Trails

Afghanistan
Akrotiri and Dheke..
Albania
Algeria
American Samoa
Andorra
Angola
Anguilla
Antigua and Barbu.
Argentina
Armenia
Aruba
Australia

undefined lin

 Deselect al

Color

Select

StopPlay
1.46 B

0

Population, total
Size

High income OECD
High income nonO..
Upper middle inco...
Lower middle inco...
Low income

Income groups

Lower middle income

(b) Another option when using Gapminder World is
to display the data on a world map.

Figure 4.8: Two visualisations created at the Gapminder World homepage. Both visualisations are
time series and thus can be animated by using the time bar at the bottom.

in 2008. The OECD eXplorer is a highly interactive application to view and analyse statistical data
within and across the OECD countries [NCVA, 2010b] which offers the functions introduced in Jern et
al. [2008].

To easily detect trends and patterns the OECD eXplorer offers several visualisation types (choropleth
map, scatter plot, table lens, parallel coordinates) which are embedded into the interface as separate views
(shown in Figure 4.9). According to NCVA [2010b] the choropleth map is implemented using four dif-
ferent map layers. The base layer is an optional Google Map layer to view detailed regional information.
Due to its high resource demands, this layer can be turned off to increase performance on slower com-
puters. On top of the Google Map layer, there is a country border layer and a colour shape layer.

The OECD eXplorer also offers time animations and so-called storytelling [NCVA, 2010a]. By using
the time control element the data can be explored over a period of time. All views are linked to the time
control and change according to the data of the specific time period.

It is possible to import one’s own data, but unfortunately only if the data is related to OECD regions
and maps. Although there is a function to export an image it is limited to PNG or JPEG formats and
seems to work with the map view only. There is no possibility to export a vector graphics version of a
visualisation. The browser print function clips the content making it unusable.

4.3. Online Visualisation Software 33

(a) The OECD-eXplorer is divided into several
views displaying different visualisations. The
views are linked to each other to enhance the de-
tection of patterns and outliers.

(b) The map view is based on several layers. In this
image, only the border layer and the colour shape
layer are enabled.

Figure 4.9: The OECD eXplorer is a highly interactive application offering many functions to ex-
plore statistical data.

34 4. Existing Visualisation Software

Chapter 5

Flash and the Web

5.1 Adobe Flash

Flash was introduced by Macromedia in 1996 and is now owned by Adobe. It enables the addition of
animations and interactivity to web pages by manipulating raster and vector graphics. To do so, Flash
uses a scripting language called ActionScript. ActionScript is an object-oriented programming language
originally developed by Macromedia and has very similar syntax and semantics as JavaScript. See List-
ing 5.1 for a JavaScript example.

The file format used by Flash is called SWF (Shockwave Flash). An SWF file is a compiled binary
SWF object, which is executed using the Adobe Flash Player. The SWF object can then be included
within a HTML page as described in W3C [2010b] and shown in Listing 5.2. Listing 5.3 illustrates how
the HelloWorld SWF object, created in Listing 5.4, is added to a HTML page. The result when viewing
this HTML page can be seen in Figure 5.1.

Like Java, Flex creates platform-independent applications. The downside of this portability is that the
client has to have an appropriate version of the Adobe Flash Player installed to execute the SWF objects.
Compared to the Java Runtime Environment the file size of the Flash Player is much smaller. According
to Adobe [2010f] 99% of internet users have the Adobe Flash Player installed (see Figure 5.2). However
there is no information on whether Apple users were involved in this study, so the numbers have to be
taken with care. To run Flash content on iPads and iPhones the users need to use a third party browser
called Cloud Browse [AlwaysOn Technologies, 2010] which can be acquired through the app store.

5.2 Adobe Flex

In 2004 Macromedia released the first version of Flex, an open source framework for building rich in-
ternet applications. Macromedia was acquired in 2005 by Adobe. According to Adobe [2010c], Flex
supports the creation of highly interactive, expressive web applications which deploy consistently on all
major browsers, desktops, and operating systems. Flex was not built from scratch, but was based par-
tially on Adobe Flash. While Flash was designed for graphic artists implementing a time line concept,
Flex’s intended audience are developers who are used to a workflow and programming model Davis and
Phillips [2008].

The code of a Flex application is, as in Flash, compiled into a binary SWF object, which is executed
using the Adobe Flash Player. Therefore the Flash Player needs to be installed and Flex suffers the same

35

36 5. Flash and the Web

1 import flash .text .TextField ;
2 import flash .display .Sprite ;
3
4 public class HelloWorld extends Sprite {
5 public function sayHello () {
6 var textField :TextField = new TextField () ;
7 textField .text = ”Hello World ! ” ;
8 addChild (textField) ;
9 }

10 }

Listing 5.1: A “Hello World” application written in JavaScript. This example adds a TextField to
the application and displays the text “Hello World!” into it.

1 <object width=”800” height=”600”>
2 <param name=”content” value=”flash−app .swf”>
3 <embed src=”flash−app .swf” width=”800” height=”600”></embed>
4 </object>

Listing 5.2: The simplest way to include a Flash object into an ordinary HTML page.

1 <?xml version= ” 1 . 0 ” encoding=”ISO−8859−15”?>
2 <!DOCTYPE html PUBLIC ”− / /W3C / / DTD XHTML 1 . 1 / / EN”
3 ”http : / / www .w3 .org /TR /xhtml11 /DTD /xhtml11 .dtd”>
4 <html xmlns=”http : / / www .w3 .org / 1 9 9 9 /xhtml” xml :lang=”en” >
5
6 <head>
7 <title>Hello World − HTML Page</title>
8 </head>
9

10 <body>
11 <h1 class=”title”>Hello World − HTML Page </h1>
12 <object width=”550” height=”400”>
13 <param name=”movie” value=”HelloWorld .swf”>
14 <embed src=”HelloWorld .swf” width=”550” height=”400”/ >
15 </object>
16 </body>
17 </html>

Listing 5.3: The simplest way to include a Flash object into an ordinary HTML page.

5.2. Adobe Flex 37

Figure 5.1: The resulting HTML page of Listing 5.3.

99%

77%

61%

52%

30%

0

10

20

30

40

50

60

70

80

90

100

Adobe Flash Player Java Runtime
Environment

Apple Quicktime
Player

Adobe Shockwave
Player

Real One Player

Figure 5.2: The percentage of web users having specific software packages installed in their
browsers (Image taken from Adobe [2010f]). The data was taken from a study by
Brown [2010].

38 5. Flash and the Web

1 <?xml version= ” 1 . 0 ” encoding=”utf−8”?>
2 <mx :Application xmlns :mx=”http : / / www .adobe .com / 2 0 0 6 /mxml”
3 layout=”horizontal” creationComplete=”init () ”>
4
5 <mx :Script>
6 <![CDATA [
7 import mx .controls .Label ;
8 public function init () : void {
9 labelContol .text = ”Hello World ! ” ;

10 }
11]]>
12 </mx :Script>
13
14 <mx :Label id=”labelContol” fontSize=”16” color=”0xffffff”/>
15 </mx :Application>

Listing 5.4: An example for MXML code. This example adds a Label to the application and writes
the text “Hello World!” into it by using ActionScript.

limitations as Flash concerning the Flash Player. The Flex framework uses two essential components,
ActionScript and MXML.

MXML is an XML-based markup language allowing the developer to construct application user
interfaces Coenraets [2003]. This is done in an easy and effective way by nesting tags like in an HTML
or XML document (see Listing 5.4). MXML recognizes a set of specially defined interface components:

• Controls: Common user interface controls like buttons, progress bars, color pickers and sliders.

• Layout: Containers which group and distribute components inside the container.

• Navigators: Navigators are components like menu bars, tab bars and other components that help
to navigate through oan interface.

• Charts: Basic customizable charts which can be easily integrated into a web application.

To include a component, a developer simply adds the appropriate component tag and provides some
user-specific parameters.

Originally developed to be used in Flash, Actionscript can also be found in Flex. Each Flex appli-
cation can have an ActionScript area, denoted by the opening ”〈mx : Script〉〈[!CDATA[” and closing
”]]〉〈/mx : Script〉” tags. Inside this area developers are free to perform their desired actions including
for example accessing components, handling events, or regulating control flow.

Flex was designed for creating rich internet applications like visualisation gadgets and has many li-
braries and control elements suited for this purpose. One limitation of SWF objects is that they preload
their contents leading to an initial delay when loading. After loading, the application runs fast and
smooth, without page reloads or similar delays. SWF objects can be accessed and viewed using the
Adobe Flash player. If a stand-alone Flash Player is installed and the application is downloaded, it can
be used offline as a stand-alone application.

Chapter 6

Liquid Diagrams Framework

The Liquid Diagrams framework is a class which offers functions enabling the creation of visualisations.
The functions do not contain the logic to draw the visualisations, but offer functions to draw lines, axes,
titles, legends, and more. The logic to draw a visualisation is located in the visualisation’s own MXML
file, which uses the framework functions. Originally startet during previous work [Lessacher, 2009b],
the framework underwent numerous improvements.

6.1 Attaching Liquid Diagrams to Data Sources

Liquid Diagrams gadgets are not limited to any specific data source. The process of importing data into
the Flex gadgets is to hand the data to the gadget by calling a function written in JavaScript. This implies
that any data source which supports access to its data with JavaScript is suitable to be used with Liquid
Diagrams gadgets. An illustration of how the gadget interacts with the data sources can be seen in Fig-
ure 6.1. Currently only one implementation is available for all Liquid Diagrams gadgets to access data
sources: Google Spreadsheets, which are accessed using Google Gadget Technology. However, a group
of students used the Liquid Diagrams parallel coordinates visualisation for a lecture project and used a
HTML page to supply the data to the gadget (see Section 6.1.3).

6.1.1 General Embedding of Gadgets

The Flex gadget is embedded into a web page using JavaScript. As shown in Listing 6.1, a container
named chart is added to the HTML page (line 1). This container is the host for the Flash object. The
innerHTML element of the chart container is assigned the Flash object (line 7). The object definition
contains many parameters (line 8-23) with the most important being:

• classid
The classid defines the class of the object. The class clsid:D27CDB6E-AE6D-11cf-96B8-444553540000
indicates the Flash plugin and must not be changed.

• id
The id is the name of the object. This name is needed to reference the object when using the
GetFlexApp function.

39

40 6. Liquid Diagrams Framework

Figure 6.1: Connecting a Liquid Diagrams gadget to a data source such as a Google Spreadsheet
via JavaScript. A HTML file can also be used to call the gadget and supply its data via
JavaScript.

• allowScriptAccess
When accessing the Flash object from different domains, script access should be set to always to
prevent sandbox errors.

• src
This is the path to the gadget’s SWF object.

The embed operation causes the Flex object to be created and therefore triggers the initialisation
function illustrated in Listing 6.2. The first function executed, when the creation of the Flex application
finishes, is determined by the creationComplete event (line 3). In this first called function, an external
interface is established to enable communication between the Flex gadget and its container. When the
interface is established (line 5), functions can be defined which are callable by the container. The only
externally callable function defined by Liquid Diagrams gadgets is the function getDataObjects which
handles data transfer (line 6). Afterwards, a function of the container is called by the Flex gadget to
signal that its initialisation process has finished and it is ready to receive data (line 7).

Listing 6.3 illustrates the final steps of the data exchange. The JavaScript function (line 2) hands
the data to the Flex application by calling the previously defined function (line 3), which continues
to process the data without requiring any further communication with the container (line 10). There
are two different versions of the getDataObjects function. The first version has four parameters (as
illustrated in line 3 of Listing 6.3). The second version only has two parameters (values, options) and is
used by the heatmap, treemap, and voronoi visualisations. These visualisations do not need the colour
parameter because the colours are computed and the headers parameter due to their different way of data
computation. However, the options array handed to the visualisation is different for each visualisation.
For more information on which parameters each gadget expects, refer to the individual visualisation
gadget’s documentation.

6.1.2 Google Docs Interface

There is currently only one external data source which can be used with all Liquid Diagrams gadgets.
This data source is Google Docs, and more specifically Google Spreadsheets. To visualise Google

6.1. Attaching Liquid Diagrams to Data Sources 41

1 <div id=”chart”></div>
2
3 <script type=”text /javascript”>
4 var containerElement = document .getElementById (’chart ’) ;
5
6 if (containerElement != null) {
7 containerElement .innerHTML =
8 ’<object classid=”clsid :D27CDB6E−AE6D−11cf−96B8−444553540000” ’ +
9 ’id=”linechart” width=”320” height=”240” ’ + ’codebase=”http : / / fpdownload .

macromedia .com /get /flashplayer /current /swflash .cab”>’ +
10 ’<param name=”movie” value=”linechart .swf” /> ’ +
11 ’<param name=”quality” value=”high” /> ’ +
12 ’<param name=”bgcolor” value=”#869ca7” /> ’ +
13 ’<param name=”allowScriptAccess” value=”always” /> ’ +
14 ’<embed src=”linechart .swf” quality=”high” bgcolor=”#869ca7” ’ +
15 ’width=”320” height=”240” name=”linechart” ’ +
16 ’align=”middle” ’ +
17 ’play=”true” ’ +
18 ’loop=”false” ’ +
19 ’quality=”high” ’ +
20 ’allowScriptAccess=”always” ’ +
21 ’type=”application /x−shockwave−flash” ’ +
22 ’pluginspage=”http : / / www .adobe .com /go /getflashplayer”>’ +
23 ’</embed></object> ’;
24 }
25 </script>

Listing 6.1: Embedding a Flex gadget into a web page using JavaScript. A container is added to a
web page and the gadget’s SWF object is embedded into this container.

1 <?xml version= ” 1 . 0 ” encoding=”utf−8”?>
2 <mx :Application xmlns :mx=”http : / / www .adobe .com / 2 0 0 6 /mxml”
3 layout=”absolute” creationComplete=”init () ””>
4 public function init () :void {
5 if (ExternalInterface .available) {
6 ExternalInterface .addCallback (”getDataObjects” , getDataObjects) ;
7 ExternalInterface .call (”callbackReady ”) ;
8 } else {
9 Alert .show (”Error : No External Interface ! ”) ;

10 }
11 }
12 </mx :Application>

Listing 6.2: After initialisation, the application establishes an interface to its container and allows
it to call the getDataObjects function. It then calls the callbackReady function of the
container to signal that initialisation is completed.

42 6. Liquid Diagrams Framework

1 / / Javascript file
2 function callbackReady () {
3 getFlexApp (’linechart ’) .getDataObjects (vis .headers , vis .data ,
4 vis .options , vis .colours) ;
5 }
6
7 function getFlexApp (appName) {
8 return document [appName] ;
9 }

10
11 / / Flex Gadget
12 public function getDataObjects (dataHeaders :Array , dataValues :Array ,
13 dataOptions :Array , dataColours :Array) :void {
14 / / store and process the data
15 . . .
16 drawVisualisation () ;
17 }

Listing 6.3: After establishing an interface to the container, a function of the container is called
which hands the data to the Flex gadget.

1 if (this .containerElement != null) {
2 var url = voronoi .swf ’ ;
3 var options = {id : ”voronoi” , width : options .chartWidth , height : options .

chartHeight , allowScriptAccess : ”always ”} ;
4 gadgets .flash .embedFlash (url , ”chart” , ” 1 0 . 0 . 0 ” , options) ;
5 }

Listing 6.4: Google offers a function to include Flash-based objects into a page.

Spreadsheet data, so-called gadgets can be inserted. These gadgets are HTML and JavaScript appli-
cations and thus it is easy to embed SWF objects into the gadget.

The data transfer to the Flex gadget is done as described in Section 6.1.1. The difference is that
the Flash object is included using one of Google’s functions and the data has to be acquired from the
Google Spreadsheets table first. As seen in Listing 6.4, Google offers a special function to include flash
objects. This function is accessed by the gadgets.flash.embedFlash command and needs Google’s
flash package to be included (see line 8 in Listing 6.5). To acquire the data from the spreadsheet, a
special Google Gadget XML file needs to be created. The gadget XML file is divided into three different
parts:

• Gadget Preferences (〈ModulePrefs〉) This section specifies the characteristics of the gadget,
such as title or author.

• Content Section (〈Content〉) The application code is located in this section.

• User Preferences (〈UserPref〉) User preferences provide controls to specify the gadget’s set-
tings. For example, all initial settings for the gadget chosen when adding the gadget.

To obtain the data from a Google Spreadsheet, it is necessary to query the data using Google’s
GadgetHelper class. An example of a simple data request and the structure of a Google Gadget XML file

6.2. Framework Structure 43

Figure 6.2: This screenshot shows an interactive parallel coordinates tutorial created by Bauer et
al. [2009]. The page uses the Liquid Diagrams parallel coordinates visualisation to
explore various data sets.

is shown in Listing 6.5.

6.1.3 Embedding a Gadget into a HTML Page

Another possibility to hand data to a Liquid Diagrams gadget is to use a HTML page as data source. Such
a HTML page hosts controls to import data from files or enables to manually enter data using editors.
Using JavaScript the data is handed to the Liquid Diagrams gadget to visualise it.

An example for such a HTML page is the page created by Bauer et al. [2009] during a lecture project.
The page is an interactive tutorial which describes the usage of parallel coordinates to analyse data. Part
of this tutorial page is the feature to load datasets and explore them using the Liquid Diagrams parallel
coordinates visualisation (see Figure 6.2).

Listing 6.6 illustrates how the parallel coordinates tutorial adds the Liquid Diagrams parallel coordi-
nates gadget to the page. Therefore it initialises the options array (lines 1-10) according to the parameters
required by the parallel coordinates gadget. Afterwards it creates the gadget (lines 12-15) which calls
the callbackReady function as soon as the gadget is ready to receive the data. This callbackReady

function then hands the data to the gadget to visualise it (lines 18-20).

6.2 Framework Structure

To incorporate new functions and features into the framework, the file architecture used in Lessacher
[2009b] was modified and extended according to Figure 6.3.

44 6. Liquid Diagrams Framework

1 <?xml version= ” 1 . 0 ” encoding=”UTF−8”?>
2 <Module>
3 <ModulePrefs title=”Voronoi”
4 description=”Voronoi visualisation written in Flex 4 . 0 ”
5 author=”Martin Lessacher”
6 author_affiliation=”Graz University of Technology”
7 author_email=”lesse@sbox .tugraz .at”>
8 <Require feature=”flash”/>
9 </ModulePrefs>

10
11 <UserPref name=”_table_query_url” display_name=”Data source URL” required=”

true”/>
12
13 <Content type=”html”><![CDATA [
14 <form>
15 <div id=”chart”></div>
16 </form>
17 <script type=”text /javascript” src=”http : / / www .google .com /jsapi”></script>
18 <script type=”text /javascript”>
19 google .load (”visualization ” , ” 1 ”) ;
20 google .setOnLoadCallback (initialize) ;
21
22 var prefs = new _IG_Prefs () ;
23
24 function initialize () {
25 gadgetHelper = new google .visualization .GadgetHelper () ;
26 var query = gadgetHelper .createQueryFromPrefs (prefs) ;
27 query .send (handleQueryResponse) ;
28 }
29
30 function handleQueryResponse (response) {
31 if (!gadgetHelper .validateResponse (response)) {
32 return ;
33 }
34
35 var data = response .getDataTable () ;
36 }
37 </script>
38]]></Content>
39 </Module>

Listing 6.5: A Google Gadget XML file, necessary to receive data from a Google Spreadsheet
table.

6.2. Framework Structure 45

Figure 6.3: The file architecture of the Liquid Diagrams framework. Dependencies are shown
using arrows. The arrow points to a file including or using functions of the file at the
start of the line. If an arrow points to a container all the files in the container use the
file’s contents. Blue rectangles represent packets. The orange files are the main files of
each visualisation, which are compiled into SWF objects.

46 6. Liquid Diagrams Framework

1 Parcoord .prototype .draw = function (data ,titles ,types) {
2 this .data = data ;
3 this .headers = titles ;
4
5 this .options = new Array (2 2) ;
6 this .options [0] = 800 ;
7 this .options [1] = 600 ;
8 this .options [2] = true ;
9 this .options [3] = ”No Legend ” ;

10 . . .
11
12 if (this .containerElement != null) {
13 var url = host + ’flash /parcoord .swf ’ ;
14 swfobject .embedSWF (url , ”chart” , options .chartWidth , options .chartHeight ,

” 1 0 . 0 . 0 ”) ;
15 }
16 }
17
18 function callbackReady () {
19 getFlexApp (’chart ’) .getDataObjects (vis .headers , vis .data , vis .options , ”Many ”) ;
20 }

Listing 6.6: The code illustrates how the tutorial page handles the creation of the Liquid Diagrams
parallel coordinates gadget and how data is handed to the gadget.

6.2.1 ChartPanel

The ChartPanel class implemented in ChartPanel.as is the main class of the Liquid Diagrams frame-
work. This class is derived from the Flex standard Canvas class thus it can be used as a panel component
in visualisations.

The ChartPanel class also offers many functions to add content to its panel, including drawing axes,
titles, legends, and various graphical shapes (for example lines, circles, paths, and rectangles). The
ChartPanel class manages effects like mouseover and click effects for elements drawn in its panel. For a
more detailed explanation of the core functions of the ChartPanel class, see Lessacher [2009b].

6.2.2 Visualisation Files

Each file coloured orange in Figure 6.3 is an MXML file containing the implementation of a specific
type of visualisation. Each file uses the ChartPanel class as the main stage to host its visualisations con-
tent.

The legend and diagram titles are drawn using ChartPanel functions. Initialisation of the ChartPanel is
done in the drawVisualisation function of each MXML file. The drawing logic for each visualisation
is located in its drawData function. The algorithm to draw the visualisation is a call composition of shape
creating functions offered by the ChartPanel class. The MXML file of each visualisation is compiled into
an executable SWF object by the Flex SDK. This SWF object is the main file needed to create a visuali-
sation.

6.2. Framework Structure 47

1 var myButton :Button = new Button () ;
2 myButton .addEventListener (MouseEvent .CLICK , buttonClicked) ;
3
4 private function buttonClicked (event :MouseEvent) {
5 . . .
6 }

Listing 6.7: The creation of a button control and the registration of the click-event for it. Every
time a click-event happens on the button, the function buttonClicked is called.

6.2.3 Events

Events are fired to let the developer know that something special happened within an application. This
can include interaction with devices (keyboard, mouse, . . .) as well as special states that are reached by
the application. Events are usually used to identify changes and react properly to them. This can also
involve multiple applications which partially dependent on events fired by each other.

There are pre-defined events for interactions like a mouse-click. The desired event needs to be reg-
istered by a component using the addEventListener function. This event is then linked to a function,
which is called when the event happens. An example for this default event handling is shown in List-
ing 6.7.

The ChartPanel class features its own event class implemented in the PanelEvent.as file. This Pane
lEvent is derived from the standard Flex Event class and features an additional variable eventParameter

which is used to capture additional information about the event (for examaple the entity number of the
entity which triggered the event). To fire an event of this PanelEvent class, an instance of this type needs
to be created and then fired by using the dispatchEvent function. That is all the ChartPanel class needs
to do. To process this event, the visualisation gadget needs to register the event to a function. This func-
tion is called and processed every time the event is fired.

The ChartPanel class fires three different events which can be caught by gadget visualisations includ-
ing a ChartPanel object:

• redrawAll: This event is fired when all entities need to be redrawn. This is usually the case when
the values the visualisation depends on are changed. For example, if a data entity in a pie chart is
hidden all other entities and thus the whole visualisation need to be redrawn.

• redrawEntity: When firing a redrawEntity event, only one entity needs to be redrawn. The
specific entity number is therefore included in the event. For example, only the specific entity needs
to be redrawn if its colour is changed during runtime. This does not affect any other elements.

• cutOffWarningEvent: The cutOffWarning event is fired when there is not enough space to
display all entities in a visualisation. This happens, for example, if a bar chart does not use
the fitSize parameter and defines an entity size which would be too large to display. Thus a
cutOffWarning event will be fired and not all data sets shown. How the visualisation gadget han-
dles this event is up to the gadget. The current implementation will display a large warning in the
visualisation area that not all data sets are shown.

• Colour Legend Events: These events are fired to the visualisation gadgets using the colour legend.
Additional information about these events can be found in Section 6.3.2.

• clickedEntity: The clickedEntity event is fired when the user clicks an data entity drawn in

48 6. Liquid Diagrams Framework

the visualisation. Depending on the visualisation gadget the reaction to the mouse-click can be
handled differently.

Besides many mouseover and click events of single components included in the visualisation there
are several other custom events which are listened to by the ChartPanel class:

• Drag Events: The DragEnter, DragExit, and DragDrop events are caught by the ChartPanel class
and handled to implement the drag-and-drop functionality.

• Colour Picker Events: The Korax colour picker control features some events to let the calling
application know what changes are done after calling a colour chooser instance. The change event
is fired if a colour was changed and confirmed by hitting Ok button. The chosen colour can then
be extracted from the event and the appropriate changes in the visualisation made. There is also
a cancel event sent by the colour picker if the Cancel button is clicked, but this event does not
affect the visualisation because the changes are not applied.

• DataPoint Picker Events: The data point picker events are like colour picker events, but feature
other event variables than the chosen colour (data point type and colour).

• Font Picker Events: These events are used to inform the ChartPanel class about changes made in
the font picker.

6.2.4 Pickers

Since the standard Adobe Flex colour picker lacks some basic functions and only offers a small amount
of available colours, a different colour picker implementation is used in the Liquid Diagram frame-
work. The new colour picker implementation was created by Nuzha [2010] and was slightly mod-
ified to fit into the framework. The implementation of the colour picker is located in the package
diagram.controls.ColourPicker.

The data point picker is used in line-based visualisations. By clicking on the currently assigned data
point the data point picker pops up and enables the user to select a different data point representation
from 8 different types. The files located in the diagram.controls.DatapointPicker package shown in
Figure 6.3 contain the implementation of the data point picker.

All the fonts in a visualisation can be changed using the font picker implemented in the diagram.

controls.FontPicker package. The font picker offers all the fonts declared in fonts.as (see Section
6.2.6). The font picker enables the user to select different font types and font sizes for specific text
categories, as shown in Figure 6.4. The font picker component and is events are implemented in the
diagram.controls.FontPicker package.

6.2.5 Colour Schemes

In the Liquid Diagrams framework introduced in Lessacher [2009b] colour schemes were presented.
These colour schemes enabled the user to choose among different colour combinations prior to the cre-
ation of the visualisation. The chosen combination was used as the data entities colour in the visualisa-
tion. The colour schemes were only selectable in the GoogleDocs gadget options and were implemented
using JavaScript.

6.2. Framework Structure 49

Figure 6.4: The font picker allows the user to change the font type and font size of specific text
categories. It also has a preview of the last chosen font type and font size at the bottom
of the font picker window.

The new implementation of the ColourSchemes class enables the selection of pre-defined colour com-
binations independently of GoogleDocs and during runtime using the options panel of the visualisation.
The implementation of this class is located in the ColourSchemes.as file.

The available colour schemes can be modified by editing the colour-schemes.xml file located in the
common folder of the visualisations home directory. This file contains all the colour schemes and can be
modified and extended using XML code. An example for a colour-schemes.xml can be seen in Listing
6.8. New schemes can be added by inserting a new color tag using the name of the scheme as its id.
The colours of this scheme are represented by space separated hexadecimal colour codes assigned to the
name tag of the color element.

The ColourSchemes class distinguishes between two different types of colour schemes. While nor-
mal colour schemes contain more than one colour, monochrome colour schemes only have one colour.
Monochrome schemes are intended to be used with the parallel coordinates or star plot visualisation.
Choosing a monochrome scheme turns off the legend and reduces the entity lines alpha value. By reduc-
ing the lines alpha value overlapping lines can be seen better because their alpha values are multiplied
and thus the resulting line is drawn using a higher alpha value.

6.2.6 Defining Fonts

The fonts.as file is included in all visualisations and handles calls of the font picker and all correspond-
ing events after clicking the ChooseFonts... button. This file also defines the font types available in the
font picker.

To add a new font it has to be either a TrueType or OpenType font. As shown in Listing 6.9, some
appropriate embed code has to be added to the fonts.as file. Afterwards the font can be referred in the
entire project using the declared fontName. For the font to appear in the font picker component, it has to

50 6. Liquid Diagrams Framework

1 <data>
2 <schemes id=”schemes”>
3 <color id=”Dolas Break” name=”#C92A18 #EC4115 #F59300 #005E79 #0A2F4A”/>
4 <color id=”Black” name=”#000000”/ >
5 <color id=”Blue” name=”#005C81”/>
6 <color id=”Gore” name=”#BF8266 #C2B195 #96866F #EDC389 #ADB292”/>
7 <color id=”Happy Mango” name=”#F06060 #A8C078 #F0D878 #F04848 #F0C048”/>
8 <color id=”Like Fire” name=”#FFDD00 #FF8000 #FF4D00 #FF0000 #AD0202”/>
9 <color id=”Peace” name=”#EB6B34 #EB8F34 #FFBA75 #F0CCA8 #8F7256”/>

10 </schemes>
11 </data>

Listing 6.8: The ColourSchemes.as file contains colour scheme definitions. Each color tag
represents a different scheme. New schemes and modifications can be done by altering
the xml code. The colour schemes defined here are taken from COLOURlovers
[2010].

1 [Embed (source= ’ /font /tahoma .ttf ’ ,
2 embedAsCFF= ’false ’ ,
3 fontName= ’Tahoma ’ ,
4 mimeType= ’application /x−font ’
5)]
6 private var font1 :Class ;
7]

Listing 6.9: The code necessary to embed a new font (Tahoma) into the application. The font then
can be referred to in the application using the fontName parameter.

be added to the font picker combo boxes using its fontName.

6.2.7 Panels and Pop-Ups

Panels are space-saving components which are used to hide feedback and additional controls until the
user wants to make use of them. The implementation files of panels are located in the diagram.panels

package. The Liquid Diagrams framework offers two basic types of panels:

• Options Panel
This panel hosts several other control elements like buttons, text boxes, and combo boxes. These
controls can change the look of the visualisation or export the visualisation as a vector graphic or
an image. The options panel class is implemented in the LDOptionsPanel.as file.

• Error Panel
An error panel does not contain other controls like the options panel. Instead it is used to give
feedback like error messages or warnings to the user. Thus the error panel can be seen as a kind of
feedback log. The implementation of the error panel class is located in the LDErrorPanel.as file.

For more information about panels and how they are implemented, see Section 6.3.1.

6.3. Framework Components 51

6.2.8 SVG Parser

One of the visualisations offered by the Liquid Diagrams frameworks is the heatmap. The heatmap gad-
get is based on SVG maps which define borders and areas of regions. To be able to perform computations
on the the XML data given by the SVG maps, a SVG parser is needed.

The implementation of this parser is located in the diagram.svg packet and was originally written
by Knapitsch et al. [2009]. Only a few adaptations were necessary to integrate the parser into the Liquid
Diagrams framework. More information about the SVG parser can be found in Section 8.4.

6.2.9 Tree Structure

In the Liquid Diagrams framework some visualisations (heatmap, treemap, and voronoi treemap) are
based on hierarchical datasets. To make the handling of hierarchical data more comfortable and enable
features like zooming between the hierarchical levels, the dataset is stored in a special tree data structure
implemented in the TreeNode.as file. More details about the TreeNode class and its implementation can
be found in Section 8.2.

6.2.10 Voronoi

The files located in the package diagram.voronoi are used to implement the functions and algorithms
necessary to create a voronoi diagram. To build up a voronoi structure, a special data structure taken from
Okabe et al. [2000] is used. The implementation of this data structure is located in the WingedEdgeStructure.
as file which is the most important file of the voronoi implementation, because it contains all the algo-
rithms and computation logic.

6.3 Framework Components

6.3.1 Side Panels

In Lessacher [2009b] all Liquid Diagrams visualisations offered an option to show an Options Panel
when inserting the gadget. If the panel was shown, it was placed on the left side of the visualisation and
could not be turned off. The Options Panel enabled visual aspects of the visualisation to be set during
runtime, but also took up mouch of the available width (up to 300 pixels). Since it could not be turned
off, it was a serious limitation in environments with low screen resolution.

To fix this issue the panels of the Liquid Diagrams framework have been revised. The options and
error panels are in a space-saving state on the left side of the visualisation panel. If the panel is clicked
it is opened to its full size, overlapping the visualisation as shown in Figure 6.5. When the hide panel
handle is clicked, the panel closes to its space saving state again.

The LDOptionsPanel and LDErrorPanel classes are both derived from the standard Flex Canvas class.
The Canvas class is a layout container which defines a rectangular region in which control elements and
other container elements can be placed. This is the ideal prerequisite for the options panel, which hosts
numerous control elements like buttons, combo boxes, and check boxes.

Listing 6.10 illustrates how an Options Panel can be added to an existing visualisation. First of all,
a new control element of type LDOptionsPanel has to be added (line 1) in the visualisation’s MXML

52 6. Liquid Diagrams Framework

Figure 6.5: The left side of the image shows the options panel while in hidden state. After clicking
the panel an animation which resizes the panel is triggered. After the panel reaches its
full size the animation is stopped and the components are added and accessible.

1 <panels :LDOptionsPanel id=”optionsPanel” left=”10” top=”20” backgroundColor=”0
xFFFFFF” clipContent=”false” cornerRadius=”10” borderStyle=”solid”
borderThickness=”0”>

2 <mx :VBox id=”controlBox” width=”100%” top=”20” bottom=”20” horizontalAlign=”
center” verticalAlign=”middle” visible=”false” verticalGap=”6”>

3 <mx :Button id=”fonts” label=”Change Fonts . . . ” click=”onFonts () ”></mx :Button>
4 <mx :CheckBox id=”legend” label=”Show Legend” change=”onRedraw () ”/>
5 <mx :CheckBox id=”percentage” label=”Percent” change=”onRedraw () ”/>
6 </mx :VBox>
7 </panels :LDOptionsPanel>
8
9 <mx :Script>

10 <![CDATA [
11 . . .
12 public function initializeOptionsPanel () : void {
13 optionsPanel .setMaxDimensions (this .width , this .height) ;
14 optionsPanel .assignControlBox (controlBox) ;
15 }
16 . . .
17]]>
18 </mx :Script>

Listing 6.10: A visualisation’s MXML file, which uses the LDOptionsPanel class to provide an
Options Panel.

6.3. Framework Components 53

Figure 6.6: The error panel is to the left of the visualisation and is used to give feedback to the user.
When closed it displays the type and amount of feedback. By clicking, it is opened to
its full size and the feedback is shown in full..

file. Afterwards, a grouping element of the Flex standard type VBox named controlBox is assigned to
the Options Panel (line 2). The VBox class is a layout container which lays out its children in a single
vertical column. All controls added as children of the controlBox element are shown in the Options
Panel (lines 3-5). The next step is to initialise the Options Panel, which can be done anywhere in the
code, but has to be done before the Options Panel is opened for the first time. The LDOptionsPanel class
is given the maximum available width and height (line 13). Finally, the controlBox element is handed
to the LDOptionsPanel class to enable the show and hide operations on the control elements from within
the LDOptionsPanel class (line 14).

While the Options Panel hosts control elements, to change the visual appearance of the visualisa-
tion, the Error Panel is intended to give feedback to the user (see Figure 6.6). Three different levels of
feedback are supported by the Error Panel: information, warnings, and errors. To add an Error Panel, an
element of type LDErrorPanel has to be added to the visualisation’s MXML file, just like when adding
the Options Panel in line 1 of Listing 6.10. Unlike the Options Panel, there is nothing more to ini-
tialise. Unless there is feedback available, the Error Panel stays hidden. The addNewErrorTextLine,
addNewWarningTextLine, and addNewInfoTextLine functions of the LDErrorPanel class will add a
new text line of the appropriate type to the Error Panel. The Error Panel can be reset by calling the
resetErrorPanel function of the LDErrorPanel class.

Both panels make use of the standard Flex Resize class to implement the pop-out animation, when
the user clicks on the panel. Listing 6.11 illustrates how this resize effect is implemented. The panel is
assigned a label which implements the MouseEvent.CLICK event in order to call the onEscalateClick

function when clicked (lines 3-5). Depending on the current state (STATE_HIDDEN or STATE_ESCALATED)
of the panel, the new dimensions of the panel are set (15-16 and 21-22). Using the play function of the
Resize class, the resize effect is performed(line 26).

6.3.2 Colour Legend

In the original Liquid Diagrams visualisations [Lessacher, 2009b] and in the star plot visualisation, all
entities are assigned a colour value which is used to draw and characterise the entity in the visualisation.
This colour value can be changed either manually by clicking on the colour spot of the entities label in

54 6. Liquid Diagrams Framework

1 public class LDOptionsPanel extends Canvas {
2 . . .
3 optionPanelLabel = new Text () ;
4 optionPanelLabel .text = ”Options ” ;
5 optionPanelLabel .addEventListener (MouseEvent .CLICK , onEscalateClick) ;
6 . . .
7 }
8
9 public function onEscalateClick (event :MouseEvent) : void {

10 var resizeEffect :Resize = new Resize () ;
11 resizeEffect .target = this ;
12
13 if (state == STATE_HIDDEN) {
14 optionPanelLabel .text = ”Hide Options ” ;
15 resizeEffect .widthTo = 320 ;
16 resizeEffect .heightTo = this .controlBox .height + 4 0 ;
17 state = STATE_ESCALATED ;
18 this .setStyle (”backgroundAlpha” , 0 . 9) ;
19 } else {
20 optionPanelLabel .text = ”Options ” ;
21 resizeEffect .widthTo = hiddenWidth ;
22 resizeEffect .heightTo = hiddenHeight ;
23 state = STATE_HIDDEN ;
24 this .controlBox .visible = false ;
25 }
26 resizeEffect .play () ;
27 }

Listing 6.11: Illustration of the LDOptionsPanel.as file showing how the resize animation of the
Options Panel and Error Panel is implemented.

6.3. Framework Components 55

the legend or by changing the colour scheme used in the visualisation which leads to a automatic colour
assignment to each entity (more information on colour schemes can be found in Section 6.2.5).

This type of colour assignment cannot be used to colour the entities of the heatmap, treemap, and
voronoi diagram visualisations, because their entities’ colours depend on a specified data value of these
entities. Thus another type of legend was implemented. Instead of linking a colour value to each entity,
the colour is computed for each entity depending on the specified data value of the entity and the colour
distribution type. There are three different colour distribution types available in the Liquid Diagrams
framework:

• Uniform Distribution
When set to uniform distribution, the legend displays a specified number of colour bins. Each
colour bin is assigned a colour and a unique value range. The beginning and the end of the range
is computed by dividing the value’s range span by the number of colour bins. Each entity is then
assigned the colour under which colour bin’s range the entity’s value falls.

For example, in Figure 6.7b if the legend range span is from 0 to 100,000,000 resulting in a span
of 100,000,000. This span divided by 10 colour bins would result in 10 bins, each of step size
10,000,000.

• Continuous Distribution
Continuous colour distribution does not show colour bins. Instead, it shows a colour gradient
resulting in more precise entity colours. Internally, the gradient is built up using 100 colour bins.
Each colour bin is represented by a 2-pixel stripe in the gradient (shown in Figure 6.7a).

• Quantile Distribution
Like the uniform distribution, quantile distribution also shows colour bins. The difference be-
tween them is how the entities are distributed among the bins. In contrast to uniform distribution,
the value range of the colour bins is directly influenced by all the entities values. The number of
entities is evenly spread among the number of bins. This results in nearly the same number of
entities represented by each colour bin, while in some cases of uniform distribution single colour
bins may not contain by any entities at all.

For example, if a data set contains 30 entities and the number of colour bins is set to 10 each colour
bin would host 3 entities. The value span of a bin would thereby be determined by the lowest and
the highest values of the 3 represented entities. Figure 6.7c illustrates how a quantile distribution
with 10 colour bins would look.

When using uniform or quantile distribution, bins are shown to display the different colours of the
data. The maximum number of colour bins (classes) can be set using the Numberofbins field in the
Options Panel. There is also a faster way to set the number of colour bins when using the quantile
distribution. On clicking the quantile distribution button, a small selection window (shown in Figure
6.8) pops up. This window offers pre-defined quantile classes to choose from: including quartiles (4),
quintiles (5), octiles (8), deciles (10), and duodeciles (12). The pop up window is derived from the Flex
Canvas class and implemented in the LDQuantilePopup.as file.

The colour distribution buttons add a two new events to the ChartPanel class. The first event is fired
when either continuous or uniform distribution is chosen and is called changedColourDistribution.

56 6. Liquid Diagrams Framework

(a) Continious colour distribution. (b) Uniform colour distribution. (c) Quantile colour distribution.

Figure 6.7: The colour legend offers three different types of colour distribution functions: contin-
ious, uniform, and quantile.

Figure 6.8: When clicking on quantile distribution a small selection window pops up enabling the
user to set the number of colour bins on the fly.

The second event changedColourDistributionQuantile is fired when the quantile distribution is cho-
sen. Both events need to be caught by the ChartPanel hosting application in order to ensure consistency
between the settings shown in the Options Panel and the displayed legend.

The range of each colour class is automatically computed using the minimum and maximum of all
data values of a specific data column. Other than computing the classes based on the minimum and
maximum there is also the possibility to manually enter the range values. The first way to change the
boundary values is to set the SetRangesManually option in the option panel and enter the new values
into the LowestValue and HighestValue text boxes. Another way to change the boundary values is to
click on the value displayed next to the first or last colour bin, which will open a text box to enter a new
boundary value. After the change is confirmed by pressing the return key, the new class ranges will be
determined and displayed.

Since the implementation of the legend is located in the ChartPanel class, a notification to the
ChartPanel hosting application is necessary in order to initialise a redraw according to the new bound-
aries. To accomplish that, two additional events have been added. The changedLowestValue and the
changedHighestValue events are fired to the hosting application and need to be implemented there.

6.3. Framework Components 57

1 public function setColour (color :uint , count :int) : Array {
2 var hsbColor :ColorHSB = new ColorHSB () ;
3 hsbColor = ColorHSB .rgb_to_hsb (color) ;
4 var indexFactor :Number = (140 / count) ;
5
6 colors = new Array () ;
7 for (var i :int = 0 ; i < count ; i++) {
8 hsbColor .s = Math .min (indexFactor * i , 100) ;
9 var bValue :Number = Math .max ((indexFactor * i) − 100 , 0) ;

10 hsbColor .b = 100 − bValue ;
11 colors [i] = ColorHSB .hsb_to_rgb (hsbColor) ;
12 }
13 return colors ;
14 }

Listing 6.12: Computing the colour values for each colour bin shown in the legend.

(a) 100 different colours (each 1 pixel) based on the colour with the hexadecimal value #FF0000.
Each colour posesses the same hue and brightness value. Only the saturation value of the colours
has been modified (from 0 to 100).

(b) 140 colours (each 1 pixel) are also generated from the hexadecimal value #FF0000. The difference
is that the 40 additonal colours have been added. These colours are a result of reducing the
brightness from the value of 100 to 60.

Figure 6.9: Different colour tones based on the colour #FF0000.

The user can set the main colour by clicking on one of the colour bins in the legend. This opens the
colour picker dialog to choose another colour. After the colour is chosen the new colours for the colour
bins are computed.

The computation of the colours used for the bins is shown in Listing 6.12. The setColour func-
tion is handed the new colour value and the number of colour bins to display (line 1). First, the colour
is translated into its corresponding value in the Hue, Saturation, Brightness (HSB) colour model (lines
2-3). The hue parameter determines the colour type and therefore remains the same. To obtain several
other colour tones of the colour specified by the hue value, the saturation and brightness parameters are
varied. As shown in Figure 6.9a, changing the saturation value only would result in not having darker
tones of the colour. Therefore, the brightness value is also altered, to add darker tones of the specified
colour type (see Figure 6.9b).

The brightness values of the taken colours start at 100 and are continuously reduced turning the
colours more and more into black. To prevent the colour becoming too dark the brightness is only re-
duced to the value 60 resulting in 40 different colours (from 100 to 60). Including the 100 colours given
by the saturation, there are now 140 different colours available based on a given hue (illustrated in Figure
6.10). The variable indexFactor in Listing 6.12 determines the span between the colours that are taken
(line 4). For example if there are 12 colour bins only every eleventh colour is taken (140 divided by 12).
The brightness and saturation values of the taken colours are then computed (lines 7-12) and written into
an array. Finally, the array containing the computed colours is returned (line 13).

58 6. Liquid Diagrams Framework

Saturation0 100

Br
ig

ht
ne

ss

100

0

60

0
(0/100)

50
(50/100)

100
(100/100)

101
(100/99)

120
(100/80)

140
(100/60)

Colour Number
(Saturation / Brightness)

Figure 6.10: Computing the different colour tones of a specified colour value. The 140 different
colour values are along the top and right edge of the colour scale (indicated by the
black arrow).

The alignment of the colour legend can be set using the Legend combo box the Options Panel. The
colour legend supports two different alignments:

• Horizontal
When horizontal is chosen the legend is drawn on top of the diagram. Due to the limited hori-
zontal space between the colour bins, only the first and the last bin are assigned a range label. All
other bin ranges are only shown when moving the mouse over the specified bin.

• Vertical
If vertical alignment is selected, the legend is drawn to the left of the diagram. Every bin range
is drawn to the right of each colour bin. Therefore, a verticallegend takes more space than the
horizontal.

The implementation of the legend is located in the ChartPanel.as file. Two different functions
are available to draw either the vertical or horizontal colour legend: drawVerticalColourLegend and
drawHorizontalColourLegend. Listing 6.13 illustrates how to include this type of colour legend into
a visualisation. The colours of the legend bins are computed by calling the setColour function (line 5).
Afterwards the legend can be created by calling drawHorizontalColourLegend or drawVerticalColourLegend
(lines 7-11). As already mentioned, there are some events that need to be implemented by the visuali-
sation application to support the change of the colour distribution. Therefore, the necessary events are
registered (lines 44-45) and linked to the appropriate functions (lines 15-40).

6.3. Framework Components 59

1 <mx :Script>
2 <![CDATA [
3 public function drawVisualisation () : void {
4 . . .
5 colours = chartPanel .setColour (colourType , options [COLOUR_COUNT]) ;
6
7 if (options [SHOW_LEGEND] == ”Horizontal ”) {
8 chartPanel .drawHorizontalColourLegend (. . .) ;
9 } else if (options [SHOW_LEGEND] == ”Vertical ”) {

10 chartPanel .drawVerticalColourLegend (. . .) ;
11 }
12 . . .
13 }
14
15 private function changedQuantileDistribution (event :PanelEvent) : void {
16 if (event .eventParameter == 0) {
17 colour_text .text = options [COLOUR_COUNT] = 4 ;
18 } else if (event .eventParameter == 1) {
19 colour_text .text = options [COLOUR_COUNT] = 5 ;
20 } else if (event .eventParameter == 2) {
21 colour_text .text = options [COLOUR_COUNT] = 8 ;
22 } else if (event .eventParameter == 3) {
23 colour_text .text = options [COLOUR_COUNT] = 1 0 ;
24 } else if (event .eventParameter == 4) {
25 colour_text .text = options [COLOUR_COUNT] = 1 2 ;
26 }
27 event .eventParameter = 1 ;
28 changedDistribution (event) ;
29 }
30
31 private function changedDistribution (event :PanelEvent) : void {
32 if (event .eventParameter == 0) {
33 legendType = ”Continious ” ;
34 } else if (event .eventParameter == 1) {
35 legendType = ”Percentile ” ;
36 } else {
37 legendType = ”Uniform ” ;
38 }
39 redrawVisualisation () ;
40 }
41]]>
42 </mx :Script>
43
44 <diagram :ChartPanel id=”chartPanel” width=”100%” height=”100%” borderStyle=”solid”

borderThickness=”0” changedColourDistribution=”changedDistribution (event) ”
changedDistributionQuantile=”changedQuantileColorDistribution (event) ”

45 </diagram :ChartPanel>

Listing 6.13: The functions and calls necessary to include a colour legend into the heatmap
visualisation.

60 6. Liquid Diagrams Framework

Figure 6.11: To support the understanding of hierarchical data, the treemap and the voronoi
treemap offer a tree view component which can be shown on the right side of the
visualisation.

6.3.3 Tree View

Sometimes, when visualising hierarchical data using a treemap or voronoi treemap, details of the hier-
archical structures are not to be found at a glance. To support the recognition of hierarchical structure,
an optional tree view component can be added to the right side of the visualisation. The tree view uses a
list-like display, where each data entry is represented by a single node. Each node has its child elements
drawn as sub-items which can be hidden or shown by collapsing or expanding the parent node. Figure
6.11 illustrates a tree view showing a simple hierarchical data set.

Since the tree view is linked to the data shown in the visualisation, interactions between the diagram
and the tree view are possible. If a data entity in the diagram is clicked the branches leading to the
corresponding tree view entry will be expanded and the entry is selected. On the other hand, selecting an
entry in the tree view will trigger a highlight effect of the corresponding data in the visualisation.

The tree view is implemented using the Flex Tree class. As shown in Listing 6.14, the control
element is added to the application (lines 1-3). To add the hierarchical data to the control element the
dataProvider variable is assigned the root TreeNode element of the internal tree data structure (line 9).
More details about the TreeNode class and its implementation can be found in Section 8.2.

6.4 Framework Functions

The Liquid Diagrams framework implements several functions common to the visualisation gadgets.
This section provides a summary of the available functions and their intended use.

6.4.1 Individual Appearance

The ChartPanel class offers many functions to alter the visual aspects of the generated visualisation. The
most important of these functions are:

• Titles: Diagram title as well as axis titles, are optional and can be changed in appearance. There-
fore the font, font size, position, and in specific cases even the direction of the titles can be altered.

6.4. Framework Functions 61

1 <mx :VBox id=”treeBox” width=”200” height=”100%” backgroundColor=”#FFFFFF”
paddingTop=”20” paddingBottom=”20” cornerRadius=”20” borderStyle=”solid”
borderThickness=”0”>

2 <mx :Tree id=”tree” width=”100%” height=”100%” borderStyle=”none” itemClick=”
treeItemClicked (event) ”></mx :Tree>

3 </mx :VBox>
4
5 public function showTreeControl () : void {
6 . . .
7 var treeParentNode :TreeNode = new TreeNode () ;
8 treeParentNode .addChild (treeRoot , false) ;
9 tree .dataProvider = treeParentNode ;

10 . . .
11 }

Listing 6.14: Adding and initialising the tree view component.

(a) Vertical label style. (b) Line break label style.

(c) Centered label style. (d) 45 degrees label style.

Figure 6.12: The four different x-label styles available in Liquid Diagrams.

• Axis Labels: When using a visualisation gadget that features x-axis and y-axis the label style used
for the ticks, displayed along the axis, can be changed according to the four label styles shown in
Figure 6.12.

• Drag-and-Drop: Some visualisations support drag-and-drop operations to rearrange axes. This
can improve the recognition of patterns in the data.

• Selection Labels: When selecting data entities in the visualisation so called selection labels are
shown along the known data points of the selected entities. Additionally the selected entities are
drawn using higher line sizes and alpha values (both are configurable) to be able to compare them
in a better way.

• Line Sizes: The line and border sizes of data entities, drawn in the visualisation, are settable.

6.4.2 Legend

The legend used in the Liquid Diagrams gadgets is not limited to a visual aspect only. Besides showing
the entities colours the legend offers some functions to the user depending on the type of visualisation:

62 6. Liquid Diagrams Framework

• Selecting: Clicking on the entities name in the legend will highlight (line size and alpha value) the
entities visual representation in the visualisation. Depending on the type of visualisation, multiple
selections are possible.

• Hiding: For better comparison results individual entities can be hidden without the need to ma-
nipulate the data set. Pressing the ALT key while clicking an entity name in the legend will hide
this entity and thus remove it from the visualisation.

• Bring data in front: When a visualisation hosts many entities some entities may be over-drawn
by other entities drawn at a later time. Each legend item of an entity can be clicked while holding
down the SHIFT key to bring the data back in front.

• Change colour: When clicking on an entity’s colour bin the colour which represents this entity in
the visualisation can be set individually using the colour picker.

• Change data points: In some visualisations known data values are represented by data points in
the visualisation. The style of the data point and its size can be set by clicking on the entity’s data
point displayed in the legend. This will open the data point picker to choose among the different
data point styles.

6.4.3 Diagram Export

In Lessacher [2009b] an export function based on the built-in print function was introduced. This func-
tion enables the export of a visualisation as a vector graphic (PDF) or as a bitmap. For this one of the
many freely available PDF printers is required. Besides the need to have a PDF printer installed, there
are several other drawbacks using this export function:

• The resulting graphic is too reliant on the version of the PDF printer. Bad PDF printers may lead
to results not matching the original.

• Besides choosing the export format there are very few possibilities to influence the print function.

• The content internally needs to be resized to A4 paper format to fit on the printed page or some
parts of the content will be cut off.

• Due to limitations in the used FlexPrintJob, class exported vector graphics do not contain alpha
transparencies and colour effects.

• It is very complicated to process the result of the export function (PDF format) within the applica-
tion.

• When choosing to export a bitmap instead of a vector graphic, the resolution of the bitmap is very
low and there are no settings to influence the quality of the bitmap.

Although there are several issues when using this export function, it is still available using the Print

button in the options panel. However, two new export functions have been added: ExportasPNG and
ExportasSVG.

The first export function is to export the diagram using Flex’s BitmapData and PNGEncoder classes
[Adobe, 2010a] as a PNG image, as shown in Listing 6.15. The BitmapData object is initialised with the
size of the ChartPanel which hosts the diagram (line 1). Afterwards the draw function of the BitmapData
object is called to capture the content of the ChartPanel (line 2). Finally, the pixels of the BitmapData
object are converted to a PNG-encoded ByteArray object (line 5).

6.4. Framework Functions 63

(a) Print as a bitmap. The quality is low because this
is only a bitmap.

(b) Print as a vector graphic. Since the print function
does not support transparencies, there are signif-
icant differences to the original.

(c) Export as PNG. The image is not freely scalable,
because it is not a vector graphic, but it is an exact
copy of the original with better resolution than
the bitmap given by the built-in print function.

Product A Product B Product C Product D

Dec 2000

Dec 2001

Dec 2002

Dec 2003

Dec 2004

Dec 2005

Dec 2006

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Month

Sa
le

s

Export-Function Comparison

Product A

Product BProduct C

Product D

Product B

200

310

537

983
1,023

1,374
1,869

(d) Export as SVG. The only drawback of this export
type is that the result might not exactly match the
original, because the export is built up in parallel
to the original.

Figure 6.13: The Liquid Diagrams framework offers four different ways to export a visualisation.
Each has its benefits and drawbacks.

1 var bitmap :BitmapData = new BitmapData (chartPanel .width , chartPanel .height) ;
2 bitmap .draw (chartPanel) ;
3 var pngEncoder :PNGEncoder = new PNGEncoder () ;
4 imgArray :ByteArray = pngEncoder .encode (bitmap) ;

Listing 6.15: One new way to export the diagram is to export it as a PNG byte array. This code
shows how the byte array is created.

64 6. Liquid Diagrams Framework

1 if (xRatio > yRatio) {
2 var newHeight :Number = actualWidth * yRatio / xRatio ;
3 if (newHeight > actualHeight) {
4 actualWidth = actualHeight * xRatio / yRatio ;
5 } else {
6 actualHeight = newHeight ;
7 }
8 } else {
9 var newWidth :Number = actualHeight * xRatio / yRatio ;

10 if (newWidth > actualWidth) {
11 actualHeight = actualWidth * yRatio / xRatio ;
12 } else {
13 actualWidth = newWidth ;
14 }
15 }

Listing 6.16: Computing the available space of the chart panel in regard to the display ratio.

This export function is quite simple but it generates a high quality PNG export of the diagram panel
as can be seen in Figure 6.13. Since the export is a pixel-wise capture of the ChartPanel, the export exactly
matches the reference visualisation and there is no need to preview the export as image. Another benefit
is that the ByteArray object can be further processed by the application. However, the major drawback is
that a PNG image is a raster image and is not scalable.

The second new export function creates a scalable vector graphic (SVG). The SVG export file is built
up using SVG tags like line, text, rect, and circle. Each function that creates elements to build up
the visualisation on the ChartPanel also creates output using SVG tags. Since the elements on the screen
and in the export file are created using different functions of different programming languages the results
might not exactly match. This is especially true when using special fonts, because the SVG file only
proposes a font family for each text node. When the Export button in the options panel is clicked, all the
SVG tags created along with the screen output are written into a file.

6.4.4 Display Ratio

All visualisations made with the Liquid Diagrams framework attempt to use all the space available to
the gadget. Thus, using high resolution and large displays can lead to untypical and undesirable display
ratios. One way to obtain a specific display ratio would be to manually resize the window hosting the
gadget, but this is neither comfortable nor are the results precise. Hence, the display ratio of each visu-
alisation is settable using the Options Panel.

To set a display ratio, the check box ExplicitDisplayRatio needs to be set. Afterwards the display
width and height text boxes located beneath the check box are activated. After changing the display
width or height, the change needs to be confirmed by pressing the return key. This will force a redraw
of the diagram using the entered display ratio. Un-checking ExplicitDisplayRatio will discard the
custom ratio and use the entire available space again.

Listing 6.16 illustrates how the available space for the ChartPanel is computed. First of all, it is
determined if the width or the height ratio is higher (line 1). The next step is to try to keep the display
size of the higher aspect ratio and to resize the smaller ratios display size to fulfil the aspect ratio (lines
6 and 13). If the resulting size exceeds the available space the size of the smaller ratio is taken and the
display size of the higher ratio is adapted (lines 4 and 11).

6.4. Framework Functions 65

YYYY-MM-DD DD-MM-YYYY MM-DD-YYYY DDxx MMMM YYYY
YYYY/MM/DD DD/MM/YYYY MM/DD/YYYY DD MMM YYYY
YYYY.MM.DD DD.MM.YYYY MM.DD.YYYY MMM YYYY
YYYY-MM YYYY/MM YYYY.MM YYYY
MM-YYYY MM/YYYY MM.YYYY

DD... Day (e.g. 01)
M... Month (e.g. MM = 02, MMM = Feb, MMMM = February)
YYYY... Year (e.g. 1983)
xx... Ordinal Suffixes (e.g. st, nd, rd, th)

Table 6.1: Date formats available in the Liquid Diagrams framework. Values have to match one of
these formats to be recognized as representing a date.

6.4.5 Date Formatting

The Liquid Diagrams framework introduced in Lessacher [2009b] supports formatting of all numbers
shown in the diagram. To do so, various number format schemes that use different decimal and thou-
sands separators can be chosen using the NumberDisplayFormat combo box in the options panel.

In addition to the number formatting a new function, date formatting has been added. Date format-
ting enables the user to choose among 19 different date formats (shown in Table 6.1). By choosing one
of the formats, that format is applied to all date objects in the diagram.

To recognise that a given value is a valid date, it has to be in one of 19 date formats shown in Table
6.1 (the exception is YYYY). This is implemented using the regular expressions shown in Listing 6.17.
If the value conforms to one of the date formats, the value is written into a Flex Date object and the
setDateFormat function of the ChartPanel class is called. This function receives the date object and
transforms it to the desired format using the Flex DateFormatter class. Therefore the formatString of the
DateFormatter object is set to the desired date pattern (like shown in Table 6.1) and the format function
is called, which returns the desired formatted date as a String.

6.4.6 Alphanumerical Data

In Lessacher [2009b] the parallel coordinates visualisation only supported numerical data. Since then
the star plot visualisation has been added, which uses the same data format and is built up in nearly the
same way. With this addition, the possibility to use alphanumerical (categorical) data was introduced to
both, the star plot visualisation and the parallel coordinates visualisation.

To implement alphanumerical classes an array numericColumn was added to indicate if a column
only contains numerical values. This is done in the getDataObjects method right before the internal
data computation is carried out. This internal data computation verifies and validates each data value.
If the numericColumn variable specifies a data column as not numeric, the data computation for this
column is not carried out because then all kind of values are allowed.

After finishing the data computation, the createAlphanumericalClasses function, which creates
different classes based on the data of a column is called. This function is illustrated in Listing 6.18. Each
column which hosts non-numerical data is assigned an alphanumericalClasses array which holds the
different data classes (line 4). All values present in the column are compared to each other and for each
different value an entry is added to the alphanumericalClasses array (lines 5-9). Finally, the classes of

66 6. Liquid Diagrams Framework

1 / ˆ (? P<day>0 [1 −9] | [1 2] [0 −9] |3 [0 1] | [1 −9]) (.) ? (?P<month>Jan |Feb |Mar |Apr |May |Jun |Jul |
Aug |Sep |Oct |Nov |Dec |Mai |Okt |Dez) (?P<year>\d{4})$ /

2
3 / ˆ (? P<day>0 [1 −9] | [1 2] [0 −9] |3 [0 1] | [1 −9]) (.) ? (?P<month>Jan |Feb |Mar |Apr |May |Jun |Jul |

Aug |Sep |Oct |Nov |Dec |Mai |Okt |Dez) (?P<year>\d{4})$ /
4
5 / ˆ (? P<month>0[1−9] |1[012] | [1−9]) (. | − | \ /) (?P<day>0 [1 −9] | [1 2] [0 −9] |3 [0 1] | [1 −9])

(. | − | \ /) (?P<year>\d{4})$ /
6
7 / ˆ (? P<day>0 [1 −9] | [1 2] [0 −9] |3 [0 1] | [1 −9]) (. | − | \ /) (?P<month>0[1−9] |1[012] | [1−9])

(. | − | \ /) (?P<year>\d{4})$ /
8
9 / ˆ (? P<year>\d{4}) (. | − | \ /) (?P<month>0[1−9] |1[012] | [1−9]) (. | − | \ /) (?P<day

>0 [1 −9] | [1 2] [0 −9] |3 [0 1] | [1 −9])$ /
10
11 / ˆ (? P<month>Jan |Feb |Mar |Apr |May |Jun |Jul |Aug |Sep |Oct |Nov |Dec |Mai |Okt |Dez) ? (?P<year

>\d{4})$ /
12
13 / ˆ (? P<year>\d{4}) (. | − | \ /) (?P<month>0[1−9] |1[012] | [1−9])$ /
14
15 / ˆ (? P<month>0[1−9] |1[012] | [1−9]) (. | − | \ /) (?P<year>\d{4})$ /
16
17 / ˆ (? P<day>0 [1 −9] | [1 2] [0 −9] |3 [0 1] | [1 −9]) (th |st |nd |rd) (?P<month>January |February |

March |April |May |June |July |August |September |October |November |December |Januar |
Februar |März |April |Mai |Juni |Juli |August |September |Oktober |November |Dezember)
(?P<year>\d{4})$ /

Listing 6.17: The regular expressions used to check if a value is a date. If none of these regular
expressions match, the value is not considered to be a date.

each column are sorted using the sort function of the Flex Array class (line 10). After the sort operation
the data in the array is sorted in ascending order, and from now on the index of each array-element (a
numerical value) represents its value.

6.4. Framework Functions 67

1 public function createAlphanumericalClasses () : void {
2 for (var i :int = 0 ; i < numericColumn .length ; i++) {
3 if (numericColumn [i] == false) {
4 alphanumericalClasses [i] = new Array () ;
5 for (var j :int = 1 ; j < data .length ; j++) {
6 if (notInArray (data [j] [i] , alphanumericalClasses [i])) {
7 alphanumericalClasses [i] [alphanumericalClasses [i] . length]=data [j] [i] ;
8 }
9 }

10 alphanumericalClasses [i] = alphanumericalClasses [i] . sort () ;
11 }
12 }
13 }
14
15 public function getClassIndex (value :String , index :Number) : Number {
16 for (var i :int = 0 ; i < alphanumericalClasses [index] . length ; i++) {
17 if (alphanumericalClasses [index] [i] == value) {
18 return i ;
19 }
20 }
21 return −1;
22 }

Listing 6.18: The creation and handling of alphanumerical data classes.

68 6. Liquid Diagrams Framework

Chapter 7

Liquid Diagrams Visualisations

The Liquid Diagrams framework introduced in Lessacher [2009b], initially offered the functions to cre-
ate five visualisation types (line charts, pie charts, bar charts, area charts, and parallel coordinates). All of
visualisations underwent upgrades to make use of the new created components and functions, fix minor
issues, and to enhance their usability.

The Liquid Diagrams framework now contains nine visualisation gadgets. Each visualisation gad-
get’s implementation is located in a separate MXML file specified by the visualisation name. As shown
in Figure 6.1, these MXML files are compiled to SWF objects, which can be included on web pages or
executed using a standalone Flash player.

7.1 Line Chart

As described in Section 2.4.1, line charts are most commonly used for time-based data because the lines
reveal trends over time Sample line charts can be seen in Figure 7.1. The line chart visualisation uses
the axis creation functions of the ChartPanel to set up an x-axis and a y-axis. The data entities are then
drawn by looping over all data points of the entities and adding them to the visualisation in relation to the
values shown on the y-axis and x-axis. Afterwards all data points belonging to one entity are connected
by lines, resulting in an entity characteristic line.

7.2 Pie Chart

A pie chart consists of a circle composed of several sectors, each representing a different entity (see
Section 2.4.2). The area of each sector represents its relative weight (significance). Examples for pie
charts are illustrated in Figure 7.2.

The pie chart does not include axes of any kind. Therefore, it does not have to call axis creation func-
tions or functions to measure label spaces. The available space for the visualisation is solely determined
by the space of the legend and the borders around the visualisation.

The first step when drawing the pie is to determine which sectors are visible. Each visible slice of the
pie is drawn separately using lines and Bezier curves. The algorithm to determine slice sizes is described
in Section 7.6 and illustrated in Figure 7.6.

69

70 7. Liquid Diagrams Visualisations

Martin Michael Andreas Ralph

Jan
2000

Oct
2001

Jan
2002

Mar
2003

May
2004

Jul
2005

Apr
2006

Jan
2007

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0

Time

Va
lu

es

Boys Names

(a) A line chart using different types of data points
and one hidden entity.

Martin Michael Andreas Ralph

Jan
2000

Oct
2001

Jan
2002

Mar
2003

May
2004

Jul
2005

Apr
2006

Jan
2007

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0

Time

Va
lu

es

Boys Names

152

543 601

900
1,012 1,014

1,245

1,419

902

1,345

2,384

3,142

3,912

3,742

3,329

2,713

(b) This line chart shows two selected entities. Us-
ing the selection function entities can be easier
compared to each other.

Figure 7.1: Liquid Diagrams line charts, showing the number of occurrences of four different
names over an 8-year period (2000-2007).

Product A Product B Product C Product D

Pie Chart

Product A
39.63%

Product B
22.77%

Product C
12.12%

Product D
25.49%

(a) This pie chart uses the option to show labels for
the name and the percentage of each slice.

Pie Chart - Animation

Product A

Product D
Product C
Product B

Product D
2,722

25,49%

Product A
4,232

39,63%

Product C
1,294

12,12%

Product B
2,432

22,77%

(b) This image shows one slice in an animation state.
The slice is slid out after a user click. The radius
of the labels was modified to also allow display
of the labels outside the pie chart.

Figure 7.2: Various pie chart visualisations created with Liquid Diagrams.

7.3. Bar Chart 71

Africa Asia Europe Middle East North America Latin America

Oceania

600

500

400

300

200

100

0

Internet User Statistics
N

um
be

r
of

 I
nt

er
ne

t
U

se
rs

 (
in

 m
ill

io
ns

)

(a) This bar chart shows the number of internet users
by the region. The y-axis is bound to years (time)
but only one year is given per entity.

Internet Explorer 8 Internet Explorer 7 Firefox Safari Opera

February March April May

50

45

40

35

30

25

20

15

10

5

0

Month

Pe
rc

en
ta

ge

Browser Statistics (2010)

14.7 15.3 16.2 16

(b) A bar chart displaying the usage percentage of
different browsers during four different months
in 2010. In this visualisation, Internet Explorer 8
is selected and thus highlighted.

Figure 7.3: Various Liquid Diagrams bar charts.

In addition to the general features of the Liquid Diagrams visualisations (see Section 6.4), the pie
chart visualisation offers several individual features:

• Pie Size
Per default the radius of the pie chart fits into the available space. This is symbolized by a radius
value of 100 percent. However if a smaller pie size is desired it can be achieved by entering
a scaling for the radius between 1 and 100 percent. Any changes made are only accepted after
pressing the enter key.

• Labelling
There are three different types of labels that can be shown or hidden using the Options Panel.
These labels are the name of the entity, the value of the entity, and the entity’s share of the total in
percent.

The placement of labels can also be adjusted using the Options Panel. The text box LabelRadius

is used to set the radius where the labels should be displayed. If a value greater than 100 is used,
the labels are drawn outside of the pie.

• Click Animation
The visualisation also implements a slice-slide animation, when an entity or its legend label is
clicked. The first time it is clicked the slice is moved away from the centre and the second click
brings the slice back to its old position. This effect is shown in Figure 7.2. The implementation of
this effect is based on the Move class included in Flex’s mx.effects package.

7.3 Bar Chart

As described in Section 2.4.3, bar charts are especially useful for comparing two or more values. An
example of a Liquid Diagrams bar chart is illustrated in Figure 7.3.

The Liquid Diagrams bar chart implements common features introduced in Section 6.4 and also
provides a setting for the smallestbarwidth. This width (in pixels) determines the smallest possible
width of a single bar, representing an entity, in the visualisation. The smaller the width the more x-ticks

72 7. Liquid Diagrams Visualisations

Martin Michael Andreas Ralph

Dec 2000 Dec 2001 Oct 2000 Dec 2003 Nov 2004 Dec 2005 Dec 2006 Oct 2007

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Time

Va
lu

es

Boys Names

Martin

Michael

Andreas

Ralph

(a) A stacked area chart using the percentage option.

Martin Michael Andreas Ralph

Dec 2000 Dec 2001 Oct 2000 Dec 2003 Nov 2004 Dec 2005 Dec 2006 Oct 2007

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0

Time

Va
lu

es

Boys Names

Martin
Michael

Andreas Ralph

(b) An overlay area chart. Each entity occupies an
area according to its values. The transparency of
these entities is increased enabling other entities
in the background to be seen making it easy to
compare entities.

Figure 7.4: Variants of area charts created with the Liquid Diagrams Framework.

can be shown in the visualisation. If the width is too large it can happen that not all data are shown in the
visualisation and a cutOffEvent will be fired (see Section 6.2.3).

7.4 Area Chart

Area charts are especially useful to reveal trends in the data, because their resulting areas can easily be
compared (see Secton 2.4.4). The construction of the area chart depends on the type of area chart to
be drawn. In an overlay chart, the highest value is determined by finding the highest value of an entity.
In a stacked area chart the highest value of the chart is the highest sum of entity values at a given tick.
After the extreme points have been determined and the labels measured, the x-axis and y-axis are created.

Areas are then created for each entity. The overlay area chart is drawn like a line chart, because each
entity is drawn independently of the others. The entities of the stacked area chart need to be created dif-
ferently, because the entities are drawn atop of each other. To determine the y-coordinate of an entity at
a specific tick, all previous entity values at this tick have to be summed up and added to the entity’s value.

Having drawn all the points of an entity, the area of the entity is closed by drawing a line from the last
point back to the starting point. In an overlay chart the closing line runs along the x-axis. The closing
line of a stacked area chart runs along the entity line of the entity directly beneath. Once closed, the
entity is filled with the desired colour.

The final step in the construction of an area chart is to add a label to each area. To accomplish this,
the location of each entity’s largest vertical extent is determined and the area name label is inserted at
this position.

The Liquid Diagrams area chart offers some specific features:

• Different Types of Area Charts

7.5. Parallel Coordinates 73

1 name ;mpg ;cyl ;disp ;hp ;lbs ;accel ;year ;origin
2 chevrolet chevelle malibu ; 1 8 ; 8 ; 3 0 7 ; 1 3 0 ; 3 5 0 4 ; 1 2 ; 1 9 7 0 ; 1
3 buick skylark 3 2 0 ; 1 5 ; 8 ; 3 5 0 ; 1 6 5 ; 3 6 9 3 ; 1 1 . 5 ; 1 9 7 0 ; 1
4 plymouth satellite ; 1 8 ; 8 ; 3 1 8 ; 1 5 0 ; 3 4 3 6 ; 1 1 ; 1 9 7 0 ; 1
5 amc rebel sst ; 1 6 ; 8 ; 3 0 4 ; 1 5 0 ; 3 4 3 3 ; 1 2 ; 1 9 7 0 ; 1
6 ford torino ; 1 7 ; 8 ; 3 0 2 ; 1 4 0 ; 3 4 4 9 ; 1 0 . 5 ; 1 9 7 0 ; 1
7 ford galaxie 5 0 0 ; 1 5 ; 8 ; 4 2 9 ; 1 9 8 ; 4 3 4 1 ; 1 0 ; 1 9 7 0 ; 1
8 chevrolet impala ; 1 4 ; 8 ; 4 5 4 ; 2 2 0 ; 4 3 5 4 ; 9 ; 1 9 7 0 ; 1
9 plymouth fury iii ; 1 4 ; 8 ; 4 4 0 ; 2 1 5 ; 4 3 1 2 ; 8 . 5 ; 1 9 7 0 ; 1

10 pontiac catalina ; 1 4 ; 8 ; 4 5 5 ; 2 2 5 ; 4 4 2 5 ; 1 0 ; 1 9 7 0 ; 1
11 amc ambassador dpl ; 1 5 ; 8 ; 3 9 0 ; 1 9 0 ; 3 8 5 0 ; 8 . 5 ; 1 9 7 0 ; 1
12 . . .

Listing 7.1: The first 10 entries of a high-dimensional data set containing facts about 400 different
cars. The data set was created by Ramos and Donoho [2010].

There are two different types of area chart available as shown in Figure 7.4: stacked and overlay.
The type of visualisation can be dynamically switched using the Options Panel.

• Display in Percent
The areas are displayed according to their percentage share of the summed up values. This leads
to better use of the available space, but discards the original units.

• Area Labels
This option determines whether area labels are shown or not.

7.5 Parallel Coordinates

Parallel coordinates is a popular and effective way to visualise high-dimensional data (see 2.4.5). An
example of a high-dimensional data set is illustrated in Listing 7.1. The visualisation is constructed by
dividing up the available space into N separate axes, where N is the number of data dimensions. The
highest and the lowest value of each dimension’s entities are taken as the corresponding upper and lower
axis limits. The next step is to take an entity, and draw its values relative to the upper and lower bound-
ary on the corresponding axis. Afterwards, the data points are connected by lines, leading to an entity
characteristic line or polyline. This line drawing process is then carried out for each entity. Examples of
parallel coordinates visualisations can be seen in Figure 7.5.

To create the parallel coordinates visualisation the y-axes, representing the categories, are spread
evenly among the available horizontal space. Afterwards the data points for each entity are mapped and
drawn onto the y-axes. Then all the points of an entity are connected to each other with a line to create
an entity characteristic line.

The Liquid Diagrams parallel coordinates visualisation has numerous visualisation-specific features:

• Filter Entities
Entities can be filtered out by dragging the top and bottom slider thumb of each axis. When an
entity drops outside the two slider thumbs of an axis, the entity is filtered out and is visually greyed
out.

• Changeable Axis Positions
The position of the axes can be rearranged by dragging and dropping the axis labels to a different

74 7. Liquid Diagrams Visualisations

(a) A PNG export of a Liquid Diagrams parallel co-
ordinates visualisation.

Parallel Coordinates - Car Dataset

MPG
35

9

Cyl
8

3

Disp
455

68

HP

230

46

LBS
5,140

1,613

Accel
23.5

8

Year
1,976

1,970

Origin
3

1

(b) An SVG export of a Liquid Diagrams parallel
coordinates visualisation.

Figure 7.5: The Liquid Diagrams parallel coordinates visualisation showing the car dataset which
contains facts about 400 different cars.

position in the visualisation. This helps to better identify patterns in the data, since dimensions can
be best compared next to one another.

• Inversion of Axes
Usually, the lowest value is at the bottom and the highest value is at top of an axis. This can be
changed by clicking on the axis invert button located above each axis. A further click resets the
axis.

• Entity Labels
The label of each entity can be displayed at the corresponding line’s starting point, ending point,
or at both positions.

7.6 Star Plot

The first of four new visualisations that were added to the Liquid Diagrams framework is the star plot
visualisation (see Section 2.4.7). It is called a star plot because when using several axes, the resulting di-
agrams shape looks like a star. The star plot visualisation is used to visualise high-dimensional data like
the data shown in Listing 7.2. Just like the parallel coordinates visualisation, the start plot visualisation
uses different axes to map the entities’ values for a specific attribute. The difference between the two
visualisations is the alignment of the axes. The parallel coordinates visualisation draws the axes parallel
to each other along the available width of the display space. The star plot visualisation aligns its axes in
the shape of a circle, with each axis origin in the centre of the display space.

Besides the general features of the Liquid Diagrams visualisations (see Section 6.3 and Section 6.4),
the star plot visualisation offers several specific features:

• Entity Colours
The colour of each entity drawn in the visualisation can be set a user-friendly way. To change the
colour of an entity, the user just has to click the corresponding colour spot in the legend and choose
a new colour from the colour chooser popup window.

7.6. Star Plot 75

1 Name ;Manufacturer ;Type ;Calories ;Protein ;Fat ;Sodium ;Fibre ;Carbo ;Sugar ;Shelf ;
Potassium ;Vitamins ;Weight ;Cups

2 100%_Bran ;N ;cold ; 7 0 ; 4 ; 1 ; 1 3 0 ; 1 0 , 0 0 ; 5 , 0 0 ; 6 , 0 0 ; 3 ; 2 8 0 ; 2 5 ; 1 , 0 0 ; 0 , 3 3
3 100%_Natural_Bran ;Q ;cold ; 1 2 0 ; 3 ; 5 ; 1 5 ; 2 , 0 0 ; 8 , 0 0 ; 8 , 0 0 ; 3 ; 1 3 5 ; 0 ; 1 , 0 0 ;
4 All−Bran ;K ;cold ; 7 0 ; 4 ; 1 ; 2 6 0 ; 9 , 0 0 ; 7 , 0 0 ; 5 , 0 0 ; 3 ; 3 2 0 ; 2 5 ; 1 , 0 0 ; 0 , 3 3
5 All−Bran_with_Extra_Fiber ;K ;cold ; 5 0 ; 4 ; 0 ; 1 4 0 ; 1 4 , 0 0 ; 8 , 0 0 ; 0 , 0 0 ; 3 ; 3 3 0 ; 2 5 ; 1 , 0 0 ; 0 , 5 0
6 Almond_Delight ;R ;cold ; 1 1 0 ; 2 ; 2 ; 2 0 0 ; 1 , 0 0 ; 1 4 , 0 0 ; 8 , 0 0 ; 3 ; ; 2 5 ; 1 , 0 0 ; 0 , 7 5
7 Apple_Cinnamon_Cheerios ;G ;cold ; 1 1 0 ; 2 ; 2 ; 1 8 0 ; 1 , 5 0 ; 1 0 , 5 0 ; 1 0 , 0 0 ; 1 ; 7 0 ; 2 5 ; 1 , 0 0 ; 0 , 7 5
8 Apple_Jacks ;K ;cold ; 1 1 0 ; 2 ; 0 ; 1 2 5 ; 1 , 0 0 ; 1 1 , 0 0 ; 1 4 , 0 0 ; 2 ; 3 0 ; 2 5 ; 1 , 0 0 ; 1 , 0 0
9 Basic_4 ;G ;cold ; 1 3 0 ; 3 ; 2 ; 2 1 0 ; 2 , 0 0 ; 1 8 , 0 0 ; 8 , 0 0 ; 3 ; 1 0 0 ; 2 5 ; 1 , 3 3 ; 0 , 7 5

10 Bran_Chex ;R ;cold ; 9 0 ; 2 ; 1 ; 2 0 0 ; 4 , 0 0 ; 1 5 , 0 0 ; 6 , 0 0 ; 1 ; 1 2 5 ; 2 5 ; 1 , 0 0 ; 0 , 6 7
11 Bran_Flakes ;P ;cold ; 9 0 ; 3 ; 0 ; 2 1 0 ; 5 , 0 0 ; 1 3 , 0 0 ; 5 , 0 0 ; 3 ; 1 9 0 ; 2 5 ; 1 , 0 0 ; 0 , 6 7
12 . . .

Listing 7.2: The first 10 entries of a high-dimensional data set containing facts about 78 different
cereals acquired from StatLib [2010].

Besides colouring each entity manually, which can be a tough task, depending on the number of
entities, there is also the option to use pre-defined colour schemes. Choosing a colour scheme au-
tomatically assigns each drawn entity a pre-defined colour from the colour scheme. When using a
monochrome colour scheme (colour schemes that only host one colour), the legend is removed and
the alpha value of each entity is reduced to a user-settable value. By reducing the alpha value, each
entity’s line is displayed semi-transparently, enabling entities drawn underneath them to be seen.
If several entities lines share the same line segment, this segment’s alpha value would be computed
by a multiplication of each entity’s alpha value giving a less transparent line than a segment only
occupied by a single entity. An example of a star plot visualisation using a monochrome colour
scheme is shown in Figure 7.7a.

• Rearranging Axes
When created for the first time the different axes are mapped to attributes depending on the order of
the attributes in the data set. To enable better ways to compare the relationships between different
attributes and thus gain more insight into the data set, the order of the axes can be rearranged
interactively. To rearrange an axis, the label representing this axis can be dragged to a different
place in the visualisation. The axis will then be moved between the two axes closest to the place
the axis was dragged to.

• Area Filling
To obtain a different view on the data, each shape created by the entity characteristic lines can be
filled with the entity’s colour. The alpha value of the filling colour can be set to achieve semi-
transparent areas. The overlapping of entities’ areas can be compared more easily. Figure 7.7b
shows a star plot diagram using area filling.

• Invert Axes
Initially, all axes are drawn mapping the attribute’s lowest value to the centre and highest value to
the outside of the circle. Each axis can be swapped to contain the highest value in the centre and
the lowest on the outside. This can be done for each axis individually by clicking on the inverse
arrow next to the axis label.

• Axis Labels
Besides turning on or off the axis labels, there are several configuration possibilities regarding
what the labels contain (ranges, inverse buttons) and how they are positioned along the axes.

• Interactivity
The star plot visualisation supports high interactivity to enrich the exploration of the data. When

76 7. Liquid Diagrams Visualisations

diagramSizeX

di
ag
ra
m
Si
ze
Y

centrePoint

axisLength

8 Axes = 8 Slices

α
Δy

xΔ

endPoint(x,y)

ax
isL
en
gth

U = 2π

α= b
axisLength

U = axesCount b•

α= 2π
axesCount

b

endPointX = centrePointX + axisLength cos(α)•

endPointY = centrePointY + axisLength sin(α)•

Figure 7.6: Computing the end point of each axis in a star plot.

moving the mouse over an entity, a formatted tooltip shows all information known about this entity
and its data. Several click events are implemented for each entity and its corresponding label. The
effect of the click event depends partially on the keyboard key held during the click event. Clicking
the entity will select it and thus increase the entity’s line size and reduce the alpha values of all
non-selected entities. Additionally, labels will be shown where the entity’s lines cross the axes,
showing the data values at this point. When clicking entities while holding down the CTRL key,
all clicked entities will be selected. For better comparison results, individual entities can be hidden
without the need to manipulate the data set. Pressing the ALT key while clicking an entity will
hide this entity and thus remove it from the visualisation. The legend item of the entity will still
be shown using a grey, alpha reduced colour. Clicking this item once more while holding down
the ALT key will bring back the entity. When a visualisation contains many entities, some entities
may be obscured by other entities drawn at a later time. Any entity or the legend item of an entity
can be clicked while holding down the SHIFT key to bring this entity to the front.

• Filtering
In order to consider only data entities matching to certain properties, the Liquid Diagrams frame-
work offers a filtering function for each axis. Two slider thumbs are initially drawn at the maximum
and the minimum value of the axis. Dragging the sliders along the axis filters the entities and thus
fades out entities that are not contained within the slider positions. Filtered out entities are not
entirely hidden: they are still visible using a very low alpha value (0.1). Filtered out entities do not
trigger interactions like mouse-over and selection effects.

The first task when implementing a star plot visualisation is to determine how the axes should be
displayed and how their length and position are computed. Listing 7.3 illustrates how this is handled
in the Liquid Diagrams framework. The length of the axis is determined by the smaller length of either
the width or the height (line 1). Afterwards the space required for the axes labels is subtracted from the
length, resulting in the final axes length (line 2). The start point of each axis is given by the origin of the
diagram (line 4). The origin is computed in a previous step by dividing the available width and height by
2. The end points of the axes are computed by dividing the circle around the centre into N equally sized
wedges, where N is the number of axes (dimensions in the data). Each point where a wedge intersects
a circle of radius of axis length becomes the end point of an axis (lines 6-13). This is also illustrated in
Figure 7.6

To complete the visualisation the values of data entities need to be mapped to their position on each
axis. Listing 7.4 illustrates how the position of a given value on an axis is computed using Flex’s Point
class.

7.6. Star Plot 77

Cereals Data Set

Manufacturer

Type

Calories

Protein (g)

Fat (g)

Sodium (mg)
Fibre (g)

Carbo (g)

Sugar (g)

Shelf

Potassium (mg)

Vitamins

Weight (oz)

Cups

(a) A star plot visualisation showing the cereal data set using a monochrome colour scheme.
Line segments occupied by more than one entity are drawn more opaquely than line
segments occupied by a single entity.

Datsun 1200
Toyota Corolla 1200
Peugeot 304
Fiat 124b
Chevrolet Vega 2300
Opel 1900
Datsun 510
Dodge Colt

Cars Data Set

mpg [0 to 35]

cyl [0 to 4]

disp [0 to 140]

hp [0 to 92]

lbs [0 to 2,288]

accel [0 to 19.5]

(b) A star plot visualisation using area filling to support the recognition of shapes and over-
lappings.

Figure 7.7: The star plot visualisation is a highly interactive visualisation suitable for multi-
dimensional data sets.

78 7. Liquid Diagrams Visualisations

1 axisLength = (diagramSizeY < diagramSizeX) ? (diagramSizeY / 2) : (diagramSizeX /
2) ;

2 axisLength = ((axisLength * radius) / 100) − ((diagramSizeY < diagramSizeX) ? (
labelHeight) : (labelWidth)) ;

3
4 var centrePoint :Point = new Point (diagramOriginX , diagramOriginY) ;
5
6 var alpha :Number = (Math .PI * 2) / axesCount ;
7 for (i = 0 ; i < axesCount ; i++) {
8 var angle = alpha * (i + 1) ;
9

10 endPoint [i] = new Point () ;
11 endPoint [i] . x = centrePoint .x + axisLength * Math .cos (angle) ;
12 endPoint [i] . y = centrePoint .y − axisLength * Math .sin (angle) ;
13 }

Listing 7.3: Computing the length and position of the axes displayed in a star plot visualisation are
computed.

1 var axisRange :Number = maximum − minimum ;
2 var percentage :Number = (value − minimum) / range ;
3 var location :Point = Point .interpolate (axisEnd , axisStart , percentage) ;
4 }

Listing 7.4: Calculating the position of a point along a star plot axis given a percentage.

7.7 Tree Map

First introduced in 1991 a treemap [Johnson and Shneiderman, 1991] is a space-filling visualisation for
large hierarchical data sets (see Section 2.4.8. Since then treemaps have become very popular and are
used for many tasks, including the display of disk usage, financial analyses, and sports data.

A treemap models each item in a hierarchy as a rectangle. Hierarchical structures are presented by
nesting the rectangles, resulting in all the rectangles at one hierarchy level sharing the space of their
common parent rectangle. Figure 7.8a shows the hierarchical structure of a set of data nodes using a
graph representation. The mapping of the nodes to a treemap is shown in Figure 7.8b. If the data in
the data set is weighted, the weight of each node can be reflected in the treemap by sizing rectangles in
proportion to it. Nodes with higher weights occupy larger areas than those with smaller weights. After
assigning a weight to each of the nodes in Figure 7.8a, the newly generated treemap would look like
Figure 7.8c. In addition to sizing the data according to their weight, a treemap can include an additional
data dimension using colour coding.

While Shneiderman [1992] introduced the original slice-and-dice algorithm to lay out the rectan-
gles, several new algorithms have been introduced since then. Each algorithm gives different drawing
results regarding sizing and distribution of the entities’ rectangles. According to Shneiderman [2008]
the optimal layout algorithm uses balanced square nodes with an aspect ratio close to 1 while preserving
the order of the input data and reflecting changes to the data set. Unfortunately these factors contradict
one another. Shneiderman [2008] hosts a list of known layout algorithms and rates their performance
according to their aspect ratio, ordering, and stability:

• Slice-and-Dice
Slice-and-dice was the first algorithm used in treemap visualisations as presented in the original

7.7. Tree Map 79

B E F

D G

P1

P2 P3

P4

(a) A graph showing the hierarchi-
cal structure of the data set.
Each leaf node possesses the
same priority (weight).

P1

P2

P4

B E

F

A

P3

D

G

C

(b) The data shown in (a) shown as
a treemap. If the parents’ bor-
ders were turned off each el-
ement would occupy the same
space because all have equal
weights.

P1

P2

P4

B E

F

A

C

P3

D

G

(c) By adding weights to the nodes,
the space occupied by each
node is calculated proportion-
ately. An additional attribute of
the data is shown using colour.

Figure 7.8: Mapping hierarchically structured data into a treemap visualisation.

treemap paper [Johnson and Shneiderman, 1991]. It uses parallel lines to alternately horizontally
and vertically divide a rectangle into smaller rectangles, representing the rectangle’s children. The
algorithm is easy to implement and retains ordering, but produces very bad (high) aspect ratios.

• Ordered
According to Shneiderman and Wattenberg [2001] which introduced it, this algorithm uses lay-
out algorithms that change relatively smoothly under dynamic updates. The pivot-by-middle and
pivot-by-size algorithms roughly preserve the ordering of the index of the items, which will fall in
a left-to-right and top-to-bottom direction in the layout. The aspect ratio is low but not optimal.

• Squarified
This algorithm, introduced in Bruls et al. [1999] results in the best aspect ratio results, but at the
cost of a loss of the ordering present in the data set. Another drawback is that changing the data
may result in dramatic changes in the layout.

• Cluster
This algorithm’s layout results are very similar to the results of the squarified algorithm and thus
shares its benefits (ratio) and drawbacks (order, update). The cluster algorithm was introduced by
Martin Wattenberg in Wattenberg [1999].

• Strip
The strip treemap algorithm introduced in Bederson et al. [2002] is a modification of the squar-
ified layout algorithm. It works by processing input rectangles in order, and laying them out in
horizontal or vertical strips of varying thicknesses. The results of the algorithm are comparable to
the results of the ordered treemap algorithms, but with better readability.

The Liquid Diagrams treemap visualisation provides many functions to explore a hierarchical data set
and modify the resulting visualisation. The result can be exported using the export functions introduced
in Section 6.4.3. The visualisation also uses the colour legend described in Section 6.3.2 and thus
enables switching between different colour distributions. If enabled, a tree view component is shown on
the right side of the visualisation. This component enables quick access and navigation to specific nodes
(see Section 6.3.3). Besides these features, the Liquid Diagrams treemap visualisation offers:

80 7. Liquid Diagrams Visualisations

• Layout Algorithm
The treemap offers two different layout algorithms to choose from. The first is the slice-and-dice
algorithm, which preserves the order of the nodes according to the input data. The drawback is
that it typically has bad aspect ratios and thus generates many thin strips. The second algorithm,
the squarified treemap algorithm, has the best aspect ratios among all layout algorithms, but does
not preserve the ordering present in the data set. Figure 7.9 illustrates the result of both available
layout algorithms.

• Nesting
Nesting was introduced in Johnson and Shneiderman [1991] to enhance the recognition for hierar-
chical structures. Each non-leaf node is given a border to show which child nodes belong to this
node. In the Liquid Diagrams treemap visualisation, nesting is turned on by default, but can be
switched off to preserve the children’s original rectangle sizes.

• Zoom
Due to the hierarchical structure of the data shown in the treemap, the data is stored in a tree
structure. Within this tree structure, each parent (non-leaf node) can be chosen to be displayed as
the top element. This can be done by either clicking on the parent node’s border in the visualisation
or by using the tree view control element located to the right of the visualisation. Depending on
the hierarchical position of the clicked node with respect to the currently displayed top node, either
a zoom in or zoom out will be carried out.

• Choosing Size and Colour Attributes
The attributes to determine the rectangles’ size and colour can be changed interactively using the
combo boxes in the legend or by accessing the combo boxes in the Options Panel.

• Border Sizes
Border sizes can be changed interactively to enhance the visibility of the hierarchical structure in
the data set.

The first task when implementing treemap visualisation was to decide how to handle the data inside
the gadget. Since the data is hierarchical, a custom tree class is used to build up a tree structure directly
after receiving the data. More about the TreeNode class and how the data is processed can be found in
Section 8.2. After the data is stored in the TreeNode class, the layout algorithm computes how to lay out
the rectangles in the available space. The Liquid Diagrams framework implements two different layout
algorithms - slice-and-dice and squarified.

The implementation of the slice-and-dice algorithm is shown in Listing 7.5. The recursive function
drawSliceDiceTreeMap is called to draw all the child notes of the TreeNode element handed to the
function. Thus it loops over all child elements and computes their width, height, x-position, and y-
position in respect to the drawing alignment (lines 4-14). The drawing alignment is determined by the
available space of the parent. If the width is larger than the height, the children are drawn vertically.
If the currently processed child element does not have children of its own, it is drawn and thus added
to the diagram (line 19). If the current node has children, the element is not drawn, but instead the
drawSliceDiceTreeMap function is called to draw the children of this node in its computed space (line
17).

The second implemented layout algorithm is more complex than the slice-and-dice algorithm. The
squarified treemap algorithm was introduced in Bruls et al. [1999] and is the best treemap layout algo-
rithm with regard to the aspect ratios. This is because the algorithm is designed to reduce aspect ratios
to as close to 1 as possible. The drawSquarifiedTreeMap function shown in Listing 7.6 is a recursive
function which implements the squarified treemap algorithm. The function is handed the parent element,
its width, height, x-position, and y-position as well as the sum of all child elements values (line 1). The

7.7. Tree Map 81

0 51 Colour: Goals

Size: Points
National Hockey League - Season Statistics 2010

Vincent Lecavalier

Victor Hedman

Teddy Purcell

Steven Stamkos

Steve Downie

Stephane Veilleux

Ryan Malone

Mike Lundin

Mattias Ohlund

Martin St.Louis

Kurtis Foster

Jeff Halpern

Brandon Bochenski

Andrej Meszaros

Alex Tanguay

Zdeno Chara

Vladimir Sobotka

Steve Begin

Shawn Thornton

Patrice Bergeron

Miroslav Satan

Milan Lucic

Michael Ryder

Matt Hunwick

Mark Recchi

Marco Sturm

Marc Savard

Johnny Boychuk

Derek Morris

Dennis Wideman

Dennis Seidenberg

David Krejci

Daniel Paille

Byron Bitz

Blake Wheeler

Zbynek Michalek

Wojtek Wolski

Vernon Fiddler

Taylor Pyatt

Shane Doan

Scottie Upshall

Sami Lepisto

Robert Lang

Radim Vrbata

Petr Prucha

Peter Mueller

Matthew Lombardi

Martin Hanzal

Lee Stempniak

Lauri Korpikoski

Keith Yandle

James Vandermeer

Ed Jovanovski

Daniel Winnik

Adrian Aucoin

Zack Stortini

Tom Gilbert

Sheldon Souray

Shawn Horcoff

Sam Gagner

Ryan Whitney

Ryan Potulny

Robert Nilsson

Patrick OSullivan

Mike Comrie

Marc Pouliot

Lubomir Visnovsky

Ladislav Smid

Gilbert Brule

Ethan Moreau

Dustin Penner

Denis Grebeshkov

Andrew Cogliano

Ales Hemsky

Ryan Shannon

Peter Regin

Nick Foligno

Milan Michalek

Mike Fisher

Matt Carkner

Jonathan Cheechoo

Jesse Winchester

Jason Spezza

Jarkko Ruutu

Filip Kuba

Erik Karlsson

Daniel Alfredsson

Chris Phillips

Chris Neil

Chris Kelly

Chris Campoli

Anton Volchenkov

Alexei Kovalev

Alexandre Picard

Zach Parise

Vladimir Zharkov

Travis Zajac

Rod Pelley

Rob Niedermayer

Paul Martin

Patrik Elias

Niclas Bergfors

Mike Mottau

Jay Pandolfo

Ilya Kovalchuk

Dean McAmmond

David Clarkson

Dainius Zubrus

Colin White

Bryce Salvador

Brian Rolston

Andy Greene

Tuomo Ruutu

Tom Kostopoulos

Tim Gleason

Sergei Samsonov

Rod BrindAmour

Ray Whitney

Patrick Dwyer

Matt Cullen

Jussi Jokinen

Joni Pitkanen

Joe Corvo

Jamie McBain

Erik Cole

Eric Staal

Chad Larose

Bryan Rodney

Brett Carson

Brandon Sutter

Andrew Alberts

Aaron Ward

Zach Bogosian

Vyacheslav Kozlov

Todd White

Tobias Enstrom

Ron Hainsey

Rich Peverley

Pavel Kubina

Nik Antropov

Niclas Bergfors

Maxim Afinogenov

Marty Reasoner

Jim Slater

Ilya Kovalchuk

Evander Kane

Colby Armstrong

Chris Thorburn

Bryan Little

Travis Moen

Tomas Plekanec

Sergei Kostitsyn

Scott Gomez

Roman Hamrlik

Michael Cammalleri

Maxim Lapierre

Max Pacioretty

Mathieu Darche

Josh Gorges

Jaroslav Spacek

Hal Gill

Glen Metropolit

Dominic Moore

Brian Gionta

Benoit Pouliot

Andrei Markov

Andrei Kostitsyn

T.J. Oshie

Roman Polak

Paul Kariya

Patrik Berglund

Mike Weaver

Keith Tkachuk

Jay McClement

Erik Johnson

Eric Brewer

David Perron

David Backes

Carlo Colaiacovo

Brandon Crombeen

Brad Boyes

Barret Jackman

Andy McDonald

Alexander Steen

Wojtek Wolski

T.J. Galiardi

Scott Hannan

Ryan Wilson

Ryan OReilly

Peter Mueller

Paul Stastny

Milan Hejduk

Matt Hendricks

Matt Duchene

Marek Svatos

Kyle Quincey

Kyle Cumiskey

John-Michael Liles

David Jones

Darcy Tucker

Cody Mcleod

Chris Stewart

Brett Clark

Brandon Yip

Willie Mitchell

Tanner Glass

Steve Bernier

Sami Salo

Ryan Kesler

Pavol Demitra

Mikael Samuelsson

Michael Grabner

Mason Raymond

Kyle Wellwood

Kevin Bieksa

Jannik Hansen

Henrik Sedin

Daniel Sedin

Christian Ehrhoff

Alexandre Burrows

Alexander Edler

Wayne Simmonds

Sean ODonnell

Scott Parse

Ryan Smyth

Rob Scuderi

Randy Jones

Michal Handzus

Justin Williams

Jarret Stoll

Jack Johnson

Dustin Brown

Drew Doughty

Brad Richardson

Anze Kopitar

Alexander Frolov

Viktor Stalberg

Tyler Bozak

Tomas Kaberle

Rickard Wallin

Phil Kessel

Nikolai Kulemin

Niklas Hagman

Mikhail Grabovski

Matt Stajan

Luke Schenn

Lee Stempniak

John Mitchell

Jeff Finger

Jason Blake

Ian White

Dion Phaneuf

Carl Gunnarsson

Alexei Ponikarovsky

Trevor Daley

Tom Wandell

Toby Petersen

Steve Ott

Stephane Robidas

Mike Ribeiro

Mike Modano

Matt Niskanen

Mark Fistric

Loui Eriksson

Karlis Skrastins

Jere Lehtinen

Jamie Benn

James Neal

Fabian Brunnstrom

Brenden Morrow

Brandon Segal

Brad Richards

Wade Redden

Vinny Prospal

Sean Avery

Ryan Callahan

Olli Jokinen

Michal Rozsival

Michael DelZotto

Matt Gilroy

Marian Gaborik

Marc Staal

Erik Christensen

Enver Lisin

Dan Girardi

Christopher Higgins

Chris Drury

Brandon Prust

Brandon Dubinsky

Artem Anisimov

Ales Kotalik

Steve Sullivan

Shea Weber

Ryan Suter

Ryan Jones

Patric Hornqvist

Martin Erat

Marcel Goc

Kevin Klein

JP Dumont

Jordin Tootoo

Joel Ward

Jerred Smithson

Jason Arnott

Francis Bouillon

David Legwand

Dan Hamhuis

Colin Wilson

Cody Franson

Cal OReilly

Simon Gagne

Scott Hartnell

Matt Carle

Kimmo Timonen

Jeff Carter

James van Riemsdyk

Ian Laperriere

Darroll Powe

Daniel Briere

Dan Carcillo

Claude Giroux

Chris Pronger

Braydon Coburn

Brad Richards

Blair Betts

Arron Asham

Valtteri Filppula

Tomas Holmstrom

Todd Bertuzzi

Pavel Datsyuk

Patrick Eaves

Niklas Kronwall

Nicklas Lidstrom

Kris Draper

Jonathan Ericsson

Johan Franzen

Jason Williams

Henrik Zetterberg

Drew Miller

Darren Helm

Dan Cleary

Brian Rafalski

Brad Stuart

Steven Reinprecht

Stephen Weiss

Shawn Matthias

Rostislav Olesz

Radek Dvorak

Nathan Horton

Michael Frolik

Keith Ballard

Kamil Kreps

Jordan Leopold

Gregory Campbell

Dominic Moore

Dmitry Kulikov

Dennis Seidenberg

David Booth

Cory Stillman

Bryan McCabe

Bryan Allen

Tomas Fleischmann

Tom Poti

Nicklas Backstrom

Mike Knuble

Mike Green

Matt Bradley

Jeff Schultz

Jason Chimera

Eric Fehr

David Steckel

Chris Clark

Brooks Laich

Brendan Morrison

Alexander Semin

Alex Ovechkin

Tyler Myers

Toni Lydman

Tim Kennedy

Tim Connolly

Thomas Vanek

Steve Montador

Paul Gaustad

Patrick Kaleta

Mike Grier

Matt Ellis

Jochen Hecht

Jason Pominville

Henrik Tallinder

Drew Stafford

Derek Roy

Craig Rivet

Clarke MacArthur

Chris Butler

Andrej Sekera

Adam Mair

Tyler Kennedy

Sidney Crosby

Sergei Gonchar

Ruslan Fedotenko

Pascal Dupuis

Mike Rupp

Matt Cooke

Mark Eaton

Kris Letang

Jordan Staal

Evgeni Malkin

Chris Kunitz

Brooks Orpik

Bill Guerin

Alex Goligoski

Troy Brouwer

Tomas Kopecky

Patrick Sharp

Patrick Kane

Niklas Hjalmarsson

Marian Hossa

Kris Versteeg

Jonathan Toews

John Madden

Dustin Byfuglien

Duncan Keith

Dave Bolland

Colin Fraser

Cam Barker

Brian Campbell

Brent Seabrook

Ben Eager

Andrew Ladd

Todd Marchant

Teemu Selanne

Steve Eminger

Scott Niedermayer

Saku Koivu

Ryan Whitney

Ryan Getzlaf

Petteri Nokelainen

Matt Beleskey

Lubomir Visnovsky

Kyle Chipchura

Joffrey Lupul

Jason Blake

James Wisniewski

Dan Sexton

Corey Perry

Bobby Ryan

Trent Hunter

Tim Jackman

Sean Bergenheim

Rob Schremp

Richard Park

Matt Moulson

Mark Streit

Kyle Okposo

Josh Bailey

Jon Sim

John Tavares

Jeff Tambellini

Jack Hillen

Freddy Meyer

Frans Nielsen

Doug Weight

Bruno Gervais

Blake Comeau

Andy Sutton

Samuel Pahlsson

RJ Umberger

Rick Nash

Raffi Torres

Mike Commodore

Mathieu Roy

Kristian Huselius

Kris Russell

Jason Chimera

Jan Hejda

Jakub Voracek

Fedor Tyutin

Derick Brassard

Derek Dorsett

Anton Stralman

Antoine Vermette

Torrey Mitchell

Scott Nichol

Ryane Clowe

Rob Blake

Patrick Marleau

Marc-Edouard Vlasic

Manny Malhotra

Kent Huskins

Joe Thornton

Joe Pavelski

Jed Ortmeyer

Jason Demers

Jamie McGinn

Douglas Murray

Devin Setoguchi

Dany Heatley

Dan Boyle

Robyn Regehr

Rene Bourque

Olli Jokinen

Niklas Hagman

Nigel Dawes

Mikael Backlund

Matt Stajan

Mark Giordano

Jay Bouwmeester

Jarome Iginla

Jamie Lundmark

Ian White

Eric Nystrom

Dustin Boyd

Dion Phaneuf

David Moss

Curtis Glencross

Craig Conroy

Adam Pardy

Shane Hnidy

Owen Nolan

Nick Schultz

Mikko Koivu

Martin Havlat

Marek Zidlicky

Kyle Brodziak

Kim Johnsson

Greg Zanon

Eric Belanger

Chuck Kobasew

Cal Clutterbuck

Brent Burns

Antti Miettinen

Andrew Ebbett

Andrew Brunette

(a) A treemap layout created by the slice-and-dice algorithm. The order of the elements in the data
set is preserved, but aspect ratios vary widely and some nodes are represented by very thin strips.

0 112 Colour: Points
Size: Goals

National Hockey League - Season Statistics 2010

Alex Ovechkin

Alexander Semin

Nicklas Backstrom

Mike Knuble Brooks Laich

Tomas Fleischmann Eric Fehr

Mike Green Matt Bradley

Tom Poti

Alexandre Burrows

Mikael Samuelsson

Henrik Sedin

Daniel Sedin Ryan Kesler

Kyle Wellwood

Christian Ehrhoff Steve Bernier

Sami Salo

Patrick Kane

Patrick Sharp

Jonathan Toews

Marian Hossa Troy Brouwer Kris Versteeg

Andrew Ladd

Duncan Keith

Patrick Marleau

Dany Heatley

Joe Pavelski Joe Thornton

Ryane Clowe

Dan Boyle

Sidney Crosby

Evgeni Malkin

Jordan Staal

Bill Guerin Pascal Dupuis

Matt Cooke Mike Rupp

Chris Kunitz

Chris Stewart

Matt Duchene

Milan Hejduk

Paul Stastny Wojtek Wolski T.J. Galiardi

Cody Mcleod

Bobby Ryan

Teemu Selanne

Corey Perry

Saku Koivu Ryan Getzlaf

Matt Beleskey

Jeff Carter

Brad Richards

Daniel Briere

Simon Gagne Claude Giroux

Darroll Powe Blair Betts

Matt Carle

Anze Kopitar

Dustin Brown

Ryan Smyth

Michal Handzus Alexander Frolov

Jarret Stoll

Scott Parse

Thomas Vanek

Derek Roy

Jason Pominville

Jochen Hecht Tim Connolly

Drew Stafford

Patrick Kaleta Mike Grier

Loui Eriksson

James Neal

Brad Richards

Steve Ott Jamie Benn

Brenden Morrow Mike Ribeiro

Mike Modano Toby Petersen

Ilya Kovalchuk

Nik Antropov

Maxim Afinogenov

Rich Peverley Colby Armstrong

Evander Kane Bryan Little Jim Slater

Jussi Jokinen Eric Staal Brandon Sutter

Ray Whitney Tuomo Ruutu

Matt Cullen

Erik Cole

Chad Larose

Pavel Datsyuk Tomas Holmstrom Henrik Zetterberg

Dan Cleary

Darren Helm

Mike Fisher

Jason Spezza

Milan Michalek

Daniel Alfredsson Alexei Kovalev

Chris Kelly Peter Regin

Chris Neil

Marian Gaborik

Brandon Dubinsky

Vinny Prospal

Ryan Callahan Chris Drury

Sean Avery

Ales Kotalik

Marc Staal

Alexander Steen

Andy McDonald

David Perron

Paul Kariya T.J. Oshie David Backes

Brad Boyes Keith Tkachuk Jay McClement

Eric Brewer

Patric Hornqvist

Martin Erat

Jason Arnott

JP Dumont Steve Sullivan Shea Weber

Joel Ward

Marcel Goc

David Legwand

Colin Wilson

Ryan Jones

Zach Parise

Travis Zajac

Brian Rolston Patrik Elias

Ilya Kovalchuk

Matt Moulson John Tavares Kyle Okposo

Blake Comeau

Josh Bailey

Jon Sim

Mark Streit

Andrew Brunette Mikko Koivu

Martin Havlat

Owen Nolan

Rick Nash Antoine Vermette RJ Umberger

Kristian Huselius

Raffi Torres

Jakub Voracek

Steven Stamkos

Martin St.Louis

Vincent Lecavalier Steve Downie

Ryan Malone

Alex Tanguay

Jeff Halpern Kurtis Foster

Radim Vrbata

Matthew Lombardi

Shane Doan

Scottie Upshall

Lee Stempniak

Petr Prucha

Taylor Pyatt

Robert Lang

Phil Kessel

Nikolai Kulemin

Matt Stajan

Lee Stempniak

Tyler Bozak

Brian Gionta Michael Cammalleri

Tomas Plekanec

Scott Gomez

Travis Moen

Dustin Penner Gilbert Brule

Ryan Potulny Sam Gagner Mike Comrie

Shawn Horcoff

Stephen Weiss Michael Frolik

Nathan Horton Cory Stillman

Jarome Iginla Rene Bourque

Curtis Glencross Nigel Dawes

Eric Nystrom

Mark Giordano

Olli Jokinen

Marco Sturm

Michael Ryder Mark Recchi David Krejci

(b) The squarified treemap algorithm was used to generate this treemap layout. While the order is not
preserved, the aspect ratios are much better.

Figure 7.9: Two variants of the treemap visualisation. The data set shown in the visualisation was
assembled by gathering the statistics of 900 players from the web site of the National
Hockey League [NHL, 2010].

82 7. Liquid Diagrams Visualisations

1 public function drawSliceDiceTreeMap (treeNode :TreeNode , restSize :Number , mapWidth :
Number , mapHeight :Number , x :Number , y :Number) : void {

2 var currentX :Number = x , currentY :Number = y ;
3 for (var i :int = 0 ; i < treeNode .children .length ; i ++) {
4 if (drawVertically (width , height)) {
5 width = (mapWidth / restSize) * squareElements [i] . node .values [square_size .

selectedIndex] ;
6 height = mapHeight ;
7 currentX = currentX + width ;
8 currentY = y ;
9 } else {

10 height = currentHeight = (mapHeight / restSize) * squareElements [i] . node .
values [square_size .selectedIndex] ;

11 width = mapWidth ;
12 currentX = x ;
13 currentY = currentY + height ;
14 }
15
16 if ((treeNode .children .source [i]) .children != null) {
17 drawSliceDiceTreeMap (treeNode .children .source [i] , treeNode .children .source [i

] . values [square_size .selectedIndex] , width , height , currentX , currentY) ;
18 } else {
19 / / draw element
20 }
21 }
22 }
23 }

Listing 7.5: The slice-and-dice layout algorithm for treemaps.

goal of the function is to lay out all of the parent’s children in the available space with the lowest aspect
ratios possible. In order to work correctly, the child nodes need to be sorted in descending order of their
size (line 2). Then a decision is made whether to draw the following rectangles horizontally or vertically
(line 35). Afterwards the width, height, and aspect ratio of the first rectangle is computed (lines 35-71).
The aspect ratio is computed by taking the maximum of either (width/height) or (height/width). After
computing the aspect ratio of the placed rectangle, a check is made whether the aspect ratio has improved
(grew closer to 1) or got worse (line 7). If the aspect ratio improved, the next rectangle is computed (lines
35-71) and the aspect ratio is checked again. This continues as long as the aspect ratio improves or until
all rectangles are computed. If the aspect ratio is worse than before, all computed rectangles but the last
(which caused the bad aspect ratio) are finally placed at their computed position (lines 8-18). Afterwards,
the drawSquarifiedTreeMap function is called with all the remaining child notes (including the one that
caused the bad aspect ratio) to be laid out in the remaining parent space (lines 20-26). If a placed child
element itself possesses child nodes, the drawSquarifiedTreemap function is called using this element
as parent to compute the layout of its children, which are then placed into the available space instead
of the parent. Due to its complexity an example of how the squarified treemap algorithm works can be
found in Section 8.1.

7.8 Heat Map

As introduced in Section 2.4.9 thematic heatmaps or so-called choropleth maps are used to visualise
geographical data. Geographical maps of regions are coloured in a way that each entity (for example, a
country) is given a colour reflecting the value assigned to it in the data set. The colouring concept is very

7.8. Heat Map 83

1 public function drawSquarifiedTreeMap (treeNode :TreeNode , index :int , restSize :
Number , mapWidth :Number , mapHeight :Number , x :Number , y :Number) : void {

2 treeNode .sortChildren (square_size .selectedIndex) ;
3 var currentAspectRatio = 100 , oldAspectRatio = 100 , alreadyPlaced = 0 ; ;
4 for (var i :int = 0 ; i < treeNode .children .length + 1 ; i ++) {
5 if ((currentAspectRatio>oldAspectRatio) | | ((index+i) ==treeNode .children .length))

{
6 for (var j=0;j<(i−1) | | ((index+i)>=treeNode .children .length && j==0) ;j++) {
7 alreadyPlaced = alreadyPlaced + element [j] . node .value ;
8 / / draw the element or call drawSquarifiedTreeMap (if children)
9 }

10 if ((index + i) <= treeNode .children .length) {
11 if (drawVertically (width , height)) {
12 drawSquarifiedTreeMap (treeNode ,index+(i−1) ,restSize−alreadyPlaced ,width−

element [0] . oldWidth ,height ,x+(element [0] . oldWidth) ,y) ;
13 } else {
14 drawSquarifiedTreeMap (treeNode ,index+(i−1) ,restSize−alreadyPlaced ,width ,

height−(element [0] . oldHeight) ,x ,y+(element [0] . oldHeight)) ;
15 }
16 }
17 return ;
18 }
19 oldAspectRatio = currentAspectRatio ;
20 var aspectRatios :Array = new Array () , sizeToPlace = 0 ;
21 element [i] = new SquareElement (i , treeNode .children .source [index + i]) ;
22 if (drawVertically (width , height)) {
23 element [i] . width = (mapWidth /restSize) * element [i] . node .value ;
24 for (j = 0 ; j <= i ; j ++) {
25 sizeToPlace = sizeToPlace + element [j] . width ;
26 }
27 for (j = 0 ; j <= i ; j ++) {
28 element [j] . oldWidth = element [j] . newWidth ;
29 element [j] . oldHeight = element [j] . newHeight ;
30 element [j] . newHeight = element [j] . width / (sizeToPlace /mapHeight) ;
31 element [j] . newWidth = sizeToPlace ;
32 aspectRatios .push (element [j] . getMaxAspectRatio (sizeToPlace , element [j] .

newHeight)) ;
33 }
34 } else {
35 element [i] . height = (mapHeight / restSize) * element [i] . node .value ;
36 for (j = 0 ; j <= i ; j ++) {
37 sizeToPlace = sizeToPlace + element [j] . height ;
38 }
39 for (j = 0 ; j <= i ; j ++) {
40 element [j] . oldHeight = element [j] . newHeight ;
41 element [j] . oldWidth = element [j] . newWidth ;
42 element [j] . newWidth = element [j] . height / (sizeToPlace /mapWidth) ;
43 element [j] . newHeight = sizeToPlace ;
44 aspectRatios .push (element [j] . getMaxAspectRatio (element [j] . newWidth ,

sizeToPlace)) ;
45 }
46 }
47 aspectRatios .sort (Array .DESCENDING | Array .NUMERIC) ;
48 currentAspectRatio = aspectRatios [0] ;
49 }
50 }

Listing 7.6: A recursive function implementing the squarified treemap algorithm. An example of
how it is applied can be found in Section 8.1.

84 7. Liquid Diagrams Visualisations

similar to the colouring concept used in treemaps. Heatmaps have grown very popular over the last few
years and there are several existing software solutions (see Section 4).

In contrast to most existing software solutions, the Liquid Diagrams heatmap visualisation offers
functions to export heatmaps as scalable vector graphics. In addition, the heatmap visualisation provides:

• SVG Maps
Since the drawn regions are completely based on scalable vector graphics, the complete content
is resizable. If desired, the content can be scaled to be displayed in the whole available space.
Upto now, 13 maps including a world map (shown in Figure 7.11), all six continents, and a few
European countries are available.

• Colours
The attribute which is mapped to colour can easily be changed interactively by selecting another
attribute frome those supplied with the data set from the colour combo box. Each attribute is
assigned a predefined colour value. It is also possible to change the assigned colour, by simply
clicking on one of the colour bins in the legend, which opens a colour chooser to pick a new colour.
The colour distribution among the entities is also changeable by clicking on the appropriate dis-
tribution button in the legend. Figure 7.10 shows different heatmap visualisations using different
colour distributions.

• Selective Content
There is an option to only draw specific regions of those contained in a map. For example, if users
want to visualise only the Benelux countries using the Europe map, they can do this by providing
data only for the Benelux countries and turning on the appropriate option in the Options Panel.

• Zooming
Depending on the input data, the heatmap visualisation automatically chooses an appropriate map
(common region) to display all the country and region codes present in the data file. If the data
and an appropriate map for a country is present, this country can be clicked on the common map
to zoom to it. Thus the data of the chosen region is shown on the specific detail map. For example,
if data values of Austrian and French provinces are given, the Europe map will be used to initially
display all the values. By clicking on Austria, a switch to the Austria map occurs, displaying the
data supplied for the Austrian provinces.

• Interaction
When exploring the visualisation, detailed tooltips composed from the provided data sets are dis-
played using mouse-over effects to enhance the understanding of the displayed content. Also,
zooming effects are accessible using mouse clicks.

The Liquid Diagrams heatmap visualisation uses a custom XML file (data.xml) as lookup table to
define which countries and regions are available to be visualised. Until now there are 228 country nodes
and 6 regions present in the lookup table. Each country is uniquely defined using its ISO-3166 ALPHA-
2 code [ISO, 2010] as id. This standard was published in 1974 by the International Organization for
Standardization and assigns each country an unique two-letter country code. Along with this code, each
country node is assigned the full text name supplied by [ISO, 1998] as well as the path of the individual
SVG map of this country and the names of regions containing this country. Besides countries, regions
are also included in the lookup file. Regions can be defined as specific locations that supply a map which
includes one or more countries present on this map. For example, all the continents are present as regions
in the lookup table. Each region tag consists of a unique id, a name, the names of parent regions hosting
this region and a link to the SVG map of this region. Listing 7.7 shows a snippet of the data.xml file.

To visualise data using a heatmap visualisation, the user needs to enter the data according to a spe-
cific format. The ISO-3166 ALPHA-2 country and / or region code [ISO, 2010] must be the first entry

7.8. Heat Map 85

Intensity: Population
Map: Africa

African Population - Quantile Distribution

45,000 - 165,000
513,000 - 691,000
693,000 - 1,202,000
1,297,000 - 1,751,000
1,978,000 - 2,212,000
3,366,000 - 3,759,000
4,506,000 - 5,836,000
6,546,000 - 8,519,000
9,212,000 - 10,277,000
10,324,000 - 11,274,106
12,644,000 - 13,257,000
14,517,176 - 15,891,000
16,287,000 - 19,958,000
20,146,000 - 23,406,000
24,333,000 - 31,875,000
33,796,000 - 35,423,000
39,154,490 - 40,863,000
45,040,000 - 49,991,300
67,827,000 - 78,769,000
79,221,000 - 158,259,000

(a) A map of Africa showing population using quantile colour distri-
bution.

193,277,000

221,500

Intensity: Population
Map: Latin America

Latin America - Population

(b) A map of population in Latin America using
continuous colour distribution.

76,800 - 201,222
201,224 - 325,645
325,647 - 450,068
450,070 - 574,491
574,493 - 698,914
698,916 - 823,337
823,339 - 947,759
947,761 - 1,072,182
1,072,184 - 1,196,605
1,196,607 - 1,321,028
1,321,030 - 1,445,451
1,445,453 - 1,569,874
1,569,876 - 1,694,297
1,694,299 - 1,818,719
1,818,721 - 1,943,142
1,943,144 - 2,067,565
2,067,567 - 2,191,988
2,191,990 - 2,316,411
2,316,413 - 2,440,834
2,440,836 - 2,565,257

Intensity: Population
Map: France

Population of France

(c) A map of the French départements, showing their popula-
tion using quantile colour distribution.

Figure 7.10: The Liquid Diagrams heatmap gadget enables the creation of interactive choropleth
map visualisations.

86 7. Liquid Diagrams Visualisations

1 <data>
2 <regions id=”regions”>
3 <region id=”Europe” parent=”World” name=”Europe” map=”europe .svg”/>
4 <region id=”Asia” parent=”World” name=”Asia” map=”asia .svg”/>
5 <region id=”Oceania” parent=”World” name=”Oceania” map=”oceania .svg”/>
6 <region id=”Latin America” parent=”World” name=”Latin America” map=”lamerica .

svg”/>
7 <region id=”North America” parent=”World” name=”North America” map=”namerica .

svg”/>
8 <region id=”Africa” parent=”World” name=”Africa” map=”africa .svg”/>
9 </regions>

10 <countries id=”countries”>
11 <country id=”AT” parent=”Europe” name=”Austria” map=”austria .svg”/>
12 <country id=”DE” parent=”Europe” name=”Germany” map=”germany .svg”/>
13 <country id=”KZ” parent=”Europe ,Asia” name=”Kazakhstan” map= ” .svg”/>
14 <country id=”CH” parent=”Europe” name=”Switzerland” map=”switzerland .svg”/>
15 </countries>
16 </data>

Listing 7.7: Part of the data.xml XML file regions and countries available in the heatmap
visualisation.

of each data entity. Using the codes, all the entities in the spreadsheet are looked up in the data.xml file
and an appropriate map to cover all countries is selected. If several countries are present, each entity’s
parents are looked up and a common parent region is computed. This is implemented using the TreeNode
class to build up a hierarchical tree structure based on the lookup table and the provided data set (more
information about the TreeNode class can be found in Section 8.2).

In order to create a heatmap, the Liquid Diagrams framework uses scalable vector graphic (SVG)
maps containing the shape information about regions. As in Section 3.7, an SVG file is built up using
XML tags to describe elements like shapes, texts and images. The SVG maps used in the heatmap visu-
alisation define region shapes using the SVG path element. An example for such an SVG file is given in
Listing 7.8. Each path node contains an id element identifying the region. This id comprises the map id
and the ISO-3166 ALPHA-2 code of the country which the path belongs to. Besides the id, there is also
an optional name element containing the full text name of the entity and most important, the information
about how to draw the shape. A detailed example of data definitions, SVG maps, and how new SVG
maps are added to the visualisation can be found in Section 8.3.

After determining a common parent the visualisation application reads the contents of the appropri-
ate SVG map. To draw the appropriate shapes, a slightly modified version of a SVG parser written by
Knapitsch et al. [2009] is used. This parser reads the path definitions and translates them to correspond-
ing Flex commands which are used to draw the shapes. More information on the SVG parser and its
supported SVG tags can be found in Section 8.4. Based on the DrawCompleteMap setting in the Options
Panel, either all shape definitions or only the definitions of entities present in the data file are read from
the SVG map and drawn onto a Panel element. This panel element is then sized according to the available
diagram space and added to the ChartPanel giving the final visualisation.

The components and steps necessary to create a heatmap visualisation (illustrated in Figure 7.12)
are:

1. The data set is handed to the heatmap gadget.

2. The gadget extracts the ISO country or region codes from the data set and retrieves information
about the corresponding countries or regions in the lookup file.

7.8. Heat Map 87

3 1,338,850,000 Intensity: Population
Map: World

World Population - Quantile Distribution

Figure 7.11: A world map of population by country, using the quantile colour distribution.

1 <?xml version= ” 1 . 0 ” encoding=”utf−8”?>
2 <!DOCTYPE svg PUBLIC ”− / /W3C / / DTD SVG 1 . 1 / / EN” ”http : / / www .w3 .org /Graphics /SVG

/ 1 . 1 / DTD /svg11 .dtd”>
3 <svg
4 version= ” 1 . 1 ”
5 id=”Africa”
6 xmlns=”http : / / www .w3 .org / 2 0 0 0 /svg”
7 width=”1425”
8 height=”1400”>
9

10 <path
11 id=”Africa_YT”
12 name=”Mayotte”
13 d=”M1206 . 7 8 7 , 9 7 6 . 5 9 9c1 .022−1.438 ,2.275−4.51−0.188−5.475C1206

. 0 3 , 9 7 2 . 3 8 2 , 1 2 0 5 . 8 2 1 , 9 7 5 . 4 0 7 , 1 2 0 6 . 7 8 7 , 9 7 6 . 5 9 9z”/>
14
15 <path
16 id=”Africa_SH”
17 name=”Saint Helena”
18 d=”M320 . 1 2 9 , 1 0 5 7 . 8 6 7c0 . 731−1 .09 ,0 .82−2 .216 ,0 .265−3 .378C319

. 0 1 , 1 0 5 5 . 4 2 3 , 3 1 8 . 9 1 7 , 1 0 5 6 . 7 9 5 , 3 2 0 . 1 2 9 , 1 0 5 7 . 8 6 7z”/>
19 </svg>

Listing 7.8: Part of the SVG map of Africa, showing the country outlines of Mayotte and Saint
Helena.

88 7. Liquid Diagrams Visualisations

Figure 7.12: The components and steps necessary to create a heatmap visualisation.

3. Using the country information provided by the lookup file, a hierarchical data structure is created
(TreeNode and used to compute the common region of all data entities present in the data set.

4. The lookup file is consulted once more to find the path of the common region’s SVG map.

5. The SVG map of the common region is acquired and parsed.

6. The parsed information is used to draw the shapes of the regions and thus finish the creation
process.

7.9 Voronoi Tree Map

Voronoi tesselations (see Section 2.4.10), named after the Russian mathematician George Voronoi, di-
vide the available space among a number of given locations (called sites), according to the nearest-
neighbour rule. Each site p is assigned the region closest to p (illustrated in Figure 7.13) [Aichholzer
and Aurenhammer, 2002].

In the notation of Okabe et al. [2000], assume there are a finite number of n points labelled p1, ..., pn

with the location vectors (x1, ..., xn) in the Euclidean plane with 2 6 n 6∞. The points are distinct in
the sense that xi 6= xj for i 6= j, i, j ∈ In = 1,, n. The Euclidean distance between a point p with the
coordinates (x1, x2) or a location vector x and a point pi ∈ P is given by

d(p, pi) =‖ x− xi ‖=
√

(x1 − xi1)2 + (x2 − xi2)2

If pi is the nearest point from p or pi is one of the nearest points from p, the relation ‖ x − xi ‖6‖
x− xj ‖ for j 6= i, i, j ∈ In is given. The region

V (pi) = x| ‖ x− xi ‖6‖ x− xj ‖ forj 6= i, j ∈ In

is called the planar ordinary Voronoi polygon associated with pi, and the set given by

7.9. Voronoi Tree Map 89

p

Figure 7.13: A Voronoi diagram. Ten sites (generators) divide the available space into 10 regions.

V = V (p1), ..., V (pn)

is called the Voronoi diagram generated of P.

Since the points on a bisector b(pi, pj) are equi-distant to the generator points pi and pj the bisector
divides the plane into two half planes. This division concept is used in Voronoi treemaps. In Voronoi
treemaps each entity is represented by a polygon whose area is sized according to a chosen data attribute.
Each entity is assigned a point (site) and the bisectors between the points are constructed. An ordinary
Voronoi tessellation draws the bisector equi-distant to the sites and does not take account of any weight-
ing.

The Liquid Diagrams Voronoi treemap gadget uses weighted Voronoi diagrams to create the visu-
alisation. In weighted Voronoi diagrams, each site {p1, ..., pn} is assigned a weight {w1, ..., wn}. The
weights of both sites influence the position of the bisector between between them. There are four types of
weighted Voronoi diagrams: multiplicatively weighted, additively weighted, additively power weighted,
compoundly weighted. Until now only one type of weighted Voronoi diagram is implemented and used
in the Liquid Diagrams Voronoi gadget - the additively weighted power diagram. According to Okabe et
al. [2000] the power diagram is characterised by

d(p, pi; wi) = ‖ x− xi ‖2 − wi

which is called the additively weighted power distance. The bisector of two points pi and pj is a straight
line passing through the point xij given by

xij =
‖ xj ‖2 − ‖ xi ‖2 + wi − wj

2 · ‖ xj − xi ‖2
· (xj − xi) (7.1)

The formula shown in (7.1) is used in the Voronoi gadget to determine the bisector of two given sites
(generators). A detailed example how the bisector of two sites is computed can be seen in Section 8.5.3.

With additively weighted power Voronoi diagrams the Liquid Diagrams Voronoi gadget is able cre-
ate polygon regions whose areas are determined by the weight factor applied to the polygon’s generator
point (site). Simply assigning each generator a weight according to its value, will not result in the desired

90 7. Liquid Diagrams Visualisations

Voronoi diagram in which each entity’s size is proportional to its value. To achieve polygon sizes which
are proportional to their assigned data attribute, an iterative process of generating weighted Voronoi dia-
grams, adjusting the weights, and moving the generators (sites) to the centre of the polygon as described
in Andrews et al. [2002] and Balzer and Deussen [2005] has to be carried out. The desired result is
illustrated in Figure 7.14.

The Liquid Diagrams Voronoi treemap gadget uses the SVG export functions, colour legend, and tree
view component introduced in Section 6.3 and Section 6.4 In addition the Liquid Diagrams Voronoi
treemap visualisation offers the following functions and features:

• Shapes
The visualisation gadget lets the user choose the main shape of the whole visualisation. The user
can choose among space-filling rectangles, triangles, and regular polygons. When choosing regular
polygons, the user is able to enter the order (number of sites) of the polygon. An example of a
polygon of order 35 can be seen in Figure 7.14a.

• Change Display Attributes
The data attributes corresponding to size and colour can be changed interactively by selecting
another data attribute from either the size or the colour combo box located in the legend or in the
Options Panel.

• Visual Changes
The width of borders ca be changed in order to enhance the recognition of hierarchical structures.
The gadget implements user interactions like mouse-over tooltips to obtain more information about
specific polygons. There is also an option to turn on polygon labelling. Examples of diagrams with
larger border values and polygon labelling can be seen in Figure 7.14c and Figure 2.12b.

• Logarithmic Scale
In order to enhance the visibility of small value entities, the gadget offers the option to use a
logarithmic scale. This can easily be activated by clicking on the LogarithmicScale check box
in the legend panel.

• Zoom
The Voronoi gadget implements the tree view component, enabling the user to click on parent
nodes in the tree view to zoom to the clicked element. If a leaf item is clicked the specific leaf is
assigned an effect in the visualisation.

• Computation Settings The Options Panel hosts several text fields to configure the computation
algorithm. Manipulating these settings influences the computation time and the precision of the
resulting diagram.

The implementation of the Voronoi treemap gadget is based on a winged-edge data structure in-
troduced in Baumgart [1975]. The winged-edge data structure keeps track of information about each
polygon and enables quick traversal between faces, edges, and vertices. Detailed information about the
winged-edge data structure can be found in Section 8.5.1.

There are several possibilities to compute the Voronoi diagram for n points. Aurenhammer and Klein
[1999] describes three different approaches to compute a Voronoi diagram as follows:

• Incremental Construction
Incremental construction builds up the voronoi diagram by incremental insertion to obtain V (S)

7.9. Voronoi Tree Map 91

0 51

Colour: Goals
Size: Points

National Hockey League - Player Statistics 2010

(a) A Voronoi Treemap showing the point and goal
statistics of over 900 hockey players playing in the
National Hockey League.

28

0

Colour: Goals
Size: Points

National Hockey League - Buffalo Sabres Statistics 2010

Tim Connolly

Derek Roy
Jason Pominville

Thomas Vanek

Tyler Myers

Jochen Hecht

Drew Stafford

Steve Montador

Henrik Tallinder

Clarke MacArthur

Toni Lydman

Patrick Kaleta

Mike Grier

Paul Gaustad

Adam Mair

Craig Rivet

Tim Kennedy

Andrej Sekera

Chris Butler

Matt Ellis

Mark Mancari

Nathan Gerbe

Tyler Ennis

Raffi Torres

Nathan Paetsch

Daniel Paille

(b) The player statistics of the Buffalo Sabers displayed
in a regular polygon shaped Voronoi Treemap. This
view was reached after using the zoom function on
a parent polygon of the Voronoi diagram in (a).

0 - 4
6 - 9
11 - 14
16 - 19
21 - 24
26 - 29
31 - 34
36 - 39
41 - 44
46 - 49
51 - 54
56 - 59

Colour: Random Value 2
Size: Random Value 1

Voronoi Diagram - Hierarchical Data Set

(c) A Voronoi Treemap hosting a randomly generated data set. The data set consists
of 553 entities with a depth-level of 6.

Figure 7.14: The Liquid Diagrams Voronoi treemap visualisation.

92 7. Liquid Diagrams Visualisations

from V (S) {p}). The benefit of this construction method is that vertices only appearing in in-
termediate diagrams do not need to be stored or constructed. Incremental construction takes an
average runtime of O(n) for well distributed sets of sites.

• Divide and Conquer
The divide and conquer algorithm splits the set of point sites, S, into same sized subsets L and R.
Afterwards, the two Voronoi diagrams V (L) and V (R) are computed recursively. The sets V (L)
and V (R) are then merged to obtain V (S). The benefit of the divide and conquer algorithm is its
construction time of O(n · logn).

• Sweep
In the sweep algorithm a vertical line is moved along the plane and the intersections of the n
line segments are computed. Some modifications are made to the sweep-line algorithm in order
to apply it to Voronoi diagrams. The plane sweep algorithm also constructs Voronoi diagrams in
O(n · logn) time.

In the Liquid Diagrams Voronoi visualisation incremental construction is used to build up the Voronoi
structure. The initial polygon is created based on the available space and the chosen shape. Then a
number of n random points are generated one after another with n being the number of data entities.

This is illustrated in Listing 7.9. First of all, a minimum distance between the generated points is
computed. This is based on the size of the available area (line 3). Then the parent polygon (initial shape)
boundaries are computed (line 4). Afterwards a random point is generated within the boundaries of the
parent polygon. After checking that the point is not within the minimum distance (line 8-12) and inside
the polygon (line 13-17) (see Section 8.5.2) the point is accepted. Then a weight is generated for this
point based on the minimum distance and the corresponding data value (lines 19-25). Afterwards the
point is inserted into the existing Voronoi diagram (line 26) (see Section 8.5.3).

After adding all points to the Voronoi diagram the initial Voronoi diagram is computed. The iter-
ative process to approximate the Voronoi area sizes, to reflect the value distribution of the data set, is
then started. This process is illustrated in Listing 7.10. In line 3 the area sizes are compared to the
desired area sizes. If the actual areas are not within a user-defined error tolerance, either the generators
are moved to the polygons centre (line 8) or the weights of each polygon are adjusted according to the
difference between actual and desired area (line 10) (see Formula (7.2)). With either the weight or the
generator positions changed, the Voronoi diagram is computed again and the process starts once again.

The adjustment of weights is based on the algorithm shown in Balzer and Deussen [2005]. The
formula to compute the adjusted weight is

adjustedWeight = actualWeight · (1 +
desiredArea− actualArea)

desiredArea
) (7.2)

The iterative process stops if the areas are within the user defined error tolerance and the last com-
puted Voronoi diagram is accepted. An illustration of this process can be seen in Figure 7.15.

7.9. Voronoi Tree Map 93

1 public function createGenerators (area :Number , parentVoronoiStructure :
WingedEdgeStructure , parentPolygonNumber :int) : String {

2 voronoiGenerators = new Array () ;
3 var minimumDistance :Number = Math .sqrt (area / generatorCount) * 25 / 100 ;
4 var boundary = parentVoronoiStructure .getPolygonBoundary (parentPolygonNumber) ;
5 for (i = 0 ; i < generatorCount ;) {
6 var rejected :Boolean = false ;
7 voronoiGenerators [i] = new Point (lowestX + (Math .random () * boundary .right) ,

lowestY + (Math .random () * boundary .top)) ;
8 for (var j :int = 0 ; j < voronoiGenerators .length − 1 && !rejected ; j++) {
9 if (Point .distance (voronoiGenerators [i] , voronoiGenerators [j]) <

minimumDistance) {
10 rejected = true ;
11 }
12 }
13 if (parentVoronoiStructure != null && rejected == false) {
14 if (!parentVoronoiStructure .isPointInsidePolygon (voronoiGenerators [i] ,

parentPolygonNumber)) {
15 rejected = true ;
16 }
17 }
18 if (!rejected) {
19 if (minimumDistance > 100) {
20 absoluteWeights [i] = percentualWeights [i] * 1200 ;
21 } else if (minimumDistance > 30) {
22 absoluteWeights [i] = percentualWeights [i] * 100 ;
23 } else {
24 absoluteWeights [i] = percentualWeights [i] / 100 ;
25 }
26 parentVoronoiStructure .addPoint (voronoiGenerators [i] , weight) ;
27 i++;
28 }
29 }
30 }

Listing 7.9: The iterative creation of generator points assigned to a data entity and inserted into the
existing Voronoi diagram.

94 7. Liquid Diagrams Visualisations

(a) Initial diagram. (b) After 10 iterations.

(c) After 30 iterations. (d) After 70 iterations.

(e) After 135 iterations. (f) The final diagram after 194 iterations.

Figure 7.15: The iteration process to approximate each polygon’s area to a desired value reflecting
the assigned entities data value. The points illustrate the position of the polygons
generator point and the move process each generator underwent. The darker the fill
colour of a polygon, the higher its corresponding data value.

7.9. Voronoi Tree Map 95

1 var centerNext :Boolean = true ;
2 while (!finished && iteration < maximumBaseLevelIterations) {
3 var result :Array = voronoiGenerators [instanceNumber] . checkPolygonAreaSizes (area ,

voronoiStructure [instanceNumber] , errorTolerance) ;
4 var actualAreas :Array = result [1] , desiredAreas :Array = result [2] ;
5
6 if (result [0] == false) {
7 if (centerNext) {
8 voronoiGenerators [instanceNumber] . moveGeneratorsToCenter (parentNode ,

voronoiStructure [instanceNumber]) ;
9 } else {

10 voronoiGenerators [instanceNumber] . adjustPolygonWeights (actualAreas ,
desiredAreas) ;

11 }
12 centerNext = !centerNext ;
13
14 createVoronoiDiagram (instanceNumber , parentNode , voronoiGenerators [

instanceNumber] , parentVoronoiStructureNumber , parentPolygonNumber) ;
15 iteration++;
16 }
17 }

Listing 7.10: The iterative process carried out to approximate the Voronoi area sizes to reflect the
value distribution of the data set.

96 7. Liquid Diagrams Visualisations

Chapter 8

Selected Details of the Implementation

“ The whole is more than the sum of its parts. ”

[Aristotle, Greek Philosopher (384 BC - 322 BC).]

8.1 Squarified Tree Map Example

This section shows an example how the squarified treemap algorithm computes the layout of the treemap.
The implementation of the algorithm was shown in Listing 7.6 and a brief summary of the algorithm
was given in Section 7.7.

8.1.1 Starting Situation

A data array containing 7 data values [5,6,2,8,1,2,6] is handed to the layout algorithm function. The
available space for the parent element was set to a width of 600 pixels and a height of 500. The result of
each step is illustrated in Figure 8.1.

8.1.2 Step 1

On the first execution the given data array is sorted to contain the data in descending order [8,6,6,5,2,2,1].
Since no rectangles have yet been drawn, the whole space of 600x500 is available. The drawing direc-
tion is chosen by looking at the width and height. The width (600) exceeds the height (500) and thus
the rectangles will be drawn vertically until the next recursive call. Until now there were no rectangles
drawn and thus there is still a value sum of 30 to be drawn (8+6+6+5+2+2+1).

Then the next value (8) is taken from the array. The width of the rectangle is computed by looking
at the rectangle’s value in respect to the available width (Equation 8.1). Thus there is currently only one
rectangle examined the width of the rectangle is also the summed up width of the examined rectangles
(Equation 8.2). Then the height of the rectangle is computed in respect to the available height (Equation
8.3). The last computation is to calculate the aspect ratio of the newly created rectangle. This is done by
taking the maximum of the rectangle’s (with/height) and (height/width) (Equation 8.4).

97

98 8. Selected Details of the Implementation

600

500

160

8

280

285,71 8

6

400

200 8

6

6

320

500

320

187,5

8

6

6

214,29

150

150

174,54

343,75
8

6

6 5

145,45

320

160

8

6

6

312,5 5
223,21

8

6

6

5

2 89,29

224

160

125

8

6

6

312,5 5

2

250

8

6

6

5
2

160 80

2

80

160

125

8

6

6

312,5
5

2

160

2
187,5

8

6

6

5

2

106,67

12

53,33

62,5

8

6

6

5

2

160

2

1

5

4 76

8 9

11 10

31 2

12

Figure 8.1: The squarified treemap layout algorithm. The numbers below the images refer to the
step number. Darker colours indicate that this rectangle underwent changes in the
current step. Lighter colours indicate rectangles that have been already drawn in a
previous step and will not be changed any more.

8.1. Squarified Tree Map Example 99

rectWidth = widthLeft/valuesLeft · value = 600/30 ∗ 8 = 160 (8.1)

width = rectWidth = 160 (8.2)

height = rectWidth/(width/mapHeight) = 500 (8.3)

AspectRatio = max(160/500), (500/160)) = 3, 125 (8.4)

8.1.3 Step 2

Since there is currently no old aspect ratio value, the aspect ratio cannot get worse. Since no rectangles
are placed until now, there is still an area of 600x500 available and a value sum of 30 to place.

The algorithm carries on by taking the next value from the array [6] and computes its width in the
current layout (Equation 8.5). Since there are now two rectangles present the width increases because
the summed up values of the rectangles take a larger share of the whole value than just the first rect-
angle alone (Equation 8.6). The height of each rectangle is then computed in regard to their individual
width and the available height space (Equation 8.7). Afterwards, the aspect ratios of both rectangles are
computed and the highest value taken into account (Equation 8.8).

rectWidth = widthLeft/valuesLeft · value = 600/30 ∗ 6 = 120 (8.5)

width =
∑

rectWidth = 120 + 160 = 280 (8.6)

height[8] = rectWidth/(width/mapHeight) = 285, 71 (8.7)

height[6] = rectWidth/(width/mapHeight) = 214, 29
AspectRatio[8] = max(280/285, 71), (285, 71/280)) = 1, 020 (8.8)

AspectRatio[6] = max(280/214, 29), (214, 29/280)) = 1, 307

8.1.4 Step 3

At the beginning of the third step there are two aspect ratios present for the first time and thus a compar-
ison to the previous step can be done. Since the aspect ratio of the first step was 3,125 and the ratio of
the second was 1,307 the addition of the second rectangle was an improvement for the aspect ratio. The
second step is confirmed and the algorithm carries on by taking the next value.

After computing the value’s width (Equation 8.9) it is added to the width of the other two rectangles
already present to give the total width (Equation 8.10). Afterwards the individual heights are computed
(Equation 8.11) which are used to determine the aspect ratios (Equation 8.12).

rectWidth = widthLeft/valuesLeft · value = 600/30 ∗ 6 = 120 (8.9)

width =
∑

rectWidth = 400 (8.10)

height[8] = rectWidth/(width/mapHeight) = 200 (8.11)

height[6] = height = rectWidth/(width/mapHeight) = 150
height[6] = height = rectWidth/(width/mapHeight) = 150

AspectRatio[8] = max(400/200), (200/400)) = 2 (8.12)

AspectRatio[6] = max(400/150), (150/400)) = 2, 667
AspectRatio[6] = max(400/150), (150/400)) = 2, 667

100 8. Selected Details of the Implementation

8.1.5 Step 4

By comparing the aspect ratio of Step 3 and Step 2 an increase in the ratio from 1,307 to 2,667 can be
noticed. This means the aspect ratio got worse and the last step needs to be undone.

All steps up to Step 3 (not included) are now confirmed and finally the first and second rectangle
(Step 1 and Step 2) are drawn. When taking the implementation of the algorithm shown in Listing 7.6
into account this step would cause a recursive call of the drawSquarifiedTreeMap with the changed
conditions. After drawing the two rectangles, the available space is reduced to 320x500 and the sum of
the values to place is reduced to 16 (6+5+2+2+1). Since the height is now larger than the width, the next
rectangles are added horizontally.

The next value is taken from the array [6]. Since the algorithm is now drawing horizontally, the
height is computed (Equation 8.13). There are currently no other rectangles taken into account so the
height of the single rectangle is also the final height (Equation 8.14). Afterwards the width (Equation
8.15) and the aspect ratio (Equation 8.16) are calculated.

rectHeight = heightLeft/valuesLeft · value = 500/16 ∗ 6 = 187, 5 (8.13)

height =
∑

rectHeight = 187, 5 (8.14)

width = rectHeight/(height/mapWidth) = 320 (8.15)

AspectRatio = max(320/187, 5), (187, 5/320)) = 1, 707 (8.16)

8.1.6 Step 5

Because the aspect ratio of Step 4 is the first ratio since the first two rectangles were drawn, there is no
other ratio to compare it to. Thus the next value [5] is removed from the array and its individual height
(Equation 8.17) is computed. Since there are two rectangles the overall height is determined by both of
them (Equation 8.18). The individual widths (Equation 8.19) are then used to compute the new aspect
ratios of the rectangles (Equation 8.20).

rectHeight = heightLeft/valuesLeft · value = 500/16 ∗ 5 = 156, 25 (8.17)

height =
∑

rectHeight = 343, 75 (8.18)

width[6] = rectHeight/(height/mapWidth) = 174, 54 (8.19)

width[5] = rectHeight/(height/mapWidth) = 145, 45
AspectRatio[6] = max(174, 54/343, 75), (343, 75/174, 54)) = 1, 964 (8.20)

AspectRatio[5] = max(145, 45/343, 75), (343, 75/145, 45)) = 2, 363

8.1.7 Step 6

The aspect ratio got worse since Step 4, so the 5th step is undone and the rectangle computed in Step
4 is drawn. Another recursion step is taken giving a new available space of 320x312,5 and leading to a
vertical alignment. The sum of values to place is reduced to 10.

The next value is taken from the array [5] and its individual width (Equation 8.21) and height (Equa-
tion 8.22) is computed. Using this width and height the aspect ratio can be determined (Equation 8.23).

8.1. Squarified Tree Map Example 101

rectWidth = widthLeft/valuesLeft · value = 320/10 ∗ 5 = 160 (8.21)

height = rectWidth/(width/mapHeight) = 312, 5 (8.22)

AspectRatio = max(160/312, 5), (312, 5/160)) = 1, 953 (8.23)

8.1.8 Step 7

Since only one rectangle was added since the last recursion step, no comparable ratios are available. The
next value is acquired [2] and because the algorithm is still drawing vertically, the individual width of
this rectangle is computed (Equation 8.24) and added to the width of the first rectangle (Equation 8.25).
Again, the individual heights (Equation 8.26) and widths are used to compute the aspect ratios (Equation
8.27).

rectWidth = widthLeft/valuesLeft · value = 320/10 ∗ 2 = 64 (8.24)

width =
∑

rectWidth = 224 (8.25)

height[5] = rectWidth/(width/mapHeight) = 223, 21 (8.26)

height[2] = rectWidth/(width/mapHeight) = 89, 29
AspectRatio[5] = max(224/223, 21), (223, 21/224)) = 1, 004 (8.27)

AspectRatio[2] = max(224/89, 29), (89, 29/224)) = 2, 509

8.1.9 Step 8 and Step 9

Once more, the aspect ratio got worse and so Step 7 is undone. The rectangle created in Step 6 is drawn,
resulting in a new available space of 160x312,5. There is only a value sum of 5 (2+2+1) left to be drawn.
Since the height exceeds the width, the next rectangles are drawn horizontally. The space assigned to
the next value [2] and its aspect ratio is computed (Equation 8.28). Afterwards Step 9 is carried out (no
comparable ratios), which adds the next value [2]. The heights are summed up (Equation 8.30) to lead to
new aspect ratios (Equation 8.31).

rectHeight = heightLeft/valuesLeft · value = 312, 5/5 ∗ 2 = 125 (8.28)

width = rectHeight/(height/mapWidth) = 160
AspectRatio = max(160/125), (125/160)) = 1, 28

(8.29)

rectHeight = heightLeft/valuesLeft · value = 312, 5/5 ∗ 2 = 125 (8.30)

height =
∑

rectHeight = 250

width[2] = rectHeight/(height/mapWidth) = 80
width[2] = rectHeight/(height/mapWidth) = 80

AspectRatio[2] = max(80/250), (250/80)) = 3, 125 (8.31)

AspectRatio[2] = max(80/250), (250/80)) = 3, 125

102 8. Selected Details of the Implementation

8.1.10 Step 10 and Step 11

Again, the aspect ratio got worse (from 1,28 to 3,124), leading to the negation of Step 9. The rectangle
created in Step 8 is confirmed and thus drawn, leading to a new recursion step with the available space
of 160x187,5. There are only two values left to be drawn with a sum of values of 3.

After computing the aspect ratio of the first rectangle (Equation 8.32) the next step, Step 10 is carried
out. This step could be the last step because it adds a rectangle presenting the last value [1] to the
diagram. But instead of just drawing this rectangle the computed aspect ratios (Equation 8.34) of the two
steps are compared once more.

rectHeight = heightLeft/valuesLeft · value = 187, 5/3 ∗ 2 = 125 (8.32)

width = rectHeight/(height/mapWidth) = 160
AspectRatio = max(160/125), (125/160)) = 1, 28

(8.33)

rectHeight = heightLeft/valuesLeft · value = 187, 5/3 ∗ 1 = 62, 5 (8.34)

height =?rectHeight = 187, 5
width[2] = rectHeight/(height/mapWidth) = 106, 67
width[1] = rectHeight/(height/mapWidth) = 53, 33

AspectRatio[2] = max(106, 67/187, 5), (187, 5/106, 67)) = 1, 758
AspectRatio[1]max(53, 33/187, 5), (187, 5/53, 33)) = 3, 516

8.1.11 Step 12

Even though the last value would have fitted into the left space the aspect ratios of Step 10 and Step 11
were compared and indicated a higher aspect ratio. Thus only Step 10 is drawn and a final 12th step
is necessary to finish the treemap visualisation. The space available for the last value [1] is 160x62,5
leading to a vertical alignment. For the last time the width and height of the rectangle are computed
(Equation 8.35) and finally the last element is drawn too, leading to the final treemap layout.

rectWidth = widthLeft/valuesLeft · value = 160/1 ∗ 1 = 160 (8.35)

width =
∑

rectWidth = 160

height = rectWidth/(width/mapHeight) = 62, 5
AspectRatios = max(160/62, 5), (62, 5/160)) = 2, 56

8.2 Tree Structure

In order to process hierarchically structured data, data from the user is written into a custom tree data
structure called TreeNode. The implementation of the TreeNode class is located in the TreeNode.as file.

Each TreeNode element represents exactly one data entity and possesses the following attributes:

• id
The id is an unique intern identifier used to determine between the nodes. The id is automatically

8.2. Tree Structure 103

TreeNode.1

TreeNode.1.2TreeNode.1.1

TreeNode.1.2.3TreeNode.1.2.1

Figure 8.2: The nodes of a three-tier TreeNode structure and how their unique id attributes would
look. Each id is built up using a string, its parents id number, and a number identifying
the node among the other children of this parent.

assigned and reflects the position of the node at the time it was inserted. Thereby the id is com-
posed of the string ”TreeNode.” followed by the parent identification number (not included if it is
the root node) and the own identification number. An example of how this would look like in a
three layered TreeNode structure is shown in Figure 8.2.

• name
This attribute represents the name of the node. In data sets used for the heatmap visualisation this
attribute indicates the ISO code of the element. The name attribute does not have to be unique.

• label
The label attribute is only used in combination with the heatmap visualisation and contains the
name of the country or region (if present in the data set).

• text
This attribute is used to store information about the node. This information is either given by the
data set or can be set during runtime. The information is then included in the tooltip generated by
a mouse-over effect.

• values
The values attribute is a numerical array holding all data values assigned to this entity.

• sortIndex
Defines the index of the values column which is taken when sorting the data using the sort function.
This is needed for the squarified treemap layout algorithm of the treemap visualisation.

• parent
This attribute contains a link to the parent node.

• children
This is an array containing a link to all child nodes of this node.

The TreeNode class provides many functions. These include functions to search for names, attributes,
and extreme values in specific depths as well as accessing values such as specific column data of a given
depth. There is also a function to determine the common parent of nodes. This function set is needed in
order to determine which map file is to be used for a given data set of a heatmap visualisation. Using the
sort function, child nodes of a given node can be sorted according to a given column of their data values.

The treemap, heatmap, and voronoi diagram visualisations use the TreeNode class to handle their
data. They all share a common input format to which the data handed to the gadget must conform:

104 8. Selected Details of the Implementation

• The first row contains the header names.

• Each further row of the array represents one data entity.

• The first element is the name of the entity.

• The second element is the parent of the entity.

Under these assumptions, the tree structure is built up. The implementation is shown in Listing 8.1.
A copy of all rows is made and written into the lines array. This lines array represents all entities
still to be inserted into the tree structure. Then a node item, which will serve as common root item is
created (lines 5-6). Afterwards, all elements having an empty parent attribute are added as children to the
root element (lines 8-23). During this process, all lines of the nodes which have been added to the root
element are removed from the lines array (lines 15-19). All entities that are still present in the lines

array possess a parent and thus need to be assigned to the appropriate parent. This is done by looping
over the array elements looking for the entity’s parent attribute in the tree structure (lines 26-41). If the
parent is present in the tree structure, the node is assigned as a child and removed from the list (line 30).
If the node is not present in the tree the entity is skipped to be processed again after the other elements
of the array have been processed (line 32). This loop operates as long as entities remain to assigned to
their appropriate parents. Once a loop cycle does not assign any nodes, the loop cycle status switches to
idle. Then a last loop cycle is carried out, in which the parent nodes of all elements still present in the
lines array are created and assigned to the root node. Afterwards, the elements in the lines array are
assigned to their added parents, resulting in the completion of the tree structure.

8.3 Adding New SVG Maps

Since the country and region maps used in the heatmap visualisation are based on SVG maps, it is easy
to add new maps or change existing maps. This example illustrates what steps have to be taken to add a
new map.

The first task is to create or acquire a map of the region to be added. For this example, a Carinthia
map taken from Wikimedia [2010] should be added to the maps available in the heatmap visualisation
gadget. To ensure that the map loads properly into the gadget, the SVG code has to be revised and
changed if it does not conform to the following conventions:

• Namespace
Ensure that the namespace of the document is set to xmlns="http://www.w3.org/2000/svg. If
the namespace is not set, the SVG tags will not be recognised properly by browsers.

• Map ID
In order to integrate the map into the whole map hierarchy, the id of the map document has to
be set carefully. The id of the map must reflect the ISO-3166 ALPHA-2 code [ISO, 2010] of the
region. If the region code is determined by more than one code, the codes have to be separated by
underscores. Thus, for the provinces of Carinthia map, the id would be AT_2 because Austria has
the ISO code AT and Carinthia has the code 2.

• Width and Height
The map width and height attributes are read by the gadget and determine the initial size of the
panel used to draw the shapes. The width and height values should be chosen such that each path
command draws within the boundary. Both values have to be numeric only (no ”px” extension).

8.3. Adding New SVG Maps 105

1 public function handleData () : void {
2 var lines :Array = ObjectUtil .copy (values) as Array ;
3 var idle :Boolean = false , valueLength = values [0] [3] . length ;
4
5 treeRoot = new TreeNode () ;
6 treeRoot .initializeNode (”root” , ” ” , null , null , valueLength) ;
7
8 for (var i :int = 0 , j :int = 1 ; i < lines .length ;) {
9 if (lines [i] [1] == ’ ’) {

10 var treeNode :TreeNode = new TreeNode () ;
11 treeNode .initializeNode (lines [i] [0] , lines [i] [2] , treeRoot , lines [i] [3] ,

valueLength) ;
12 treeRoot .addChild (treeNode , options [COMPUTE_CATEGORY_VALUES]) ;
13 j++;
14
15 if (i+1 != lines .length) {
16 lines [i] = lines .pop () ;
17 } else {
18 lines .pop () ;
19 }
20 } else {
21 i++;
22 }
23 }
24
25 var addParentNextTime :Boolean = false ;
26 while (idle == false) {
27 idle = true ;
28
29 for (i = 0 , j = 0 ; i < lines .length ;) {
30 if (findCategoryName (i , lines [i] , lines , treeRoot , addParentNextTime) !=

false) {
31 idle = false ;
32 } else {
33 i ++;
34 }
35 }
36 if (idle == true && addParentNextTime == false) {
37 addParentNextTime = true ;
38 idle = false ;
39 }
40 }
41 }

Listing 8.1: Mapping the data entries of an array to a tree structure reflecting the data’s hierarchical
structure.

106 8. Selected Details of the Implementation

1 <?xml version= ” 1 . 0 ” encoding=”UTF−8” standalone=”no”?>
2 <svg
3 xmlns=”http : / / www .w3 .org / 2 0 0 0 /svg”
4 width=”590”
5 height=”280”
6 id=”AT_2”>
7
8 <path
9 id=”AT_2_KL”

10 name=”Klagenfurt Land”
11 d=”M 4 3 7 . 7 9 2 9 9 , 1 5 0 . 1 4 5 6 1 L . . . ” / >
12 . . .
13 <path
14 id=”AT_2_FE”
15 name=”Feldkirchen”
16 d=”M 3 3 8 . 7 3 8 0 4 , 9 3 . 3 7 7 2 8 2 L . . . ” / >
17 </svg>

Listing 8.2: The adapted SVG code of the Carinthia map acquired from Wikimedia [2010].

1 <country id=”AT_2” parent=”AT” name=”Carinthia” map=”carinthia .svg”/>

Listing 8.3: The newly created map needs to be registered in the country lookup table.

• Path ID
Each path node needs to have an id parameter identifying the path as a region. This id value should
be assembled by the map id, an underscore, and the ISO region code (if an ISO code exists). For
example a region on the Carinthia map would have the id AT_2_SP.

• Path Name
The name attribute of a path node is not required, but if entered, the name attribute will be used in
the region tooltip if the user data does not supply the region’s full name.

• Path
The d attribute of the path is the path’s data, holding the instructions to draw the path. These
instructions are parsed by the SVG parser (see Section 8.4). In order to colour the region in the
diagram, the path object must be closed, or the fill operation will not work properly.

• Transitions
Transitions manipulate the position and scale of the path drawn using the instructions. Since only
the instructions are read by the parser, transitions will not be applied to the instructions when they
are used in the gadget. Therefore, all transitions have to be removed and applied to the d attribute.

After adapting the SVG code of the Carinthia map accordingly, it looks like the illustration in Listing
8.2. The next step is to register the map in the country lookup table located in the data.xml file. The
country is registered with its ISO code, parent, full name, and the file path to the map, as shown in Listing
8.3.

Now that the map is created and registered in the lookup table, it should be possible to use it in the
gadget. When handing data to the gadget, it has to be ensured to hand over the right parent and country
id (in this case the parent id is AT-02 and the country id is the region). In the case of the Carinthia map,
the add process was successful and the result can be seen in Figure 8.3.

8.4. SVG Parser 107

19,019 - 28,385
28,387 - 37,751
37,753 - 47,117
47,119 - 56,484
56,485 - 65,850
65,852 - 75,216
75,218 - 84,582
84,584 - 93,949

Intensity: Population
Map: Carinthia

Population of Carinthia

Figure 8.3: The newly added Carinthia map displaying the province’s population by district.

8.4 SVG Parser

The SVG parser was originally written by Knapitsch et al. [2009] and was slightly modified to fit into
the Liquid Diagrams framework. The implementation is located in the package diagram.svg which
includes two files SVGPath.as and SVGPathDrawer.as. The purpose of the SVG parser is to read all
the instructions located in path elements of SVG files and translate these instructions into corresponding
Flex commands. This commands are then executed to draw the shapes described by the instructions.

The following SVG instruction tags are implemented by the SVG parser. Small letter commands
have the same function as capital letters, but their position values are relative to the current position,
while capital positions are absolute. The description of each command is taken from [W3C, 2010d].

• M m
The M instruction moves to a position and starts a new sub-path. If there are more than two coordi-
nates following the instruction, these coordinates are interpreted as line to commands.

• L l
Draws a line from the current position to the position given by the parameters. More than two
coordinates result in the drawing of a multiple line segments.

• H h
Draws a horizontal line starting from the current point.

• V v
The V instruction draws a vertical line to the given y value.

• Z z
Close the current path by drawing a straight line to the start point of the path.

• C c
Draws a Bézier curve to a given coordinate. The instruction takes two additional coordinates which
are used as the curve’s control points.

108 8. Selected Details of the Implementation

• S s
This instruction draws a cubic Bézier curve to a point. Only one control point supplied, the second
is computed.

• Q q
The Q instruction draws a quadratic Bézier curve to a point, using one additional coordinate pair
as control point.

• T t
Draws a quadratic Bézier curve to a point.

8.5 Voronoi Construction Details

8.5.1 Winged-Edge Data Structure

The winged-edge data structure was introduced by Baumgart [1975]. The data structure is used to store
graph information like edges, vertices, and polygons of the graph and thus enables fast and easy access
when needed. As described in Okabe et al. [2000], the graph is closed in order to use it for the Voronoi
diagram. This closure is achieved using a closed shape that enwraps all polygon generators.

The winged-edge data structure used in the Liquid Diagrams framework stores the following infor-
mation to construct Voronoi diagrams:

• polygonNumber
This parameter indicates how many polygons are present in the Voronoi diagram (further referred
to as n). The number of polygons reflects the number of data entities, because each entity is
presented by a polygon.

• edgeNumber
The edgeNumber represents the number of edges present in the diagram. Each edge is directed
and thus points from its start vertex to its end vertex. Edges around the start vertex are called
predecessors and edges around the end vertex are called successors.

• vertexNumber
The number of vertices. A vertex is a point where two or three edges intersect each other. A vertex
can either be a start point or an end point of an edge.

• polygonGeneratorX, polygonGeneratorY : [n]
Each polygon has a generator point (site) which is used as the centre of the polygon. Depending on
the weight of the polygon, this might not exactly be its computational centre. The polygonGeneratorX
and polygonGeneratorY variables represent the x-position and the y-position of a polygon’s gen-
erator point.

• polygonGeneratorW : [n]
This value indicates whether a polygon is present in the in the Voronoi diagram or not. This can
happen due to larger polygons forcing smaller polygons to be outside of the boundary.

• polygonGeneratorWeight : [n]
The polygonGeneratorWeight parameter is used to store the weight associated with a polygon,
or more precisely which is present at the polygon’s generator point.

• polygonDataID : [n]
This variable identifies the data entity represented by the polygon.

8.5. Voronoi Construction Details 109

• edgeAroundPolygon : [n]
Each polygon has at least three edges surrounding the polygon and thus defining the polygon’s
borders. One of these boundary edges is stored for each polygon. Based on this information, it is
easy to obtain all other surrounding edges of a polygon.

• edgeAroundVertex : [n]
A vertex can have up to three edges starting or ending at the vertices position. One of these edges
is stored for each vertex.

• edgeRightPolygon, edgeLeftPolygon : [n]
Each edge separates two regions and thus has two bordering polygons. The number of these
polygons is stored in the edgeLeftPolygon and edgeRightPolygon variables, depending on the
start vertex and end vertex (= direction). If the edge is on the boundary of the Voronoi diagram,
one of these variables is set to -1.

• edgeStartVertex, edgeEndVertex : [n]
Each edge is a line between its start vertex and its end vertex. The edgeStartVertex and edgeEndVertex

variables are used to store the number of the edge’s start vertex and end vertex.

• edgeCWPredecessor, edgeCCWPredecessor : [n]
The clockwise and counter-clockwise predecessors of an edge are the two other edges present at
an edge’s start vertex. If there is only one other edge present at a vertex, one of the predecessor
variables is set to -1 (the missing one).

• edgeCWSuccessor, edgeCCWSuccessor : [n]
The successor edges are the two other edges located at the end point of an edge. Boundary edges
may have only one successor. In this case, the other successor (the one that is missing) is set to -1.

• edgeW : [n]
The edgeW variable indicates whether an edge is located at the boundary of the Voronoi diagram
or not. If it is a boundary edge, the value is set to 0.

• vertexX, vertexY : [n]
The vertexX and vertexY variables are used to store the x-position and y-position of a vertex.

• vertexW : [n]
This value indicates if the point is located at the boundary of the Voronoi diagram. If it is an
ordinary point inside the diagram, its value is 1. If it is located on the boundary and a shape-
defining vertex, its value is set to 2. Shape defining vertices cannot be removed thus the diagram
(parent polygon) shape would change if the point is removed. If it is a removable point at the
boundary of the diagram, its value is set to 0.

An example for a winged-edge data structure representing the diagram shown in Figure 8.4 can be
found in Table 8.1.

8.5.2 Determining Point Positions

When randomly generating the positions for the polygon generators, it is necessary to determine whether
a point is inside the polygon of the parent or not. To find out whether a point is inside a polygon or not,
the Liquid Diagram framework uses the ideo of a ray casting algorithm [Sutherland et al., 1974] pre-
sented at Finley [2010]. The algorithm has weaknesses if the point is located directly on the boundary of
an edge, but this is no problem in our case since such a point is rejected anyway, because points should be
inside of the parent shape. Figure 8.5 shows an example polygon and several points inside and outside

110 8. Selected Details of the Implementation

1

2 3

4

5

6

7

8

1

2

3

4

5

6 7

8

9

10

P1

P2

P3

Figure 8.4: The simple Voronoi diagram shown here is the reference for the winged-edge data
structure shown in Table 8.1.

edgeNumber 1 2 3 4 5 6 7 8 9 10
edgeW 0 0 0 0 1 1 1 0 0 0
edgeRightPolygon 1 3 3 2 2 3 3 3 2 1
edgeLeftPolygon -1 -1 -1 -1 1 1 2 -1 -1 -1
edgeStartVertex 1 2 3 4 8 5 7 6 6 8
edgeEndVertex 6 3 7 8 5 6 5 2 4 1
edgeCWPredecessor 10 8 2 9 4 7 3 6 7 5
edgeCCWPredecessor -1 -1 -1 -1 10 5 9 1 3 4
edgeCWSuccessor 8 -1 9 10 6 1 5 -1 -1 -1
edgeCCWSuccessor 6 3 7 5 7 8 6 2 4 1
polygonNumber 1 2 3
polygonGeneratorW 1 1 1
edgeAroundPolygon 1 4 2
vertexNumber 1 2 3 4 5 6 7 8
vertexW 2 2 2 2 1 0 0 0
edgeAroundVertex 1 2 3 4 5 6 7 8

Table 8.1: The winged-edge data structure according to Figure 8.4

8.5. Voronoi Construction Details 111

2

1

3

4

5

AH

C

D
E

F

GB

Figure 8.5: For each point labelled from A to H, a computation is carried out in Table 8.2 based on
the algorithm shown in Listing 8.4 to determine if the point is inside the polygon. The
red dotted lines are only for orientation purposes. The blue lines are the lines leading
to the intersection point necessary to compute the position of the point.

of the polygon. Table 8.2 illustrates how the algorithm decides if the polygon is inside or outside of the
polygon.

The implementation of the algorithm is illustrated in Listing 8.4. All boundary edges of a polygon
are determined and stored in an array (line 2). Afterwards, each boundary edge is checked for whether
the y-coordinate of the point is within the y-coordinates of the edge’s start vertex and end vertex (lines
6-7). If the y-coordinate of the point is not within the vertices, this edge is skipped and nothing happens.
If the y-coordinate of the point is within the y-coordinates of the start and end vertex, three situations can
arise:

• The x-coordinate of the point is higher than the x-coordinates of the start vertex and the end vertex.
The edge is located to the left of the point and thus is added to the beforeList (line 9).

• The x-coordinate of the point is lower than both x-coordinates of the edge.
The edge is located to the right of the point and is added to the afterList (line 11).

• The x-coordinate is between the x-coordinate of the edge’s start and end vertex.
To determine if the edge is added to the beforeList or the afterList a line parallel to the x-axis
is drawn from the point to the edge until the line intersects it. Afterwards, the x-coordinate of
the intersection point is computed (line 13-14). If the resulting x-coordinate is higher than the
x-coordinate of the point, the edge is added to the afterList (line 17). If it is lower, the edge
is added to the beforelist (line 19). If the x-coordinate of the intersection point is equal to the
x-coordinate of the point, the edge is rejected because the point is located on the boundary edge
(line 21).

After running through all boundary edges, it is determined whether an odd number of edges is in
both the beforeList and the afterList. If this is the case, the point is inside of the polygon and it is
accepted (line 28).

112 8. Selected Details of the Implementation

1 public function isPointInsidePolygon (point :Point , polygon :int) : Boolean {
2 var edges :Array = getedges (polygon) ;
3 var beforeList :Array = new Array () , afterList :Array = new Array () ;
4
5 for (var i :int = 0 ; i < edges .length ; i++) {
6 if ((vertexY [edgeStartVertex [edges [i]]] <= point .y && vertexY [edgeEndVertex [

edges [i]]] >= point .y) | |
7 (vertexY [edgeStartVertex [edges [i]]] >= point .y && vertexY [edgeEndVertex [

edges [i]]] <= point .y)) {
8 if (vertexX [edgeStartVertex [edges [i]]] < point .x && vertexX [edgeEndVertex [

edges [i]]] < point .x) {
9 beforeList [beforeList .length] = edges [i] ;

10 } else if (vertexX [edgeStartVertex [edges [i]]] > point .x && vertexX [
edgeEndVertex [edges [i]]] > point .x) {

11 afterList [afterList .length] = edges [i] ;
12 } else {
13 var s :Number = (point .y − vertexY [edgeStartVertex [edges [i]]]) / (vertexY [

edgeEndVertex [edges [i]]] − vertexY [edgeStartVertex [edges [i]]]) ;
14 var x :Number = vertexX [edgeStartVertex [edges [i]]] + s * (vertexX [

edgeEndVertex [edges [i]]] − vertexX [edgeStartVertex [edges [i]]]) ;
15
16 if (x > point .x) {
17 afterList [afterList .length] = edges [i] ;
18 } else if (x < point .x) {
19 beforeList [beforeList .length] = edges [i] ;
20 } else {
21 return false ;
22 }
23 }
24 }
25 }
26
27 if ((beforeList .length % 2 == 1) && (afterList .length % 2 == 1)) {
28 return true ;
29 } else {
30 return false ;
31 }
32 }

Listing 8.4: Determining whether a point is inside a polygon or not.

1 2 3 4 5 Before After Accept
A - After - Before - 1 1 Yes
B After - - - After 0 2 No
C - After - - Before 1 1 Yes
D - - - - - 0 0 No
E - - After After - 0 2 No
F After - - - Before 1 1 Yes
G Before - - - Before 0 2 No
H - After - Equal - 0 1 No

Table 8.2: The computation results according to Figure 8.5.

8.5. Voronoi Construction Details 113

8.5.3 Inserting an Element

Since the Voronoi Diagram is built up using the incremental method, the generators are added to the
diagram (parent polygon) one by one. This is implemented in the boundaryGrowing function of the
WingedEdgeStructure class located in the WingedEdgeStructure.as file. The boundaryGrowing im-
plementation differentiates three different situations, based on how many generators are already present
in the parent polygon. The first time the function is called, no other generators are present. Therefore,
the generator is placed at its randomly generated point inside the parent polygon and all of the parents’
borders are assigned to the generator.

The second situation appears when adding the second generator. In this case the area of the parent
polygon is split between the first and the second generator. The new generator is added at its generated
position. Afterwards, the bisector point between the two points is calculated based on the formula:

xij =
‖ xj ‖2 − ‖ xi ‖2 + wi − wj

2 · ‖ xj − xi ‖2
· (xj − xi) (8.36)

Given the bisector point, a perpendicular line between the two generators running through the bisector
point is drawn. This line is the bisector edge separating the two generators areas.

The third situation emerges when adding the third generator, as well as every time a generator is
added later. This situation also illustrated in Figure 8.6. The generator is added at the generated position
and the distances to the previously placed generators are measured. The generator closest to the new
generator (further referred to as P1) is chosen to be handled first. The bisector point between the new
generator and P1 is computed according to Formula (8.36). Then the perpendicular bisector line between
the two generators is drawn to separate them.

Afterwards, a boundary growing process is performed for the new generator as follows. The two in-
tersection points of the newly drawn bisector edge and the edges surrounding P1 are examined beginning
with the intersection point at the end of the line. If the intersected edge is no boundary edge it separates
two regions with one of them being the region of P1. The generator of the other region (P2) is handled
next.

This leads to the creation of a perpendicular bisector edge between the new added generator and P2.
By looking at the intersection points of the bisector edge and the edges surrounding P2 the next generator
to consider is eventually found (P3). This is done until either the first bisector edge is reached again, or
no further generator to be handled can be found.

If no further generator is found because a boundary edge of the parent polygon is intersected, the
boundary growing process is carried out starting from the intersection point at the start vertex of the first
created bisector edge.

114 8. Selected Details of the Implementation

P1
P2

P3

P4

P5

(a) The initial Voronoi diagram hosts 5 gen-
erators {P1, .., P5}.

P1

P6

B

I1

I2

(b) A new generator P6 is added to the di-
agram (closest to P1). A perpendicular
bisector line between P6 an P1 is drawn
(blue line). The neighbouring polygon of
the intersected line at I1 is handled next.

P2

P6
B

I1

I2

P3

(c) A bisector edge between P6 and P2 is cre-
ated. The intersection point I1 is exam-
ined leading to generator P3 being han-
dled next.

P6

P3

B

I1
I2

P4

(d) The bisector edge between P6 and P3

is created and boundary growing will be
carried out for P4 next (the not handled
neighbour polygon of I1).

P6

P4

B
I2

I1
P5

(e) The bisector edge between P6 and P4 is
drawn. P5 will be handled next.

I1

I2

B

P6

P5

(f) After drawing the bisector edge between
P6 and P5 the first created bisector edge
is reached. This stops the boundary grow-
ing process and thus the insertion of P6 is
finished.

Figure 8.6: The boundary growing process carried out after adding a new generator to a voronoi
diagram which already hosts at least two other generators.

Chapter 9

Outlook

Information visualisation will continue to extend its popularity, because the amount of data and its com-
plexity is growing ever larger and with it the need for solutions to explore and understand this data.
Online visualisation solutions are becoming easier and more comfortable to handle, and are offering
more features and social experiences to attract the attention of ordinary internet users.

Although the Liquid Diagrams framework and its gadgets offer many possibilities to create aestheti-
cally pleasing and highly interactive visualisations, there are several possibilities to further enhance it:

• Web Site
The most relevant improvement would be to create a web site to host both, the gadgets and user
data. This would remove the dependency on GoogleDocs and ensure long-time operability. Be-
sides that it will eliminate all restrictions and limitations given by the GoogleDocs interface. Users
could also share and collaborate on visualisations, in a manner similar to Many Eyes [IBM, 2010b].

• Time Control Element
Another major improvement would be to add a control element to each gadget to enable interactive
exploration of changes in the data set over a period of time (similar to the time control available in
the Gapminder visualisation - see Section 4.3.9).

• Container Around Visualisation
By adding an additional container which hosts the drawn entities new features like zooming, pan-
ning, scrolling, and rotating the content would be available.

• Individual Entity Setup
This improvement would include individual treatment for each entity through an Options Dialog
or when right clicking an entity. For example, it might be possible to rename the entity, change its
size, colour, appearance, label, and many more options.

• Adobe AIR Support
By implementing the gadgets using Adobe Air, additional features for offline usage would become
available. This includes support for data bases and better client file access possibilities.

• New Layout Algorithms
A possibility to upgrade the treemap and voronoi treemap visualisations would be to implement
additional layout algorithms. This would include the strip and ordered layout algorithm for the
treemap and the additively weighted voronoi tessellation for the voronoi treemap visualisation.

115

116 9. Outlook

• Improved Selection Behaviour
The implementation of improved entity selection methods, like angular brushing for parallel coor-
dinates introduced in Hauser et al. [2002].

Appendix A

User Guide

To use the Liquid Diagrams visualisations as gadgets in combination with Google Spreadsheets, several
steps have to be performed.

A.1 Gadget Installation

To install Liquid Diagrams for use with Google Spreadsheets, several files have to be partially modified
and copied to a reachable web space. These files include common files used by every visualisation as
well as gadget-specific files. The following steps have to be performed to install Liquid Diagrams:

1. Select some web space which is reachable without access restrictions.

For example: http://www.lessacher.info

2. Create a parent folder in this web space which will hold all visualisation gadgets.

For example: http://www.lessacher.info/ivis/

3. In this parent folder, create a folder called common.

For example: http://www.lessacher.info/ivis/common/

4. In the file includes.js located in the common folder, the host string (located in line 2) needs to be
changed to the parent folder of the chosen web space. The file is then closed and saved.

For example: var host = ’http://www.lessacher.info/ivis/’;

5. The files utils.js, includes.js, and colour-schemes.js are simply copied to the common
folder on the web space.

For example: http://www.lessacher.info/ivis/common/utils.js

6. For each visualisation a folder is created in parent directory on the web space.

For example: http://www.lessacher.info/ivis/linechart/

7. A replacement needs to be done in the local XML files of each visualisation. In the XML file,
the lines need to be found which include the includes.js file. These lines need to be changed to
contain the correct web space.

For example: Find http://www.host.com/parent/common/includes.js and replace it with

http://www.lessacher.info/ivis/common/includes.js.

117

118 A. User Guide

(a)

(b)

Figure A.1: After having chosen to insert a gadget, the URL of the gadget XML file is entered.

A.2. Insertion 119

Visualisation Chart Pie Multidimensional Hierarchical Geo
Data Format Data Format Data Format Data Format Data Format

Line Chart X
Bar Chart X
Area Chart X
Pie Chart X
Parallel Coordinates X
Starplot X
Treemap X
Voronoi Treemap X
Heatmap X

Table A.1: The data format expected by each visualisation gadget.

8. A further replacement of the web space path needs to be done in the visualisation specific JavaScript
file. For example: Find http://www.host.info/parent/linechart/linechart.js

and replace it with http://www.lessacher.info/ivis/linechart/linechart.js

A.2 Insertion

After installation, Liquid Diagrams can be used to visualise the data contained in a Google Spread-
sheet. A visualisation is inserted as a gadget into a Google Spreadsheet. The data to be visualised is
first selected in the spreadsheet. Afterwards, Gadget... is selected from the Insert menu. In the pop
up window, Custom... is chosen and the URL of the desired visualisation’s XML file (for example
http://www.lessacher.info/ivis/linechart/linechart.xml) is entered. The insert process is illustrated in Fig-
ure A.1.

After clicking the Add button, a window pops up showing the settings defined in the XML file. These
are the initial settings for the visualisation. After clicking the Apply button at the bottom of the settings
window, the visualisation is drawn into the gadget container, as shown in Figure A.2.

A.3 Data Formats

In order to visualise the data properly, the data in the Google Spreadsheet needs to be entered according to
a special data format for each visualisation gadget. Liquid Diagrams distinguishes between five different
data formats. Table A.1 gives a brief summarises data format each visualisation uses.

A.3.1 Chart Data Format

This data format is the standard data format used by the basic visualisation gadgets (line chart, bar chart,
and area chart). Table A.2 illustrates an example for this data format. The first line contains the names
of the entities while the first column features the values to be shown on the x-axis (e.g. time). This leads
to columns representing the entities while the lines hold the entities data of specific x-axis ticks.

A.3.2 Pie Data Format

The pie data format is used in the pie chart visualisation and is illustrated in Table A.3. The first column
features the names of the different entities and the second column hosts the values of these entities.

120 A. User Guide

(a)

(b)

Figure A.2: Before the visualisation is drawn, the Google Gadget parameters need to be set. After
clicking Apply, the visualisation is drawn.

Month Internet Explorer 8 Internet Explorer 7 Mozilla Firefox Safari Opera
February 14.7 11 46.5 3.8 2.1
March 15.3 9.1 46.2 3.7 2.2
April 16.2 9.3 46.4 3.7 2.2
May 16 9.1 46.6 3.5 2.2

Table A.2: The chart data format, used by line chart, bar chart, and area chart. An export of a line
chart using this data can be seen in Figure 2.3c.

A.3. Data Formats 121

Browser February
Internet Explorer 25.7
Mozilla Firefox 46.5
Safari 3.8
Opera 2.1

Table A.3: The pie data format, used in the pie chart visualisation.

Car MPG Cyl HP
Dodge Monaco 12 8 383
Toyota Corolla 1200 31 4 71
Peugeot 304 30 4 79
Fiat 124b 30 4 88

Table A.4: The multidimensional data format is used in the parallel coordinates and star plot visu-
alisations.

A.3.3 Multidimensional Data Format

The multidimensional data format is used in the parallel coordinates and the star plot visualisations. An
example can be seen in Table A.4. The first row contains the data dimensions (attributes, axis names)
and the first column features the entity names. Generally, rows represent entities and columns represent
attributes.

A.3.4 Hierarchical Data Format

The treemap visualisation and the Voronoi treemap visualisation expect hierarchically structured data,
which has to be entered according to this data format. Table A.5 shows an example for this data format.
Each row, except the first, represents a single data entity. The first row is the header row and has to be
according to a special format in order to recognise optional data fields. The first column represents the
name of the entity, no matter what the label of the column is.

The second column is always used to specify the parent of this entity. If the parent column of an
entity is left blank, the entity is used as one of the root (top level) nodes. If the value entered into the
parent field of an entity does not match any other entity in the data set, an entity having the name of this
value is created as a top level node and the entity is assigned to it as a child node.

Beginning with the third column, all further columns are considered value columns which can be
chosen in the gadgets combo boxes as colour or size defining properties. The label of the column in the
header line is used as the name displayed in the combo boxes.

A.3.5 Geo Data Format

This data format is used in the heatmap (Choropleth) visualisation. As in the hierarchical data format,
each row except the first represents a single entity. Due to optional data fields there are two possibilities
to enter entities in a correct way. The first possibility is to define a single entity by two data fields. In this
case the first column represents the ISO-3166 ALPHA-2 code (see Section 7.8) of the parent country
and the second column is used to specify the entity using the ISO-3166 ALPHA-2 code for the region.
In this case the label of the second column has to be Name in order to interpret the format in a correct way
(see Table A.6).

122 A. User Guide

Distinct Province Area Population
Graz Styria 12,748 253,994
Spittal Carinthia 276,408 79,759
Villach Carinthia 13,490 58,949

Table A.5: The hierarchical data format is used in the treemap visualisation and the Voronoi
treemap visualisation.

Country Name Population Area
DE BE 3,416,000 892
DE BR 2,535,000 29,479
DE BY 12,520,000 70,552

Table A.6: In this geo data format each entity is identified by the first two columns.

The second possibility is to define an entity by using only the first column. The first column must
contain the ISO-3166 ALPHA-2 country code or an unique country name present in the XML lookup
table or if the entity represents a province of a country the ISO-3166 ALPHA-2 code of the country
followed by a dash (-) and the ISO-3166 ALPHA-2 code of the province (see Table A.7).

Depending on the optional field all columns starting at the third, or forth column are data columns.
These columns are used as the colour defining attribute in the heatmap visualisation.

A.3. Data Formats 123

Country Population Internet Users
Austria 8,214,160 5,143,600
Switzerland 7,623,438 5,739,300
DE-BE 3,416,000 892
DE-BY 12,520,000 70,552

Table A.7: In this geo data format each entity is identified by the first column only. Country names,
specified in the lookup table, as well as composite country codes are used.

124 A. User Guide

Bibliography

Adobe [2010a]. Actionscript 3.0 Reference. http://help.adobe.com/en_US/FlashPlatform/

reference/actionscript/3/mx/graphics/codec/PNGEncoder.html. (Cited on page 62.)

Adobe [2010b]. Adobe AIR - Deliver Rich Internet Applications on the Desktop. http://wwwimages.
adobe.com/www.adobe.com/products/air/pdfs/air_flex_datasheet.pdf. (Cited on
pages 17 and 18.)

Adobe [2010c]. Adobe Flex. http://www.adobe.com/de/products/flex/. (Cited on page 35.)

Adobe [2010d]. Adobe Illustrator. http://www.adobe.com/products/illustrator/. (Cited on
page 19.)

Adobe [2010e]. Adobe SVG Viewer. http://www.adobe.com/svg/viewer/install/. (Cited on
page 21.)

Adobe [2010f]. Flash Player Statistics. http://www.adobe.com/products/player_census/

flashplayer/. (Cited on pages 35 and 37.)

Adobe [2010g]. SWF searchability FAQ. http://www.adobe.com/devnet/flashplayer/

articles/swf_searchability.html. (Cited on page 18.)

Aichholzer, Oswin and Franz Aurenhammer [2002]. Voronoi Diagrams - Computational Geometry’s
Favorite. In Special Issue on Foundations of Information Processing of TELEMATIK, volume 1,
pages 7–11. Institute for Theoretical Computer Science, Graz University of Technology. http://

www.igi.tugraz.at/auren/psfiles/aa-vdcgf-02.ps.gz. (Cited on pages 13 and 88.)

AlwaysOn Technologies [2010]. Cloud Browse. http://www.alwaysontechnologies.com/.
(Cited on page 35.)

Andrews, Keith [2006]. Writing a Thesis: Guidelines for Writing a Master’s Thesis in Computer Science.
Graz University of Technology, Austria. http://ftp.iicm.edu/pub/keith/thesis/. (Cited
on page ix.)

Andrews, Keith [2009]. Information Visualisation, Course Notes. http://courses.iicm.tugraz.
at/ivis/ivis.pdf. (Cited on pages 4 and 5.)

Andrews, Keith, Wolfgang Kienreich, Vedran Sabol, Jutta Becker, Georg Droschl, Frank Kappe, Michael
Granitzer, Peter Auer, and Klaus Tochtermann [2002]. The InfoSky Visual Explorer: Exploiting Hi-
erarchical Structure and Document Similarities. Information Visualization, 1(3/4), pages 166–181.
doi:10.1057/palgrave.ivs.9500023. (Cited on pages 13 and 90.)

Andrews, Keith and Martin Lessacher [2010]. Liquid Diagrams: Information Visualisation Gadgets.
In Proc. 14th International Conference on Information Visualisation (IV’10), pages 104–109. IEEE
Computer Society Press. doi:10.1109/IV.2010.100. (Cited on page 1.)

125

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/codec/PNGEncoder.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/graphics/codec/PNGEncoder.html
http://wwwimages.adobe.com/www.adobe.com/products/air/pdfs/air_flex_datasheet.pdf
http://wwwimages.adobe.com/www.adobe.com/products/air/pdfs/air_flex_datasheet.pdf
http://www.adobe.com/de/products/flex/
http://www.adobe.com/products/illustrator/
http://www.adobe.com/svg/viewer/install/
http://www.adobe.com/products/player_census/flashplayer/
http://www.adobe.com/products/player_census/flashplayer/
http://www.adobe.com/devnet/flashplayer/articles/swf_searchability.html
http://www.adobe.com/devnet/flashplayer/articles/swf_searchability.html
http://www.igi.tugraz.at/auren/psfiles/aa-vdcgf-02.ps.gz
http://www.igi.tugraz.at/auren/psfiles/aa-vdcgf-02.ps.gz
http://www.alwaysontechnologies.com/
http://ftp.iicm.edu/pub/keith/thesis/
http://courses.iicm.tugraz.at/ivis/ivis.pdf
http://courses.iicm.tugraz.at/ivis/ivis.pdf
http://dx.doi.org/10.1057/palgrave.ivs.9500023
http://dx.doi.org/10.1109/IV.2010.100

126 Bibliography

Aurenhammer, Franz and Rolf Klein [1999]. Voronoi Diagrams. In Sack, Jörg-Rüdiger and Jorge Urrutia
(Editors), Handbook of Computational Geometry, pages 201–290. Elsevier. ISBN 0444825371. http:
//www.pi6.fernuni-hagen.de/publ/tr198.pdf. (Cited on page 90.)

Balzer, Michael and Oliver Deussen [2005]. Voronoi Treemaps. In Proc. 2005 IEEE Symposium on In-
formation Visualization (InfoVis 2005), page 7. IEEE Computer Society. ISBN 078039464x. doi:10.
1109/INFOVIS.2005.40. http://www-hagen.informatik.uni-kl.de/˜kerren/courses/

lecture/ws06/infovis/papers/VoronoiTreemapInfoVis2005.pdf. (Cited on pages 13,
90 and 92.)

Balzer, Michael, Oliver Deussen, and Claus Lewerentz [2005]. Voronoi Treemaps for the
Visualization of Software Metrics. In Proc. 2005 ACM symposium on Software Visual-
ization (SoftVis ’05), pages 165–172. ACM. ISBN 1595930736. doi:10.1145/1056018.
1056041. http://www.cse.unt.edu/˜tarau/wwwroot/tarau/teaching/OLD_COURSES/

SoftEng/PapersToRead/p165-balzer.pdf. (Cited on page 13.)

Bauer, Alois, Sophie Steinparz, Richard Aßmair, and John Feiner [2009]. Parallel Coordinates - A
Tutorial. Graz University of Technology. Project Report. (Cited on page 43.)

Baumgart, Bruce Guenther [1975]. A Polyhedron Representation for Computer Vision. In Proc. 1975
National Computer Conference and Exposition (AFIPS ’75), pages 589–596. ACM. doi:10.1145/
1499949.1500071. (Cited on pages 90 and 108.)

Bederson, Benjamin B., Ben Shneiderman, and Martin Wattenberg [2002]. Ordered and Quantum
Treemaps: Making Effective Use of 2D Space to Display Hierarchies. ACM Transactions on Graphics,
21(4), pages 833–854. doi:10.1145/571647.571649. http://hcil.cs.umd.edu/trs/2001-18/
2001-18.pdf. (Cited on page 79.)

Bertin, Jacques [1981]. Graphics and Graphic Information-Processing. Walter de Gruyter. ISBN
3110069016. (Cited on page 3.)

Boy, Oriya and Raja Ranjan Senapati [2010]. Applet 2 Application. http://sourceforge.net/

projects/applet2app/. (Cited on page 16.)

Brinton, Willard Cope [1914]. Graphic Methods for Presenting Facts. The Engineer-
ing Magazine Company. ISBN 9781432526337. http://www.archive.org/download/

graphicmethodsfo00brinrich/graphicmethodsfo00brinrich.pdf. (Cited on page 3.)

Brown, Millward [2010]. Methodology for Adobe Plug-In Technology Study. http://www.adobe.

com/products/player_census/methodology/. (Cited on page 37.)

Bruls, Mark, Kees Huizing, and Jarke van Wijk [1999]. Squarified Treemaps. In Proc. 1999 Joint
Eurographics and IEEE TCVG Symposium on Visualization (VisSym ’99), pages 33–42. Press. http:
//www.win.tue.nl/˜vanwijk/stm.pdf. (Cited on pages 79 and 80.)

Card, Stuart K., Jock D. Mackinlay, and Ben Shneiderman [1999]. Using Vision to Think. In Read-
ings in Information Visualization: Using Vision to Think, pages 579–581. Morgan Kaufmann. ISBN
1558605339. (Cited on pages 3, 4 and 5.)

Chi, Ed Huai-Hsin [1999]. A Framework for Information Visualization Spreadsheets. PhD Thesis, Uni-
versity of Minnesota. http://www-users.cs.umn.edu/˜echi/phd/chi-thesis.pdf. (Cited
on page 4.)

Coenraets, Christophe [2003]. An Overview of MXML: The Flex Markup Language. http://www.

adobe.com/devnet/flex/articles/paradigm.html. (Cited on page 38.)

http://www.amazon.com/exec/obidos/ASIN/0444825371/keithandrewshcic
http://www.pi6.fernuni-hagen.de/publ/tr198.pdf
http://www.pi6.fernuni-hagen.de/publ/tr198.pdf
http://www.amazon.com/exec/obidos/ASIN/078039464x/keithandrewshcic
http://dx.doi.org/10.1109/INFOVIS.2005.40
http://dx.doi.org/10.1109/INFOVIS.2005.40
http://www-hagen.informatik.uni-kl.de/~kerren/courses/lecture/ws06/infovis/papers/VoronoiTreemapInfoVis2005.pdf
http://www-hagen.informatik.uni-kl.de/~kerren/courses/lecture/ws06/infovis/papers/VoronoiTreemapInfoVis2005.pdf
http://www.amazon.com/exec/obidos/ASIN/1595930736/keithandrewshcic
http://dx.doi.org/10.1145/1056018.1056041
http://dx.doi.org/10.1145/1056018.1056041
http://www.cse.unt.edu/~tarau/wwwroot/tarau/teaching/OLD_COURSES/SoftEng/PapersToRead/p165-balzer.pdf
http://www.cse.unt.edu/~tarau/wwwroot/tarau/teaching/OLD_COURSES/SoftEng/PapersToRead/p165-balzer.pdf
http://dx.doi.org/10.1145/1499949.1500071
http://dx.doi.org/10.1145/1499949.1500071
http://dx.doi.org/10.1145/571647.571649
http://hcil.cs.umd.edu/trs/2001-18/2001-18.pdf
http://hcil.cs.umd.edu/trs/2001-18/2001-18.pdf
http://www.amazon.com/exec/obidos/ASIN/3110069016/keithandrewshcic
http://sourceforge.net/projects/applet2app/
http://sourceforge.net/projects/applet2app/
http://www.amazon.com/exec/obidos/ASIN/9781432526337/keithandrewshcic
http://www.archive.org/download/graphicmethodsfo00brinrich/graphicmethodsfo00brinrich.pdf
http://www.archive.org/download/graphicmethodsfo00brinrich/graphicmethodsfo00brinrich.pdf
http://www.adobe.com/products/player_census/methodology/
http://www.adobe.com/products/player_census/methodology/
http://www.win.tue.nl/~vanwijk/stm.pdf
http://www.win.tue.nl/~vanwijk/stm.pdf
http://www.amazon.com/exec/obidos/ASIN/1558605339/keithandrewshcic
http://www-users.cs.umn.edu/~echi/phd/chi-thesis.pdf
http://www.adobe.com/devnet/flex/articles/paradigm.html
http://www.adobe.com/devnet/flex/articles/paradigm.html

Bibliography 127

COLOURlovers [2010]. COLOURlovers. http://colourlovers.com. (Cited on page 50.)

Corel [2010]. Corel Draw Graphics Suite. http://www.corel.com/servlet/Satellite/de/

de/Product/1191272117978#tabview=tab0. (Cited on page 19.)

Davis, Michele and Jon Phillips [2008]. Flex 3: A Beginners Guide. McGraw-Hill Osborne Media. ISBN
0071544186. (Cited on pages 16 and 35.)

Descartes, René [1644]. Le Monde de Mr Descartes, ou Le Trait de la Lumière. (Cited on page 13.)

d’Ocagne, Maurice [1885]. Coordonnées parallèles et axiales: Méthode de transformation géométrique
et procédé nouveau de calcul graphique déduits de la considération des coordonnées parallèlles.
Cornell University Library. ISBN 1429700971. (Cited on page 8.)

Dupin, Charles [1826]. Carte figurative de l’instruction populaire de la France. (Cited on pages 11
and 12.)

Finley, Darel Rex [2010]. Point-In-Polygon Algorithm - Determining Whether A Point Is Inside A Com-
plex Polygon. http://alienryderflex.com/polygon/. (Cited on page 109.)

Friendly, Michael [2008]. Milestones in the History of Thematic Cartography, Statistical Graphics, and
Data Visualization. http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.

pdf. (Cited on page 8.)

Friendly, Michael and Daniel J. Denis [2010]. Milestones in the History of Thematic Cartogra-
phy, Statistical Graphics, and Data Visualization. http://www.math.yorku.ca/SCS/Gallery/
milestone/milestone.pdf. (Cited on page 12.)

Friendly, Michael and Leland Wilkinson [2009]. The History of the Cluster Heat Map. In The American
Statistician, 2, volume 63, pages 179–184. doi:10.1198/tas.2009.0033. (Cited on page 11.)

Gapminder [2010a]. Data in Gapminder World. http://www.gapminder.org/data/. (Cited on
page 31.)

Gapminder [2010b]. The Gapminder Foundation. http://www.gapminder.org/. (Cited on
page 31.)

GG [2010]. NameVoyager: Baby Names Wizard. http://www.babynamewizard.com/voyager/.
Generation Grownup. (Cited on page 6.)

Google [2010a]. Gadgets API. http://code.google.com/intl/de-DE/apis/gadgets/. (Cited
on page 29.)

Google [2010b]. Google Chart API. http://code.google.com/intl/de-DE/apis/chart/.
(Cited on pages 26 and 27.)

Google [2010c]. Google Chart API FAQ. http://code.google.com/intl/de-DE/apis/chart/
faq.html. (Cited on page 26.)

Google [2010d]. Google Docs. http://docs.google.com/. (Cited on page 28.)

Google [2010e]. Google Visualization API. http://code.google.com/intl/de-DE/apis/

visualization/. (Cited on page 29.)

Google [2010f]. Visualisation Playground. http://code.google.com/apis/ajax/playground/.
(Cited on page 30.)

http://colourlovers.com
http://www.corel.com/servlet/Satellite/de/de/Product/1191272117978##tabview=tab0
http://www.corel.com/servlet/Satellite/de/de/Product/1191272117978##tabview=tab0
http://www.amazon.com/exec/obidos/ASIN/0071544186/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/1429700971/keithandrewshcic
http://alienryderflex.com/polygon/
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf
http://dx.doi.org/10.1198/tas.2009.0033
http://www.gapminder.org/data/
http://www.gapminder.org/
http://www.babynamewizard.com/voyager/
http://code.google.com/intl/de-DE/apis/gadgets/
http://code.google.com/intl/de-DE/apis/chart/
http://code.google.com/intl/de-DE/apis/chart/faq.html
http://code.google.com/intl/de-DE/apis/chart/faq.html
http://docs.google.com/
http://code.google.com/intl/de-DE/apis/visualization/
http://code.google.com/intl/de-DE/apis/visualization/
http://code.google.com/apis/ajax/playground/

128 Bibliography

Guerry, André-Michel and Adriano Balbi [1829]. Statistique comparée de l’état de l’instruction et du
nombre des crimes dans les divers arrondissements des académies et des cours royales de France.
Jules Renouard. (Cited on page 12.)

Hauser, Helwig, Florian Ledermann, and Helmut Doleisch [2002]. Angular Brushing of Extended Paral-
lel Coordinates. In proc. 2002 IEEE Symposium on Information Visualization (InfoVis 2002), page
127. IEEE Computer Society. ISBN 076951751X. doi:10.1109/INFVIS.2002.1173157. http:

//www.mediavirus.org/parvis/parvis_full.pdf. (Cited on page 116.)

Huckaby, Tim [2010]. Silverlight Fully Trusted Out of Browser. http://www.windowsitpro.com/
article/silverlight-development/Silverlight-Fully-Trusted-Out-of-Browser.

aspx. (Cited on page 19.)

IBM [2010a]. Fernanda B. Viégas. http://www.research.ibm.com/visual/fernanda.html.
(Cited on page 25.)

IBM [2010b]. Many Eyes. http://manyeyes.alphaworks.ibm.com/manyeyes/page/About.

html. (Cited on pages 24 and 115.)

iCharts [2010a]. iCharts blog. http://www.icharts.net. (Cited on page 30.)

iCharts [2010b]. iCharts Business. http://ichartsbusiness.com. (Cited on page 30.)

Inkscape [2010]. Inkscape. http://www.inkscape.org. (Cited on page 19.)

Inselberg, Alfred [1985]. The plane with parallel coordinates. The Visual Computer, 1(2), pages 69–91.
doi:10.1007/BF01898350. (Cited on page 8.)

Inselberg, Alfred [2009]. Parallel Coordinates: Visual Multidimensional Geometry and Its Applications.
Springer. ISBN 0387215077. (Cited on page 8.)

ISO [1998]. ISO 3166-2:1998, Codes for the representation of names of countries and their subdivisions
– Part 2: Country subdivision code. ANSI, 118 pages. (Cited on page 84.)

ISO [2010]. English Country Names and Code Elements. http://www.iso.org/iso/english_

country_names_and_code_elements. (Cited on pages 84 and 104.)

Jern, Mikael, Tobias Aström, and Sara Johansson [2008]. GeoAnalytics Tools Applied to Large Geospa-
tial Datasets. In Proc. 2008 International Conference on Information Visualisation (InfoVis 2008),
pages 362–372. IEEE Computer Society. ISBN 9780769532684. doi:10.1109/IV.2008.27. (Cited on
page 32.)

Johnson, Brian and Ben Shneiderman [1991]. Tree-Maps: A Space-Filling Approach to the Visualization
of Hierarchical Information Structures. In Proc. 1991 IEEE Conference on Visualization (Vis ’91),
pages 284 – 291. ISBN 0818622458. doi:10.1109/VISUAL.1991.175815. http://drum.lib.

umd.edu/bitstream/1903/370/2/CS-TR-2657.pdf. (Cited on pages 78, 79 and 80.)

Knapitsch, Ferdinand, Robert Lanner, and Michael Kober [2009]. Geoheatmap Google Gadget. Graz
University of Technology. Project Report. (Cited on pages 51, 86 and 107.)

Kosara, Robert [2007a]. InfoVis 2007: InfoVis for the Masses. http://eagereyes.org/blog/

infovis-2007-infovis-for-the-masses.html. (Cited on page 6.)

Kosara, Robert [2007b]. Review: Swivel vs. Many Eyes. http://eagereyes.org/VisCrit/

Swivel-vs-Many-Eyes.html. (Cited on pages 16, 17 and 26.)

http://www.amazon.com/exec/obidos/ASIN/076951751X/keithandrewshcic
http://dx.doi.org/10.1109/INFVIS.2002.1173157
http://www.mediavirus.org/parvis/parvis_full.pdf
http://www.mediavirus.org/parvis/parvis_full.pdf
http://www.windowsitpro.com/article/silverlight-development/Silverlight-Fully-Trusted-Out-of-Browser.aspx
http://www.windowsitpro.com/article/silverlight-development/Silverlight-Fully-Trusted-Out-of-Browser.aspx
http://www.windowsitpro.com/article/silverlight-development/Silverlight-Fully-Trusted-Out-of-Browser.aspx
http://www.research.ibm.com/visual/fernanda.html
http://manyeyes.alphaworks.ibm.com/manyeyes/page/About.html
http://manyeyes.alphaworks.ibm.com/manyeyes/page/About.html
http://www.icharts.net
http://ichartsbusiness.com
http://www.inkscape.org
http://dx.doi.org/10.1007/BF01898350
http://www.amazon.com/exec/obidos/ASIN/0387215077/keithandrewshcic
http://www.iso.org/iso/english_country_names_and_code_elements
http://www.iso.org/iso/english_country_names_and_code_elements
http://www.amazon.com/exec/obidos/ASIN/9780769532684/keithandrewshcic
http://dx.doi.org/10.1109/IV.2008.27
http://www.amazon.com/exec/obidos/ASIN/0818622458/keithandrewshcic
http://dx.doi.org/10.1109/VISUAL.1991.175815
http://drum.lib.umd.edu/bitstream/1903/370/2/CS-TR-2657.pdf
http://drum.lib.umd.edu/bitstream/1903/370/2/CS-TR-2657.pdf
http://eagereyes.org/blog/infovis-2007-infovis-for-the-masses.html
http://eagereyes.org/blog/infovis-2007-infovis-for-the-masses.html
http://eagereyes.org/VisCrit/Swivel-vs-Many-Eyes.html
http://eagereyes.org/VisCrit/Swivel-vs-Many-Eyes.html

Bibliography 129

Kosara, Robert [2010]. The End of Verifiable.com. http://eagereyes.org/blog/2010/

end-of-verifiable-com/. (Cited on page 27.)

Lessacher, Martin [2009a]. Information Visualisation Gadgets: A Survey. Graz University of Technol-
ogy. Seminar Report. (Cited on pages 1 and 23.)

Lessacher, Martin [2009b]. Liquid Diagrams: Visual Information Gadgets in Flex. Graz University of
Technology. Project Report. (Cited on pages 1, 39, 43, 46, 48, 51, 53, 62, 65 and 69.)

Loua, Toussaint [1873]. Atlas statistique de la population de Paris. J. Dejey. http://gallica.bnf.
fr/ark:/12148/bpt6k81402n.image.f1. (Cited on pages 11 and 12.)

Lyman, Peter and Hal Varian [2003]. How Much Information? University of California at Berkeley.
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/. (Cited
on page 1.)

Mayr, Georg von [1877]. Die Gesetzmässigkeit im Gesellschaftsleben, Statistische Stu-
dien. Oldenbourg. http://www.archive.org/download/diegesetzmssig00mayruoft/

diegesetzmssig00mayruoft.pdf. (Cited on page 9.)

Mono [2010]. Moonlight. http://www.mono-project.com/Moonlight/. (Cited on page 18.)

NCVA [2010a]. eXplorer for Advanced Statistical Visualization. http://ncva.itn.liu.se/

explorer?l=en. National Centre for Visual Analytics. (Cited on page 32.)

NCVA [2010b]. What Does OECD eXplorer Enable You to Do? An Introduction to its Main Features.
http://www.oecd.org/dataoecd/55/47/44084514.pdf. National Centre for Visual Analyt-
ics. (Cited on page 32.)

New York Times [2010]. Visualization Lab. http://vizlab.nytimes.com/datasets/. (Cited on
page 25.)

NHL [2010]. Player Stats. http://www.nhl.com/ice/playerstats.htm#?navid=

nav-sts-indiv. National Hockey League. (Cited on page 81.)

nirajswami [2007]. Silverlight vs Flash - An Analysis Report. http://silverlight.net/forums/
t/3015.aspx. (Cited on page 18.)

Nuzha, Vasiliy [2010]. Korax ColorPicker Control. http://kss.korax.ru/flex/cp/index.html.
(Cited on page 48.)

OECD [2010]. OECD eXplorer: Interactive Maps for Regional Statistics. http://www.oecd.org/

document/30/0,3343,en_2649_34413_42402025_1_1_1_1,00.html. Organisation for Eco-
nomic CO-Operation and Development. (Cited on page 31.)

Okabe, Atsuyuki, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu [2000]. Spatial Tessellations -
Concepts and Applications of Voronoi Diagrams. Second Edition. Wiley. ISBN 0471986356. (Cited
on pages 11, 13, 51, 88, 89 and 108.)

Oracle [2010a]. JavaFX. http://javafx.com/about/at-a-glance.jsp. (Cited on page 17.)

Oracle [2010b]. JDK 6 Documentation. http://java.sun.com/javase/6/docs/. (Cited on
page 17.)

Playfair, William [1786]. The Commercial and Political Atlas: Representing, by Means of Stained
Copper-Plate Charts, the Progress of the Commerce, Revenues, Expenditure and Debts of England
during the Whole of the Eighteenth Century. T. Burton. ISBN 0521855543. (Cited on pages 3, 4, 6
and 7.)

http://eagereyes.org/blog/2010/end-of-verifiable-com/
http://eagereyes.org/blog/2010/end-of-verifiable-com/
http://gallica.bnf.fr/ark:/12148/bpt6k81402n.image.f1
http://gallica.bnf.fr/ark:/12148/bpt6k81402n.image.f1
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/
http://www.archive.org/download/diegesetzmssig00mayruoft/diegesetzmssig00mayruoft.pdf
http://www.archive.org/download/diegesetzmssig00mayruoft/diegesetzmssig00mayruoft.pdf
http://www.mono-project.com/Moonlight/
http://ncva.itn.liu.se/explorer?l=en
http://ncva.itn.liu.se/explorer?l=en
http://www.oecd.org/dataoecd/55/47/44084514.pdf
http://vizlab.nytimes.com/datasets/
http://www.nhl.com/ice/playerstats.htm##?navid=nav-sts-indiv
http://www.nhl.com/ice/playerstats.htm##?navid=nav-sts-indiv
http://silverlight.net/forums/t/3015.aspx
http://silverlight.net/forums/t/3015.aspx
http://kss.korax.ru/flex/cp/index.html
http://www.oecd.org/document/30/0,3343,en_2649_34413_42402025_1_1_1_1,00.html
http://www.oecd.org/document/30/0,3343,en_2649_34413_42402025_1_1_1_1,00.html
http://www.amazon.com/exec/obidos/ASIN/0471986356/keithandrewshcic
http://javafx.com/about/at-a-glance.jsp
http://java.sun.com/javase/6/docs/
http://www.amazon.com/exec/obidos/ASIN/0521855543/keithandrewshcic

130 Bibliography

Ramos, Ernesto and David Donoho [2010]. Car Data Set. http://stat-computing.org/

dataexpo/1983.html. (Cited on page 73.)

Refsnes Data [2010]. Web Statistics and Trends. http://www.w3schools.com/browsers/

browsers_stats.asp. (Cited on page 7.)

Schiller, Jeff [2010a]. Codedread. http://www.codedread.com. (Cited on page 21.)

Schiller, Jeff [2010b]. SVG 1.1 Browser Support. http://www.codedread.com/svg-support.

php. (Cited on page 21.)

SELFHTML e.V. [2010]. Einführung in JavaScript und DOM. http://de.selfhtml.org/

javascript/intro.htm#standards_varianten_versionen. (Cited on page 16.)

Shneiderman, Ben [1992]. Tree Visualization with Tree-Maps: 2-D Space-Filling Approach. ACM
Transactions on Graphics, 11(1), pages 92–99. ISSN 07300301. doi:10.1145/102377.115768. (Cited
on page 78.)

Shneiderman, Ben [1996]. The Eyes Have It: A Task by Data Type Taxonomy for Information Visu-
alizations. In Proc. 1996 IEEE Symposium on Visual Languages (VL ’96), page 336. IEEE Com-
puter Society. ISBN 081867508X. doi:10.1109/VL.1996.545307. http://www.cs.ubc.ca/˜tmm/
courses/cs533c-02/readings/shneiderman96eyes.pdf. (Cited on pages 1, 3, 5 and 24.)

Shneiderman, Ben [2008]. Treemaps for Space-Constrained Visualization of Hierarchies. http://

www.cs.umd.edu/hcil/treemap-history/. (Cited on pages 9 and 78.)

Shneiderman, Ben and Martin Wattenberg [2001]. Ordered Treemap Layouts. In Proc. 2001 IEEE
Symposium on Information Visualization (InfoVis 2001), page 73. IEEE Computer Society. ISBN
0769513425. doi:10.1109/INFVIS.2001.963283. (Cited on page 79.)

Spence, Robert [2007]. Information Visualization: Design for Interaction. Second Edition. Pearson.
ISBN 0132065509. (Cited on page 3.)

StatLib [2010]. Cereal Data Set. http://lib.stat.cmu.edu/datasets/1993.expo/. (Cited on
page 75.)

Steward, Ryan [2010]. Differences Between Silverlight Out of Browser Ex-
perience and AIR. http://blog.digitalbackcountry.com/2009/03/

differences-between-silverlight-out-of-browser-experience-and-air/. (Cited
on page 19.)

Sutherland, Ivan, Robert Sproull, and Robert Schumacker [1974]. A Characterization of Ten Hidden-
Surface Algorithms. ACM Computing Surveys, 6(1), pages 1–55. doi:http://doi.acm.org/10.1145/
356625.356626. (Cited on page 109.)

Swivel [2010]. Swivel. http://www.swivel.com/. (Cited on page 26.)

Telea, Alexandru and Jarke J. van Wijk [2001]. Visualization of Generalized Voronoi Diagrams. In
Proc. 2001 Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSym ’01), pages 165–
174. Eurographics Association. ISBN 3211836748. http://www.eg.org/EG/DL/WS/VisSym/

VisSym01/165-174.pdf. (Cited on page 13.)

Tufte, Edward [1983]. The Visual Display of Quantitative Information. Graphics Press. ISBN
0961392142. (Cited on page 3.)

Viewpath [2010]. Viewpath. http://www.viewpath.com/Default.aspx. (Cited on page 30.)

http://stat-computing.org/dataexpo/1983.html
http://stat-computing.org/dataexpo/1983.html
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.codedread.com
http://www.codedread.com/svg-support.php
http://www.codedread.com/svg-support.php
http://de.selfhtml.org/javascript/intro.htm##standards_varianten_versionen
http://de.selfhtml.org/javascript/intro.htm##standards_varianten_versionen
http://worldcatlibraries.org/wcpa/issn/07300301
http://dx.doi.org/10.1145/102377.115768
http://www.amazon.com/exec/obidos/ASIN/081867508X/keithandrewshcic
http://dx.doi.org/10.1109/VL.1996.545307
http://www.cs.ubc.ca/~tmm/courses/cs533c-02/readings/shneiderman96eyes.pdf
http://www.cs.ubc.ca/~tmm/courses/cs533c-02/readings/shneiderman96eyes.pdf
http://www.cs.umd.edu/hcil/treemap-history/
http://www.cs.umd.edu/hcil/treemap-history/
http://www.amazon.com/exec/obidos/ASIN/0769513425/keithandrewshcic
http://dx.doi.org/10.1109/INFVIS.2001.963283
http://www.amazon.com/exec/obidos/ASIN/0132065509/keithandrewshcic
http://lib.stat.cmu.edu/datasets/1993.expo/
http://blog.digitalbackcountry.com/2009/03/differences-between-silverlight-out-of-browser-experience-and-air/
http://blog.digitalbackcountry.com/2009/03/differences-between-silverlight-out-of-browser-experience-and-air/
http://dx.doi.org/http://doi.acm.org/10.1145/356625.356626
http://dx.doi.org/http://doi.acm.org/10.1145/356625.356626
http://www.swivel.com/
http://www.amazon.com/exec/obidos/ASIN/3211836748/keithandrewshcic
http://www.eg.org/EG/DL/WS/VisSym/VisSym01/165-174.pdf
http://www.eg.org/EG/DL/WS/VisSym/VisSym01/165-174.pdf
http://www.amazon.com/exec/obidos/ASIN/0961392142/keithandrewshcic
http://www.viewpath.com/Default.aspx

Bibliography 131

Visible Certainty [2010a]. Going Public Beta Today. http://blog.visiblecertainty.com/

post/43134209/going-public-beta-today/. (Cited on page 27.)

Visible Certainty [2010b]. Verifiable.com. http://www.verifiable.com/welcome/. (Cited on
page 27.)

Viégas, Fernanda Bertini [2010]. What Happens When Just About Anyone Has Access to Sophisticated
Visualization Tools? http://fernandaviegas.com/democratizing_viz.html. (Cited on
page 6.)

Viégas, Fernanda Bertini, Martin Wattenberg, Frank van Ham, Jesse Kriss, and Matt McKeon [2007].
ManyEyes: A Site for Visualization at Internet Scale. IEEE Transactions on Visualization and Com-
puter Graphics, 13, pages 1121–1128. doi:10.1109/TVCG.2007.70577. http://www.research.
ibm.com/visual/papers/viegasinfovis07.pdf. (Cited on page 25.)

W3C [2010a]. Document Object Model. http://www.w3.org/DOM/. (Cited on page 15.)

W3C [2010b]. Flash in HTML. http://www.w3schools.com/flash/flash_inhtml.asp. (Cited
on page 35.)

W3C [2010c]. Introduction to SVG. http://www.w3.org/TR/2003/REC-SVG11-20030114/

intro.html. (Cited on page 19.)

W3C [2010d]. Paths. http://www.w3.org/TR/SVG11/paths.html. (Cited on page 107.)

W3C [2010e]. SVG 1.0 Specification. http://www.w3.org/TR/SVG10/. (Cited on page 19.)

Ware, Collin [2004]. Information Visualization: Perception for Design. Second Edition. Morgan Kauf-
mann. ISBN 1558608192. (Cited on pages 3 and 4.)

Wattenberg, Martin [1999]. Visualizing the Stock Market. In CHI ’99 Extended Abstracts on Human Fac-
tors in Computing Systems, pages 188–189. ACM. ISBN 1581131585. doi:10.1145/632716.632834.
http://www.research.ibm.com/visual/papers/marketmap-wattenberg.pdf. (Cited on
page 79.)

Wattenberg, Martin [2005]. Baby Names, Visualization, and Social Data Analysis. In Proc. 2005 IEEE
Symposium on Information Visualization (InfoVis 2005), pages 1–7. IEEE Computer Society. ISBN
078039464X. doi:10.1109/INFVIS.2005.1532122. http://www.research.ibm.com/visual/

papers/final-baby-margin-nocomments.pdf. (Cited on pages 6 and 25.)

Wikimedia [2010]. Wikimedia Commons. http://commons.wikimedia.org/wiki/Main_Page.
(Cited on pages 4, 12, 104 and 106.)

http://blog.visiblecertainty.com/post/43134209/going-public-beta-today/
http://blog.visiblecertainty.com/post/43134209/going-public-beta-today/
http://www.verifiable.com/welcome/
http://fernandaviegas.com/democratizing_viz.html
http://dx.doi.org/10.1109/TVCG.2007.70577
http://www.research.ibm.com/visual/papers/viegasinfovis07.pdf
http://www.research.ibm.com/visual/papers/viegasinfovis07.pdf
http://www.w3.org/DOM/
http://www.w3schools.com/flash/flash_inhtml.asp
http://www.w3.org/TR/2003/REC-SVG11-20030114/intro.html
http://www.w3.org/TR/2003/REC-SVG11-20030114/intro.html
http://www.w3.org/TR/SVG11/paths.html
http://www.w3.org/TR/SVG10/
http://www.amazon.com/exec/obidos/ASIN/1558608192/keithandrewshcic
http://www.amazon.com/exec/obidos/ASIN/1581131585/keithandrewshcic
http://dx.doi.org/10.1145/632716.632834
http://www.research.ibm.com/visual/papers/marketmap-wattenberg.pdf
http://www.amazon.com/exec/obidos/ASIN/078039464X/keithandrewshcic
http://dx.doi.org/10.1109/INFVIS.2005.1532122
http://www.research.ibm.com/visual/papers/final-baby-margin-nocomments.pdf
http://www.research.ibm.com/visual/papers/final-baby-margin-nocomments.pdf
http://commons.wikimedia.org/wiki/Main_Page

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Credits
	1 Introduction
	2 Information Visualisation
	2.1 Origins
	2.2 Definition and Principles
	2.3 Information Visualisation for the Masses
	2.4 Examples of Visualisations

	3 Technologies
	3.1 HTML, JavaScript, DOM and AJAX
	3.2 Java
	3.3 Java FX
	3.4 Adobe Flex
	3.5 Adobe AIR
	3.6 Microsoft Silverlight
	3.7 Scalable Vector Graphics (SVG)

	4 Existing Visualisation Software
	4.1 Standalone Visualisation Software
	4.2 Visualisation Libraries and Components
	4.3 Online Visualisation Software

	5 Flash and the Web
	5.1 Adobe Flash
	5.2 Adobe Flex

	6 Liquid Diagrams Framework
	6.1 Attaching Liquid Diagrams to Data Sources
	6.2 Framework Structure
	6.3 Framework Components
	6.4 Framework Functions

	7 Liquid Diagrams Visualisations
	7.1 Line Chart
	7.2 Pie Chart
	7.3 Bar Chart
	7.4 Area Chart
	7.5 Parallel Coordinates
	7.6 Star Plot
	7.7 Tree Map
	7.8 Heat Map
	7.9 Voronoi Tree Map

	8 Selected Details of the Implementation
	8.1 Squarified Tree Map Example
	8.2 Tree Structure
	8.3 Adding New SVG Maps
	8.4 SVG Parser
	8.5 Voronoi Construction Details

	9 Outlook
	A User Guide
	A.1 Gadget Installation
	A.2 Insertion
	A.3 Data Formats

	Bibliography

