
Security Analysis of the ISO 14443 RFID
Standard Regarding Relay Attacks

Wolfgang Issovits
wolfgang.issovits@student.tugraz.at

Institute for Applied Information
Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a

8010 Graz, Austria

Master Thesis

Supervisor: Dipl.-Ing. Dr.techn. Michael Hutter
Assessor: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Karl-Christian Posch

May, 2011

Acknowledgements

I would like to thank my supervisor Michael Hutter for his support and advice during
the work on this master thesis. I also would like to thank Stefan Lemsitzer, Christopher
Hubmann, and Reinhard Meindl for their technical support and valuable inputs. Most
importantly I would like to thank my family and my girlfriend Andrea for their support
and encouragement.

i

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have
not used other than the declared sources / resources, and that I have
explicitly marked all material which has been quoted either literally or
by content from the used sources.

date (Wolfgang Issovits)

ii

Abstract

Radio-Frequency Identification (RFID) and Near-Field Communication (NFC) are widely
spread contactless communication systems and are commonly used in security-critical
applications such as electronic payment and keyless-entry systems. Relay attacks pose
a serious threat in this context and are not addressed by most RFID applications in use
today. Those attacks circumvent application-layer security and cannot be prevented by
the usual cryptographic primitives. In this thesis, we present a practical implementation
of a relay attack on systems implementing the ISO/IEC 14443 RFID standard, which was
developed by the International Organization for Standardization and the International
Electrotechnical Commission. We use an off-the-shelf mobile phone with NFC capabili-
ties and a self-developed RFID-tag emulator that can forward RFID communication over
a Bluetooth channel. We show that the attack succeeded and discuss various methods to
exploit certain mechanisms of the ISO/IEC 14443 protocol in order to increase the chance
for a successful attack. We also give recommendations on how to protect against relay
attacks in practice while still complying to the ISO/IEC 14443 standard, which is not con-
sidered by most of the proposed countermeasures given in literature.

Keywords: RFID, NFC, Relay Attacks, ISO/IEC 14443.

iii

Kurzfassung

Radio-Frequenz-Identifikation (RFID) und Nah-Feld-Kommunikation (NFC) sind weit
verbreitete kontaktlose Kommunikationssysteme und werden häufig für sicherheits-
kritische Anwendungen, wie elektronische Zahlungs- oder Zugangssysteme, verwen-
det. Relay-Attacken sind in diesem Zusammenhang eine große Gefahr und werden
von aktuell verwendeten RFID-Systemen nur selten berücksichtigt. Diese Attacken um-
gehen Sicherheitsmechanismen in der Anwendungsschicht und können nicht durch
herkömmliche kryptographische Vorgehensweisen verhindert werden. In dieser Arbeit
wird eine praktische Relay-Attacke auf Systeme vorgestellt, die den weit verbreiteten
ISO/IEC 14443 RFID-Standard verwenden, welcher von der Internationalen Organisation
für Normung (ISO) und der Internationalen Elektrotechnischen Kommission (IEC) ent-
wickelt wurde. Dazu werden ein NFC-kompatibles Mobiltelefon und ein selbst entwickel-
ter RFID-Kartenemulator verwendet, welche RFID-Kommunikation über eine Bluetooth-
Verbindung weiterleiten können. Die Relay-Attacke auf ein ISO/IEC 14443 Testsystem
wurde erfolgreich durchgeführt. Zusätzlich wurden Eigenschaften des ISO/IEC 14443
Standards ausgenutzt, um die Attacke noch effektiver zu gestallten. Des Weiteren wer-
den Möglichkeiten vorgestellt, wie man sich in der Praxis gegen Relay-Attacken schützen
kann. Diese wurden konform mit dem ISO/IEC 14443 Standard entwickelt, was bei den
meisten in der Literatur existierenden Gegenmaßnahmen nicht der Fall ist.

Stichwörter: RFID, NFC, Relay-Attacken, ISO/IEC 14443.

iv

Contents

1 Introduction 1

2 Radio-Frequency Identification 4
2.1 The Reader . 4
2.2 The Transponder . 5
2.3 Operating Frequency, Transmission Range, and Coupling Method 5
2.4 RFID Standardization . 7

3 Relay Attacks 8
3.1 Basic Concept of Relay Attacks . 8

3.1.1 Relay-Attack Scenarios . 9
3.1.2 Relay Attacks on RFID Systems . 10

3.2 Relay Channel . 11
3.2.1 Physical Boundaries . 11
3.2.2 Relay-Channel Medium . 11

3.3 Relay-Attack Devices . 12
3.4 Relay-Channel Protocols . 12

3.4.1 Wired Protocols . 12
3.4.2 Wireless Protocols . 14

3.5 Total-Delay Estimation . 16
3.5.1 Total-Delay Derivation . 17
3.5.2 Estimation of Proxy Delay and Mole Delay 18
3.5.3 Lower Bound for the Total Delay Introduced 18

3.6 Relay Attacks in Literature . 19
3.7 Countermeasures . 19

3.7.1 Physical Protection . 19
3.7.2 Additional Verification . 20
3.7.3 Timing Constraints . 20
3.7.4 Distance Bounding . 20

4 The ISO 14443 Standard 21
4.1 Part 1: Physical Characteristics . 21
4.2 Part 2: Radio-Frequency Power and Signal Interface 21
4.3 Part 3: Initialization and Anticollision . 22

4.3.1 Frame Delay Time . 22
4.3.2 Frame Formats . 23
4.3.3 Anticollision . 24
4.3.4 PICC States . 26

v

4.4 Part 4: Transmission Protocol . 27
4.4.1 Protocol Activation of Type A PICCs 27
4.4.2 Half-Duplex Block-Transmission Protocol 29

5 Security Analysis of ISO 14443 Regarding Relay Attacks 32
5.1 Modifications on the Physical Layer . 32

5.1.1 Carrier-Frequency Modification . 32
5.1.2 Data-Rate Modification . 33

5.2 Modifications on the Protocol Layer . 34
5.2.1 Chaining . 34
5.2.2 Waiting Time Extension . 36
5.2.3 Negative Acknowledge . 36

6 ISO 14443 Compliant Countermeasures 38
6.1 Preventing the Exploitation of Waiting Time Extensions 38

6.1.1 WTX-Exploitation Countermeasure 38
6.1.2 Known Issues . 41

6.2 Check Transmission Parameters . 41
6.3 Distance Bounding on the Application Layer 42

6.3.1 Distance-Bounding Protocol . 42
6.3.2 Security Considerations . 42

6.4 Summary . 44

7 The Hardware Setup 45
7.1 The Proxy Device . 45

7.1.1 IAIK DemoTag . 45
7.1.2 BTM-222 Bluetooth Module . 46

7.2 The Mole Device . 47
7.3 The PCD . 48
7.4 The PICC . 48

8 Implementation 50
8.1 General Concept . 50
8.2 Communication Between Proxy and Mole 52

8.2.1 Protocol Commands . 52
8.3 Proxy Implementation . 53

8.3.1 General Proxy Implementation . 53
8.3.2 Handling of Chaining . 54
8.3.3 Exploitation of Waiting Time Extensions 55

8.4 Mole Implementation . 56
8.4.1 Java Packages . 56
8.4.2 UML Class Diagram . 57
8.4.3 Flow Chart . 57

8.5 Countermeasure Implementation . 57
8.5.1 WTX-Exploitation Countermeasure 57
8.5.2 Distance Bounding . 59

vi

9 Results 60
9.1 Relay-Attack Results . 60

9.1.1 Protocol Exploitations . 60
9.1.2 Delay Measurements . 61

9.2 Countermeasure-Evaluation Results . 65
9.2.1 WTX-Exploitation Countermeasure 65
9.2.2 Distance Bounding . 65

9.3 Comparison to Relay Attacks in Literature 67
9.4 Summary . 68

10 Conclusions 69

A BTM-222 Bluetooth Board Picture and Schematics 71

B Definitions 74

Bibliography 77

vii

List of Figures

2.1 Basic concept of RFID systems [9]. 4
2.2 Power supply to an inductive coupled transponder [9]. 6
2.3 An overview of the most important standards for RFID systems. 6

3.1 Basic concept of the grandmaster chess problem. 8
3.2 Basic concept of a man-in-the-middle attack. 9
3.3 Basic concept of a wormhole attack. 9
3.4 Possible scenario for a relay attack on an RFID system. 10
3.5 The structure of an Ethernet block [18]. 13
3.6 The structure of an ACL packet used for Bluetooth communication [43]. . 14
3.7 The structure of an 802.11 Frame [17]. 15
3.8 Delays introduced during a relay attack. 17

4.1 Sequence of a frame pair as defined by ISO 14443. 22
4.2 The structure of an ISO 14443 short frame [26]. 23
4.3 The structure of an ISO 14443 PCD standard frame [26]. 24
4.4 PICC Type A anticollision loop for a single cascade level [26]. 25
4.5 The distribution of the UID for different cascade levels [26]. 26
4.6 PICC Type A state diagram during activation and anticollision [26]. 27
4.7 Activation sequence of a Type A PICC after anticollision [9][26]. 28
4.8 The structure of an ISO 14443-4 block [27]. 30

5.1 Setup of a relay attack where mole and PICC communicate at a higher
frequency. 32

5.2 Setup for a relay attack where mole and PICC use a higher data rate. . . . 34
5.3 Example for a relay attack with a large maximum block-size (256 bytes). . 34
5.4 Example for a relay attack with a small maximum block-size (16 bytes). . . 35
5.5 Example for splitting a response block into smaller blocks to gain additional

time during a relay attack. 35
5.6 Using waiting time extensions to gain addition time for a relay attack. . . 36
5.7 Using negative acknowledgments to gain additional time for a relay attack. 37

6.1 Protocol to prevent the exploitation of WTXs for relay attacks. 39
6.2 A message exchange between PCD and PICC requiring one WTX when

using the WTX-exploitation countermeasure. 40
6.3 ISO 14443-4 Protocol Scenario 15: Request for a WTX [27]. 41
6.4 ISO 14443-4 Protocol Scenario 16: Request for a WTX [27]. 41
6.5 Communication between prover and verifier during the Hancke-Kuhn

distance-bounding protocol. 43

viii

7.1 Attacking devices used for our relay attack. 48
7.2 Setup of our relay-attack experiment. 49

8.1 General concept of our relay-attack implementation. 51
8.2 Flow chart of the relay-attack implementation on the proxy. 54
8.3 Implementation of the exploitation of WTXs on the proxy. 55
8.4 Exploitation of WTXs at the proxy. 56
8.5 Flow chart of the Java MIDlet implementation. 58

9.1 Results for the total delay during the relay-attack experiment. 61
9.2 Results for the proxy delay during the relay-attack experiment. 62
9.3 Results for the mole delay during the relay-attack experiment. 63
9.4 Results for the relay-channel delay during the relay-attack experiment. . . 63
9.5 Results for the delay during the distance-bounding protocol. 65

A.1 Picture of the BTM-222 Bluetooth module. 71
A.2 Schematic of the BTM-222 board (sheet 1). 72
A.3 Schematic of the BTM-222 board (sheet 2). 73

ix

List of Tables

3.1 Round-trip times of a relay channel with the speed of light. 11
3.2 Velocity factors of different mediums. 11
3.3 Effective data rate and delay per bit for typical RS-232 baud rates. 13
3.4 Effective data rate and delay per bit for Fast Ethernet with different payloads. 14
3.5 Effective data rate and delay per bit for different Bluetooth packet types [43]. 15
3.6 Effective data rate and delay per bit for 802.11 wireless LAN for different

payloads. 16
3.7 Data rates defined in ISO 14443 and the resulting delays per bit. 16
3.8 Total introduced delay per bit for different RFID data rates and relay-

channel lengths. 18

4.1 Frame delay times for transmissions from PCD to PICC at an operating
frequency of 13.56 MHz [26]. 23

4.2 Fields contained in an ATS (Answer To Select) command [9][26]. 28
4.3 Possible frame waiting times according to ISO 14443. 29
4.4 Different block types for the ISO 14443-4 protocol [27]. 30

5.1 Additional relay times for a modified 13.56 MHz carrier. 33

7.1 Default configuration of the BTM-222 Bluetooth module [41]. 46
7.2 Important SPP AT commands for the configuration of the BTM-222 Blue-

tooth module [41]. 47

9.1 Statistical evaluation of the delays during the relay-attack experiment. . . 64
9.2 Statistical evaluation of the delays during the distance-bounding protocol. 66
9.3 False-rejection and false-acceptance rates of the distance-bounding protocol

for different numbers of allowed delayed responses. 67

x

Chapter 1

Introduction

Radio-Frequency Identification (RFID) is a contactless communication technology that
allows a wide range of different applications. RFID systems usually consist of a reader
and a transponder. The reader typically consists of a radio-frequency module (to trans-
mit and to receive data), a control unit, and a coupling element to the transponder. The
transponder is the data-carrying device of an RFID system and typically contains a cou-
pling element and an electronic microchip. There exist different RFID technologies, which
differ in various characteristics such as physical appearance, operating frequency, trans-
mission range, operation mode, coupling method, and power supply of the transponder.
Near-Field Communication (NFC) is based on RFID technology and is used for similar
applications [9].

There exists a variety of different standards for RFID systems. One of the most common
standards for proximity cards (a special class of RFID transponders) is defined in the
International Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC) 14443 specification. It is used by major RFID systems like MIFARE [36],
Calypso [4], or electronic passports. NXPs MIFARE system, for example, is used for
transit systems in over 650 cities worldwide and had an estimated market share of 75 %
in 2010 [32]. Therefore, this standard is a very interesting target for attackers.

With the wide distribution of RFID systems, attacks on those systems evolved. Among
others there exist so called relay attacks. During a relay attack, an attacker establishes
a channel between two legitimate parties without them being aware of the relay. Relay
attacks on RFID systems involve two devices. One device impersonates the reader to the
transponder and is called mole. The other device impersonates the transponder to the
reader and is called proxy. Those two devices are connected by a relay channel. One of
the crucial factors for the success of a relay attack is the additional delay introduced by
the relay [12].

The ISO/IEC 14443 standard does not introduce any security measures against relay
attacks. Moreover, it defines a number of mechanisms that can be exploited by such
attacks. One of those is the Frame Waiting Time (FWT, the maximum response time for
the RFID transponder), which can be chosen up to 4.95 seconds. It also defines recovery
functionality (Negative Acknowledges, NAKs), which give an attacker additional time
for a relay. It further allows the transponder to request additional computation time using
Waiting Time Extensions (WTXs).

In this thesis, we show that the exploitation of those mechanisms is possible and allows
relay attacks to be performed on RFID systems. We implemented a relay attack using
an off-the-shelf mobile phone with NFC capabilities as mole device and a self developed

1

CHAPTER 1. INTRODUCTION 2

RFID-tag emulator as proxy device. Furthermore, we propose countermeasures that are
compliant with the ISO/IEC 14443 standard.

First, we introduce a protocol that prevents the exploitation of Waiting Time Extensions.
Second, we propose a transmission-parameter check in order to ensure that reader and
transponder use the same data rate, block size, and frame waiting time. This ensures
that an attacker cannot use different transmission parameters at both ends of the attack
to gain additional time for the relay. Finally, we implement an ISO/IEC 14443 compliant
distance-bounding protocol. Distance bounding tries to estimate the distance between
the reader and the transponder. Therefore, the reader sends a challenge that only the
transponder can solve. The transponder should be able to respond in a fixed amount of
time so the reader can estimate the distance based on the Round-Trip Time (RTT) during
the exchange.

In this thesis, we successfully perform relay attacks on an ISO/IEC 14443 compli-
ant system. Our experiments show that certain mechanisms of the ISO/IEC standard
can be exploited for relay attacks. The proposed countermeasures help to prevent the
exploitation of those mechanisms while complying to the standard.

This thesis is organized as follows: In Chapter 2, we give a brief introduction on RFID.
First, we describe the reader and the transponder. Second, we categorize RFID systems
with regards to their properties. Finally, we give an overview of existing RFID standards.

Relay attacks are analyzed in detail in Chapter 3. We start by presenting the history
of relay attacks and their application in different fields. Then we analyze the components
of a relay attack, namely the proxy device, the mole device, and the relay channel. We
continue this chapter with a close look at the introduced delay during a relay attack.
Finally, we conclude the chapter with relay attacks and countermeasures that exist in
literature.

Chapter 4 presents the four parts of the ISO/IEC 14443 standard. Part 1 of the stan-
dard defines the physical characteristics. The characteristics of the fields to be provided
for power and bi-directional communication are defined in Part 2. Initialization and
anticollision (handling of multiple transponders) is explained in Part 3. Part 4 defines
a half-duplex block-transmission protocol, which is especially designed for contactless
environments.

A security analysis of the ISO/IEC 14443 standard regarding relay attacks is performed
in Chapter 5. First, possible attack scenarios on the physical layer are described. More-
over, we propose the exploitation of mechanisms on the protocol layer.

Chapter 6 presents a number of countermeasures against relay attacks. All counter-
measures are designed to be compliant with the ISO/IEC 14443 standard so an integration
into existing systems is possible.

Chapter 7 describes the hardware used for our experiments. We present the proxy
device (an RFID-tag emulator) and the mole device (an off-the-shelf mobile phone). The
test system, consisting of a reader and a transponder, is presented as well.

Details of our relay-attack implementation are presented in Chapter 8. We describe
how the relay attack was implemented on the proxy device and the mole device as well
as how the communication between the two was realized. The implementation of the
countermeasures is also outlined in this chapter.

In Chapter 9, the results of our experiments are covered. First, we present the outcomes
of our relay attack on the ISO/IEC 14443 test system. We also look at the introduced delay
and the behavior of the test system regarding the exploitation of protocol mechanisms.
Finally, we look at the performance of the implemented countermeasures and how they

CHAPTER 1. INTRODUCTION 3

can be used in a real system.
Chapter 10 concludes this thesis with the most important outcomes of our exper-

iments. Finally, we suggest possible research topics regarding relay attacks on RFID
systems.

Chapter 2

Radio-Frequency Identification

Radio-Frequency Identification (RFID) is a contactless communication technology that
allows a wide range of different applications. Those applications differ in physical ap-
pearance, operating frequency, transmission range, operation mode, coupling method
and power supply of the transponder.

The basic concept of RFID is shown in Figure 2.1. Every RFID system consists of a
reader and a transponder. The transponder is the data-carrying device of the system.
The reader generates an electric, a magnetic, or an electromagnetic field that is detected
by the transponder. This field supplies power and clock frequency for the transponder,
which usually does not have an additional power supply. This operation field is also used
for data exchange between reader and transponder. They both use different modulation
techniques to send data to each other [9].

The following chapter classifies RFID systems with regards to their properties. First,
we describe the reader and the transponder. We also describe different classifications
of RFID sytems and focus on the most important aspects for our experiments. The
information in the following sections is based on Finkenzellers RFID Handbook [9],
unless stated otherwise.

2.1 The Reader

The reader, sometimes also called interrogator, is the active device during communication.
Although we call it a reader in accordance to literature, it is also capable of writing data.

A typical RFID reader has a radio-frequency module that consists of a transmitter
and a receiver. Furthermore, it is composed of a control unit and a coupling element
to communicate with the transponder. Usually a reader has one or more additional

Contactless

data carrier =

transponder

RFID reader

Coupling elements (coil,

microwave antenna)

Data

Energy, Clock

Application

Figure 2.1: Basic concept of RFID systems [9].

4

CHAPTER 2. RADIO-FREQUENCY IDENTIFICATION 5

interfaces (e.g. RS-232, USB) to communicate with other systems. This system could be a
PC or a backend system, which runs the application that controls the reader.

2.2 The Transponder

A transponder is a contactless data-carrying device, which is sometimes also called an
RFID tag or target. It normally consists of a coupling element and an electronic microchip.
The simplest version is a 1-bit transponder, which only allows two states, namely transpon-
der in interrogation zone and no transponder in interrogation zone. Such devices are often
used as electronic anti-theft devices, like for Electronic Article Surveillance (EAS).

The electronic microchip on the transponder allows more complex operations as well,
as it is able to store and process data. Those chips exist in a large variety and differ
in memory size and supported commands. A typical memory size for an RFID chip is
between 16 kB and 64 kB. The commands can extend from basic arithmetic operations to
complex cryptographic algorithms.

We farther distinguish between active and passive transponders. Passive transpon-
ders are powered through the operating field of the reader and have no dedicated power
supply. Active transponders have an additional power source, usually a battery. This
battery is only used to power the chip on the transponder. Hence, the field of the reader
is always used for transmitting data.

2.3 Operating Frequency, Transmission Range, and Coupling
Method

The most important classification criteria of RFID systems are the operating frequency
of the reader, the physical coupling method, and the transmission range for the system.
Those three properties determine which RFID systems are suitable for different applica-
tions.

Operating Frequency. Frequencies are generally split into four ranges: Low Frequency
(LF) at 30 kHz - 300 kHz, High Frequency (HF) at 3 MHz - 30 MHz, Ultra-High Frequency
(UHF) at 300 MHz - 3 GHz, and microwave frequency at over 3 GHz. The operating
frequency of RFID readers typically ranges from 135 kHz longwave to 5.8 GHz microwave.

Transmission Range. The transmission range of RFID systems is divided into three
categories. Close-coupling systems operate with a very small range of less than 1 cm and
are currently exclusively implemented on ID-1 smart cards. Remote-coupling systems
operate on a distance up to 1.5 m. LF and HF are common operating frequencies for those
systems. The last group are long-range systems, which operate on UHF or microwave
frequency and typically work for ranges of up to 3 m. With active transponders even 15 m
and above are possible.

Coupling Methods. The coupling between the reader and the transponder is achieved
through an electric, a magnetic, or an electromagnetic field. Close-coupling systems use
electric and magnetic fields, remote-coupling devices mainly use magnetic (inductive)

CHAPTER 2. RADIO-FREQUENCY IDENTIFICATION 6

C1 C2
Chip

Reader Transponder

Magnetic field H

Cr

Ri

Figure 2.2: Power supply to an inductive coupled transponder [9].

coupling, and long-range coupling systems solely use electromagnetic waves. Note that
coupling is responsible for power supply and data transmission.

An example for an inductive coupling is shown in Figure 2.2. The antenna coil of
the reader generates a strong, high-frequency electromagnetic field. A small part of this
electromagnetic field reaches the antenna coil of the transponder and generates a voltage
by inductance. This voltage serves as power supply for the transponder. The capacitor Cr
and the inductance of the reader antenna form a parallel resonance circuit that generates
high currents and therefore reaches the required field strengths. Also the inductance
of the transponder coil and C1 form a parallel resonance circuit, which is tuned to the
operating frequency, resulting in a maximal energy transfer.

RFID standards

Animal

identification

ISO 11784

ISO 11785

ISO 14223

ID-1 card

ISO 7810

Contact-based

smart cards

Contactless

smart cards

ISO 10536

close-cpl.

ISO 14443

remote-cpl.

ISO 15693

vicinity-cpl.

Container

identification

ISO 6346

Anti-theft

systems

VDI 4470

ISO 18xxx

ISO 15961

ISO 7816

ISO 15962

ISO 15963

Item

management

Figure 2.3: An overview of the most important standards for RFID systems.

CHAPTER 2. RADIO-FREQUENCY IDENTIFICATION 7

2.4 RFID Standardization

Responsible for the development of RFID standards is the International Electrotechni-
cal Commission (IEC) [16] that works together with the International Organization for
Standardization (ISO) [20]. They release standards that are widely accepted and imple-
mented by most manufacturers. We only refer to them as ISO standards as is customary
in literature.

There exists a variety of different ISO standards published that address many differ-
ent fields. An overview of the most important standards on RFID systems is given in
Figure 2.3. Note that ISO 7816 [22] is in this figure for the sake of completeness, even
though it is not an RFID standard.

One area of standardization is animal identification, which is specified by the ISO 11784,
ISO 11785 and ISO 14223 standards. Other areas covered by ISO standards are container
identification (ISO 6346) and item management (ISO 15961, ISO 15962, ISO 15963 and
ISO 18xxx). There also exists a guideline developed by The Association of German
Engineers (VDI) for anti-theft systems (VDI 4470) [46].

An important area is RFID systems for ID-1 smart cards, which are defined in the
ISO 7810 specification [21]. There exists a variety of RFID standards for those cards that
can be categorized in conactless smart cards and contact-based smart cards. Our work
focuses on the ISO 14443 standard [23] for contactless smart cards, which is explained in
detail in Chapter 4.

Chapter 3

Relay Attacks

This chapter provides background information about relay attacks. It first explains the
basic concept and presents a number of different scenarios where the attacks are appli-
cable. Afterwards, we analyze the components needed for a relay attack, namely a relay
channel, a mole, and a proxy. Next, we estimate the total delay introduced during a relay
attack. We finish this chapter with a discussion of relay attacks existing in the literature
and possible countermeasures.

3.1 Basic Concept of Relay Attacks

A relay attack is any attack where the attacker relays information between two legitimate
parties, without them being aware of the relay. The two parties are made believe that the
information is exchanged on a legitimate channel, but it is actually going through a relay
channel, created by the attacker.

Relay attacks are not limited to RFID systems. In fact, they have been around for a
long time and are known to be effective for many applications. We first present some
examples for relay attacks in other fields before explaining their application for RFID
systems.

Move 1 (white)
Move 1 (white)

Move 1 (black)
Move 1 (black)

Move 2 (white)
Move 2 (white)

Move 2 (black)
Move 2 (black)

Unskilled playerGrandmaster 1 Grandmaster 2

Figure 3.1: Basic concept of the grandmaster chess problem.

8

CHAPTER 3. RELAY ATTACKS 9

Alice BobFake Bob Fake Alice

controlled by

the attacker

Figure 3.2: Basic concept of a man-in-the-middle attack.

3.1.1 Relay-Attack Scenarios

The concept of relay attacks already exists for several decades and can be performed in
many different environments. One of the first relay attacks was introduced by Conway [6]
as the grandmaster chess problem. An unskilled chess player could play a game of
correspondence chess against two grandmasters simultaneously. If he plays white in one,
and black in the other game, he just copies every move of the grandmasters and let them
play against each other. He would then either win one game or draw both (see Figure 3.1).

A modern version of a relay attack is the Man-In-The-Middle (MITM) attack that is
performed on cryptographic systems. The attacker establishes two connections, one to
node A (Alice) and one to node B (Bob). He then relays every message that Alice sends to
Bob and thereby impersonates Alice and vice versa. Alice and Bob think they are talking
to each other, but the whole communication goes through the attacker. The basic concept
of this attack is shown in Figure 3.2 [38].

Another scenario of a relay attack is a wormhole (or insider) attack on a wireless ad-hoc
network (see Figure 3.3). Two or more malicious nodes work together to introduce false
routing information. Attacking node 1 makes node A assume that node B is closer than it
actually is. Therefore, all communication between node A and node B goes through the
attacking nodes. The attacker can then drop or alter packages at will and so manipulate
the communication [7].

Note that both, the man-in-the-middle attack and the wormhole attack, can be per-
formed in two different ways: active or passive. During a passive attack, the attacker
does only relay the data without changing it, whereas during an active attack, the data
might be changed while being relayed.

A

C G

E

Attacker

node 2

B

Attacker

node 1

D F

Figure 3.3: Basic concept of a wormhole attack.

CHAPTER 3. RELAY ATTACKS 10

3.1.2 Relay Attacks on RFID Systems

The concept of relay attacks can be adapted for RFID systems. One property of RFID
systems is that they typically follow a request-answer (challenge-response) scheme. This
implies that the reader initiates a data exchange and the transponder only answers to
those requests. This is different compared to the attacks described so far and leads to
slightly altered requirements for a successful attack on RFID systems.

Relay attacks on RFID systems involve two devices. One device impersonates the
reader to the transponder and is called mole. The other device impersonates the transpon-
der to the reader and is called proxy. Those two devices are connected by a relay channel.

A possible scenario of such an attack is presented in Figure 3.4. Transponder and
mole as well as reader and proxy, are connected through a conventional RFID link. Mole
and proxy communicate through a relay channel. The reader sends a challenge to the
proxy, which only the transponder can solve. The proxy immediately forwards the
challenge to the mole, which then sends it to the transponder. The transponder computes
a correct response and sends it to the mole. Note that the transponder assumes that it
is communicating directly with the reader. The mole then forwards the response to the
proxy, which sends it to the reader. The reader assumes that a legitimate transponder in
its reading range solved the challenge.

The scenario described above is a passive relay attack because no data is changed by
the attacker. Especially for identification purposes, there is usually no need to change any
of the data. An attacker could make the reader presume that the genuine transponder
is right in front of it, although it is actually in another room or even further away. This
attack is very powerful because there is no need to deal with the cryptographic primitive
itself. A protocol can be secure in a mathematical sense, while a practical relay attack
could still be performed, which makes such attacks powerful and hard to detect [14].

During an active relay attack, the attacker not only relays the data but also performs
modifications. Therefore, the attacker needs to understand the relayed information and
must be able to make useful changes. This is especially difficult in scenarios where the
communication is encrypted. Moreover, altering the data might introduce additional
delays, which makes the attack easier to detect [14].

So far we assumed that both parties, the reader and the transponder, are legitimate,
which is called a mafia fraud attack. However, there are scenarios where the transponder
is under the control of an attacker, which is called a terrorist fraud attack. This attack could
be used to fake the location of a person, for example. The advantage of this attack is that
the genuine transponder does not need to operate according to the defined protocol. It
might reveal secrets before time, so the attacker can already relay them. This makes it
easier for the attacker and harder to find countermeasures. Note that the terrorist fraud

Challenge
Challenge

Response

Challenge

Response
Response

RFID link RFID linkRelay

channel
Reader Mole TransponderProxy

Figure 3.4: Possible scenario for a relay attack on an RFID system.

CHAPTER 3. RELAY ATTACKS 11

attack assumes that the genuine transponder does not share its private (secret) key, which
would make the attack trivial [30].

3.2 Relay Channel

The relay channel is a very important part of a successful attack. It must be able to relay
data fast enough to meet the timing constraints of the reader. Therefore, it must have a
low delay and a sufficient data rate.

3.2.1 Physical Boundaries

The maximum speed that data can move is the speed of light in a vacuum 1. Therefore,
an ideal relay channel would forward data with the speed of light and without any delay.
Assuming such a channel exists, this would lead to the results shown in Table 3.1. The
Round-Trip Time (RTT) denotes the time it takes for the data to travel the distance twice.
It is calculated in Equation 3.1 with d being the distance and c being the speed of light.

RTT =
1
c
× 2d (3.1)

Table 3.1: Round-trip times of a relay channel with the speed of light.

Distance [m] RTT [ns]
1 6.7

10 66.7
100 667.1

1 000 6 671.3
10 000 66 712.8

3.2.2 Relay-Channel Medium

There are a number of different mediums that can be used for a relay channel. Those
mediums might be more or less useful in different scenarios. Also a relay channel could
very likely be a combination of several different mediums.

The propagation speed of electromagnetic waves can be expressed by the velocity
factor v f . The velocity factor defines the ratio between the speed of the wave in a certain
medium vp, and the speed of light in vacuum [3]. The velocity factor can be calculated by

Table 3.2: Velocity factors of different mediums.

Medium vf
Wireless radio (air) / Bluetooth 1.00
Coax [44] 0.78
Multi-mode fibre (glass) [11] 0.67
Twisted pair (copper) [45] 0.65 - 0.70

1c = 299 792 458 m/s ∼ 3 × 108 m/s.

CHAPTER 3. RELAY ATTACKS 12

v f =
vp

c
. (3.2)

The velocity factor cannot be defined for a medium in general because it varies for
different manufacturers. Table 3.2 shows mediums with common values for the velocity
factor.

3.3 Relay-Attack Devices

A successful relay attack requires fast relay devices. Those two devices are the mole and
the proxy. We look at characteristics the devices should have and other properties that
should be taken into consideration. Note that we assume that the relayed data is digitized
and not relayed as an analogue signal.

First of all, both devices need to work very fast. If the devices take too much time for
their operations, the reader might detect the delay and recognize that it is being attacked.
Because the relay channel already introduces a delay, the delay due to the device hardware
should be kept to a minimum.

The delay firstly depends on the frequency of the processing unit being used, for
example a microchip. It also depends on the communication interface of the relay device
and its data rate. The communication interface may have a lower data rate than the relay
channel, which would introduce an additional delay.

In order to be able to communicate with genuine devices, both attacking devices need
to implement the applicable RFID protocol. They do not need to support the full set
of commands, but enough to perform an attack. Note that an attacker is not bound to
any limitation for power or frequency. Therefore, he could increase the signal power
to achieve a higher transmission range or increase the operating frequency to achieve a
higher processing throughput [14].

The physical appearance should be inconspicuous and as small as possible. The
attacker must bring the mole in proximity to the transponder without being spotted. So it
should fit in a briefcase, purse, or even a wallet. It could also be built into a mobile phone
or any other electronic device. The proxy should ideally reassemble a real RFID tag. This
makes it unsuspicious if held in front of a genuine reader. However, the requirements for
the physical appearance strongly depend on the attack scenario.

3.4 Relay-Channel Protocols

This section presents and analyzes some existing protocols that could be used for the relay
channel. We present only some of the most common used protocols and differentiate
between wired and wireless communication. Although the protocols are analyzed as
they are defined, an attacker might not have to implement existing specifications. He
could remove parts or all of the overhead, depending on the scenario.

3.4.1 Wired Protocols

RS-232

The Recommended Standard 232 (RS-232) is an interface standard that was defined by
the Electronic Industries Association (EIA), Bell-Labs, and communication system man-

CHAPTER 3. RELAY ATTACKS 13

Table 3.3: Effective data rate and delay per bit for typical RS-232 baud rates.

Data rateeff Delaybit Data rateeff Delaybit
[bit/s] [5] [µs/bit] [bit/s] [5] [µs/bit]

110 9 090.9 19 200 52.1
300 3 333.3 38 400 26.0
600 1 666.7 57 600 17.4

1 200 833.3 115 200 8.7
2 400 416.7 230 400 4.3
4 800 208.3 460 800 2.1
9 600 104.2 921 600 1.1

ufacturers in 1969. It defines serial binary data exchange between two devices, which are
usually connected through a DB-25 connector [5].

The data rate of RS-232 is defined by the baud rate, which is given in bits per second.
Both devices need to operate with the same baud rate to communicate [5]. The baud
rate is also the effective data rate (data ratee f f) as no protocol overhead exists for RS-232.
Knowing the effective data rate we can calculate the average delay per bit (delaybit) by

delaybit =
1

data rateeff
. (3.3)

Note that this equation applies to all following protocols as well. Typical baud rates
and the corresponding delays per bit for RS-232 are presented in Table 3.3.

Ethernet

Ethernet is the most common used protocol for wired communication in Local Area
Networks (LANs). It is a frame-based protocol that works on the physical and the data-
link layer of the Open System Interconnection (OSI) model [18].

The data rate (data ratewire) of Fast Ethernet is 100 Mbit/s, which is called 100BASE-TX
for twisted pair cables. A Fast Ethernet block is shown in Figure 3.5. Ethernet defines the

Preamble 7 Octets

Start Frame Delimiter 1 Octet

Destination Address 6 Octets

Source Address 6 Octets

Length/Type 2 Octets

Payload (+ padding) 46-1500 Octets

Frame Check Sequence 4 Octets

F
ra

m
e P

ac
k

et

Inter-Packet Gap 12 Octets

Figure 3.5: The structure of an Ethernet block [18].

CHAPTER 3. RELAY ATTACKS 14

Table 3.4: Effective data rate and delay per bit for Fast Ethernet with different payloads.

Payload [byte] Overhead [byte] Data rateeff [Mbit/s] Delaybit [ns]
1 83 1.19 801.00
8 76 9.52 100.00

46 38 54.76 17.41
512 38 93.09 10.24

1500 38 97.53 9.78

minimum size of a 100 Mbit Ethernet frame with 64 bytes. Therefore, if the payload is less
than 46 bytes, an additional padding field is added. The standard overhead, including the
gap between two packets, is 38 bytes. However, if the payload is less than the minimum
of 46 bytes, the overhead increases due to the padding field. The effective data rate
(data ratee f f) depends on the payload and is calculated by

data rateeff =
payload

total block size
× data ratewire. (3.4)

Values of data ratee f f and delaybit (calculated using Equation 3.3) for different payloads are
presented in Table 3.4. The overhead, which includes the inter-packet gap and the padding
field, is calculated by

overhead = total block size − payload. (3.5)

3.4.2 Wireless Protocols

Bluetooth

Bluetooth is a wireless short range communication system. The data rate of a Bluetooth
channel is defined with 780 kbit/s. The most commonly used protocol version is 2.1, which
defines an Enhanced Data Rate (EDR). EDR versions of the protocol use Differential

Access Code 68-72 Bits

Logical Transfer Address 3 Bits

Packet Type 4 Bits

Flow Bit 1 Bit

Transfer Success Indicator (ARQN) 1 Bit

Sequence Number (SEQN) 1 Bit

Header Error Check (HEC) 8 Bits

H
ea

d
er

P
ac

k
et

Payload 0-2744 Bits

Figure 3.6: The structure of an ACL packet used for Bluetooth communication [43].

CHAPTER 3. RELAY ATTACKS 15

Table 3.5: Effective data rate and delay per bit for different Bluetooth packet types [43].

Type Data rateeff [kbit/s] Delaybit [ns/bit]
2-DH1 346 2 826
2-DH3 1 174 831
2-DH5 1 449 674
3-DH1 531 1 838
3-DH3 1 766 553
3-DH5 2 178 448

Quaternary Phase-Shift Keying (DQPSK) and 8 Phase-Shift Keying (8PSK), and therefore
support data rates up to 2 178 kbit/s [43].

Bluetooth uses Asynchronous Connection-Less (ACL) packets for data transfer, which
can be seen in Figure 3.6. Therefore, the overhead of a single Bluetooth packet is between
86 bits and 90 bits. Table 3.5 shows effective data rates (data ratee f f) for different bluetooth
packet types [43] and the resulting delay per bit, calculated by Equation 3.3.

The first number of the packet type denotes the modulation (2 for DQPSK and 3 for
8PSK), DH indicates that no forward error correction is used, and the last number (1, 3
and 5) indicates how many time slots are used by one packet [43].

802.11 Wireless LAN

The most commonly used protocol for wireless computer networks is defined in the
Institute of Electrical and Electronics Engineers (IEEE) 802.11 specification. There ex-
ist many different appendices, but in 2007 they where merged into the 802.11-2007
standard [17]. We analyze the former appendix 802.11g, which supports a data rate
(data ratemedium) up to 54 Mbit/s.

Frame Control 2 Octets

Duration/ID 2 Octets

Address 1 6 Octets

Address 2 6 Octets

Address 3 6 Octets

Sequence Control 2 Octets

Address 4 6 Octets

M
A

C
 H

ea
d

er

F
ra

m
e

Quality of Service Control 2 Octets

Frame Body 0-2312 Octets

Frame Check Sequence 4 Octets

Figure 3.7: The structure of an 802.11 Frame [17].

CHAPTER 3. RELAY ATTACKS 16

Table 3.6: Effective data rate and delay per bit for 802.11 wireless LAN for different
payloads.

Payload [byte] Overhead [byte] Data rateeff [Mbit/s] Delaybit [ns/bit]
1 36 1.46 653.0
8 36 9.82 97.0

46 36 30.29 31.5
512 36 50.45 18.9

1 024 36 52.17 18.3
2 312 36 53.17 17.9

A 802.11 frame is shown in Figure 3.7. The overhead adds up to a total of 36 bytes
and the payload has a maximum size of 2 312 bytes. The effective data rate (data ratee f f)
can be calculated by

data rateeff =
payload

total frame size
× data ratemedium. (3.6)

Table 3.6 presents different values for the payload and the resulting data ratee f f as well as
the average delay per bit (delaybit), which is calculated by Equation 3.3.

RFID protocols

Although RFID is not a protocol itself, there exist several ISO specifications that define
protocols for many different applications. For an overview of the existing ISO standards
for RFID systems we refer to Section 2.4. Here we look at the ISO 14443 standard for
contactless smart cards because it is used in the experiments later.

The used RFID protocol influences the delay because during a regular RFID com-
munication, there exists only one RFID link: between the reader and the transponder.
However, during an attack, there exist two RFID links: one between mole and transpon-
der and one between reader and proxy. This additional RFID link introduces an extra
delay, which depends on the effective rate (data ratee f f) used for communication. The
resulting average delays per bit (delaybit) for the four data rates defined in the ISO 14443
standard are presented in Table 3.7.

Table 3.7: Data rates defined in ISO 14443 and the resulting delays per bit.

Data rate [kbit/s] Delay per bit [µs]
106 9.21
212 4.61
424 2.30
848 1.15

3.5 Total-Delay Estimation

In the previous sections, we analyzed the different components of a relay attack separately.
In this section, we combine the results and give an estimation of the total delay introduced

CHAPTER 3. RELAY ATTACKS 17

Mole

Transponder

Reader

Proxy

RFID link

RFID link

Relay channel

RFID-link delay (Reader to Proxy)

Proxy delay

Relay-channel delay

Mole delay

RFID-link delay

(Mole to Transponder)

Transponder computation delay

RFID-link delay (Proxy to Reader)

Proxy delay

Relay-channel delay

Mole delay

RFID-link delay

(Transponder to Mole)

ad
d

it
io

n
al

 d
el

ay
s

in
tr

o
d

u
ce

d
 b

y
 a

 r
el

ay
 a

tt
ac

k

Figure 3.8: Delays introduced during a relay attack.

during a passive relay attack. Note that an active relay attack would introduce additional
delay at the proxy and/or the mole.

3.5.1 Total-Delay Derivation

In order to estimate the additional delay introduced by a relay attack, we look at Figure 3.8.
The communication between the reader and the proxy as well as the computation time
of the transponder can be ignored, as those delays would also occur during a regular
communication. For the introduced delay, we sum up the remaining delays and multiply
them by two because the data needs to travel the distance twice. The resulting formula
can be written as

introduced delay = (proxy delay+

mole delay+

relay-channel delay+

RFID-link delay) × 2.

(3.7)

We can further split up the relay-channel delay into a protocol delay and a propagation
delay. The protocol delay depends on the protocol p used, and the propagation delay
depends on the length of the relay channel dc between mole and proxy as well as on
the velocity factor v f of the relay medium. Therefore, the relay channel delay can be
calculated by

relay-channel delay = protocol delay(p) + propagation delay(dc, v f). (3.8)

We can also split up the RFID-link delay into a protocol delay and a propagation delay. The
propagation delay depends on the distance between mole and transponder (or proxy and
reader) dr. The protocol delay for ISO 14443 depends on the used data rate r and is defined
by

RFID-link delay = protocol delay(r) + propagation delay(dr). (3.9)

CHAPTER 3. RELAY ATTACKS 18

3.5.2 Estimation of Proxy Delay and Mole Delay

The delay estimation of the relay devices is difficult because there exist various factors.
We assume the attacking devices to work with a clock frequency f of 16 MHz, which
could for example be an ATMega128 [2]. Receiving and sending a single bit can probably
be done within only a few clock cycles, as only a few register entries need to be shifted.
The delay for a single bit within one device, assuming it takes ten clock cycles to forward
it, can be calculated by

device delay =
clock cycles

f
=

10
16 MHz

= 625 ns/bit. (3.10)

Note that while the genuine devices always work on the operating frequency, which
is 13.56 MHz for ISO 14443, the attacking devices are not bound to this requirement. Also
note that devices performing an analogue relay could reach lower delays.

3.5.3 Lower Bound for the Total Delay Introduced

This section is not meant to estimate the delay for a real relay attack implementation. It
should rather give a lower bound for the delay introduced by a relay attack. Therefore,
we use assumptions that might not be practical for real implementations.

We estimate the delay for Fast Ethernet relay channel as described in Section 3.4, as
it introduces the lowest protocol delay. As mentioned we try to define a lower bound
for the delay, and therefore assume a maximum payload of 1 500 byte. Furthermore, we
assume a velocity factor for the Ethernet cable of 0.7. For a relay-channel length dc of ten
meters, an RFID data rate of 848 kbit/s, and an RFID-link distance of 0.2 m, the resulting
delay per bit is calculated by

introduced delay = (proxy delay + mole delay + relay-channel protocol delay
+ relay-channel propagation delay + RFID-protocol delay
+ RFID-propagation delay) × 2

= (625 ns/bit + 625 ns/bit + 9.78 ns/bit+
10 m

c
×

1
0.7

+ 1.15µs/bit +
0.2 m

c
) × 2

= 4.92µs/bit.

(3.11)

Table 3.8: Total introduced delay per bit for different RFID data rates and relay-channel
lengths.

RFID rate [kbit/s]
Distance [m] 106 212 424 848

1 20.96 µs 11.74 µs 7.14 µs 4.83 µs
10 21.04 µs 11.83 µs 7.22 µs 4.92 µs

100 21.90 µs 12.69 µs 8.08 µs 5.78 µs
1 000 30.48 µs 21.26 µs 16.66 µs 14.35 µs

10 000 116.25 µs 107.04 µs 102.43 µs 100.13 µs

CHAPTER 3. RELAY ATTACKS 19

The most significant delays result from the RFID link, the devices and the propagation
delay that depends on the channel length. Table 3.8 shows the total introduced delay for
different RFID-link rates and relay-channel lengths. We see that the longer the relay
channel is, the less important the RFID-link rate and the device delay become because
they are constant.

3.6 Relay Attacks in Literature

Kfir and Wool [28] already described a possible setup for a relay attack on RFID systems in
2005. One of the first practical attack implementations was done by Hancke in 2005 [12].
He implemented a relay attack connecting proxy and mole through an UHF antenna and
relayed the analogue data between the two devices. He reached an introduced delay
of only 15-20 µs. Note that such small delays are only possible if the communication
is relayed as analogue data. If the data is digitized and forwarded as binary data, the
processing time introduces a significant additional delay.

Recently, Francis et al. [10] presented a practical relay attack on NFC mobile phones.
They used two NFC mobile phones as proxy and mole and established a Bluetooth link in
order to relay data in the 2.4 GHz frequency band. However, although the attack worked
as a proof of concept, it lacks in the fact that the required Unique IDentifier (UID) from
off-the-shelf mobile phones cannot be changed, which restricts the attack to only a limited
number of applications.

Weiss [47] obtained similar results during his experiments. He implemented a relay
attack using NFC mobile equipment in the course of his master thesis and reached delays
of about 50 ms. His setup included a USB-based NFC device as a relay proxy that requires
the connection with a PC, which might not be practical for a real life scenario.

3.7 Countermeasures

The danger of relay attacks is that conventional application-layer security does not address
those kind of attacks. The cryptographic primitives used are not designed to detect
whether the information is relayed or not. Therefore, different countermeasures against
relay attacks need to be found.

For wormhole attacks exists a variety of countermeasures. However, those counter-
measures use additional information like the location of the nodes [39], assume highly
synchronized clocks [15], or several nodes monitor each others traffic [29]. Therefore,
those countermeasures cannot be applied to RFID systems. RFID systems operate with a
very limited amount of information. There exist no location awareness or synchronized
time clocks between sender and receiver, which makes it especially hard to prevent relay
attacks.

We analyze four different classes of countermeasures, namely physical protection,
additional verification, timing constraints, and distance bounding.

3.7.1 Physical Protection

One countermeasure against relay attacks is the physical protection of the RFID transpon-
der. A Faraday cage can shield it from electromagnetic waves [30] and therefore make
it not accessible for an attacker. However, this introduces significant inconvenience for

CHAPTER 3. RELAY ATTACKS 20

the user, and moreover does not protect if the attacker is in permanent or temporary
possession of the transponder.

3.7.2 Additional Verification

For security reasons, RFID readers can request additional information from the owner of
the transponder. Implementing such a Two-Factor Authentication (2-FA) would largely
protect against relay attacks. The additional information could be a Personal Identification
Number (PIN) or the fingerprint of the verifier. Also a picture of the verifier could be
used. However, this leads to additional delays in RFID applications, which makes it more
inconvenient for users [14].

3.7.3 Timing Constraints

As shown in Section 3.5, a relay attack introduces additional delays. Therefore, the answer
to a reader request is delayed compared to a genuine response. By introducing time-outs
into the communication protocol, the reader can ensure that the transponder is really in
transmission range. However, those time-outs largely depend on the used transponder
hardware and may vary significantly. Time-outs can also cause false rejections, which
makes them inconvenient for the user [14].

3.7.4 Distance Bounding

Distance-bounding protocols try to determine the physical distance between the reader
and the transponder. The basic idea is to create a challenge that only the genuine transpon-
der can solve (similar to zero-knowledge proofs of knowledge). The transponder should
take a fixed, usually very short amount of time, to solve this challenge. Therefore, the
reader can compute a very good estimate of how far away the tag actually is, based on
the Round-Trip Time (RTT) [14].

Distance bounding right now is the most promising countermeasure against relay
attacks. It can be implemented without significantly increasing the costs of RFID systems
and does not cause any additional inconvenience for the user. Hancke and Kuhn proposed
a distance bounding protocol that uses an Ultra-WideBand (UWB) channel [13]. The
protocol uses an UWB channel because Hancke and Kuhn state that accurate distance
bounding is not possible using the 13.56 MHz communication link. However, a UWB
channel is not available in current RFID systems and would cause significant additional
costs.

Reid et al. [42] and Munilla and Peinado [31] proposed protocols that expect the
response of the transponder in predefined clock cycles. This approach is vulnerable to
overclocking [14] and might cause problems with compatibility. Implementations on the
transponder may vary significantly and sending the response within a defined clock cycle
might not always be possible.

Chapter 4

The ISO 14443 Standard

The International Organization for Standardization (ISO) and the International Elec-
trotechnical Commission (IEC) developed the ISO/IEC 14443 standard that describes the
operation method and operation parameters for proximity-coupling smart cards. Those
cards operate in a range of up to approximately 10 cm. We refer to the standard only as
ISO 14443 and describe the newest version of the standard released in 2010.

The standard labels the reader as a Proximity Coupling Device (PCD) and the transpon-
der as a Proximity Integrated Circuit Card (PICC). We use the terms PCD and PICC
whenever we refer to the reader and the transponder of an ISO 14443 system.

The standard is split into four parts. The first part covers the physical characteristics
of the PICC [24]. The second part specifies the characteristics of the fields to be provided
for power and bi-directional communication between the PCD and the PICC [25]. The
third part defines the routines for the initialization of the PICC as well as an anticollision
routine for multiple PICCs [26]. The fourth and last part defines a half-duplex block-
transmission protocol satisfying special needs for contactless environments. It also defines
the activation and deactivation sequence of the transmission protocol [27]. Note that the
higher parts are designed to be used in conjunction with the lower parts.

The standard also defines two types of PICCs, A and B. Compliant PCDs need to
support both types, whereas compliant PICCs only need to support one type of commu-
nication.

In the following chapter, all four parts are be described in detail with special focus on
the elements that are important concerning relay attacks.

4.1 Part 1: Physical Characteristics

The first part defines the physical characteristics of an ISO 14443 smart card. It defines
the antenna dimension with a maximum of 86 x 54 x 3 mm. However, most antennas are
designed to fit on ISO/IEC 7816 ID-1 smart cards. ID-1 smart cards are similar to credit
and telephone cards and are defined with a size of 85.72 x 54.03 x 0.76 mm. [9][22]

4.2 Part 2: Radio-Frequency Power and Signal Interface

This part specifies the characteristics of the fields to be provided for power and bi-
directional communication between PCD and PICC. It specifies for both PICC types the
power transfer, the signal interface, and the modulation technique.

21

CHAPTER 4. THE ISO 14443 STANDARD 22

The power for the PICC is provided by the PCD. Therefore, the PCD creates a magnetic
field with a frequency of 13.56 MHz ± 7 kHz. The operating field strength is defined with
a minimum Hmin of 1.5 A/m and a maximum Hmax of 7.5 A/m.

The signal interface defines four different data rates for communication. All four rates
depend on the operating frequency fc and are defined as fc/128, fc/64, fc/32 and fc/16,
which result in 106 kbit/s, 212 kbit/s, 424 kbit/s, and 848 kbit/s, respectively.

The PCD uses Amplitude Shift Keying (ASK) to communicate with the PICC. Type A
PCDs use 100 % ASK with modified Miller coding, whereas Type B PCDs use 10 % ASK
with Non-Return-to-Zero (NRZ) coding. The PICC uses load modulation to respond to
the PCD, applying different coding techniques, depending on type and data rate.

4.3 Part 3: Initialization and Anticollision

The third part of the standard defines how the polling for new PICCs is handled. It also
specifies the initial phase of the communication and methods to deal with multiple PICCs
in range (anticollision). For each type A and B, there exist different definitions. In the
following, we only describe the specification for PICC Type A.

4.3.1 Frame Delay Time

The standard defines a certain frame format and frame timing for the initialization and
anticollision. Note that the bit representation and the coding are defined in ISO 14443-2
and are not described in this part.

ISO 14443 communication follows a request-response scheme, which makes it manda-
tory that frames are always transmitted in pairs. The first frame is sent by the PCD to the
PICC and the second frame by the PICC to the PCD. The delay between those two frames
is defined as the Frame Delay Time (FDT). Figure 4.1 illustrates the basic communication
concept.

The FDT measurement starts at the last rising edge of the frame. If the last bit of the
frame is a logic 1 it starts earlier than if the last bit is a logic 0 because the rising edges
occur at different times. Therefore, the standard defines two sets of FDTs, which are
shown in Table 4.1. Note that commands used during the initialization (REQA, WUPA,

PCD start of communication

Information and error detection

Frame delay time PCD to PICC

PCD end of communication

PICC start of communication

Information and error detection

Frame delay time PICC to PCD

PICC end of communication

P
C

D
 F

ra
m

e
P

IC
C

 F
ra

m
e

Figure 4.1: Sequence of a frame pair as defined by ISO 14443.

CHAPTER 4. THE ISO 14443 STANDARD 23

Table 4.1: Frame delay times for transmissions from PCD to PICC at an operating fre-
quency of 13.56 MHz [26].

Command
FDT

last bit = (1)b last bit = (0)b
REQA, WUPA,

= 91.15µs
= 86.43µs

ANTICOLLISION, SELECT
fc/128

All other commands
fc/128 ≥ 91.15µs ≥ 86.43µs
fc/64 ≥ 86.43µs ≥ 84.07µs
fc/32 ≥ 84.07µs ≥ 82.89µs
fc/16 ≥ 82.89µs ≥ 82.30µs

ANTICOLLISION, SELECT) require a fixed FDT. Those commands are explained later
in this section. They are transfered at a rate of fc/128 and allow a tolerance of -1/ fc to
(+ 0.4µs + 1/ fc).

4.3.2 Frame Formats

The ISO 14443 standard defines three types of frames: short frames, standard frames, and
bit-oriented anticollision frames. They all serve different purposes and are briefly explained
in the following paragraphs.

Short Frame. A short frame is shown in Figure 4.2 and consists of a part S (start of
communication), 7 data bits, and a part E (end of communication). It is used to initiate
communication. Note that all frames start with the Least Significant Bit (LSB) and end
with the Most Significant Bit (MSB).

Standard Frame. A standard frame is shown in Figure 4.3 and consists of a part S (start
of communication); n data parts, each consisting of eight data bits and one odd parity bit
P; and a part E (end of communication). Note that the number of data parts is larger or
equal to one. The frame shown is a PCD standard frame. PICC frames are constructed in
a similar way and we refer to part 3 of the standard for further details [26].

Bit-Oriented Anticollision Frame. The bit-oriented anticollision frame is constructed
as a standard frame with seven data bytes. It is only used during the anticollision loop,
which is explained in the following section.

S E
LSB MSB
b1 b2 b3 b4 b5 b6 b7

Data

Figure 4.2: The structure of an ISO 14443 short frame [26].

CHAPTER 4. THE ISO 14443 STANDARD 24

P P EPS LSB
b1 b8

b1 b8

2nd data byte

MSB

1st data byte

b1

nth data byte

b8

Figure 4.3: The structure of an ISO 14443 PCD standard frame [26].

4.3.3 Anticollision

Part 3 of ISO 14443 defines an anticollision procedure for Type A PICCs that is based on
a dynamic binary-tree search algorithm. The PCD can select one of multiple PICCs in its
range by their Unique IDentifier (UID). First we explain some basics of this algorithm
before presenting the algorithm itself.

Basics of Anticollision

If multiple PICCs are in range, the PCD selects a single PICC by its UID. In order to
retrieve the UID of a single PICC, the PCD has to run a procedure called the anticollision
loop. Depending on the size of the UID, which can be four, seven, or ten bytes long,
it runs this loop one, two, or three times, respectively. We call the number of times the
anticollision-loop procedure is executed the cascade level [9].

Before the actual anticollision loop starts, the PCD sends a Request A (REQA) com-
mand to all PICCs in range. The PICCs respond with an Answer To Request A (ATQA),
which contains the length of the UID and an information field that tells the PCD how
many cascade levels are required [9].

One other requirement must be met for Type A anticollision to work. If multiple
PICCs transmit information synchronously, the PCD must be able to determine exactly
at which bit a collision occurred. Manchester coding defines the value of a bit by a level
change (transition) within a bit window. A positive transition represents a logic 0 and
a negative transition a logic 1. If two or more PICCs transmit different logic values for
the same bit, the level does not change and stay high for the entire bit. As this state is
not allowed in Manchester coding, the PCD recognizes the collision. Note that all PICCs
must send their bits synchronously for this procedure to work [9].

Anticollision Loop

The flowchart for the anticollsion loop can be seen in Figure 4.4. It starts with the PCD
sending an ANTICOLLISION command. It constists of a Select Code (SEL) and a Number
of Valid Bits (NVB) code. SEL contains two bits indicating the current cascade level. NVB
consists of two parts. The first part is the number of valid bytes and the second part is
the number of additional valid bits. Therefore, in the first ANTICOLLISION command
NVB equals ’20’, as only the two bytes (SEL and NVB) are valid.

When the PICCs receive the ANTICOLLISION command, they send their UID for
the cascade level defined in SEL. Figure 4.5 shows which part of the UID is transmitted
depending on the UID length and the cascade level. The UID is split into up to ten parts
(uid0 - uid9). Note that CT is a cascade tag (88h) and cannot be used in uid0 of 4-byte
UIDs or uid3 of 7-byte UIDs. Also note that every message ends with a Block Check
Character (BCC).

CHAPTER 4. THE ISO 14443 STANDARD 25

Start

PCD transmits ANTICOLLISION

command

[SEL,NVB]

SEL = code (cascade level)

NVB = '20'

PCD receives UID

Collision in

UID?
coll = Position of first collision

PCD transmits ANTICOLLISION

command

[SEL, NVB, UID (0..coll)]

NVB = '20' + coll

PICC returns rest of UID

[UID (coll+1..31)]

PICC sends UID

NVB = '70'

yes

no

PCD transmits SELECT command

[SEL, NVB, UID, CRC_A]

PICC sends SAK

PCD receives SAK

End

Figure 4.4: PICC Type A anticollision loop for a single cascade level [26].

Note that all PICCs transmit their UIDs synchronized. Therefore, a collision occurs
at the first differing bit of their UIDs. This collision is detected by the PCD, which then
calculates a new value for NVB. The PCD now knows that all UIDs are the same before
the colliding bit. It then sends a new ANTICOLLISION command with the already valid
part of the UID, plus a 1-bit or 0-bit. After that, the PCD gets a response only from the
PICCs that still fit the received UID. Those PICCs answer with the remaining part of their
UIDs. This loop is repeated up to 32 times until no collision is detected.

If no collision is detected, NVB is set to 7 bytes, therefore announcing that a SELECT
command is coming. This SELECT command now contains the UID of the selected PICC
at the current cascade level, plus a Cyclic Redundancy Check A (CRC A). In the last step,
the selected PICC sends a Select Acknowledge (SAK) command to the PCD, which ends
the anticollision loop for the current cascade level. Note that this loop has to be executed
for all three cascade levels if necessary. Also note that PICCs that are not selected at a
lower cascade level do not answer to following anticollision commands in higher cascade
levels.

For the precise coding specifications for NVB, SAK, SEL, REQA and ATQA, we refer

CHAPTER 4. THE ISO 14443 STANDARD 26

4-byte UID
PCD PICC

SEL = ’93’
SEL
−−−−−−→

UID CL1 = [uid0, uid1, uid2, uid3, BCC]
UID CL1
←−−−−−−

7-byte UID
PCD PICC

SEL = ’93’
SEL
−−−−−−→

UID CL1 = [CT, uid0, uid1, uid2, BCC]
UID CL1
←−−−−−−

SEL = ’95’
SEL
−−−−−−→

UID CL2 = [uid3, uid4, uid5, uid6, BCC]
UID CL2
←−−−−−−

10-byte UID
PCD PICC

SEL = ’93’
SEL
−−−−−−→

UID CL1 = [CT, uid0, uid1, uid2, BCC]
UID CL1
←−−−−−−

SEL = ’95’
SEL
−−−−−−→

UID CL2 = [CT, uid3, uid4, uid5, BCC]
UID CL2
←−−−−−−

SEL = ’97’
SEL
−−−−−−→

UID CL3 = [uid6, uid7, uid8, uid9, BCC]
UID CL3
←−−−−−−

Figure 4.5: The distribution of the UID for different cascade levels [26].

to the ISO 14443 standard part 3 [26].

4.3.4 PICC States

The ISO 14443 standard also contains a state diagram that defines all states and transitions
between those states for a PICC during activation and anticollision. This state diagram
can be seen in Figure 4.6.

We see that every PICC has two different READY and ACTIVE states. One set is used

CHAPTER 4. THE ISO 14443 STANDARD 27

POWER-OFF

IDLE

READY

ACTIVE

HALT

READY*

ACTIVE*

ISO 14443-4

PROTOCOL

In field

Out of field

RATS

Any other

command

REQA,

WUPA

RATS

SELECT

Any other

command

Any other

command

WUPA

SELECT

Any other

command

Any other

command

Any other

command

DESELECT

HLTA
HLTA

ACAC

Figure 4.6: PICC Type A state diagram during activation and anticollision [26].

only during the first time the PICC is activated from the IDLE state. The second set is
marked with an asterisk and is used every time the PICC is reactivated from the HALT
state by a Wake-UP A (WUPA) command. Note that PICCs in HALT state do not respond
to REQA commands.

4.4 Part 4: Transmission Protocol

The ISO 14443 standard defines a half-duplex block-transmission protocol, which consid-
ers special needs for contactless environments. Type A PICCs need to be activated before
the transmission protocol can be started. This activation sequence is described in this
part of the standard. PICCs of Type B do not need additional activation as all necessary
information was already exchanged during anticollision [9].

4.4.1 Protocol Activation of Type A PICCs

The activation sequence builds on the anticollision described in Section 4.3.3. During
anticollision the PICC sends a SAK command to the PCD. One bit in this command
signals if the PICC is compliant with the ISO 14443-4 transmission protocol [26]. Note
that a PICC might implement the anticollision according to the standard and support a
different transmission protocol, such as it is in the case of MIFARE Classic [36]. The whole

CHAPTER 4. THE ISO 14443 STANDARD 28

Anticollision loop

PCD sends PPS request

PCD sends RATS

no

Start data exchange

ISO 14443-4

supported?

Non-14443-4

protocol
no

PICC sends ATS

yes

PPS supported?

PICC sends PPS response

yes

Figure 4.7: Activation sequence of a Type A PICC after anticollision [9][26].

flowchart for the protocol activation is shown in Figure 4.7.
If the PICC is compliant with ISO 14443-4, the PCD sends a Request Answer To Select

(RATS) command. The RATS command contains two important parameters, namely the
Frame Size Device Integer (FSDI) and the Card IDentifier (CID). The FSDI defines the
maximum block-size (FSD) that the PICC can send to the PCD, where allowed values

Table 4.2: Fields contained in an ATS (Answer To Select) command [9][26].

Field Description
FSCI
Frame Size Card Integer

Maximum block-size (FSC) from PCD to the PICC.

DS
Divisor Send

Possible data rates from the PICC to the PCD.

DR
Divisor Receive

Possible data rates from the PCD to the PICC.

FWI
Frame Waiting Integer

Integer that defines the Frame Waiting Time (FWT)
the PCD must wait for a response of the PICC.

SFGI
Start-up Frame Guard Integer

Integer that defines the FWT for the first command
after the ATS.

CID
Card IDentifier

Defines whether a CID is supported by the PICC.

NAD
Node ADdress

Defines whether a NAD is supported by the PICC.

CHAPTER 4. THE ISO 14443 STANDARD 29

range from 16 bytes to 256 bytes. The CID is allocated by the PCD and allows to hold
multiple Type A cards active at the same time and address them by their CID [9].

The following Answer To Select (ATS) is sent by the PICC and contains several im-
portant protocol parameters listed in Table 4.2. The exact coding for those parameters is
described in Section 5.2 of ISO 14443 part 4 [27].

If changeable parameters are supported by the PICC, the PCD may send a Protocol
and Parameter Selection (PPS) request. This request may set the parameters for Divisor
Send (DS) or Divisor Receive (DR) and is acknowledged by a PPS response of the PICC.
Afterwards, the application-data exchange can begin. Note that the PPS command does
not need to be supported by ISO 14443 compliant PICCs.

Frame Waiting Time

As the Frame Waiting Time (FWT) is an important parameter for a relay attack, we have
a closer look at it. As mentioned before, the FWT is not exchanged directly between
PCD and PICC but rather the Frame Waiting Integer (FWI) is exchanged. The FWT is
calculated using the FWI by

FWT = (256 × 16/ fc) × 2FWI. (4.1)

The FWI is defined in the range of 0 to 14. This results in 15 different FWTs shown in
Table 4.3.

Table 4.3: Possible frame waiting times according to ISO 14443.

FWI FWT FWI FWT
0 FWTMIN = 302 µs 8 77.33 ms
1 604 µs 9 154.66 ms
2 1 208 µs 10 309.31 ms
3 2 517 µs 11 618.63 ms
4 4 833 µs 12 1 237.26 ms
5 9 666 µs 13 2 474.51 ms
6 19.33 ms 14 FWTMAX = 4 949.03 ms
7 38.66 ms

4.4.2 Half-Duplex Block-Transmission Protocol

The transmission protocol is very similar to the T=1 protocol [22], which is used for smart
cards with contact. This makes the integration of the protocol in existing smart-card
systems very easy [9].

Block Format

The structure of a block can be seen in Figure 4.8. It first consists of a prologue field,
which can be seen as a header. It also holds an information field for application data and
an epilogue field for error detection. In the following, we describe those fields and their
purpose in detail.

CHAPTER 4. THE ISO 14443 STANDARD 30

Prologue field Epilogue field

PCB

1 byte

[CID]

1 byte

[NAD]

1 byte
CRC

2 bytes
[INF/APDU]

Information field

Figure 4.8: The structure of an ISO 14443-4 block [27].

Prologue Field. The prologue field contains the mandatory Protocol Control Byte (PCB)
and the two optional bytes for the Card IDentifier (CID) and the Node ADdress (NAD).
As mentioned before, the CID field is used to address one of multiple active PICCs. It
also contains two bits that can be used as power-level indicator. The NAD field is used
to build up and address multiple logical connections with a single PICC. The PCB byte
also defines which type of block the frame represents. There exist three different types of
blocks, which are presented in Table 4.4. For an exact definition of each block we refer to
part 4 of the ISO 14443 standard [27].

Table 4.4: Different block types for the ISO 14443-4 protocol [27].

Block Description
I-block: Used to send information for the application layer
R-block: Used for positive or negative acknowledgements
S-block: Used to exchange control information between PCD and PICC

Information Field. The information field is optional and of variable length. It contains
application data for I-blocks, and non-application data and status information for S-
blocks. The length is calculated as the total number of bytes minus the prologue and the
epilogue field.

Epilogue Field. The epilogue field contains a two-byte error-detection code (CRC A)
for the transmitted block. It is used to detect errors that occurred during the transmis-
sion. The exact calculation of the CRC A is defined in the appendix of the ISO 14443-3
specification [26].

Protocol Operations

In the following, we describe some operations that are supported by the ISO 14443-4
protocol and that are of interest for relay attacks.

Waiting Time Extensions. Waiting Time Extensions (WTXs) are a way for the PICC to
request additional time for complex and time consuming computations. They are sent
as an S-Block with a one-byte Information (INF) field. The INF field contains two bits
as power level indicator and six bits for the Waiting Time Extension Multiplier (WTXM).
The standard defines the WTXM in the range of 1 to 59. Given the WTXM, the PCD grants
a temporary Frame Waiting Time (FWT) computed by

FWTtmp = FWT ×WTXM[27]. (4.2)

CHAPTER 4. THE ISO 14443 STANDARD 31

However, the temporary FWT can never exceed the maximum FWT of 4.95 seconds.
Note that it is possible to request several consecutive WTXs. Every WTX request, if
received correctly, is answered with a WTX response by the PCD.

Multi-Activation. Multi-activation is a feature that allows the PCD to keep several
PICCs in their ACTIVE-state simultaneously. Therefore, the PCD can access different
PICCs without needing additional time for activation and deactivation. In order to
distinguish between several active PICCs, the PCD assigns different CIDs, which it uses
to address a single PICC.

Chaining. As the block-size is limited by FSC and FSD, the protocol defines a chaining
method to split larger information into several blocks. Therefore, a chaining bit exists
in the PCB of an I-block to notify the receiver that a chained message is following.
The receiver acknowledges every received I-block during chaining with a corresponding
acknowledge command. Note that the receiver of a chained block may be the PCD or the
PICC.

Negative Acknowledges

The standard also defines a recovery procedure using Negative Acknowledges (NAKs).
Whenever the PCD receives an erroneous response from the PICC or does not receive a
response in time, it can request a retransmission by sending a NAK command. Note that
this recovery mechanism is optional and the number of retransmission tries depends on
the implementation of the PCD.

Chapter 5

Security Analysis of ISO 14443
Regarding Relay Attacks

In this chapter, we look at different methods that can be used to increase the chance for a
successful relay attack. Those methods work on different layers of the ISO 14443 protocol
and are applicable to all ISO 14443 compliant systems. First we show how modifications
on the physical layer can be utilized by the attacker. We also show how to exploit the
protocol layer for a relay attack.

5.1 Modifications on the Physical Layer

In this section, we look at the physical layer of the ISO 14443 protocol and how it can be
exploited by an attacker. Therefore, we show how to modify the carrier frequency and
the data rate in order to increase the chance for a successful relay attack.

5.1.1 Carrier-Frequency Modification

The carrier frequency (fc) of an ISO 14443 system is defined as 13.56 MHz ± 7 kHz. The
carrier frequency influences the speed of communication and the clock at which the
PICC operates. Both of those factors contribute significantly to the delay during an RFID
communication. Therefore, we suggest to modify the carrier frequency during a relay
attack to gain additional time for the relay.

Although the carrier frequency is defined in the ISO 14443 standard, some PICCs
might support higher frequencies. Most PICCs have a bandpass filter, however this filter
might still allow slight variations of the frequency [13].

PCD Proxy Mole PICC
fc

fm = fc x mRelay channel

controlled by the

attacker

Figure 5.1: Setup of a relay attack where mole and PICC communicate at a higher fre-
quency.

32

CHAPTER 5. SECURITY ANALYSIS OF ISO 14443 REGARDING RELAY ATTACKS 33

Figure 5.1 shows a possible setup for a carrier-frequency modification. The PICC is
communicating with the mole on a higher frequency (fm = fc × m, with the modifier
m > 1). Therefore, the attacker has a speed advantage because the PCD uses a lower
carrier frequency fc to communicate with the proxy. Using this setup, the PICC operates
at a higher clock frequency because it extracts its clock from the carrier. This leads to
faster response times, which could be exploited by an attacker.

The speed advantage of this attack depends on the used modifier m. The RFID com-
munication time between mole and PICC (in both directions) as well as the computation
time of the PICC are both reduced by the same factor. The additional time for an at-
tacker (tadditional) also depends on the time for a regular communication (tregular), which is
a function of fc, and can be calculated by

tadditional = tregular(fc) × (1 −
1
m

). (5.1)

For fc being 13.56 MHz, the additional times can be seen in Table 5.1. The table shows
the values for different regular communication times tregular and different modifiers m. We
see that tadditional becomes quite significant for higher values of tregular and m.

Table 5.1: Additional relay times for a modified 13.56 MHz carrier.

tadditional[ms]
tregular m=1.1 m=1.25 m=1.5 m=1.75 m=2

[ms] fm=14.92 MHz fm=16.95 MHz fm=20.34 MHz fm=23.73 MHz fm=27.12 MHz
1 0.09 0.20 0.33 0.43 0.50
2 0.18 0.40 0.67 0.68 1.00
5 0.45 1.00 1.67 2.14 2.50

10 0.91 2.00 3.33 4.29 5.00
50 4.55 10.00 16.67 21.43 25.00

100 9.09 20.00 33.33 42.86 50.00
1 000 90.91 200.00 333.33 428.57 500.00
2 500 227.27 500.00 833.33 1 071.43 1 250.00
4 950 450.00 990.00 1 650.00 2 121.43 2 475.00

5.1.2 Data-Rate Modification

The data rate is crucial for the delay during RFID communication. During a relay attack,
there exist four different data rates: two (send and receive) between PCD and proxy and
two between mole and PICC. An attacker can choose those data rates in a certain way to
increase the chance for a successful attack.

The ISO standard defines four data rates, which depend on the carrier frequency.
For a 13.56 MHz carrier, those data rates start at 106 kbit/s and go up to 848 kbit/s. This
difference can be exploited by adversaries to obtain more time for relaying the data.

After the SELECT command, the PCD requests an Answer To Select (ATS) from the
PICC. This ATS holds the Divisor Send (DS) and the Divisor Receive (DR), which define
the supported data rates of the PICC. Therefore, the PICC can deliberately choose its own
data rates.

Figure 5.2 shows a possible relay scenario. We assume the PICC supports a high data
rate of 848 kbit/s (= fc/16), which we use on one side of the attack. On the other side, the

CHAPTER 5. SECURITY ANALYSIS OF ISO 14443 REGARDING RELAY ATTACKS 34

PCD Proxy Mole PICC
fc/128 fc/16Relay channel

controlled by the

attacker

Figure 5.2: Setup for a relay attack where mole and PICC use a higher data rate.

attacker signals the PCD in the ATS command that the proxy only supports a low data
rate of 106 kbit/s (= fc/128). This leads to a faster transmission between PICC and mole
than between PCD and proxy. Therefore, the mole receives responses from the PICC
faster than the proxy has to forward responses to the PCD.

5.2 Modifications on the Protocol Layer

The half-duplex protocol defined in the ISO 14443-4 standard has several mechanisms
that can be exploited for a relay attack. A description of those mechanisms and how they
can be used is presented in the following sections.

5.2.1 Chaining

The maximum block-sizes for transmissions between PCD and PICC are agreed on dur-
ing protocol activation. The PCD defines its maximum receiving block size in the RATS
command (by the FSDI) and the PICC defines its in the ATS command (by the FSCI). Dur-
ing a relay scenario, we have two ISO connections and therefore four different maximum
block-sizes. The attacker can choose two of them, the one from the PCD to the proxy, and
the other from the PICC to the mole. The attacker might be interested in choosing small
block-sizes at the proxy, so it can already forward a part of the whole message to the mole
earlier.

Figure 5.3 and Figure 5.4 show the advantage of this approach on an example. In this
example, the PCD wants to transmit a 160-byte data packet to the PICC. In Figure 5.3,
the attacker uses a large maximum block-size (256 bytes) at the proxy and forwards the
complete block at once. Note that the crucial Frame Waiting Time (FWT) starts after the
last block is sent by the PCD. Therefore, in this scenario the attacker has to forward 160
bytes over the relay channel within the crucial FWT. In Figure 5.4, the attacker uses a
smaller maximum block-size (16 bytes) at the proxy. Therefore, the attacker only has to

PCD Mole PICC

Block 1 (160 bytes)
Block 1 (160 bytes)

Response
Response

Response

Proxy

160 bytes delay

Block 1 (160 bytes)

Figure 5.3: Example for a relay attack with a large maximum block-size (256 bytes).

CHAPTER 5. SECURITY ANALYSIS OF ISO 14443 REGARDING RELAY ATTACKS 35

PCD Mole PICC

Block 1 (16 bytes)
Block 1 (16 bytes)

Response
Response

Response

Proxy

16 bytes delay

ACK

Block 2 (16 bytes)

ACK

Block 3 (16 bytes)

ACK

Block 10 (16 bytes)

ACK

Block 1 (16 bytes)

ACK

Block 2 (16 bytes)

ACK

Block 3 (16 bytes)

ACK

Block 2 (16 bytes)

Block 3 (16 bytes)

Block 10 (16 bytes)
Block 10 (16 bytes)

Figure 5.4: Example for a relay attack with a small maximum block-size (16 bytes).

forward 16 bytes after the last block is received from the PCD. As a result, the data that
needs to be relayed within the crucial FWT is only a tenth of the original data.

Different block sizes can be used for the other relay direction as well. The attacker
splits the response into smaller data packages before sending it from the mole to the
proxy, as smaller blocks are transmitted faster and more reliable. The proxy then splits
the data into even smaller blocks, as there is no minimum block-size defined in the ISO
14443 standard. Each small block would then trigger an acknowledge by the PCD and

PCD Mole PICC

Block 1 (a) (2 bytes)
Block 1 (16 bytes)

Proxy

ACK

Block 1 (b) (2 bytes)

ACK

Block 1 (c) (2 bytes)

ACK

Block 1 (h) (2 bytes)

ACK

Response (160 bytes)

Block 2 (16 bytes)

Block 3 (16 bytes)

Block 10 (16 bytes)

Block 2-10 (144 bytes)

ACK

Figure 5.5: Example for splitting a response block into smaller blocks to gain additional
time during a relay attack.

CHAPTER 5. SECURITY ANALYSIS OF ISO 14443 REGARDING RELAY ATTACKS 36

give the attacker an additional FWT before the proxy has to send the next small block.
Figure 5.5 shows an example for such an attack scenario. The PICC sends a 160-byte

response to the mole. The mole splits it into ten 16-byte blocks (1-10) and sends those
block separately to the proxy. The proxy splits those blocks into eight two-byte blocks
(a-h) and sends those one after the other to the PCD. Note that as soon as all the data from
the mole is received, the proxy can use larger block sizes to send data to the PCD. Also
note that an attacker could start sending the response from the mole to the proxy earlier,
if the mole requests smaller blocks from the PICC.

5.2.2 Waiting Time Extension

The ISO 14443 standard defines a command to request a Waiting Time Extension (WTX)
for the PICC (see Section 4.4.2). This WTX can be requested by the PICC at any time
during a transaction to request additional time for computation. This mechanism can be
exploited to give an attacker additional time for a relay attack.

Figure 5.6 shows the basic concept of this attack. The proxy sends WTX requests as
long as no response was received from the mole. Therefore, stalling the PCD, which grants
the WTXs according to ISO 14443. As every ISO 14443 compliant PCD has to support
WTXs, this is a very powerful attack strategy. Note that WTXs are defined in part 4 of the
ISO 14443 standard and are not applicable during activation. Therefore, FWTs during the
activation and anticollision cannot be extended by WTXs.

The protocol also defines no maximum number of consecutive WTXs that can be sent.
Therefore, the attacker could delay its own answer for an arbitrary time. Consequently,
all ISO 14443-4 protocols with no additional security mechanisms are highly vulnerable
to those kind of attacks.

5.2.3 Negative Acknowledge

The Negative Acknowledge (NAK) is another mechanism that is defined for the half-
duplex protocol. It is sent by the PCD whenever the answer of the PICC is erroneous or
not received at all. Although the standard does not demand a certain behavior for lost or
corrupted packages, vendors often implement their PCDs with an error-recovery routine.
This routine sends NAK messages to the PICC to prompt it to resend the last response.

PCD Mole PICC

Challenge

WTX response

Challenge Challenge

Response
Response

Response

Proxy

WTX request

WTX response
WTX request

Figure 5.6: Using waiting time extensions to gain addition time for a relay attack.

CHAPTER 5. SECURITY ANALYSIS OF ISO 14443 REGARDING RELAY ATTACKS 37

PCD Mole PICC

Challenge

NAK

Challenge Challenge

Response
Response

Response

NAK

Proxy

NAK

Figure 5.7: Using negative acknowledgments to gain additional time for a relay attack.

In case the proxy does not send an answer to the PCD before the FWT expires, the
PCD assumes that the response was lost and sends a NAK to the PICC. After the PCD
has sent the NAK message, the proxy again has one FWT to answer. A PCD could try
to recover the communication using several NAKs, which would give the attacker more
time to relay the data. The additional time for the attacker can be calculated as

tadditional = FWT ×NAKSent by the PCD . (5.2)

An example of such an attack scenario is shown in Figure 5.7. As long as no response
is received from the mole, the proxy simply ignores the PCD, which keeps sending NAKs
to recover the connection. When the PCD receives the response from the proxy, it assumes
that the response was lost before, and accepts it.

Chapter 6

ISO 14443 Compliant
Countermeasures

There exist many proposals in literature on how to prevent relay attacks. Most of the
proposed countermeasures are not compliant with the ISO 14443 standard. This RFID
standard is widely used in the field of access control, ticketing, electronic payment,
and electronic passports. In this chapter, we propose countermeasures to make relay
attacks more difficult to perform. Note that we are aware that none of the presented
countermeasures leads to full security. It should rather increase the effort for possible
adversaries in order to make an attack more unattractive. One requirement of all proposed
countermeasures is that they should be compliant to the ISO 14443 standard so that an
integration into existing solutions can be made at minimal costs.

6.1 Preventing the Exploitation of Waiting Time Extensions

As described in Chapter 5, Waiting Time Extensions (WTXs) can be used to stall an
ISO 14443-4 compliant PCD. An attacker can send WTX requests to the PCD, which has
to grant a temporary FWT. This gives an attacker additonal time to relay the data. In the
following, we propose a simple protocol to prevent the exploitation of WTXs for relay
attacks, while still operating according to the ISO standard.

6.1.1 WTX-Exploitation Countermeasure

A WTX is always initiated by the PICC, or in case of an attack, by the proxy. The genuine
PICC is not affected by a WTX sent by the proxy. Therefore, the PCD has knowledge of
the WTX, whereas the PICC has no knowledge of it. This difference in knowledge can be
utilized to prevent the use of WTXs by the attacker. Therefore, we propose the protocol
shown in Figure 6.1a and Figure 6.1b for PICC and PCD, respectively.

WTXs are used to give the PICC more time to generate a response to a command sent by
the PCD. Hence, every WTX is either followed by another WTX, or by the response to the
command. A WTX command contains the Waiting Time Extension Multiplier (WTXM),
which is used to calculate the temporary Frame Waiting Time (FWT) FWTtmp by

FWTtmp = FWT ×WTXM. (6.1)

38

CHAPTER 6. ISO 14443 COMPLIANT COUNTERMEASURES 39

Begin

Receive command

More time

needed?
Request WTX

Increment WTX

counter by WTXM

if WTX response is

received

WTX counter

> 0 ?

Encrypt WTX

counter and append

to answer

Send answer

End

yes

yes

no

no

(a) State diagram PICC.

Begin

Send command

WTX requested? Grant WTX

Increment WTX

counter by WTXM

WTX counter

 > 0 ?

Read appended

WTX counter of

PICC and decrypt

Process answer

End (OK)

yes

yes

no

no

Receive answer

WTX counter

equal?

yes

no

End (WTX

protocol error)

(b) State diagram PCD.

Figure 6.1: Protocol to prevent the exploitation of WTXs for relay attacks.

CHAPTER 6. ISO 14443 COMPLIANT COUNTERMEASURES 40

PCD PICC
generate command

command
−−−−−−−−−−→

start executing command
: : :

generate WTX request (WTXM = x)
WTX request(x)
←−−−−−−−−−−−

generate WTX response
WTX response
−−−−−−−−−−→

WTX counter += x WTX counter += x
: : :

response ready
encrypt WTX counter

append WTX counter to response
response

←−−−−−−−−−−

extract WTX counter from response
decrypt WTX counter
compare WTX counter

Figure 6.2: A message exchange between PCD and PICC requiring one WTX when using
the WTX-exploitation countermeasure.

In the proposed protocol, the PICC adds up the WTXMs it sent, encrypts it, and
appends this information to the response. The PCD then decrypts the information and
compares its received sum of WTXMs with the sum of the PICC. If those two sums deviate,
the PCD detects the relay attack and aborts the communication. Note that the protocol
does only append the counter if at least one WTX was requested. Therefore, it does not
produce any overhead for regular communication.

Figure 6.2 shows a message exchange between PCD and PICC when the protocol is
activated. The example assumes that one WTX request is sent by the PICC.

We assume a secure encryption scheme (based on symmetric or asymmetric prim-
itives), which is not vulnerable to replay attacks. This means that an attacker can-
not capture the cipher for the WTX counter and reuse it during another attack. Most
current systems already implement such encryption schemes (e.g. Advance Encryption
Standard (AES), Data Encryption Standard (DES), Elliptic Curve Cryptography (ECC)),
which makes the integration of the new protocol fairly easy.

However, the proposed protocol is still vulnerable if the attacker used different FWTs
at the PCD and the PICC. If the FWT between PICC and mole was lower than between
PCD and proxy, this would cause the PICC to send WTXs to the mole, before the waiting
time of the PCD is up. Therefore, the system has to confirm that the FWT is the same for
PCD and PICC. This can be done by requesting the encrypted or signed FWI of the PICC
so that the PCD can ensure that both operate with the same FWT. More on checking the
transmission parameters is discussed in Section 6.2.

CHAPTER 6. ISO 14443 COMPLIANT COUNTERMEASURES 41

PCD PICC Comment
1. I(0)0 ===>
2. <=//= S(WTX) req.
3. R(NAK)0 =//=>
4. <= = - time-out
5. R(NAK)0 ===>
6. <=== S(WTX) req.
7. S(WTX) resp. ===>
8. <=== I(0)0

Figure 6.3: ISO 14443-4 Protocol Scenario 15: Request for a WTX [27].

PCD PICC Comment
1. I(0)0 ===>
2. <=== S(WTX) req.
3. S(WTX) resp. =//=>
4. <= = - time-out
5. R(NAK)0 ===>
6. <=== S(WTX) req.
7. S(WTX) resp. ===>
8. <=== I(0)0

Figure 6.4: ISO 14443-4 Protocol Scenario 16: Request for a WTX [27].

6.1.2 Known Issues

There is one case in which this protocol results in an error, even if no relay attack is
performed. This case is explained in the following section.

The ISO 14443-4 standard describes a number of RFID-communication scenarios and
how they should be handled by the protocol. We now have a close look at Scenario 15
and Scenario 16 in Figure 6.3 and Figure 6.4, respectively. Full arrows (===>) describe a
successfully received message, broken arrows (=//=>) describe an erroneously received
message, and open arrows (<= =) describe that no message was received within a given
time. R, S, and I define the block types used.

Those two scenarios look exactly the same for the PICC, as it cannot determine if the
erroneous message in Step 3 was a NAK or a WTX response. However, the PCD has
sent one additional WTX response, and therefore incremented the WTX counter more
often than the PICC. This causes the proposed protocol to fail. As this case is rather rare,
we propose to retry the communication several times, until it succeeds. Note that the
protocol still does not allow the exploitation of WTXs by the attacker.

6.2 Check Transmission Parameters

During the activation sequence of the protocol, a number of parameters are agreed on
between PCD and PICC. Those parameters include, for example, the block size, the Frame
Waiting Integer (FWI), and the data rate. Earlier in this chapter we showed that those
parameters can be exploited for a relay attack.

In order to prevent the attacker from using different transmission parameters at both

CHAPTER 6. ISO 14443 COMPLIANT COUNTERMEASURES 42

ends of the attack, the PCD can request the PICC to send its parameters by using a secure
encryption scheme. Therefore, the PCD can check if the PICC has agreed on the same
transmission parameters as it did. An attacker would then not be able to use different
parameters at both ends of the attack.

6.3 Distance Bounding on the Application Layer

Hancke and Kuhn [13] stated that the distance resolution for a communication channel
with bandwidth B can be roughly calculated by

r =
c
B
. (6.2)

For an RFID data bandwidth of 300 kHz, this results in a resolution of about one
kilometer. Therefore, Hancke and Kuhn consider the standard RFID-communication
link as insufficient for distance measurements. However, it is possible to detect relay
attacks using distance bounding on the RFID channel. We try to stay compliant with the
ISO 14443 standard, and therefore propose to implement distance bounding by using the
ISO 14443-4 half-duplex block-transmission protocol.

6.3.1 Distance-Bounding Protocol

Distance bounding is based on giving the PICC a sufficient easy challenge, so the PCD
is able to estimate the approximate response time. The PCD can then determine if
the response was received within the expected time. We use the same cryptographic
primitives as used by Hancke and Kuhn [13]. Note that any other distance-bounding
protocol could be used as well.

Figure 6.5 shows the basic concept of the Hancke-Kuhn protocol. The PCD (verifier)
and the PICC (prover) share a secret key (K). The prover generates a random bit stream
(nonce, N) and sends it to the verifier. The prover and the verifier then use the secret key
and the nonce to generate two bit-sequences, S0 and S1. They might use a keyed hash-
function for instance. The verifier acknowledges the received challenge after it computed
the two sequences.

After the generation of S0 and S1, the PCD generates n random challenges (c), which
are either 0 or 1, and sends them individually to the PICC. The PICC then responds with
the current bit of the corresponding sequence. For example, if the first challenge c is a 0,
the PICC returns R0

1 (the first bit of S0). If the i-th challenge c is a 1, the PICC returns R1
i

(the i-th bit of S1) and so on. This process is repeated n times, with n being the size of the
two sequences S0 and S1. Note that this challenge-response sequence is the time-critical
part of the protocol. All the complex computations are done upfront so that the prover
only has to do a simple look-up. If the response is not received in time, the protocol failed
and a possible relay attack is detected.

6.3.2 Security Considerations

In this section, we analyze the security of the distance-bounding protocol regarding two
aspects: the cryptographic aspect and the relay-attack aspect.

CHAPTER 6. ISO 14443 COMPLIANT COUNTERMEASURES 43

Prover Verifier
N = random bit stream (nonce)

N
−→

S0|S1 = h(K,N) S0|S1 = h(K,N)
(S0 = R0

1|R
0
2|...|R

0
n) (S0 = R0

1|R
0
2|...|R

0
n)

(S1 = R1
1|R

1
2|...|R

1
n) (S1 = R1

1|R
1
2|...|R

1
n)

Acknowledge
←−

c = random bit
c
−→

choose Sc(1)
Rc

1
←−

check response
c = random bit

c
−→

choose Sc(2)
Rc

2
←−

check response
: : :
: : :

c = random bit
c
−→

choose Sc(n)
Rc

n
←−

check response

Figure 6.5: Communication between prover and verifier during the Hancke-Kuhn
distance-bounding protocol.

Cryptographic Security

For our security considerations we assume that the secret key is in fact secret and the used
hash function is secure. In this case, the cryptographic security of this protocol depends
on the size of n. The probability P for an attacker to guess the right response can be
calculated by

P =
1
2n . (6.3)

Note that an attacker could request the responses from the PICC upfront himself
and send it to the PCD. However, an attacker can never request all possible responses
because the value that is not sent back for the requested index is discarded by the PICC.
Therefore, the attacker has the same chance guessing the right response as requesting the
right response from the PICC.

CHAPTER 6. ISO 14443 COMPLIANT COUNTERMEASURES 44

Relay-Attack Security

As mentioned before, this protocol used on the application layer is far from being an
accurate distance measure. In order to reach good results, the system needs accurate
timing at the PCD and a low variance in the response time of the PICC. This distance-
bounding protocol is very easy and can be implemented on any ISO 14443 compliant
device. Note that the minimum data size is one byte, and the protocol therefore has an
additional overhead of seven bits.

As we are using the application layer of the ISO 14443 protocol, the PCD has to support
WTXs and maybe NAKs as well. Therefore, an attacker could exploit those mechanisms
to retrieve the correct responses from the PICC in time. However, the PCD can still
measure the time elapsed before it received the response. Therefore, the PCD can decide
if the response was received within a certain threshold.

We might consider allowing a certain number of delayed responses in order to support
unreliable communication links. Otherwise, a PICC with an error-prone connection to
the PCD may not pass the distance-bounding protocol. However, this could enable an
attacker to retrieve the response from the PICC for those delayed responses. Therefore, we
have to make sure that a sufficient number of challenges is answered within the defined
threshold, so an attacker has only a small chance to guess the correct responses.

6.4 Summary

In this section we presented a number of ISO 14443 compliant countermeasures against
relay attacks. We are aware that none of the proposed countermeasures leads to complete
security against relay attacks. However, a combination of the proposed countermeasures
would significantly increase the difficulty for an attacker.

In Chapter 5 we described a number of methods to increase the chance for a successful
relay attack on ISO 14443 systems. By implementing all of the proposed countermeasures,
we would be able to prevent all those attack scenarios but the carrier-frequency modifi-
cation.

Chapter 7

The Hardware Setup

This chapter describes the hardware setup we used for our experiments. We first describe
the attacking hardware, i.e. the mole and the proxy. Moreover, we list the remaining
hardware used for our relay attack experiment, namely the PCD and the PICC.

7.1 The Proxy Device

The proxy impersonates the real PICC and therefore must be capable of operating as
an RFID target. The main requirements for the proxy are speed, flexibility, and basic
RFID and ISO 14443A functionality. Therefore, we used the IAIK HF DemoTag in version
3.0 [19] as our proxy device.

7.1.1 IAIK DemoTag

The heart of the DemoTag is a programmable ATxmega256A3 microcontroller from At-
mel [1]. It further consists of a Printed Circuit Board (PCB) antenna, an analogue front
end, and several interfaces like USB (used for monitoring and powering the device) or
JTAG (used for programming the microcontroller). A library implements support for
several RFID protocols such as ISO 15693, ISO 18000-3, ISO 18982, and ISO 14443A. It
also allows changes in the layers two to four of the ISO 14443 protocol. Therefore, it
can change the UID of the tag to any value (4-byte, 7-byte, and 10-byte UIDs are sup-
ported) and allows the exchange of Application Protocol Data Units (APDUs). Due to its
flexibility, the DemoTag allows to perform passive as well as active relay attacks.

The USB interface allows to connect to the DemoTag through a hyperterminal on
a virtual COM port. The hyperterminal can be used to request information from the
DemoTag like the communication buffer or the current RFID protocol. The DemoTag
also accepts commands through the COM port, which can be used to change the RFID
protocol or perform a firmware reset.

The DemoTag is only about double the size of a regular ISO 7816 ID-1 card and runs
completely independent with a portable power source (9 V battery). This makes the tag
inconspicuous and very practical as a proxy. It also provides an additional interface for
individual adapters. It allows other boards to be attached to it and to communicate with
the microcontroller. We made use of this interface and attached a board with a Bluetooth
module. This Bluetooth module can be accessed through an Universal Asynchronous
Receiver Transmitter (UART) interface.

45

CHAPTER 7. THE HARDWARE SETUP 46

A picture of the DemoTag with the attached Bluetooth module can be seen in Figure 7.1a.

7.1.2 BTM-222 Bluetooth Module

We used the BTM-222 Bluetooth Module from Rayson [40] soldered on a Printed Circuit
Board (PCB). It is a class 1 (+18 dBm) module and supports Bluetooth Ver. 2.0+EDR
certification operating at speeds up to 3 Mbit/s. It also provides several interfaces such as
an UART interface, which we use for communication with the DemoTag. The schematics
and a picture of the Bluetooth board are included in Appendix A.

As soon as another Bluetooth device connects to the BTM-222, it forwards all the
data received through Bluetooth to its interfaces and vice versa. Therefore, setting up a
connection to the module is fairly easy, if the module is configured accordingly. The basic
configuration steps are shown in the following section.

Configuration of the BTM-222

The BTM-222 has a Serial Port Profile (SPP) firmware that supports AT commands. The
configuration is usually done through the UART interface with an RS-232 connection.
However, our configuration is done by the DemoTag itself, which requires special han-
dling. The module needs a guard time after every command character it receives in order
to work properly. Therefore, the DemoTag sends every character separately, receives the
echo, and waits for at least 40 milliseconds before sending the next character.

The default configuration of the UART interface is shown in Table 7.1. This is im-
portant because it is necessary to use the appropriate settings in order to start using the
Bluetooth module.

Table 7.1: Default configuration of the BTM-222 Bluetooth module [41].

Baud rate 19 200 bit/s
Data bits 8
Parity None
Stop bit 1
Flow control Hardware or none

The complete set of AT commands and settings can be found in the datasheet of the
BTM-222 [41]. We only present the most important commands and settings in Table 7.2.
Each command starts with AT, followed by the command itself, and terminated by a
carriage return (<CR >, \r in C, 10 in ASCII). We only changed a few settings, most impor-
tantly we increased the baud rate to 115 200 bit/s in order to reduce the communication
delay between Bluetooth module and DemoTag.

By default, each command is answered with a result code, which can be OK, CONNECT,
DISCONNECT, or ERROR. The BTM-222 sends those result codes to its interfaces and
queues them until they are read. Therefore, the DemoTag must ensure that every byte
sent back by the BTM-222 is read, so that no backlog is created for further commands.
This also includes the last two characters of every response, carriage return (\r) and new
line (\n).

Configuration of the BTM-222 is normally done when no Bluetooth connection is
established. If a connection exists, the module forwards all characters it receives to the

CHAPTER 7. THE HARDWARE SETUP 47

Table 7.2: Important SPP AT commands for the configuration of the BTM-222 Bluetooth
module [41].

Command Description
+++ (Escape
Sequence)

When the device is in data mode, it can be force back into
command mode while maintaining the connection to the
remote device. The sequence characters should be sent with
1 000 ms guard time

D (Set Remote
Device Address)

The device can specify a unique remote device for security
purposes
D=xxx ”xxx” is a string of 12 hexadecimal digits
D0 (def.) All remote devices are allowed
D? Inquire the current setting

E (Echo) Specifies if the devices echoes received characters
E0 Characters received are not echoed back
E1 (def.) Characters received are echoed back
E? Inquire the current setting

L (Baud Rate Specifies the baud rate of the UART port
Control) L2 (def.) 19 200 bit/s

L4 57 600 bit/s
L5 115 200 bit/s
L? Inquire the current setting

Q (Result Code Specifies if a result code is sent after receiving a command
Suppression) Q0 (def.) The device prompts result codes

Q1 The device does not prompt result codes
Q? Inquire the current setting

Z (Restore) Command to restore default settings
Z0 Restore default settings

connected Bluetooth device. However, with an escape sequence shown in Table 7.2, it is
possible to reconfigure the Bluetooth module while it is connected as well.

7.2 The Mole Device

We used a Nokia 6212 NFC [33] mobile phone as our mole device. A mobile phone is a
very likely mole for a real life scenario because it is inconspicuous. The Nokia 6212 runs
Java applications using the Java Platform, Micro Edition (Java ME). Java ME includes
Application Programming Interfaces (APIs) for Bluetooth and Near-Field Communication
(NFC), and therefore meets the requirements for our mole device. The phone can be seen
in Figure 7.1b.

The Java applications running on the mobile phone are called MIDlets. Nokia provides
a Software Development Kit (SDK) for many of its mobile phones, including the Nokia
6212. We used a designated version of Eclipse, called Eclipse Pulsar [8], which is specially
designed for the implementation of MIDlets. Using the Nokia PC Suite [34], we were able
to install our applications on the mobile phone.

The SDK also provides an emulator to test our applications without installing it on
the mobile phone each time. However, this emulator has limitations and does not always

CHAPTER 7. THE HARDWARE SETUP 48

(a) Picture of the IAIK HF DemoTag v3.0 with the at-
tached BTM-222 Bluetooth Module.

(b) Picture of a Nokia 6212 NFC mobile phone.

Figure 7.1: Attacking devices used for our relay attack.

behave the same way as the real phone, especially if the MIDlets use NFC and Bluetooth
communication. Therefore, our MIDlets were tested on the mobile phone directly.

7.3 The PCD

The PCD could be any standard RFID reader that supports ISO 14443A. We used a
Pegoda MF RD 700 RFID reader from NXP Semiconductors [37]. This contactless reader
is designed for testing purposes and is easy to control through a USB interface. It supports
all layers of ISO 14443A as well as the MIFARE-related protocols. The typical operating
distance is defined with 75 mm.

We used a comprehensive C library provided by NXP, to implement a demonstration
program that simulates a real life application. A picture of the PCD, with the proxy
(DemoTag) in range, is shown in Figure 7.2a.

7.4 The PICC

In order to perform relay attacks, we could use any standard RFID tag that implements
ISO 14443A. For our experiments, we used a MIFARE Plus S contactless smart card [36]
from NXP. The MIFARE Plus S is used for public transportation, access management,
electronic toll collection, car parking, and loyalty programs. It uses the open Advance
Encryption Standard (AES) for authentication, integrity, and encryption and supports
Unique IDentifiers (UIDs) of 4 bytes or 7 bytes. Moreover, it offers an Electrically Erasable
Programmable Read-Only Memory (EEPROM) with a size of 2 kB or 4 kB and supports
data rates up to 848 kbit/s. The card with the mole (mobile phone) in range can be seen
in Figure 7.2b. Note that NXP also offers MIFARE Plus X smart cards [35], which are
also compliant to the ISO 14443A standard and already implement a proximity check.
Therefore, they are not suitable for our relay-attack experiments.

However, as we also want to implement and evaluate countermeasures against relay
attacks, we need a more flexible PICC as well. Therefore, we used another HF DemoTag

CHAPTER 7. THE HARDWARE SETUP 49

(a) Picture of the PCD with the proxy in range. (b) Picture of the mole with the PICC in range.

Figure 7.2: Setup of our relay-attack experiment.

v3.0 [19], developed by IAIK, as an RFID-tag emulator. Using the microcontroller on
the DemoTag, we were able to analyze and test the countermeasures we proposed in
Chapter 6.

Chapter 8

Implementation

In this chapter, we give implementation details of our relay-attack experiments. First, we
describe the general concept of our implementation. Afterwards, we describe the imple-
mentation on the relay devices, i.e. the proxy and the mole. Finally, we give details about
the implementation of countermeasures on the PCD and the PICC. For our experiments
we used the hardware described in Chapter 7.

8.1 General Concept

In this section, we describe the basic process of our relay attack. A flow chart of the main
steps at the different devices is presented in Figure 8.1.

We assume there exists a PCD that periodically queries for new PICCs in its reading
range. This is a likely operation mode for many real life applications such as keyless-entry
systems or payment systems.

The start of the attack is triggered at the proxy device, which acts as the commanding
device (master). It might be in attack mode from the very beginning or might be triggered
in any other way. In our implementation, it is triggered by a keyboard command send
through a virtual COM port on the USB interface.

The first action the proxy performs is to request the Unique IDentifier (UID) of the
PICC from the mole. This request is received by the mole which in turn starts querying
for PICCs in range. If a PICC is detected, the mole activates it and returns the UID
to the proxy. Note that the mole keeps the PICC active at all times to speed up the
communication that happens later.

Once the proxy receives the UID, it sets its own UID to the one of the PICC. Now the
proxy is ready to start communication with the PCD. The PCD is now able to find the
proxy which in turn performs the ISO 14443A activation sequence with the PCD. Note
that only the UID of the PICC is needed to perform a successful activation.

After the activation is done, the PCD sends application messages using ISO 14443-4
commands [27]. In fact, the PCD sends all application messages to the proxy, which
immediately forwards them to the mole. The mole again forwards them to the PICC,
receives the corresponding responses and sends those response back to the proxy. There-
fore, the proxy has valid responses to the ISO 14443-4 messages, which it sends back to
the PCD. The PCD does not realize that the messages are not coming from a valid PICC.

50

CHAPTER 8. IMPLEMENTATION 51

ISO 14443-4 message

relay example

PCD Proxy Mole PICC

get UID of PICC

Search for

PICC

REQA

ANTICOLLISION
ATQA

SELECT
SAK

RATS
ATS
PPS

PPS response

PICC activation

UID of PICC

Send back

UID, keep

PICC active

REQA

ANTICOLLISION
ATQA

SELECT
SAK

RATS
ATS
PPS

PPS response

REQA
REQA

ISO 14443-4 command
ISO 14443-4 command

ISO 14443-4 command

Process

response

ISO 14443-4 response
ISO 14443-4 response

ISO 14443-4 response

Wait for

commands

Proxy activation

Query for

PICC

Start relay

attack

Set UID of

Proxy to UID

of PICC

Figure 8.1: General concept of our relay-attack implementation.

CHAPTER 8. IMPLEMENTATION 52

8.2 Communication Between Proxy and Mole

The communication between proxy and mole is performed through a Bluetooth channel.
Basically, we send single characters over the Bluetooth interface from one device to the
other. In order to structure the communication, we defined a simple protocol to exchange
commands and data between the two devices.

Every protocol exchange starts with a command of the proxy (the master). This
command might need additional parameters, which are separated by a delimiter, in our
case a semicolon. The end of a message is indicated by two semicolons. Following the
command of the proxy, the mole response with an answer, which might be data, an error
code, or a success code. Again, the response is terminated by two semicolons.

8.2.1 Protocol Commands

The protocol supports only a small number of commands but could be easily extended
if necessary. Currently supported commands with their parameters are presented in the
following paragraphs.

CHECK. Before starting a relay attack, the proxy ensures that a Bluetooth connection is
established with the mole. In that case, the mole responds with OK and signals that it is
ready. If no connection exists, the Bluetooth module simply echos the command and the
proxy recognizes that no connection is established at the moment.

• Parameters: none

• Response: OK

• Example:

Proxy: CHECK;;

Mole: OK;;

GETUID. After the proxy ensured that a Bluetooth connection is established, it tries
to get the UID of a PICC. The mole responds with the UID of a PICC in range. Our
implementation supports 4-byte, 7-byte, and 10-byte UIDs.

• Parameters: none

• Response: UID of a PICC

• Example:

Proxy: GETUID;;

Mole: 9D19C605;;

CHAPTER 8. IMPLEMENTATION 53

FWD. ISO 14443-4 commands sent from the PCD to the proxy are forwarded using this
command. If the mole has lost connection to the PICC, it returns ERROR.

• Parameters: PCD message

• Response: PICC response or ERROR

• Example:

Proxy: FWD;0x60;;

Mole: 0x0B;;

END. Signals the mole that the relay attack on the current PICC is over. The mole
confirms the message, deactivates the PICC, and waits for a new relay attack to start.

• Parameters: -

• Response: OK

• Example:

Proxy: END;;

Mole: OK;;

8.3 Proxy Implementation

This section describes implementation details of the proxy on the DemoTag. We describe
the most important features of the implementation on the DemoTag and show how specific
situations are handled by our implementation.

8.3.1 General Proxy Implementation

By default, the proxy (DemoTag) is not triggered to perform a relay attack, although this
would be possible. For testing purposes, it is initially configured as a regular ISO 14443A
target, with no functionality on the application layer.

The DemoTag can be accessed by a hyperterminal through its USB interface (a virtual
COM port). The user can send commands to the DemoTag, like switching to another
protocol or reseting the firmware. The DemoTag in return sends information back, like
the communication buffer or the current protocol.

Using this hyperterminal, we start the relay attack by sending the character r. This
starts a routine that disables the target functionality and checks if the Bluetooth connection
to the mole is established. If a connection exists, the DemoTag sets a global relay-attack
flag. This ensures that every command received by the PCD is forwarded to the mole if
the flag is set. It then sends a GETUID command to the mole and blocks until an answer
is received.

Once the mole sends back the UID of the PICC, the DemoTag is again available as a
target. Note that now the global relay-attack flag is set. It is then discovered by the PCD,
which performs the anticollision and activation sequence. Note that the DemoTag uses
the received UID for this procedure.

CHAPTER 8. IMPLEMENTATION 54

No

Start relay attack

Check if Bluetooth

connection to mole

is established

Set relay-attack flag

BT connection

established?

Get UID from mole

Wait for ISO 14443-

4 message of PCD

End relay attack

Yes

Forward message to

mole

Receive answer

from mole

Send ISO 14443-4

answer to PCD

Yes

Mole or BT module

signals an error?

End relay attack

No

Perform activation

with PCD and

received UID

Reset relay-attack

flag

Figure 8.2: Flow chart of the relay-attack implementation on the proxy.

After the activation is finished, the PCD starts sending application-layer messages
(ISO 14443-4). The proxy now sends those messages to the mole and waits for a response.
If the response is an error, either by the mole or the Bluetooth module, the proxy ends the
relay attack. If it receives an ISO 14443-4 response, it forwards it to the PCD and waits for
the next message.

A flow chart of the described functionality is shown in Figure 8.2.

8.3.2 Handling of Chaining

Our relay-attack implementation supports chained messages in both directions. We
handle chained messages by first receiving every block at the proxy and answering with

CHAPTER 8. IMPLEMENTATION 55

an acknowledge. We repeat this process until all blocks are received and combine them
into one message. The complete message is then relayed to the mole. In case the response
of the PICC has to be chained, we again receive the complete message at once from the
mole. We then split the message and send it to the PCD using chaining.

8.3.3 Exploitation of Waiting Time Extensions

As described in Chapter 4, ISO 14443 defines a Waiting Time Extension (WTX). The
theoretical exploitation of WTXs for a relay attack is explained in Chapter 5. In the
following, we focus on the practical implementation of the proxy.

In order to exploit WTXs, we start a timer at the proxy when we receive a message.
This timer expires before the default Frame Waiting Time (FWT) expires and the PCD
would assume an error. If the proxy receives the relayed answer of the PICC before the
timer expires, it sends the answer to the PCD and stops the timer. If the timer expires
before an answer is received, an interrupt routine is executed.

Within this interrupt routine, the proxy sends a WTX request to the PCD and waits
for an answer. The answer should be a WTX response, in which case the WTX request
was received correctly and the timer starts again. In case the answer is a Negative
Acknowledge (NAK), the WTX request was not received correctly by the receiver. In
this case the proxy tries to retransmit the WTX request. The PCD could also send a
different response to the WTX request, like a DESELECT for example. In this case an error
occurred and the relay attack has not succeeded. A flowchart of this procedure is shown

Begin ISO 14443-4

message relay

Send response

End ISO 14443-4

message relay

yes

no

Receive ISO 14443-4

message

Forward ISO 14443-4

message to the mole

Start WTX timer with

FWT

Wait for response from

the mole

Start interrupt routine

Send WTX request to

PCD

Received WTX

response?

Start WTX timer with

temporary FWT

Received NAK?

Error (end relay

attack)

End interrupt routine

yes

no
Receive response from

the mole

Stop WTX timer

In
te

rr
u

p
t

o
cc

u
rs

 i
f

W
T

X
 t

im
er

 e
x

p
ir

es

Figure 8.3: Implementation of the exploitation of WTXs on the proxy.

CHAPTER 8. IMPLEMENTATION 56

in Figure 8.3.

8.4 Mole Implementation

This section describes the implementation of the Java MIDlet we used for our relay attack.
First, we describe the used Java packages. Second, we present the class diagram of our
Java implementation. Finally, we show the basic concept of the implementation by giving
a flow chart diagram.

8.4.1 Java Packages

For the Bluetooth connection with the proxy we used the javax.bluetooth package. It
provides all necessary listeners for device and service detection as well as functionality
for communication over the Bluetooth link.

For the NFC connection with the PICC we used the javax.microedition.contactless
package. The available listeners support different target types, one of them being
ISO14443 CARD, which we used for our experiment. Note that for one target type

+commandAction(in command : Command)

+deviceDiscovered(in remoteDevice : RemoteDevice, in deviceClass : DeviceClass)

+serviceDiscovered(in serviceRecord : ServiceRecord)

+waitForCommand(in connectionURL : String)

-localDevice : LocalDevice

-streamConnection : StreamConncetion

-display : MIDletDisplay

-discoverAgent : DiscoveryAgent

-cmdParser : CommandParser

RelayMidlet

+parseCommand(in command : String) : String

+executeCmdCheckConnection() : String

+executeCmdEnd() : String

+executeCmdForwardMessage(in message : String) : String

+executeCmdGetUID() : String

-nfcHandler : NFCHandler

-display : MIDletDisplay

CommandParser

+appendString(in string : String)

+showLog()

+hideLog()

-showLog : boolean

MIDletDisplay

+connectToTarget(in target : TargetProperties)

+exchangeData(in message : byte)

+getConnectionStatus() : int

+reset()

-display : MIDletDisplay

-isoConnection : DESFireConnection

-desfireConnection : ISOConnection

-connectionURL : String

-connectionStatus : int

NFCConnectionHandler

+forwardAPDU(in message : String) : String

+getUIDFromTarget() : String

+reset()

+targetDetected(in targetProperties : TargetProperties)

-discoveryManager : DiscoveryAgent

-display : MIDletDisplay

-uid : String

-nfcConnection : NFCConnectionHandler

NFCHandler

1

*

1

*

1

*

1

*

1 *

1

*

1

*

Figure 8.4: Exploitation of WTXs at the proxy.

CHAPTER 8. IMPLEMENTATION 57

there may exist several connection classes, which support PICCs from different series and
vendors.

8.4.2 UML Class Diagram

Figure 8.4 shows the main parts of the UML diagram of our MIDlet implementation in
Java. The central class of our implementation is RelayMidlet. It is responsible for handling
the MIDlet functionality as well as the Bluetooth interface. Commands received through
Bluetooth are forwarded to the CommandParser, which determines the command to ex-
ecute. For the commands FWD and GETUID the NFCHandler is used to communicate
with the PICC. The NFCConnectionHandler is needed because we support different NFC
connection classes. Currently, those connection classes are ISO14443Connection and DES-
FireConnection. Note that both are ISO 14443 compliant. Finally, the MIDletDisplay class
is used by all classes to print log messages.

8.4.3 Flow Chart

Figure 8.5 shows the basic flow chart of our Java MIDlet implementation. The chart shows
the execution procedure as well as the responsible classes for each process.

Once the MIDlet starts the relay attack, it connects to the BTM-222 module on the
DemoTag. After the connection is established, the MIDlet waits for a command from the
proxy. If a command is received, the CommandParser determines which command should
be executed and calls the corresponding method of the NFCHandler, if applicable. The
NFCHandler executes the corresponding method using the NFCConnectionHandler. The
resulting response is then sent back to the proxy by the RelayMidlet.

8.5 Countermeasure Implementation

The implementation of the countermeasures described in Chapter 6 is explained in this
section. We first describe the implementation of the WTX-exploitation countermeasure
and present distance bounding on layer 4 of the ISO 14443 standard. We used a HF
DemoTag v3.0 [19], developed by IAIK, as a PICC and a Pegoda MF RD 700 [37], controlled
by a C library (from NXP), as a PCD. Note that we did not implement any cryptographic
primitives, as this is not the scope of this work. Instead, we performed XOR operations,
using a shared secret key, to simulate encryption.

8.5.1 WTX-Exploitation Countermeasure

The WTX-exploitation countermeasure is a protocol designed to prevent the exploitation
of WTXs by the attacker. In this section, we describe how the protocol was implemented
on the PCD and the PICC.

We introduced a new variable, wtxm counter, at the PCD, to sum up all Waiting Time
Extension Multiplier (WTXM) values the PCD received from the PICC. Every time it
sends a WTX response to the PICC, it increments the wtxm counter accordingly. If one or
more WTX requests are sent during a message exchange, the response of the PICC (to the
original message) should contain the encrypted WTXM counter of the PICC. The PCD
decrypts the counter and compares it with its own. If the two do not match, the protocol

CHAPTER 8. IMPLEMENTATION 58

Start relay attack

Connect to

BTM-222

Wait for command

from proxy

Listen for NFC

target

Which command

was received?

Check if NFC

connection exists

Reset NFC

connection

GETUID FWD END

Exchange

data DESFire

response

= OK

NFC target detected

What is the

current connection

type?

Exchange data

ISO 14443
Connect to

DESFire PICC

What connection

type is the PICC?

Connect to ISO

14443 PICC

ISO14443 DESFire
ISO14443 DESFire

response =

PICC UID

response =

ERROR

Other

Send response to

proxy

response =

ERROR

Did the

exchange

succeed?

response =

PICC response

Yes No

Command received

RelayMidlet

CommandParser

NFCHandler

NFCConnection

Handler

Command

Parser

RelayMidlet

CHECK

response =

OK

Figure 8.5: Flow chart of the Java MIDlet implementation.

CHAPTER 8. IMPLEMENTATION 59

failed, otherwise, it succeeded. Note that it is up to the PCD to check if the protocol
succeeded.

In order to test the protocol, we triggered the exchange of WTX messages at the PICC
by delaying the response using a waiting loop. We then implemented a timer on the PICC
that triggers a WTX request before the default FWT expires. Every time the PICC sends
a WTX request and receives a correct response, it increments its internal WTXM counter
accordingly. If the WTXM counter was incremented, it is encrypted and appended to the
response, otherwise, nothing is appended to the response.

By default, PCD and PICC do not use the WTX-exploitation countermeasure. The
PCD must first activate the countermeasure, by sending a specified command to the
PICC. We also exchange a random initial vector to ensure a secure encryption. The PICC
acknowledges the received data and activates the countermeasure.

We used a 16-bit WTX counter, which allows the PICC to send 1110 WTX requests,
with a maximum WTXM of 59, before an overflow occurs. This keeps the overhead to a
minimum (two bytes), while still allowing a sufficient number of possible WTXs.

8.5.2 Distance Bounding

For our distance-bounding protocol, we defined a command byte on the application layer.
The PCD sends this command byte, followed by a 12-byte random challenge, to the PICC.
The PICC uses the 12-byte challenge, computes two six-byte sequences (sequence0 and
sequence1), and sends an acknowledge message to the PCD. The PCD generates the same
two sequences before it starts generating random bits. Note that the minimum size of
data is one byte, and we have an additional seven bit overhead for every challenge. The
PICC is now expecting single-bit challenges and responds with the current bit of the
corresponding series. This process is repeated 48 (12

2 × 8) times and should succeed for
every challenge-response pair without transmission errors. The implementation could
be less restrictive by allowing a certain number of NAKs.

In addition to receiving the correct response, the PCD also expects the PICC to respond
within a certain threshold. This threshold should be chosen according to the application
and the PICC response time. Also the implementation should allow a certain number of
delayed responses for error-prone connections. We discuss error tolerance and reasonable
thresholds in Chapter 9.

Chapter 9

Results

In this chapter, we present the results of our experiments. First, we present the results
we gathered during our relay-attack experiment. Therefore, we look at the results of the
protocol exploitations and the delays introduced by our relay attack. Second, we look at
the performance of the countermeasures and how they could be implemented in a real
system. Finally, we compare the obtained results with the literature and conclude with a
summary.

9.1 Relay-Attack Results

Using our implementation, we were able to successfully attack the ISO 14443 compliant
system described in Chapter 7. By fetching the UID of the PICC and by using it at the
proxy, the PCD could not distinguish between the real PICC and the proxy device. In this
section, we see that the delay introduced was well below the maximum Frame Waiting
Time (FWT). The PCD accepted the relayed response of the PICC without any problems.

9.1.1 Protocol Exploitations

In this section, we analyze the behavior of the system regarding the exploitation of certain
ISO 14443 mechanisms described in Chapter 5.

Waiting Time Extension

During our experiment, we successfully attacked the ISO 14443 test system. This relay
attack succeeded without the exploitation of Waiting Time Extensions (WTXs). Therefore,
we simulated a larger relay delay by introducing an artificial delay of 12 seconds at the
mole (mobile phone) before sending back the response of the PICC. Therefore, the proxy
was forced to utilize WTXs to stall the PCD until it received the response.

We performed our experiment with a Frame Waiting Integer (FWI) of 10 which results
in a FWT of 309 milliseconds. By requesting a WTX with a Waiting Time Extension
Multiplier (WTXM) of 59, the PCD granted an additional 4.95 seconds (FWTmax) for the
response. Therefore, the proxy had to request three WTXs to stall the PCD for the artificial
delay time of 12 seconds. As expected, the ISO 14443 compliant PCD accepted multiple
WTX requests and granted the temporary FWTs. Therefore, the PCD was stalled until the
mole forwarded the response of the PICC. Theoretically an attacker could stall the PCD
for an arbitrary long time by sending WTX requests.

60

CHAPTER 9. RESULTS 61

Note that even if the PCD does not implement a recovery mechanism in case of
timeouts (i.e. NAKs), our implementation prevents those timeouts by sending a WTX
request before the default FWT is over.

Negative Acknowledge

In order to test the exploitation of Negative Acknowledges (NAKs), we introduced an
artificial delay of two seconds at the mole. Further, we configured the PCD to perform
ten recovery tries before dropping the connection. The default FWT was again 309
milliseconds. The additional time for the relay tadditional can be calculated by

tadditional = FWT ×NAKSent by the PCD . (9.1)

Therefore, the attacker had an additional 3.09 seconds to relay the data. The proxy
simply ignored the PCD which kept sending NAKs until the configured maximum was
reached, even though the proxy never sent a response. As the additionally introduced
delay was only two seconds, the PCD accepted the response because it was still trying to
recover the connection.

9.1.2 Delay Measurements

The theoretical delay introduced during a relay attack is described in Chapter 3. The total
delay is defined as the sum of RFID-link delays, proxy delays, mole delays, relay-channel
delays, and a computation delay at the PICC. Note that it is not always possible to perform
measurements at the exact boundaries of those delays. Therefore, we focused on four
different delays that give a good insight into the behavior of the system.

For every delay measurement, we gathered 1 000 samples to get solid and accurate
results. We sent a single byte challenge (0x60) and received a single byte response
(0x0b) for each measurement. However, the method used for the measurement differed
depending on the measured delay. Finally, we took 1 000 samples of a regular RFID
communication with a MIFARE Plus S card to compare the resulting delays with our
relay-attack measurements.

In this section, we first analyze the distributions of the measured delays separately.
We conclude this section by evaluating the delays and by comparing their statistics.

(a) Distribution of the total delays grouped into
ranges of 10 milliseconds.

(b) Plot showing all total-delay samples.

Figure 9.1: Results for the total delay during the relay-attack experiment.

CHAPTER 9. RESULTS 62

(a) Distribution of the proxy delays grouped into
ranges of 0.1 milliseconds.

(b) Plot showing the proxy-delay samples between
1.7 ms and 2.8 ms.

Figure 9.2: Results for the proxy delay during the relay-attack experiment.

Total Delay

The total delay describes the time that the PCD waits for a response after sending a
command. As we only relay data on the application layer, we measured the delay of an
ISO 14443 layer 4 protocol exchange.

In order to measure the total delay, we used the C library of the PCD. Therefore,
we applied functions defined in windows.h, which support microsecond precision. The
measurement started before the ISO 14443 layer 4 protocol-exchange command of the
PCD library and stopped after the command was finished. The library as well as the
processing of the library commands at the PCD introduce an additional delay that is
included in our results. However, this delay is fairly constant and also occurs for regular
communication.

The results for our total delay measurements are shown in Figure 9.1. Figure 9.1a
shows the distribution of the delays grouped into ranges of ten milliseconds. Most relays
took between 80 ms and 90 ms. However, we see a high variance with some delays being
less than 60 ms, and others being over 100 ms. All 1 000 samples are plotted in Figure 9.1b.

Proxy Delay

The proxy delay represents the time that the proxy needs to receive and prepare PCD
commands for the relay. As we measured the proxy delay at the PCD, it also includes
the RFID communication and an additional delay due to the C library and the PCD itself.
However, those delays are fairly constant and also exist for regular communication.
Therefore, we left those delays included in the results.

In order to measure the proxy delay, we changed the proxy implementation. We
removed the relaying procedure and replaced it with a procedure that generates a fixed
response. Therefore, we only measured proxy delay without any delay because of the
relay.

Figure 9.2 shows the results of our proxy delay measurements. Figure 9.2a shows
that the proxy delay mainly ranges between 1.9 ms and 2.2 ms and has a low variance.
A plot showing the proxy-delay samples in the range of 1.7 ms and 2.8 ms is shown in
Figure 9.2b.

CHAPTER 9. RESULTS 63

(a) Distribution of the mole delays. (b) Plot showing all mole-delay samples between
8 ms and 15 ms.

Figure 9.3: Results for the mole delay during the relay-attack experiment.

Mole Delay

The mole delay represents the processing delay at the mole (mobile phone), two RFID-link
delays, and the processing time of the PICC. Due to limitations in Java ME it is not possible
to distinguish between processing delay of the phone and the RFID communication.

The measurement starts after the first byte from the PCD is available at the Bluetooth
channel and stops after the response is flushed out on the Bluetooth connection. In order
to measure the mole delay, we used the Java ME function System.currentTimeMillis() on
the mobile phone. It allows time measurements with a resolution of one millisecond.

Figure 9.3 shows the results of our measurements. The distribution of the delays can
be seen in Figure 9.3a, where 9 ms and 10 ms are most frequent. Interestingly, there are
only a few samples that took 11 ms or 12 ms, which we assume has to do with the Java ME
implementation for RFID communication. A plot of all mole-delay samples in the range
of 8 ms and 15 ms is presented in Figure 9.3b.

Relay-Channel Delay

The relay-channel delay consists of the delay introduced by the two Bluetooth modules
(at the mole device and at the proxy device) and the delay of the Bluetooth transmission

(a) Distribution of the relay-channel delays grouped
into ranges of 10 milliseconds.

(b) Plot showing all relay-channel delay samples.

Figure 9.4: Results for the relay-channel delay during the relay-attack experiment.

CHAPTER 9. RESULTS 64

itself.
In order to measure the relay-channel delay, we used a dedicated timer at the proxy,

which was configured at a resolution of 1 millisecond. It started before the first byte
was sent to the Bluetooth module and stopped after the last byte was received. The time
measured by the timer also contained the delay at the mole. Therefore, we measured the
corresponding mole delays and subtracted them accordingly in our results.

In Figure 9.4, we see the results of our measurements. Figure 9.4a shows a similar
distribution as seen in the total-delay measurements but reduced by the mole delay and
the proxy delay. Figure 9.4b shows a plot of all 1 000 samples of the relay-channel delay.

Delay Evaluation

Table 9.1 shows the statistics of the delays during our relay attack. In the first row, it
shows the delays occurring during the communication with a genuine PICC (a MIFARE
Plus S card). Note that the total delay is not a sum of the remaining delays because it was
gathered in a separate experiment and the boundaries between the delays are not always
precise. Moreover, all delays could not be gathered within a single experiment because the
measurement of the delays takes additional time and would distort the results. However,
the results give a good idea about the composition of the total delay.

We took 1 000 sample measurements of the communication with the genuine PICC.
We see that the PICC had an average response time of about 3 milliseconds. Therefore,
our relay attack took about 30 times longer than a regular communication and could
easily be prevented by a strict timeout implementation. However, if the command sent to
the PICC would require complex computational operations, the relay delay would stay
fairly constant but the computation delay would increase significantly. This would make
it more difficult to find a suitable threshold for a timeout.

We see that the implementation of the proxy is fast and introduces little additional
delay. It even responses faster then the genuine PICC. Moreover, it has a low standard
deviation of only 0.2 ms. The mole delay is also rather constant with a standard deviation
of 1.65 ms.

The relay-channel delay proved to be the dominant factor of our setup. This delay
contains not only the Bluetooth transfer itself but also the delay of the two Bluetooth
modules at the mole device and at the proxy device. Therefore, we cannot determine
precisely how this delay is composed. However, it introduces about 80 % of the total
delay.

Table 9.1: Statistical evaluation of the delays during the relay-attack experiment.

Component Average delay Standard deviation Min Max
[ms] [ms] [ms] [ms]

PICC 3.01 0.23 2.49 9.03
Proxy 2.07 0.20 1.87 6.38
Mole 9.74 1.65 9.00 38.00
Relay channel 73.51 8.50 46.00 106.00
Total 88.36 12.41 57.65 129.92

CHAPTER 9. RESULTS 65

9.2 Countermeasure-Evaluation Results

This section evaluates the performance of the proposed protocol to prevent the exploita-
tion of WTXs for relay attacks. We also evaluate the performance of our distance-bounding
protocol (Section 6.3) on layer 4 of the ISO 14443 protocol and derive a reasonable thresh-
old and error tolerance. The IAIK DemoTag v3.0 [19] was used for our evaluation.

9.2.1 WTX-Exploitation Countermeasure

We propose a protocol to prevent the exploitation of Waiting Time Extensions (WTXs)
for relay attacks in Section 6.1. The protocol is based on the fact that if an attacker sends
a WTX request to the PCD, the PICC has no knowledge of it. Therefore, the PICC can
encrypt and append its knowledge about WTXs (WTX counter) to the final response so
the PCD can compare with its own knowledge (WTX counter). If we assume a secure
encryption scheme, the attacker cannot modify this knowledge.

By activating the WTX-exploitation countermesure on PCD and PICC, we were able
to successfully detect the exploitation of WTXs by the attacker. If no WTX was sent by
the PICC, the attacker was not able to append a correctly encrypted WTX counter to the
message. If the PICC sent a WTX, the attacker was not able to change the appended
counter because of the encryption.

The protocol only introduced a small additional delay and only a small additional
overhead of two bytes. However, note that we did not implement a real encryption
for the WTX counter. Therefore, the protocol could cause additional delay if a complex
encryption scheme was implemented.

9.2.2 Distance Bounding

In this section, we present the results for the distance-bounding protocol described in
Section 8.5.2. In order to show the behavior of the protocol, we measured the delays of
bit-size challenge-response pairs. Because our nonce had a length of 12 byte, this resulted
in 48 (12

2 × 8) challenge-response pairs. Furthermore, we used those delays to derive a
reasonable threshold and error tolerance for the protocol. The measurement was done
by the C library at the PCD and contains overhead of the PCD hardware and the library.

(a) Distribution of the delays during the distance-
bounding protocol.

(b) Plot showing delay samples of the distance-
bounding protocol.

Figure 9.5: Results for the delay during the distance-bounding protocol.

CHAPTER 9. RESULTS 66

However, if the protocol is implemented on the application layer of a real system, those
overheads exist as well.

In our results we only measured challenge-response pairs that where exchanged with-
out a transmission error (i.e. no NAK was sent). Our observations showed that the connec-
tion between the PCD and real PICCs was far more reliable than the connection between
the PCD and the proxy (DemoTag). As we assume that the protocol is implemented on a
real PICC, we assume a good connection. Therefore, we only use measurements gathered
when no NAKs where sent.

Figure 9.5 shows the results of our measurements. In Figure 9.5a we see that 92.6 %
of the delays where below 2.2 milliseconds, which indicates a mainly constant behavior.
A plot of all samples within 1.8 ms and 2.5 ms can be seen in Figure 9.5b. The statistical
evaluation of the results is presented in Table 9.2. The rather high average and standard
deviation result from the high number of delays above five milliseconds (3.7 %).

Table 9.2: Statistical evaluation of the delays during the distance-bounding protocol.

Delay type Average delay Standard deviation Min Max
[ms] [ms] [ms] [ms]

Challenge-response protocol 2.23 0.99 1.89 16.35

As we use an RFID-tag emulator (the IAIK DemoTag), the behavior of a real PICC
might be different. Different types of PICCs also result in different computation delays
and response times. Therefore, we propose to treat PICCs according to their type and
performance features. The PICC could transmit its type (or performance features) during
the activation sequence of the protocol. Note that this transmission needs to be encrypted
so that an attacker cannot modify it. The PCD could then decide which threshold and
error tolerance to use for the given PICC.

A possible procedure to decide on the threshold and error tolerance is presented in
the following section. The example is based on the data we gathered for the DemoTag.

Threshold and Error-Tolerance Calculation

For the DemoTag, we used a threshold of 2.2 milliseconds because 92.6 % of the measured
responses met this threshold (Pin time). As the fastest response was received within 1.89 ms,
this would definetly detect any relay that introduces more than 310 microseconds.

The probability of a single response not to meet this threshold (Pnot in time) is calculated
by

Pnot in time = 1 − Pin time. (9.2)

The probability for at least one of the N iterations (in our case N = 48) of the protocol
not to meet this threshold (P f alse re jection) is calculated by

P f alse re jection = 1 − (Pin time)N. (9.3)

The protocol leads to a false-rejection rate of 97.5 %. This means that in 975 of
1 000 cases a legitimate PICC would be rejected because of a delayed response. Hancke
and Kuhn [13] proposed strategies to deal with noisy environments for their distance-
bounding protocol. We can adjust those measurements to deal with varying response
times.

CHAPTER 9. RESULTS 67

Table 9.3: False-rejection and false-acceptance rates of the distance-bounding protocol for
different numbers of allowed delayed responses.

Allowed delayed False-rejection False-acceptance
responses (x) rate [%] rate ×10−13 [%]

0 97.504 0.036
1 87.927 0.071
2 69.944 0.114
3 47.908 0.284
4 28.097 0.569
5 14.165 1.137
6 6.186 2.274
7 2.360 4.548
8 0.793 9.095
9 0.236 18.190

10 0.063 36.380
11 0.015 72.760
12 0.003 145.519

In order to reach more reasonable false-rejection rates, we propose to accept a certain
number of delayed responses. The probability for a certain number k of responses being
delayed can be calculated by

Pk responses delayed = ((Pnot in time)k
× (Pin time)N−k)

(
N
k

)
. (9.4)

The probability for at most x responses being delayed is a summation of all proba-
bilities for delayed responses ≤ x. Therefore, the false-rejection rate can be calculated
by

P f alse re jection = 1 −
x∑

i=0

(((Pnot in time)i
× (Pin time)N−i)

(
N
i

)
). (9.5)

Table 9.3 shows the false-rejection rates for different numbers of allowed delayed re-
sponses. Moreover, it shows the false-acceptance rates by assuming the attacker relays the
allowed number of delayed responses and guesses the remaining challenges. Therefore,
it is calculated by

P f alse acceptance =
1

2(N−x)
. (9.6)

We see that by allowing 12 delayed responses, we reach a false-rejection rate of only
0.003 % and still keep the false-acceptance rate at 1.455 × 10−11 %. Those rates can be
adjusted by allowing more delayed responses, using more challenge-response iterations
(longer challenges), or using a different threshold.

9.3 Comparison to Relay Attacks in Literature

In order to evaluate the results of our relay attack, we compare them to other relay attacks
in literature. One of the first relay attacks was implemented by Hancke [12]. He used two

CHAPTER 9. RESULTS 68

UHF antennas to establish a relay channel on which he transmitted the analogue data.
By saving the time for digitizing the data, he reached a introduced delay of only 15-20 µs
and successfully attacked an ISO 14443 system. However, his attack fails if additional
PICCs are in range of the PCD because the answer to the anticollision commands is not
synchronized due to the delay.

A more meaningful comparison is the master thesis of Weiß [47]. He performed a
relay attack on ISO 14443 systems using NFC mobile equipment, connected by a Bluetooth
relay channel. He reached an average introduced delay of 54 milliseconds. However,
note that the used NFC mobile equipment is not very practical as it has to be controlled
by a PC or by a laptop. Also note that our implementation did not focus on the speed of
the relay but rather on the exploitation of the ISO 14443 protocol.

9.4 Summary

In this section, we presented the results of our relay-attack experiment. Using our setup,
we saw that ISO 14443 systems without additional security features are vulnerable to
relay attacks. By exploiting certain mechanisms of the standard, we further increased the
chance for an attacker.

The introduced delays during our relay attack where significantly higher than the
delays during regular communication. The main contributors to the relay delay proved
to be the Bluetooth modules and the Bluetooth channel. However, the introduced delay
was still way below the maximum Frame Waiting Time (FWT) for ISO 14443 systems and
did not affect the success of the relay attack.

Finally, we also looked at the proposed countermeasures and their success in pre-
venting relay attacks. The proposed WTX-exploitation countermeasure can prevent the
abuse of WTXs by an attacker. The distance-bounding protocol proved to be a good
method to detect relay attacks. Although the implementation on the application layer
does not allow exact distance measurements, distance bounding makes a relay attack
much more difficult because the attacker requires a much shorter introduced delay of less
than 310 microseconds. A combination of all proposed countermeasures would lead to a
high standard of security.

Chapter 10

Conclusions

In this thesis, we presented the concept of relay attacks on RFID systems. During a relay
attack, the attacker uses two devices (i.e. the mole and the proxy) to establish a relay
channel between the reader and the transponder. The attacker forwards every message
between reader and transponder through this channel in order to let the two devices
assume that they are in each others transmission range. Cryptographic measures on the
application layer are circumvented because the attacker simply forwards the encrypted
messages.

The security of the ISO/IEC 14443 standard regarding relay attacks was analyzed in
this thesis. Therefore, we performed a relay attack using an off-the-shelf mobile phone
with NFC-capabilities as the mole device and an RFID-tag emulator as the proxy device.
Both devices where connected through a Bluetooth channel that operates up to 100 meters.
Using this hardware, we were able to successfully perform a relay attack on an ISO/IEC
14443 test system. The test system consisted of a Pegoda MF RD 700 reader [37] and a
MIFARE Plus S transponder [36].

Our measurements showed that the relay attack introduced an average additional de-
lay of 88 milliseconds. Given that according to the ISO/IEC 14443 standard the transpon-
der can decide on the Frame Waiting Time (FWT) used (up to 4.95 seconds), this is easily
fast enough for the attacker to relay the data. In addition to that, we performed a num-
ber of experiments in which we exploited different mechanisms of the ISO/IEC 14443
standard. The exploitation of Waiting Time Extensions (WTXs) allowed us to delay the
response for an additional 12 seconds. However, we could have stalled the reader for an
arbitrary amount of time. We also exploited the error-recovery mechanism of the stan-
dard and showed that the additional time for the relay depends on the implementation
of the reader and how many recovery tries (Negative Acknowledges, NAKs) it supports.
During our experiments we were able to gain 3 seconds of additional time for the relay.

In literature, there exist several countermeasures against relay attacks. However, most
of the proposed countermeasures do not comply with the ISO/IEC 14443 standard. We
developed an ISO/IEC 14443 compliant protocol to eliminate the exploitation of WTXs.
The proposed protocol allows the reader to detect WTXs introduced by the attacker, and
therefore prevents their exploitation. We also implemented a distance-bounding protocol
on the application layer of the ISO/IEC 14443 protocol. Our experiments showed that dis-
tance bounding prevents a large number of relay attacks because it limits the maximum
time introduced by the relay. Our implementation of distance bounding prevents relay
attacks which introduce more than 310 microseconds. Although the proposed counter-
measures do not provide full security, they would make a relay attack significantly more

69

CHAPTER 10. CONCLUSIONS 70

difficult to perform. We suggest to use several of the proposed countermeasures together
to reach better security.

The ISO/IEC 14443 standard is widely used for security-critical applications like pay-
ment systems, public transportation, and access-control management. In this thesis, we
have shown that those systems are vulnerable to relay attacks. With the wide distribution
of RFID technology in mobile phones, those systems become more attractive for attackers.
Therefore, future work should focus on protecting those systems against relay attacks.

Appendix A

BTM-222 Bluetooth Board Picture
and Schematics

Figure A.1: Picture of the BTM-222 Bluetooth module.

71

APPENDIX A. BTM-222 BLUETOOTH BOARD PICTURE AND SCHEMATICS 72

Figure A.2: Schematic of the BTM-222 board (sheet 1).

APPENDIX A. BTM-222 BLUETOOTH BOARD PICTURE AND SCHEMATICS 73

Figure A.3: Schematic of the BTM-222 board (sheet 2).

Appendix B

Definitions

2-FA Two-Factor Authentication

8PSK 8 Phase-Shift Keying

ACL Asynchronous Connection-Less

AES Advance Encryption Standard

APDU Application Protocol Data Unit

API Application Programming Interface

ATQA Answer To Request A

ATS Answer To Select

BCC Block Check Character

BTM Bluetooth Module

CID Card IDentifier

CRC A Cyclic Redundancy Check A

CT Cascade Tag

DES Data Encryption Standard

DQPSK Differential Quaternary Phase-Shift Keying

DR Divisor Receive

DS Divisor Send

EAS Electronic Article Surveillance

ECC Elliptic Curve Cryptography

EDR Enhanced Data Rate

EEPROM Electrically Erasable Programmable Read-Only Memory

74

APPENDIX B. DEFINITIONS 75

EIA Electronic Industries Association

FDT Frame Delay Time

FSC Frame Size Card

FSCI Frame Size Card Integer

FSD Frame Size Device

FSDI Frame Size Device Integer

FWI Frame Waiting Integer

FWT Frame Waiting Time

HF High Frequency

IAIK Institute for Applied Information Processing and Communications

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

INF Information

ISO International Organization for Standardization

Java ME Java Platform, Micro Edition

JTAG Joint Test Action Group

LF Low Frequency

LSB Least Significant Bit

LAN Local Area Network

NAD Node ADdress

NAK Negative Acknowledge

NFC Near-Field Communication

NRZ Non-Return-to-Zero

NVB Number of Valid Bits

MITM Man-In-The-Middle

MSB Most Significant Bit

OSI Open System Interconnection

PC Personal Computer

PCB Protocol Control Byte

APPENDIX B. DEFINITIONS 76

PCB Printed Circuit Board

PCD Proximity Coupling Device

PICC Proximity Integrated Circuit Card

PIN Personal Identification Number

PPS Protocol and Parameter Selection

RATS Request Answer To Select

REQA Request A

RFID Radio-Frequency Identification

RS-232 Recommended Standard 232

RTT Round-Trip Time

SAK Select Acknowledge

SDK Software Development Kit

SEL Select Code

SFGI Start-up Frame Guard Integer

SPP Serial Port Profile

UART Universal Asynchronous Receiver Transmitter

UHF Ultra-High Frequency

UID Unique IDentifier

USB Universal Serial Bus

UWB Ultra-WideBand

VDI The Association of German Engineers

WUPA Wake-UP A

WTX Waiting Time Extension

WTXM Waiting Time Extension Multiplier

Bibliography

[1] Atmel. ATxmega256A3. Available from http://www.atmel.com/dyn/products/

product_card.asp?category_id=163&family_id=607&subfamily_id=1965&part_

id=4304 (accessed on February 17, 2011).

[2] Atmel. ATMega128. Available from http://www.atmel.com/dyn/products/

product_card.asp?part_id=2018 (accessed on May 4, 2011).

[3] V. S. Bagad and I. A. Dhotre. Data Communication Systems. Technical Publications
Pune, 2009.

[4] Calypso. Calypso Network Association. http://www.calypsonet-asso.org (accessed
on April 19, 2011).

[5] J. Campbell. V24 RS-232 Kommunikation. Sybex-Verlag, Köln, Germany, 1986.

[6] J. H. Conway. On Numbers And Games. The Academic Press, London, UK, 1976.

[7] C. Douligeris and D. N. Serpanos. Network Security: Current Status and Future Direc-
tions. John Wiley & Sons, Inc., 2007.

[8] Eclipse. Eclipse Pulsar. Available from http://www.eclipse.org/pulsar/ (accessed
on February 17, 2011).

[9] K. Finkenzeller. RFID Handbook: Fundamentals and Applications in Contactless Smart
Cards, Radio Frequency Identification and Near-Field Communication. John Wiley & Sons,
Ltd., Chippenham, Wiltshire, UK, 2010.

[10] L. Francis, G. P. Hancke, K. Mayes, and K. Markantonakis. Practical NFC Peer-to-
Peer Relay Attack Using Mobile Phones. In Radio Frequency Identification: Security
and Privacy Issues, volume 6370 of Lecture Notes in Computer Science, pages 35–49.
Springer Berlin / Heidelberg, 2010.

[11] Fujitsu. Dense Wavelength Division Multiplexing Tutorial, 2002. http:

//www.fujitsu.com/downloads/TEL/fnc/pdfservices/dwdm-prerequisite.pdf

(accessed on April 28, 2011).

[12] G. P. Hancke. A Practical Relay Attack On ISO 14443 Proximity Cards. Technical
report, 2005. Available from http://www.rfidblog.org.uk/hancke-rfidrelay.
pdf (accessed on May 4, 2011).

[13] G. P. Hancke and M. G. Kuhn. An RFID Distance Bounding Protocol. In Proceed-
ings of the First International Conference on Security and Privacy for Emerging Areas in

77

http://www.atmel.com/dyn/products/product_card.asp?category_id=163&family_id=607&subfamily_id=1965&part_id=4304
http://www.atmel.com/dyn/products/product_card.asp?category_id=163&family_id=607&subfamily_id=1965&part_id=4304
http://www.atmel.com/dyn/products/product_card.asp?category_id=163&family_id=607&subfamily_id=1965&part_id=4304
http://www.atmel.com/dyn/products/product_card.asp?part_id=2018
http://www.atmel.com/dyn/products/product_card.asp?part_id=2018
http://www.calypsonet-asso.org
http://www.eclipse.org/pulsar/
http://www.fujitsu.com/downloads/TEL/fnc/pdfservices/dwdm-prerequisite.pdf
http://www.fujitsu.com/downloads/TEL/fnc/pdfservices/dwdm-prerequisite.pdf
http://www.rfidblog.org.uk/hancke-rfidrelay.pdf
http://www.rfidblog.org.uk/hancke-rfidrelay.pdf

BIBLIOGRAPHY 78

Communications Networks, pages 67–73, Washington, DC, USA, 2005. IEEE Computer
Society.

[14] G. P. Hancke, K. Mayes, and K. Markantonakis. Confidence in Smart Token Proxim-
ity: Relay Attacks Revisited. Computers & Security, 28(7):615–627, 2009.

[15] Y.-C. Hu, A. Perrig, and D. B. Johnson. Packet Leashes: A Defense against Worm-
hole Attacks in Wireless Networks. In INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computerand Communications. IEEE Societies, pages 1976 – 1986
vol.3, 2003.

[16] IEC. International Electrotechnical Commission. http://www.iec.ch/ (accessed on
April 20, 2011).

[17] IEEE. IEEE 802.11 - Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, 2007. Available from http://standards.ieee.org/

getieee802/download/802.11-2007.pdf (accessed on April 27, 2011).

[18] IEEE. IEEE 802.3: LAN/MAN CSMA/CDE (Ethernet) Access Method, 2008. Available
from http://standards.ieee.org/getieee802/802.3.html (accessed on April 2,
2011).

[19] Institute for Applied Information Processing and Communications, Graz Univer-
sity of Technology. IAIK Demo Tag. Available from http://www.iaik.tugraz.at/
content/research/rfid/tag_emulators/ (accessed on February 17, 2011).

[20] ISO. International Organization of Standardization. http://www.iso.org (accessed on
April 21, 2011).

[21] ISO/IEC. ISO/IEC 7810 - Identification cards - Physical characteristics, 2003.

[22] ISO/IEC. ISO/IEC 7816 - Identification cards - Integrated circuit cards, 2006.

[23] ISO/IEC. ISO 14443: Identification cards - Contactless integrated circuit(s) cards - Prox-
imity cards, 2010.

[24] ISO/IEC. ISO/IEC 14443 - Identification Cards - Contactless Integrated Circuit(s) Cards
-Proximity Cards - Part 1: Physical Characteristics, 2010.

[25] ISO/IEC. ISO/IEC 14443 - Identification Cards - Contactless Integrated Circuit(s) Cards
-Proximity Cards - Part 2: Radio Frequency Power and Signal Interface, 2010.

[26] ISO/IEC. ISO/IEC 14443 - Identification Cards - Contactless Integrated Circuit(s) Cards
-Proximity Cards - Part 3: Initialization and Anticollision, 2010.

[27] ISO/IEC. ISO/IEC 14443 - Identification Cards - Contactless Integrated Circuit(s) Cards
-Proximity Cards - Part 4: Transmission Protocol, 2010.

[28] Z. Kfir and A. Wool. Picking Virtual Pockets using Relay Attacks on Contactless
Smartcard. In Proceedings of the First International Conference on Security and Privacy
for Emerging Areas in Communications Networks, pages 47–58, Washington, DC, USA,
2005. IEEE Computer Society.

http://www.iec.ch/
http://standards.ieee.org/getieee802/download/802.11-2007.pdf
http://standards.ieee.org/getieee802/download/802.11-2007.pdf
http://standards.ieee.org/getieee802/802.3.html
http://www.iaik.tugraz.at/content/research/rfid/tag_emulators/
http://www.iaik.tugraz.at/content/research/rfid/tag_emulators/
http://www.iso.org

BIBLIOGRAPHY 79

[29] I. Khalil, S. Bagchi, and N. B. Shroff. LITEWORP: A Lightweight Countermeasure
for the Wormhole Attack in Multihop Wireless Networks. In International Conference
on Dependable Systems and Networks, 2005. Proceedings., pages 612 – 621, 2005.

[30] A. Mitrokotsa, M. Rieback, and A. Tanenbaum. Classifying RFID attacks and de-
fenses. Information Systems Frontiers, pages 1–15, 2009.

[31] J. Munilla and A. Peinado. Distance Bounding Protocols for RFID Enhanced by
Using Void-Challenges and Analysis in Noisy Channels. Wireless Communication and
Mobile Computing, 8(9):1227–1232, 2008.

[32] NFC Times. Vendor Group Seeks to Crack Mifare Dominance, 2010. Available from http:
//www.nfctimes.com/report/vendor-group-seeks-crack-mifare-dominance

(accessed on April 18, 2011).

[33] Nokia. Nokia 6212 classic. Available from http://www.nokia.at/produkte/

alle-modelle/nokia-6212-classic (accessed on April 13, 2011).

[34] Nokia. Nokia PC Suite. Available from http://www.nokia.at/support/software/
nokia-pc-suite (accessed on May 3, 2011).

[35] NXP Semiconductors. MIFARE Plus Leaflet. Available from http://www.mifare.
net/index.php/download_file/view/8/ (accessed on May 3, 2011).

[36] NXP Semiconductors. MIFARE. Available from http://www.mifare.net (accessed
on April 13, 2011).

[37] NXP Semiconductors. Pegoda MF RD 700 Datasheet, 2011. Available from http://
www.nxp.com/documents/data_sheet/066120.pdf (accessed on February 17, 2011).

[38] C. Paar, J. Pelzl, and B. Preneel. Understanding Cryptography: A Textbook for Students
and Practitioners. Springer Verlag Berlin Heidelberg, 2010.

[39] R. Poovendran and L. Lazos. A Graph Theoretic Framework for Preventing the
Wormhole Attack inWireless ad hoc Networks. Wireless Netwetworks, 13(1):27–59,
2007.

[40] Rayson. Rayson Technology Co., Ltd. www.rayson.com (accessed on May 5, 2011).

[41] Rayson. BTM-222 Datasheet, 2005. Available from http://www.

taiwantrade.com.tw/resources/member/276716/productcatalog/

b9ee22e4-e94a-45cd-8db0-ac88b3a11a75_BTM222%20DataSheet.pdf (accessed
on May 5, 2011).

[42] J. Reid, N. J. M. Gonzalez, T. Tang, and B. Senadji. Detecting Relay Attacks with
Timing-based Protocols. In ASIACCS ’07: Proceedings of the 2nd ACM symposium
on Information, computer and communications security, pages 204–213, New York, NY,
USA, 2007. ACM.

[43] M. Sauter. Grundkurs Mobile Kommunikationssysteme. LinkFriedr. Vieweg & Sohn
Verlag — GWV Fachverlage GmbH, Wiesbaden, 2006.

[44] H. W. Silver and M. J. Wilson. The ARRL Handbook For Radio Communications. The
American Radio Relay League, Inc., 2010.

http://www.nfctimes.com/report/vendor-group-seeks-crack-mifare-dominance
http://www.nfctimes.com/report/vendor-group-seeks-crack-mifare-dominance
http://www.nokia.at/produkte/alle-modelle/nokia-6212-classic
http://www.nokia.at/produkte/alle-modelle/nokia-6212-classic
http://www.nokia.at/support/software/nokia-pc-suite
http://www.nokia.at/support/software/nokia-pc-suite
http://www.mifare.net/index.php/download_file/view/8/
http://www.mifare.net/index.php/download_file/view/8/
http://www.mifare.net
http://www.nxp.com/documents/data_sheet/066120.pdf
http://www.nxp.com/documents/data_sheet/066120.pdf
www.rayson.com
http://www.taiwantrade.com.tw/resources/member/276716/productcatalog/b9ee22e4-e94a-45cd-8db0-ac88b3a11a75_BTM222%20DataSheet.pdf
http://www.taiwantrade.com.tw/resources/member/276716/productcatalog/b9ee22e4-e94a-45cd-8db0-ac88b3a11a75_BTM222%20DataSheet.pdf
http://www.taiwantrade.com.tw/resources/member/276716/productcatalog/b9ee22e4-e94a-45cd-8db0-ac88b3a11a75_BTM222%20DataSheet.pdf

BIBLIOGRAPHY 80

[45] The Siemon Company. Propagation Delay and Delay Skew. Available from http://www.
siemon.com/us/white_papers/97-06-03-delayskew.asp(accessed on September
15, 2010.

[46] Verein Deutscher Ingenieure. Richtlinie VDI 4470 (Entwurf): Warensicherungssysteme,
2009.

[47] M. Weiß. Picking Virtual Pockets using Relay Attacks on Contactless Smartcard Systems.
Master thesis, Technische Universität München, May 2010. Available from http://
www.sec.in.tum.de/assets/studentwork/finished/Weiss2010.pdf (accessed on
May 5, 2011.

http://www.siemon.com/us/white_papers/97-06-03-delayskew.asp
http://www.siemon.com/us/white_papers/97-06-03-delayskew.asp
http://www.sec.in.tum.de/assets/studentwork/finished/Weiss2010.pdf
http://www.sec.in.tum.de/assets/studentwork/finished/Weiss2010.pdf

	Introduction
	Radio-Frequency Identification
	The Reader
	The Transponder
	Operating Frequency, Transmission Range, and Coupling Method
	RFID Standardization

	Relay Attacks
	Basic Concept of Relay Attacks
	Relay-Attack Scenarios
	Relay Attacks on RFID Systems

	Relay Channel
	Physical Boundaries
	Relay-Channel Medium

	Relay-Attack Devices
	Relay-Channel Protocols
	Wired Protocols
	Wireless Protocols

	Total-Delay Estimation
	Total-Delay Derivation
	Estimation of Proxy Delay and Mole Delay
	Lower Bound for the Total Delay Introduced

	Relay Attacks in Literature
	Countermeasures
	Physical Protection
	Additional Verification
	Timing Constraints
	Distance Bounding

	The ISO 14443 Standard
	Part 1: Physical Characteristics
	Part 2: Radio-Frequency Power and Signal Interface
	Part 3: Initialization and Anticollision
	Frame Delay Time
	Frame Formats
	Anticollision
	PICC States

	Part 4: Transmission Protocol
	Protocol Activation of Type A PICCs
	Half-Duplex Block-Transmission Protocol

	Security Analysis of ISO 14443 Regarding Relay Attacks
	Modifications on the Physical Layer
	Carrier-Frequency Modification
	Data-Rate Modification

	Modifications on the Protocol Layer
	Chaining
	Waiting Time Extension
	Negative Acknowledge

	ISO 14443 Compliant Countermeasures
	Preventing the Exploitation of Waiting Time Extensions
	WTX-Exploitation Countermeasure
	Known Issues

	Check Transmission Parameters
	Distance Bounding on the Application Layer
	Distance-Bounding Protocol
	Security Considerations

	Summary

	The Hardware Setup
	The Proxy Device
	IAIK DemoTag
	BTM-222 Bluetooth Module

	The Mole Device
	The PCD
	The PICC

	Implementation
	General Concept
	Communication Between Proxy and Mole
	Protocol Commands

	Proxy Implementation
	General Proxy Implementation
	Handling of Chaining
	Exploitation of Waiting Time Extensions

	Mole Implementation
	Java Packages
	UML Class Diagram
	Flow Chart

	Countermeasure Implementation
	WTX-Exploitation Countermeasure
	Distance Bounding

	Results
	Relay-Attack Results
	Protocol Exploitations
	Delay Measurements

	Countermeasure-Evaluation Results
	WTX-Exploitation Countermeasure
	Distance Bounding

	Comparison to Relay Attacks in Literature
	Summary

	Conclusions
	BTM-222 Bluetooth Board Picture and Schematics
	Definitions
	Bibliography

