
Master’s Thesis

Advances in Domain Centered Software
Design and Development on the Example

of a Budgeting Software

Martin Brugger, Bakk.rer.soc.oec.

Institute for Information Systems and Computer Media (IICM),

Graz University of Technology

Supervisor: Assoc. Prof. Dr. Andreas Holzinger, PhD, MSc, MPh, BEng, CEng, DipED,

MBCS

Graz, May 2011

This page intentionally left blank

Masterarbeit
(Diese Arbeit ist in englischer Sprache verfasst)

Fortschritte in der Entwicklung
domänenspezifischer Software am

Beispiel einer Kalkulations Software

Martin Brugger, Bakk.rer.soc.oec.

Institut für Informationssysteme und Computer Medien (IICM),

Technische Universität Graz

Betreuer: Univ.-Doz. Ing. Mag. Mag. Dr. Andreas Holzinger

Graz, Mai 2011

This page intentionally left blank

Abstract

Development of commercial software requires a high quality technical implemen-
tation, as well as the consideration of legal and economical conditions. Therefore,
cross-disciplinary skills need to be acquired, to create a holistic approach to software
development.
With the vast amount of information freely available on the internet, tremendous
potentials, but also legal risks emerge by using open source software in commercial
software development. Developers have to consider copyright laws and licensing
carefully before reusing extraneous open source code.
Software development methodologies are the basis for high quality and controlled
software development, with a big influence on development success. For this master’s
thesis, an agile development approach was chosen, to accommodate the uncertain
user requirements at project start and to prepare for future development projects.
Another focus of this work is the integration of usability engineering into the devel-
opment process, as another key factor for success. As a result of the development
process, a software for costing and planning international film projects was produced
in close cooperation with domain experts, which currently is distributed internation-
ally.

Keywords
software development methodologies, agile software development, software testing,
software licensing, usability engineering

ÖSTAT classification
1108 45%, 1140 40%, 1153 15%

ACM classification
D.2.5, D.2.7, D.2.9, H.5.2, K.5.1, K.4.1

A

This page intentionally left blank

B

Kurzfassung

Die kommerzielle Entwicklung von Software erfordert nicht nur eine qualitativ hoch-
wertige technische Umsetzung, sondern auch die Erfüllung von rechtlichen und wirt-
schaftlichen Rahmenbedingungen um diese durchführen zu können. Diese Vorausset-
zungen machen es notwendig, fächerübergreifende Fertigkeiten abseits der Technik
zu entwickeln, um alle Aspekte gewissenhaft berücksichtigen zu können.
In der heutigen vernetzten Welt und den fast unendlich verfügbaren Ressourcen im
Internet, haben sich ein enormes Potential, aber auch rechtliche Risiken durch die
Verwendung von Open Source in kommerzieller Softwareentwicklung ergeben. Es
muss allerdings unter Entwicklern noch ein Bewusstsein für Problematiken, die sich
durch diese große Verfügbarkeit von urheberrechtlich geschützten Werken ergeben,
geschaffen werden.
Softwareentwicklungsprozesse haben maßgeblichen Einfluss auf den Erfolg und er-
möglichen es erst, kontrollierte Entwicklung zu betreiben. Für das Projekt im Rah-
men dieser Diplomarbeit wurde ein Einstieg in die agile Softwareentwicklung ge-
wählt, um den wechselnden Anforderungen Rechnung zu tragen und auch für zu-
künftige Projekte konkurrenzfähig Software entwickeln zu können.
Ein weiterer Schwerpunkt ist die Integration von Usability Engineering in den Ge-
samtprozess. Mit Hilfe dieser Methoden sind eine benutzerzentrierte Entwicklung
und die daraus resultierende gute Bedienbarkeit als weitere Erfolgsfaktoren gewähr-
leistet. Als Ergebnis dieses gesamten Prozess ist eine Software zur Kalkulation und
Planung von internationalen Filmprojekten entstanden, die in enger Zusammenar-
beit mit Experten aus der Filmwirtschaft konzipiert wurde und international ver-
trieben wird.

Schlüsselwörter
Softwareentwicklungsmethoden, Softwarelizenzierung, Usability Engineering

ÖSTAT Klassifikation
1108 45%, 1140 40%, 1153 15%

ACM Klassifikation
D.2.5, D.2.7, D.2.9, H.5.2, K.5.1, K.4.1

C

This page intentionally left blank

D

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz, 02.05.2011
Martin Brugger

E

This page intentionally left blank

F

Acknowledgements

This thesis would not have been possible without my family who always encouraged
me to cut my own path. I would like to thank Nina for being back again and sup-
porting me all the years of my studies.

Special thanks also to my colleagues at work for providing me with time to finish
my diploma thesis. Thanks to all my friends and especially Olivia for motivating
me all the time.

Finally I would like to thank Andreas Holzinger for supervising and guiding my
diploma thesis.

Martin Brugger
Graz, May 2011

G

This page intentionally left blank

H

Table of Contents

1 Introduction and Motivation for Research 1

2 Theoretical Background and Related Work 3

2.1 Film Production Process . 3

2.1.1 Film Budgeting . 4

2.1.2 Current Software Products . 9

2.2 Software Development Methodologies 10

2.2.1 Waterfall Model . 10

2.2.2 Spiral Model . 10

2.2.3 Software Prototyping . 12

2.2.4 Agile Software Development 13

2.2.5 Crystal Clear . 15

2.2.6 Extreme Programming . 17

2.2.7 SCRUM . 19

2.2.8 Test Driven Development . 20

2.3 Reuse of Existing Software Components 21

2.3.1 The Open Source Definition 22

2.3.2 Comparison of Open Source Software Licenses 23

2.4 Software Testing . 24

2.5 Requirements and Usability Engineering 25

2.5.1 Requirements Engineering . 26

2.5.2 Usability . 27

I

2.6 Agile Software Development and Usability Engineering 31

3 Materials and Methods 33

3.1 Development Process . 33

3.1.1 Analysis . 34

3.1.2 Design . 35

3.1.3 Development . 35

3.1.4 Test . 37

3.1.5 Integrated Development Process 38

3.1.6 Crystal Clear in context of the current Software Project 39

3.2 Development Infrastructure . 45

3.2.1 Documentation . 45

3.2.2 Source Control Management 46

3.2.3 Bugtracking and Task Management 47

3.2.4 Integrated Development Environment 48

3.2.5 Testing . 52

3.3 Software Architecture . 53

4 Results 59

4.1 Developed Software Product . 59

4.1.1 Budgeting . 59

4.1.2 Financing . 63

4.1.3 Cash Flow . 65

4.2 Established Development Process . 67

4.2.1 Software Development . 68

4.2.2 Usability Engineering . 72

5 Discussion & Conclusion 73

5.1 Software Development Methodologies 73

5.2 Usability Engineering . 74

J

5.3 Code Reuse . 74

5.4 Developed Software Product . 75

6 Future Work 77

A Software Metric Tables 79

List of Figures 81

List of Tables 83

References 85

K

L

1. Introduction and Motivation for Re-
search

Within the university studies of "Software Development and Business Management"
basic concepts for developing software but also business management fundamentals
are taught. A graduate in this field of study is qualified to manage a software project
in terms of a technical point of view and also the non technical project management.
A special challenge within creating this diploma thesis was to apply the studied the-
oretical knowledge on an actual project. Therefore, it was necessary to include basic
management functions starting with planning, organizing, building and leading a
project team, directing and controlling.
A lot of duties and responsibilities are not taught in courses at university but had
to be applied. A high rate of improvisation and self education was necessary.
Even though business management is a central part of the study, this master’s thesis
does focus on the technical and project management aspects of the accomplished
software project.

The aim of the project described in this thesis is a software designed to assist
in the planning, costing and controlling of film projects. Film projects require a
high level of flexibility and consist of managing a high amount of complex interre-
lated data. Several layers of film project management like time, resource and cost
planning are tightly connected with impact on each other layer. The developed soft-
ware automates the resolution of these dependencies. In addition, the enrichment
of plain information with metadata allows reasoning about the given data revealing
additional knowledge about the film production.

1

The project team was formed of different partners in different domains. Includ-
ing members of the film school "HFF Konrad Wolf", a german film producer and
several film students. The technical implementation was executed by graduates and
students of Graz University of Technology.

In context of this development project different agile software development method-
ologies (SDM) were evaluated and applied in combination with usability engineer-
ing. This approach has already been published several times before. In the academic
community extreme programming is the main choice of SDMs, although alternatives
exist and are used in commercial software development.

As a student with special interest in usability engineering recognizing the need for
established software development methodologies, combining both fields of research
were an interesting challenge. Also several surrounding conditions like licensing is-
sues and software testing are discussed because of the high relevance to this software
project.

2

2. Theoretical Background and Related
Work

This chapter gives a brief overview of the film production process based on Clevé
(2005) and related work in the field of software development methodologies (SDMs)
with a focus on appropriate methodologies for the current project. Especially SDMs,
which allow a focus on user centered design and usability engineering will be pre-
sented. Important topics like software testing and licensing also form the basis for
this master’s thesis, therefore they are introduced in this chapter.

2.1 Film Production Process

In general the film production process is separated into several phases: development,
preproduction, production or principal photography and post production. (Figure 2.1)
Each of these phases has a budget as output. Therefore it is relevant for a software
to cover the budgeting process of a film project.

• Within development an idea gets transformed into a package ready to be
produced. One of the main tasks in development is the acquisition of rights.
This package contains the main cast and creative staff like director, a final
screenplay and financial backing. Within budgeting the costs of this package
are often referred as above the line costs.

• Preproduction is the second phase. Important tasks within preproduction are
script breakdown, creating shooting schedules, hiring a production team and
creating a detailed budget. The budget will be discussed in more detail later
on.

3

Figure 2.1: The Film Production Process

• The production phase names the actual shoot of the film strictly following the
shooting schedule. The production manager is responsible for coordinating the
whole production process and keeping the project in budget. Many external
factors like weather influence the production phase, making it necessary to
stay flexible and responsive to changing requirements.

• Postproduction is the final production phase. The result of editing is the final-
ized distribution ready film. With the increasing amount of special effects and
digital postproduction this phase is gaining importance within a film project.

2.1.1 Film Budgeting

Film Projects always involves handling of large budgets and a vast amount of re-
sources. Currently, most of the resource management is handled through the struc-
ture of a budget. A lot of decisions within a film project are connected to the
budget. Therefore the production manager always needs to know the current state
of the budget to be able to stay responsive to changing requirements which occur
frequently during the phases of preproduction and actual production.

4

Cost controlling and up to date accounting therefore is a necessity for all film
projects. Experience is a substantial requirement to make good decisions as produc-
tion manager.
A typical film budget contains all cost information about a film project in a prede-
fined structure, which is defined by the contracting entity of a film project.
American projects like Figure 2.2 typically follow a structure of above the line and
below the line costs. Above the line costs describe the artistic value of a project
containing rights, main cast and the director. Below the line costs typically contain
the production costs and all overhead.
In Europe, a budget is typically structured to fulfill the requirements of film

commissions to be able to acquire film subsidies. This structure is aligned to the
chronology of a film production process starting with development ending in post
production costs. Figure 2.3 shows the budget structure required by the German
Federal Film Board (FFA).

5

EP Budgeting
Budget Title :

Script Dated : Producer :
Budget Draft Dated : Director :
Production # : Location :
Start Date : Prepared By :
Finish Date :
Total Days :
Post Weeks :
Holidays :
Travel Days :

Acct# Category Description Page Total
600 STORY/WRITERS 1 0
605 STORY/WRITERS-NEWS/VAR/GS/OTHER 2 0
610 PRODUCERS 2 0
615 PRODUCERS-NEWS/VARIETY/GS 3 0
617 ATL SUPP STAFF-NEWS/VAR/GS/OTHER 4 0
620 DIRECTOR 5 0
625 DIRECTOR-NEWS/VAR/GS/OTHER 5 0
630 CAST 6 0
635 CAST-NEWS/VAR/GS/OTHER 6 0
640 FRINGE COSTS:ABOVE LINE 7 0
650 ABOVE THE LINE TRAVEL 7 0
670 AGENCY COMMISSIONS 7 0

Total Above-The-Line 0

700 EXTRA TALENT 8 0
701 CONTESTANTS/CONTESTS 8 0
705 PRODUCTION STAFF 8 0
999 ... 9 0
798 FACILITES FEES 10 0

Total Below-The-Line Production 0

800 EDITING 11 0
801 POST PRODUCTION VIDEO 11 0
999 ... 12 0
860 LABORATORY PROCESSING 13 0
870 FRINGE COSTS:EDITORIAL 13 0

Total Below-The-Line Post 0

900 NON PRODUCTION TESTS 14 0
910 ADMINISTRATIVE EXPENSES 14 0
999 ... 15 0
920 PUBLICITY 15 0
945 ALL SHOWS 16 0
946 MUSIC 16 0
947 OTHER COSTS 16 0
948 AMORTIZATION ACCOUNT 16 0

Total Below-The-Line Other 0

Page 1

The Entertainment Partners Services Group, MM Budgeting

Figure 2.2: US Sample Budget export from Movie Magic Budgeting

6

FFA Project (FFA Template) Page 1

FFA Project (FFA Template) Budgeting Summary

Budgeting (FFA Template)

Description Total
1 Vorkosten: (Page 2) € 0,00
2 Rechte und Manuskript : (Page 2) € 0,00
3a Gagen Produktionsstab: (Page 2) € 0,00
3b Gagen Regieastab: (Page 3) € 0,00
3c Gagen Ausstattungsstab: (Page 3) € 0,00
3d Gagen Sonstiger Stab: (Page 4) € 0,00
3e Gagen Darsteller: (Page 4) € 0,00
3f Gagen Musiker: (Page 5) € 0,00
4a Atelier Bau: (Page 5) € 0,00
4b Außenbau durch Atelier: (Page 5) € 0,00
4c Atelier Dreh: (Page 5) € 0,00
4d Abbau Atelier und Außenbau: (Page 6) € 0,00
5a Ausstattung und Technik - Genehmigungen und Mieten: (Page 6) € 0,00
5b Bau und Ausstattung: (Page 6) € 0,00
5c Technische Ausrüstung: (Page 7) € 0,00
6a Reise- und Transportkosten - Personen: (Page 7) € 0,00
6b Reise- und Transportkosten - Lasten: (Page 8) € 0,00
7 Filmmaterial und Bearbeitung: (Page 8) € 0,00
8 Endfertigung: (Page 8) € 0,00
9 Versicherungen: (Page 8) € 0,00
10 Allgemeine Kosten: (Page 9) € 0,00
11 Kostenmindernde Erträge (./.): (Page 9) € 0,00

Nettofertigungskosten: = € 0,00
Handlungskosten % v A: + € 0,00
Überschreitungsreserve % v A: + € 0,00
Zwischensumme: = € 0,00
Finanzierungskosten (Anlage) : + € 0,00
Treuhandgebühren: + € 0,00
Completion Bond Kosten : + € 0,00
Total Production Costs: = € 0,00

Figure 2.3: FFA Sample Budget Export from LineProducer

7

Budget types

During a film project different types of budgets are created. In the development
phase a rough estimate is made, which is detailed during preproduction. The bud-
get estimation is also called preliminary budget and is built upon price lists, rate
books, union rates and experience of the production manager. Most of the costs are
subject to negotiation. The detailed budget is based on a finalized shooting sched-
ule and is the basis for all contract negotiations. It is signed of by the production
manager and sometimes by the producer and director.

Figure 2.4: Different Budget Types within the Film Production Process

Until the end of the production phase, the working budget is changing a lot to
represent the actual progress and cost changes of the project. It is the responsibility
of the production manager to balance additional expenses with possible cost savings
in other areas to keep the project in budget. Therefore a quick comparison of
planned budget and working budget is necessary and a software budgeting solution
nowadays is obligatory.

Cash Flow Planning

Another important task related to budgeting is cash flow planning. Cash flow plan-
ning is used to plan expenses and income, related to time. Therefore it is an im-
portant tool for controlling and forward-looking planning. There is currently no
standardized way of cash flow planning. It is recommended to create a cash flow
plan on a weekly basis to meet the actual cash flow of wage payments. All cost
positions are additionally enriched with time information to allow the planning of a

8

future balance for the project. This allows an early identification of possible bottle-
necks of liquidity, which is essential to every commercial project.

2.1.2 Current Software Products

There are currently software products available which claim to solve the problem
of complex film production process. In the following section a selection of these
software products will be introduced. All of the solutions are established in their
distinct market segments.

• Sesam
Sesam is a german film budgeting software developed by SESAM Software
GmbH1. Due to the fact of it’s long time development starting in 1996 the
software is dialog based with all its usability consequences. The software
features detailed planning of wages in a fixed cost structure. This fixed cost
structure is perfectly suitable for german productions and its main target group
of german television and cinema productions. From a technical point of view
the software is written in a legacy framework with a Windows only availability.

• Movie Magic
The software named Movie Magic2 is targeted at American and international
film productions. It is Java based and available for the Windows and Mac plat-
forms. From a usability perspective the software features extensive keyboard
navigation with a consistent user interface.

• Microsoft Excel
Although the requirements of the target group are quite complex, a significant
amount of productions still is planned using Microsoft Excel. The overwhelm-
ing flexibility of the software is also its major weakness. Handling several
thousand positions with formulas result in copy and paste errors, wrong for-
mulas and a lack of traceability of results.

1http://sesamsoft.de/ueber_uns.htm
2http://www.entertainmentpartners.com/Content/Products/Budgeting.aspx

9

http://sesamsoft.de/ueber_uns.htm
http://www.entertainmentpartners.com/Content/Products/Budgeting.aspx

2.2 Software Development Methodologies

This section covers common software development methodologies. Starting with
one of the first established development process, the waterfall model, several SDMs
are presented up to modern agile software development methodologies used in the
current master’s thesis development project.

2.2.1 Waterfall Model

The essential steps in software development regardless of complexity and size are
described as analysis and coding. (Royce, 1987)
The limitation of this minimal development model is growing software complexity.
Computer programs developed in these two steps can only be of limited complex-
ity and mostly suitable for internal use only. A more sophisticated SDM for larger
systems is the already mentioned Waterfall model which defines several consecutive
steps leading to a planned destination.
Each step shown in Figure 2.5 is the base for further development and no iterations
are planned, thus if a later step fails, the whole project has to start from the begin-
ning.
For the current project this methodology was not suitable at all as the requirements
developed throughout the whole development of the project. This is not a speciality
of the current project. Rajlich (2006) mentions this requirements volatility as serious
a problem for even large companies like Microsoft. The waterfall model therefore
did not solve the general problems of software development.

2.2.2 Spiral Model

The spiral model is based on refined versions of the waterfall model with a more
robust foundation for software development. A key feature of the Spiral Model is
risk estimation. Within the spiral model exist two dimensions: The radial dimension
is an estimation of the cost originated, the angular dimension the project progress
within the current cycle. (Figure 2.6)

The spiral model is executed in several cycles. Each cycle consists of four phases:

10

Figure 2.5: Waterfall Model, (Royce, 1987)

Figure 2.6: Spiral Model, (Boehm, 1986)

11

• The first phase starts with the identification of objectives and determination
of alternatives and constraints.

• The second phase consists of risk analysis and prototype development.

• The third phase is the actual development phase. It can accommodate any ap-
propriate development methodology. The exact methodology should be chosen
by the projects needs.

• The fourth and final phase of each iteration consists of a review of the recent
iteration.

2.2.3 Software Prototyping

Software prototyping as a methodology tries to solve the problem of uncertain re-
quirements by creating a prototype in advance. The purpose of the prototype solely
is to identify the requirements. In software prototyping Kordon and Luqi (2002)
distinct two different approaches:
The advantage of the throw-away approach is the possibility to use techniques and
assumptions not acceptable for the final product. This approach is used to prove
feasibility at a relatively low cost. The disadvantage on the otherwise is apparently
the waste of development effort.
The evolutionary approach tries to countervail the disadvantages of the first ap-
proach. Therefore, it tries to evolutionary develop several prototypes until the last
prototype becomes the final product.

Kordon and Luqi (2002) mention Smalltalk in this context as a programming
environment suitable for prototyping techniques as of its large set of predefined
classes and simple programming language. As Smalltalk is not usable in production
environment it is mentioned as tool for throw-away prototyping. The evolutionary
approach benefits most from automatic program construction tools.
The experience of the practical project of this master’s thesis fully supports these as-
sumptions as all these technologies like a heavily Smalltalk influenced programming
framework and code avoiding tools were used.

12

Figure 2.7: Evolutionary Approach, (Kordon and Luqi, 2002)

2.2.4 Agile Software Development

“Rapid change is a taunting task” states Poole (2006) and also a motivation for
inventing new software development methodologies. Challenges might be new tech-
nologies but also other external influences like competition or legal requirements.
From a business perspective, the most desirable business advantage is learning
faster than the competitor. Therefore, reducing development cycle times allows
faster adoption of new technologies resulting in business advance. Besides this, agile
methodologies tend to increase quality of code at the same time. Agile software
development is based on simple principles. First of all this methodology is based on
small iterations. Each of these iterations defines a full software development process
with working software at the end of the cycle. Poole (2006)
A team of software engineering experts formulated in 2001 the Agile Manifesto with
the following words:

“We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

13

That is, while there is value in the items on
the right, we value the items on the left more.”

The first phrase “Individuals and interactions over processes and tools” also sup-
ports the name lightweight methodologies for agile methodologies. Lightweight in
this context means methodologies with little formal requirements. From the sec-
ond assumption “Working software over comprehensive documentation” results the
characteristic of short iterations.
Short iterations with working software at the end of each, are a central element.
Poole (2006) describes several advantages of short iterations. First of all, customer
feedback can be obtained more frequently resulting in a faster solution of the devel-
opment. Short iterations also imply shorter testing phases.

This can only be achieved by automated tests also influencing code quality in a
positive way. Long iterations also tend to hide problems. Besides delaying feedback
also the problem of “feature creep” comes into play. Long iterations implement large
amounts of features. During this long periods always new features arise and create
time pressure. With short iterations new features can be planned for future releases.

“Customer collaboration over contract negotiation” tries to mitigate the problem
of unclear and changing requirements leading to the last phrase “responding to
change over following a plan”.

Although all agile software development methodologies have these principles in
common several differences in complexity and level of detail exist. (Errath et al.,
2004)
Some methodologies like the crystal series or scrum provide a higher level framework
for software development, while others like Extreme Programming precisely describe
a process. Several of these SDMs are introduced in the following subsections.

14

2.2.5 Crystal Clear

“Crystal Clear: A few key rules to get a small project into its safety
zone.” (Cockburn, 2004)

Cockburn (2004) summarizes key features, which occurred frequently in success-
ful projects as the following: Close communication, frequent delivery and reflective
improvement. Crystal Clear (CC) does not pretend to be the best software devel-
opment methodology but it claims to be easily adoptable by a team and leading to
successful project completion.
Another interesting fact of CC is the motivation for its invention. CC does not try to
cope with changing requirements as main motivation but with a focus on delivering
projects in time at lower costs. Especially this motivation makes this SDM even
more valuable for small teams, still allowing changing requirements due to the agile
nature of the SDM.
Within the crystal series of SDMs, the "clear" methodology is suitable for small
teams up to 8 people in less critical domains. Cockburn (2004) describes it as less
demanding than XP but as a possible springboard to gain agile experience before
starting with XP.

How does CC work?

Procedures are not the main focus of CC. If a project follows the CC methodology,
it has to have certain properties independently of the procedures used to achieve
them.
Three of the properties (frequent delivery, reflective improvement, osmotic commu-
nication) are mandatory for CC. The other four properties, strategies and techniques
further increase the chance for success.

Properties

• Frequent delivery is a common agile practice and all the positive charac-
teristics of it hold for this methodology as well. Cockburn (2004) defines a
delivery as tested code delivered to real users every few months. The feedback

15

of real users is essential for development as well as the rate of progress that can
be monitored. Also developers take advantage of this practice as they keep
focussed and need to debug their development and deployment process.
The frequency of delivery depends on the type of application, as webapplica-
tions can be easily deployed in opposite to software installed on a large amount
of client computers. In general, a “friendly user” is the best strategy which
uses the software for testing purposes, but not in production.

• Cockburn (2004) mentions Reflective Improvements as critical factor. Dis-
astrous projects already made a turnaround into successful ones just by reflect-
ing on problems and working as a team to solve these. Meetings on a regular
basis starting as soon as possible allow such drastic changes in projects.

• Osmotic Communication is suitable for small teams only, otherwise the
background noise gets to disturbing, besides the physical limitations. It is all
about background discussions where everyone can contribute its expertise or
keeping focussed on its work. Every single question is posed to the whole team
without asking. Therefore, the team has to be co-located in a single room with
a supportive layout of the office. Cockburn (2004) mentions surprisingly little
disturbance to the whole team from this practice.
Expert users still need to be careful not to get distracted too much. If this is
the case, a certain timeframe has to be established for expert users without
distraction also mentioned as the “cone of silence” strategy.

The other optional properties are also be described briefly:

• Personal Safety is essential in a development team to allow reflective im-
provement. Trust is essential among development teams to freely speak about
impediments to be solved.

• Focus is the combination of knowing the tasks with high business value and
also the chance to work on these tasks without interruption for at least several
hours a day. Also focus requires to assign developers to a maximum of one
and a half projects at the same time.

16

• Easy Access to Expert Users grants multiple worthy assets to a develop-
ment team. First of all, they provide testers for frequent delivery and therefore
deliver feedback about the quality of a product. Design decisions can be made
faster as feedback is always available within a reasonable timeframe and fur-
thermore the user requirements are kept up to date as real users are already
working with the product and reporting impediments in using the product.

• A Technical Environment is also a key property for successful software
delivery. Source control management is the most essential basis for distributed
software development. In addition, automated testing and frequent integration
also increase the chances of success.

With these properties in mind, a project can easily be examined for possible im-
provements. In addition, several techniques and strategies are described in Cockburn
(2004) to further improve the development process.

2.2.6 Extreme Programming

Extreme programming (XP) is probably the most widely used agile software devel-
opment methodology. (Bates and Yates, 2008; Hussain et al., 2008c)
As an agile SDM, XP complies with the agile manifesto but still differentiates in its
realization.
Beck (1999) admits that the individual practices used in XP are nothing new, but
a combination of all these practices build a powerful approach to create software
whilst requirements changing frequently. XP consists of a set of 12 major practices:

• Planning Game

• Small releases

• Metaphor

• Simple design

• Tests

• Refactoring

17

• Pair programming

• Continous integration

• Collective ownership

• On-site customer

• 40-hour week

• Open workspace

• Just rules

XP is based on strictly obeying all these principles. Nevertheless, one single
process does not always fit all different types of projects and teams in its ”pure"
form and therefore sometimes needs adaptation to be applied successfully. (Hussain
et al., 2008a)

Process Description

Developers and customers unfortunately most of the time do not talk a common
language. Therefore, XP defines user stories to cover the software features from a
customers point of view. Stories have to follow three simple rules: They have to be
business oriented, testable and estimable in terms of implementation effort. Typi-
cally an index card should cover all information necessary for implementing a task.
Each iteration starts with the planning game. The customer defines a minimum
set of features with the highest priority to create a usable software product. Beck
(1999) compares this initial feature definition to shopping. Limited development
resources can be defined as the budget and each item (feature) has a certain cost
(development time). Therefore the customer can decide what to be implemented
first.
Afterwards the developers divide the stories into tasks.
A task is the largest software fragment developers are working with. For each task a
team of two programmers takes responsibility. The implementation of a task must
not exceed a planned implementation time of up to three days.
After all tasks have been assigned, the development phase starts. Unit tests are

18

always written first. A task has to pass all tests to be accepted and completed.
Automated unit testing creates confidence in the software and allows refactoring
and code changes without worrying about introducing new bugs. All functionality
covered with tests will remain intact. Another important aspect of unit tests is
the documentation automatically created. Whilst integration, the customer defines
functional tests for the current release.
As soon as all tasks are integrated a new release of a software can be created, or at
least handed to the customer for evaluation and the next iteration starts again with
the planning game.
Communication is a critical aspect of XP. The customer is integrated into the de-
velopment process, not only for delivering information but also for decision making.

2.2.7 SCRUM

Scrum is another lightweight software development methodology, which resembles
Boehms spiral model of software development.
The process can be summarized based on Rising and Janoff (2000) with the follow-
ing steps:
At the beginning all initially planned features of the software are collected as tasks
in the backlog. The customer prioritizes the tasks and therefore defines the order of
implementation. A Task is the basic unit for features. Each task must be completed
within one week. If a feature takes more developing effort, it has to be divided
into different tasks. The backlog might change over time in terms of feature count
and also priority of tasks. The rearrangement of the backlog takes place after each
development iteration called sprint. This rearrangement allows the integration of
changed requirements and new feature requests at later development stages. Fur-
thermore the backlog allows tracking the current progress.
A typical iteration within this SDM lasts one to four weeks. At the start of each
sprint the development team selects the amount of tasks to be completed during
the sprint. The result of each of these iterations has to be a usable and deliverable
software release. Time delays are not acceptable within an iteration. If the planned
tasks exceed the assigned schedule, tasks are removed from the current sprint.

19

The daily scrum meeting always handles three questions about what has been ac-
complished so far, what where the obstacles to get over, and what is planned until
the next scrum meeting. Within a scrum meeting, discussions of potential solutions
are not welcome, not to exceed the given time frame of 30 minutes maximum. An-
other important factor of these meetings is the social aspect.
The scrum master leads the scrum meetings, is responsible for tracking the progress
and recording decisions and actions.
The team consists at most of ten developers. This size has shown to be very effective
in SW development.
Rising and Janoff (2000) describe a team as a tight integrated unit with well defined
roles focusing on a single goal. Several components of the scrum methodology like
scrum meetings support these team aspects. Also social loafing is mentioned in this
context, which can be described in few words: The outcome per person of a team
decreases as the size increases. Therefore, the small team size is an advantage over
this social phenomenon.
Rising and Janoff (2000) characterizes the benefits of scrum as follows:
The frequent iterations allow adaptation of the development to changing require-
ments. Also the estimates tend to get better over time. Customers receive fre-
quent releases and feedback gets delivered. The customer can experience the project
progress and deliveries are always on time and trust between customers an develop-
ers builds.

2.2.8 Test Driven Development

Test Driven Development (TDD) is another heavily discussed SDM. It relies on the
principle, to write automated tests before the actual implementation of production
code also found in XP. An integral part of TDD is an automated test framework
allowing quick execution of tests resulting in short development cycles. Several
frameworks like JUnit exist to support test automation. The focus in TDD lies on
units, small pieces of functional code to be developed.
Janzen and Saiedian (2005) also made some interesting findings on developer pro-
ductivity and code quality. In general the code quality and error rate improved
while productivity only slightly decreased.

20

According to Beck (2002), the process of TDD contains the following steps:

• Quickly add a test.

• Run all tests and see the new one fail.

• Make a little change.

• Run all tests and see them all succeed.

• Refactor to remove duplication

Quickly adding a test requires the test to cover only a small piece of new func-
tionality. In the second step, the test suite is executed to make sure the required
functionality is not already implemented and the new test case executed properly.
The test is expected to fail at this point. Given the test a solution with minimal
effort is now developed to satisfy the test requirements thus succeeding all tests. To
restore proper code design and remove duplicated code, another phase is added to
refactor the newly added code with tests ensuring functionality.

2.3 Reuse of Existing Software Components

Developing software often includes reusing existing software components. Code reuse
has several advantages over newly developed components.
Besides reducing development time and costs also the quality of existing components
often outperforms newly developed components (Morad and Kuflik, 2005).
Also the time to market can be drastically reduced by code reuse resulting in an
advantage over competitors. Thus a main goal of software development is using and
creating reusable components to generate synergies between multiple projects and
increase productivity in the long term.
From a legal perspective reusing software components can create major problems.
(Di Penta et al., 2010)
To identify possible threats to commercial software products resulting from code
reuse systematic observation of reused code fragments and their license terms need
to be considered. The research of Sojer and Henkel (2011) identified the reuse of
"Internet code" as common source of code reuse. Even if internet code is freely

21

available and intended for public use, copyright laws still apply and need to be
obeyed. Software developer professionals often ignore this fact by reusing Internet
code in commercial products with uncertain license terms. If no explicit permission
is given by the author, reuse of code is generally not allowed. Therefore, permission
for usage and distribution has to be requested by the author.
To resolve this uncertain legal situation, several standardized open source licenses
have been established and clearly state the general conditions for code reuse of
available software components. Still the license has to be explicitly referred by the
author to create legal protection.

2.3.1 The Open Source Definition

The Open Source Initiative3 formulated the current open source definition. (OSI,
2011).

1. Free Redistribution (royalty free distribution of software)

2. Source Code (source code must be available for distribution)

3. Derived Works (modifications must be allowed and redistributable under same
terms)

4. Integrity of The Author’s Source Code (source-code distribution in modified
form may only be restricted if build-time "patches" are allowed)

5. No Discrimination Against Persons or Groups

6. No Discrimination Against Fields of Endeavor (no restrictions in field of use)

7. Distribution of License

8. License Must Not Be Specific to a Product

9. License Must Not Restrict Other Software

10. License Must Be Technology-Neutral
3http://www.opensource.org

22

http://www.opensource.org

The open source definition itself does not require derived work to be distributed
under the same license as the original. If software components should be reused in
closed source software products, the licenses of all used software components need
to be examined for certain properties. With closed source software components, the
terms of use and distribution most of the time are clearly stated by the distributor
often in specialized license agreements.

2.3.2 Comparison of Open Source Software Licenses

Several standard open source software (OSS) licenses exist for different purposes
and most of them qualify for commercial reuse in closed source software projects.
Only the GPL License requires the whole "work", in which to software component
is integrated, to be published under the terms of GPL. All other licenses allow
the commercial and closed source usage of the source code. There needs to be a
distinction between "usage" and "modification" of the reused code. If the code is
modified as well, the modifications must be redistributed depending on the original
license still allowing closed source usage. Almost all OSS licenses require the original
limited liability and copyright notice to be distributed with all derived work. Table
2.1 lists the most common open source licenses and their suitability for close source
development.

License Reuse in closed source Publish modified source
Apache License, 2.0 Yes No
BSD licenses Yes No
GNU General Public License
(GPL)

No Yes

GNU "Lesser" General Public
License (LGPL)

Yes Yes

Mozilla Public License (MPL) Yes Yes
MIT License Yes No

Table 2.1: Comparison of Open Source Software Licenses

23

2.4 Software Testing

Testing is an important activity in software engineering. Its target is to detect mal-
functions and validate a systems behavior. Studies on software testing estimate the
budget on software testing as high as up to 50 percent of total development costs.
(Bertolino, 2007)
With such a large influence on development costs, testing has a very high potential
for cost savings and should be taken into special consideration.
Software testing covers several aspects aiming at different objectives.
This section describes the software developers’ point of view of testing for functional
requirements. There are also non-functional requirements like performance, stability
and finally usability explained in the subsequent chapter.
Software testing and validation has become a large field of research also discussing
several other methods for software validation. For example, static and dynamic
analysis inspecting software behavior or model checking working with formal speci-
fications and for example abstraction to reduce complexity. Given the requirements
of the developed system in this master’s thesis relevant test methodologies are dis-
cussed in more detail.

Figure 2.8: Software Testing Classification

Software testing for functional requirements can be structured under different
aspects. Figure 2.8 represents the classification used in this master’s thesis.

24

The test persons knowledge about the system under test separates white-box and
black-box testing. White-box testing implies large knowledge about the system un-
der test while black-box testing implies no background knowledge about the system
at all. Both approaches are reasonable in different test scenarios and scopes.

Glass (2009) introduces two other dimensions for classifying testing. The first
dimension classifies four goal driven approaches.

• Requirements-driven testing determines if the requirements of a software are
fulfilled

• Structure-driven testing determines if separate software modules work as de-
fined

• Statistics-driven testing determines the required reliability in typical usage
scenarios

• Risk-driven testing determines the risks and vulnerabilities in high-reliability
settings.

The second dimension of testing defines the phase in which testing takes place.
Whereas unit tests focus on the smallest amount of functionality being tested often
requires a white-box approach, testing complete systems should be preferably tested
without insight into the system to reflect the end users knowledge about a system.
There are also other layers of testing in between to regulate the granularity of tests
for different scenarios.
Integration testing takes place at an intermediate level to verify the collaboration of
different software modules. Still some insight in the system being build is necessary
at least at a grey-box testing level.
System testing is performed on software products integrated in larger systems. This
can be performed in a black-box approach where no knowledge about the internal
functionality of a software is required.

2.5 Requirements and Usability Engineering

“The gap between Software Engineering and Human-Computer Interac-
tion should be closed through the integration of usability engineering and

25

requirements engineering." (Paech and Kohler, 2003)

Based on this quotation the following section gives a short introduction to the two
domains of requirements and usability engineering. While software development
methodologies mitigate the technical risks in software engineering, requirements
and usability engineering are necessary to create a suitable environment for a suc-
cessful software development project. Both are closely related and of extraordinary
importance to software projects.

2.5.1 Requirements Engineering

“The requirements for a system, in enough detail for its development,
do not arise naturally. Instead, they need to be engineered and have
continuing review and revision." (Bell and Thayer, 1976)

The target of Requirements engineering (RE) is the identification of goals to be
achieved by the designated system. Therefore, it contains the processes of analy-
sis, elicitation, specification, assessment, negotiation, documentation and evolution.
(van Lamsweerde, 2000)
Nuseibeh and Easterbrook (2000) even more emphasize the importance of require-
ments engineering by defining the primary factor of success of a software system as
the degree to which it meets the purpose for which it was intended. Most of the
requirements engineering work is conducted at initial stages of a software develop-
ment project, as project changes are more expensive in later stages of the project
lifecycle.
Elicitation is the process of identifying goals, objectives and motives for building a
software system. The most important result of the elicitation process is the iden-
tification of stakeholders, all individuals and organizations involved in development
and usage of the software product and their needs.
Several elicitation techniques are available to gain these desired results. Traditional
techniques include questionnaires, interviews, surveys, organizational charts, pro-
cess models, standards and manuals of existing systems.
Prototyping is a technique suitable in situations with a large level of uncertainty
of requirements. Group elicitation techniques can be combined with prototyping to

26

provoke discussions or as basis for questionnaires. The selection of a certain tech-
nique always depends on the availability of time and resources.
The next step after elicitation is the phase of analysis and specification of require-
ments, also referred as modeling. Categories of modeling are enterprise model-
ing, data modeling, behavioral modeling, domain modeling and modeling of non-
functional requirements. The benefit of modeling is the possibility to analyze them
afterwards. Negotiation of elicited and specified requirements is another complex
topic in requirements engineering as stakeholders tend to have conflictive goals.
The final task in requirements engineering concentrates on managing change of soft-
ware systems to keep up with their environment. This also requires change and
evolution of their requirements. (Nuseibeh and Easterbrook, 2000)

2.5.2 Usability

“Usability is the extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in
a specified context of use.” (ISO, 1998)

Usability can not be defined by a single property. Nielsen (1993) therefore ex-
plains it with the following five properties:

• Learnability: The time a user needs to start productive work with the system

• Efficiency: It should allow a high level of productivity

• Memorability: Once learned, operations should be easy to remember after a
certain period of time

• Errors: A low error rate is obligatory, it must be easy to recover from errors

• Satisfaction: Users should like using the system to make them subjectively
pleased

For good usability all of the five attributes must be considered equally. None of the
properties can be neglected.

27

Usability Engineering

Usability engineering is an iterative process throughout the whole lifecycle of a
product. Gould and Lewis (1983) initially defined the following principles for design:

• Early Focus on Users and Tasks: Designers must understand who the users
will be and what the work is that needs to be accomplished

• Empirical Measurement: Performance and reactions of users using the system
should be observed recorded and analyzed

• Iterative Design: The phases of design, implementation and test must be re-
peated until a sufficient level of quality in terms of usability is achieved

There are many usability methods suitable for different development situations.
Holzinger (2005) gives a good overview of these methods and their optimal fields of
use.

Inspection Methods Test Methods
Heuristic Cognitive Action Thinking Field Question-
Evaluation Walkthrough Analysis Aloud Observation naires

Applicably all all design design final testing all
in Phase
Required low medium high high medium low
Time
Needed none none none 3+ 20+ 30+
Users
Required 3+ 3+ 1-2 1 1+ 1
Evaluators
Required low low low high medium low
Equipment
Required medium high high medium high low
Expertise
Intrusive no no no yes yes no

Table 2.2: Comparison of Usability Evaluation Techniques, (Holzinger, 2005)

• Heuristic Evaluation
Heuristic Evaluation (HE) is performed by looking at a user interface to be
evaluated. The goal is to form an opinion about the inspected user interface.

28

HE is often performed on intuitive criteria but by using standardized metrics
results become comparable and objective. Nielsen and Molich (1990) mentions
in this context the collection of usability guidelines to be used.

• Cognitive Walkthrough
Lewis et al. (1990) describe the Cognitive Walkthrough (CW) as structured
evaluation process. It takes a list of questions to focus the designer’s attention
on individual aspects of the interface. First tasks to evaluate the design are
specified. Second the series of actions performed by a user to perform the
tasks are collected. Each step in the series of actions is evaluated if usability
problems are expected or not.

• Action Analysis
In the field of Action Analysis, Holzinger (2005) differentiates two methods.
Formal and back-of-the-envelope action analysis. Formal analysis records each
user interaction in its most basic form, for example move mouse, select menu,
to complete a certain task. Therefore it is also called key-stroke analysis.
Back-of-the-envelope action analysis is less detailed thus less time consuming
but also gives less precise results. In general, action analysis allows prediction
of how long it takes to perform certain tasks.

• Thinking Aloud
Lewis (1982) characterizes thinking aloud as a method to analyze the mental
processes of participants executing predefined tasks by asking them to make
spoken comments on the tasks performed. The method identifies cognitive
problems of people learning how to use a given user interface.
Video recording is used to capture the content of the screen and the partici-
pants comments which he is requested to give as an ideally constant stream of
feedback on each operation he performs or what he expects to happen next.
According to Holzinger (2006), the recording of facial expressions and gestures
also allows inference on working habits and therefore should be recorded as
well. Still the method has limitations. The degree of realism is limited due
to the presence of an observer and the participant commenting his actions in
contrast to real work situations. The accuracy is also heavily dependent on
the participant performing the tasks.

29

As benefits of the methodology, Lewis (1982) mentions the following advan-
tages. The method not only helps to identify problems but also why they occur
and what has caused the trouble. The vocabulary of the user is additionally
captured to make the interface more appropriate for the targeted user group.
The attitude of a participant towards the interface can also be analyzed, which
is critical to commercial projects.
To detect a reasonable amount of usability issues, Nielsen (1994) defines the
minimum amount of test participants as three to five which is relatively small
and allows frequent testing.
Another advantage is the possibility to use mockups instead of working sys-
tems for testing interface behavior as time and task success is not the main
focus.

• Field Observation
Field observation consists of taking notes about users interacting with the sys-
tem in their natural working environment. The results of observation are also
influenced by the Hawthorne effect (Adair, 1984), therefore observers should
attract as little attention as possible. Observation is used to detect major
usability problems. Video recording of observations is an option but given
the time consuming process of analyzing, time is better spent in testing more
subjects. Data logging can also be used in field observations as addition for
generating more detailed usability information. (Holzinger, 2005)

• Questionnaires
The measurement of the subjective user satisfaction can be conducted with
questionnaires. Usability questionnaires are classified as indirect testing method
as not the user interface itself is examined, but what users actually think about
a user interface. The major disadvantage is the sufficient large amount of re-
sponses to validate the test. In general less usability issues are identified with
questionnaires than with other testing methods. Holzinger (2005) therefore
recommends the combination of questionnaires with direct testing methods.

30

2.6 Agile Software Development and Usability En-

gineering

Agile software development tries to satisfy the customer by integrating him into the
development process. However fulfilling a customers needs does not always result in
usable software. (Patton, 2002)
Therefore, dedicated usability engineering is also added to the process of agile soft-
ware development hopefully resulting in better software.
There has already been some research on this topic. (Lee and McCrickard, 2007;
Holzinger and Errath, 2004; Holzinger et al., 2005; Wolkerstorfer et al., 2008; Fox
et al., 2008; Hussain et al., 2008b)
Mostly academic software development projects have been examined from this point
of view. Therefore, XP was the main choice of SDM.
Fox et al. (2008) is an exception to this, researching ten different projects in a com-
mercial context using scrum related software development methodologies.
The main gap between agile methodologies and usability engineering is the initial
effort put into requirements analysis and overall design, before starting an iterative
development process. Both methodologies afterwards conduct iterative improve-
ments until a final product emerges. (Fox et al., 2008)
Lee and McCrickard (2007) mentions another discrepancy between developers and
usability engineers in terms of communication mitigating this problem with a com-
mon feature description as link for both perceptions.
Obendorf and Finck (2008) take the same approach creating scenarios for support-
ing a common understanding of a work task.
Fox et al. (2008) further distinguished between three possible combinations of user
centered design specialists (UCDS) and software engineers.

1. The Specialist Approach consists of customers, a UCDS and a group of soft-
ware engineers. The UCDS manages the initial phase of requirements gather-
ing with the customer and lo-fi prototyping. After this step the development
team meets with the UCDS creating iteratively an UI prototype. The result of
each iteration is evaluated by the UCDS working in parallel with the software

31

development team generating requirements for future iterations. Communica-
tion is a critical challenge in this approach with the UCDS as bridge between
customers and the software engineers.

2. The Generalist Approach consists of two main roles, the customers and the
developers also taking responsibility for usability engineering.
Fox et al. (2008) mention this approach as very responsive to usability issues.
On the other hand the developers were not formally trained on the topic of user
centered design resulting in downsides in terms of usability engineering. An-
other interesting finding was that always multiple developers acted as UCDS
getting involved with usability engineering.

3. The Generalist Specialist Approach consisted of the customer, and at least one
developer formally trained in UCD besides general software developers. This
is also mentioned as the difference to the Specialist Approach always only in-
volving one single UCDS.

This separation of roles in Agile Development Projects conducting user centered
design can also be applied to this master’s thesis development project. As all of the
developers had at least some experience in usability engineering, the project can be
categorized as the Generalist Specialist Approach.

32

3. Materials and Methods

This chapter gives a detailed description of the development infrastructure in use
and the development process. Several aspects regarding software development and
usability engineering are discussed.

3.1 Development Process

Developing a successful software product requires not only a technical solution but
also user satisfaction. Therefore, the user plays a central role in software devel-
opment called user centered design and should be integrated into the development
process from scratch. (Holzinger and Brown, 2008)
Almost all modern software development methodologies have the user centered ap-
proach in common. Therefore, it is necessary to define a development process
which integrates the user into the development process. There have been several
approaches on integrating usability engineering with software development method-
ologies before. (Holzinger et al., 2005)
This is an approach from a generalist specialists view within the classification of Fox
et al. (2008). Adding additional usability engineering methodologies as extension to
the CC principles seamlessly integrates with the philosophy of CC.
The whole development methodology is based on adding additions in critical regions.
It does not require adapting each aspect in an extreme manner, but adapting the
principles with the largest improvement for a given effort. If usability is a relevant
criteria for a development project, the team has to apply relevant techniques to
increase projects value for the customer. (Figure 3.1)

Taking the same approach as Holzinger et al. (2005), each iteration is extended
by relevant usability engineering methods. In contrast to the educational back-

33

Figure 3.1: CC + UE Methodology

ground, also economical application of usability methodologies is relevant. Users
can contribute to the software development process in several ways. Starting in the
early design phase of each iteration, identifying users actual needs is the first step.
User requirements need to be elaborated to define development goals for further
development.

3.1.1 Analysis

The analysis phase needs special consideration for combining UE and CC. With agile
software development, the usually long lasting analysis phase has to be shortened
to meet the agile property of frequent iterations of tested and working software.
To bridge this gap, the amount of work done is reduced to the least necessary set
of features. Each identified requirement is documented as scenario. Given a fixed
delivery date, only as much scenarios are selected to be implemented as possible
within the planned timeframe as with the SCRUM methodology. (Rising and Janoff,
2000)
The value of actual user feedback on software being used in its planned environment,
tends to be higher than theoretically gathered user requirements. Also the problem
of users not knowing their actual needs can be avoided this way.

34

3.1.2 Design

In the design phase solutions for previously selected requirements are developed.
For new user interfaces, paper prototyping is an efficient tool for development. On
the software development side, classical development tools like UML modeling have
proven their usefulness. To reduce cost and the necessary amount of iterations, all
new user interfaces need to be carefully evaluated with the end users mental models
in mind.
Several developers create individual mockups. Afterwards the different solutions are
evaluated. The more possible solutions to choose from, the better. At least three
independent solutions should be developed. Afterwards, a heuristic evaluation is
performed on all designs to identify pros and cons of each solution.
Given those results, a solution using the best of all proposals is created. Personal
involvement can be an issue within this process as the own proposal often is consid-
ered the best solution. Therefore, objective criteria for selection solutions should be
established.
For best results, an experienced end user on site would increase the quality of re-
sults a lot. With modern means of communication, the end user can also be located
far away with regard to different time zones. Screen sharing, webcams and VoIP
solutions allow fast responses with reasonable limitations.

3.1.3 Development

The development phase is not directly influenced by usability engineering method-
ologies. Therefore CC recommendations are followed. Still development is important
as the forming phase within each iteration.

Code Reuse in LineProducer

In LineProducer, a lot of existing software components have been reused during the
development. As this is a sensitive topic in commercial software development, all
components and licenses are listed in Table 3.1.
All licenses used allow the commercial distribution of the software without redistri-
bution of the source code. In addition, the authors are credited within the software

35

SW Component License Type Component Description
Sparkle MIT License Sparkle is an Framework provid-

ing automated Client updates
Flot modified MIT License Flot is a Javascript Framework for

graph plotting included as source
Amber Framework BSD License Amber adds custom UI controls

and networking wrappers
BGHudAppKit BSD License BGHudAppkit adds specialized

HUD styled UI components
SSCrypto BSD License SSCrypto adds an Objective-C

wrapper for cryptographic opera-
tions

BWToolkit BSD License BWToolkit is a UI Component
Framework

FeedbackReporter Apache License FeedbackReporter is used for au-
tomatically reporting bugs to the
developers

MGTemplateEngine BSD license MGTemplateEngine is used for
creating HTML styled export doc-
uments via templates.

JRSwizzle MIT License JRSwizzle adds wrappers for
Objective-C runtime features

DDLog BSD License DDLog adds a more sophisticated
logging functionality to the soft-
ware

Table 3.1: Reused Software Components in LineProducer

36

to meet the terms of the licenses where the attribution of the original author is
claimed.

3.1.4 Test

Testing is an integral part of every software development project. Within the de-
velopment of LineProducer, different test targets have been identified. Testing for
correct functionality was one important target. Therefore testing facilities have been
established at different levels to meet functional requirements.

Unit and Integration Testing

At the lowest level, unit tests deliver reasonable verification of correct functionality.
Given a large software product covering the entire functionality with unit tests
would result in tremendous effort in development. Also a lot of functionality can
not be covered with unit tests, because of the limited scope of a unit test. Within
LineProducer the calculation of budgets has been identified to be critical for correct
operation. Therefore the model layer in the classic model-view-controller (MVC)
design pattern was identified to be worth the effort of writing automated tests.
Within the model layer, all classes and methods related to calculation of budgets
are covered with tests. In addition, some controller relevant for calculation also have
been added to the testing framework.

Most of the test cases require a fully functional model layer for testing. The
model of LineProducer is based on Core Data, an object relational framework de-
veloped by Apple. Therefore a set of common base classes (see Figure 3.2) was
established to allow easy testing of model classes. This base classes deliver a fully
functional Core Data stack containing necessary prerequisites of a Core Data appli-
cation. Also the integration of custom model classes with Core Data is covered in
the unit tests.

System Testing

To verify correct functionality of LineProducer as a whole system, a manual test
setup was designed. All required functionality was specified within test cases and

37

Figure 3.2: Test Classes Diagram

organized by the Testlink1. A test case consists of a precondition, necessary steps to
reproduce the test case and a brief description of expected results. If the expected
result is not achieved, a bug can be noted in the test system and the final report
delivered to the development team. For each release an external tester performed
all specified tests and therefore added additional verification of functionality.

Usability engineering adds new aspects to this phase. Not only functionality
is verified but also nonfunctional requirements as standard usability properties are
being evaluated. (See 2.5.2 for additional information on usability properties.) Dur-
ing this phase mostly usability testing methodologies are relevant. Selecting an
adequate method for evaluation always depends on available resources. Holzinger
(2005) already evaluated usability engineering methodologies for their best suited
field of use. Newly detected usability issues during the testing phase are added to
the list of development tasks for the next iteration.

3.1.5 Integrated Development Process

Although the typical software engineering process is separated into distinct phases,
each iteration through the four phases have to be seen as an integrated process.

1http://www.teamst.org

38

http://www.teamst.org

The process typically starts with a feature request or bug report. Both types result
in a defined work package or ticket recorded in the ticketing system waiting for
being completed. Software contains bugs, therefore efficient handling of existing
and avoiding future bugs is a key element of software development. (Figure 3.3)

Figure 3.3: Bug Fixing Process

A feature request typically requires the development team to develop a solution
for a new problem. (Figure 3.4) Creating good solutions takes several attempts often
not available because of time and cost constraints.

3.1.6 Crystal Clear in context of the current Software Project

Within this section the project is evaluated regarding compliance with the CC soft-
ware development methodology. The following properties were established during
the development of the software.

Frequent Delivery

Initially frequent delivery unfortunately was not established. During the first five
months not a single release was built to be delivered to test users. Development

39

Figure 3.4: Feature Request Workflow

was completely based on input of expert users, not using the software in productive
environments. With the first real deployment to external test users, several efforts
were taken to achieve the property. The deployment system was completely auto-
mated with scripts. With a single click a complete release build can be created and
uploaded for distribution to customers and test users. To support end users up-
dating the software, an update framework was integrated into the software to allow
updating with a single click as well. The project timetable at this point required
frequent delivery as certain presentation versions needed to be completed.

A typical deployment process of a software product requires several steps.

1. Build project with release build settings: When building software for distribu-
tion, several compiler options are set to optimize a binary for execution. Also
debug symbols are removed to hide internal structure of a software product.

2. Create package for distribution: Multiple packages are created. Mac OS X
software typically is deployed as a disk image. Such images contain an ap-
plication bundle, documentation and a well designed installation instruction.
For the auto update process, an additional compressed archive is generated
containing the new binary to be installed automatically.

40

3. Cryptographically sign package for automated update installation: To secure
the automated update process, the bundle is signed by the developer to protect
the auto update process from interception by third parties. An initial pub-
lic key for validation is delivered to the customer with the original software
download.

4. Write release notes: Release notes summarize the most important changes
from a users perspective and are essential to inform customers of changes and
bugfixes. Often this information is the only channel to communicate with
customers.

5. Upload package to webserver for distribution: Also such trivial tasks as up-
loading a new binary are automated to simplify the process of distribution.

Also from a client perspective, this process has to be as convenient as possible.
Therefore a third party framework2 has been added to the software to automate the
notification, download and installation of updates.

Figure 3.5: LineProducer Client Update

Frequent delivery is aimed at generating customer feedback already in early
stages. Therefore the communication channel from the customer to the developer
has to be convenient to use for both sides. Especially with software testers it is
essential to deliver as much information about an error or problem as possible from
the user to the developer. A stacktrace often simplifies the tracking of an error a

2http://sparkle.andymatuschak.org/

41

http://sparkle.andymatuschak.org/

lot. Within test builds, the logging of an application can deliver great insights on
application usage. Therefore it is necessary to integrate frameworks for delivering
customer feedback into the software.
Standardized usage logging would even further enhance the quality and usefulness
of information. Holzinger et al. (2011) describe an approach to use aspect oriented
programming for extracting usage information. Using this new approach the amount
of code and complexity necessary for integrating logging mechanisms spread across
the whole system could be drastically reduced.
For LineProducer the FeedbackReporter3 framework was integrated. (see Figure
3.6)
This framework allows seamless integration into existing software. If an error occurs
the feedback reporter automatically asks the user for permission to send error infor-
mation to the developer. As this information can contain privacy related information
full disclosure to the user about information delivered is essential.

The delivered information includes:

• System information

• Custom message to be entered by the user to reproduce a problem

• Optional contact information

• Logfiles

• Application settings

Reflective Improvement

Reflective improvement occurred most of the time by informal meetings. At the end
of feature discussions, team members explained critical parts and necessary changes
from their point of view. For example, establishing the unit test system resulted
from such informal meetings. Crystal Clear recommends two or more meetings per
iteration. Within the current project, this property can be considered fully achieved.

3http://vafer.org/projects/feedbackreporter/

42

http://vafer.org/projects/feedbackreporter/

Figure 3.6: LineProducer Feedback Reporter

43

Osmotic Communication

Osmotic Communication is more or less contradictory to other agile development
methodologies, as it admits the expertise of different team members. Not every
team member needs to know each part of the system, but there is always someone
within range to give answers to urgent questions. The current layout of workplaces
shown in Figure 3.7 also supports this property. All four developers are seated next
to each other. This layout could be further improved by creating a U-shaped desk
arrangement giving easy access to each others monitor. Cockburn (2004) warned
of the risk of overloading experts making them unable to complete their own tasks.
No formal rules to handle this problem had to be established. The interrupted
developers themselves made others aware of their situation unable to complete their
own tasks. Such situations always were handled in a friendly manner and accepted
by other team members.

Figure 3.7: Office Layout for Osmotic Communication

44

Easy Access to Expert Users

Direct access to expert users is essential for a software projects success. (Keil and
Carmel, 1995)
Within the current project, the property was fulfilled by integrating an expert user
into the development team. Feedback from the expert most of the time could be
received within a day. Although the expert user was not on site, using VoIP commu-
nication technologies and especially screen sharing drastically increased the quality
of information. Even with expert users of a certain domain, the questions often
were not answered as desired by the developers. This was caused by communica-
tion difficulties between the partners backgrounds. Asking questions in a way to
receive usable answers pointed out to be a important competency. The decrease of
interactions throughout the project lifetime mentioned in Cockburn (2004) was also
experienced within the current project.

Technical Environment

The infrastructure provided for this project is described in Section 3.2, therefore will
not be explained in this section. The minimum requirements by CC were definitely
fulfilled.

3.2 Development Infrastructure

Establishing the infrastructure for developing a software product includes a lot more
than providing a text editor and compiler. Especially with several developers in-
volved measures have to be taken to coordinate collaboration and sustainable de-
velopment. This section therefore describes the infrastructure used to develop Line-
Producer.

3.2.1 Documentation

Documentation is essential for a software project to remain maintainable. This in-
cludes general process descriptions, software architecture documentation and spec-
ification on interfaces. For internal documentation a wiki system (see Figure 3.8)

45

has been used and has proven to be suitable. A lot of documentation was written
directly in the source files and as commit messages in the source control system as
well.

Figure 3.8: Developer Documentation using a Wiki System

3.2.2 Source Control Management

For team development a server running source control management is essential. In
this project Subversion (SVN) was used to manage development collaboration be-
tween multiple developers.
This choice was based on experience from past projects. In depth practice is essen-
tial for efficient working with source control systems, therefore other probably more
powerful systems like git were postponed to future projects. Some general guide-
lines for using SVN were established like descriptive commit messages and never to
check-in not working code can be assumed generally accepted. The team was also
encouraged to check in as often as possible, to reduce the chance of data loss and
increase code quality as functionality had to be divided into smaller pieces. Another
very useful feature was the possibility to track changes in case of newly introduced
bugs and also understanding changes made by other team members. The commit

46

messages turned out to be a valuable part of the documentation. Also the mecha-
nisms of branching and merging turned out to be valuable to create a testbed for
larger refactoring tasks and newly introduced features not ready to be deployed to
the main branch of development. (see Figure 3.9)

Figure 3.9: Source Control Management using Subversion and svnX

3.2.3 Bugtracking and Task Management

To track development progress and distribute tasks trac4, a ticketing system is used.
The system is closely coupled with the source control system to create a comprehen-
sive work history. The combination of ticket and source control management allows
broad performance measurements. (see Figure 3.10)
Tickets were grouped by severity, target release, software component priority and
type. Software components described different aspects of the software like import/-
export, budgeting related functionality or general preferences and several others.
Types of tickets contained enhancement, task and defect. This classification of tick-
ets granted an overview of tasks to be done and their priority to the project. Also

4http://trac.edgewall.org/

47

http://trac.edgewall.org/

the workload of different developers could be measured and better distributed. Trac
only supports general descriptions of tasks and bugs. Feiner et al. (2010) describe
a system to include special information on usability issues in ticketing systems and
would be an interesting extension to the current system.

Figure 3.10: Trac Bugtracking

3.2.4 Integrated Development Environment

For developing Mac OS X software, Xcode is the preferred development environment
of most developers. It contains all necessary tools of a modern IDE (Integrated De-
velopment Environment). The code editor supports syntax highlighting, intellisense
like command completion and automatic code formatting. Therefore it allows com-
fortable writing of code. Also a direct access to the Cocoa reference documentation
is available with a single mouse click allowing fast access to API specification of a
certain class or method. All these features greatly enhance the development speed.
Navigating, searching, replacing and refactoring code gains relevance especially in
larger projects. All these operations are supported by the Xcode IDE (see Figure
3.11).
Besides code generation, several other tools are closely integrated into the de-

48

Figure 3.11: Xcode IDE

velopment workflow with Xcode. Important for development teams is the SCM
integration into the development environment allowing quick access to the source
repository to track and push changes. It is also very helpful to see available changes
in the SCM repository. Xcode allows the SCM integration of Subversion, CVS and
Perforce. The latest version of Xcode also integrates direct access to git reposito-
ries. Some SCM operations are not supported by the Xcode wrapper and have to
be performed in a specialized SCM tool or terminal.
Another substantial task in developing software is build automation. Xcode al-

lows the management of multiple build configurations for release and development.
Automating the build process is essential for an integrated development workflow.
Using custom scripted build phases, the whole deployment process can be auto-
mated.
Often more time is spent on debugging software than actually writing code. There-
fore the integration of a debugger is essential for an IDE. Xcode provides a graphical
frontend to GDB, the standard debugger for most UNIX-like systems. The most
used tasks, like controlling the execution flow with breakpoints or manually stepping
through the code execution can easily be performed. (see Figure 3.12)

49

Figure 3.12: Xcode Frontend for GDB

Another high-level tool is the integrated data modeling tool for Core Data (Fig-
ure 3.13), a persistence framework provided by Apple. Using this tool, data models
can easily be created and modified with a graphical user interface. Configuring data
migration is another key feature of the Core Data model editor.
Xcode also provides a GUI designer called Interface Builder. (see Figure 3.14)
Using drag and drop to arrange interface elements allows rapid prototyping of new
GUIs with easy integration of the result in the final software system.

50

Figure 3.13: Core Data Model Editor

Figure 3.14: Interface Builder

51

3.2.5 Testing

Delivering reliable software requires extensive and coordinated testing. Several test
procedures have been established to ensure high software quality. Unit tests are
performed automatically, manual testing by an external tester and usability tests
with external test subjects by the development team.

Unit Testing

During later phases of the project, refactoring became more and more important as
existing code had to be changed. To guarantee sustainability and increase quality
of the software, a unit test system was introduced.
To secure the most critical parts with unit tests first, the model was chosen to be
covered with unit tests. From this point on every newly introduced model feature
was developed in a test driven development approach. Also changes necessary due
to bug fixes were covered with unit tests before the actual implementation.
The automated unit testing framework OCUnit, a testing framework included in
Xcode, was used to automate the execution of unit tests. For every model class, a
distinct test class was written covering all nontrivial functionality. Especially finan-
cial calculations were validated using precomputed results for comparison. (Figure
3.15)

Figure 3.15: Running Unit Tests with OCUnit

52

Manual Testing

Manual testing was, as mentioned before, performed by an external tester. The test
procedure was organized using a test management tool named TestLink5. Within
the system, test cases for manual testing can be defined and grouped by modules.
For every release, a test plan is generated and executed manually. Each step in the
test plan is documented and a result of the execution stored. After executing all
test cases the automatically created test protocol is delivered back to the developers
to be analyzed for critical bugs to be fixed before delivery. (Figure 3.16)

Figure 3.16: Testlink

3.3 Software Architecture

LineProducer is based on the Cocoa framework and adheres to its design guidelines
and patterns. As the Cocoa framework itself relies on the model-view-controller
pattern (Holzinger et al., 2010) also the whole application architecture is based on
it to match design guidelines and integrate with the existing framework.
The application is organized as document based application using the default doc-
ument architecture. (Apple, 2010)
Document based applications allow the management of multiple documents within

5http://www.teamst.org

53

http://www.teamst.org

one application instance. This is the typical application behavior for content creat-
ing applications. For better readability only simplified schematics of the class model
are presented.
As a convention all Cocoa framework classes are prefixed with NS. Custom Line-
Producer classes also follow this specification by using a LP prefix.
The main runloop for each Cocoa application is implemented in the NSApplication
class which is instantiated and executed in the main function of every Cocoa appli-
cation and responsible for creating the basic infrastructure of the application. As
subclassing NSApplication is highly unrecommended, a delegate handles all appli-
cation global custom behavior.
Within LineProducer several application global functionality is located at this level.

Figure 3.17: LineProducer Application Class Diagram

(see Figure 3.17)

• LPPreferencesWindowController : This controller is responsible for application
preferences. It uses the NSUserDefaults system storing application preferences

• LPRatebookWindowController : As ratebook data is not connected to docu-
ments and available at any times this class manages the ratebook. The rate-

54

book contains default rates for often used items in a typical film budget like
typical wages and equipment prices.

• LPWizardWindowController : When starting LineProducer without a project,
a wizard is presented to allow the easy creation of a LineProducer Project.
At the end of the wizard a LineProducer document with customized settings
from the wizard is instantiated.

• LPWelcomeScreenController : At the top level, licensing is an important con-
cern. Each user has to obtain a valid license and register his copy of Line-
Producer. This is obviously another application- and not document-related
operation.

Within the document based application a document controller is responsible for
creating, loading, saving and closing of documents. Each document represents a
LineProducer project and is connected to multiple window controllers for the spe-
cific tasks within a LineProducer project. A document typically has a custom win-
dow controller managing the document window. If necessary additional windowcon-
trollers are used to manage secondary windows related to a document. (see Figure
3.18)
In the case of LineProducer several secondary windows for managing document

Figure 3.18: LineProducer Document Class Diagram

data exist.

55

• LPVariablesWindowController : The variable system defines values to be used
across the whole project. Therefore this is the central location to manage these
values.

• LPVersioningWindowController : As each LineProducer project can be main-
tained in multiple versions, this controller is responsible for creating and delet-
ing multiple project versions.

• LPExportWindowController : Although this controller does not manage a lot
of user interfaces, it is responsible for exporting the project data to other
formats like Microsoft Excel and formatted pdf documents.

• LPProjectSettingsWindowController : Every LineProducer project has custom
settings. This controller manages all the information related to a document.

• LPDocumentWindowController : Finally this is the core of every LineProducer
project. The DocumentWindowController manages all functionality of a doc-
ument. Therefore it is also responsible for the main window of a document.

The document is also responsible for creating the underlying datamodel and con-
necting it to the different window controllers. Core Data is used for managing and
persisting project related information. (see Figure 3.19)
A subclass of NSDocument called NSPersistentDocument already implements the

Figure 3.19: LineProducer Model Class Diagram

main components of a typical Core Data infrastructure.

56

• NSManagedObjectModel: The Core Data model describes the datastructure
used for storing all LineProducer project related information. It is created
using a graphical modeling tool described in Section 3.2.4.

• NSManagedObjectContext: The context is a scratchpad for handling data ob-
jects. Therefore it is responsible for adding and removing objects. It also
manages referential integrity and on demand loading of objects.

• NSPersistentStoreCoordinator : This class is responsible for persisting all ob-
jects present in the context. Therefore one or more persistent stores are added
to the coordinator. Each store can be written to a file in the filesystem.

• NSManagedObject: All custom model functionality is implemented in classes
inherited from NSManagedObject. Each managed object represents a single
aspect of a LineProducer document. The main components of a document can
be separated into Navigation objects, responsible for the rough structure of a
document, budget and financing related objects.

The user interface in Cocoa applications is composed of NSView subclasses. Line-
Producer is mainly based on data organized in table and outline views. Other fre-
quently used components include NSTextView and NSButtons for user interactions.
Besides these standard classes, a vast amount of LineProducer specific subclasses
have been implemented to customize the view behavior and present information to
the user.

57

58

4. Results

Within this chapter the resulting software project and also a review of used SDM and
UE methods are presented. From a technical point of view the software is finished
and user feedback is gathered for further development. As the software development
has been finished the development process has proven to create a usable output and
therefore can be seen as successful.

4.1 Developed Software Product

The developed software is already in use by several film production companies in
Germany. Several usability techniques have been used to improve the user expe-
rience. Most of the requirements are covered by the product. Some tradeoffs in
terms of features had to be made and postponed for later development. The phase
of software maintenance has been reached and currently only minor changes and
bugfixes are made.

4.1.1 Budgeting

A typical film project requires the capture of all cost relevant positions. The highest
level of each Budget consist of cost categories already described in section 2.1.1.
Within the cost categories exists a hierarchical structure of cost groups and indi-
vidual cost positions. This hierarchy allows creating a individual cost structure.
Cost positions typically consist of a description, amount and price per unit. Storing
a currency with each position is an essential feature for international film projects.
Within larger film production companies the numbering of cost positions allows link-
age of cost position between different systems. Data exchange between accounting

59

and budget planning is performed on the basis of this numbering.

Figure 4.1: Cost positions in LineProducer

Besides the hierarchical structuring of cost positions separating all costs by its
type, additional information is often needed about groups of costs across the hi-
erarchy. Therefore a tagging system has been included, allowing quick access to
information about distinct modules of the film production not fitting the standard
cost structure. An example would be to gather all costs related to a shoot on a spe-
cific location. This includes cost positions spread across categories like transport,
locations, cast, art department and many more. Tagging has proven to be a tool
easy to use for categorizing information without a controlled vocabulary. Marlow
et al. (2006) This allows a great amount of flexibility without a negative impact on
usability.

Adding meta information to cost positions allows querying for certain attributes.
The combination of such properties creates a powerful tool for controlling. With this
additional information it is possible to identify inconsistencies in the planned budget.
It is for example possible to find cost positions for staff on a certain location with
missing accommodation. Another possibility is to identify exceptionally expensive
travels. As a production manager this reveals numerous potential savings. (Figure
4.2)

Filtering hierarchical data for certain attributes was achieved by hiding not
matching individual rows and recalculating visible costs. Cost groups therefore
also are hidden if no matching entry is contained. The quick filtering area on screen
allows the temporary application of filters to a project. Three different settings are
possible. "And" and "or" filtering is applied with its natural meaning. "Not" filters
allow a combination of multiple criteria A and B resulting in a NOT (A AND B)
combination of filter elements.

Another requirement for a Budget is to be easily modifiable. Costs are often
time dependent, resulting in groups of cost positions being related in terms of time

60

Figure 4.2: Combined Queries in LineProducer

but not cost height. Given the example before, the length of a shoot at a certain
location influences several cost positions. Location fees, wages and rentals depend
on the amount of shooting days. Software developers are familiar with variables,
still the target group does have to learn how to abstract the usage of them, resulting
in an increase of flexibility and time savings. (Figure 4.3)

During the production of a film, several budgets are created. An essential fea-
ture is the maintenance and comparison of different budgets. The prototyping phase
identified several key concepts for versioning and comparison. The numbering and
hierarchy delivers a comparison attribute reasonable to the user. Using more so-
phisticated attributes for comparison resulted in easier maintenance of budgets, but
in some cases created misleading comparison information to the user resulting in
distrust to the software. Visualizing comparison results is another difficult task.
The amount of information visible on screen displaying two budgets side by side
creates an information overload. Therefore essential information for display has to
be identified. (Figure 4.4)

61

Figure 4.3: Variables in LineProducer

Figure 4.4: Budget Comparison in LineProducer

62

4.1.2 Financing

Financing within a film project can have a complex structure. Several influencing
factors have to be taken into account. Simple budgets only have one producer with
a fixed budget and internal financing. If several coproducers are involved, there is
a need to exactly represent the actual financing situation. This combination of dif-
ferent sources of funding is the basis for recoupment negotiations. Therefore several
key figures need to be calculated and traceable at all times. Costs and funding are
directly related. For every cost position there needs to be a responsible person. In
co-production situations, there is a need to strictly separate this responsibilities.
LineProducer therefore allows the assignment of cost positions to different copro-
ducers creating clarified matters. In return, the cost responsibility can easily be
measured and taken into account for negotiations.

Figure 4.5: Financing Key Figures in LineProducer

A typical financing position contains a description, an amount and several prop-
erties for the type of financing. (Figure 4.6) These types are all user customizable
and represented on the top sheet. Typical types of financing positions are internal
versus external or subsidized funding.
Those properties are essential to a film project and need to be within certain limits

63

not to risk the whole project.

Figure 4.6: Financing in LineProducer

Figure 4.7: Grants in LineProducer

Another aspect of film financing is the gathering of subsidies. In Europe, several
institutions distribute subsidies for film projects. To receive subsidies several aspects
have to be taken into account while planning a budget. Receiving a certain amount
of subsidy requires to generate costs of a significant amount higher than the subsidy.

64

Typically, there is a percentage defined for a subsidy which has to be compensated
for in costs within a certain region. Therefore cost positions can be assigned to
different subsidies. The current state of subsides can be displayed in the project
overview. (Figure 4.7)

4.1.3 Cash Flow

The inclusion of costing and financing within a single project in combination with
time information allows the creation of cash flow plans. Section 2.1.1 already men-
tions the importance of cash flow planning within a film project. As there is no
standardized form of cash flow planning, a self defined system has been established.
Every position in budgeting and financing can be connected to time information.
Within the cash flow overview a cash flow plan is calculated. To meet the most
common requirements for recurring payments, a distribution of costs over time is
essential. This requires the definition of a cash flow period and some sort of payment
rule. (Figure 4.8)

For financing positions a fragmentation of payments is often required. Each
position can be separated into several user defined parts. Changing the height
of a position is correctly reflected in cash flow through recalculation of cash flow
relevant sums with the same ratios as originally defined. During development several
scenarios have been discussed with fixed sum shares but automatic recalculation has
been decided to be the most important aspect allowing quick changes to the budget
without creating inconsistencies. (Figure 4.9)

The cash flow plan itself is represented in a table with user selectable granularity
of weeks and months. During the critical shooting phase where cash flow is far
higher than in the other production phases, a weekly cash flow plan is essential.
Additionally a graphical representation is also available to give a general overview
of the current projects state. (Figure 4.10)

65

Figure 4.8: Cash Flow Rules in LineProducer

Figure 4.10: Cash Flow Overview in LineProducer66

Figure 4.9: Cash Flow Fragmentation in LineProducer

Cash flow bottlenecks can easily be identified and appropriate measures can be
taken.

4.2 Established Development Process

With the project team size growing a need for coordination appeared. First a sim-
ple task and bug tracking system was established to keep track of work to be
done. Within this phase, also coordination became more important for develop-
ment. Therefore common agile software development methodologies were evaluated
for their usage within the current team. Also usability engineering shaped up as
vital for this project.

67

4.2.1 Software Development

Crystal Clear was an interesting approach. Leading a project team with this back-
ground information in mind worked for this project, still revealed shortcomings of a
freely changeable development methodology.
The colocation of the development team was very well accepted by the team. The
close communication within the team assisted the development process.
Short iterations for frequent delivery resulted in a streamlined testing and deploy-
ment process.
The average iteration length was about four weeks after introducing Crystal Clear
in the second iteration. Figure 4.11 shows the duration lengths of the first 12 iter-
ations which lasted 388 days in total. Iterations tended to last significantly longer
ahead of major releases. Iteration eight resulted in the first private beta test with
film students and iteration twelve in the first public release.
Using the information of the ticketing system described in Section 3.2.3 perfor-

Figure 4.11: Iteration Duration

mance in terms of tickets resolved per day within an iteration can be calculated.
(Figure 4.12)
In total, 806 tickets were closed during the development period.
Within the ticketing system, each ticket was classified as bug or task. The average
ratio of task tickets was about 30 percent and ranged from 10 up to 54 percent. A
high ratio identified iterations with focus on new feature development. (Figure 4.13)
Also internally detected bugs were added to the ticketing system, therefore this does

68

Figure 4.12: Average Tickets Resolved per Day

not reflect the amount of errors in released software versions.

Figure 4.13: Task Ratio of Total Tickets

Using the source control management system described in Section 3.2.2 addi-
tional statistics can be created. The average commit rate per day was 13.36 and
varied from 10 to a maximum of 20 during the iterations. (Figure 4.14)
Another interesting figure is the growth of the codebase. Starting with initially
17k lines of code, after the twelfth iteration a total amount of 58k lines of code was
reached. (Figure 4.15)

69

Figure 4.14: SCM Commits per Day

This statistic was generated using the tool CLOC1. CLOC implements an algorithm
to count physical lines of code removing comments first. Therefore the actual count
also depends on code formatting in opposite to logical lines of code. Still these met-
rics give an impression of the total amount of code written for the current project.
Using this information the code increase per iteration can also be visualized. Fig-

Figure 4.15: Lines of Code in LineProducer

ure 4.16 shows a decrease in new lines of code over time. Also the holiday season
1http://cloc.sourceforge.net/

70

http://cloc.sourceforge.net/

in iteration nine can be clearly identified in this graph as the written lines of code
drastically decreased in this period.

Figure 4.16: Lines of Code Written per Day

Within the MVC Software Design especially the model layer was covered with
unit tests.
Unit testing is essential for frequent deliveries to maintain high quality. Still from a
developers perspective unit testing is often perceived as an annoying task. Therefore
the test system has to be as easy to use as possible. Unreasonable impediments must
be eliminated to support the usage of a unit test system or the test coverage will
decrease drastically. Some information about the current test coverage is displayed
in Table 4.1.

Model Controller Total
Relevant classes 42 7 49
Test classes 30 7 37
Tests 157 22 179
Tests/Test class 5.23 3.14 4.86

Table 4.1: Test Coverage

Using the lines of code statistics also the amount of test code written can be
measured. With a refactoring of the folder structure of the project in iteration four

71

the separate tracking of the model layer was easily possible. Developing unit tests
started in iteration six resulting in a basic test coverage of the model layer. (Figure
4.17).

Figure 4.17: Lines of Code for Testing

Reflective Improvement was not explicitly performed still within regular meetings
possible improvements were discussed. The main three properties of crystal clear
can be assumed established and the development process finished.

4.2.2 Usability Engineering

With increasing application complexity the usability aspect became more impor-
tant.
A thinking aloud test was performed during development before final release and
discovered several issues developers would not have thought of. Still the time con-
suming process is hardly suitable for frequent releases. Only new components should
be tested thoroughly with end users.
During regular iterations heuristic evaluations became the methodology of choice.
Several paper mockups were produced by each team member and evaluated as a
group.
To increase the paper mockup quality, templates with standard user interface ele-
ments were created and used.

72

5. Discussion & Conclusion

Several important aspects of software development were discussed and their appli-
cation presented. Some of them have proven to be of exceptional usefulness, others
failed for one or the other reason. Still the project as a whole can be considered
successful and the development team evolved to a new level of professionalism. In
general the awareness for usability and also development process has been enhanced.

5.1 Software Development Methodologies

Establishing a defined software development process was obligatory, choosing a
rather soft transition into agile software development with Crystal Clear, probably
lowered barriers against agile development methodologies but was not successfully
established as a process.
The different aspects of Crystal Clear have proven its usefulness.

• Frequent Delivery can be considered established, all relevant processes for
distribution were automated to create a one click distribution solution. Au-
tomated testing was introduced at a later stage, saving critical parts of the
project with heavy interdependencies from being not maintainable at all. Also
a certain level of code quality was introduced by securing the code foundation
of the project. With all these tools in place, the feature of frequent delivery
was used to gather feedback information from several testers, also being able
to respond to bugreports within reasonable time.

• Osmotic communication was well accepted by the team. Required by space
constraints at the project start, in later stages the team preferred to stay
within close communication ranges, even if it was not a general requirement

73

after project finish. At some point, the constant background noise tended to
influence some developers in a negative way, but the team managed to balance
this problem by establishing silent phases for undisturbed productivity.

• Reflective Improvement was unfortunately given too little attention from
the beginning. As an open communication existed among the team the lack of
explicit reflection did not have large negative impact. Still the introduction of
regular retrospectives revealed interesting improvements within the team and
the development process as well.

5.2 Usability Engineering

The awareness among the team for usability engineering existed from the begin-
ning. Scientific usability tests were initially planned and carried out with students
and revealed to be of less use with domain experts. With the relationship of de-
velopers being dependent on input and time of these experts, it was hard to follow
strict testing protocols. Nevertheless the information was of great use in terms of
requirements engineering. Heuristic evaluations were a matter of course, as creating
good and usable interfaces for complex problems were a primary concern of all team
members.

5.3 Code Reuse

Code reuse and licensing were a relevant topic for this project, as several third
party code was integrated into the current software product. Especially the problem
of reuse of public available code without explicit license was often neglected by
developers, creating possible legal threats for the project. With minimum guidelines
for code reuse in place, all team members perceived the possible risks and carefully
selected code fragments. In general the development time was drastically reduced
by reusing third party code and also a solid foundation of own code ready for reuse
was established. Not all third party code proved to be of the expected quality and
often had to be fixed by the team. Reporting bugs and submitting patches to the
original authors was self-evident, but not always appreciated. Some of the reported

74

bugs have not been fixed until today.

5.4 Developed Software Product

With the developed product already finished for a first release, some topics on the
product itself could be discussed. Functionality is still a key to user satisfaction in
our target group. Only if all basic requirements are met, they can benefit from all the
additional possibilities the software offers to them. Our first customers very much
appreciated the attention we gave them, eliciting feedback for further improvement.
Nevertheless feedback had to be carefully filtered for its general applicability by
potential customers. The target group in general seems to be more fragmented
than expected. Domain experts we expected to deliver valuable general applicable
knowledge exposed to have a very self centered view on the topic of film production
with their projects in mind. Therefore some essential features are currently missing.
As the software is just a part of a larger workflow, the subject of interfaces was
underestimated. With a first large company as customer, interfaces were developed
to communicate with existing systems. User satisfaction was very high. Customers
using LineProducer emphasized the ease of use and especially time savings due
to the multiple options for filtering and exporting partial budgets. In general the
product seems to fulfill the basic requirements and expectations of the target group,
still quite some effort is necessary to integrate the software into the film production
process in a better way.

75

76

6. Future Work

As software almost never can be considered finished, work on this project will also
continue. Basic tasks of future work are maintaining the current system, extending
its functionality for future releases and putting some effort into research on new
possibilities for innovation.

Maintenance for existing users of the software is a key factor to success, gather-
ing feedback for improvement and increasing customer satisfaction.
Treating customer feedback in a way the customer feels taken care of, increases the
products reputation and also quality. With a software product being in produc-
tive usage, newly discovered bugs need to be fixed. Therefore the current feedback
system delivers extensive information for debugging if necessary. Also new feature
requests need to be recorded and integrated into the future development plan.
Not every feature request has to result in an immediate implementation as most of
them are far too specific for the majority of users. Therefore also customer specific
implementation is offered as a service to existing customers.

For successful sales a roadmap for future development has been established, de-
livering new features for keeping an edge over competitors.

Also internal development work has to be done, several parts of the software need
refactoring simultaneously, extending the test coverage on existing code. Maintain-
ing a release version requires extensive testing, not to break any current functionality.
Automating the test process is an interesting approach for cutting costs in this phase
of the product lifecycle. Several technologies exist for automated user interface test-
ing, requiring quite some effort in introducing such a system at a useful level.

77

There has already been put some effort into research for a more complete support
of the film production process by supporting the script breakdown phase.
A diploma thesis has been authored, covering this part of the film production pro-
cess, delivering interesting results. Semi automatic support in classification of text
elements can drastically speed up this process and increase its quality.
Also the scheduling task within the film production process could be improved, by
integrating academic knowledge into the film production process. From a usability
perspective several parts of the interface could need testing to prove their usefulness.
With modern remote usability testing methods the end user could be directly in-
volved into this process.
The software itself and its current design strongly encourage the integration of such
methods to gather valuable usage information for future improvements.

78

A. Software Metric Tables

Iteration SVN Revision Iteration Duration Revisions/Iteration Revisions/day
1 1019 95 1019 10,73
2 1250 17 231 13,59
3 1481 22 231 10,50
4 1877 22 396 18,00
5 2119 15 242 16,13
6 2684 35 565 16,14
7 3208 28 524 18,71
8 3783 50 575 11,50
9 3989 21 206 9,81
10 4176 14 187 13,36
11 4390 20 214 10,70
12 4935 49 545 11,12

Table A.1: LineProducer Iterations and Subversion Revisions

Iteration Bugs/Iteration Tasks/It. Tasks/Tickets Tickets/It. Tickets/Day
1 81 55 0,40 136 1,43
2 8 1 0,11 9 0,53
3 18 21 0,54 39 1,77
4 23 16 0,41 39 1,77
5 17 12 0,41 29 1,93
6 36 30 0,45 66 1,89
7 102 32 0,24 134 4,79
8 68 55 0,45 123 2,46
9 21 7 0,25 28 1,33
10 30 4 0,12 34 2,43
11 53 6 0,10 59 2,95
12 72 38 0,35 110 2,24

Table A.2: LineProducer Iterations and Tasks

79

Iteration LOC LOC/It. LOC/Day Files Files/It. Files/Day
1 17.000 17.000 178,95 197 197 2,07
2 20.509 3.509 206,41 243 46 2,71
3 23.294 2.785 126,59 275 32 1,45
4 29.359 6.065 275,68 326 51 2,32
5 32.207 2.848 189,87 339 13 0,87
6 38.667 6.460 184,57 394 55 1,57
7 42.692 4.025 143,75 425 31 1,11
8 48.732 6.040 120,80 482 57 1,14
9 49.102 370 17,62 484 2 0,10
10 50.492 1.390 99,29 502 18 1,29
11 51.993 1.501 75,05 514 12 0,60
12 58.116 6.123 124,96 570 56 1,14

Table A.3: LineProducer Lines of Code and Files

Iteration LOC Model LOC Test
1 0 0
2 0 0
3 0 0
4 6.172 0
5 7.158 0
6 8.935 1.804
7 10.733 2.616
8 11.899 3.094
9 12.754 3.673
10 13.206 3.673
11 13.588 3.700
12 14.868 3.702

Table A.4: LineProducer Lines of Code for Testing

80

List of Figures

2.1 The Film Production Process . 4

2.2 US Sample Budget export from Movie Magic Budgeting 6

2.3 FFA Sample Budget Export from LineProducer 7

2.4 Different Budget Types within the Film Production Process 8

2.5 Waterfall Model, (Royce, 1987) . 11

2.6 Spiral Model, (Boehm, 1986) . 11

2.7 Evolutionary Approach, (Kordon and Luqi, 2002) 13

2.8 Software Testing Classification . 24

3.1 CC + UE Methodology . 34

3.2 Test Classes Diagram . 38

3.3 Bug Fixing Process . 39

3.4 Feature Request Workflow . 40

3.5 LineProducer Client Update . 41

3.6 LineProducer Feedback Reporter . 43

3.7 Office Layout for Osmotic Communication 44

3.8 Developer Documentation using a Wiki System 46

3.9 Source Control Management using Subversion and svnX 47

3.10 Trac Bugtracking . 48

3.11 Xcode IDE . 49

3.12 Xcode Frontend for GDB . 50

3.13 Core Data Model Editor . 51

81

3.14 Interface Builder . 51

3.15 Running Unit Tests with OCUnit . 52

3.16 Testlink . 53

3.17 LineProducer Application Class Diagram 54

3.18 LineProducer Document Class Diagram 55

3.19 LineProducer Model Class Diagram 56

4.1 Cost positions in LineProducer . 60

4.2 Combined Queries in LineProducer 61

4.3 Variables in LineProducer . 62

4.4 Budget Comparison in LineProducer 62

4.5 Financing Key Figures in LineProducer 63

4.6 Financing in LineProducer . 64

4.7 Grants in LineProducer . 64

4.8 Cash Flow Rules in LineProducer . 66

4.10 Cash Flow Overview in LineProducer 66

4.9 Cash Flow Fragmentation in LineProducer 67

4.11 Iteration Duration . 68

4.12 Average Tickets Resolved per Day . 69

4.13 Task Ratio of Total Tickets . 69

4.14 SCM Commits per Day . 70

4.15 Lines of Code in LineProducer . 70

4.16 Lines of Code Written per Day . 71

4.17 Lines of Code for Testing . 72

82

List of Tables

2.1 Comparison of Open Source Software Licenses 23

2.2 Comparison of Usability Evaluation Techniques, (Holzinger, 2005) . . 28

3.1 Reused Software Components in LineProducer 36

4.1 Test Coverage . 71

A.1 LineProducer Iterations and Subversion Revisions 79

A.2 LineProducer Iterations and Tasks 79

A.3 LineProducer Lines of Code and Files 80

A.4 LineProducer Lines of Code for Testing 80

83

84

References

Adair, John G. [1984]. The Hawthorne effect: a reconsideration of the methodological
artifact. Journal of Applied Psychology, 69, pages 334 – 335.

Apple [2010]. Document-Based Applications Overview. http://developer.

apple.com/library/mac/#documentation/cocoa/conceptual/Documents/

Documents.html.

Bates, Christopher D. and Simeon Yates [2008]. Scrum down: a software engineer
and a sociologist explore the implementation of an agile method. In CHASE ’08:
Proceedings of the 2008 international workshop on Cooperative and human aspects
of software engineering, pages 13–16. ACM, New York, NY, USA. ISBN 978-1-
60558-039-5. http://doi.acm.org/10.1145/1370114.1370118.

Beck, Kent [1999]. Embracing Change with Extreme Programming. Computer,
32(10), pages 70–77. ISSN 0018-9162. http://dx.doi.org/10.1109/2.796139.

Beck, Kent [2002]. Test Driven Development: By Example. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA. ISBN 0321146530.

Bell, T. E. and T. A. Thayer [1976]. Software requirements: Are they really a prob-
lem? In ICSE ’76: Proceedings of the 2nd international conference on Software
engineering, pages 61–68. IEEE Computer Society Press, Los Alamitos, CA, USA.
http://portal.acm.org/ft_gateway.cfm?id=807650.

Bertolino, A. [2007]. Software Testing Research: Achievements, Challenges, Dreams.
In Future of Software Engineering, 2007. FOSE ’07, pages 85 –103. 10.1109/

FOSE.2007.25.

85

http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/Documents/Documents.html
http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/Documents/Documents.html
http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/Documents/Documents.html
http://doi.acm.org/10.1145/1370114.1370118
http://dx.doi.org/10.1109/2.796139
http://portal.acm.org/ft_gateway.cfm?id=807650
10.1109/FOSE.2007.25
10.1109/FOSE.2007.25

Boehm, B [1986]. A spiral model of software development and enhancement.
SIGSOFT Softw. Eng. Notes, 11(4), pages 14–24. ISSN 0163-5948. http:

//doi.acm.org/10.1145/12944.12948.

Clevé, Bastian [2005]. Film Production Management. Third Edition. Focal Press.

Cockburn, Alistair [2004]. Crystal clear a human-powered methodology for small
teams. Addison-Wesley Professional. ISBN 0201699478. http://portal.acm.

org/citation.cfm?id=1406822.

Di Penta, Massimiliano, Daniel M. German, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol [2010]. An exploratory study of the evolution of software licensing. In
Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering - Volume 1, pages 145–154. ICSE ’10, ACM, New York, NY, USA. ISBN
978-1-60558-719-6. http://doi.acm.org/10.1145/1806799.1806824.

Errath, Maximilian, Andreas Holzinger, and Wolfgang Slany [2004]. Agile Software-
entwicklung. OCG Journal, 29(5), pages 4–6.

Feiner, Johannes, Keith Andrews, and Elmar Krajnc [2010]. UsabML: formalising
the exchange of usability findings. In Proceedings of the 2nd ACM SIGCHI sym-
posium on Engineering interactive computing systems, pages 297–302. EICS ’10,
ACM, New York, NY, USA. ISBN 978-1-4503-0083-4. doi:http://doi.acm.org/10.
1145/1822018.1822065. http://doi.acm.org/10.1145/1822018.1822065.

Fox, David, Jonathan Sillito, and Frank Maurer [2008]. Agile Methods and User-
Centered Design: How These Two Methodologies are Being Successfully Integrated
in Industry. In AGILE ’08: Proceedings of the Agile 2008, pages 63–72. IEEE
Computer Society, Washington, DC, USA. ISBN 978-0-7695-3321-6. http://dx.

doi.org/10.1109/Agile.2008.78.

Glass, Robert L. [2009]. A Classification System for Testing, Part 2. IEEE Software,
26(1), pages 104, 103. ISSN 0740-7459. http://doi.ieeecomputersociety.org/

10.1109/MS.2009.1.

Gould, John D. and Clayton Lewis [1983]. Designing for usability—key principles
and what designers think. In CHI ’83: Proceedings of the SIGCHI conference on

86

http://doi.acm.org/10.1145/12944.12948
http://doi.acm.org/10.1145/12944.12948
http://portal.acm.org/citation.cfm?id=1406822
http://portal.acm.org/citation.cfm?id=1406822
http://doi.acm.org/10.1145/1806799.1806824
http://doi.acm.org/10.1145/1822018.1822065
http://dx.doi.org/10.1109/Agile.2008.78
http://dx.doi.org/10.1109/Agile.2008.78
http://doi.ieeecomputersociety.org/10.1109/MS.2009.1
http://doi.ieeecomputersociety.org/10.1109/MS.2009.1

Human Factors in Computing Systems, pages 50–53. ACM, New York, NY, USA.
ISBN 0-89791-121-0. http://doi.acm.org/10.1145/800045.801579.

Holzinger, A., K.H. Struggl, and M. Debevc [2010]. Applying Model-View-Controller
(MVC) in design and development of information systems: An example of smart
assistive script breakdown in an e-Business application. In e-Business (ICE-B),
Proceedings of the 2010 International Conference on, pages 1 –6.

Holzinger, Andreas [2005]. Usability engineering methods for software developers.
Commun. ACM, 48(1), pages 71–74. ISSN 0001-0782. http://doi.acm.org/10.

1145/1039539.1039541.

Holzinger, Andreas [2006]. Thinking-aloud - eine Königsmethode im Usability Engi-
neering. OCG Journal, 31(1), pages 4–5.

Holzinger, Andreas and Stephen Brown [2008]. Low cost prototyping: part 2, or how
to apply the thinking-aloud method efficiently. In BCS HCI Conference, pages
217–218. doi:10.1145/1531826.1531897.

Holzinger, Andreas and Maximilian Errath [2004]. Extreme usability. OCG Journal,
29(4), pages 16–18.

Holzinger, Andreas, Maximilian Errath, Gig Searle, Bettina Thurnher, and Wolf-
gang Slany [2005]. From Extreme Programming and Usability Engineering to Ex-
treme Usability in Software Engineering Education (XP+UE->XU). In COMP-
SAC ’05: Proceedings of the 29th Annual International Computer Software and
Applications Conference, pages 169–172. IEEE Computer Society, Washington,
DC, USA. ISBN 0-7695-2413-3-02. http://dx.doi.org/10.1109/COMPSAC.

2005.80.

Holzinger, Andreas, Wolfgang Slany, and Martin Brugger [2011]. APPLYING AS-
PECT ORIENTED PROGRAMMING IN USABILITY ENGINEERING PRO-
CESSES On the example of Tracking Usage Information for Remote Usability
Testing. In ICE-B’11.

Hussain, Zahid, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang Slany,
Martin Umgeher, and Thomas Vlk [2008a]. Optimizing Extreme Programming.

87

http://doi.acm.org/10.1145/800045.801579
http://doi.acm.org/10.1145/1039539.1039541
http://doi.acm.org/10.1145/1039539.1039541
http://dx.doi.org/10.1109/COMPSAC.2005.80
http://dx.doi.org/10.1109/COMPSAC.2005.80

In ICCCE 2008: Proceedings of the International Conference on Computer and
Communication Engineering, Kuala Lumpur, Malaysia, pages 1052–1056. IEEE.
ISBN 978-1-4244-1691-2.

Hussain, Zahid, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang Slany,
Martin Umgeher, and Peter Wolkerstorfer [2008b]. Integrating Extreme Program-
ming and User-Centered Design. In PPIG 2008, The 20th Annual Psychology of
Programming Interest Group Conference, Lancaster University, UK. 10th - 12th
September 2008.

Hussain, Zahid, Martin Lechner, Sara Shahzad, and Wolfgang Slany [2008c]. Inside
View of an Extreme Process. In Agile Processes in Software Engineering and
Extreme Programming, pages 226–227. LNBIP, Springer Verlag. 9th International
Conference, XP 2008, Limerick, Ireland.

ISO [1998]. ISO 9241-14:1998 Ergonomic requirements for office work with visual
display terminals (VDTs) – Part 14: Menu Dialogues. Technical Report, Inter-
national Organization for Standardization.

Janzen, David and Hossein Saiedian [2005]. Test-Driven Development: Concepts,
Taxonomy, and Future Direction. Computer, 38, pages 43–50. ISSN 0018-
9162. doi:10.1109/MC.2005.314. http://portal.acm.org/citation.cfm?id=

1092229.1092262.

Keil, Mark and Erran Carmel [1995]. Customer-developer links in software de-
velopment. Commun. ACM, 38(5), pages 33–44. ISSN 0001-0782. http:

//doi.acm.org/10.1145/203356.203363.

Kordon, Fabrice and Luqi [2002]. An Introduction to Rapid System Prototyping.
IEEE Trans. Softw. Eng., 28(9), pages 817–821. ISSN 0098-5589. http://dx.

doi.org/10.1109/TSE.2002.1033222.

Lee, Jason Chong and D. Scott McCrickard [2007]. Towards Extreme(ly) Usable
Software: Exploring Tensions Between Usability and Agile Software Development.
In AGILE ’07: Proceedings of the AGILE 2007, pages 59–71. IEEE Computer
Society, Washington, DC, USA. ISBN 0-7695-2872-4. http://dx.doi.org/10.

1109/AGILE.2007.63.

88

http://portal.acm.org/citation.cfm?id=1092229.1092262
http://portal.acm.org/citation.cfm?id=1092229.1092262
http://doi.acm.org/10.1145/203356.203363
http://doi.acm.org/10.1145/203356.203363
http://dx.doi.org/10.1109/TSE.2002.1033222
http://dx.doi.org/10.1109/TSE.2002.1033222
http://dx.doi.org/10.1109/AGILE.2007.63
http://dx.doi.org/10.1109/AGILE.2007.63

Lewis, C. [1982]. Using the thinking-aloud method in cognitive interface design.
Technical Report IBM Research Report RC 9265, IBM, Yorktown Heights, NY.

Lewis, Clayton, Peter G. Polson, Cathleen Wharton, and John Rieman [1990]. Test-
ing a walkthrough methodology for theory-based design of walk-up-and-use inter-
faces. In CHI ’90: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 235–242. ACM, New York, NY, USA. ISBN 0-201-
50932-6. http://doi.acm.org/10.1145/97243.97279.

Marlow, Cameron, Mor Naaman, Danah Boyd, and Marc Davis [2006]. HT06,
tagging paper, taxonomy, Flickr, academic article, to read. In Proceedings of the
seventeenth conference on Hypertext and hypermedia, pages 31–40. HYPERTEXT
’06, ACM, New York, NY, USA. ISBN 1-59593-417-0. http://doi.acm.org/10.

1145/1149941.1149949.

Morad, Shlomit and Tsvi Kuflik [2005]. Conventional and Open Source Software
Reuse at Orbotech - An Industrial Experience. In Proceedings of the IEEE In-
ternational Conference on Software - Science, Technology & Engineering, pages
110–117. IEEE Computer Society, Washington, DC, USA. ISBN 0-7695-2335-8.
doi:10.1109/SWSTE.2005.11.

Nielsen, Jakob [1993]. Usability Engineering. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA. ISBN 0125184050.

Nielsen, Jakob [1994]. Estimating the number of subjects needed for a thinking aloud
test. Int. J. Hum.-Comput. Stud., 41(3), pages 385–397. ISSN 1071-5819. http:

//dx.doi.org/10.1006/ijhc.1994.1065.

Nielsen, Jakob and Rolf Molich [1990]. Heuristic evaluation of user interfaces. In
CHI ’90: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 249–256. ACM, New York, NY, USA. ISBN 0-201-50932-6. http:

//doi.acm.org/10.1145/97243.97281.

Nuseibeh, Bashar and Steve Easterbrook [2000]. Requirements engineering: a
roadmap. In ICSE ’00: Proceedings of the Conference on The Future of Soft-
ware Engineering, pages 35–46. ACM, New York, NY, USA. ISBN 1-58113-253-0.
http://doi.acm.org/10.1145/336512.336523.

89

http://doi.acm.org/10.1145/97243.97279
http://doi.acm.org/10.1145/1149941.1149949
http://doi.acm.org/10.1145/1149941.1149949
http://dx.doi.org/10.1006/ijhc.1994.1065
http://dx.doi.org/10.1006/ijhc.1994.1065
http://doi.acm.org/10.1145/97243.97281
http://doi.acm.org/10.1145/97243.97281
http://doi.acm.org/10.1145/336512.336523

Obendorf, Hartmut and Matthias Finck [2008]. Scenario-based usability engineer-
ing techniques in agile development processes. In CHI ’08 extended abstracts
on Human factors in computing systems, pages 2159–2166. CHI EA ’08, ACM,
New York, NY, USA. ISBN 978-1-60558-012-8. http://doi.acm.org/10.1145/

1358628.1358649.

OSI [2011]. The Open Source Definition. http://www.opensource.org/docs/osd.

Paech, B and K Kohler [2003]. Usability Engineering integrated with Require-
ments Engineering. In Bridging the Gaps Between Software Engineering and
Human-Computer Interaction, volume 0, pages 36–40. IEEE Computer Society,
Los Alamitos, CA, USA.

Patton, Jeff [2002]. Hitting the target: adding interaction design to agile software
development. In OOPSLA ’02: OOPSLA 2002 Practitioners Reports, pages 1–
ff. ACM, New York, NY, USA. ISBN 1-58113-471-1. http://doi.acm.org/10.

1145/604251.604255.

Poole, Damon [2006]. Breaking the Major Release Habit. Queue, 4(8), pages 46–51.
ISSN 1542-7730. http://doi.acm.org/10.1145/1165754.1165768.

Rajlich, Vaclav [2006]. Changing the paradigm of software engineering. Commun.
ACM, 49(8), pages 67–70. ISSN 0001-0782. http://doi.acm.org/10.1145/

1145287.1145289.

Rising, Linda and Norman S. Janoff [2000]. The Scrum Software Development
Process for Small Teams. IEEE Softw., 17(4), pages 26–32. ISSN 0740-7459.
http://dx.doi.org/10.1109/52.854065.

Royce, W. W. [1987]. Managing the development of large software systems: concepts
and techniques. In ICSE ’87: Proceedings of the 9th international conference on
Software Engineering, pages 328–338. IEEE Computer Society Press, Los Alami-
tos, CA, USA. ISBN 0-89791-216-0. http://portal.acm.org/ft_gateway.cfm?

id=41801.

Sojer, Manuel and Joachim Henkel [2011]. License Risks from Ad-Hoc Reuse of Code
from the Internet: An Empirical Investigation. SSRN eLibrary.

90

http://doi.acm.org/10.1145/1358628.1358649
http://doi.acm.org/10.1145/1358628.1358649
http://www.opensource.org/docs/osd
http://doi.acm.org/10.1145/604251.604255
http://doi.acm.org/10.1145/604251.604255
http://doi.acm.org/10.1145/1165754.1165768
http://doi.acm.org/10.1145/1145287.1145289
http://doi.acm.org/10.1145/1145287.1145289
http://dx.doi.org/10.1109/52.854065
http://portal.acm.org/ft_gateway.cfm?id=41801
http://portal.acm.org/ft_gateway.cfm?id=41801

van Lamsweerde, Axel [2000]. Requirements engineering in the year 00: a research
perspective. In ICSE ’00: Proceedings of the 22nd international conference on
Software engineering, pages 5–19. ACM, New York, NY, USA. ISBN 1-58113-
206-9. http://doi.acm.org/10.1145/337180.337184.

Wolkerstorfer, Peter, Manfred Tscheligi, Reinhard Sefelin, Harald Milchrahm, Zahid
Hussain, Martin Lechner, and Sara Shahzad [2008]. Probing an agile usability
process. In CHI ’08: CHI ’08 extended abstracts on Human factors in computing
systems, pages 2151–2158. ACM, New York, NY, USA. ISBN 978-1-60558-012-X.
http://doi.acm.org/10.1145/1358628.1358648.

91

http://doi.acm.org/10.1145/337180.337184
http://doi.acm.org/10.1145/1358628.1358648

	Introduction and Motivation for Research
	Theoretical Background and Related Work
	Film Production Process
	Film Budgeting
	Current Software Products

	Software Development Methodologies
	Waterfall Model
	Spiral Model
	Software Prototyping
	Agile Software Development
	Crystal Clear
	Extreme Programming
	SCRUM
	Test Driven Development

	Reuse of Existing Software Components
	The Open Source Definition
	Comparison of Open Source Software Licenses

	Software Testing
	Requirements and Usability Engineering
	Requirements Engineering
	Usability

	Agile Software Development and Usability Engineering

	Materials and Methods
	Development Process
	Analysis
	Design
	Development
	Test
	Integrated Development Process
	Crystal Clear in context of the current Software Project

	Development Infrastructure
	Documentation
	Source Control Management
	Bugtracking and Task Management
	Integrated Development Environment
	Testing

	Software Architecture

	Results
	Developed Software Product
	Budgeting
	Financing
	Cash Flow

	Established Development Process
	Software Development
	Usability Engineering

	Discussion & Conclusion
	Software Development Methodologies
	Usability Engineering
	Code Reuse
	Developed Software Product

	Future Work
	Software Metric Tables
	List of Figures
	List of Tables
	References

