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Though this be madness, yet there is a method in't.
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Abstract

Strongly correlated systems are especially important for understanding the properties of nano-scale
structures and exotic materials such as high-temperature superconductors. As experimental tech-
niques steadily improve and potential applications are being envisioned, the need for a theoretical
explanation of correlation-induced phenomena is all the more forti�ed.
Within a wide range of theoretical approaches, in the area of many-body physics the Hubbard model
has been captivating most attention. In this thesis we treat the fermionic Hubbard model in the
framework of Cluster Perturbation Theory (CPT) and develop a pseudoparticle description of single-
particle excitations. A static or periodic external electric �eld is applied which as a consequence
drives the system out of equilibrium and gives rise to a particle current.
A variety of physical phenomena emerge, such as damping of Bloch oscillations, metal-to-insulator
transitions and Mott insulating phases. We look at the characteristics of a Mott insulator and
compare them with the features of conventional band insulators. Furthermore, we investigate the
time evolution of the current density and the reciprocity of kinetic and potential energies depending
on the strength of electron-electron interactions.
Apart from half-�lled systems in one and two spatial dimensions we are also concerned with band
doping and its e�ect on the system's response to an external �eld.
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Kurzfassung

Stark korrelierte Systeme sind insbesondere für das Verständnis der Eigenschaften von Nanostruk-
turen und exotischer Materialien, wie zum Beispiel Hochtemperatur-Supraleiter, von groÿer Be-
deutung. Nicht zuletzt im Hinblick auf die ständige Verbesserung der verfügbaren experimentellen
Methoden sowie potentielle Anwendungen ist es notwendig ein theoretisches Fundament für die
Beschreibung von korrelationsbedingten Phänomenen zu etablieren.
Auf dem weiten Gebiet der theoretischen Modellierung atomarer Systeme hat vor allem im Bereich
der Vielteilchenphysik das Hubbard Modell das gröÿte Interesse auf sich gezogen. In dieser Arbeit
formulieren wir im Rahmen der Cluster Störungstheorie einen Pseudoteilchen-Ansatz für das Fermi-
Hubbard Modell. Ein statisches oder oszillierendes äuÿeres elektrisches Feld treibt das System aus
dem Gleichgewicht und erzeugt einen elektrischen Strom.
Es können verschiedene physikalische E�ekte beobachtet werden, wie korrelationsabhängig gedämpfte
Bloch Oszillationen, Metall-Isolator Übergänge und Mott-isolierende Phasengebiete. Wir behandeln
die Besonderheiten von Mott-Isolatoren und vergleichen diese mit den Eigenschaften von gewöhn-
lichen Bandisolatoren. Darüber hinaus, werden die Zeitentwicklung der Stromdichte sowie das
Wechselspiel zwischen kinetischer und potentieller Energie in Abhängigkeit von der Elektron-Elektron
Wechselwirkung untersucht.
Neben halb gefüllten Anordnungen in ein und zwei Raumdimensionen, betrachten wir auÿerdem die
Auswirkungen von Band-Dotierungen auf das Strom-Zeit Verhalten des Systems unter dem Ein�uss
des externen elektrischen Feldes.
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Chapter 1

Introduction

Strongly correlated systems at the center of interest in many areas of condensed matter or many-
body physics. Their intriguing properties which give rise to complex and at times exotic physical
phenomena call on the attention of theorists and experimentalists alike.
The processes that govern the formation of high-temperature superconductors, for example, which
were discovered in the late 1980s [1], are still not very well understood. Especially cuprate com-
pounds (see Fig. 1.1 for an example), manganites or the family of low-dimensional vanadates [2]
and other advanced materials, such as organic conductors and colossal-magnetoresistance materials,
belong to the category of strongly correlated systems and have been the focus of extensive research
in recent years.
In contrast to materials where correlations between particles play a minor role, the theoretical
description of strong interaction constitutes a serious challenge because the resulting phenomena
cannot be inferred from the behavior of individual particles alone.

Figure 1.1: Atomic structure of BSCCO as an example for a high-temperature superconductor
belonging to the family of cuprates. Shown is the top half of the Bi2Sr2CaCu2O8 unit cell (the
lower half is identical except for a translation by a0/2 along the a axis). Crystal axes a, b, and c
are indicated [3]. As for most high-temperature superconductors, the superconductivity is a mainly
two-dimensional e�ect that emanates from the copper-oxide planes.

In a strongly interacting system the motion of each single particle is in�uenced by the position
and momentum of, at least in principle, all other particles. Most importantly for the particles'
correlations are long-range Coulomb forces.
In many cases, only the short range part of the interaction produces genuine correlation e�ects,
since long-range contributions can be e�ectively screened. One of the most in�uential models is
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1 Introduction

the Hubbard model, which was proposed already half a century ago. Despite much e�ort a general
solution is still not tangible and only in the one-dimensional case a solution is available.
The Hubbard model and its variants play a decisive role in a large part of theoretical condensed
matter physics. The model is particularly useful and widespread in the context of strongly corre-
lated electron systems such as narrow band materials and transition metal oxides [4].
In spite of its simple de�nition, the Hubbard model is believed to exhibit various interesting phe-
nomena including metal-insulator transitions, antiferromagnetism, ferrimagnetism, ferromagnetism,
Tomonaga-Luttinger liquid, and superconductivity [5].

The tight-binding Hubbard model accounts for the particle motion through an atomic lattice by
means of 'hopping' processes and includes non-linear repulsive Coulomb interactions that act only
locally, i.e. the occupation of the same atomic site by two particles is punished with an energy �ne.
Although the model appears rather simple at the outset, the interplay of kinetic and interacting
parts of the Hamiltonian prove di�cult to reconcile mathematically.
The necessity of additional simpli�cations leads to a variety of numerical methods that have become
popular in recent decades. Examples of such implementations are Dynamical Mean Field Theory
(DMFT), Density Matrix Renormalization Group (DMRG), the Hartree-Fock method and pertur-
bative approaches. The latter consider a breaking up of the whole lattice into smaller clusters which
then can be solved exactly.
In this thesis we will adopt a variant of that kind, that is Cluster Perturbation Theory (CPT), and
consolidate the corresponding Hamiltonian with a description of an externally applied �eld. By
turning on the electric �eld at a certain time, the system is driven out of equilibrium provoking
non-linear behavior in response.

Experimental realizations of atomic systems that match the characteristics of the Hubbard model
have become very sophisticated in recent years. Several groups succeeded to trap a Bose-Einstein
condensate in an optical lattice, thereby arti�cially reproducing a nearly perfect Bose-Hubbard
model. Due to the even more severe temperature requirements in the case of ultracold Fermi gases,
it is harder to bring about the fermionic Hubbard model. For more details see for example Refs. [6]
and [7].

It has been suggested that the e�ects induced by an electric �eld and the possibility of tuning the
carrier concentration may be used in applications featuring complex materials such as organic con-
ductors, high-temperature superconductors and colossal magnetoresistance compounds [8].
The conductance of nanoelectronic structures, for example, can be administered by tuning the car-
rier density and applying an electric �eld. The controllability of electronic properties, with regard
to its success in semiconductor devices, has the potential to o�er a wide range of new perspectives
for applications of strongly correlated materials.

Signi�cant progress in experimentally reproducing nano-scale materials, such as quantum dots, and
unusual physical e�ects like the strong change in the optical transmission in the transition-metal
oxide Sr2CuO3 and the dielectric breakdown of a Mott insulator that occurs in quasi-onedimensional
cuprates such as Sr2CuO3 and SrCuO2 [9] require a thorough theoretical understanding of the un-
derlying phenomena that lead to these e�ects.

The importance of strong electric �elds comes apparent when dealing with nanoscale devices where
electric potentials in the range of a few volts produce electric �elds of order 105 to 106V/m. To
understand the response of an interacting system to a formidable electric �eld, especially non-linear
current-voltage characteristics, is therefore crucial for realizing devices that embody correlation
e�ects.
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1 Introduction

Outline

This thesis presents a numerical analysis of the time evolution of the non-equilibrium current density
originating from an externally applied electric �eld. It is organized as follows: In chapter two we lay
out the methodological framework of our method and give a general introduction to the Hubbard
model with some emphasis on the one-dimensional case.

Chapter three deals with the formulation of Cluster Perturbation Theory and the corresponding
Hamiltonian in terms of a pseudoparticle approach as it has been brie�y formulated in Ref. [10].
We then proceed with the incorporation of the electric �eld and develop a description for the time
evolution of the system.
This second part of chapter three together with chapters four and �ve constitutes basically the
original work carried out within this thesis.

In chapter four we concentrate on the theoretical formulation and calculation of expectation values
for the time resolved current response and discuss the characteristics of a Mott insulator as well as
the origin of Bloch oscillations.

Numerical results are discussed in chapter �ve with regard to one- and two-dimensional lattices and
including various phenomena that arise from applying static or oscillating electric �elds, such as
Bloch oscillations, metallic as well as Mott insulating behavior, metal-insulator transitions and the
possibility of a dielectric breakdown of the Mott insulator. In addition to half-�lled lattices, we are
investigating the e�ects of doping on the system's response to the external �eld.

Finally, chapter six provides some concluding remarks and a brief outlook for potential further
research.
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Chapter 2

Formalism

In condensed matter physics when we are looking at complex electronic and atomic systems, one
maps the real system onto idealized and simpli�ed models and hopes that these models are able
to describe as many properties of the original system as accurately as possible. This mathematical
mapping results in a certain Hamiltonian which contains the main features of the underlying model.

E�ective single particle treatments do not include correlation e�ects between two distinct particles
but can only account for (averaged or screened) interactions between one particle and a 'particle-
sea' containing the rest. Especially when Coulomb correlations play an important role, these single
particle models fail and two-particle interactions have to be incorporated into the Hamiltonian.
However, when we try to take those particle-particle interactions into account, we immediately face
the obstacle that a typical solid consists of some 1023 particles which, in principle, all interact with
one another. Since any n-body problem (with n > 2) can only be solved by means of approximations,
it is clear that one has to resort to some sort of model that helps to simplify matters signi�cantly
in one way or the other.

There are several models at hand, each of them stressing certain features of the underlying physics
while approximating other features (or sometimes neglecting them altogether). In the case of strong
electron-electron correlations the most prominent model since its introduction in the early sixties of
the 20th century is the Hubbard model.
Although it may strike one as rather simple, the interplay of kinetic and potential energy needs
quite a bit of e�ort to reconcile. A major problem is given by the fact that the kinetic part of the
Hamiltonian is diagonal in momentum space whereas the interaction part is diagonal in real space.

In this chapter, after some introductory and rather general quantum mechanical remarks in Sec.
2.1, we will concentrate on general properties of the widely popular Hubbard model (Sec. 2.2) as
well as on the closely related Falicov-Kimball model (Sec. 2.3).

2.1 Second quantization and Wannier functions

In the following section we will apply the occupation number formalism to quantum mechanics which
is commonly referred to as 'second quantization'. For a more rigorous and thorough treatment see
for example Refs. [11, 12, 13, 14].
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2 Formalism

The general Hamilton operator for a many-body system of electrons and atomic nuclei has the form

Ĥ = − ~2

2me

∑
i

∇2
i −

∑
i

∑
I

ZIe
2

|ri −RI |
+

1
2

∑
i6=j

e2

|ri − rj |
−

− ~2

2MI

∑
I

∇2
I +

1
2

∑
I 6=J

ZiZJe
2

|RI −RJ |

(2.1)

where small (capital) letters denote quantities belonging to electrons (ions), Z is the number of
protons in the nucleus, e stands for the elementary charge and ri (RI) are position vectors in real
space.
Terms 1 and 4 in (2.1) constitute the kinetic energies of electrons and ions. The other three terms
describe the potential energy arising from Coulomb interactions between electrons and nuclei, be-
tween two electrons and between two atomic nuclei respectively.

Due to the fact that the mass of an atomic nucleus is much larger than the mass of an electron, the
movement of the nuclei can be neglected. This means one can set the fourth term to zero as a �rst
approximation (Born-Oppenheimer approx.) and neglect the contribution of the last term to the
energy, which would amount to a constant.

Although the Born-Oppenheimer approximation considerably simpli�es matters, we would still have
to face an in�nitely large (and unsolvable) problem if we were to consider all possible interactions
between the particles.

For strictly noninteracting electrons the Hamiltonian would have the form

Ĥ = − ~2

2me

∑
i

[
∇2
i − V(ri)

]
(2.2)

where V(ri) =
∑
I

ZIe
2

|ri−RI | denotes the lattice potential created by the atomic nuclei.

According to Bloch's theorem [15, 16] the eigenfunctions of a periodic lattice are plane waves mod-
ulated by the periodicity of the lattice potential V(r), which gives for any lattice vector R

ψkα(r) = ei kRukα(r) (2.3)

where ukα(r) has the same periodicity as V(r). k symbolizes the crystal momentum which takes
values inside the Brillouin zone, that is k ∈ [−π, π) if the lattice spacing equal is equal to one, and
α is the band index.

We assume that we are dealing with atomic orbitals that are localized at the lattice sites, which
means that the spacing between atoms is large in comparison to the size of the orbitals. This is
called the Tight-Binding model and owing to this approximation we can use a set of states for our
basis that corresponds to the atomic orbitals of an isolated ion.
Instead of using plain waves it is convenient to work with Wannier functions as an appropriate basis
set in real space

wασ(r−Ri) =
1√
Λ

1.BZ∑
k

e− i kRiψkασ(r) (2.4)

Λ is the number of lattice sites, α indicates the orbital and Ri is the position vector of the i-th
atomic site where the orbital is localized.
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2.2 The Hubbard model

Wannier functions are essentially wave packets composed of Fourier-transformed Bloch orbitals.
This concentrates the wave function of a particle in a small region of space, i.e. a particular site of
the lattice. We assume that the bands are well separated and we are interested in the lowest band
only.
The amplitudes of the wave functions decrease rapidly over distance, so that the overlap of Wannier
functions separated by the lattice spacing is already negligible. The electronic energy bands are
very narrow due to the electron's large probability to be found at a particular atomic site. Wannier
functions are thus well quali�ed to describe for example d- or f-orbitals of transition metal oxides
where the atomic overlap is comparatively small.
Furthermore, Wannier orbitals localized at di�erent sites i, j as well as belonging to di�erent bands
α, β are orthogonal and form a complete basis set:

∫
d3r w∗ασ(r−Ri)wβσ′(r−Rj) = δσσ′δαβδij (2.5)

∑
r,r′

∑
i

w∗ασ(r−Ri)wασ(r′ −Ri) = δ(r− r′) (2.6)

Considering valence bands only with binding energies up to about 10eV and one orbital per atom,
the annihilation operator for the one-band wave function ψσ(r) which is located at Ri can be written
in the form

ψσ(r) =
1√
Λ

∑
i

cσ(Ri)wσ(r−Ri) (2.7)

We write the dependence on Ri in indexed form and directly obtain the canonical anti-commutation
relations and therefore the right operator algebra{

ciσ, c
†
jσ′

}
≡ ciσc

†
jσ′ + c†jσ′ciσ = δijδσσ′{

ciσ, cjσ′
}

=
{
c†iσ, c

†
jσ′

}
= 0

(2.8)

Physically the fermionic creation (annihilation) operators c†iσ (ciσ) create (annihilate) an electron
with spin σ at the i-th lattice site.
And the number operator is de�ned as

N̂ =
∑
i,σ

niσ ≡
∑
i,σ

c†iσciσ (2.9)

with eigenvalues 0 and 1, commensurate with empty or occupied sites respectively.

2.2 The Hubbard model

On a historic note, the Hubbard model was proposed individually by Hubbard [17], Gutzwiller [18],
who studied d-electrons in ferromagnets, and Kanamori [19] in the seemingly very productive year of
1963. Half a century later, despite extensive research, little progress has been made with regard to
fully understanding the model's rich properties. Although the Hubbard model is a highly simpli�ed

7



2 Formalism

attempt at describing the quantum mechanical motion (and behavior in general) of electrons in an
actual solid, it displays a range of nontrivial phenomena, such as Mott transition, ferrimagnetism,
ferro- and antiferromagnetism, Tomonaga-Luttinger liquid and superconductivity [5].

Within the last couple of years an increasing number of experimental realizations, especially with
the use of ultra-cold atoms in optical lattices, made steady progress in probing the model. Details
and references to experimental realizations will be given in the second half of chapter four.

The Hubbard Hamiltonian is most generally represented as the sum of a kinetic part and an inter-
action part

Ĥ = Ĥkin + Ĥint (2.10)

Neither Ĥkin nor Ĥint taken on their own favor any long-ranged magnetic ordering. The case of
no interaction would lead to a conventional band spectrum with Bloch electrons delocalized over
the whole crystal. If we set the hopping term equal to zero and only look at the interaction part,
then the Hamiltonian would favor local magnetic moments by suppressing the possibility of doubly
occupied sites.
However, their combined sum introduces what Tasaki in his paper called 'a competition between
wave-like character and particle-like character (or between linearity and nonlinearity)' [5], thus
giving rise to the various aforementioned phenomena.

The general Hamiltonian in �rst quantization without external �elds reads (cf. e.g. Ref. [20])

Ĥ =
∑
i

[
− ~2

2me
∇2
i + V(Ri)

]
+

1
2

∑
i,j

e2

|Ri −Rj |
(2.11)

with me the electron mass, e the elementary charge and W (R) the lattice potential.

Actual atoms have a certain amount of orbitals with electrons in the corresponding states. To de-
scribe all possible interactions between di�erent orbitals of di�erent atoms would be an impossible
task. Therefore, in the standard Hubbard model the situation is greatly simpli�ed by considering
only one non-degenerate orbital state per atom. This can be vindicated with allusion to the range
of low energy physics we are interested in, because the electrons in other states have little e�ect
here. Hence the model is also called 'single-orbital' or 'single-band' Hubbard model.

The general Hamiltonian in second quantized form is given by

Ĥ =
∑
σ

∑
i,j

tij c
†
i,σcj,σ +

∑
σ,σ′

∑
i,j,l,m

Uijlm c†i,σc
†
j,σ′cl,σ′cm,σ (2.12)

The hopping amplitude may be written as

tij =
∫
d3r w∗(r−Ri)

[
− ~2

2me
∇2

r + V(r)
]
w(r−Rj) (2.13)

and the electron-electron correlations are

Uijlm =
∫ ∫

d3r d3r′ w∗(r−Ri)w∗(r′ −Rj)
e2

|r− r′|
w(r′ −Rl)w(r−Rm) (2.14)

The short-ranged Coulomb interaction Uijlm in its general form represents a four-center integral
which is reduced to a direct interaction between two particles by concentrating on the largest
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2.2 The Hubbard model

contributions. In metals with a signi�cant DOS at the Fermi level, the Coulomb potential is screened
and decays exponentially with distance from the nucleus

V(r) =
erλ

r
(2.15)

with λ marking the screening length, which for d-electrons is roughly of the size of the Bohr radius
a0 [21].
This justi�es a reduction to considering on-site interactions only, i.e. taking into account the most
signi�cant elements Uiiii ≡ U and disregarding all others.
U mimics a screened Coulomb repulsion among electrons belonging to the same atomic site or, in
terms of energy, U is the amount of energy one has to pay when putting two electrons of opposite
spin at the same site.

Since the electronic functions are highly located at their 'parent' atom, the nearest-neighbor hopping
terms contribute by far the most to the kinetic energy and it is thereby justi�ed to neglect all other
hopping processes. Thus we are left with hopping elements ti,i+1 ≡ −t.

In the case of t = 0 all singly occupied states are degenerate. Enabling hopping processes removes
the degeneracy and lowers the energy of an antiferromagnetic pair of electrons on neighboring sites
relative to a ferromagnetic pair.
Large values of t result in a broad band structure whereas a small t leads to narrow bands.

Hence, we obtain the celebrated Hubbard Hamiltonian

Ĥ = −t
∑
〈i,j〉,σ

c†i,σcj,σ + U
∑
i

ni↑ni↓ − µ
∑
i,σ

ni,σ (2.16)

where 〈i, j〉 stands for a summation over neighboring lattice sites, including matrix elements that
couple the lattice sites at the edges to satisfy periodic boundary conditions (pbc).
The chemical potential µ is added for the equilibrium Hamiltonian to determine the level of occupa-
tion in the initial state. When the system is driven out of equilibrium, there will be no well de�ned
chemical potential.

The energy scale for the simple Hubbard model which basically enters into every physical quantity
is determined by the ratio U/t. For convenience we will keep the hopping strength �xed at t = 1
and vary only the Coulomb interaction strength U in the numerical calculations.

2.2.1 The one-dimensional chain

We consider a periodic lattice in one dimension, that is a chain of atoms forming a ring. For a
detailed discussion of the one-dimensional Hubbard model see [22] and references therein.
Only in 1D the Hubbard model can be solved analytically where an exact solution can be obtained
by putting forth the Bethe ansatz technique. All other analytical methods are based on approxima-
tions. Using the Bethe ansatz [23] Lieb and Wu [24] were able to compute the 1D ground state and
determine that the solution is unique for the half-�lled band.

The Hubbard model in 1D describes an insulator for all U > 0. Lieb and Wu found that the ground
state exhibits no conducting-insulating (Mott) transition when the interaction strength is varied,
except at U = 0 where the system behaves like a metal. It is only with higher dimensionality that
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2 Formalism

a Mott transition occurs at some critical value Uc > 0. The characteristics of a Mott insulator are
discussed in more detail in Sec. 4.4

2.2.2 Representation of the Hilbert space

For this section we follow roughly the general descriptions given in standard books such as Refs.
[4, 11, 12].
The dimensionality of the Hilbert space is determined by the number of basis states. In the case of
a fermionic system, the total Hilbert space is of dimension 4Λ (where Λ is the total number of lattice
sites), since each site can be empty, singly occupied by either one spin ↑ or one spin ↓ electron, or
doubly occupied by electrons of opposite spin.
Note that the Hilbert space of a single-particle problem increases linearly with system size, while
for a many-body problem it grows exponentially.

Since the fermionic spin Sz is a conserved quantity, i.e. [Ĥ, Ŝz] = 0, the total numbers of spin
up (spin down) electrons N↑ (N↓) are good quantum numbers. Consequently, the eigenstates are
labelled in occupation number representation.

The anti-commutation relations (2.8) have built into them Pauli's exclusion principle that no two
particles may have the same set of quantum numbers. However, care has to be taken when it comes
to ordering of the operators. Every exchange of two operators with di�erent site and/or spin indices
introduces an additional minus sign, e.g. c†1σc

†
2σ|0〉 = −c†2σc

†
1σ|0〉. The way of ordering the fermionic

operators can be chosen arbitrarily but after choosing a particular convention one has to stick to it
rigorously throughout all following calculations.

The following two rules are commonly used in second quantization: (i) put all spin up operators to
the left of all spin down operators, (ii) arrange the operators with ascending site indices from left
to right. For example c†1↑c

†
3↑c
†
1↓c
†
2↓|0〉 would be in correct order.

Rule (i) is convenient because with N̂↑ =
∑
i

ni↑ and N̂↓ =
∑
i

ni↓ follows that their commutators

with the Hamiltonian vanish, that is[
Ĥ, N̂↑

]
=
[
Ĥ, N̂↓

]
= 0 =

[
Ĥ, N̂

]
(2.17)

This means that spin up and spin down sectors in the Hilbert space do not mix. Exploiting the fact
that the Hamiltonian commutes with the number operator one can restrict the Hilbert space to a
particular subspace where the total particle number as well as the particle numbers corresponding
to individual spins are �xed.
Rule (ii) follows naturally from labelling the lattice sites with increasing indices. (Another common
way would be to apply an ordering with descending indices from left to right.)

From these symmetries ensues that the Hamiltonian is blockdiagonal in Ŝz and N̂ and the corre-
sponding sectors in the full Hilbert space can be treated separately.
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2.3 The Falicov-Kimball model

2.3 The Falicov-Kimball model

This very brief mentioning of the Falicov-Kimball (FK) model is intended to provide only some
methodological basics for the data that is used in Chap. 5 in comparison with our results from the
Hubbard model.

The FK model involves two sorts of spinless electrons and, in contrast to the Hubbard model, does
not favor SU(2) symmetry. The itinerant (conduction band) electrons are able to hop through the
lattice, whereas the localized (valence band) electrons do not move but interact with the itinerant
electrons by way of a screened Coulomb interaction U when they both occupy the same lattice site.
Considerable progress has been made on solving this model with mean-�eld approaches in equilib-
rium, where essentially all properties of the conduction electrons are known [9, 25].
For a detailed review of the model and its properties see Ref. [26].

The FK-Hamiltonian is given by

Ĥ = −t
∑
〈i,j〉

(c†i cj + c†jci)− µ
∑
i

c†i ci + U
∑
i

wic
†
i ci + E

∑
i

wi (2.18)

The case U = 0 resembles the noninteracting Hubbard model for a single spin species with energies
shifted by some constant (E ·Nw) that results from the number of localized electrons in the system.

Here the operators c†i (ci) describe the creation (annihilation) of a conduction electron at site i and
wi, being the number operator for localized electrons at site i, is restricted to 0 or 1.

As Freericks points out in his paper [27], the spinless FK model is only weakly dependent on the
dimensionality d, the correction being proportional to 1/d. This makes the model very susceptible
to a treatment with Dynamical Mean Field Theory (DMFT) which is usually carried out in the
limit of in�nite dimensions.
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Chapter 3

CPT and pseudoparticle approach

Over the course of the last two decades many numerical methods have become available for the inves-
tigation of strongly correlated bosonic and fermionic systems. Among the most common techniques
are exact diagonalization (ED), Quantum Monte Carlo methods (QMC) [28], Density-Matrix Renor-
malization Group (DMRG) [29], Dynamical Mean-Field Theory (DMFT) [30] and various cluster
approaches. We will concentrate on the latter and especially on Cluster Perturbation Theory (CPT).

CPT can treat much larger systems than ED and is therefore capable of representing the thermo-
dynamic limit in a better way. In the limit of an in�nitely large cluster CPT is equivalent to ED.

DMFT will also play a role in chapter �ve where we will compare our numerical results obtained
by CPT with data from DMFT-calculations. In contrast to CPT which considers small systems,
DMFT works in the thermodynamic limit of an in�nitely large system and becomes exact in the
limit of in�nite dimensions. On the other hand, in lower dimensions DMFT is quite a strong ap-
proximation since spatial correlations are neglected altogether. This fact can be partially remedied
by considering small clusters instead of single impurity sites surrounded by a thermodynamic bath.
Such cluster-treatment generalizations of DMFT are incorporated in Cluster-DMFT (C-DMFT) [31]
and Dynamical Cluster Approximation (DCA) [32] methods. CPT and C-DMFT in turn can be
considered special cases of a more general method, the so-called Self-Energy Functional Approach
(SFA) [33] which was proposed only a few years ago.

The main di�erence between CPT and C-DMFT is that in the case of CPT the intra-cluster hopping
strength is �xed and one has no variational parameters at hand. With C-DMFT an additional hop-
ping to correlated bath sites is introduced that acts as a variational parameter.
An intermediate approach between CPT and DMFT is Variational Cluster Perturbation Theory (V-
CPT, also called Variational Cluster Approach, VCA) where additional one-particle operators are
included into the cluster Hamiltonian and subsequently subtracted again in the perturbative part of
the Hamiltonian. This for instance provides for the inclusion of symmetry-breaking �elds and other
variational parameters in the model. Symmetry-broken phases are not allowed in CPT because it
does not favor any kind of self-consistency procedure. (For a detailed discussion of V-CPT see in
particular Ref. [2].)

In C-DMFT the bath of uncorrelated sites can exchange electrons with the cluster and the bath
parameters are determined self-consistently. The Hubbard Hamiltonian stated in (2.16) takes on
the following form [34] embodying an Anderson impurity model

Ĥ = −t
∑
〈m,n〉

c†mcn + U
∑
m

nm↑nm↓ +
∑
m,ν

θmν
(
c†maν + h.c.

)
+
∑
ν

ενa
†
νaν (3.1)

13



3 CPT and pseudoparticle approach

where ν labels bath orbitals with energy εν , aν annihilates an electron at bath site ν, θmν is the
bath-cluster hybridization matrix and explicit spin indices have been omitted.

3.1 The CPT procedure

Cluster Perturbation Theory [35] can be understood as a cluster extension of strong-coupling
perturbation theory [36] limited to lowest order but where the starting point is a cluster instead of
a single site.
The �rst approximation is that we are dealing with an ideal crystal, i.e. a lattice without disorder,
impurities or distortions of any kind. Furthermore, instead of taking into account the full crystal
lattice, one breaks up the lattice into separate clusters of a certain size and shape. This means
that by choosing a particular cluster tiling the full lattice Hamiltonian Ĥ is split into a cluster
part Ĥ0 which contains everything that is going on inside the cluster and a part V̂ that deals with
interactions (i.e. hopping terms) between the clusters. Thereby the original dynamics of the lattice
is recovered and the non-relativistic many-body Hamiltonian in the absence of external �elds takes
on the general form

Ĥ = Ĥ0 + V̂ (3.2)

where

Ĥ0 =
∑
a

[
−t

∑
n,m,σ

c†n,a;σcm,a;σ + U
∑
m,aσ

nm,a;↑nm,a;↓ − µ
∑
m,σ

nm,a;σ

]
(3.3)

is treated exactly and
V̂ =

∑
σ

∑
a,b

∑
n,m

Vnm,ab c
†
n,a;σcm,b;σ (3.4)

designates the perturbation. Here a, b label the clusters and n,m represent sites inside one of these
clusters.

For the calculation of the matrix elements, eigenstates, etc. of the intra-cluster Hamiltonian Ĥ0

we imply open boundary conditions. However, for the whole lattice we will use periodic boundary
conditions, thus connecting for example site 1 with site Λ in the one-dimensional chain which is
equivalent to putting Λ + 1 = 1 for sites as well as Nc + 1 = 1 for clusters in the corresponding
sums. CPT in principle does not favor any particular choice of boundary conditions. But since we
want to measure a current �owing through the lattice, open boundary conditions would lead to an
accumulation of particles on one edge of the crystal lattice.

The cluster decomposition of the full lattice consisting of Λ sites into Nc clusters of size L breaks
the translational invariance of the original lattice. In the interest of recovering the lost symmetry a
periodization procedure of the Green function is put into action [34].
By coupling the clusters within strong-coupling perturbation theory the Green function in the
thermodynamic limit is recovered.

In order to obtain the single cluster energies we need to solve the eigenvalue problem of the Hamil-
tonian given in (3.2). Basically, an explicit construction of the Hamiltonian matrix is needed to
represent the action of the Hamiltonian on the state vectors.
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3.1 The CPT procedure

(a)

(b) (c)

(d)

Figure 3.1: Examples of di�erent lattice tilings: (a) original lattice; (b) 1D tiling with four sites per
cluster; (c) semi-2D tiling with one-dimensional clusters coupled together; (d) 2D cluster tiling of
size 2x2 and

√
8x
√

8 respectively. In 2D variety of di�erent sizes and shapes is imaginable, every
site has 4 nearest neighbors. Depending on the tiling the hoppings are treated either exactly (within
the cluster, indicated in green) or perturbatively (across cluster boundaries, red).

The ground state is found either by direct diagonalization (for very small cluster sizes) or by itera-
tive methods, such as Lanczos or band Lanczos algorithms that can deal with cluster sizes up to 16
sites.

A treatment of CPT with respect to Green functions is included in the appendix.

Reciprocal space

Associated with each site (a, b, . . . ) of the superlattice Γ is a cluster consisting of L sites labeled
(n,m, . . . ). The position of each site of the full lattice γ can be expressed as a combination of a
cluster vector plus a vector inside the cluster, such that Ri = Ra + rn.
Accordingly, the wave vectors that constitute the Brillouin zone BZγ of the total lattice can be
expressed in terms of wave vectors k̃ belonging to the Brillouin zone BZΓ of the superlattice and
wave vectors K of the reciprocal superlattice that also belong to BZγ

k = k̃ + K (3.5)

In Fig. 3.1 the example of a 2D lattice split into 2x2 clusters is illustrated on the left hand side of
panel (d).
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3 CPT and pseudoparticle approach

The passage from real space to momentum space via full Fourier transformation (i↔ k) is equivalent
to carrying out two partial transforms

Oa =
1√
Nc

∑
k̃

ei k̃RaOk̃

On =
1√
L

∑
K

ei KrnOK

(3.6)

(a) (b)

(c) (d)

Figure 3.2: Fourier transformations: (a) full lattice γ in real space, (b) full lattice in reciprocal space
(BZγ), (c) BZΓ of the reciprocal superlattice, (d) Brillouin zone of one cluster providing additional
reciprocal lattice vectors to complete the full reciprocal vector space.

In the example given in Fig. 3.2 we have a lattice of 32 sites split into eight 2x2 clusters.
The full reciprocal lattice consists of crystal momenta kx = π

4a{0, 1, . . . , 7} and ky = π
2a{0, . . . , 3}

where a denotes the lattice constant. The Brillouin zone of the superlattice BZΓ is reduced due to
the cluster size to k̃x = π

4a{0, . . . , 3} and k̃y = π
2 {0, 1}. In combination with the reciprocal cluster

vectors Kx,y = π
a{0, 1} the full Brillouin zone BZγ is recovered.

Note that each Brillouin zone contains a complete and irreducible set of wave vectors.

3.2 Pseudoparticle approach

This section is based on the considerations leading to the CPT expression for the Green function
as it has been laid out in Ref. [10]. The authors show that the CPT formalism is equivalent to
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3.2 Pseudoparticle approach

a mapping onto a model of hard-core fermions which describe single-particle excitations from the
cluster's ground state.

The excited states are generated by creating or annihilating one particle in the ground state

c†|GS〉 = |α〉
c |GS〉 = |β〉

(3.7)

We diagonalize the Hamiltonian (3.3) corresponding to the single cluster and �nd its ground state
|GS〉 with energy set to zero, i.e. εGS = 0, and a total number of N particles. By labelling the
excited states |α〉 for states that comprise N + 1 electrons and |β〉 for states containing N − 1
electrons, one can de�ne creation operators d†γ and annihilation operators dγ such that

d†γ |GS〉 = |γ〉
dγ |γ〉 = |GS〉

(3.8)

where γ = {α, β}.

The transition matrix elements are given by

T∗nα = 〈α|c†n|GS〉 = 〈GS|cn|α〉∗

S∗nβ = 〈GS|c†n|β〉 = 〈β|cn|GS〉∗
(3.9)

Throughout the following it is assumed that the hard-core constraint∑
γ

d†γdγ ≤ 1 (3.10)

is satis�ed.

Expressing the original fermionic operators c†n and cn in terms of the new operators dγ yields

c†n =
∑
α

T∗nαd
†
α +

∑
β

S∗nβdβ (3.11)

Since the intra-cluster Hamiltonian is diagonal in the d operators, Ĥ0 can be rewritten as

Ĥ0 =
∑
σ,a,γ

εγd
†
γ,adγ,a (3.12)

Here, εα = Eα − E0 denote the excitation energies with respect to the ground state energy E0.
The diagonalization has no immediate e�ect on the inter-cluster Hamiltonian V̂ as it was given in
(3.4).

In the next step we perform the following particle-hole transformation

p†α = d†α

p†β = dβ
(3.13)
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3 CPT and pseudoparticle approach

The transition matrix elements from (3.9) can be combined in a single rectangular matrix Q such
that

Qnα = Tnα
Qnβ = Snβ

(3.14)

The corresponding transformation of the fermionic operators from (3.11) then takes on the form

c†n =
∑
γ

p†γ Q∗γn (3.15)

and accordingly
cn =

∑
γ

Qnγ pγ (3.16)

And the inverse transformation returns

p†γ =
∑
n

c†n Qnγ

pγ =
∑
n

Q∗γn cn
(3.17)

This changes the intra-cluster Hamiltonian to

Ĥ0 =
∑
σ,a,γ

ηγεγp
†
γ,apγ,a (3.18)

where ηγ represents the appropriate sign accompanying the N + 1 and N − 1 states respectively

ηγ =
{

+1 if |γ〉 = |α〉
−1 if |γ〉 = |β〉 (3.19)

From now on we will use the indices α, β and γ generally for all pseudoparticle states since the
distinction with regard to particle number is no longer necessary.

3.2.1 Perturbation V̂

In order to keep the following calculations simple, we will reduce our considerations for the moment
to a one-dimensional system. The extension to 2D is straightforward.
The intra-cluster part V̂ of the Hamiltonian describes nearest-neighbor hopping processes between
adjacent clusters and has the form of a one-body operator, which in 1D (cf. Ref. [35]) reads as

V̂mn,ab = −t
[
δa,b−1δm,Lδn,1 + δa,b+1δm,1δn,L

]
c†m,acn,b (3.20)

This exempli�es the hopping between the �rst and the last lattice site of two neighboring clusters

V̂mn,aa+1 = −t
[
c†L,ac1,a+1 + c†1,acL,a−1

]
(3.21)
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3.2 Pseudoparticle approach

The reciprocal superlattice representation of the matrix elements is given by the partial Fourier
transform

Vmn,k̃ =
∑
Ra

Vmn,aa+1e
i k̃Ra (3.22)

V̂ is now given in a mixed representation: reciprocal space for the superlattice cluster-sites and real
space for the atomic sites inside each single cluster.

In terms of the pseudoparticle formulation the intra-cluster Hamiltonian becomes

V̂ =
∑
σ

∑
a,b

∑
α,β

∑
n,m

Vnm,ab Q∗αn Qmβ p
†
α,a pβ,b (3.23)

3.2.2 Pseudoparticle Hamiltonian

The total Hamiltonian (3.2) combining inter- and intra-cluster terms can be written as

Ĥ =
∑
σ

∑
a,b

∑
α,β

p†α,a hαβ,ab pβ,b (3.24)

The above pseudoparticle Hamiltonian describes the hopping of pseudoparticles between adjacent
clusters with amplitudes

hαβ,ab = δαβεαηα +
(

Q†VabQ
)
αβ

(3.25)

The Hamiltonian is bilinear in creation and annihilation operators. In principle a Hamiltonian of
this form can always be solved by diagonalization of the corresponding matrix. This property will
be very useful when evaluating expectation values (see Sec. 3.6).

Multiple particle excitations from the clusters' ground state are ignored. Note that QQ† = 1 but
Q†Q 6= 1 since Q is not a square matrix.

The main bene�t from this calculation is the fact that the lattice Hamiltonian (3.24) now consists
only of one-particle operators whereas the original Hamiltonian (3.3) due to on-site interactions
included two-particle operators as well.

Pseudoparticle Green function

As a side note we will brie�y touch on the subject of Green functions because of their importance
for calculating expectation values that can be compared to experimental results. The appendix
contains in a nutshell the full CPT Green function formalism. However, for our purposes only the
total Green function expressed in pseudoparticle operators p shall be mentioned here

〈〈pα,a, p
†
β,b〉〉 =

(
iω − h

)−1

αβ,ab
(3.26)

Accordingly, in terms of the bare fermionic operators the Green function has the form

〈〈cn,a, c
†
m,b〉〉 = Qnα 〈〈pα,a, p

†
β,b〉〉 Q∗βm (3.27)
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3 CPT and pseudoparticle approach

which in matrix notation may be expressed as

〈〈ca, c
†
b〉〉 =

[
Q
(
iω − h

)−1Q†
]
ab

(3.28)

3.3 Peierls' substitution

The considerations so far were mainly based on what has been established in pertinent literature
and papers concerning the fundamentals of CPT. We will now proceed to introduce and incorporate
an external electric �eld into the formalism with the aid of Peierls' substitution and then carry on
to develop a scheme for the time evolution of the system in Sec. 3.4.

The electric �eld is applied along the x-direction, that is, parallel to the 1D lattice vector. In general
an electric �eld is described by means of a scalar potential Φ(r, τ) and a vector potential A(r, τ)

E(r, τ) = −∇Φ(r, τ)− 1
c

∂A(r, τ)
∂τ

(3.29)

We consider the case where the electric �eld is turned on at time τ = 0 and furthermore ignore all
relativistic e�ects.

The electric �eld remains invariant under the simultaneously performed gauge transformations
A→ A +∇χ and Φ→ Φ− ∂χ

∂τ . This mathematical degree of freedom allows us to choose a gauge
that �ts the problem at hand. Thus, we shall set

Φ(r, τ) = 0 (3.30)

which is sometimes called the Hamiltonian or Landau gauge.

The Hubbard Hamiltonian in (2.16) is time independent. In order to include the e�ect of the vector
potential we perform a Peierls' substitution [37, 38] where a phase factor is added to the original
hopping matrix, yielding

t −→ t exp

[
− i e

~c

∫ Rj

Ri

d3r A(r, τ)

]
(3.31)

The Peierls phase can be derived from Feynman diagrams or from 'brute force' calculations of
〈wi|Ĥ|wj〉 where wi are Wannier functions and the Hamiltonian in �rst quantized form, as an
extension of (2.11), is given by

Ĥ =
∑
i

[
~2

2me

(
− i∇i −

eA(Ri, τ)
~c

)2

+ V(Ri)

]
+

1
2

∑
i,j

e2

|Ri −Rj |
(3.32)

Without exercising a full derivation, a brief motivation using Feynman path integrals would amount
to the following: The transition amplitude 〈x′, τ ′|x, τ〉 for a general state at time τ to a state at
time τ ′ is characterised by the weighting factor exp(i e

~cS[x(τ)]) where the action S is the integral
over time of the Lagrange function. The Lagrange function for the free electromagnetic �eld is
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3.3 Peierls' substitution

given by L = 1
2mv2− eΦ(x) + e

cA ·v. When inserting this in the path integral, the last term of the
Lagrangian results in the aforementioned Peierls phase factor.

It is di�cult to assimilate the magnetic �eld that is associated with the vector potential in the
present description, so it would be convenient to �nd a reasonable way to forget about it altogether.
We are interested in electric �elds that are a�ecting the atomic system in a general and ideally
uniform way. That is, the spatial dependence of the electric �eld is supposed to be very weak. This
means for the magnetic �eld that it is su�ciently small to be left out of our considerations [38].
Still, one has to be aware of this approximation because after all it implies that our electromagnetic
�eld does no longer satisfy Maxwell's equations, unless the �eld, besides being uniform in space, is
also constant in time.
Such conditions can be experimentally realized in nanostructures where the applied potential creates
a nearly homogeneous E-�eld due to the small size of the system [39].

Hence, we neglect the spatial dependence of the vector potential and consider an electric �eld that
is uniform in space. With the vector potential being homogeneous we assume that the e�ects of
the magnetic �eld can be neglected, since the magnetic �eld would be given by the curl of A(r, τ).
However, there are no restrictions on whether E is constant or varying in time.
Note, by considering a single-band model we also ignore dipole or multipole transitions between
di�erent bands.

With A(r, τ) ≡ A(τ) and taking c = 1, the electric �eld becomes

E(τ) = −∂A(τ)
∂τ

(3.33)

The time dependent Hamiltonian for interacting electrons in second quantization including the
chemical potential has the form (cf. equation (2.16))

Ĥ = −t
∑
〈i,j〉,σ

exp

− i e
~c

Rj∫
Ri

d3r A(τ)

 c†i,σcj,σ + U
∑
i

ni↑ni↓ − µ
∑
i,σ

ni,σ (3.34)

The spatial integration within the Peierls phase factor is readily carried out, resulting in

t −→ te− i A·(Rj−Ri) (3.35)

The electric �eld is treated as an external perturbation that is turned on at time τ = 0. This means
that the ground state is una�ected and the Hamiltonian changes to

Ĥ(τ) = Ĥ0 + ĤA
0 (τ) + V̂ A(τ) = Ĥ0 + V̂ (τ) (3.36)

The additional term ĤA
0 (τ) pays tribute to the e�ects of the electric �eld inside the cluster. Since

the cluster has been diagonalized at τ = 0, the hopping terms contributing to Ĥ0 must be subtracted
again in ĤA

0 (τ). This implies that the transition elements for ĤA
0 (τ) take on the form

t −→ t
(
e− i A·(Rj−Ri) − 1

)
(3.37)

The sum of the inter-cluster hopping matrix V̂ A(τ) and the amended single cluster part ĤA
0 (τ) now

build up the time dependent perturbation term V̂ (τ) in the full CPT-Hamiltonian as indicated in
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3 CPT and pseudoparticle approach

(3.36). Thus, the total Hamiltonian may be written symbolically as

Ĥ(τ) =
∑
σ

∑
k̃

p†
α,k̃

(τ) h
αβ,k̃

(τ) p
β,k̃

(τ) (3.38)

with matrix elements
hαβ,k̃ =

(
H0 + Q†Vk̃(τ)Q

)
αβ

(3.39)

The explicit nature of Vk̃(τ) depends both on the appearance of the lattice as well as on the design
of the cluster tiling. As an example, the case of a two-dimensional lattice will be demonstrated at
the end of this chapter in Sec. 3.5.

3.4 Time evolution

Next we set out to tackle the time evolution of the system. It is convenient to work in the Heisenberg
picture of quantum mechanics where the operators are time dependent and thus subject to evolu-
tion in time and all the state vectors are not. This especially includes the creation and annihilation
operators although their time dependence was not made explicit in the previous manipulations.

The assumption of a linear response to some external perturbation is well justi�ed in cases where
the perturbation is small. In recent years experimental conditions have become accessible where the
system's response, when it is driven out of equilibrium, cannot be described linearly. For example,
the application of very high voltages or strong lasers produce nonlinear e�ects. The electric �eld in
our case is quite large and a treatment in linear response theory would not only be unjusti�ed but
rather erroneous.
Starting from the time dependent Schrödinger equation we will develop a method to iteratively
calculate the matrix elements for the time evolution operator from the Hamilton matrix at corre-
sponding times.

3.4.1 Time evolution in the non-linear regime

The time dependent pseudoparticle Hamiltonian in reciprocal space as expressed in (3.38) is quadratic
in the creation and annihilation operators p† and p.

In the Heisenberg picture the operators carry the time dependence, which means that the Hamilto-
nian may be written as

ĤH = Û†(τ)ĤSÛ(τ) ≡ Ĥ(τ) (3.40)

where ĤS indicates the time independent Hamilton operator in the Schrödinger picture (for details
see e.g. Refs. [40, 41]).
The time evolution of the state vectors is governed by a unitary propagator (because Ĥ is hermi-
tian) that can be extracted leaving the states again independent in time. Henceforth the Heisenberg
picture is understood whenever time dependence is implied and we again omit the subscript H.
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3.4 Time evolution

The time evolution operator obeys the following di�erential equation

i ~
dÛ(τ)
dτ

= Ĥ(τ)Û(τ) (3.41)

with the initial condition Û(τ = 0) = 1.

In order to solve the equation of motion we use the general ansatz pγ(τ) = Uγα(τ)pα(0) where Uγα

denote the elements of a time dependent unitary matrix U(τ).

Since fermionic operators can easily be a transformed if the anticommutation relations are not
violated, which is always the case for unitary transformations, we perform a unitary transformation
to make the time dependence of the pseudoparticle operators explicit. Unitary transformations also
preserve the norm of the quantum mechanical states.

p
α,k̃

(τ) =
∑
γ

U
α,γ

(τ) p
γ,k̃

(0)

p†
α,k̃

(τ) =
∑
γ

U∗
γ,α

(τ) p†
γ,k̃

(0)
(3.42)

To illustrate in a brief example the fact that the transformed operators again describe fermions
we take the unitary transformation d = Uf , d† = f†U† (and accordingly f = U†d, f† = d†U) for
fermionic vector operators d and evaluate the anticommutator in matrix notation to proof their
fermionic character {

f , f†
}

= ff† +
(
f†T fT

)T
= U†dd†U +

(
UTd†TdTU†T

)T
= U†dd†U + U†

(
d†TdT

)T
U

= U†
{

d,d†
}

U

(3.43)

Schrödinger's equation becomes a di�erential equation for a general, explicitly time dependent
operator Ô(τ) in the Heisenberg picture

d

dτ
Ô(τ) =

i
~

[
Ĥ(τ), Ô(τ)

]
+ Û†(τ)

(
d

dτ
Ô(τ)

)
Û(τ) (3.44)

For the pseudoparticle annihilation operators, and analogous the creation operators, which are not
explicitly time-dependent, this yields Heisenberg's equation of motion (in atomic units)

d

dτ
pγ(τ) ≡ d

dτ

(
Û†pγÛ

)
= i

[
Ĥ(τ), pγ(τ)

]
(3.45)

A short computation to determine the commutator in the above relation yields[
Ĥ(τ), pγ(τ)

]
= Û†(τ)

[
Ĥ, pγ

]
Û(τ) (3.46)

and furthermore [
Ĥ, pγ

]
= −hγβ pβ (3.47)

23



3 CPT and pseudoparticle approach

In the second line all quantities are evaluated at time τ = 0 because the time dependence has been
pulled out and absorbed by the propagator Û(τ).

Putting this into (3.45) and expanding the left-hand side produces the relation(
d

dτ
Û†(τ)

)
pγÛ(τ) + Û†(τ)pγ

(
d

dτ
Û(τ)

)
= − i Û†(τ)

(
hγβ pβ

)
Û(τ) (3.48)

and we are �nally left with
d

dτ
pγ(τ) = − i hγβ pβ(τ) (3.49)

From (3.38) it can be seen that the crystal momentum k̃ enters the Hamiltonian only as a parameter
and therefore we can treat each superlattice wave vector k̃ (as is the case with σ) independently,
i.e. they do not mix.

3.4.2 The implicit midpoint rule

We are looking for a numerical method that allows us to carry out the evolution over time while
(ideally) preserving the unitarity of its propagator, such that UU† = U†U = 1 at all times. This is
necessary in order for the eigenvalues of the Hamiltonian to remain unchanged whilst the creation
and annihilation operators are being evolved in time.
There are quite a lot of elaborate numerical integrators like Runge-Kutta or predictor-corrector
methods around. However, as we are particularly concerned about unitarity, we will apply the
following implicit midpoint rule [42], which is a variant of the Cranck-Nicholson method, for the
propagator's matrix embodiment

U(τn+1)−U(τn)
∆τ

= i
1
2

H(τn+ 1
2
)
[
U(τn+1) + U(τn)

]
(3.50)

∆τ represents the discrete time step with τn = n∆τ and τn+ 1
2

= 1
2 (τn + τn+1).

This can be rearranged into[
1 +

i ∆τ
2

H(τn+ 1
2
)
]

U(τn+1) =
[
1− i ∆τ

2
H(τn+ 1

2
)
]

U(τn) (3.51)

yielding a recursive expression for the propagator

U(τn+1) =
1 + i∆τ

2 H(τn+ 1
2
)

1− i ∆τ
2 H(τn+ 1

2
)

U(τn) (3.52)
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3.5 A lattice in 2D

With the considerations laid out in the previous sections, we now have the necessary tools at hand
to turn our attention back to the lattice model and execute these methods on a particular system.
For the two-dimensional lattice we use a rectangular cluster tiling with at least two sites in each
direction. The simplest realization would be the quadratic 2x2 cluster as depicted in the left panel
of Fig. 3.1(d). The total number of lattice sites can in principle be chosen arbitrarily and is only
limited by computational resources. However, periodic boundary conditions demand it to be a
multiple of the cluster size for every direction.

The full reciprocal lattice takes on the shape of a rectangle if the cluster tiling has maximal symmetry,
such that the unit cell of the superlattice consists only of a single cluster. The basis vectors in
reciprocal space are chosen parallel to the superlattice vectors in real space

k̃ = k̃xâΓ + k̃yb̂Γ (3.53)

where âΓ = aΓ
|aΓ| , b̂Γ = bΓ

|bΓ| are unit vectors and |aΓ| (|bΓ|) resemble the reciprocal lattice constants
in x- and y-direction respectively. The size of a single cluster is given by the number of sites Lx
(Ly) in each direction and the real space spanning vectors for the superlattice are given by

aΓ = Lxx̂, bΓ = Lyŷ (3.54)

Keeping pbc in mind, the coe�cients for the reciprocal superlattice wave vectors k̃ are obtained
through

k̃x =
2π
|aΓ|Nx

mx =
2π

LxNx
mx,

k̃y =
2π
|bΓ|Ny

my =
2π

LyNy
my.

(3.55)

The clusters are labeled according to their position Rxy on the two-dimensional lattice, so that mx

runs from 0 to Nx − 1 and my from 0 to Ny − 1. Altogether the crystal momenta k̃ take on values
from 0 to (not including) 2π

Lx
x̂ + 2π

Ly
ŷ.

A particular superlattice wave vector in (3.53) reads

k̃ = 2π
∑
ν

mν

LνNν
ν̂ ν = x, y (3.56)

While hoppings within the clusters are calculated exactly, the inter-cluster hoppings are treated
perturbatively.
It is convenient to use matrix notation where p contains all pseudoparticle excitations belonging to
a particular cluster in real space or a certain crystal momentum k̃ in reciprocal space. The resulting
Hamiltonian in mixed representation for the case of a 2x2 cluster tiling has the form

Ĥ(τ) =
∑
σ

∑
k̃

p†
k̃
(τ) Q†

[
h0 + hA

0 (τ) + VA(τ)
]
Q p

k̃
(τ) (3.57)

h0 designates the time independent eigenvalue matrix with elements δαβεαηα. The other two terms
inside the brackets represent hopping matrices in real space containing the following elements with
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3 CPT and pseudoparticle approach

regard to our example (the cluster sites have been labeled from left to right and top to bottom in
an increasing manner)

hA
0 (τ) =


0 −te− iA(τ) − 1 0 0

−teiA(τ) − 1 0 0 0
0 0 0 −te− iA(τ) − 1
0 0 −teiA(τ) − 1 0

 (3.58)

VA(τ) =


0 −te− i(Lxk̃x−A(τ)) 0 0

−tei(Lxk̃x−A(τ)) 0 0 0
0 0 0 −te− i(Lxk̃x−A(τ))

0 0 −tei(Lxk̃x−A(τ)) 0

 (3.59)

The three terms, when merged together and transformed by the Q-matrices, produce the full Hamil-
ton matrix hk̃(τ).
In addition to that we can formally make the time evolution explicit by writing

Ĥ(τ) =
∑
σ,k̃

p†
k̃
U†(τ)hk̃(τ)U(τ)p

k̃
(3.60)

If the single-particle operators p†
γ,k̃

create eigenstates of the Hamiltonian, then the matrix elements
directly represent the expectation values corresponding to the system being in one of these states.
In any other case an additional unitary transformation can be carried out in order to diagonalize
the Hamilton matrix.

3.6 Implementation

Now that the main CPT pseudoparticle formalism for the Hubbard model has been installed, this
section gives a few remarks on the computational implementation of the method.
A problem one encounters rather quickly is how to diagonalize the single cluster to arrive at the
eigenenergies for Ĥ0. A major drawback with regard to exact diagonalization (ED) techniques is the
fact that the eigenvalue problem grows exponentially with system size and therefore one is restricted
to small systems with a maximum of about 16 sites. ED methods are based on the idea that by
choosing a suitable basis set the Hamilton matrix can be constructed rather easily and in a following
step diagonalized which is especially computer memory expensive.

Impurity solvers on the other hand, which for example use the Lanczos algorithm, can deal with a
much larger lattice but are more cumbersome to implement. Furthermore, they are prone to sys-
tematic errors and convergence issues because of their approximative nature. Iterative procedures,
such as Monte Carlo on the other hand, are less memory intensive but very time expensive.

With respect to the representation of the basis set, a very useful and convenient coding scheme for
the cluster basis is the following: Specify the basis states by the occupation number (0 or 1) of
electrons at each site, where the occupation numbers of spin up electrons are to the left of the spin
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3.6 Implementation

down numbers. The obtained series of strings speci�es unambiguously the occupation pattern and
constitutes a binary representation of any given state.
Consider for example a 4-site cluster with its symbolical representation of spin up and spin down
electrons leading to a unique binary delineation

| ↓, 0, ↑↓, ↑〉 = c†3↑c
†
4↑c
†
1↓c
†
3↓ |0〉 → 00111010 (3.61)

As already mentioned in Sec. 2.2.2, the order in which the creation operators appear is a matter of
convention but has to be obeyed thoroughly. Therefore, an integer can be assigned unambiguously
to every state, making the storage of all basis states quite e�cient. The assigned integer can be
decomposed into a spin up and a spin down part

int = int↓ + 2L int↑ (3.62)

yielding 58=10+24·3 in the example above. This can be further decomposed to recover the original
occupation number for each cluster site.

The degrees of freedom or the number of basis states in general and thereby the dimensionality of
the full Hilbert space is 4L. For a given value of Sz this becomes

(
L
N↑

)(
L
N↓

)
, which is maximal for

a half-�lled zero-spin system. The ground state belongs to the sector of the Hilbert space where
N↑ = N↓. Accordingly, this measures up to a total number

(
L
L/2

)2
of basis states, which behaves

like 4L/L for large clusters.
As an example, in the case of a 4-site cluster the full Hilbert space consists of 265 states, whereas
the Fock basis for a half-�lled system contains only 36 states. However, the pseudoparticle basis of
single-particle excitations that essentially determines the size of the Hamilton matrix for a particular
spin σ and crystal momentum k̃ is always larger than the Fock basis, except in the case of L = 2
where both basis sets are of the same size.

The real space matrix elements are constructed by summing up all non-zero contributions from
each spin and site in the Hubbard Hamiltonian. The interaction strength U enters exclusively on
the main diagonal since correlations between two particles occur only on the same site. The o�-
diagonal matrix elements arise from hopping processes with potentially an additional sign resulting
from Fermi statistics.
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Chapter 4

Current density

The bridge between simulations and experiments are observables, i. e. quantities that can be
measured in experimental setups and are represented by expectation values of the corresponding
quantum mechanical operators. This chapter is devoted to calculating the expectation value of the
current density operator which itself is derived from the CPT-Hamiltonian.

In its very general form the Hamiltonian consists of a part related to the kinetic energy (K̂) and an
interaction term originating from the Coulomb potential

Ĥ = K̂ + Ĥint (4.1)

The electric current accounts for the moving of particles through the crystal lattice, so only the
kinetic term directly contributes. In its full embodiment K̂ is given by

K̂ =
∑
σ

∑
i,j

tijc
†
i,σcj,σ (4.2)

As we are considering only nearest-neighbor hopping, the matrix elements are reduced to tij = −t
for |Ri − Rj | = 1 (in units of the lattice constant) and tij = 0 otherwise. In order to increase
readability the spin index is omitted in the following because it only enters as a parameter.

Introducing the electrical �eld through Peirls' substitution yields

K̂(τ) = −t
∑
σ

∑
〈i,j〉

ei A(Ri−Rj) c†i cj (4.3)

The current density operator has the form [43]

Ĵ = − ∂

∂A
K̂(τ) (4.4)

In the case of the one-dimensional chain, after performing a standard Fourier transformation and a
short manipulation, this results in the expression

Ĵ
(1D)

= −2t
∑
σ

∑
k

sin(k +A)c†kck (4.5)

29



4 Current density

Linear response limit

Brie�y and in parenthesis the current density in the context of a weak external perturbation, that
is a small electric �eld, shall be mentioned here (cf. Refs. [12, 43]).
In the linear response limit the expression (4.3) for the kinetics of the system can be approximated
by a Taylor series expansion around A = 0. Without writing the time dependence explicitly the
expansion up to second order gives

K̂A =
∑
σ

∑
〈i,j〉

(
−t − iAt +

A2

2
t

)
c†i cj + h.c. (4.6)

Thus, the current density operator takes on the form

Ĵ =
∑
σ

∑
〈i,j〉

(i t−At) c†i cj + h.c. (4.7)

and a Fourier transformation for the atomic chain in 1D would amount to

Ĵ
(1D)

= −2t
∑
σ

∑
k

(
sin k +A cos k

)
c†kck (4.8)

However, for large electric �elds this is no longer valid and we stick to the general expression of the
kinetic part of the Hamiltonian.

4.1 CPT expression for the current density

The cluster tiling breaks translational symmetry on the lattice and it is no longer possible to perform
a full Fourier transformation directly. We rename the creation and annihilation operators according
to the cluster they belong to, such that ci ≡ cn,a where a stands for the cluster index and n denotes
the site inside the cluster.

The overall current consists of an intra-cluster as well as an inter-cluster part, Ĵ = Ĵ0 + Ĵ ′, and has
the form

Ĵ = −t
∑
σ

∑
a,b

∑
〈n,m〉x

i e− iAc†n,acm,b

(
δa,b + δa+1,b

)
(4.9)

The shortened notation with a sum over 〈n,m〉x indicates that only neighboring sites n,m where
|Rx(n) −Rx(m)| = 1 are considered. The restriction to sites along the x-direction is due to the
electric �eld being chosen parallel to x which means that there is no current �owing perpendicular
to it in y-direction.
The �rst Dirac δ-function accounts for the intra-cluster current and the second one pays tribute to
the current that is arising from hoppings across cluster boundaries.

In two dimensions and in mixed representation one obtains

Ĵ = −t
∑
σ

∑
k̃

 ∑
〈n,m〉x

i e− iAc†
n,k̃
c
m,k̃

−
∑

〈n′,m′〉x

i e− i(k̃xLx−A)c†
n′,k̃

c
m′,k̃

 (4.10)
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4.2 Expectation values

The second sum with primed indices n′,m′ runs over neighboring sites along the cluster boundaries
and represents the inter-cluster contribution to the current.

In the next step we transform the operators according to cn,a =
∑

Qnαpα,a which projects the
cluster sites onto the pseudoparticle excitations.
In matrix notation (with Einstein's sum rule implied) this may be rewritten as

Ĵ(τ) =
∑
σ

∑
k̃

[
p†
α,k̃

Q†
αn

C
nm,k̃

Q
mβ
p
β,k̃

]
τ

(4.11)

where the expression inside the parentheses is evaluated at time τ .

To give an example, in the case of a linear 4-site cluster the hopping matrix has the form

C
(1x4)

k̃
= −t


0 i e− iA 0 − i e− i(k̃L−A)

− i eiA 0 i e− iA 0
0 − i eiA 0 i e− iA

i ei(k̃L−A) 0 − i eiA 0

 (4.12)

Note, there is no di�erence in the expression for the current whether the lattice consists of a one-
dimensional chain or linear clusters in 2D that are only connected perturbatively in the direction
perpendicular to the electric �eld.

For quadratic 4-site clusters the matrix elements are given by, cf. equations (3.58) and (3.59),

C
(2x2)

k̃
=


0 ξ 0 0
ξ∗ 0 0 0
0 0 0 ξ
0 0 ξ∗ 0

 (4.13)

where ξ = − i t
(
e− iA − e− i(k̃xLx−A)

)
and ξ∗ symbolizes its complex conjugate.

The sign for the vector potential in the two exponentials di�ers because the �rst term describes
intra-cluster hoppings where the site index increases from left to right, thus giving a minus sign for
the Peierls phase for hoppings to the left (i.e. along the positive x-direction), and the second term
describes inter-cluster hoppings for which the site index decreases from left (last site of one cluster)
to the right (�rst site of the second cluster).
The phase factor exp(− i k̃xLx) originates from the superlattice Fourier transformation and takes
into account the extension Lx of the cluster in the direction of the electric �eld.
By analogy and taking into account considerations with respect to particular lattice tilings this can
be extended to clusters of any size or shape.

4.2 Expectation values

The CPT expression for the current (4.11) needs some additional manipulations in order to arrive
at an expectation value for the time dependent current density 〈Ĵ(τ)〉.
We are interested in expectation values of the kind 〈p†γ(τ)pγ′(τ)〉 where γ stands for a compound
index including all quantum numbers, such as momentum, site and spin. The time dependence of
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4 Current density

the operators can be extracted as we have seen in Sec. 3.4. Pulling all time dependence in front of
the operators, and thereby outside the estimator, leaves us with an expression that is proportional
to 〈p†γpγ′〉τ=0.

The pseudoparticle operators p† (p) create (annihilate) eigenstates of the single cluster Hamiltonian
Ĥ0. However, the total Hamiltonian Ĥ(τ) = Ĥ0 + V̂ (τ) is not diagonal in this basis set.
For times before and including τ = 0 the system is in its ground state because it is still unperturbed
and in equilibrium. Hence, we perform an additional diagonalization of the lattice Hamiltonian at
τ = 0 by means of ED. The operators in the new eigenbasis are labeled f†γ and fγ′ to distinguish
them from the original ones of the cluster basis. The transformation of the Hamilton matrix and
the operators may be written as

h(τ = 0) −→ W−1h(τ = 0)W {p,p†}τ=0 −→ {f , f†} (4.14)

The new operators diagonalize the total Hamiltonian in equilibrium and, since the time dependence
has already been dealt with, they are also independent of time.

The electrons as well as the pseudoparticle excitations obey Fermi statistics. With regard to the
full lattice the particle distribution in the ground state is governed by Fermi's distribution function,
which at zero temperature turns into Heaviside's step function

fF (ε, T ) =
1

e(ε−µ)/kBT + 1
T→0= Θ(µ− ε) (4.15)

The eigenvalues of the lattice Hamiltonian that have been computed through the diagonalization
process (4.14) enter into the distribution function and thereby the ground state of the system is
attained.

The eigenstates of the CPT Hamiltonian form an orthonormal basis set, which means that all but
the diagonal elements of the estimator are vanishing. Only operators acting on the same states
contribute, i.e. δγγ′〈f†γfγ′〉τ=0 = fF (εγ), where εγ denote the eigenenergies of the equilibrium

Hamiltonian such that Ĥ|γ〉 = εγ |γ〉.

To conclude the considerations so far, the expectation value of the current for a given set of quantum
numbers may be expressed as 〈

Ĵ(τ)
〉
γ
∝ D[Û(τ), A(τ)]

〈
f†γfγ

〉
(4.16)

with some functional D[U(τ), A(τ)] depending on the vector potential and the time evolution of the
operators.

Generally we are interested in the case of half-�lling where the chemical potential is equal to µ = U/2
due to particle-hole symmetry. This means for the expectation value that 〈f†γfγ〉 = Θ(U2 − εγ).

Finally, the current density per lattice site is simply given by

j(τ) =
1
Λ
〈
Ĵ(τ)

〉
(4.17)

In summary, the CPT-expression for the current density in matrix notation has the form

j(τ) =
1
Λ

∑
σ

∑
k̃

[
W†U†(τ)Q†C(τ)QU(τ)W

〈
f†f
〉]

k̃,σ
(4.18)
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4.3 Limiting cases

The level of abstraction or approximation in any CPT procedure is determined by the size of the
clusters. The results obtained from CPT calculations become more accurate with an increasing
amount of sites inside the clusters, leading to the exact outcome in the limit of an in�nitely large
cluster (L→∞). This is evidently true since the clusters are solved exactly and an in�nitely large
cluster would encompass the whole lattice.
Apart from this there are two other limits where CPT is capable of delivering the exact answer: the
noninteracting as well as the atomic limit.

4.3.1 Noninteracting limit

In the case of free particles (U = 0) the one- or two-dimensional Hubbard model can be solved
analytically. When there is no interaction present the lattice Hamiltonian

Ĥ = −t
∑
〈i,j〉,σ

(c†iσcjσ + c†jσciσ) (4.19)

consists only of one-particle terms and can, at least in principle, readily be diagonalized by ordinary
Fourier transformation

c†iσ =
1√
Λ

∑
k

ei kRi c†kσ (4.20)

The system's Hamiltonian is translational invariant and periodic boundary conditions are assumed.
The transformation directly yields the eigenenergies which are given by the dispersion relation
(depending on the dimensionality d of the problem and with a the lattice constant)

εk = −2t
∑
d

cos(kda)− µ (4.21)

The diagonalized noninteracting Hamiltonian then has the form

Ĥ
U=0

=
∑
k,σ

εkc
†
kσckσ (4.22)

By leaving out the electron-electron correlations altogether the nearest neighbor tight-binding
solution for free fermions is recovered and the orbitals may be written in the form of plane waves
φk = 1√

Λ
ei kr which are eigenstates of the momentum operator with de�nite wave numbers |k|.

The ground state of the system is obtained by �lling the energy levels up to the Fermi level (µ = εF
at temperature T = 0).
At half-�lling each k-state can be occupied by two electrons of either spin. Without having to pay
a penalty U for double occupancy, the lower half of the energy spectrum up to the Fermi edge is
doubly occupied while the other half is completely empty.

Thus, the ground state in the noninteracting limit is given by the Fermi sea,

|GS〉 =
∏

k≤kF

c†k↑c
†
k↓|0〉 (4.23)
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4 Current density

Note that at �nite temperatures the ground state would be given by a sum over all eigenstates
weighted by the associated Boltzmann factor.

For large interaction strengths the system exhibits insulating behavior but when U approaches zero
it becomes more and more metallic. In the limit of U = 0 it can be thought of as a perfect metal
in the sense that the system's conductivity is optimal because the electron's motion through the
lattice is unimpeded by its fellow particles.

In terms of CPT, the noninteracting limit means that instead of diagonalizing the single cluster to
determine the excitation energies, we can directly access the eigenvalues by writing the Hamiltonian
in its eigenbasis of plane wave functions.

The full Fourier transformation of (4.3) has the form

K̂(τ) = −2t
∑
σ

∑
k

[cos (kx +A(τ)) + cos(ky)] c†k(τ)ck(τ) (4.24)

and the expression for the current is readily obtained as

Ĵ(τ) = −2t
∑
σ

∑
k

sin (kx +A(τ)) c†k(τ)ck(τ) (4.25)

The expectation value of which is given by〈
Ĵ(τ)

〉
= −2t

∑
σ

∑
k

sin (kx +A(τ))
〈
c†kck

〉
τ=0

(4.26)

At time τ = 0 before the electric �eld is turned on, the system is in the ground state. And by
expressing the estimator in terms of Fermi's distribution function we arrive at the analytical result

j(τ)
U=0

= −2t
Λ

∑
σ

∑
k

sin
(
kx +A(τ)

)
fF

(
−2t[cos kx + cos ky]− µ

)
(4.27)

In the case of linear clusters the current density per site does not depend on the dimensionality of the
lattice (1D or semi-2D), whereas the amplitude changes when considering a truly two-dimensional
cluster tiling.

4.3.2 Atomic limit

In the strong coupling or atomic limit (t/U → 0) CPT also arrives at the exact result. By setting
t = 0 (or equivalently U = ∞) any particle mobility is disabled. The electrons are con�ned to
staying at their parent lattice ions and consequently the model exhibits insulating behavior because
no conducting states are possible.
Charge �uctuations are completely frozen out (or suppressed) leading to a perfect Mott insulator
[21] and double occupancy is diminishing proportional to t/U2 as U goes to in�nity.

In the atomic limit the Hubbard model maps onto the Heisenberg model which has an antiferro-
magnetic ground state. The original Hubbard model on the other hand leaves magnetic ordering
out of the picture.
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4.4 Mott insulator

The ground state at half-�lling is highly degenerate since each site is occupied by one electron with
arbitrary spin orientation.

The system's Hamiltonian is reduced to its interaction part only since no hopping processes are
allowed for. Ĥint is already diagonal, considering merely on-site interactions, and the electrons can
be thought of as behaving more like 'particles' in contrast to a more 'wave-like' behavior in the
noninteracting case.

4.4 Mott insulator

Certain materials are expected from conventional band theory calculations considering delocalized
electrons to behave like conductors because they have an odd number of electrons per unit cell.
However, in experiments it turned out that some of them are in fact insulators. This somewhat
puzzling behavior can be attributed to the partially freezing out of charge �uctuations [21].
Materials with such characteristics are named Mott insulators and so called Mott or metal-insulator
transitions (MIT) from insulating to conducting phases are predominantly observed in transition
metal compounds with partially �lled bands near the Fermi level.
For example SrCuO2 and Sr2CuO3 as well as V2O3 doped with Cr are found to demonstrate Mott
insulating behavior. In addition to that, carbon nanotubes have been predicted - and to some extend
experimentally con�rmed - to realize 1D Mott insulators [44].

Very recently the formation of a Mott insulator of a repulsively interacting two-component Fermi
gas was experimentally realized for the �rst time [6]. The group observed most notably a strong
suppression of double occupancy and the appearance of a gapped mode in the excitation spectrum
of the system.

On the theoretical side, the band structure description provides a good insight into the properties
of ionic insulators, ordinary semiconductors or simple metals by considering �lled and empty bands
or, in the case of metals, at least one partially �lled band and disregarding any particle interactions.
The Hubbard model, as opposed to band theory, does take into account electron-electron correla-
tions which play a crucial role in the formation of an energy gap within the band structure when
the interaction U is su�ciently large. The excitation gap in a Mott insulator is qualitatively very
di�erent from the band gap in a conventional band insulator because it originates directly from the
electron-electron repulsion. Band insulators on the other hand have fully �lled or completely empty
bands that are separated by an energy gap in the density of states.
Every phase transition has an ordering parameter and for the MIT it is expected to be U . The MIT
is supposed to occur somewhere in the range where U is of the same order as t, i.e. Uc ∼ t.
If we consider large overlap integrals, the energy bands are broadening and at some point when
t becomes large enough with respect to U the bands merge again, thus forming a insulator-metal
transition.

When there is no external �eld applied to the system, the ground state of the 1D Hubbard model
is a Mott insulator for all U > 0. There is no conducting-insulating transition in the ground state
except in the case of no interaction where U is exactly equal to zero [22].
In the 2D Hubbard model a Mott transition occurs at some critical value Uc > 0 and the opening
gap is enlarged with increasing U .

In the case of the FK model at half-�lling, the Mott transition was determined to occur at Uc =
√

2
in the in�nite-dimensional limit (cf. Ref. [45]).
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With a strong electric �eld present the system starts to exhibit quantum tunneling from the ground
state to excited states [46] and phenomena like a dielectric breakdown of the insulator can be ob-
served. Applying a large external �eld drives the system out of equilibrium and essentially destroys
the Mott insulating state. For band insulators it is more or less well understood how a dielectric
breakdown happens through the e�ects of Zener tunneling. But it is not clear yet if the same ex-
planations can be applied to Mott insulators as well.

According to recent investigations of a one-dimensional Hubbard chain attached to noninteracting
leads where a bias voltage is applied, the dielectric breakdown of the 1D Hubbard model can be
understood in terms of Zener tunneling in the same way as in the case of a band insulator if one
exchanges the band gap with the Mott gap [47]. On the other hand, also in a recent publication,
the authors state that it is not clear from their (t-DMRG) calculations whether the Landau-Zener
mechanism applies when the system is not coupled to leads [48].
For details on the ongoing discussion see the above mentioned references and references therein.

Another area of interest with regard to Mott insulators is the fact that some Mott insulators undergo
a transition from insulating to superconducting behavior when weakly doped with additional charge
carriers. It is assumed (see for example Ref. [49]) that by understanding the transitional phases
the formation of high-Tc superconductors, which so far remains a mystery of modern physics, can
�nally be explained.

4.5 Bloch oscillations

The investigation of expectation values for the current density leads to the prominent phenomenon
of Bloch oscillations that occur in the time resolved pattern of the electric current.
Bloch oscillations describe the movement of particles in a periodic potential when a constant external
force is applied. In our case the particles are electrons (or holes) moving in a crystal while exposed
to a spatially uniform electric �eld pointing in a direction parallel to a lattice vector.
The electric force F = eE is given by Coulomb's law, with the elementary charge e and the electric
�eld strength being either constant, E = E0x, or oscillating in time, E′ = [E0 + E1 cos(ωτ)] x.

The occurrence of oscillations is somewhat counterintuitive and classically one would expect a strictly
ohmic behavior. If the same electrons were �owing through space under the in�uence of the same
voltage they would simply accelerate and gain energy in a uniform manner. However, the additional
presence of a regular pattern due to a spatially varying potential that is created by atoms of the
crystal lattice leads to some interesting phenomena.

There are certain energy values that an electron cannot occupy because of resonance with the lat-
tice. These forbidden energies lie within the electronic band gaps. As the energy of an accelerating
electron approaches the gap edge, it is strongly back scattered by the lattice. Such acceleration
and back scattering processes cause electrons to wobble back and forth in space, producing the
oscillatory e�ect named after F. Bloch.

The phenomenon was �rst described by Bloch [15] in the late 1920s and was elaborated on a few
years later by Zener [50]. Where classical mechanics fails to give an explanation, quantum mechan-
ics predicts that the particles will undergo an oscillation due to the fact that the periodicity of the
lattice potential causes the group velocity of the wave function to oscillate.
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4.5 Bloch oscillations

One of the early experimental con�rmations of Bloch oscillations was carried out by measuring the
optical dephasing of Wannier-Stark ladder excitations in a semiconductor superlattice [51].
Within the last two decades Bloch oscillations have been observed in semiconducting heterostruc-
tures [52], Josephson junctions [53] and ultracold atoms trapped in optical lattices [54].
In addition, Bloch oscillations can also serve as a source for dipole radiation in the terahertz range
(see e.g. Ref. [55] and references therein).
However, up to now Bloch oscillations have never been observed in metals or Mott insulators be-
cause of the very short electron relaxation time. The electrons are scattering at impurities within
the crystal before they are able to reach the Brillouin zone boundary.

The most recent experimental realizations predominantly use ultracold atoms placed in an optical
lattice [56]. By detuning the lasers it appears as if the optical lattice would produce a standing wave
in a moving frame, which is equivalent to the lattice being 'pulled through' the atomic system.
This in turn resembles the Hamiltonian gauge Φ(r, τ) = 0 that we are using numerically in our CPT
calculations. Although it is not possible to measure the current directly in these experiments, it can
be reconstructed from time of �ight measurements.

In Fig. 4.1 two experiments using Bose-Einstein condensates (BEC) in optical lattices are displayed.
In panel (a) a time of �ight measurement is shown and panel (b) portrays the spatial density of a
BEC under the in�uence of bichromatic laser beams that are forming the lattice potential.

(a) (b)

Figure 4.1: (a) Absorption images after a time of �ight of 30ms, for varying Bloch oscillation
times and an acceleration of 2.4m/s2 [57], (b) Bloch oscillations of a BEC of 300 atoms in a tilted
bichromatic lattice, shown is the atomic density in real space [58].

All these experiments concerning cold atoms are dealing with Bosons. So far it was not possible to
reach the very strong temperature requirements which would be necessary to fully realize trapped
fermions in an optical lattice. However, experimentalists are optimistic to achieve the required
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conditions within a couple of years.

Considering a constant external �eld, Bloch oscillations occur with a period TB = h
eE0a

or rather in
atomic units and with lattice constant a set to one

TB =
2π
E0

(4.28)

In the case of a alternating electric �eld and no constant contribution, i.e. E0 = 0, the Bloch
oscillations are driven by the �eld's frequency ω and the Bloch period becomes

T ′B =
2π
ω

(4.29)

A detailed discussion of the numerical results featuring Bloch oscillations is given in chapter 5.

As an example Fig. 4.2 shows Bloch oscillations for small interaction strengths at E0 = 1. The
result for U = 0 was calculated analytically and serves as reference for the numerical data.
In the case of zero on-site interaction (i.e. no scattering from electrons with opposite spin), the Bloch
oscillations are perfectly harmonic functions extending in�nitely in time. When the interaction is
turned on (U > 0) the oscillations at �rst maintain their periodicity, at least for small values of
U . As the correlations increase the oscillations become more and more irregular, as can be seen for
example in the case of U = 1 (cyan line). There is also a U -dependent damping of the amplitude
visible that becomes dominant for larger interaction strengths.

Figure 4.2: Non-equilibrium current for di�erent values of U at E0 = 1 for a half-�lled 1D chain of
4-site clusters (time step dτ = 0.03, number of clusters Nc = 20).
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Chapter 5

Numerical calculations

In this chapter we present results from CPT calculations of the non-equilibrium current as a func-
tion of time under several conditions, including di�erent cluster sizes and shapes, half-�lling, band
doping, static as well as oscillating electrical �elds. As far as available we also try to build a bridge
to recent results obtained by DMFT and t-DMRG techniques.

Throughout this chapter the results are expressed in terms of the parameters that are used. Thus,
energies are given in units of the hopping strength t which, for example, corresponds to about 0.5eV
in the case of high-temperature superconducting compounds. The time τ is given in units of ~/t.
As we are considering time frames of up to τ ≈ 100 at most, this means that we are dealing with
time windows of the order of a few hundred femtoseconds up to the order of picoseconds.
The period of Bloch oscillation lies in the range of 10−100 femtoseconds which amounts to a typical
Bloch frequency in the terahertz region. The electric �eld is formulated in terms of hopping t and
the lattice constant. Considering characteristic lattice spacings of a few Å leads to a corresponding
electric �eld of the order of several mV/Å.

Analytical investigations

As already mentioned before in Sec. 4.3, CPT becomes exact in the noninteracting limit where
U = 0. In this case the current density can be calculated analytically, which comes in handy as a
useful test and a reference frame for further numerical calculations.

The expression for the current density is given by (4.26). For a static external electric �eld the
vector potential is linear in time, A(τ) = E0τ . By inserting this in (4.26) the oscillatory behavior
of the current density becomes evident. The frequency of which is proportional to the strength of
the electric �eld and the Bloch period can be expressed as given in (4.28).

An additional check can be carried out by calculating the expectation value of the particle number
operator which in the case of half-�lling is equal to the total number of lattice sites, i.e. 〈N̂〉 != Λ.
The numerical computation is sketched in matrix notation as follows

N̂ =
∑
i

(ni↑ + ni↓) =
∑
i,σ

c†i,σci,σ

N̂ =
∑
a,σ

p†a(τ) Q†Q pa(τ) =
∑
k̃,σ

p†
k̃
(τ) Q†Q pk̃(τ)
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N̂ =
∑
k̃,σ

p†
k̃
(0) U†(τ)Q†QU(τ) p

k̃
(0) =

∑
k̃,σ

f†
k̃
W †U†(τ)Q†QU(τ)W f

k̃

〈N̂〉 =
∑
k̃,σ

[
W †U†(τ)Q†QU(τ)W Θ

(
µ−D[ε]

)]
k̃,σ

(5.1)

where the argument of the Theta-function in the last line is the diagonal matrix of the single cluster
eigenenergies.

5.1 Staggered on-site potential

As an intermediate approach between the analytically solvable noninteracting model on the one
hand and the numerically obtained CPT results on the other, we introduce a staggered on-site
potential instead of the interaction U . This is a possible way to simulate a genuine band insulator,
in contrast to the Mott insulating behavior of the Hubbard model.
A potential ∆/2 with alternating sign between adjacent atomic sites leads to the development of
two distinct bands separated by an energy gap of size ∆. The corresponding Hamiltonian (also
known as the ionic Hubbard model [59]) in 1D is given by

Ĥ = −t
∑
〈i,j〉,σ

(c†i,σcj,σ + c†j,σci,σ) +
∆
2

∑
i,σ

(−1)i ni (5.2)

Due to the spatially alternating �eld the unit cell of the underlying lattice now includes two lattice
sites with an attractive and repulsive on-site potential respectively.

After including the Peierls phase factor for the external electric �eld, a Fourier transformation leads
to the symmetric expression

Ĥ(τ) =
∑
σ

∑
k

(
ck
ck+Q

)† [
−2t cos(k +A(τ)) ∆

2
∆
2 2t cos(k +A(τ))

](
ck
ck+Q

)
(5.3)

where Q = π is a vector of the reciprocal superlattice and the sum runs over crystal momenta k
inside the reduced antiferromagnetic Brillouin zone. The diagonal of the Hamiltonian consists of
ordinary one-dimensional dispersion relations for free particles, εk = −2t cos(k + A(τ)). For the
lower element on the diagonal we took advantage of the fact that εk+Q = −εk.

The Hamiltonian is diagonalized at time τ = 0 by introducing new creation and annihilation oper-
ators γi† and γi with i = {1, 2} such that [60]

γ1
k = ukck + vkck+Q

γ2
k = ukck − vkck+Q

(5.4)

where uk =
√

1
2 (1 + εk/Ek) and vk =

√
1
2 (1− εk/Ek). The energies Ek =

√
4t2 cos2(k) + ∆2/4

represent the eigenvalues of the diagonalized Hamiltonian.
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5.2 Cluster shapes, sizes and dimensions

Di�erentiating the Hamilton operator with regard to the vector potential yields the familiar relation
for the current density

Ĵ(τ) =
∑
σ

∑
k

γ†k(τ) C γk(τ) (5.5)

with elements ±2t sin(k+A(τ)) on the main diagonal of the coe�cient matrix C and vector opera-
tors such that γk = (γ1

k, γ
2
k)T .

The operators γk are still time dependent and therefore a unitary transformation according to the
time evolution scheme in Sec. 3.4 is carried out. The expectation values are again obtained from
Fermi's distribution function fF (Ek), resulting in the end in an expression for the current density
similar to that in (4.18).

In the limit of ∆ = 0 the above expression recovers the original noninteracting result as given in
(4.26).
For ∆ > 0 the energy spectrum splits into two distinct bands that are separated by a gap of size ∆.
The ionic Hubbard model thus describes a band insulator which allows us to compare some of the
results with those gathered from the Mott insulating Hubbard model. In order to do so the bandgap
∆ has to be adjusted to the Mott gap that is opening up for di�erent interaction strengths.
For example, the 1D Hubbard model with U = 4 has a Mott gap of about ∆gap = 2.66. By setting
∆ = ∆gap we can construct both a band insulator and a Mott insulator with equal energy gaps.

5.2 Cluster shapes, sizes and dimensions

Starting from the simplest cluster, i.e. one consisting of 2 sites on a one-dimensional lattice, we
move upwards to more complex structures in semi-2D and full 2D.
Apart from increasing the number of cluster sites, a natural extension is to consider hoppings not
only in one dimension but also perpendicular to it. By copying the 1D-Hubbard chain and coupling
the clusters perturbatively to its new neighbors, a semi-2D lattice tiling is achieved (see Fig. 3.1).

The next step is to consider 2D-shaped clusters, the smallest of which being quadratic and contain-
ing four lattice sites. This is further extended to a rectangular 2x3 or 3x2 cluster of six sites. Any
further increase in the size of the single cluster treads on the limits of full diagonalization techniques
as well as the maximal size of matrices that have to be kept in memory during the CPT calculation
and would require the implementation of approximative cluster solvers, such as Lanczos methods,
which is beyond the scope of the present work.

Most of our calculations were carried out at half-�lling (hf.) with time steps of dτ = 0.03 if not
stated otherwise.

5.2.1 Convergence

For the 1D Hubbard model convergence is reached rather rapidly with respect to the number of
clusters as depicted in Fig. 5.1 where the interaction was set to U = 2 and the external �eld strength
is E = 2. The results for Nc = 10 and Nc = 30 di�er only slightly and a further increase to Nc > 30
does not produce any visible changes in the data.
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However, a more signi�cant di�erence is discernible on behalf of the cluster size. The 2-site cluster
is a very strong and rather crude approximation because in 1D only one half of the total couplings
between neighboring sites is considered exactly, the other half is treated perturbatively. It can be
expected that considering 4 sites per cluster is already a sharp improvement in terms of accuracy.

Figure 5.1: Convergence pattern for the 1D atomic chain. Calculations were carried out at hf. with
E = 2, U = 2, number of clusters Nc on the lattice and di�erent cluster sizes as indicated. The
black line for the noninteracting case was calculated analytically and serves as a reference frame.

The 2D results for the same con�guration (U = 2, E0 = 2) are shown in Fig. 5.2.
For the quadratic 2x2 cluster the results are not fully converged in the case of a lattice consisting
of 20x20 clusters (i.e. 1600 sites) but convergence is good enough (as can be inferred from the
relatively minor changes between Nc =17x17 and Nc =20x20) to produce reliable results.
Simulations become very time expensive as the number of clusters increases, e.g. when the lattice
is expanded from 1600 (Nc =20x20) to 2304 (Nc =24x24) sites, while little is gained in accuracy
of the data. Especially, since possible improvements are only achieved quantitatively and leave the
results qualitatively unchanged.

(a) (b)

Figure 5.2: Convergence performance in 2D at E0 = 2, U = 2, (a) for a linear 4-site cluster , (b) for
a quadratic 2x2 cluster.

In the case of 6-site clusters, the CPT procedure is limited to comparatively small superlattices
of about Nc =12x12, in order to keep the computational time to complete the calculations within
reasonable means. Although this means a loss in accuracy with respect to the evaluation of the
Brillouin zone, there is also a signi�cant gain in terms of accuracy by increasing the number of
hoppings that are treated exactly.
One additional limitation with regard to computer memory stems from an exponentially growing
Hamilton matrix for the single cluster that has to be diagonalized, another is posed by the amount
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5.2 Cluster shapes, sizes and dimensions

of time that is needed to calculate the time evolution and the contribution of each wave vector to
the current.

Another problem arises when considering large time scales: Since the time step for the midpoint
time evolution scheme as delineated in Sec. 3.4.2 has to be kept su�ciently small to ensure that the
systematic error has little impact on the outcome, the only way to reach large times is to increase
the absolute number of time steps. But as the numerical error piles up the time evolution operator
is loosing its unitarity after many iterative steps and individual outliers in the matrix elements may
lead to additional oscillatory behavior and thus distort the results.

5.2.2 1D and 2D speci�cs

First we consider a one-dimensional chain of atoms with a total of about 80 to 120 lattice sites,
depending on the size of the individual clusters. For CPT the lattice is tiled into clusters with either
two, four or six sites per cluster resulting in superlattices that consist of 40 clusters in the �rst case
and 20 clusters in the other two.

When we move up to two-dimensional lattices, the total amount of cluster sites on the superlattice
increases sharply due to the second dimension. A reasonable trade-o� between accuracy, i.e. resolu-
tion in momentum space, and computation time can be inferred from convergence calculations. For
most of the results given in this chapter a size of 17x17 clusters is used for the superlattice of two-
and four-site clusters and 12x12 for six-site clusters, which amounts to a total lattice of roughly 600
or 1200 sites in the case of the smaller clusters and nearly 900 in the latter case.
Although the lattice sizes are comparatively similar, the results in terms of accuracy improve sig-
ni�cantly with larger cluster sizes. For a comparison of the e�ects of di�erent lattice tilings on the
current density see Figs. 5.3 and 5.4.

(a) (b)

Figure 5.3: Comparison of the current density in a 1D chain for di�erent cluster sizes of 2, 4 and 6
sites respectively, E0 = 2, the interaction strength is set to (a) U = 0.5 and (b) U = 2.

Besides the prominent Bloch oscillations with a period of TB = 2π
E0

the current density exhibits a
damping of the current as soon as the interaction is turned on. This quenching of the oscillatory
behavior is enforced when the cluster grows larger, as can be seen in 1D (Fig. 5.3) as well as in 2D
(Fig. 5.4) for interaction strengths U = 0.5 and U = 2.

Also noticeable, in the U = 2 case smaller clusters tend to maintain the periodicity of Bloch
oscillations throughout the whole time frame, whereas the 2x3 cluster shows irregular behavior
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(a) (b)

Figure 5.4: Comparison of the current density on a 2D lattice for di�erent cluster sizes and shapes,
E0 = 2, the interaction strength is (a) U = 0.5 and (b) U = 2.

already after about three cycles. During this initial oscillations the damping e�ect is most severe
but abates for larger times. Due to the limited time range of the simulation, it is not clear whether
the current density eventually goes to zero or to some non-zero constant value and the system
approaches a steady state. However, there are indications that some (irregular) oscillatory patterns
remain also for very large times.

Fig. 5.5 displays on the one hand the time dependence of the current density for di�erent electric
�eld strengths (increasing E0 from 0.25 in panel (a) to 2 in panel (d)) and on the other hand the
e�ects of small or large on-site interactions. The Bloch frequency is directly proportional to the
external �eld leading to rapid oscillations for large E0.

(a) (b)

(c) (d)

Figure 5.5: Current density at di�erent interaction strengths for quadratic 2x2 clusters with a �eld
amplitude of (a) E0 = 0.25, (b) E0 = 0.5, (c) E0 = 1 and (d) E0 = 2. Note the di�erent time scales.
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5.3 DMFT results for the Falicov-Kimball model

The Bloch oscillations in the case of metallic systems, that is for rather small electron-electron
correlations (U < 1), are exactly matching the periodicity of the ideal, noninteracting case with the
exception that the amplitude is declining over time.
At around U = 1 the oscillations are deformed and additional oscillations appear on top of the
original ones. These extra patterns start out as small wiggles and become progressively dominant
as the correlation strength increases. This process occurs slowly and is not a distinct point-like
transition.

The oscillations become to a greater extent irregular as U increases. Large correlations also mean
that the system is eventually turning into a Mott insulator.
The current gets more and more suppressed as correlations between particles increase. For metallic
systems the decay of the amplitude can be interpreted as an augmentation in scattering events that
hinder the movement of electrons through the lattice.
For example, in panel (c) of Fig. 5.5 the current for the U = 4 case is sharply damped after the
�rst half of the Bloch period, whereas for small electron-electron interactions the quenching of the
Bloch oscillations is less intense.

A larger electric �eld provokes a stronger response by the system and drives the current for a longer
period of time as can be seen in Fig. 5.5 when comparing the strong damping of the blue line
(U = 0.25) for E0 = 0.25 as opposed to a slight damping for E0 = 2.

Note that even for large external �elds, linear response theory is valid as long as, in the case of a
static �eld, E0τ is very small compared to the Bloch period.

5.3 DMFT results for the Falicov-Kimball model

The following section is intended to provide at least a qualitative comparison to results that were
recently obtained from Dynamical Mean-Field Theory (DMFT) calculations by J. K. Freericks and
others.
We will not give a detailed account of their �ndings nor of the particulars of DMFT. An elaborate
discussion of the numerical results can be found in their papers, Refs. [9, 25, 45, 61, 62], and a
comprehensive description of the spinless Falicov-Kimball model is given in Ref. [27].
In all numerical calculations the authors consider the case of half-�lling with particle densities of
both the itinerant and localized electrons equal to 1/2 and the same chemical potential for both
sorts of electrons.

Although the Hubbard and the FK models have distinct features of their own, they both are capable
of describing general physical phenomena in strongly correlated materials, such as Bloch oscillations
and the damping of the current, in a comparable way.

The adopted results for the FK model's nonequilibrium current response to an external electric �eld
are given in Fig. 5.6. The same damping e�ects occur, as we have seen in the previous section, for
increasing coupling strengths. The damping becomes so severe that the current density does not
complete a full Bloch period if U lies within the Mott insulating regime U > Uc.
Additionally, beat-like phenomena arise in the case of metallic systems (see especially the upper
panel of (b) in Fig. 5.6). This is to some extent also seen in the Hubbard model, though the pattern
is much less regular and seems to depend rather strongly on the cluster size (cf. Figs. 5.3, 5.4).
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(a) (b)

Figure 5.6: DMFT results for the FK model, adopted from [25]. Metallic systems are displayed
in the upper panels, Mott insulators in the lower panels. The equilibrium FK model in in�nite
dimensions features a MIT at Uc =

√
2. Results are plotted for (a) E0 = 0.5, (b) E0 = 2 and U as

indicated.

According to [25] these beats, which seem to have a periodicity of 2π/U , become increasingly visible
for large electric �elds and can be attributed to two sharp peaks in the density of states centered at
±U/2.

A beat period inversely proportional to the interaction strength was predicted for the tight-binding
Hubbard model in [63]. The authors carried out nonequilibrium calculations of the correlated mo-
tion of two electrons in a one-dimensional lattice, showing the occurrence of oscillations in the drift
velocity of the particles.
For a uniform external electric �eld the periodicity turned out to be h/U (which translates to 2π/U
in atomic units) depending only on the interaction strength U and being independent of the hopping
amplitude t.

For small �eld strengths the current density in the case of Mott insulators (see lower panel of
Fig. 5.6a) seems to approach a non-zero steady state solution. However, as the authors mention
in [9], a steady state response in a perturbative approach is di�cult to determine accurately and
further complicated by the limited time window of the calculations.
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5.4 Results from t-DMRG calculations

The density matrix renormalization procedure was �rst proposed by S. White in 1992 [29] and has
gained importance alongside increasing computer power ever since. For a comprehensive review of
the DMRG method see for example Ref. [64].

Very recently the adaptive time dependent density matrix renormalization group (t-DMRG) approach
was introduced as an extension to DMRG and a powerful numerical approach to one-dimensional,
strongly correlated systems driven out of equilibrium (see Ref. [65]).
Note, in contrast to CPT and DMFT, DMRG methods are basically exact although limited by
computational resources and con�ned to 1D models.

Most t-DMRG calculations use a one-dimensional chain with pbc, i.e. a ring of atomic sites, to
which a magnetic �eld is applied in order to model an electric current �owing through the system.
A di�erent way to introduce an electric �eld than by incorporating Peierls' substitution for the
hopping amplitude is therefore by means of Faraday's law, resulting in a circular electromotive
force. A time dependent Aharonov-Bohm �ux Φ′(τ) = eΛaEτ is piercing the ring-shaped 1D lattice
and the Hamiltonian for the corresponding Hubbard model takes on the form [66]

Ĥ = −t
∑
i,σ

(
ei Φ(τ)c†i,σci+1,σ + h.c.

)
+ U

∑
i

ni↑ni↓ (5.6)

where Φ(τ) = Φ′(τ)/2πΛ = Eτ (in units of e = a = 1) is a time dependent phase equivalent to the
Peierls phase that was introduced in Sec. 3.3.

The most interesting result from t-DMRG calculations is a breakdown of the Mott insulating phase
for strong electric �elds which is dependent on the magnitude of the electron-electron interaction.
If E0 becomes large enough the system shows an increase in the current response and again turns
into a metal, thereby destroying the Mott insulating state.
The breakdown is indicated by a gradually developing decay rate of the ground state [46] as tunneling
to excited states is enhanced when the eletric �eld strength increases.

The dielectric breakdown of a band insulator is well understood in terms of Landau-Zener tunneling
that arises between the valence and the conduction band. The main di�erence now to a Mott insu-
lator is that the excitations across the band gap can move freely in a band insulator whereas in the
presence of a Mott gap they are bound to interact with other electrons.

T. Oka and H. Aoki [46, 66] managed to show that the dielectric breakdown of the 1D Mott insulator
can be explained according to the same considerations as in the case of a band insulator. An exten-
sion of the Landau-Zener mechanism works �ne also for correlated many-body systems if the band
gap is replaced by the charge gap of the Mott insulator.
It should be noted that the authors of another t-DMRG study [48] in which they are using a di�erent
setup did not �nd the same strong indications that the breakdown of the Mott insulator could be
attributed to the Landau-Zener mechanism. Instead of modeling the electric �eld with the help of a
magnetic �ux through a ring, as mentioned above, the authors were looking at a 1D Hubbard chain
to which a static bias voltage is applied.

Nevertheless, both studies found the breakdown occurring as soon as the �eld strength exceeds the
energy gap and a current similar to the one in the breakdown regime of a band insulator arises.
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Others [47] have looked at a single cluster of four sites and applied an electric potential to two
noninteracting leads that are attached to the interacting region in between. The bias voltage drives
the system out of equilibrium and above a certain threshold voltage the Mott insulator breaks down.
In this case, for large times a steady state current can be observed.

Due to the limitations posed by the accessible time window in our CPT calculations, we are not
able to reach a steady state. Therefore, it is not possible for us to determine the dependence of
steady state currents on the strength of the electric �eld in the face of a Mott insulator breakdown.
Nonetheless, we may get a hint from averaging over the oscillation pattern at long times as to
whether the current tends towards zero or rather a �nite value. The latter would be an indicator of
the dielectric breakdown.
It is necessary to consider only data well beyond the transient phenomena at small and medium
times to get into a regime that is close to the steady state.

The long-range performance of the 1D current density is portrayed in Fig. 5.7. As long as the
magnitude of the electric �eld is larger than the Mott gap, which is roughly the case when U < E0

for small interactions up to U = 1, the Bloch oscillations exhibit a fairly regular behavior. This is
the metallic regime and the damping reaches out over many Bloch cycles.
In the region near the insulator breakdown, where E0 is slightly smaller or larger than the gap size
(see both cases of U = 0.75 in panels (a) and (b) for example), the oscillations are losing their
characteristic periodicity. Although a periodic order is still discernible, the oscillations are clearly
shifting away from the U = 0 reference.
When the correlation strength is further increased, the system turns into a Mott insulator and the
current response is damped rather strongly, for instance in the case of U = 3 in panel (b).
In panel (c) the Mott gap becomes larger than the external �eld at about U ≥ 6.

Summing up, the current density oscillates regularly in the areas where the electric �eld dominates
the electron-electron correlations and a continuous damping of the amplitude occurs. For strong
interactions, i.e. if the Mott gap exceeds the magnitude of the electric �eld, the Bloch oscillations
evolve into an irregular pattern and are damped more sharply, especially within the �rst few Bloch
periods.
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(a)

(b)

(c)

Figure 5.7: 1D current density (6-site clusters) in the long-range regime for di�erent on-site inter-
actions. The magnitude of the electric �eld is (a) E0 = 0.5, (b) E0 = 1, (c) E0 = 4.
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5.5 Oscillating electric �elds

We now turn our attention to periodic external �elds that may be written generally as a sum of a
static and an alternating �eld, such that

E(τ) = E0 + E1 cos(ωτ) (5.7)

The frequencies considered here lie in the same range as the characteristic frequency of Bloch
oscillations, i.e. they are of the order of about 1013Hz. It is still a technical challenge to produce
powerful sources of terahertz radiation. Recent developments show the possibility of using alter-
nating currents in Josephson junctions to provide electromagnetic �elds whose frequency can be
adjusted by the applied voltage to the terahertz regime [67].
Another way of realizing such frequencies could be the usage of a second device whose Bloch
oscillations, generated by a static �eld, would in turn create an alternating �eld and thus drive
an oscillating current in the �rst system.

With a purely oscillating electric �eld present, i.e. E0 = 0, the Bloch oscillations are driven by the
frequency ω of the E-�eld and not by the magnitude of the �eld as in the static case, thus resulting
in a periodicity TB′ = 2π/ω.

Altering the frequency of the driving �eld produces a large variety of oscillation patterns, examples
of which are given in Figs. 5.8 and 5.9.

Figure 5.8: Oscillation pattern for di�erent driving frequencies of an external �eld E = 2 cos(ωτ)
with U = 0.5 and U = 2.

If the magnitude E1 of the oscillating �eld is changed, the periodicity of the Bloch oscillation remains
�xed at TB′ = 2π/ω. A di�erence occurs only in the modulation pattern of the oscillations. With
increasing E-�eld magnitude the current density within a single Bloch period does oscillate more
frequently as compared to small values of E1.
For example, in the case of E = 2 cos(0.4τ) (see upper right panel in Fig. 5.8) the Bloch period
equals TB′ = 5π and encompasses four peaks in the current density. The results for a �eld with
smaller magnitude E = 1 cos(0.4τ), in contrast, show only two peaks in the same region.
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5.5 Oscillating electric �elds

In summary, the periodicity of the system's response to the driving �eld is determined by the
frequency ω of the external �eld, whereas the frequency of the over-all oscillatory behavior within
the Bloch period is proportional to the �eld strength E1.

Figure 5.9: Oscillation patterns for di�erent driving frequencies of an external �eld E = 2 cos(ωτ)
with U = 4 and U = 8.

The maximum amplitude that is reached by the current is reduced for large driving frequencies as
can be seen in the lower right panel of Fig. 5.8. At large frequencies the electric �eld has not enough
time to fully establish. Interestingly, as the frequency is further increased the CPT results seem to
match the current response of a noninteracting system.
In fact, this occurs only for small or medium interaction strengths. When we probe very strongly
interacting systems, the suppression of the current is substantial enough, so that the maximal cur-
rent in the interacting case is still well below the (reduced) amplitude of the noninteracting case.
See also Fig. 5.10 for the case of E = 1 cos(3τ) and two interaction strengths U = 2 and U = 8.
Notice the reduced maximal amplitude from about jmax = 0.8 when ω is rather small to jmax = 0.26
in the case of ω = 3.

Figure 5.10: Reduction of the noninteracting amplitude (black line) and suppression of the current
for U = 2 and U = 8 under the in�uence of E = 1 cos(3τ).
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The decay of the noninteracting amplitude occurs at a critical value ωc of the driving frequency.
It also depends linearly on the magnitude of the electric �eld. Fig. 5.11 depicts the amplitude
reduction as a function of the applied frequency for di�erent �eld strengths.
The onset of the amplitude reduction is indicated for larger �elds and follows the relation ωc = 2

πE1.

Figure 5.11: Decay of the maximal amplitude for the noninteracting current as a function of ω. Also
shown is the dependence of ωc (indicated with a star) on the magnitude E of the applied electric
�eld E(τ) = E cos(ωτ).

5.5.1 Enhancement phenomena

What happens if a multiple of the driving frequency ω coincides with the Bloch frequency ωB?
For medium interaction strengths and magnitudes of the electric �eld there seems to occur an
increase in the current if the driving frequency is close to the Bloch frequency, see U = 4 case
in panel (a) of Fig. 5.12. If the frequency is small, then the damping is dominant and for large
frequencies or cases where the amplitude of the E-�eld is much bigger than U , no such enhancement
is observable (panel (b)).
It cannot be ruled out that the rather small size of the clusters has a possibly signi�cant in�uence
on the partial development of enhancement patterns in the current density.

(a) (b)

Figure 5.12: Decay and partial enhancement of the maximal amplitude for the interacting current
as a function of the driving frequency ω. The electric �eld is given by (a) E(τ) = 2 cos(ωτ) with
U = {4, 8} and (b) E(τ) = 8 cos(ωτ), U = 2.
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5.5 Oscillating electric �elds

(a) (b)

Figure 5.13: In�uence of the size of the time steps ∆τ and development of unphysical ampli�cation
of the current for a 2-site cluster in 1D, E = 0.4 cos(5πτ), U = 4π. (a) For smaller ∆τ the data
seems to converge towards beats which have a period of 8π. (b) Although the data has converged,
the current density grows beyond the noninteracting maximum.

In a di�erent situation, the �nite cluster approximation and the discretization in time that intro-
duce some amount of inaccuracy may cause an incorrect amplifaction of the current for a certain
combination of parameters. Fig. 5.13 gives an example of how signi�cant a role the cluster size
and the resolution in time can play in CPT calculations. The current density is highly oscillating
due to a very large driving frequency of ω = 5π. Panel (a) gives a qualitative picture of the overall
behavior of the current, where the colored areas are actually high frequency oscillations as can be
seen in the larger resolution of panel (b).
In the case of the largest time steps a sharp increase beyond the noninteracting case (in black) can
be observed which is of course unphysical. The results get slightly better with smaller time steps,
but even if ∆τ is reduced to less than one-tenth of its original value, the current response exceeds
the U = 0 maximum.

This phenomenon seems to arise most prominently in the 1D chain for small clusters and only for
certain parameters, that is, if the driving frequency ω is a multiple of π and U is of the same order
as ω.

The boost in the interacting current is persistent in 1D regardless of the size of the cluster and
occurs at certain pathological combinations of U and ω also for the smallest two-dimensional cluster
but vanishes completely when we consider a 2x3 or 3x2 con�guration, see Fig. 5.14.

(a) (b)

Figure 5.14: Current density for di�erent clusters at E = 0.4 cos(5πτ) and (a) U = 5π, (b) U = 6π.
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For certain combinations of E1, ω and U transient phenomena appear at the beginning when the
external �eld is turned on. The frequency of the Bloch oscillations shifts a little bit to higher values.
After a few cycles have been completed the current density again oscillates in phase with the non-
interacting result.
This can be seen for example in Fig. 5.9 in the two panels at the bottom and also in Fig. 5.14. The
larger the electron-electron correlation the bigger is the shift away from the Bloch frequency in the
beginning.
This may be explained with regard to a harmonic oscillator which would be expected to react with
a phase shift to a resonant external �eld.

5.5.2 Static plus oscillating �eld

We are now considering a superposition of a static and an oscillating electric �eld according to
equation (5.7) with �nite magnitudes E0 and E1.
The overall behavior of the current density is very much alike the phenomena discussed in the
previous sections. For comparison a couple of examples are presented in Fig. 5.15.

On the one hand the amplitude of the static �eld exactly determines the periodicity of the Bloch
oscillations, TB = 2π/E0, when the driving frequency ω takes on an integer value. On the other
hand if ω is some rational (or irrational) number the oscillatory behavior of the current response is
still dominated by TB , but the shape of the individual Bloch cycles becomes irregular though not
entirely random. The irregular patterns too show large periods after which the pattern is repeated
again. For example, this can be seen in on the left hand side of Fig. 5.15 for driving frequencies
ω = 1.6 and ω = 2.8 where the irregularly shaped Bloch oscillations are reproduced after a period
of 10π.

Figure 5.15: Oscillation patterns for di�erent driving frequencies ω of an external �eld given by
E = 1 + 1 cos(ωτ). The interaction strength is ranging from the metallic regime for U = 0.5 to
a Mott insulating regime for U = 4. Note that on the right hand side the Bloch oscillations are
perfectly regular and period is TB = 2π for all con�gurations due to the driving frequency being
equal to an integer value.
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5.6 Band doping

E1, the magnitude of the alternating �eld, predominantly a�ects the system's response within each
Bloch period. While the periodicity stays the same, large recurrent �elds lead to additional oscil-
lations superimposed on the underlying Bloch oscillations. As a result the Bloch oscillations may
consist not only of one peak, which is the case for small E1, of several distinct peaks when E1 > 1.
For instance, the current driven by an electric �eld E = 1 + 4 cos(ωτ) is depicted in Fig. 5.16
for some selected values of ω. A comparison of this to the results in Fig. 5.15 clearly shows the
additional oscillations arising from the change in E1.

Figure 5.16: Oscillation patterns for di�erent driving frequencies ω of an external �eld given by
E = 1 + 4 cos(ωτ) and interaction strengths U = 0.5, 2 and 4.

5.6 Band doping

By shifting the chemical potential away from its value of µ = U/2 at exactly half-�lling, one can
achieve a certain degree of electron or hole doping. For relatively small changes of µ the clusters
themselves remain undoped because the chemical potential still lies within the energy gap.
Changing the chemical potential to values far away from half-�lling and outside the gap would
eventually lead to cluster doping where an additional electron or hole is present in each cluster.

The gap between two energy bands of the whole lattice that are formed by coupling the individual
clusters is smaller than the Mott gap of a single cluster. Thus, band doping occurs while the clusters,
with regard to actual particles, remain undoped.
We are only considering the case of hole-doping (µ < U/2) here. However, the results are entirely
equivalent to the situation of particle-doping where the chemical potential is taken above its value
at half-�lling (µ > U/2) because of the particle-hole symmetry of the Hamiltonian.

The e�ects of band doping are only signi�cant if the external electric �eld is much smaller than the
interaction strength. E � U means that the system is well within the Mott insulating regime. Since
the energy gap in a Mott insulator is a charge gap, introducing additional charge carriers causes the
system to become more metal-like. As expected, the consequence is an augmentation of the current.
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In Fig. 5.17 the cases for static electric �elds of magnitude E0 = 0.2 and E0 = 1 as well as on-site
interactions U = 4 and U = 2 are depicted for various chemical potentials ranging from no doping
at half-�lling to large doping near the band edge.

(a) (b)

Figure 5.17: Band doping for a system in a static external �eld. Parameters are (a) E = 0.2, U = 4,
and (b) E = 1, U = 2. The results for the smallest chemical potential (µ = 0.7 and µ = 0.6
respectively) lie very close to the band edge where cluster doping would occur.

As the doping increases the system becomes more and more metallic in character. This is clearly
visible in the increased amplitude of the Bloch oscillations.

For large electric �elds (that is, if E is of the same order as U) doping does not have a signi�cant
e�ect with respect to the current. The very short periodicity of the Bloch oscillations prevents a
strong damping caused by U .

Doped bands in a driving �eld

The extension to an alternating external �eld is straightforward. With regard to the e�ects of band
doping, the results do not depend speci�cally on the nature of the electric �eld. As seen before, a
small shift of the chemical potential away from its value at half-�lling does not change the properties
of the system. If the chemical potential is further decreased below (or increased above) µ = U/2
the system turns away from its Mott insulating properties and behaves more like a metal.

Figure 5.18: Band doping for 2x3 clusters in an oscillating external �eld E = 0.2 cos(0.5τ), U = 4.
Note, the scale for the current axis has changed compared to Fig. 5.17.
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5.6 Band doping

In Fig. 5.18 the time resolved current density of a two-dimensional lattice with electron-electron
correlation energy U = 4 is shown as a periodic �eld E = 0.2 cos(0.5τ) is applied.

A superposition of static and periodic �elds produces a di�erent and generally more complex shape
of the noninteracting Bloch oscillations. Since in Fig. 5.19 the interaction strength is one order of
magnitude larger than the amplitude of the electric �eld, the damping e�ects of the Bloch oscilla-
tions dominate.
This in turn yields an interacting current that does not resemble the same speci�c shape. However,
when the system acts more like a metal the damping becomes less severe and the current again
takes on some of the features of its noninteracting counterpart. Most prominently this can be seen
in panel (a) by comparing the case of half-�lling (red line) and the case of heavy doping (blue) with
the noninteracting result (black).
Notice the large Bloch period of 10π in all three images of Fig. 5.19.

(a)

(b) (c)

Figure 5.19: Band doping for 2x3 clusters in a superposition of a static and an oscillating external
�eld E = 0.2 + 0.2 cos(ωτ) with varying driving frequency, (a) ω = 0.5, (b) ω = 1, (c) ω = 1.6. The
interaction is set to U = 4 in all cases. Note, the data for µ = 1.4 (cyan) overlaps almost exactly
with the results at half-�lling (red).
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Chapter 6

Conclusions

In strongly correlated materials the competition of kinetic and potential energy, which are both
of about the same order of magnitude, lead to various interesting properties. Standard models
in condensed matter physics are not capable of describing these phenomena properly and new
approaches have to be established.
Starting from the fermionic Hubbard model we developed a pseudoparticle description within the
framework of Cluster Perturbation Theory (CPT).

The system starts in equilibrium and then a strong external electric �eld is turned on that drives
a current. We focused on the time evolution of the current density and investigated the in�uence
of electron-electron correlations on the damping of the Bloch oscillations in one-dimensional and
two-dimensional systems. Increasing the Coulomb repulsion among transient particles reduces the
amplitude of the oscillations more rapidly as the system exhibits Mott insulating behavior.
We found qualitative agreement of our results with calculations obtained by Dynamical Mean Field
Theory (DMFT) for the Falicov-Kimball model and by time dependent Density Matrix Renormal-
ization Group (t-DMRG) for an atomic ring.

The extension to periodic �elds reveals additional e�ects on behalf of the Bloch frequency. Bloch
oscillations occur with a characteristic frequency proportional to the magnitude of a static electric
�eld or, in the case of an alternating E-�eld, the oscillations are driven by the �eld's frequency.
Strong interactions lead to a quick diminishing of the Bloch oscillations and an irregular highly
oscillatory evolution of the current density.

We pointed out the di�erences between conventional band insulators and Mott insulators and dis-
cussed the formation of the Mott gap as well as the potential dielectric breakdown of the Mott
insulating phase at large �eld strengths.

We also examined the case of band doping which, if su�ciently far away from half-�lling, increases
the metallic behavior of the system by changing the carrier concentration.

From the comparison with DMFT and t-DMRG it is apparent that CPT is a promising and valuable
alternative to very time- and memory-expensive techniques, yielding valid results at much less cost.
An additional advantage with regard to DMRG is that the extension to more than one dimension
is straightforward in an approach based on CPT.

As CPT is one of the simpler quantum cluster methods, it can be re�ned for example by adding
additional �elds or bath degrees of freedom to the cluster. This leads eventually to methods like
Variational Cluster Approximation (VCA), Cluster Dynamical Mean-Field Theory (C-DMFT) or
the Self-Energy Functional Approach (SFA), where variational or self-consistency principles are
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applied to evaluate the additional parameters. For more details on these approaches see for instance
[34] and references therein.
One avail of these cluster methods is the possibility of studying long-range ordering phenomena and
broken symmetry phases which, due to its one-step nature, cannot be analyzed by means of CPT.

At present the direct observation in an experimental setup of the phenomena described here is not
achievable. On the one hand most solid state systems where Bloch oscillations are detectable are
multi-band structures. The presence of a large �eld will induce Zener tunneling to higher energy
bands which we neglected. On the other hand, ultracold atoms trapped in tunable optical lattices,
which are the experimental equivalent to the Hamilton gauge in our model, can serve as an authentic
realization of the kind of systems we investigated. Unfortunately, strict temperature requirements
and the necessity of reconstructing the current from time-of-�ight measurements constitute major
challenges. Not to forget, that Bloch periods typically lie in the femtosecond range and are therefore
rather di�cult to measure.
The Bloch period has to be much smaller than the average collision times in order for the Bloch
oscillations to emerge, which means that the electric �eld must be strong enough to produce
such rapid oscillations. The scattering of electrons from impurities or phonons takes place with
a characteristic time of the order of 10−13 seconds in a lattice with a representative lattice spacing
of a few Ångstroms [16]. The requirements for the �eld strength can be lowered by increasing the
lattice spacing to 10-50 times its original value in an optical lattice. A larger lattice spacing corre-
sponds to a reduced Brillouin zone and therefore smaller Bloch periods while the electric �eld stays
the same.

With respect to numerical errors, the propagator governing our time evolution scheme is prone to
gradually lose its unitarity for a large amount of iterative steps in time. For an accurate investigation
of long-term behavior a di�erent time evolution procedure will be necessary. A possible approach
is provided by the Lindblad master equation formalism that can be used to explicitly construct
non-equilibrium steady states [68].
Other extensions could include next-nearest hopping processes and the expansion of the single
cluster to encompass larger numbers of lattice sites. Implementing a band Lanczos algorithm, for
instance, which is capable of diagonalizing larger single clusters more e�ciently than a 'brute force'
full diagonalization, could do part of the job of getting closer to an exact description of the system.
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Appendix

CPT - Green function formalism

This section primarily follows Refs. [2, 34, 35], see also Ref. [11] for a detailed discussion of Green
functions in many-body physics.

Starting from the single-particle Green function

Gµ,Ra;ν,Rb
(ω) = 〈〈cµ,ac

†
ν,b〉〉ω (6.1)

we obtain the cluster Green function by decoupling the clusters

G
cl

≡ δa,bGa,µ,ν (6.2)

The cluster Green function is diagonal in cluster indices a, b and it is evaluated by use of ED
techniques.

The inter-cluster Hamiltonian V̂ in (3.4) is treated in strong-coupling perturbation theory. In leading
order the obtained lattice Green function has the matrix form

G−1 = G
cl−1 −V (6.3)

where V denotes the inter-cluster hopping matrix.

The self-energy Σ is de�ned by Dyson's equation

G−1 = G−1
0 −Σ (6.4)

and the noninteracting Green function has the form

G−1
0 = ω −T = ω −T

cl

−V (6.5)

Here T stands for the full hopping matrix of the in�nite system and T
cl

and V indicate the intra-
cluster and inter-cluster hopping matrices respectively.

Rewriting Dyson's equation in terms of G
cl

yields

G
cl−1 = G−1cl

0 −Σ
cl

(6.6)

which combined with (6.5) gives

G−1
0 = G

cl−1 −V + Σ
cl

(6.7)
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Putting this into (6.4) yields the expression

G−1 = G
cl−1 −V −

(
Σ−Σ

cl
)

(6.8)

This relation for the lattice Green function is equivalent to (6.3) if the full self-energy is approximated
by the cluster self-energy (Σ = Σ

cl

), resulting in

G−1 = G
cl

0 −Σ
cl

(6.9)

Although translational symmetry is broken on the level of the full lattice, invariance is still pre-
servered with regard to the superlattice Γ. G

cl

is diagonal in superlattice indices a since it belongs to
a particular cluster only. By applying the index transformation i→ (n, a) from lattice indices i to a
compound index (n, a) and subsequently performing a partial Fourier transform of the superlattice,
which in general reads

Oa =
1√
Nc

∑
k̃

ei k̃RaOk̃ (6.10)

we gain
G−1
nm(k̃, ω) = G

cl−1
nm (ω)−Vnm(k) (6.11)

This constitutes a mixed representation of the Green function in superlattice wave vectors k̃ and
real space cluster-site indices n,m.

An additional Fourier transform yields the total Green function in k-space, but it would depend
on two crystal momenta k and k′ due to the factorization of the lattice. The o�-diagonal terms
where k 6= k′ are neglected by introducing the following periodization prescreption [35] which takes
advantage of the fact, that k and k′ di�er only by a wave vector K of the reciprocal superlattice.

G(k, ω) =
1
L

∑
n,m

ei k(Rn−Rm) Gnm(k̃, ω) (6.12)

where k̃ can be replaced by k since k̃ + K yields the same result.

Thus, translational invariance with respect to the total Green function of the full lattice is recovered
again.
Note, for further calculations usually the Lehmann representation of Green functions is used.

CPT (in contrast to ED for example) has in principle no limitation on the k-resolution and provides
the experimentally relevant spectral function

A(k, ω) ≡ − 1
π

lim
η→0

Im G(k, ω + i η) (6.13)

for any momentum vector, which is used to compare numerical results with ARPES data. Angle-
resolved photoemission spectroscopy is a method of probing the electronic states in momentum
space and has become the key experimental technique for comparison with simulated models.
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Remark

In the context of C-DMFT the e�ect of bath sites on the electron Green function is enclosed in the
hybridization function [34]

Γnm(ω) =
∑
ν

θnνθ
∗
mν

ω − εν
(6.14)

and the cluster Green function takes on the form

G
cl−1 = ω −T− Γ−Σ

cl

(6.15)
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List of abbreviations and symbols

CPT Cluster Perturbation Theory

VCA Variational Cluster Approach

DMFT Dynamical Mean Field Theory

t-DMRG time dependent Density Matrix Renormalization Group

FK Falicov-Kimball

ED Exact Diagonalization

MIT metal-insulator transition

BZ Brillouin zone

DOS density of states

pbc periodic boundary conditions

hf. half-�lling

t hopping strength

U on-site interaction

µ chemical potential

∆ staggered on-site potential

E electric �eld strength

τ time

L sites per cluster

Nc number of clusters

Λ total numver of lattice sites

N total number of itinerant electrons

k reciprocal lattice wave vector

k̃ reciprocal superlattice wave vector

71


