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Abstract

Elliptic curves over finite fields can be used in public-key cryptography. There, the scalar mul-
tiplication in the group of rational points on the curve is the essential operation performed,
and clearly, the aim is to make it as efficient as possible. Beside the double-and-add methods,
Frobenius-and-add algorithms are attractive, since the Frobenius endomorphism can be evalu-
ated very fast in finite fields. Due to the correspondence between the Frobenius endomorphism
and an algebraic integer τ , we may consider τ -adic expansions for elements of Z[τ ].

Let w be an integer with w ≥ 2, and let the digit set consist of zero and all minimal norm
representatives modulo τw not divisible by τ . We consider width-w τ -adic non-adjacent forms
(w-NAFs for short). This means that in an expansion with base τ every block of w consecutive
digits contains at most one non-zero digit. This thesis deals with analysing the occurrences of a
fixed non-zero digit in such expansions. The major result counts these occurrences in all w-NAFs
in a region (e.g. disc) asymptotically. The theorem is proved for imaginary quadratic algebraic
integers τ . Beside the main term, a second order term, which is periodically oscillating, is given.
Further the necessary tools and prerequisites were developed, and it is shown that every element
of Z[τ ] admits a unique w-NAF. Moreover, some properties of the fundamental domain of a
w-NAF number systems can be found.

keywords: τ -adic expansions, non-adjacent forms, redundant digit sets, elliptic curve crypto-
graphy, Koblitz curves, Frobenius endomorphism, scalar multiplication, Hamming weight, sum
of digits, fractals, fundamental domain
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Kurzfassung

In asymmetrischen Kryptosystemen (Public-Key-Verfahren) können elliptische Kurven über end-
lichen Körpern verwendet werden. Dabei ist die Skalarmultiplikation in der Punktgruppe der
Kurve von besonderem Interesse. Klarerweise ist ein Ziel, diese möglichst effizient auszuführen.
Neben den Double-and-Add Verfahren können auch Frobenius-and-add Algorithmen eingesetzt
werden, da der Frobenius Endomorphismus in endlichen Körpern sehr schnell auszuführen ist.
Wegen des Zusammenhangs des Frobenius Endomorphismus mit einer ganzalgebraischen Zahl τ
ist die Betrachtung von τ -adischen Entwicklungen von Elementen in Z[τ ] interessant.

Sei w eine natürliche Zahl mit w ≥ 2, und sei eine Ziffernmenge, bestehend aus Null und Re-
präsentanten modulo τw mit minimaler Norm und teilerfremd zu τ , gegeben. Wir betrachten die
Width-w τ -adic non-adjacent Form (kurz w-NAF). Dabei ist in dieser τ -adischen Entwicklung
in jedem Block von w aufeinanderfolgenden Ziffern maximal eine nicht-Null. In dieser Arbeit
wird das Vorkommen einer fixen Ziffer ungleich Null in solchen Entwicklungen analysiert. Im
Hauptresultat wird eben dieses Vorkommen einer Ziffer in allen w-NAFs in einem Gebiet (z.B.
Kreisscheibe) gezählt. Der entsprechende Satz wurde dabei für imaginär-quadratische ganzalge-
braische τ bewiesen. Das Ergebnis besteht neben dem Hauptterm auch aus einem periodisch
oszillierenden Term zweiter Ordnung. Weiters wurden die dafür nötigen Hilfsmittel entwickelt
und es wurde gezeigt, dass jedes Element von Z[τ ] eine eindeutige w-NAF-Entwicklung besitzt.
Außerdem wurde der Fundamentalbereich des w-NAF Zahlensystems untersucht.

Schlüsselworter: τ -adische Entwicklung, Non-adjacent Form, redundante Ziffernmengen, ellip-
tische Kurven Kryptografie, Koblitz-Kurve, Frobenius Endomorphismus, Skalarmultiplikation,
Hamming-Gewicht, Summe von Ziffern, Fraktale, Fundamentalbereich

Kontakt:
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Chapter 1

Introduction

In cryptography one major area of study is public-key cryptography. The main idea is to use two
different keys: one for encrypting messages and one for decrypting them. This is in contrast to
symmetric-key cryptography, where the same key is used for encrypting and decrypting a message.
One approach in public-key cryptography is elliptic curve cryptography. There the algebraic
structure of an elliptic curve over a finite field is used. The essential operation performed is
building multiples of a rational point on the elliptic curve. Clearly one goal is to make this scalar
multiplication as efficient as possible.

The first part of this thesis, Chapter 2, contains some background on elliptic curve cryptogra-
phy. All information there is already known and of course the references given. The chapter,
in particular, describes different methods performing the mentioned scalar multiplication. More
detailed, Section 2.1 starts with some facts about elliptic curves, in Section 2.2 the idea of ellip-
tic curve cryptography is described, and Section 2.3 explains the used notations. The remaining
sections of Chapter 2 provide information about two special methods used for the scalar multi-
plication operation. Those are described in the following paragraphs.

The basic idea in scalar multiplication behind those methods is to represent the scalar in an
appropriate number system and to use a Horner scheme for evaluation. Using base 2 in such
a number system leads to double-and-add methods, see Section 2.4. There, if we take 0 and 1
as digits, then we get the standard binary system. Clearly the resulting Horner scheme is more
efficient to evaluate, when there are a lot of zeros inside a representation. So one may ask, if
there are representations with fewer non-zero digits. Since the binary representation is unique,
we cannot have such a representation with digits 0 and 1, but by extending the digit set and still
using base 2, our representations become non-unique.

The first idea is to use the digit −1 additionally, because inversion of a point on the elliptic
curve can be performed fast, see Section 2.4.1 for details. To avoid non-uniqueness in the resulting
number system, the concept of non-adjacent forms can be used. There in every representation
each two consecutive digits contain at most one non-zero digit; we call such numbers width-2
non-adjacent forms, or 2-NAFs for short. This idea can be generalised in several ways. One is
to use another digit instead of −1, see Section 2.4.3. A different generalisation is to use a larger
digit set and a generalisation of the non-adjacency condition, namely the width-w non-adjacent
form, or w-NAF for short. There, in every representation each w consecutive digits contain at
most one non-zero digit, see Section 2.4.2.

A different approach is to use more properties of the elliptic curves and the finite field over
which the curves are defined. In particular, we want to use the Frobenius endomorphism, which

1



1 Introduction

is very cheap to perform, especially when normal bases are used. Now consider the elliptic curve

E3 : Y 2 = X3 −X − µ with µ ∈ {−1, 1},
called Koblitz curve, defined over F3. We are interested in the group E3(F3m) of rational points
over a field extension F3m of F3 for an m ∈ N. The Frobenius endomorphism

ϕ : E3(F3m) −→ E3(F3m) , (x, y) 7−→ (
x3, y3

)
satisfies the relation ϕ2 − 3µϕ + 3 = 0. So ϕ may be identified with the imaginary quadratic
number τ = 3

2µ + 1
2

√−3, which is a solution of the mentioned relation. Thus we have an
isomorphism between Z[τ ] and the endomorphism ring of E3(F3m).

Let z ∈ Z[τ ] and P ∈ E3(F3m). If we write the element z as
∑`−1
j=0 zjτ

j for some digits zj
belonging to a digit set D, then we can compute the action zP as

∑`−1
j=0 zj ϕ

j(P ) via a Horner
scheme. The resulting Frobenius-and-add method, see Section 2.5, is much faster than the classic
double-and-add scalar multiplication.

Another example is the elliptic curve

E2 : Y 2 +XY = X3 + aX2 + 1 with a ∈ {0, 1}
defined over F2, which is also called Koblitz curve. There we get the relation ϕ2 − µϕ + 2 = 0
with µ = (−1)1−a for the Frobenius endomorphism ϕ, and thus τ = 1

2µ + 1
2

√−7. More details
of those two mentioned examples can be found in Section 2.5.1 and Section 2.5.3, respectively.

So, in general, let τ ∈ C be an algebraic integer. We are interested in a τ -adic expansion for
an element of Z[τ ] such that the mentioned computation of the action is as efficient as possible.

The fewer non-zero digits there are in an expansion, the faster the main loop of the Horner
scheme can be calculated. But usually fewer non-zero coefficients means larger digit sets and
thus a higher pre-computation effort. So for optimal performance, a balance between digit set
size and number of non-zeros has to be found.

Again we will use the concept of width-w non-adjacent forms. This will allow us to get
expansions with a low number of non-zero entries. As digit set we use zero and a minimal norm
representative from each residue class modulo τw in Z[τ ] not divisible by τ . It is commonly
known that such expansions, if they exist, are unique, whereas the existence is not known in
general. For the τ corresponding to curves E2 and E3 and an integer w ≥ 2 this was shown. This,
as well as other properties in conjunction with those τ , can be found in Sections 2.5.1 to 2.5.4.
The existence results for some other τ are listed in Section 2.5.5.

The next chapter, Chapter 3, contains new results. One is an existence result for all imaginary
quadratic algebraic integers τ and all w ≥ 2. As pointed out in the previous paragraph, this was
only known for some special cases. As digit set the mentioned minimal norm representatives were
used and we got that every element of Z[τ ] admits a unique w-NAF, see Section 3.6. Additionally
a simple algorithm for calculating those expansions is given. Further we get that every element
of C has a w-NAF-expansion of the form ξ`−1 . . . ξ1ξ0.ξ−1ξ−2 . . ., where the right hand side of
the τ -point is allowed to be of infinite length. In Section 3.7 we consider numbers of the form
0.ξ−1ξ−2 . . .. The set of all values of such numbers is called the fundamental domain F . It will
be shown that F is compact and its boundary has Hausdorff dimension smaller than 2. Further
a characterisation of the boundary is given and also a tiling property with scaled versions of F
for the complex plane. Additionally we can calculate the Lebesgue measure of the fundamental
domain.

The main part of Chapter 3 deals with analysing the occurrences of a fixed non-zero digit η.
It starts in Section 3.1 with analysing the occurrence of a digit in the case of the curve E3 and
w = 2. This analysing of the rational integers results in a formula containing a main term and

2



a second order term in form of a periodic nowhere differentiable function. The proof is very
similar to the proof in the case of a balanced ternary number system, because there is a known
connection between the two. In Section 3.4 we define a random variable Xn,w,η for the number
of occurrences of η in all w-NAFs of a fixed length n. It is assumed that all those w-NAFs are
equally likely. For an arbitrary algebraic integer τ an explicit expressions for the expectation and
the variance of Xn,w,η is given. Asymptotically we get E(Xn,w,η) ∼ ewn and V(Xn,w,η) ∼ vwn
for constants ew and vw depending on w and the norm of τ . The proof uses a regular expression
describing the w-NAFs. This will then be translated into a generating function. Further in this
section it is shown that Xn,w,η satisfies a central limit theorem.

A more general question is, what the number of occurrences Zτ,w,η of the non-zero digit η is,
when we look at all w-NAFs with absolute value smaller than a given N . For imaginary quadratic
τ and a region U ⊆ C (e.g. the unit disc for the absolute value), the answer is in Section 3.10.
We prove that Zτ,w,η ∼ ewN

2 λ(U) log|τ |N . This is not surprising, since intuitively there are
about N2 λ(U) w-NAFs in the region NU , and each of them can be represented as a w-NAF
with length log|τ |N . We even get a more precise result. If the region is “nice”, there is a periodic
oscillation of order N2 in the formula. The structure of the result — main term, oscillation
term, smaller error term — is not uncommon in the context of digits counting. The proof follows
the ideas of Delange. In Section 3.8 and Section 3.9 the necessary tools for the proof will be
developed and the characteristic sets will be analysed.

At last a short overview of the not mentioned sections until now. In Section 3.2 Voronoi cells
and their basic properties are discussed. Section 3.3 deals with the digit sets, as well as the formal
definition of the non-adjacent forms and some basic results. In Section 3.5 we give bounds for
the value of a w-NAF.

The last chapter is Chapter 4. It contains some concluding remarks, as well as some open
problems.

3
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Chapter 2

Background and Known Results

Our main interest lies in the scalar multiplication of points on an elliptic curve. This is used in
public key cryptography. This chapter deals with some background information concerning this
type of cipher, as well as already known results. In particular, digital expansion used for efficient
scalar multiplication are considered.

The first section, Section 2.1, contains some facts about elliptic curves. This includes a zeta
function and its connection to the Frobenius endomorphism. Section 2.2 deals with the principle
of elliptic curve cryptography. This is explained on the example Diffie-Hellman key exchange.
There are also some notes on the secureness of such systems. Since we will often use a special
digital expansion, namely the non-adjacent form, Section 2.3 will define this expansion. Further
all notations used will be explained there.

The last two sections in this chapter deal with two methods for the scalar multiplication. In
Section 2.4 double-and-add methods will be described. For the digital expansion there, we always
use base 2. The subsections in there are split according to the digits used. In Section 2.5 the
Frobenius-and-add method is described. There are different subsections for expansions coming
from Koblitz curves in characteristic 2 and Koblitz curves in characteristic 3, and there is one
subsection for the other cases.

2.1 Some Facts about Elliptic Curves

This section will deal with the definition of an elliptic curve and some basic facts about it. See
for example Silverman [62] or Koblitz [41] for details.

Definition 2.1.1. An elliptic curve is a pair (E ,0), where E a smooth algebraic curve of genus 1
and 0 a point (identity) on the curve. The elliptic curve is defined over a field K, if E is defined
over K and 0 ∈ E(K).

We will usually write just E for the elliptic curve. The following characterisation of elliptic
curves can be proved, cf. Silverman [62, III Proposition 3.1].

Proposition 2.1.2. Let E be an elliptic curve defined over K. There exists a Φ: E −→ P2, such
that Φ is an isomorphism of E defined over K onto a curve given by a Weierstrass equation

C : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with coefficients a1, . . . , a6 ∈ K and such that 0 7−→ [0, 1, 0]. Any two such Weierstrass equations
for E are related by a linear change of variables.

5



2 Background and Known Results

Conversely, every smooth cubic curve C given by a Weierstrass equation is an elliptic curve
defined over K with 0 = [0, 1, 0].

We will also write E for the Weierstrass equation. The set E(K) then consists of the point at
infinity [0, 1, 0] of all points of K2 (now written in affine coordinates) that fulfil this Weierstrass
equation. If the characteristic of the field K is neither 2 nor 3, then the Weierstrass form can be
simplified to

C : Y 2 = X3 + aX + b.

The points E(K) of an elliptic curve E over a field K form an Abelian group. The addition in
this group has a nice geometric interpretation if, for example, K = R. The group law in general
is described in e.g. Silverman [62, III Section 2] and in Koblitz [41, VI Section 1]. The group
operation will be notated by +, the inverse of a point P by −P , and we will use nP = P + · · ·+P
for n ∈ N0 and nP = (−P ) + · · ·+ (−P ), when n is a negative integer.

Now we look at elliptic curves over finite fields. So we set K = Fq, where q is a power of a
prime. First we want to know, how many points there are on the curve. Clearly, an upper bound
is 2q+1. This follows from the fact that each value of x ∈ Fq yields at most two values of y ∈ Fq
on

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

But a better bound can be proved. It is stated in the following theorem, cf. for example Silver-
man [62, V Theorem 1.1] or Koblitz [41, VI Section 1].

Theorem 2.1.3. Let E be an elliptic curve over Fq, then

|#E(Fq)− q − 1| ≤ 2
√
q.

Next we want to define the zeta function of the elliptic curve.

Definition 2.1.4. The zeta function of E over Fq is the formal power series

ZFq (T ) = exp

(∑
n∈N

#E(Fqn)
Tn

n

)
.

Further we set
ζFq (s) := ZFq

(
q−s
)
.

The function ζFq is also called zeta function.

Directly related to the zeta function are the Weil conjectures1, for example cf. Silverman [62,
V Theorem 2.2] or Koblitz [41, VI Section 1]. The following theorem are the Weil conjectures for
elliptic curves. A proof and further details can be found, again for example, in Silverman [62, V
Section 2].

Theorem 2.1.5 (Weil Conjectures for Elliptic Curves). We get the following statements:

(a) (Rationality) We get
ZFq (T ) ∈ Q(T ) .

(b) (Functional Equation) The zeta function fulfils the functional equation

ZFq

(
1
qT

)
= ZFq (T ) .

1In Koblitz [41, VI Section 1] the Weil conjecture is also called Delinge’s theorem.
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(c) (Riemann Hypothesis) There is a factorisation

ZFq (T ) =
(1− αT )(1− βT )
(1− T )(1− qT )

with |α| = |β| = √q.
The numerator of the zeta function ZFq (T ) is called L-polynomial. We write

LFq (T ) = (1− αT )(1− βT ).

From the functional equation for ZFq , we get the functional equation for ζFq , namely

ζFq (1− s) = ζFq (s) .

The structure of this functional equation is one reason, why the last statement in Theorem 2.1.5
on the facing page is called Riemann hypothesis. The other is that ζFq (s) = 0 implies |qs| = √q.
This means that Re(s) = 1

2 .
Further, see Silverman [62, V Sections 2–4], we get

(1− αT )(1− βT ) = 1− aT + qT 2

with a ∈ Z. The integer a fulfils the relation

#E(Fq) = 1− a+ q,

and we get
#E(Fqn) = 1− αn − βn + qn

for field extensions. Moreover, the characteristic polynomial of the qth power Frobenius endo-
morphism is (T−α)(T−β), i.e., the reciprocal polynomial of the L-polynomial, cf. Silverman [62,
V Sections 2–4]. Thus we obtain

ϕ2 − aϕ+ q = 0

for the Frobenius endomorphism ϕ.

2.2 Elliptic Curve Cryptography

In this section a description of cryptography with elliptic curves on the example of Diffie-Hellman
key exchange, cf. Diffie and Hellman [18], will be given.

Consider the following situation. We have two communication partners Alice and Bob, who
want to exchange data securely by a symmetric key cipher. Therefore they need a shared secret
key. The problem is that there is only a insecure communications channel. The Diffie-Hellman
key exchange algorithm gives a solution for this problem. This is an asymmetric algorithm, i.e.,
there each communication partner has a public key that is commonly known and a private key
only known by itself.

The “classical” Diffie-Hellman key exchange works in the following way. Both communication
partners agree for a prime p ∈ N and a primitive root g modulo p. These two parameters are
public. Alice chooses a secret integer a and sends A = ga modulo p to Bob. Bob does the same,
i.e., chooses an secret integer b and sends B = gb modulo p to Alice. Now Bob calculates Ab

modulo p and Alice Ba modulo p. Both get the same number gab modulo p, so they can use this
as shared secret key.
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The secureness of the “classical” Diffie-Hellman key exchange depends on the secureness of the
discrete logarithm problem, for example cf. Koblitz [41, IV Section 3]. In our case, this means
finding the secret a of Alice by the knowledge of g and A = ga or the secret b of Bob. The
discrete logarithm problem is believed to be “hard” to solve, i.e., up to now, there is no efficient
classical algorithm known to compute the discrete logarithm. Clearly this is only true, if the
parameters are chosen appropriately, e.g. a very large prime p.

Now we want to use elliptic curves for cryptographic algorithms. This was first mentioned
independently in Miller [46] and Koblitz [38]. In the following we want to describe the elliptic
curve Diffie-Hellman key exchange. This was also the example used in Miller [46]. Koblitz [38]
used other examples. Let E be an elliptic curve over a finite field F and let E(F) be its group
of rational points. This curve is known public, as well as a point G ∈ E(F). Instead of taking
publicly known powers as in the “classical” Diffie-Hellman algorithm, the scalar multiplication
in the point group is used. This means, that for an n ∈ N multiples nG = G + · · · + G are
calculated. The algorithm is then as follows. Alice chooses an integer a and sends her public
key, the group point A = aG to Bob. Bob chooses an integer b and sends B = bG to Alice. Both
compute abG = bA = aB and therefore get a common shared secret key.

The secureness of the elliptic curve Diffie-Hellman key exchange algorithm depends on the
secureness of the elliptic curve discrete logarithm problem, i.e., finding n, when G and nG are
known. Again, using appropriate parameters, this is believed to be “hard”.

The group of points of an elliptic curve over Fq can be embedded into the multiplicative group
of FqK for an appropriate K. This uses Weil pairing, cf. Menezes, Okamoto and Vanstone [45].
Therefore the elliptic curve discrete logarithm problem can be reduced to the discrete logarithm
problem. This Menezes-Okamoto-Vanstone attack is useful, if K is small. If the elliptic curve is
supersingular, then K can be chosen out of {1, 2, 3, 4, 6}, cf. Menezes, Okamoto and Vanstone [45].
If the curve is non-supersingular, K is usually much larger, cf. Balasubramanian and Koblitz [10].

2.3 Notations concerning Non-adjacent Forms

Let τ be an algebraic integer, and let D be a finite subset of Z[τ ] containing 0. This set D is the
used digit set. For simplicity we set D• := D \ {0}, and with D∗ we denote all finite words over
the alphabet D. For a digit η we set η̄ := −η. Let w ∈ N. Usually we assume w ≥ 2. We have
the following definition for non-adjacent forms.

Definition 2.3.1 (Width-w τ -adic Non-Adjacent Forms). Let η = (ηj)j∈Z ∈ DZ. The sequence
η is called a width-w τ -adic non-adjacent form, or w-NAF for short, if each factor ηj+w−1 . . . ηj ,
i.e., each block of length w, contains at most one non-zero digit.

Let J = {j ∈ Z | ηj 6= 0}. We call sup({0} ∪ (J + 1)) the left-length of the w-NAF η and
− inf({0} ∪ J) the right-length of the w-NAF η.

Let λ and ρ be elements of N0 ∪ {fin,∞}, where fin means finite. We denote the set of all
w-NAFs of left-length at most λ and right-length at most ρ by NAFλ.ρw . If ρ = 0, then we will
simply write NAFλw. The elements of the set NAFfin

w will be called integer w-NAFs.
For η ∈ NAFfin.∞

w we call
value(η) :=

∑
j∈Z

ηjτ
j

the value of the w-NAF η.

The following notations and conventions are used. A block of zero digits is denoted by 0. For
a digit η and k ∈ N0 we will use

ηk := η . . . η︸ ︷︷ ︸
k

,
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with the convention η0 := ε, where ε denotes the empty word. A w-NAF η = (ηj)j∈Z will be
written as ηI .ηF , where ηI contains the ηj with j ≥ 0 and ηF contains the ηj with j < 0. ηI
is called integer part, ηF fractional part, and the dot is called τ -point. Left-leading zeros in ηI
will can be skipped, except η0, and right-leading zeros in ηF can be skipped as well. If ηF is a
sequence containing only zeros, the τ -point and this sequence is not drawn.

Further, for a w-NAF η (a bold, usually small Greek letter) we will always use ηj (the same
letter, but indexed and not bold) for the elements of the sequence.

The term “non-adjacent form” goes back to Reitwiesner [58]. There NAF meant 2-NAF with
base 2 used. Solinas [63] and [64] used the term τ -NAF for a τ -adic 2-NAF. In this thesis, the
τ or τ -adic is usually skipped, since it is clear in the context what τ is.

The next definition in this section deals with a special type of digit set.

Definition 2.3.2 (Width-w Non-Adjacent Digit Set). A digit set D is called a width-w non-
adjacent digit set, or w-NADS for short, if every element z ∈ Z[τ ] admits a unique w-NAF
η ∈ NAFfin

w , i.e., value(η) = z. When this is the case, the function

value|NAFfin
w

: NAFfin
w −→ Z[τ ]

is bijective, and we will denote its inverse function by NAFw. If D is not a w-NADS it is called
a w-non-NADS.

For a subset S ⊆ Z[τ ] we call the digit set D a w-NADS for S, if every element of S admits a
unique w-NAF.

Sometimes there will be written NADS and non-NADS instead of w-NADS and w-non-NADS,
respectively, if w is clear from context.

Definition 2.3.3. For a w-NAF η ∈ NAF0.∞
w we define weight(η) as the number of non-zero

digits, i.e.,
weight(η) := #({j ∈ Z | ηj 6= 0}) .

Sometimes it is useful not to see a w-NAF as infinite sequence, but as a finite string. Note that
two strings differing only on leading zeros denote the same w-NAF. We will also call a string a
w-NAF, if the corresponding infinite sequence is a w-NAF. We denote the length of a string β
by |β|. For two strings α and β we write α ‖ β for their concatenation.

2.4 Expansions for Double-and-Add Scalar Multiplication
Methods

One possibility to perform the scalar multiplication nP , n ∈ N0, P a point of the elliptic curve,
is to write n in its standard binary expansion and to use a Horner scheme to evaluate nP , see
Knuth [37]. Since base 2 is used, this is known as double-and-add method. One goal is to make
this operation as efficient as possible. This main idea is using other (larger) digit sets than {0, 1}.
The resulting expansions of n can be evaluated faster, since normally more digits means more
zeros in the expansion. Most of the material in this section is related to the non-adjacent form
defined in Section 2.3, or some variants and generalisations of it.

Section 2.4.1 will start with the digit set {−1, 0, 1}. The following two sections will generalise
in different ways. In Section 2.4.2 the digit set will be expanded by some odd numbers to get
more zeros in the expansion, whereas in Section 2.4.3 we will use a digit set containing 0, 1 and
one additional digit.

Of course there are other numeral systems — not mentioned in detail in this thesis — which
can be used in the scalar multiplication method. In Phillips and Burgess [55] representations
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with base q, q ∈ N, q ≥ 2 and digit set {a ∈ Z | ` ≤ a ≤ u} for some ` ≤ 0 and some u ≥ 1 are
considered. They give a construction that produces minimal weight representations from right
to left. In Heuberger and Muir [29] an algorithm to calculate such expansions (with base q = 2)
from the binary representation from left to right is given.

Another problem is the computation of linear combinations nP + mQ of points P and Q.
One can use joint expansions to calculate at once instead of nP and mQ separately. Further
information can be found in Solinas [65], Grabner, Heuberger and Prodinger [24], Proos [57],
Heuberger and Muir [28], Heuberger, Katti, Prodinger and Ruan [27].

2.4.1 2-NAFs with Digits 0, +1 and −1

The first idea of extending the standard binary digit set {0, 1} is to add the digit −1. This
seems to be efficient, since −P can be calculated fast on the curve. Thus, no pre-computation
is needed. This was first mentioned by Morain and Olivos [49]. In this section, some facts on
non-adjacent representations with base 2 and this digit set D = {0, 1,−1} will be presented.
Such representations go back to Reitwiesner [58].

Note that Section 2.4.2 and Section 2.4.3 are generalisations of the 2-NAFs here, so the results
there might be interesting for this section, too.

2.4.1.1 Existence and Uniqueness

First we want to know, when such 2-NAF expansions exists and when they are unique. Luckily
this is true for all integers. This results can be found in Reitwiesner [58]. We have the following
theorem, which (including a proof) can also be found in Shallit [61, Theorems 1.2 and 1.3].

Theorem 2.4.1. Every integer has exactly one 2-NAF-representation with digits {0,+1,−1}.
Note that in this work the NAFs are defined via sequences, so leading zeros in the corresponding

word of digits have not be mentioned extra.

2.4.1.2 Length and Density

Another result, which goes back to Reitwiesner [58], is that the length of the 2-NAF of n is at
most one digit longer than the binary representation of n. This is also valid for the general case
of a w-NAF, see Section 2.4.2.2.

The average density of non-zero coefficients in all 2-NAFs of length ` is

2`(3`− 4)− (−1)`(6`− 4)
9(`− 1)(2` − (−1)`)

.

This fact was stated by Solinas [64, Section 3.1]. Therefore, we get asymptotically 1
3 , cf. Morain

and Olivos [49], too. A more precisely result can be found in Thuswaldner [66].
Further for an integer n we get 2` < 3n < 2`+1, where ` denotes the length of the 2-NAF of

n, again cf. Solinas [64, Section 3.1] or Morain and Olivos [49].

2.4.1.3 Calculating the 2-NAFs

The 2-NAF of the integer n can of course be calculated directly from n by an algorithm. See, for
example, Reitwiesner [58] or Solinas [63, Algorithm 2] or [64, Routine 4]. Jedwab and Mitchell [34]
gave an algorithm that can compute the 2-NAF out of any redundant expansion with digits 0,
1, −1.
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Further, there is also an explicit expression for the digits. In Prodinger [56, Section 2] the
following formula can be found to calculate the digits of the 2-NAF-expansion and therefore the
2-NAF itself. For an integer n we get

n =
∑
k≥0

(⌊
n

2k+2
+

5
6

⌋
−
⌊

n

2k+2
+

4
6

⌋
−
⌊

n

2k+2
+

2
6

⌋
+
⌊

n

2k+2
+

1
6

⌋)
2k.

Note that

⌊
n

2k+2
+

5
6

⌋
−
⌊

n

2k+2
+

4
6

⌋
−
⌊

n

2k+2
+

2
6

⌋
+
⌊

n

2k+2
+

1
6

⌋
=


1, if

{
n

2k+2

} ∈ ( 1
6 ,

2
6

)
,

−1, if
{

n
2k+2

} ∈ ( 4
6 ,

5
6

)
,

0, else,

so these intervals may be seen as characteristic sets of the digits, cf. also Sections 2.4.3.9 and 3.9.
A generalisation of the explicit formula can be found in Heuberger and Prodinger [30].

2.4.1.4 Number of Representations

Now we change the setting a little bit and omit the non-adjacency condition. Then we may ask,
how many representations an integer has using base 2 and the digit set D = {0, 1,−1}. The
following result is given in Shallit [61, Theorem 1.1].

Theorem 2.4.2. Every non-zero integer has an infinite number of signed-digit expansions (with
digits {0,+1,−1}.

Of course they usually do not fulfil the NAF-condition. Another question is, what the number
of representations of a given length is. We have the following theorem, cf. for example Shallit [61,
Theorem 1.5].

Theorem 2.4.3. There are t` = 1
3

(
2`+2 − (−1)`

)
distinct 2-NAF representations of length `.

2.4.1.5 Optimality

We know from the previous section that there are a lot of representations of an integer, namely
infinitely many. So a natural question is, is there a “good” representation (in some sense). Since
our primary goal is to optimise the scalar multiplication on elliptic curves, we want expansions
with a lot of zeros inside. The 2-NAF fulfils this, and indeed it can be shown that the 2-NAF
representation is optimal in the sense that it minimises the number of non-zero digits. This is an
result of Reitwiesner [58]. It can also be found in Jedwab and Mitchell [34] or Gordon [22]. Of
course this minimum is not unique, since for example the integer 3 has expansions 11 and 101̄.

2.4.1.6 Number of Optimal Representations

We continue with the topics of the previous two sections. From Section 2.4.1.5 we know that there
is one optimal representation, namely the 2-NAF mentioned by Reitwiesner [58]. Usually there
are more representations, see the example at the end of the previous section. So the question is,
how many optimal (minimal) representation of an integer are there?

Let f(n) denote the number of minimal expansions of the integer n. In Grabner and Heuberger
[23, Theorem 1] we can find the following upper bound for f(n).

Theorem 2.4.4. For all integers n, the number of optimal expansions can be bounded by

f(n) ≤ Fblog4|n|c+3,
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where Fj denotes the Fibonacci sequence F0 = 0, F1 = 1, Fj+2 = Fj+1 +Fj. This bound is sharp
for infinitely many values of n. Less precisely, we have

f(n) = O(nlog4 ϕ
)

with ϕ = 1+
√

5
2 .

The proof uses the automaton mentioned in Heuberger and Prodinger [31, Remark 20]. This
automaton accepts an expansion if and only if it is optimal.

The next is the study of the summatory function
∑

0≤n<N f(n). It describes the average be-
haviour of f(n). The following theorem can be found in Grabner and Heuberger [23, Theorems 2
and 3].

Theorem 2.4.5. The counting function f(n) of the representations of n with minimal weights
satisfies ∑

0≤n<N

f(n) = N log2 α Ψ(log2N) +O(N log2 α−θ
)
,

where Ψ denites a continuous periodic function of period 1, α = 2.17009 . . . , and θ = 0.2168 . . . .
Furthermore, Ψ is Hölder continuous with exponent β = 0.770632 . . . . The function Ψ is differ-
entiable almost everywhere and singular in the sense that it is not the integral of its derivative.

Further, the function Ψ admits an absolutely and uniformly convergent Fourier series. Its
coefficients can be calculated.

2.4.2 Windowing Methods and w-NAFs

Now we will use the width-w window method to generalise the the mentioned 2-NAFs. For such
methods in general cf. Gordon [22, Section 3]. The w-NAFs were described independently by
Cohen, Miyaji and Ono [47], Blake, Seroussi and Smart [13] and Solinas [63, 64].

In this section, w is an integer with w ≥ 2. The digit set D consists of zero and all odd numbers
with absolute value less than 2w−1.

2.4.2.1 Existence and Uniqueness

Here we will use the statements made in Solinas [63] and Solinas [64, Section 3.2]. Additionally
the existence and uniqueness can be found in Muir and Stinson [53, Sections 2.1 and 2.2].

Theorem 2.4.6. Let w ∈ N with w ≥ 2. Then every positive integer has a unique w-NAF η,
where the digits are in D.

Clearly this theorem is true for non-positive integers as well. The idea behind is the following.
We take a window of width w and let it slide over the binary expansion of an integer from right to
left. If the value in this block is even, we get a zero, else an odd digit modulo 2w. Based on this,
Solinas [64, Routine 9] gave a simple algorithm to compute the w-NAF-expansion. Additionally
they gave an algorithm to calculate multiples of an elliptic curve point using this w-NAFs.
Because we are using more digits here, more pre-computation is needed, but in comparison the
“main loop” is more efficiently.

The problem mentioned also in Solinas [64, Section 3.2] is that the w-NAF is computed from
right to left, whereas the elliptic curve point scalar multiplication is done from left to right.

2.4.2.2 Length and Density

We can find the following proposition in Muir and Stinson [53, Section 2.3].
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Proposition 2.4.7. For any integer n the length of the w-NAF of n is at most one digit longer
than the binary representation of |n|.

It seems that this fact was stated first by Möller [48], but without a proof. Of course for the
2-NAF this is known a long time, e.g. cf. Reitwiesner [58].

Considering all w-NAFs of length n, the average density of non-zero digits is approximately
(asymptotically) 1/(w + 1), cf. Muir and Stinson [53, Section 6] and Cohen [16].

2.4.2.3 Optimality

Muir and Stinson [53, Theorem 3.3] proved the following theorem. There the w-NAFs are denoted
as strings.

Theorem 2.4.8. If α is a w-NAF then for any β ∈ D∗ with value(α) = value(β), we have
weight(α) ≤ weight(β).

This means that the w-NAF-expansion is optimal, i.e., minimises the Hamming weight among
all expansions with digits D. For the 2-NAF this was already mentioned by Reitwiesner [58].
This optimality result for w-NAFs was independently shown in Avanzi [3, Theorem 2.3], too.

Further, in Muir and Stinson [53, Theorem 4.1], we have the following generalisation of the
result of Section 2.4.2.2. The generalisation concerns all minimal weight representations.

Theorem 2.4.9. If α is optimal, i.e., for any β ∈ D∗ with n = value(α) = value(β) we have
weight(α) ≤ weight(β), then we get that the length of α is at most blog2 |n|c+ 2.

Remark that the standard binary expansion of a positive integer n has length blog2 nc+ 1.
In general the w-NAF-representation need not be the unique minimal Hamming weight expan-

sion of all expansions. Consider the following example found in Muir and Stinson [53, Section 5].
The integer 5 has the 3-NAF 1003̄. But we also have

5 = value(101) = value(13) = value(31̄) .

All those expansions have Hamming weight 2 and therefore, since the 3-NAF is optimal, i.e.,
minimal, are optimal. Muir and Stinson [53, Section 5] gave a method to compare different
expansions and by means of this, the w-NAF is the uniquely defined minimum.

Consider a w-NAF α as string. We build another string α′ ∈ {0, 1}∗ by

α′j =

{
0 if αj = 0,
1 otherwise.

Now for α and β, which are assumed to be representations of n, the order α � β is defined by
the lexicographic right-to-left ordering of α′ and β′. We get the following result, cf. Muir and
Stinson [53, Theorem 5.1].

Theorem 2.4.10. Of all the representations of n with digits in D, the w-NAF of n is the unique
smallest representation under the order �.

2.4.2.4 Other Optimal Expansions than w-NAFs

As remarked in the previous section, the w-NAF is not the only optimal (minimal) representation.
Muir and Stinson [52] gave another minimal expansion that uses the same digit set D as the
w-NAF. They generalised the ideas of Joye and Yen [35]. The advantage of this expansion is
that it can be calculated from left to right. Therefore it can be used efficiently in the double-
and-add algorithm, because the digits do not have to be stored in memory.
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2.4.3 2-NAFs with Digits 0, 1 and x

In the previous section we considered 2-NAFs with digit set D = {0,+1,−1}. Now we change
the digit set a little bit and generalise. The digit −1 is replaced by an arbitrary integer x ∈ Z.
Such digit sets were mentioned by Muir and Stinson [50]. This article was extended in Muir and
Stinson [51]. In the following we will usually refer to the latter.

Throughout this section our base τ = 2 is fixed, we have an integer x ∈ Z, the digit set is
D = {0, 1, x}, and we will consider only 2-NAFs.

2.4.3.1 Notations

For an integer n ∈ Z we define

RD(n) :=

{
α when there exists a 2-NAF α with value(α) = n,

⊥ otherwise.

The symbol ⊥ is just some symbol not in D. If there are more 2-NAFs α fulfilling value(α) = n,
then one α is chosen. We will get a uniqueness result later in this section. Further we define

NAF(D) := {n ∈ Z |RD(n) 6=⊥} ,
i.e., the set of integers which have a 2-NAF-representation.

2.4.3.2 Necessary Condition for a NADS

In Muir and Stinson [51, Theorem 3.1] we can find the following necessary condition that a set
{0, 1, x} is a NADS.

Theorem 2.4.11. If there exists an n ∈ NAF(D) with n ≡ 3 (mod 4), then x ≡ 3 (mod 4).

This necessary condition gives us now candidates x for NADS or formulated in another way
rules out x not fulfilling the condition. This will be often used in Section 2.4.3.4 and Sec-
tion 2.4.3.5.

2.4.3.3 Uniqueness

Of course, we want that our expansion is unique. Muir and Stinson [51, Theorem 3.3] proved
the following result.

Theorem 2.4.12. If x ≡ 3 (mod 4), then any integer has at most one 2-NAF-representation
with digit set {0, 1, x}.

2.4.3.4 Non-adjacent Digit Sets for Positive x

Solinas [65] remarked that the digit set {0, 1, 3} is a NADS for N0. But more can be proved, cf.
Muir and Stinson [51, Theorem 3.2].

Theorem 2.4.13. Let x ≥ 0. The only NADS for N0 of the form {0, 1, x} is {0, 1, 3}.
The proof that {0, 1, 3} is a NADS contains an algorithm to get a 2-NAF from the binary

representation of a number. There the binary string is scanned from right to left and each 11 is
replaced by 03. Clearly this does not change the value. The example

237 = value(11101101) = value(10300301)
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mentioned in Muir and Stinson [51, Section 3.1] illustrates this.
For the other part of the proof, i.e., that there is no NADS for x > 3, it is shown that 3 has

no representation as 2-NAF. The fact that for x ∈ {0, 1, 2} the resulting digit set is not a NADS
is easy to see.

2.4.3.5 Non-adjacent Digit Sets for Negative x

Now fix an x < 0 with x ≡ 3 (mod 4). Muir and Stinson [51, Lemmata 4.1–4.4] showed the
following lemma.

Lemma 2.4.14. For n ∈ N0 we get the following statements:

(a) If n ≡ 0 (mod 4), then
n ∈ NAF(D)⇐⇒ n/4 ∈ NAF(D)

Further, if n ≡ 0 (mod 4), then RD(n) = RD(n/4) ‖ 00.

(b) If n ≡ 1 (mod 4), then

n ∈ NAF(D)⇐⇒ (n− 1)/4 ∈ NAF(D)

Further, if n ≡ 1 (mod 4), then RD(n) = RD((n− 1)/4) ‖ 01.

(c) If n ≡ 2 (mod 4), then
n ∈ NAF(D)⇐⇒ n/2 ∈ NAF(D)

Further, if n ≡ 2 (mod 4), then RD(n) = RD(n/2) ‖ 0.

(d) If n ≡ 3 (mod 4), then

n ∈ NAF(D)⇐⇒ (n− x)/4 ∈ NAF(D)

Further, if n ≡ 3 (mod 4), then RD(n) = RD((n− x)/4) ‖ 0x.

Now consider the following two examples. We take D = {0, 1,−9} and in the first example
n = 7. We have

RD(7) = RD(4) ‖ 09̄ = RD(1) ‖ 00 ‖ 09̄ = 1 ‖ 00 ‖ 09̄ = 10009̄.

The process is stopped, since we got to evaluate RD(0), which is clearly the empty word. For
the second example we choose n = 3 and get

RD(3) = RD(3) ‖ 09̄ = RD(3) ‖ 09̄ ‖ 09̄ = RD(3) ‖ 09̄ ‖ 09̄ ‖ 09̄ = . . . ,

so this process does not stop.
Therefore, by means of the previous lemma, we get a simple recursive procedure to evaluate

RD(n). Using

fD(n) :=


n/4 if n ≡ 0 (mod 4)
(n− 1)/4 if n ≡ 1 (mod 4)
n/2 if n ≡ 2 (mod 4)
(n− x)/4 if n ≡ 3 (mod 4)

and gD(n) :=


00 if n ≡ 0 (mod 4)
01 if n ≡ 1 (mod 4)
0n/2 if n ≡ 2 (mod 4)
0x if n ≡ 3 (mod 4)

the procedure does in every step η ← gD(n) ‖ η and n← fD(n) and runs until n = 0. Muir and
Stinson [51, Section 4] showed that this procedure terminates if and only if n ∈ NAF(D).
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2 Background and Known Results

The procedure cannot evaluate all n, since there is a problem when RD(n) =⊥. If this is
the case, then the procedure fails to terminate. Let n ∈ N0. It can be shown that there is
an i such that 0 ≤ f jD(n) < −x/3 for all j ≥ i. So if there is a problem in terminating, then
the procedure “cycles” on the elements less than −x/3. Adding a simple cycle-detection to the
procedure leads to an algorithm, that returns ⊥, if a cycle is detected. This algorithm has
running time O(log n+ |x|). Further we get the following theorem, cf. Muir and Stinson [51,
Theorem 4.8].

Theorem 2.4.15. If every element in the set

{n ∈ N0 |n ≤ b−x/3c}
has a 2-NAF-expansion with digits {0, 1, x}, then {0, 1, x} is a NADS for N0.

Therefore the question if {0, 1, x} is a NADS can be answered by the computational method
above. We need b−x/3c calls of our algorithm. Muir and Stinson [51, Corollary 4.9] improved
this result, so that there are only b−x/12c calls needed.

Corollary 2.4.16. If every element in the set

{n ∈ N0 |n ≤ b−x/3c, n ≡ 3 (mod 4)}
has a 2-NAF-expansion with digits {0, 1, x}, then {0, 1, x} is a NADS for N0.

They used this algorithm to compute all NADS with x greater than −106. The list starts with

3,−1,−5,−13,−17,−25,−29,−37,−53,−61,−65,−113, . . . .

The mentioned algorithm was further improved by Avoine, Monnerat and Peyrin [9, Theo-
rems 7 and 8]. They got the following two theorems.

Theorem 2.4.17. Let 3 - x. If every element in the set

{n ∈ N0 |n ≤ b−x/6c, n ≡ 3 (mod 4)}
has a 2-NAF-expansion with digits {0, 1, x}, then {0, 1, x} is a NADS for N0.

Theorem 2.4.18. Let 3 - x and 7 - x. If every element in the set

{n ∈ N0 |n ≤ b−x/12c, n ≡ 3 (mod 4)} ∪ {n ∈ N0 | b−x/6c ≤ n ≤ b−x/6c, n ≡ 3 (mod 4)}
has a 2-NAF-expansion with digits {0, 1, x}, then {0, 1, x} is a NADS for N0.

Further Avoine, Monnerat and Peyrin [9, Conjecture 1] gave the following conjecture.
Conjecture 2.4.19. Let 3 - x and 7 - x. If every element in the set

{n ∈ N0 |n ≤ b−x/12c, n ≡ 3 (mod 4)}
has a 2-NAF-expansion with digits {0, 1, x}, then {0, 1, x} is a NADS for N0.

Another result is given in Heuberger and Prodinger [31, Proposition 4].

Proposition 2.4.20. Define the directed graph G := (V,A) by V = {0, . . . , b|x| /3c} and

A :=
{

(m,n) ∈ V 2
∣∣n ∈ {2m, 4m+ 1, 4m+ x}} .

Then {0, 1, x} is a NADS for N0 if and only if every n ∈ V is reachable from 0.

This result is useful working with automata and their underlying directed graph. Further they
remarked the following.

Proposition 2.4.21. Let D = {0, 1, x} with x < 0 be a NADS for N0. Then D is a NADS
for Z.
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2.4 Expansions for Double-and-Add Scalar Multiplication Methods

2.4.3.6 Infinite Families of Non-NADS

Again we fix an x < 0 with x ≡ 3 (mod 4). Muir and Stinson [51, Corollary 6.2] gave the
following statement.

Theorem 2.4.22. If (2s − 1) | x for any s ≥ 2, then {0, 1, x} is not a NADS.

This means that we get non-allowable factors of x. These are 3, 7, 31, . . .. But beside that
numbers there are other non-allowable factors. This list starts with 73, 85, 89, 337, 451, 1103, . . .
and depends on the following result of Muir and Stinson [51, Corollary 6.2].

Theorem 2.4.23. Suppose x0 is an integer. If there is a β ∈ {00, 0, 0x0}∗ such that value(β) 6= 0
and 2|β| − 1 | value(β), then x0 is a non-allowable factor.

Other results are the following three.

Theorem 2.4.24. If (3− x)/4 = 11 · 2i, where i ≥ 0, then {0, 1, x} is not a NADS.

Theorem 2.4.25. If (3 − x)/4 = 7 · 2i, where i ≥ 0, then {0, 1, x} is an NADS if and only if
i ∈ {0, 1}.

For the third, we define

mi :=
⌊

2i+1 − 1
3

⌋
for i ≥ 0. The following theorem holds.

Theorem 2.4.26. Let x be an integer such that 4mi − 1 < −x < 3 · 2i for some i ≥ 0. If there
exists n ∈ {1, 2, . . . , b−x/3c} with n ≡ 3 (mod 4) then {0, 1, x} is not a NADS.

All those results were proved in Muir and Stinson [51, Corollaries 6.3 and 6.4 and Theorem
6.5]. Other results were developed in Avoine, Monnerat and Peyrin [9, Theorems 9 and 10].
They gave generators for infinite families of non-NADS. Their results are given in the following
two theorems.

Theorem 2.4.27. If x = −60k+ 15, x = −60k+ 11 or x = −28k+ 7 with k ∈ N, then {0, 1, x}
is not a NADS.

Theorem 2.4.28. Let t ≥ 2 and k > 0 be two integers and x = −(4k − 1)(22t−1 − 1), then
{0, 1, x} is not a NADS.

Further the term worst non-NADS is defined in Avoine, Monnerat and Peyrin [9, Section 3.3]
as follows.

Definition 2.4.29. The set D = {0, 1, x} is a worst non-NADS if for all n ≤ −x/3 with n ≡ 3
(mod 4), n 6∈ NAF(D).

They also characterised all worst non-NADS by means of the following theorem.

Theorem 2.4.30. The set {0, 1, x} is a worst non-NADS if and only if there exists an i ≥ 2
such that 4mi − 1 < −x < 3 · 2i.

Using those results, a much more effective algorithm can be created to determine whether a
set {0, 1, x} is a NADS or not, cf. Avoine, Monnerat and Peyrin [9, Section 4]. According to
them this algorithm for calculating the NADS for x greater than −107 is about a factor 3 faster
than the best known algorithm in Muir and Stinson [50, 51].
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2 Background and Known Results

2.4.3.7 Infinite Families of NADS

Again we fix an x < 0 with x ≡ 3 (mod 4). Let w(n) denote the Hamming weight of n in its
binary representation, i.e., the number of ones.

The following two theorems presents families of x, where the {0, 1, x} is a NADS. Those
results including proofs can be found in Muir and Stinson [51, Theorems 7.1 and 7.2] and [50,
Theorem 15].

Theorem 2.4.31. If w((3− x)/4) = 1, then {0, 1, x} is a NADS.

For negative x, the condition w((3− x)/4) = 1 is equivalent to (3 − x)/4 = 2t for an t ≥ 0.
Thus we get that {0, 1, x} is a NADS, when x is

−1,−5,−13,−29,−61, . . . .

Theorem 2.4.32. If w((3− x)/4) = 2 and 2s − 1 does not divide x for any s ∈ N with s ≥ 2,
then {0, 1, x} is a NADS.

2.4.3.8 Calculating the NAF from Right to Left

Let D = {0, 1, x} with x ≡ 3 (mod 4). Since we want to use the 2-NAF expansion for performing
scalar multiplication, we have to calculate it. Some results are stated in this section. Note that
the calculation here is from right to left, but for the Horner scheme in the double-and-add scalar
multiplication the expansion is needed from left to right. Therefore the digits must be stored
somewhere.

Define η0 : Z −→ D and r : Z −→ Z by

η0(n) :=


0 if n ≡ 0 (mod 2),
1 if n ≡ 1 (mod 4),
x if n ≡ 3 (mod 4),

r(n) :=
n− η0(n)

2
.

Heuberger and Prodinger [31, Section 3] defined a transducer that calculates the NAF for an
given input out of its binary representation. This transducer T0 is defined as follows. The input
alphabet is {0, 1}, the output alphabet D. The set of states Q0 consists of the initial state I and
{0, . . . , 2 + |x|} representing carries. The terminal state is 0. The set of transitions is defined by

E0 =
{
I 0|ε−−→ 0, I 1|ε−−→ 1

}
∪
{
m

d|η0(2d+m)−−−−−−−→ r(2d+m)
∣∣∣∣ 0 ≤ m ≤ 2 + |x| , d ∈ {0, 1}

}
.

There ε denotes the empty word. We define the transducer T by deleting non-accessible states
from T0. The states are denoted by Q and the transitions by E . Further in Heuberger and
Prodinger [31, Theorem 7] the following theorem is given.

Theorem 2.4.33. Let T be the transducer constructed above. Then the following holds:

(a) #Q ≤ |x|+ 4

(b) A integer n with binary expansion d = dJ . . . d0 has a 2-NAF with digits D if and only if
there is a successful path with input label dJ+#Q−2 . . . d0 in T . In this case, the output label
of this successful path is the 2-NAF with digits D of n.

(c) The set D is a NADS if and only if the only cycle in T with input label 0 . . . 0 is 0
0|0−−→ 0.
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2.4.3.9 Frequency of Digits

Let D = {0, 1, x} be a NADS. For a non-negative integer n and the corresponding 2-NAF η(n)
we define the number of occurrences of the digit d ∈ D by

fd(n) :=
∑
j≥0

[ηj(n) = d] .

Set f(n) := (f1(n) , fx(n))t. Further let XN be a random variable, uniformly distributed on{
0, . . . , 2N − 1

}
, and define FN := (F1,N (n) , Fx,N (n))t := f(XN ). Heuberger and Prodinger [31,

Theorem 9] gave the following distribution result for the random vector FN .

Theorem 2.4.34. Let D = {0, 1, x} be a NADS and FN = (F1,N , Fx,N )t the number of occur-
rences of the digits 1 and x in the NAF of a randomly chosen integer in the set

{
0, . . . , 2N − 1

}
.

Then we have

E(FN ) =
1
6
N

(
1
1

)
+ e +O

(
1

2N

)
,

V(Fd,N ) =
11
108

N + vd +O
(
N

2N

)
, d ∈ {1, x} ,

Cov(F1,N , Fx,N ) = − 7
108

N + w +O
(
N

2N

)
for some constants e = (e1, ex)t, v1, vx, and w depending on x, which can be computed explicitly.
Furthermore, the central limit theorem

P

FN − 1
6N

(
1
1

)
√
N

≤ z

 =
9√
2π

x
y≤z

exp

(
−1

2
yt ·

(
33
2

21
2

21
2

33
2

)
· y
)

dy +O
(

1√
N

)

holds uniformly with respect to z, z ∈ R2. Here y ≤ z means yj ≤ zj for j ∈ {1, 2}.
The proof makes use of probability generating functions and their properties. In Heuberger

and Prodinger [31, Sections 5–7] there is also another approach for counting digits. For N ∈ N
define

Hd(N) :=
N−1∑
n=0

fd(n) =
N−1∑
n=0

∑
j≥0

[ηj(n) = d] .

They proved the following theorem.

Theorem 2.4.35. Let D = {0, 1, x} be a NADS, d ∈ {1, x} and N ∈ N. Then the number of
occurrences of the digit d in the 2-NAFs with digits D of the integers 0, . . . , N − 1 equals

Hd(N) =
1
6
N log2N +N ψd(log2N) +O(Nα) ,

where ψd is a 1-periodic continuous function and α < 2 computable.

The proof uses a geometric approach based on the ideas of Delange [17]. In the following a
short summary and some of the needed results were given, cf. Heuberger and Prodinger [31,
Sections 5–7].

For d ∈ D there exists disjoint open subsets Wd of the unit interval [0, 1] such that

η`(n) = d⇐⇒ {
n/2`+2

} ∈Wd (2.4.1)
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2 Background and Known Results

for ` ≥ 0. The sum of the Lebesgue measures of the Wd equals 1. We may call the Wd

characteristic sets. Even more, it can be proved that λ(W1) = λ(Wx) = 1
6 and therefore λ(W0) =

2
3 .

In the case x = −1 those characteristic sets are just a finite union of intervals, cf. Prodinger [56]
and Heuberger and Prodinger [30]. In general those sets have a fractal structure.

Of special interest is the Hausdorff dimension of the boundary of W0 ∪W1 ∪Wx, because this
is exactly the exponent α of the error term in Theorem 2.4.35 on the previous page. It turns out
that

dimH ∂(W0 ∪W1 ∪Wx) = log2 ρ(M2) ,

where ρ(M2) is the spectral radius of the adjacency matrix M2 of an auxiliary automatonA2. The
construction of A2 is skipped here, it can be found in Heuberger and Prodinger [31, Section 6].
There also bounds for ρ(M2) are given, as well as a table of the values of dimH ∂(W0 ∪W1 ∪Wx)
for some x.

With those results, Theorem 2.4.35 on the preceding page can be proved. The idea is to use the
equivalence (2.4.1). The characteristic set Wd will be replaced by an appropriate approximation
and the sum rewritten as integral. This integral is split up to get the main term, the periodic
oscillating term and the error term. This is similar to the approach in Grabner, Heuberger and
Prodinger [24, Section 4].

2.4.3.10 Non-Optimality

Now we want to discuss the optimality of the 2-NAFs with digits D = {0, 1, x}. Optimality
means that this 2-NAF-expansion for an integer n has minimal Hamming weight, i.e., number of
non-zero digits, amongst all D-expansions for n.

For the case x = −1 Reitwiesner [58] showed optimality, see also Section 2.4.1. For x = 3
optimality can be shown. For x ≤ −5 the expansions are non-optimal. These results are stated
in the following theorem of Heuberger and Prodinger [31, Theorem 18].

Theorem 2.4.36. Let D = {0, 1, x} be a NADS. Then the Hamming weight of the 2-NAF of n
with digits D is minimal among all D-expansions of n (for all n) if and only if x = −1 or x = 3.

For the proof that the expansion is non-optimal for x ≤ −5, an counterexample is given in
Heuberger and Prodinger [31, Section 8]. If |x| + 3 = 2g for some g ≥ 4, then the integer
n = 2g+1 + 7 is considered, otherwise the integer 3. In both cases an expansion with digits D
and smaller Hamming weight than the 2-NAF-expansion is given.

The proof that the 2-NAF-expansion is optimal for x = 3 is of algorithmic nature. There a
transducer is used.

2.5 Expansions for Frobenius-and-Add Scalar Multiplication
Methods

In the previous section, we used the double-and-add method to perform the scalar multiplication
on an elliptic curve. But there is also another way to do that. Let E be an elliptic curve defined
over a field Fq. We look at the group E(Fqm) of rational points over a field extension Fqm of Fq
for an m ∈ N. Consider the qth-power Frobenius endomorphism

ϕ : E(Fqm) −→ E(Fqm) , (x, y) 7−→ (xq, yq) .

This map satisfies f(ϕ) = 0 for a quadratic monic polynomial f ∈ Z[T ], cf. Koblitz [41, VI
Section 1] or Silverman [62, V], or see Section 2.1. This means that for every point P on the
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elliptic curve, we have f(ϕ)(P ) = 0, where 0 denotes the neutral element of the point group.
Thus we may identify ϕ with a solution τ ∈ C satisfying f(τ) = 0 and therefore we have an
isomorphism between Z[τ ] and the endomorphism ring of E(Fqm).

One example is the elliptic curve

E2 : Y 2 +XY = X3 + aX2 + 1 with a ∈ {0, 1}

defined over F2, cf. Koblitz [39]. The Frobenius map on this Koblitz curve2 satisfies the relation
ϕ2 − µϕ+ 2 = 0 with µ = (−1)1−a. Thus the imaginary quadratic number τ = 1

2µ+ 1
2

√−7 can
be used. Another example is the Koblitz curve

E3 : Y 2 = X3 −X − µ with µ ∈ {−1, 1}

defined over F3. This curve was studied in Koblitz [40]. There we have ϕ2 − 3µϕ + 3 = 0 and
therefore get τ = 3

2µ+ 1
2

√−3.
Now let z ∈ Z[τ ] and P ∈ E(Fqm). If we write the element z as

z =
`−1∑
j=0

zjτ
j

for some digits zj belonging to a digit set D, then we can compute the action zP — or scalar
multiplication if z ∈ Z — as

zP =
`−1∑
j=0

zj ϕ
j(P ) .

The evaluation can be done via a Horner scheme as used by the double-and-add method, except
that instead of the doubling operation the Frobenius operation is used. The resulting method is
therefore called Frobenius-and-add method, cf. Koblitz [39] and Solinas [63, 64].

Since the Frobenius operation on a point can be done much faster than the doubling of a point
— especially when using normal bases — the Frobenius-and-add method is much faster than
the classic double-and-add scalar multiplication. To get more details on normal bases, see for
example Ash, Blake and Vanstone [1]. Beside other results, they showed that for m prime, a
normal basis for F2m exists and is easy to construct.

So our interest is to make this Frobenius-and-add calculation as efficient as possible. In the
following two sections the τ of the two examples E2 and E3 from above will be used to analyse
τ -adic expansions of elements of Z[τ ].

2.5.1 Koblitz Curves in Characteristic Two and 2-NAFs

Let τ = 1
2µ+ 1

2

√−7 with µ ∈ {−1, 1}. Such a τ comes from an elliptic curve

E2 : Y 2 +XY = X3 + aX2 + 1 with a ∈ {0, 1}

defined over F2, cf. Koblitz [39, Sections 2 and 6] and µ = (−1)1−a. We denote the group
of rational points on the curve over F3m by E2(F2m). Using τ -adic expansions for the scalar
multiplication on that Koblitz curve was already mentioned by Koblitz [39, Section 6] and Meier
and Staffelbach [43]. But none of them used the non-adjacency property. However, Solinas [64,
Section 4.2] defines a τ -adic 2-NAF. As a digit set, D = {0,+1,−1} is used.

2In Koblitz [39] those curves were called anomalous binary curves. Later, for example see Solinas [64], such
curves were called Koblitz curves. Sometimes the term subfield curve is used, too.
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2.5.1.1 Existence and Uniqueness

First we want to know, whether the mentioned expansions exist, and whether they are unique
or not. In Solinas [64, Theorem 1] we find the following.

Theorem 2.5.1. Every element of the ring Z[τ ] has a unique τ -adic 2-NAF with digit set
{0,+1,−1}.

Additionally an algorithm is given to compute this τ -adic 2-NAF. Next, we want to know, how
many expansions of a given length are there. We get the following, which is clearly equal to the
2-NAF with base 2 and digits {0,+1,−1}, cf. Section 2.4.1.4.

Theorem 2.5.2. There are t` = 1
3

(
2`+2 − (−1)`

)
distinct 2-NAF representations of length `.

In conjunction with Koblitz curves, this was stated by Solinas [64, Section 3].

2.5.1.2 Length and Density

The average density is asymptotically 1
3 . This and other results on length and density are equal to

the ones in Section 2.4.1.2, because the same digit set is used and the statements are independent
from the used base.

Next we want to look at the expansion length of an element of Z[τ ]. Bounds for that would
be interesting. Solinas [64, Theorem 2] stated the following Theorem.

Theorem 2.5.3. Let d ∈ N0, let ` > 2d, and let α be a length-` element of Z[τ ]. Then(√
Nmin(d)−

√
Nmax(d)

2d/2 − 1

)2

2`−d < N (α) <

√
Nmax(d)

(2d/2 − 1)2
2`.

There, Nmin(d) and Nmax(d) is the minimum and the maximum, respectively, of the norm of all
length d elements.

For d = 15 this means that

log2N (α)− 0.5462682713 < ` < log2N (α) + 3.51559412,

when ` > 30. Further in Solinas [64, Section 4.3] there are elements of Z[τ ] given, which are
“close” to the mentioned bounds.

Another result in Solinas [64, Section 4.3] is that the Hamming weight of the τ -adic 2-NAF
of the integer n is asymptotically 2

3 log2 n. Compared to the Hamming weight of the ordinary
2-NAF with base 2, cf. Section 2.4.1, this is a factor 2 larger. So the concept of τ -adic NAFs
eliminated the doubling on the elliptic curve, but doubled the number of elliptic additions. This
problem will be solved in the next section using reduced NAFs.

2.5.1.3 Reduced NAFs

In the previous section it was mentioned that the τ -adic NAF has twice the length of the ordinary
NAF with base 2. To “fix” this disadvantage, we will introduce reduced NAFs, cf. Solinas [64,
Section 6.3]. To do this, we need the following definition found in Solinas [64, Section 6.1].

Definition 2.5.4. Let G be a set of points on a Koblitz curve. Let γ and ρ be w-NAFs. Then
γ and ρ are equivalent with respect to G, if value(γ)P = value(ρ)P for all P ∈ G.

One way to get equivalent NAFs is mentioned in Meier and Staffelbach [43]. There the following
result can be found.

22



2.5 Expansions for Frobenius-and-Add Scalar Multiplication Methods

Proposition 2.5.5. If γ and ρ are elements of Z[τ ] with

γ ≡ ρ (mod τm − 1),

then
γP = ρP

for all P ∈ E2(F2m). Thus NAFw(γ) and NAFw(ρ) are equivalent with respect to E2(F2m).

We want to use this equivalence-concept on the Koblitz curve. So consider the group E2(F2m)
of rational points of the curve E2. It should be chosen in a way that the computation of the
discrete logarithms of its elements is difficult. For example, the order of E2(F2m) should be
divisible by a large prime, cf. Menezes, Oorschot and Vanstone [44]. If m would be not a prime,
then there would be a divisor 2d with d |m.

An integer n is called very nearly prime, if it is of the form N = f · r with f ∈ {2, 4} and
r > 2. In Solinas [64, Section 4.1] a list of m (up to 512) is given, where the order of E2(F2m)
is very nearly prime. If this is the case, the subgroup of order r is called the main subgroup.
Cryptographic operations are commonly performed on the main subgroup, cf. [33] and [54].

So let the order of E2(F2m) be f · r and set δ := (τm − 1)/(τ − 1). This element has norm r,
cf. Solinas [64, Section 4.1]. We get the following theorem.

Theorem 2.5.6. Let P be a point in the main subgroup in a Koblitz curve of very nearly prime
order. Let γ and ρ be elements of Z[τ ] with

γ ≡ ρ (mod δ).

Then
γP = ρP.

Thus NAFw(γ) and NAFw(ρ) are equivalent with respect to the main subgroup.

This result can be found in Solinas [64, Theorem 3]. Now we are ready to define the reduced
NAF, cf. Solinas [64, Section 6.3]

Definition 2.5.7. The reduced 2-NAF of a positive integer n with n < r/2 is defined as NAF2(ρ),
where ρ := n mod δ.

According to the previous theorem, the reduced 2-NAF of n and the 2-NAF of n are equivalent
with respect to the main subgroup. Thus we can use the reduced 2-NAF for curve operations
(on the main subgroup). The advantage of the reduced 2-NAF can be found in Solinas [64,
Theorem 4].

Theorem 2.5.8. The average Hamming weight among reduced 2-NAFs is asymptotically m/3.

The algorithms to get the reduced 2-NAFs and to perform the elliptic scalar multiplication are
described in Solinas [64, Sections 7.1 and 7.2]. The concept of reduced 2-NAFs can be generalised
to reduced w-NAFs. This is analogously to the 2-NAF case. See Solinas [64, Section 7.3] for
details.

2.5.1.4 Optimality

The binary non-adjacent form minimises the Hamming weight, cf. Reitwiesner [58]. The same is
true for our τ -adic 2-NAFs. In Avanzi, Heuberger and Prodinger [5, Theorem 1] and [4, Section 3]
the following theorem is given. This result can also be found in Gordon [22, Theorem 3].
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Theorem 2.5.9. Let z ∈ Z[τ ]. Then the Hamming weight of the τ -adic 2-NAF of z is minimal
amongst all τ -expansions of z.

Avanzi, Heuberger and Prodinger showed this result with two different proofs. One version is a
“direct” proof, the other one an “automatic” proof. The latter one uses the transducers presented
in Avanzi, Heuberger and Prodinger [5, Figures 1 and 2]. Those transducers, one for the case
µ = −1 and one for µ = 1, compute the τ -adic NAFs of an integer from any other τ -expansion
from right to left.

Additionally they gave two automata, see Avanzi, Heuberger and Prodinger [5, Figures 3
and 4], which accept minimal Hamming weight expansions. More precisely, they showed that
those automata accept a τ -expansion if and only if it has minimal Hamming weight amongst all
τ -expansion. This is formulated as Theorem 2 in Avanzi, Heuberger and Prodinger [5].

2.5.1.5 Point Halving

Consider the generic elliptic curve

E : Y 2 +XY = X3 + aX2 + b

defined over F2m , with a, b ∈ F2m . Let G ≤ E(F2m) be a subgroup of large prime order, cf. “main
subgroup” in Solinas [64] or Section 2.5.1.3. For a given point P ∈ G we want to find R ∈ G
such that 2R = P . This R is unique on G, since point halving is an automorphism of G. Such
an R can be calculated by solving an equation system over F2m . According to Knudsen [36] or
Schroeppel [60, 59], this can be done efficiently. Have also a look at Fong, Hankerson, López and
Menezes [21, Section 4] for details on point halving. Using this point halving the double-and-add
method can be replaced by a halve-and-add algorithm.

There is a connection of using point halving in the scalar multiplication and τ -adic NAF repre-
sentations, cf. Avanzi, Heuberger and Prodinger [5] and [7, Section 2.4]. The halving corresponds
to use the digits ±τ additionally to the digit set {0,±1}.

2.5.2 Koblitz Curves in Characteristic Two and Width-w NAFs

As in the previous section, we let τ = 1
2µ + 1

2

√−7 with µ ∈ {−1, 1}. As mentioned, such a τ
comes from an elliptic curve

E2 : Y 2 +XY = X3 + aX2 + 1 with a ∈ {0, 1}

defined over F2, cf. Koblitz [39, Sections 2 and 6] and µ = (−1)1−a. Again, we can generalise the
2-NAF results. We will take a general w and of course we need other (larger) digit sets. Clearly
more digits mean that the resulting scalar multiplication method is more efficient, but there also
more precomputation is needed.

2.5.2.1 Existence and Uniqueness

Let w ≥ 2 and consider width-w non-adjacent forms. This was first mentioned by Solinas in [64,
Section 7.3]. The digit set used consists of 0 and for every odd r with 1 ≤ r ≤ 2w−1 we take one
representative α of minimal norm with α ≡ r (mod τw). Such a digit set is uniquely determined,
cf. Avanzi, Heuberger and Prodinger [7, Theorem 2].

Solinas gave an algorithm to compute the w-NAF for an element of Z[τ ], cf. Solinas [64, Algo-
rithm 4]. It was also noticed that it is sufficient to take the reduced w-NAFs, cf. Section 2.5.1.3.
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2.5 Expansions for Frobenius-and-Add Scalar Multiplication Methods

The Solinas algorithm was changed (generalised) a little bit in Blake, Kumar Murty and Xu [14,
Section 3]. For each u ∈ {1, 3, . . . , 2w − 1} we take an α ∈ Z[τ ] with

α ≡ u (mod τw)

and use these, and of course 0, as digit set. Note that α must not be a representative of minimal
norm. They gave an algorithm to calculate the w-NAF and proved that this algorithm terminates
under a suitable condition. This is formulated in the following theorem, cf. Blake, Kumar Murty
and Xu [14, Theorem 2].

Theorem 2.5.10. If 1 ∈ D and representatives with norm smaller than 2w are used, then the
algorithm terminates, i.e., every element of Z[τ ] has a τ -adic w-NAF expansion with digits in
D.

A simple corollary to this theorem is that the Solinas algorithm terminates, too, cf. Blake, Ku-
mar Murty and Xu [14, Corollary 3]. Further, in Blake, Kumar Murty and Xu [12, Theorems 3.1
and 3.8] a uniqueness result was shown. Thus, the digit set used in the previous theorem is a
w-NADS.

2.5.2.2 Width-w Non-adjacent Digit Sets

In the previous section, we had that a digit set of minimal norm representatives is a w-NADS.
Now we want to consider also other digit sets. The question, whether a digit set is a w-NADS
or not was studied in Avanzi, Heuberger and Prodinger [6] and [7, Section 2.1]. There they gave
the following algorithmic characterisation.

Theorem 2.5.11. Let D be a finite subset of Z[τ ] containing 0 and w ≥ 1 be an integer. Let

M :=

max
{
|d|2

∣∣∣ d ∈ D}
(2w/2 − 1)2

 .
Consider the directed graph G = (V,A) defined by its set of vertices

V := {0} ∪
{
z ∈ Z[τ ]

∣∣∣ |z|2 ≤M, τ - z
}

and set of arcs

A :=
{

(y, z) ∈ V 2
∣∣There exists d ∈ D• and an integer v ≥ w s.t. z = τvy + d

}
.

Then every element of Z[τ ] has a w-NAF representation with digits in D if and only if the
following conditions are both satisfied:

1. The set D contains a reduced residue system modulo τw.

2. In G = (V,A), each vertex z ∈ V is reachable from 0.

If the previous equivalent conditions are fulfilled and D• is a reduced residue system modulo
τw, then D is a w-NADS.

This theorem can be used with some special digit sets. First let

D = {0} ∪ {±1,±3, . . . ,±(2w−1 − 1)
}
,
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2 Background and Known Results

where the second part of this union is a reduced residue system modulo τw. Avanzi, Heuberger
and Prodinger [7, Example 2.10] showed that this digit set is a w-NADS for

w ∈ {2, 3, 4, 5, 7, 8, 9, 10} .
In the case w = 6, this is not true. The element 1− µτ has no 6-NAF.

The next considered digit set, see Avanzi, Heuberger and Prodinger [7, Section 2.3], is the set
of short τ -NAF representations for τw. There a τ -NAF is meant to be a 2-NAF with digits 0,
−1 and 1. Let w ≥ 1 and D be a subset of

{0} ∪ {value(η) |η is a τ -NAF of length at most w with η0 6= 0}
consisting of 0 and a reduced residue system modulo τw. Such a digit set is in almost all cases a
w-NADS. This can be found in Avanzi, Heuberger and Prodinger [7, Theorem 3]. They gave also
a list of exceptional cases consisting of four entries. All those cases fulfil w = 3. Additionally they
gave bounds for the length of an expansion using short τ -NAFs. This length is approximately
2 log2 |z| for an z ∈ Z[τ ]. Here approximately means that the difference to the true length can
be bounded by a constant (depending on w).

An example for a set of short τ -NAF representations is the digit set

D = {0} ∪ {value(η) |η is a τ -NAF of length at most w with η0 6= 0 and ηw−1 ∈ {0, η0}} .
In this case D is a w-NADS for all w ≥ 2, see also Avanzi, Heuberger and Prodinger [7, Theo-
rem 3].

The digit set defined below can be used in conjunction with point halving, see Section 2.5.1.5
and Avanzi, Heuberger and Prodinger [7, Section 2.4], [4], and [5]. It was mentioned that a
halving in the scalar multiplication corresponds to the extension of the digit set {0,−1, 1} by
±τ . For w ≥ 2 the digit set is now defined by

D = {0} ∪ {±τk ∣∣ 0 ≤ k < 2w−2
}
.

It can be shown that D• is indeed a reduced residue system modulo τw, cf. Avanzi, Heuberger
and Prodinger [7, Theorem 5]. Further they showed in that D is a w-NADS if w ∈ {2, 3, 4, 5, 6}
and that it is not a w-NADS if w ∈ {7, 8, 9, 10, 11, 12}. This can be found in [7, Theorem 6].

A comparison of the mentioned digit sets can be found in [7, Section 2.5]. In conjunction
with applications to Koblitz curves those digit sets are discussed in Avanzi, Heuberger and
Prodinger [7, Section 3]. There a detailed analysis of the number of needed operations is given,
too.

2.5.2.3 Non-Optimality

First we will use minimal norm representatives for the digit set D, cf. Section 2.5.2.1. Again,
an expansion is optimal, if it minimises the Hamming weight among all expansion with the
same digit set, but without the NAF-condition. The case w = 2 was handled in Section 2.5.1.4;
optimality can be shown. For w = 3 optimality can be shown, too, see Avanzi, Heuberger and
Prodinger [4] and [5]. For the cases w ∈ {4, 5, 6} non-optimality was shown by Heuberger [26,
Section 3 and Table 1]. Even more, a chaotic behaviour was mentioned which is stated in the
following theorem, cf. Heuberger [26, Theorem 1].

Theorem 2.5.12. For every positive integer `, there exists elements z`, z
′
` ∈ Z[τ ] with the

following properties:

1. The numbers z` and z′` are congruent modulo τ `.
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2.5 Expansions for Frobenius-and-Add Scalar Multiplication Methods

2. For all optimal expansions η and η′ of z` and z′`, respectively, the least significant digits η0
and η′0 differ.

A consequence is that an optimal expansion cannot be computed by a deterministic transducer
automaton or an online algorithm from right to left.

Those non-optimality and chaotic behaviour results stay true, if other digit sets like the ones in
the previous section are used. If short τ -NAF representations are used as digit set, the statements
are true for w ∈ {4, 5, 6}. When using powers of τ , then it can be shown for w ∈ {4, 5}. See
Heuberger [26, Section 3 and Theorem 1] for details.

In contrast to the previous result is the following theorem.

Theorem 2.5.13. Let w ≥ 1 and D be a w-NADS. Then there is an algorithm to compute an
optimal expansion of y ∈ Z[τ ] with digits in D in O(log |y|) time, where the implicit constant
depends on D.

This can be found in Heuberger [26, Theorem 2]. However, the O-constant in the theorem
may be quite huge, so practical miracles cannot be expected.

2.5.3 Koblitz Curves in Characteristic Three

Consider the Koblitz curve

E3 : Y 2 = X3 −X − µ with µ ∈ {−1, 1}
defined over F3. This curve was studied in Koblitz [40]. We denote the group of rational points on
the curve over F3m by E3(F3m). There we have ϕ2−3µϕ+3 = 0 for the Frobenius endomorphism
ϕ and therefore get

τ =
3
2
µ+

1
2
√−3.

This τ will be used for our τ -adic expansions.
Let ζ ∈ Z[τ ] be a sixth root of unity. We fix

ζ =
1
2
− 1

2
µ
√−3,

cf. Koblitz [40, Section 2] and Avanzi, Heuberger and Prodinger [8, Section 2]. Then clearly
Z[τ ] = Z[ζ]. Let our digit set be

D := {0} ∪ {ζk ∣∣ 0 ≤ k < 6
}
.

We will use w = 2 with this digit set, i.e., we will consider 2-NAFs.

2.5.3.1 Existence and Uniqueness

We get the following existence and uniqueness result, see Koblitz [40, Theorem 1].

Theorem 2.5.14. Every element of Z[τ ] reduced modulo τm − 1 has a unique τ -adic 2-NAF
expansion with digits D, in which at most (m+ 1)/2 digits are non-zero. Asymptotically on the
average 60% of the digits are zero.

As in Meier and Staffelbach [43] and Solinas [64, Section 6] it is sufficient to look at elements
of Z[τ ] modulo τm− 1, i.e., the remainders by dividing by τm− 1. The reason is that we get the
same point after scalar multiplication, because (τm − 1)P = ϕmP − P = 0.

The average density of non-zero coefficients in a 2-NAF of length ` is 2
5`, cf. Koblitz [40]. To

calculate the 2-NAF for rational integers we can use the following connection between the τ -adic
expansion of an n and its balanced ternary expansion. The theorem can be found in Avanzi,
Heuberger and Prodinger [8, Theorem 1].
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2 Background and Known Results

Theorem 2.5.15. Let n be a rational integer given by its balanced ternary expansion n =∑`−1
j=0 xj3

j for xj ∈ {0, 1,−1}. Then the 2-NAF of n is given by η2`−2 . . . η0, where

ηj =

{
0 if j is odd,
xj/2ζ

(j/2) mod 6 if j is even.

2.5.3.2 Elliptic Curve Algorithm vs. Non Elliptic Curve Algorithm

As the elliptic curve discrete logarithm can be reduced to the discrete logarithm, cf. Menezes,
Okamoto and Vanstone [45], a comparison of an algorithm using elliptic curves and one“classical”
is possible. The curve E3 is supersingular with K = 6, cf. end of Section 2.2.

In Koblitz [40, Section 5] the comparison is done for the digital signature algorithm DSA. There
the elliptic curve E is taken and the number of operations in DSA and ECDSA is compared.
Koblitz uses the Menezes-Okamoto-Vanstone embedding from E3(F3m) to F×36m . Because of this
embedding, both algorithms have the same security — using the field extension F3m for ECDSA
and F36m for DSA — and can be compared. The result is that ECDSA is approximately 12 times
faster than DSA. This value does not depend on m.

2.5.4 Koblitz Curves in Characteristic Three and Width-w NAFs

Again, as in the previous section, consider the Koblitz curve

E3 : Y 2 = X3 −X − µ with µ ∈ {−1, 1}
defined over F3, cf. Koblitz [40] with the corresponding

τ =
3
2
µ+

1
2
√−3.

Let ζ ∈ Z[τ ] again be a sixth root of unity with

ζ =
1
2
− 1

2
µ
√−3.

The idea is the same that Solinas [64] used for Koblitz curves in characteristic 2. Let w ∈ N
with w ≥ 2. As in the characteristic 2 case, the main loop in the Frobenius-and-add scalar
multiplication is more efficient the larger w is, but also more pre-computation is needed. Blake,
Kumar Murty and Xu [15, Section 3] proposed to use the digit set D constructed out of

D̃ =
{
x+ yτ

∣∣∣ 0 ≤ x ≤ 3dw/2e − 1, 0 ≤ y ≤ 3bw/2c − 1 and 3 - x
}

by taking an element with least norm of the congruence class of x + yτ ∈ D modulo τw. By
means of this D they gave an algorithm, [15, Algorithm 3.1], which calculates the width-w τ -adic
non-adjacent form of an element of Z[τ ]. Its termination was shown in Blake, Kumar Murty and
Xu [15, Theorem 3.1]. Further they studied the performance and gave the results in tables in
[15, Section 4]. Have also a look at the later work of Blake, Kumar Murty and Xu, namely [12].

The average density of non-zero coefficients in a w-NAF of length ` is given by

2
2w + 1

n,

cf. Blake, Kumar Murty and Xu [15, Section 4.3].
The digit set of minimal norm representatives mentioned above can also be written down

explicitly. This is a result of Avanzi, Heuberger and Prodinger [8, Theorem 2]. We have the
following.
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2.5 Expansions for Frobenius-and-Add Scalar Multiplication Methods

Theorem 2.5.16. Let w ≥ 2 and set

Dw =
{
a+ bµτ

∣∣∣∣ a ∈ Z, b ∈ Z, 3 - a, 1 ≤ a ≤ 3w/2 − 2 and − a

3
< b < 3w/2−1 − 2a

3

}
if w is even and

Dw =
{
a+ bµτ

∣∣∣ a ∈ Z, b ∈ Z, 3 - a,−3b
w
2 c + 2 ≤ b ≤ 0, 1− 2b ≤ a ≤ 3b

w
2 c − b− 1

}
∪
{

(3b
w
2 c − b) + bµτ

∣∣∣∣ b ∈ Z, 3 - b,−3b
w
2 c − 1

2
≤ b ≤ 0

}
if w is odd. Set

D := {0} ∪
⋃

0≤k<6

ζkDw .

Then D consists of 0 and exactly one representative of minimum norm of every residue class
modulo τw. In particular, D is a w-NADS.

2.5.5 Other Bases

A more general result is given in Blake, Kumar Murty and Xu [12]. They analysed Euclidean
imaginary quadratic number fields. In particular, they gave existence and uniqueness results for
τ -adic w-NAFs concerning the fields Q

(√−1
)
, Q
(√−2

)
, Q
(√−3

)
, Q
(√−7

)
and Q

(√−11
)
.

The first result is general. Let F be an Euclidean imaginary quadratic number field and OF
its ring of integers. Let τ ∈ OF with |τ | > 1, w ∈ N, and suppose that |τw|2 ≥ 12. The digit set
is defined as follows. Let

R = {k ∈ OF | τ - k} .
From each congruence class C of R modulo τw coprime to τ we fix a digit c in the following way.
If there is a unit in C, we choose this unit as c. Otherwise an element with |c| < |τ | is fixed.
Our digit set D consists then of 0 and all such c. Blake, Kumar Murty and Xu [12, Theorem 3.1]
proved the following.

Theorem 2.5.17. Every element k ∈ OF has a unique τ -adic w-NAF expansion with digits
in D.

In the following, we will give the results for the fields mentioned above, except the two that
were already handled in the Sections 2.5.1 to 2.5.4. For all those cases algorithms to calculate
the w-NAF expansions can be found in Blake, Kumar Murty and Xu [12, Section 4].

2.5.5.1 Integers in Q
(√−1

)
We use τ = 1 +

√−1. Then we have Z[τ ] = Z[
√−1]. In Blake, Kumar Murty and Xu [12,

Section 3] the following is stated. Let

R =
{
x+ yτ

∣∣∣ 0 ≤ x ≤ 2dw/2e − 1, 0 ≤ y ≤ 2bw/2c − 1 and 2 - x
}

and let the digit set D consist of 0, the units 1, −1,
√−1, and −√−1, and z̃ ∈ R with 1 < |z̃| <

|τw|, such that z̃ is in the same residue class as z ∈ R modulo τw. We get the following theorem,
cf. Blake, Kumar Murty and Xu [12, Theorem 3.2].

Theorem 2.5.18. If w > 2 then every element of Z[τ ] has a unique τ -adic w-NAF expansion
with digits in D.
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This theorem is not true for w ≤ 2. There, we get the following results.

Theorem 2.5.19. Every element of Z[τ ] has a τ -adic 2-NAF expansion with digits in

D =
{

0, 1,−1,
√−1,−√−1

}
.

Theorem 2.5.20. Every element of Z[τ ] has a τ -adic expansion (1-NAF) with digits in

D = {0, 1,−1} .

Those results can be found in Blake, Kumar Murty and Xu [12, Theorem 3.3]. Note that the
expansions in the previous two theorems must not be unique. Counterexamples can be found in
Blake, Kumar Murty and Xu [12], too.

2.5.5.2 Integers in Q
(√−2

)
We use τ = 1 +

√−2. In Blake, Kumar Murty and Xu [12, Section 3] the following is stated. Let

R =
{
x+ yτ

∣∣∣ 0 ≤ x ≤ 2dw/2e − 1, 0 ≤ y ≤ 2bw/2c − 1 and 2 - x
}

and let the digit set D consist of 0, the units 1 and −1, and z̃ ∈ R with 1 < |z̃| < |τw|, such
that z̃ is in the same residue class as z ∈ R modulo τw. We get the following theorem, cf. Blake,
Kumar Murty and Xu [12, Theorem 3.4].

Theorem 2.5.21. If w > 2 then every element of Z[τ ] has a unique τ -adic w-NAF expansion
with digits in D.

Again, as in the Q
(√−1

)
case, this theorem is not true for w ≤ 2. There, we get the following

results.

Theorem 2.5.22. Every element of Z[τ ] has a τ -adic 2-NAF expansion with digits in

D = {0, 1,−1, 1 + τ} .

Theorem 2.5.23. Every element of Z[τ ] has a τ -adic expansion (1-NAF) with digits in

D = {0, 1,−1} .

Those results can be found in Blake, Kumar Murty and Xu [12, Theorem 3.5]. Note that there,
again, is no uniqueness result given.

2.5.5.3 Integers in Q
(√−11

)
We use τ = 1

2 + 1
2

√−11. In Blake, Kumar Murty and Xu [12, Section 3] the following is stated.
Let

D = {0} ∪ {−1, 1} ∪ {ci | 1 < i < 3w − 1 with 3 - i, ci ≡ i (mod τw) and |ci| < |τw|}

We get the following theorem, cf. Blake, Kumar Murty and Xu [12, Theorem 3.10].

Theorem 2.5.24. If w ∈ N then every element of Z[τ ] has a unique τ -adic w-NAF expansion
with digits in D.
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Chapter 3

New Results

This chapter contains new results, which were developed during the work on the master’s thesis.
In Section 3.1 an analysis of the digits in the case of Koblitz curves in Characteristic Three

can be found. There w-NAF expansions of the rational integers are considered.
The Sections 3.2 to 3.10 contain the analysis of the occurrence of a digit in a general case and

the necessary prerequisites for the proof. Those sections are a joint work with my supervisor
Clemens Heuberger.

An overview of the requirements on τ and digit set D for the different sections, definitions,
theorems, etc. can be found in Table 3.0.1 on the next page.

3.1 Analysis of 2-NAFs in Conjunction with Koblitz Curves in
Characteristic Three

Let q and r be integers satisfying q ≥ 2 and 0 ≤ r ≤ q − 2. Let the 〈q, r〉 number system
be the positional number system with base q and digits −r, 1 − r, . . . , q − 1 − r. Flajolet and
Ramshaw [20, Theorem P] gave the following theorem.

Theorem 3.1.1. Let d be a non-zero digit in the 〈q, r〉 number system. Let n ∈ N, let ρ(n)
denote the number of times that the digit d is used when n is expressed in the 〈q, r〉 number
system, and let F (d, n) denote the appropriately truncated summation of ρ, in particular,

F (d, n) =
(

1− r

q − 1

)
ρ(0) + ρ(1) + ρ(2) + · · ·+ ρ(n− 1) +

(
r

q − 1

)
ρ(n)

Then, there exists a continuous, nowhere differentiable function P : R −→ R, periodic with
period 1, such that

F (d, n) =
n logq n

q
+ nP

(
logq n

)
for n ≥ 1.

The Fourier series P (x) =
∑
µ∈Z pµe

2πiµx of P converges absolutely. Finally, if we set

m := d mod q

and define ξ and η by the formulas

ξ =
m

q
− r

q(q − 1)
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3 New Results

short description τ digit set D
Section 3.2 Voronoi cells i-q ——
Lemma 3.3.3 on page 44 complete residue system alg ——
Definition 3.3.5 on page 45 minimal norm representatives digit set i-q ——
Definition 3.3.7 on page 46 width-w non-adjacent forms gen fin
Proposition 3.3.8 on page 46 continuity of value gen fin
Definition 3.3.11 on page 47 width-w non-adjacent digit set gen fin
Theorem 3.4.1 on page 48 full block length distribution theorem alg RRS
Section 3.5 bounds for the value i-q MNR
Theorem 3.6.1 on page 60 existence theorem for lattice points i-q MNR
Theorem 3.6.5 on page 62 existence theorem for C i-q MNR
Definition 3.7.1 on page 62 fundamental domain F gen fin
Proposition 3.7.2 on page 62 compactness of the fundamental domain gen fin
Corollary 3.7.4 on page 63 tiling property i-q MNR
Remark 3.7.5 on page 63 iterated function system gen fin
Proposition 3.7.7 on page 64 characterisation of the boundary i-q MNR
Proposition 3.7.8 on page 65 upper bound for the dimension of ∂F i-q MNR
Section 3.8 cell rounding operations i-q ——
Section 3.9 characteristic sets i-q MNR
Theorem 3.10.1 on page 78 counting the occurences of a digit i-q MNR

Abbreviations for τ
(general: τ ∈ C with |τ | > 1)

gen τ ∈ C
alg τ algebraic integer
i-q τ imaginary quadratic algebraic

integer

Abbreviations for digit sets
(general: D ⊆ Z[τ ], 0 ∈ D)

fin finite digit set
RRS reduced residue system digit set
MNR minimal norm representatives

digit set

Table 3.0.1: Overview of requirements.

and

η =
m+ 1
q
− r

q(q − 1)
,

the coefficients pµ are given by

p0 = logq Γ(ξ)− logq Γ(η)− 1
q ln q

− 1
2q

and

pµ =
ζ(χµ, ξ)− ζ(χµ, η)
(ln q)χµ (1 + χµ)

for χµ =
2πiµ
ln q

and µ 6= 0.

Flajolet and Ramshaw [20, Section 3] used this theorem to calculate the occurrence of digits
in the balanced ternary case, i.e., in the number system 〈3, 1〉.

We modify this theorem a little bit. We want to count digits in given positions in the 〈q, r〉
number system. More precisely, we are interested in the occurrence of a digit in all numbers up
to n at positions with index in a residue class b+MZ. The result is the following theorem.

Theorem 3.1.2. Let d be a non-zero digit in the 〈q, r〉 number system. Let b ∈ Z and M ∈ N.
Let n ∈ N, let ρ(n) denote the number of times that the digit d is used at positions in b + MZ
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when n is expressed in the 〈q, r〉 number system, and let Fb+MZ(d, n) denote the appropriately
truncated summation of ρ, in particular,

Fb+MZ(d, n) =
(

1− r

q − 1

)
ρ(0) + ρ(1) + ρ(2) + · · ·+ ρ(n− 1) +

(
r

q − 1

)
ρ(n) .

Then, there exists a piecewise continuous, piecewise nowhere differentiable function P : R −→ R,
periodic with period M and a piecewise constant function Q : R −→ R, periodic with period M ,
such that

Fb+MZ(d, n) =
n logq n
qM

+ nP
(
logq n

)
+ nQ

(
logq n

)
for n ≥ 1.

We have P (x) = Pc(x) where the parameters c and x fulfil the relation

c = (bxc+ 1− b) mod M.

If we set
m := d mod q

and define ξ and η by the formulas

ξ =
m

q
− r

q(q − 1)

and
η =

m+ 1
q
− r

q(q − 1)
,

the coefficients pc,µ = cµ + dµ of the Fourier series

Pc(x) =
∑
µ∈Z

pc,µe
2πiµx

of Pc are given by

cµ =

{
1
q + 1

2qM for µ = 0,
1

2πiµqM for µ 6= 0

and
dµ =

1
ln q

∑
0≤k

Hk(1 + χµ)

with χµ = 2πiµ/ ln q and

Hk(z) =
1

qzQzk

(
1
qz
− 1
)
− 1
qz

(Vz(qQk)− Vz(Qk)) +
1
z

qQk−1∑
j=Qk

(Vz(j + η)− Vz(j + ξ)) .

with Qk = qc+kM−2 and V1(v) = ln v and Vz(v) = 1
1−z

1
vz−1 for z 6= 1.

The function Q is given by

Q(x) = −1
q

{
1 + bxc
M

}
.

The coefficients qµ of its Fourier series

Q(x) =
∑
µ∈Z

qµe
2πiµx/M
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3 New Results

are given by

q0 = −M − 1
2qM

.

and

qµ = − ie
2πiµ/M

2πqµ
.

for µ 6= 0.

If we set M = 1, then we get the statement of Theorem 3.1.1 on page 31, at least when the
expression for the Fourier coefficients is simplified (which is possible in this case).
Remark 3.1.3. The Fourier coefficients of P can be calculated from the Fourier coefficients of the
M different Pc, since

P (x) =
M−1∑
c=0

Pc(x)Rc(x) .

There the function Rc is the characteristic function of the set
⋃
y∈c−1+b+MZ [y, y + 1). The

function Rc is clearly M periodic and its Fourier coefficients rc,µ are easy to calculate. The
Fourier coefficients pµ of the Fourier series

P (x) =
∑
µ∈Z

pµe
2πiµx/M

then follow by “rescaling” the coefficients pc,µ to period M , a convolution of them with the rc,µ,
and summing up over all c.

The proof of Theorem 3.1.2 on page 32 follows the proof of Theorem 3.1.1 on page 31 which
can be found in the appendix of Flajolet and Ramshaw [20]. The difference is, that here in our
sums not all summands are taken. Thus the Fourier coefficients can not be written in such a nice
form as in Theorem 3.1.1 on page 31.

The idea of the proof comes from the balanced ternary case, cf. Flajolet and Ramshaw [20,
Sections 2 and 3]. In Table 3.1.1 on the next page the column k = 0 consists of the repetition
of the block 011̄. Unfortunately, the kth column does not consists of the repetition of the block
03k13k 1̄3k . This problem can be fixed using blocks of the form 03k/213k 1̄3k03k/2. This means
that our first column k = 0 consists of blocks 01/211̄01/2. The summation function Fb+MZ will
take this in account.

Proof of Theorem 3.1.2. Let d be a fixed non-zero digit. At the beginning of this proof we want
to consider each position k separately. Let n be written in the 〈q, r〉 system, and let ρk(n) be 1
if the digit d appears in the kth position of n. Further define

Fk(d, n) :=
(

1− r

q − 1

)
ρk(0) + ρk(1) + ρk(2) + · · ·+ ρk(n− 1) +

(
r

q − 1

)
ρk(n) .

Each position will contain d with probability 1/q, so we set

tk(n) := Fk(d, n)− n

q
.

Those functions tk(n) can be expressed as a scaled version of a function t : R −→ R, which is
defined by

t(x) =


−xq if 0 ≤ x ≤ ξ,
q−1
q x− ξ if ξ ≤ x ≤ η,

1
q − x

q if η ≤ x ≤ 1
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3.1 Analysis of 2-NAFs in Conjunction with Koblitz Curves in Characteristic Three

n k = 3 k = 2 k = 1 k = 0
0 0
1 1
2 1 1̄
3 1 0
4 1 1
5 1 1̄ 1̄
6 1 1̄ 0
7 1 1̄ 1
8 1 0 1̄
9 1 0 0

10 1 0 1
11 1 1 1̄
12 1 1 0
13 1 1 1
14 1 1̄ 1̄ 1̄
15 1 1̄ 1̄ 0

Table 3.1.1: Balanced Ternary System

and t(x+ 1) = t(x). We get
tk(n) = qk+1 t

(
n/qk+1

)
,

cf. Flajolet and Ramshaw [20, Proof of Theorem P] Each n can be expressed by ` + 1 digits,
where ` =

⌊
logq n

⌋
+ 1.

Now consider our fixed residue class b+MZ. We have

Fb+MZ(d, n) =
∑

0≤k≤`

[k ≡ b (mod M)]Fk(d, n) =
∑

0≤k≤`

[k ≡ b (mod M)]
(
n

q
+ tk(n)

)
.

Pulling out the summand n/q, inserting tk(n) and changing the summation index from k to `−k
yields

Fb+MZ(d, n) =
n

q

(⌊
`

M

⌋
+ 1
)

+
∑

0≤k≤`

[`− k ≡ b (mod M)] q`−k+1 t

(
n

q`−k+1

)
.

Since t
(
n/q`−k+1

)
is zero for k > `, we can rewrite this as

Fb+MZ(d, n) =
n

q

(⌊
`

M

⌋
+ 1
)

+ q`+1 h

(
n

q`+1

)
where

h(x) =
∑
0≤k

[k ≡ `− b (mod M)]
t
(
qkx
)

qk
=
∑
0≤k

t
(
qc+kMx

)
qc+kM

with c = (`− b) mod M . Since t is bounded and q > 1, the sum in h(x) converges absolutely
and uniformly by the Weierstrass M-test. Therefore h is continuous because t is continuous.
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To see that h is nowhere differentiable, assume by contradiction that h is differentiable at y.
Consider its difference quotient over the intervals Ij , j ∈ N with

Ij = [aj , bj ] =
[
pj
qj
− r

qj(q − 1)
,
pj + 1
qj

− r

qj(q − 1)

]
.

There the pj are chosen such that y ∈ Ij . The intervals Ij are nested, since

pj
qj
− r

qj(q − 1)
=
pjq − r
qj+1

− r

qj+1(q − 1)
.

The difference quotient

h(bj)− h(aj)
bj − aj =

∑
0≤k

t
(
qc+kMbj

)− t(qc+kMaj)
qc+kM−j

would converge to h′(y) for j → ∞. If c + kM ≥ j, then the kth term is zero, because of the
periodicity of t. If c+kM < j, then we will get either −1/q or 1−1/q, since our scaled t is linear
in the interval Ij . But this means that the limit j → ∞ does not exist, and so h is nowhere
differentiable.

By inserting ` and using z = bzc+ {z} we obtain

Fb+MZ(d, n) =
n

q

(⌊
logq n

⌋
+ 1

M
−
{⌊

logq n
⌋

+ 1
M

}
+ 1

)
+ qlogq n−{logq n}+2 h

(
qlogq n−blogq nc−2

)
=
n

q

logq n
M

− n

q

{
1 +

⌊
logq n

⌋
M

}
+
n

q
+
n

q

1− {logq n
}

M

+ nq2−{logq n} h
(
q{logq n}−2

)
,

and therefore

Fb+MZ(d, n) =
n logq n
qM

+ nPc
(
logq n

)
+ nQ

(
logq n

)
with

Pc(x) :=
1
q

+
1− {x}
qM

+ q2−{x} h
(
q{x}−2

)
and

Q(x) := −1
q

{
1 + bxc
M

}
.

Clearly Pc is 1-periodic and piecewise continuous (possible discontinuities at integer values),
and Q is M -periodic and piecewise constant with discontinuities at x ∈ Z. From the construction
of P out of the M different Pc, the properties of P follow directly, especially that P is M -periodic.
We want to compute the Fourier coefficients of Pc and Q. So let

Pc(x) =
∑
µ∈Z

pµe
2πiµx

with

pµ =
∫ 1

u=0

Pc(u) e−2πiµu du =
∫ 1

u=0

(
1
q

+
1− u
qM

)
e−2πiµu du︸ ︷︷ ︸

=:cµ

+
∫ 1

u=0

q2−u h
(
qu−2

)
e−2πiµu du︸ ︷︷ ︸

=:dµ

.
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3.1 Analysis of 2-NAFs in Conjunction with Koblitz Curves in Characteristic Three

It is easy to see that

cµ =

{
1
q + 1

2qM for µ = 0,
1

2πiµqM for µ 6= 0.

Now consider the coefficient dµ. Inserting h and changing the order of integration and summation
yields

dµ =
∑
0≤k

∫ 1

u=0

q2−u−c−kM t
(
qc+kM+u−2

)
e−2πiµu du.

Now we substitute v = qc+kM+u−2, dv = v ln q du, u = logq v−c−kM+2 and set Qk = qc+kM−2

to obtain

dµ =
1

ln q

∑
0≤k

∫ qQk

v=Qk

t(v)
v2

e−2πiµ(logq v−c−kM+2) dv.

By rewriting

e−2πiµ(logq v−c−kM+2) = e−2πiµ logq v = e−2πiµ ln v/ ln q = v−2πiµ/ ln q = v−χµ

with χµ = 2πiµ/ ln q we get

dµ =
1

ln q

∑
0≤k

∫ qQk

v=Qk

t(v)
v2+χµ

dv.

Now we define

Hk(z) :=
∫ qQk

v=Qk

t(v)
v1+z

dv

and therefore get

dµ =
1

ln q

∑
0≤k

Hk(1 + χµ)

The function t(v) can be written

t(v) =
∫ v

x=0

(
bx− ξc − bx− ηc − 1

q

)
dx,

so we can use integration by parts at Hk to obtain

Hk(z) = − t(v)
zvz

∣∣∣∣qQk
v=Qk

+
1
z

∫ qQk

v=Qk

1
vz

(
bx− ξc − bx− ηc − 1

q

)
dv.

The difference bx− ξc − bx− ηc is 1-periodic and piecewise constant. More precisely in the
interval [0, 1) the function is 1 on [ξ, η) and 0 elsewhere. We set

Vz(v) =
∫

1
vz

dv.

Thus we get V1(v) = ln v and Vz(v) = 1
1−z

1
vz−1 for z 6= 1. Using that t is − 1

q at integer values
and the results above yields

Hk(z) =
1

qzQzk

(
1
qz
− 1
)
− 1
qz

(Vz(qQk)− Vz(Qk)) +
1
z

qQk−1∑
j=Qk

(Vz(j + η)− Vz(j + ξ)) .
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Next we want to compute the Fourier coefficients of Q. Let

Q(x) =
∑
µ∈Z

qµe
2πiµx/M

with

qµ =
1
M

∫ M

u=0

Q(u) e−2πiµu/M du =
1
M

∫ M−1

u=−1

Q(u) e−2πiµu/M du

Since Q is piecewise constant, we obtain

qµ =
1

qM2

∫ M−1

u=−1

(1 + buc) e−2πiµu/M du =
1

qM2

M−2∑
j=−1

(1 + j)
∫ j+1

u=j

e−2πiµu/M du,

and using computer algebra software we get for µ 6= 0

qµ =
ie2πiµ/M

2πqµ
.

Clearly

q0 =
M − 1
2qM

.

Therefore all Fourier coefficients are calculated and the proof is finished.

We will now use Theorem 3.1.2 on page 32 to count the non-zero digits in the numbers up to
n ∈ N, when they are written with base

τ =
3
2
µ+

1
2
√−3

and digit set
D = {0} ∪ {ζk ∣∣ 0 ≤ k < 6

}
where ζ ∈ Z[τ ] is a sixth root of unity, cf. Koblitz [40].

Avanzi, Heuberger and Prodinger [8] proved the following connection between the τ -adic
2-NAF of an n and its balanced ternary expansion.

Theorem 3.1.4. Let n be a rational integer given by its balanced ternary expansion n =∑`−1
j=0 xj3

j for xj ∈ {0, 1,−1}. Then the 2-NAF of n is given by η2`−2 . . . η0, where

ηj =

{
0 if j is odd,
xj/2ζ

(j/2) mod 6 if j is even.

Combining this result with Theorem 3.1.2 on page 32 leads directly to the following corollary.

Corollary 3.1.5. Let η ∈ D be a non-zero digit. Let n ∈ N, let ρ(n) denote the number of
times that the digit η is used when n is expressed as τ -adic 2-NAF, and let F (η, n) denote the
appropriately truncated summation of ρ, in particular,

F (η, n) = 1
2 ρ(0) + ρ(1) + ρ(2) + · · ·+ ρ(n− 1) + 1

2 ρ(n) .

Then, there exists piecewise continuous, piecewise nowhere differentiable function P+, P− : R −→
R, periodic with period 6 and a piecewise constant function Q : R −→ R, periodic with period 6,
such that

F (η, n) = 1
9n log3 n+ nP+(log3 n) + nP−(log3 n) + 2nQ(log3 n) for n ≥ 1.

The Fourier coefficients of P+, P− can be calculated, Q is given explicit.
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3.2 Voronoi Cells

V

0 1

1+i
√

3
2

1−i
√

3
2

τ

Figure 3.2.1: Voronoi cell V for 0 corresponding to the set Z[τ ] with τ = 3
2 + 1

2

√−3.

Proof. Consider the τ -adic expansion of n. Theorem 3.1.4 on the facing page tells us that the
digit η can occur either at an index in b′+6Z coming from a 1 in the balanced ternary expansion
of n or at an index in b′ + 3 + 6Z coming from a −1. The latter one comes from the fact that
−ζb′ = ζb

′+3, since ζ is a sixth root of unity.
We now use Theorem 3.1.2 on page 32 with parameters q = 3 and r = 1 for balanced ternary

number system and M = 6, since according to Theorem 3.1.4 on the facing page every sixth digit
of the balanced ternary expansion corresponds to the same power of ζ in its τ -adic expansion.
For P+ we use the P of Theorem 3.1.2 on page 32 with parameters d = 1 and the b = b′ from
the previous paragraph. For P− we use P with parameters d = −1 and b = b′ + 3. The result
follows by adding the two counting functions Fb′+6Z and Fb′+3+6Z.

3.2 Voronoi Cells

Let τ ∈ C be an algebraic integer, imaginary quadratic, i.e., τ is solution of an equation τ2 −
pτ + q = 0 with p, q ∈ Z, such that 4q − p2 > 0.

We will use the digit set of minimal norm representatives. In order to describe this digit set,
we will rewrite the minimality condition in terms of the Voronoi cell for the lattice Z[τ ], cf.
Gordon [22].

Definition 3.2.1 (Voronoi Cell). We set

V := {z ∈ C | ∀y ∈ Z[τ ] : |z| ≤ |z − y|} .

V is the Voronoi cell for 0 corresponding to the set Z[τ ]. Let u ∈ Z[τ ]. We define the Voronoi
cell for u as

Vu := u+ V = {u+ z | z ∈ V } = {z ∈ C | ∀y ∈ Z[τ ] : |z − u| ≤ |z − y|} .

The point u is called centre of the Voronoi cell or lattice point corresponding to the Voronoi cell.

An example of a Voronoi cell in a lattice Z[τ ] is shown in Figure 3.2.1. Whenever the word
“cells” is used in this paper, these Voronoi cells or scaled Voronoi cells will be meant.

Two neighbouring Voronoi cells have at most a subset of their boundary in common. This can
be a problem, when we tile the plane with Voronoi cells and want that each point is in exactly
one cell. To fix this problem we define a restricted version of V . This is very similar to the
construction used in Avanzi, Heuberger and Prodinger [8].
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Ṽ

0

v0

v1

v2

v3

v4

v5

v0.5v1.5

v2.5

v3.5 v4.5

v5.5

Figure 3.2.2: Restricted Voronoi cell Ṽ for 0 corresponding to the set Z[τ ] with τ = 3
2 + 1

2

√−3.

Definition 3.2.2 (Restricted Voronoi Cell). Let Vu be a Voronoi cell as above and u its centre.
Let v0, . . . , vm−1 with appropriate m ∈ N be the vertices of Vu. We denote the midpoint of the
line segment from vk to vk+1 by vk+1/2, and we use the convention that the indices are meant
modulo m.

The restricted Voronoi cell Ṽu consists of

• the interior of Vu,

• the line segments from vk+1/2 (excluded) to vk+1 (excluded) for all k,

• the points vk+1/2 for k ∈ {0, . . . ,
⌊
m
2

⌋− 1
}

, and

• the points vk for k ∈ {1, . . . ,
⌊
m
3

⌋}
.

Again we set Ṽ := Ṽ0.

In Figure 3.2.2 the restricted Voronoi cell for 0 is shown. The second condition is used, because
it benefits symmetries. The third condition is just to make the midpoints unique. Obviously,
other rules could have been used to define the restricted Voronoi cell.

As a generalisation of the usual fractional part of elements in R with respect to the integers,
we define the fractional part of an element of C corresponding to the restricted Voronoi cell Ṽ
and thus corresponding to the lattice Z[τ ].

Definition 3.2.3 (Fractional Part in Z[τ ]). Let z ∈ C, z = u + v with u ∈ Z[τ ] and v ∈ Ṽ .
Then we define the fractional part corresponding to the lattice Z[τ ] by {z}

Z[τ ] := v.

This definition is valid, because of the construction of the restricted Voronoi cell. The fractional
part of a point z ∈ C simply means, to search for the nearest lattice point u of Z[τ ] and returning
the difference z − u.

Throughout this paper we will use the following notation for discs in the complex plane.

Definition 3.2.4 (Opened and Closed Discs). Let z ∈ C and r ≥ 0. The open disc B(z, r) with
centre z and radius r is denoted by

B(z, r) := {y ∈ C | |z − y| < r}

and the closed disc B(z, r) with centre z and radius r by

B(z, r) := {y ∈ C | |z − y| ≤ r} .

The disc B(0, 1) is called unit disc.
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3.2 Voronoi Cells

We will need suitable bounds for the digits in our digit set. These require precise knowledge
on the Voronoi cells, such as the position of the vertices and bounds for the size of V . Such
information is derived in the following proposition.

Proposition 3.2.5 (Properties of Voronoi Cells). We get the following properties:

(a) The vertices of V are given by

v0 = 1/2 +
i

2 Im(τ)

(
Im(τ)2 + {Re(τ)}2 − {Re(τ)}

)
,

v1 = {Re(τ)} − 1
2

+
i

2 Im(τ)

(
Im(τ)2 − {Re(τ)}2 + {Re(τ)}

)
,

v2 = −1/2 +
i

2 Im(τ)

(
Im(τ)2 + {Re(τ)}2 − {Re(τ)}

)
= v0 − 1,

v3 = −v0,
v4 = −v1

and

v5 = −v2.
All vertices have the same absolute value. If Re(τ) ∈ Z, then v1 = v2 and v4 = v5, i.e., the
hexagon degenerates to a rectangle.

(b) The Voronoi-cell V is convex.

(c) We get the bounds
B(0, 1

2

) ⊆ V ⊆ B(0, |τ | cV )

with cV =
√

7
12 .

(d) The Lebesgue measure of V in the complex plane is

λ(V ) = |Im(τ)| .

(e) The inclusion τ−1V ⊆ V holds.

In the proof we will use some properties of Voronoi cells, which can, for example, be found in
Aurenhammer [2].

Proof. (a) Since V is point-symmetric with respect to 0, we get v0 = −v3, v1 = −v4 and
v2 = −v5. Thus we suppose without loss of generality Im(τ) > 0. Strict greater holds,
because τ is imaginary quadratic. Even more, we get Im(τ) ≥

√
3

2 , since

τ =
p

2
± i

2

√
4q − p2

is solution of τ2 − pτ + q = 0 for p, q ∈ Z and either 4q − p2 ≡ 0 (mod 4) or 4q − p2 ≡ −1
(mod 4).

All elements of the lattice Z[τ ] can be written as a + bτ , since τ is quadratic. We have to
consider the neighbours of 0 in the lattice. The Voronoi cell is the area enclosed by the line
segment bisectors of the lines from each neighbour to zero, see Figure 3.2.3.
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v0

v1

v2

v3

v4

v5

V

−1 10

τ̃

−τ̃

Figure 3.2.3: Construction of the Voronoi cell V for 0. The picture shows a general situation.
Since τ is an imaginary quadratic algebraic integer, we will have Re(τ̃) ∈ {0, 1

2

}
.

Clearly Re(v0) = 1
2 and Re(v2) = − 1

2 , since −1 and 1 are neighbours. Set τ̃ = {Re(τ)} +
i Im(τ). Consider the line from 0 to τ̃ with midpoint 1

2 τ̃ . We get

v0 =
1
2
τ̃ − xAiτ̃

and

v1 =
1
2
τ̃ + xBiτ̃

for some xA ∈ R≥0 and xB ∈ R≥0. Analogously, for the line from 0 to τ̃ − 1, we have

v1 =
1
2

(τ̃ − 1)− xCi (τ̃ − 1)

and

v2 =
1
2

(τ̃ − 1) + xDi (τ̃ − 1) .

for some xC ∈ R≥0 and xD ∈ R≥0. Solving this system of linear equations leads to the
desired result. An easy calculation shows that |v0| = |v1| = |v2|.
Until now, we have constructed the Voronoi cell of the points

P := {0, 1,−1, τ̃ , τ̃ − 1,−τ̃ ,−(τ̃ − 1)} .

We want to rule out all other points, i.e., make sure, that none of the other points changes
the already constructed cell. So let z = x+ iy ∈ Z[τ ] and consider z

2 . Because of symmetry
reasons, we can assume x ≥ 0 and y ≥ 0. Clearly all points z ∈ Z with z ≥ 2 do not change
the Voronoi cell, since z

2 >
1
2 and the corresponding line segment bisector is vertical. So we

can assume y > 0.

Now we will proceed in the following way. A point z can be ruled out, if the absolute value
of z

2 is larger than
R = |v0| = |v1| = |v2| .
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3.3 Digit Sets and Non-Adjacent Forms

Let τ = a+ ib. If {a} = 0, then R2 = 1
4

(
1 + b2

)
. We claim that

R2 <
x2 + y2

4
⇐⇒ 1 + b2 < x2 + y2.

Since y > 0, we have y ≥ b. If y = b, then points with x > 1 need not be taken into
account. But the remaining points are already in P (at least using symmetry and τ̃ + 1
instead of τ̃ − 1). If y ≥ 2b, then all points except the ones with x = 0 can be ruled out,
since 1 − b2 ≤ 1 − 3

4 = 1
4 < x. But the points z with x = 0 can be ruled out, too, because

there is already the point ib in P .

So let {a} = 1
2 . Then R2 = 1

4

(
1
2 + b2 + 1

16b2

)
and we claim that

R2 <
x2 + y2

4
⇐⇒ 1

2
+ b2 +

1
16b2

< x2 + y2.

If y = b, then x >
√

7
12 suffices to rule out a point z, since b ≥

√
3

2 . But the only point z

with x ≤
√

7
12 is 1

2 + ib, which is already in P . If y ≥ 2b, then 1
2 − b2 + 1

16b2 ≤ 1
2 − 3

4 + 1
12 < 0,

so all points can be ruled out.

(b) Follows directly from the fact that all vertices have the same absolute value.

(c) From

v0 = 1/2 +
i

2 Im(τ̃)

(
Im(τ̃)2 + Re(τ̃)2 − Re(τ̃)

)
︸ ︷︷ ︸

≤Im(eτ)2
we obtain

|v0|
|τ̃ | ≤

|1 + i Im(τ̃)|
2 |τ̃ | ≤ Im(τ̃)

2 |τ̃ |

√
1

Im(τ̃)2
+ 1 ≤

√
7
12

=: cV

since
√

3
2 ≤ Im(τ̃) ≤ |τ̃ |. Therefore V ⊆ B(0, |τ | cV ).

Since 0 ≤ Re(τ̃) ≤ 1, we see that Im(v1) ≥ Im(v0) = Im(v2). By construction, the line from
0 to τ̃ intersects the line from v0 to v1 at 1

2 τ̃ , so 1
2 |τ̃ | is an upper bound for the largest circle

inside V . Analogously we get 1
2 |τ̃ − 1| as a bound, and from the line from 0 to 1 we get 1

2 .
Since τ̃ and τ̃ − 1 are lattice points and not zero, their norms are at least 1, so B(0, 1

2

)
is

inside V .

(d) The area of V can be calculated easily, because Im(v0) = Im(v2). Thus, splitting up the
region in a rectangle and a triangle and using symmetry, the result follows.

(e) Let x ∈ τ−1V . Thus x = τ−1z for an appropriate z ∈ V . For every y ∈ Z[τ ] we obtain

|x| = ∣∣τ−1
∣∣ |z| ≤ ∣∣τ−1

∣∣ |z − y| = ∣∣x− τ−1y
∣∣ .

For an arbitrary u ∈ Z[τ ] we can choose y = τu, and therefore |x| ≤ |x− u|, i.e., x ∈ V .

3.3 Digit Sets and Non-Adjacent Forms

In this section τ ∈ C will be an algebraic integer with |τ | > 1, and let w ∈ N with w ≥ 2.
Further let N : Z[τ ] −→ Z denote the norm function. We want to build a numeral system for
the elements of Z[τ ] with base τ . Thus we need a digit set D, which will be a finite subset of
Z[τ ] containing 0.
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Definition 3.3.1 (Reduced Residue Digit Set). Let D ⊆ Z[τ ]. The set D is called a reduced
residue digit set modulo τw, if it is consists of 0 and exactly one representative for each residue
class of Z[τ ] modulo τw that is not divisible by τ .

From now on suppose D is a reduced residue digit set modulo τw. The following two auxiliary
results are well-known; we include a proof for the sake of completeness.

Lemma 3.3.2. Let c be a rational integer. Then τ divides c in Z[τ ] if and only if N (τ) divides
c in Z.

Proof. From the minimal polynomial, it is clear that τ divides N (τ) in Z[τ ], so N (τ) | c implies
τ | c.

For the converse direction, assume that τ ·
(∑d−1

j=0 xjτ
j
)

= c for some rational integers xj .
There d is the degree of τ . Write the minimal polynomial of τ as

τd +
d−1∑
j=0

ajτ
j = 0.

Thus we obtain

c = −xd−1a0 +
d−1∑
j=1

(xj−1 − xd−1aj)τ j .

Comparing coefficients in τ j yields c = −xd−1a0, which implies that a0 = (−1)dN (τ) divides c
in Z, as required.

Next, we determine the cardinality of D by giving an explicit system of representatives of the
residue classes.

Lemma 3.3.3. A complete residue system modulo τw is given by

w−1∑
j=0

ajτ
j with aj ∈ {0, . . . ,N (τ)− 1} for 0 ≤ j < w. (3.3.1)

In particular, there are N (τ)w residue classes modulo τw in Z[τ ].
A representative

∑w−1
j=0 ajτ

j with aj ∈ {0, . . . ,N (τ)− 1} is divisible by τ if and only if a0 = 0.
In particular, the cardinality of D equals N (τ)w−1 (N (τ)− 1) + 1.

Proof. Every element z of Z[τ ] can be written as

z = xτw +
w−1∑
j=0

ajτ
j

for some aj ∈ {0, . . . ,N (τ)−1} and an appropriate x ∈ Z[τ ]: Take the expansion of z with respect
to the Z-basis τ j , 0 ≤ j < d and subtract appropriate multiples of the minimal polynomial of τ
in order to enforce 0 ≤ aj < N (τ) for 0 ≤ j ≤ w − 1. This shows that (3.3.1) indeed covers all
residue classes modulo τw.

Assume that
∑w−1
j=0 ajτ

j ≡ ∑w−1
j=0 bjτ

j (mod τw) for some aj , bj ∈ {0, . . . ,N (τ) − 1}, but
aj 6= bj for some j. We choose 0 ≤ j0 ≤ w − 1 minimal such that aj0 6= bj0 . We obtain

w−1∑
j=j0

ajτ
j−j0 ≡

w−1∑
j=j0

bjτ
j−j0 (mod τw−j0),
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3.3 Digit Sets and Non-Adjacent Forms

(a) Digit set for τ = 1
2

+
1
2

√−7 and w = 2.

(b) Digit set for τ = 1 +√−1 and w = 4.
(c) Digit set for τ = 3

2
+

1
2

√−3 and w = 2.

(d) Digit set for τ = 3
2

+
1
2

√−3 and w = 3.

Figure 3.3.1: Minimal norm representatives digit sets modulo τw for different τ and w. For each
digit η, the corresponding Voronoi cell Vη is drawn. The large scaled Voronoi cell is τwV .

which implies that aj0 ≡ bj0 (mod τ). By Lemma 3.3.2 on the facing page, this implies that
aj0 = bj0 , contradiction. Thus (3.3.1) is indeed a complete system of residues modulo τw.

From Lemma 3.3.2 on the preceding page we also see that exactly the N (τ)w−1 residue classes∑w−1
j=1 ajτ

j are divisible by τ . We conclude that #D = N (τ)w−1 (N (τ)− 1) + 1.

Since our digit set D is constructed of residue classes, we want a uniqueness in choosing the
representative. We have the following definition, where the restricted Voronoi Ṽ for the point 0
from Definition 3.2.2 on page 40 is used.

Definition 3.3.4 (Representatives of Minimal Norm). Let τ be an algebraic integer, imaginary
quadratic, and let η ∈ Z[τ ] be not divisible by τ . Then η is called a representative of minimal
norm of its residue class, if η ∈ τwṼ .

With this definition we can define the following digit set, cf. Solinas [63, 64] or Blake, Kumar
Murty and Xu [15].

Definition 3.3.5 (Minimal Norm Representatives Digit Set). Let τ be an algebraic integer,
imaginary quadratic, and let D be a reduced residue digit set modulo τw consisting of represen-
tatives of minimum norm of its residue classes. Then we will call such a digit set minimal norm
representatives digit set modulo τw.

From now on we will suppose that our digit set D is a minimal norm representatives digit set
modulo τw. Some examples are shown in Figure 3.3.1.

The following remark summarises some basic properties of minimal norm representatives and
the defined digit sets.

Remark 3.3.6. Let τ be an algebraic integer, imaginary quadratic. We have the following equiv-
alence. The condition

|η| ≤ |ξ| for all ξ ∈ Z[τ ] with η ≡ ξ (mod τw)

is fulfilled, if and only if η ∈ τwV . The advantage of using the restricted Voronoi cell in Defini-
tion 3.3.4 is that also points on the boundary are handled uniquely.

Further we get for all η ∈ D that |η| ≤ |τ |w+1
cV . On the other side, if an element of Z[τ ],

which is not divisible by τ , has norm less than 1
2τ

w, cf. Proposition 3.2.5 on page 41, it is a digit.
See also Lemma 3.3.3 on the facing page.

Since D ⊆ Z[τ ], all non-zero elements have norm at least 1.
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We can assume that 0 ≤ arg(τ) ≤ π
2 . Using any other τ lead to the same digit sets, except

some mirroring at the real axis, imaginary axis, or at the origin. By adapting the definition of
the boundary of the restricted Voronoi cell, Definition 3.2.2 on page 40, these mirroring effects
can be handled.

Now we are ready to define the numbers built with our digit set D.

Definition 3.3.7 (Width-w τ -adic Non-Adjacent Forms). Let η = (ηj)j∈Z ∈ DZ. The sequence
η is called a width-w τ -adic non-adjacent form, or w-NAF for short, if each factor ηj+w−1 . . . ηj ,
i.e., each block of length w, contains at most one non-zero digit.

Let J = {j ∈ Z | ηj 6= 0}. We call sup({0} ∪ (J + 1)) the left-length of the w-NAF η and
− inf({0} ∪ J) the right-length of the w-NAF η.

Let λ and ρ be elements of N0 ∪ {fin,∞}, where fin means finite. We denote the set of all
w-NAFs of left-length at most λ and right-length at most ρ by NAFλ.ρw . If ρ = 0, then we will
simply write NAFλw. The elements of the set NAFfin

w will be called integer w-NAFs.
For η ∈ NAFfin.∞

w we call
value(η) :=

∑
j∈Z

ηjτ
j

the value of the w-NAF η.

The following notations and conventions are used. A block of zero digits is denoted by 0. For
a digit η and k ∈ N0 we will use

ηk := η . . . η︸ ︷︷ ︸
k

,

with the convention η0 := ε, where ε denotes the empty word. A w-NAF η = (ηj)j∈Z will be
written as ηI .ηF , where ηI contains the ηj with j ≥ 0 and ηF contains the ηj with j < 0. ηI is
called integer part, ηF fractional part, and the dot is called τ -point. Left-leading zeros in ηI can
be skipped, except η0, and right-leading zeros in ηF can be skipped as well. If ηF is a sequence
containing only zeros, the τ -point and this sequence is not drawn.

Further, for a w-NAF η (a bold, usually small Greek letter) we will always use ηj (the same
letter, but indexed and not bold) for the elements of the sequence.

To see where the values, respectively the fractional values of our w-NAFs lie in the complex
plane, have a look at Figure 3.9.1 on page 73. There some examples are drawn.

The set NAFfin.∞
w can be equipped with a metric. It is defined in the following way. Let

η ∈ NAFfin.∞
w and ξ ∈ NAFfin.∞

w , then

dNAF(η, ξ) :=

{
|τ |max{j∈Z | ηj 6=ξj} if η 6= ξ,
0 if η = ξ.

So the largest index, where the two w-NAFs differ, decides their distance. See for example
Edgar [19] for details on such metrics.

We get the following continuity result.

Proposition 3.3.8. The value function value is Lipschitz continuous on NAFfin.∞
w .

Proof. Let cD be a bound for the absolute value of the digits in the digit set D. Let η ∈ NAFfin.∞
w

and ξ ∈ NAFfin.∞
w , η 6= ξ, with dNAF(η, ξ) = |τ |J . Since η and ξ are equal on all digits with

index larger than J we obtain

|value(η)− value(ξ)| ≤
∑
j≤J

|ηj − ξj | |τ |j ≤ 2cD
|τ |J

1− |τ |−1 =
2cD

1− |τ |−1 dNAF(η, ξ) .

Thus Lipschitz continuity is proved.
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3.4 Full Block Length Analysis of Non-Adjacent Forms

Furthermore, we get a compactness result on the metric space NAF`.∞w ⊆ NAFfin.∞
w in the

proposition below. The metric space NAFfin.∞
w is not compact, because if we fix a non-zero

digit η, then the sequence
(
η0j
)
j∈N0

has no convergent subsequence, but all η0j are in the set

NAFfin.∞
w .

Proposition 3.3.9. For every ` ≥ 0 the metric space
(
NAF`.∞w ,dNAF

)
is compact.

Proof. Let (ξ0,j)j∈N0
be a sequence with ξ0,j ∈ NAF`.∞w . We can assume ξ0,j ∈ NAF0.∞

w ,
therefore each word ξ0,j has digits zero for non-negative index. Now consider the digit with
index −1. There is a subsequence (ξ1,j)j∈N0

of (ξ0,j)j∈N0
, such that digit −1 is a fixed digit

η−1. Next there is a subsequence (ξ2,j)j∈N0
of (ξ1,j)j∈N0

, such that digit −2 is a fixed digit η−2.
This process can be repeated for each k ≥ 1 to get sequences (ξk,j)j∈N0

and digits η−k.
The sequence (ϑj)j∈N0

with ϑj := ξj,j converges to η, since for ε > 0 there is an J ∈ N0 such
that for all j ≥ J

dNAF(η,ϑj) ≤ |τ |−(J+1)
< ε.

It is clear that η is indeed an element of NAF0.∞
w , as its first k digits coincide with ξk,k ∈

NAF0.∞
w for all k. So we have found a converging subsequence of (ξ0,j)j∈N0

, which proves the
compactness.

Remark 3.3.10. The compactness of
(
NAF`.∞w ,dNAF

)
can also be deduced from general theory.

As a consequence of Tychonoff’s Theorem the set DN is a compact space, the product topology
(of the discrete topology on D) coincides with the topology induced by the obvious generalisation
of the metric dNAF. The subset NAF0.∞

w ⊆ DN is closed and therefore compact, too.

We want to express all integers in Z[τ ] by finite w-NAFs. Thus we restrict ourselves to suitable
digit sets, cf. Muir and Stinson [50].

Definition 3.3.11 (Width-w Non-Adjacent Digit Set). A digit set D is called a width-w non-
adjacent digit set, or w-NADS for short, when every element z ∈ Z[τ ] admits a unique w-NAF
η ∈ NAFfin

w , i.e., value(η) = z. When this is the case, the function

value|NAFfin
w

: NAFfin
w −→ Z[τ ]

is bijective, and we will denote its inverse function by NAFw.

Later, namely in Section 3.6, we will see that the digit set of minimal norm representatives is
a w-NADS if τ is imaginary quadratic.

3.4 Full Block Length Analysis of Non-Adjacent Forms

Let τ ∈ C be an algebraic integer, w ∈ N with w ≥ 2, and D be a reduced residue digit set, cf.
Definition 3.3.1 on page 44. Let N : Z[τ ] −→ Z denote the norm function.

Further, in this section all w-NAFs will be out of the set NAFfin
w , and with length the left-length

is meant.
This general setting allows us to analyse digit frequencies under the full block length modell,,

i.e., we assume that all w-NAFs of given length are equally likely. We will prove the following
theorem.
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Theorem 3.4.1 (Full Block Length Distribution Theorem). We denote the number of w-NAFs
of length n ∈ N0 by Cn,w, i.e., Cn,w = #(NAFnw), and we get

Cn,w =
1

(N (τ)− 1)w + 1
N (τ)n+w +O((ρN (τ))n) ,

where ρ = (1 + 1
N (τ)w3 )−1 < 1.

Further let 0 6= η ∈ D be a fixed digit and define the random variable Xn,w,η to be the number
of occurrences of the digit η in a random w-NAF of length n, where every w-NAF of length n is
assumed to be equally likely.

Then the following explicit expressions hold for the expectation and the variance of Xn,w,η:

E(Xn,w,η) = ewn+
(N (τ)− 1)(w − 1)w

N (τ)w−1 ((N (τ)− 1)w + 1)2
+O(nρn) (3.4.1)

V(Xn,w,η) = vwn

+
(w−1)w(−(w−1)2−N (τ)2w2+(N (τ)−1)N (τ)w−1((N (τ)−1)w+1)2+2N (τ)(w2−w+1))

N (τ)2w−2 ((N (τ)− 1)w + 1)4

+O(n2ρn
)
, (3.4.2)

where

ew =
1

N (τ)w−1 ((N (τ)− 1)w + 1)
,

and

vw =
N (τ)w−1 ((N (τ)− 1)w + 1)2 − ((N (τ)− 1)w2 + 2w − 1

)
N (τ)2w−2 ((N (τ)− 1)w + 1)3

.

Furthermore, Xn,w,η satisfies the central limit theorem

P
(
Xn,w,η − ewn√

vwn
≤ x

)
= Φ(x) +O

(
1√
n

)
,

uniformly with respect to x ∈ R, where Φ(x) = (2π)−1/2
∫
t≤x e

−t2/2 dt is the standard normal
distribution.

For the proof we need estimates for the zeros of a polynomial which will be needed for esti-
mating the non-dominant roots of our generating function.

Lemma 3.4.2. Let t ≥ 2 and

f(z) = 1− 1
t
z −

(
1− 1

t

)
zw.

Then f(z) has exactly one root with |z| ≤ 1 + 1
tw3 , namely z = 1.

Proof. It is easily checked that f(1) = 0. Assume that z 6= 1 is another root of f . As the
coefficients of f are reals, it is sufficient to consider z with Im(z) ≥ 0. If |z| < 1, then

1 =
∣∣∣∣1t z +

(
1− 1

t

)
zw
∣∣∣∣ ≤ 1

t
|z|+

(
1− 1

t

)
|z|w < 1

t
+
(

1− 1
t

)
= 1,
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3.4 Full Block Length Analysis of Non-Adjacent Forms

which is a contradiction. Therefore, we have |z| ≥ 1. We write z = reiψ for appropriate r ≥ 1
and 0 ≤ ψ ≤ π. For r > 0, f(r) is strictly decreasing, so we can assume that ψ > 0.

For ψ < π/w, we have sin(wψ) > 0 and sin(ψ) > 0, which implies that Im
(
f(reiψ)

)
=

− 1
t sinψ − (1− 1

t

)
sin(ψw) < 0, a contradiction. We conclude that ψ ≥ π/w.

Next, we see that f(reiψ) = 0 implies that

1− 2r
t

cosψ +
r2

t2
=
∣∣∣∣1− 1

t
reiψ

∣∣∣∣2 =
(

1− 1
t

)2

r2w.

We have cosψ ≤ cos(π/w), which implies that(
1− 1

t

)2

r2w ≥ 1− 2r
t

cos
π

w
+
r2

t2
=
(

1− r

t

)2

+
(

1− cos
π

w

) 2r
t
. (3.4.3)

For w ≥ 4 and r <
√

2, the right hand side of (3.4.3) is decreasing and the left hand side is
increasing. Thus, for r ≤ 1 + 1/(tw3), (3.4.3) yields(

1− 1
t

)2(
1 +

1
tw3

)2w

≥
(

1− 1
t
·
(

1 +
1
tw3

))2

+
(

1− cos
π

w

) 2
t

(
1 +

1
tw3

)
.

Using the estimates (1 + 1
tw3 )2w ≤ 1 + 2

tw2 + 2
t2w4 and cos

(
π
w

) ≤ 1− π2

2w2 + π4

24w4 , we obtain(
2− π2

t
− 4
t2

+
2
t3

)
1
w2

+
(

2
t2
− 2
t3

)
1
w3

+
(
π4

12t
+

2
t2
− 4
t3

+
2
t4

)
1
w4
− π2

t2w5
− 1
t4w6

+
π4

12t2w7
≥ 0,

which is a contradiction for w ≥ 4 and t ≥ 2.
For w = 3, we easily check that |z| =

√
t
t−1 ≥ 1 + 1/(27t); similarly, for w = 2, we have

|z| = t/(t− 1) > 1 + 1/(4t).

Proof of Theorem 3.4.1. For simplicity we set D• := D \ {0}. A w-NAF can be described by the
regular expression (

ε+
∑
d∈D•

w−2∑
k=0

0kd

)(
0 +

∑
d∈D•

0w−1d

)∗

Let amn be the number of w-NAFs of length n containing exactly m occurrences of the digit η.
We consider the generating function G(Y,Z) =

∑
m,n amnY

mZn. From the regular expression
we see that

G(Y,Z) =
1 + (Y + (#D• − 1))Z

w−Z
Z−1

1− Z − Y Zw − (#D• − 1)Zw
.

We start with determining the number of w-NAFs of length n. This amounts to extracting
the coefficient of Zn of

G(1, Z) =
1 + (#D• − 1)Z −#D• · Zw
(1− Z)(1− Z −#D• · Zw)

.

This requires finding the dominant root of the denominator. Setting z = N (τ)Z in the second
factor yields

1− 1
N (τ)

z −
(

1− 1
N (τ)

)
zw.
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From Lemma 3.4.2 on page 48, we see that the dominant root of the denominator of G(1, Z)
is Z = 1/N (τ), and that all other roots satisfy |Z| ≥ 1/N (τ) + 1/(N (τ)2 w3). Extracting the
coefficient of Zn of G(1, Z) then yields the number Cn,w of w-NAFs of length n as

1
(N (τ)− 1)w + 1

N (τ)n+w +O((ρN (τ))n) , (3.4.4)

where ρ = (1 + 1
N (τ)w3 )−1.

The number of occurrences of the digit µ amongst all w-NAFs of length n is

[Zn]
∂G(Y,Z)
∂Y

∣∣∣∣
Y=1

=
Z(

1− Z −
(

1− 1
N (τ)

)
(N (τ)Z)w

)2

=
1

((N (τ)− 1)w + 1)2
nN (τ)n+1 +

(N (τ)− 1)(w − 1)w
((N (τ)− 1)w + 1)3

N (τ)n+1 +O((ρN (τ))n) .

Dividing this by (3.4.4) yields (3.4.1).
In order to compute the second moment, we compute

[Zn]
∂2G(Y,Z)
∂Y 2

∣∣∣∣
Y=1

=
2Zw+1(

1− Z −
(

1− 1
N (τ)

)
(N (τ)Z)w

)3

=
1

((N (τ)− 1)w + 1)3
n2N (τ)n−w+2 +

(
(N (τ)− 1)w2 − 2wN (τ) + 1

)
((N (τ)− 1)w + 1)4

nN (τ)n−w+2

−
(w − 1)w

(
wN (τ)2 − 2N (τ)− w + 1

)
((N (τ)− 1)w + 1)5

N (τ)n−w+2 +O((ρN (τ))n) ,

which after division by (3.4.4) yields

E(Xn,w,η(Xn,w,η − 1)) =
1

N (τ)2w−2 ((N (τ)− 1)w + 1)2
n2+

(
(N (τ)− 1)w2 − 2wN (τ) + 1

)
N (τ)2w−2 ((N (τ)− 1)w + 1)3

n

−
(w − 1)w

(
wN (τ)2 − 2N (τ)− w + 1

)
N (τ)n−w+2 ((N (τ)− 1)w + 1)4

+O(n2ρn
)
.

Adding E(Xn,w,η)− E(Xn,w,η)2 yields the variance given in (3.4.2).
The asymptotic normality follows from Hwang’s Quasi-Power-Theorem [32].

3.5 Bounds for the Value of Non-Adjacent Forms

Let τ ∈ C be an algebraic integer, imaginary quadratic with minimal polynomial X2 − pX + q
with p, q ∈ Z such that 4q − p2 > 0. Suppose that |τ | > 1. Let w ∈ N with w ≥ 2. Further let
D be a minimal norm representatives digit set modulo τw as in Definition 3.3.5 on page 45.

In this section the fractional value of a w-NAF means the value of a w-NAF of the form 0.η.
The term most significant digit is used for the digit η−1.

So let us have a closer look at the fractional value of a w-NAF. We want to find upper bounds
and if we fix a digit, e.g. the most significant one, a lower bound. We need two different approaches
to prove those results. The first one is analytic. The results there are valid for all combinations
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3.5 Bounds for the Value of Non-Adjacent Forms

of τ and w except finitely many. These exceptional cases will be called “problematic values”. To
handle those, we will use an other idea. We will show an equivalence, which directly leads to
a simple procedure to check, whether a condition is fulfilled. If this is the case, the procedure
terminates and returns the result. This idea is similar to a proof in Matula [42].

The following proposition deals with three upper bounds, one for the absolute value and two
give us regions containing the fractional value.

Proposition 3.5.1 (Upper Bounds for the Fractional Value). Let η ∈ NAF0.∞
w , and let

fU =
|τ |w cV

1− |τ |−w .

Then the following statements are true:

(a) We get
|value(η)| ≤ fU .

(b) Further we have
value(η) ∈

⋃
z∈τw−1V

B
(
z, |τ |−w fU

)
.

(c) The following two statements are equivalent:

(1) There is an ` ∈ N0, such that for all ξ ∈ NAF0.`
w the condition

B
(

value(ξ), |τ |−` fU
)
⊆ τ2w−1 int(V )

is fulfilled.
(2) There exists an ε > 0, such that for all ϑ ∈ NAF0.∞

w the condition

B(value(ϑ), ε) ⊆ τ2w−1V

holds.

(d) We get
value(η) ∈ τ2w−1V.

(e) For ` ∈ N0 we have
value(0.η−1 . . . η−`) + τ−`V ⊆ τ2w−1V.

Proof. (a) We have

|value(η)| =
∣∣∣∣∣∣
∞∑
j=1

η−jτ
−j

∣∣∣∣∣∣ ≤
∞∑
j=1

|η−j | |τ |−j .

We consider w-NAFs, which have η−j 6= 0 for −j ≡ 1 (mod w). For all other w-NAFs the
upper bound is smaller. To see this, assume that there are more than w−1 adjacent zeros in
a w-NAF or the first digits are zero. Then we could build a larger upper bound by shifting
digits to the left, i.e., multiplying parts of the sum by |τ |, since |τ | > 1.

We get

|value(η)| ≤
∞∑
j=1

|η−j | |τ |−j =
∞∑
j=1

[−j ≡ 1 (mod w)] |η−j | |τ |−j

≤ |τ |−1
∞∑
k=0

∣∣η−(wk+1)

∣∣ |τ |−wk ,
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in which we changed the summation index according to wk + 1 = j and the Iversonian
notation [expr ] = 1 if expr is true and [expr ] = 0 otherwise, cf. Graham, Knuth and Patash-
nik [25], has been used. Using

∣∣η−(wk+1)

∣∣ ≤ |τ |w+1
cV , see Remark 3.3.6 on page 45, yields

|value(η)| ≤ |τ |−1 |τ |w+1
cV

1
1− |τ |−w =

|τ |w cV
1− |τ |−w︸ ︷︷ ︸

=:fU

.

(b) There is nothing to show if the w-NAF η is zero, and it is sufficient to prove it for η−1 6= 0.
Otherwise, let k ∈ N be minimal, such that η−k 6= 0. Then

τ−(k−1)τk−1 value(η) ∈ τ−(k−1)
⋃

z∈τw−1V

B
(
z, |τ |−w fU

)
⊆

⋃
z∈τw−1V

B
(
z, |τ |−w fU

)
,

since |τ | > 1 and τ−1V ⊆ V , see Proposition 3.2.5 on page 41.

Since η−1 ∈ τwV , see Remark 3.3.6 on page 45, we obtain η−1τ
−1 ∈ τw−1V . Thus, using

(a), yields ∣∣τw (value(η)− η−1τ
−1
)∣∣ ≤ fU ,

i.e.,
value(η) ∈ B

(
η−1τ

−1, |τ |−w fU
)
,

which proves the statement.

(c) (1) =⇒ (2). Suppose there exists such an ` ∈ N. Then there exists an ε > 0 such that

B
(

value(ξ), |τ |−` fU + ε
)
⊆ τ2w−1V

for all ξ ∈ NAF0.`
w , since there are only finitely many ξ ∈ NAF0.`

w . Let ϑ ∈ NAF0.∞
w .

Then there is a ξ ∈ NAF0.`
w such that the digits from index −1 to −` of ξ and ϑ

coincide. By using (a) we obtain

|value(ϑ)− value(ξ)| ≤ |τ |−` fU ,
and thus

B(value(ϑ), ε) ⊆ B
(

value(ξ), |τ |−` fU + ε
)
⊆ τ2w−1V.

(2) =⇒ (1). Now suppose there is such an ε > 0. Since there is an ` ∈ N such that |τ |−` fU <
ε, the statement follows.

(d) We know from Proposition 3.2.5 on page 41 that B
(

0, 1
2 |τ |2w−1

)
⊆ τ2w−1V . Therefore, if

the upper bound found in (a) fulfils

fU =
|τ |w cV

1− |τ |−w ≤
1
2
|τ |2w−1

,

the statement follows.

The previous inequality is equivalent to

ν :=
1
2
− |τ | cV
|τ |w − 1

≥ 0.
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3.5 Bounds for the Value of Non-Adjacent Forms

The condition is violated for w = 2 and |τ | equal to
√

2,
√

3 or
√

4, and for w = 3 and
|τ | = √2, see Table 3.5.1 on the following page. Since ν is monotonic increasing for |τ | and
for w, there are no other “problematic cases”.

For those cases we will use (c). For each of the “problematic cases” an ` satisfying the
condition (1) of equivalences in (c) was found, see Table 3.5.2 on the next page for the
results. Thus the statement is proved.

(e) Analogously to the proof of (a), except that we use ` for the upper bound of the sum, we
obtain for v ∈ V∣∣value(0.η−1 . . . η−`) + τ−`v

∣∣ ≤ |value(0.η−1 . . . η−`)|+
∣∣τ−`∣∣ |τ | cV

≤ |τ |w cV
1− |τ |−w

(
1− |τ |−wb `−1+w

w c)+ |τ |−`+1
cV

≤ |τ |w cV
1− |τ |−w

(
1− |τ |−`+1−w + |τ |−`+1−w

(
1− |τ |−w

))
=
|τ |w cV

1− |τ |−w
(

1− |τ |−`+1−2w
)
.

Since 1− |τ |−`+1−2w
< 1 we get∣∣value(0.η−1 . . . η−`) + τ−`V

∣∣ ≤ |τ |w cV
1− |τ |−w = fU

for all ` ∈ N0.

Let z ∈ C. Have again a look at the proof of (d). If ν > 0 there, we get that |z| ≤ fU implies
z ∈ τ2w−1V .

Combining these two results yields the inclusion for ν > 0, i.e., the “problematic cases” are
left. Again, each of these cases has to be considered separately.

For each of the problematic cases, we find a k ∈ N0 such that

B
(

value(ξ), 2 |τ |−k fU
)
⊆ τ2w−1V

holds for all ξ ∈ NAF0.k
w . These k are listed in Table 3.5.3 on page 55.

For ` > k and v ∈ V , we obtain∣∣value
(
0.0 . . . 0η−(k+1) . . . η−`

)
+ τ−`v

∣∣ ≤ |τ |−k fU + |τ |−` |τ | cV
≤ |τ |−k fU

(
1 +

cV
fU

)
= |τ |−k fU

(
1 +

1− |τ |−w
|τ |w

)
≤ 2 |τ |−k fU

using (a), Proposition 3.2.5 on page 41, and |τ |w > 1. Thus the desired inclusion follows for
` > k.

For the finitely many ` ≤ k we additionally check all possibilities, i.e., whether for all combi-
nations of ϑ ∈ NAF0.`

w and vertices of the boundary of value(ϑ) + τ−`V the corresponding
value is inside τ2w−1V . Convexity of V is used here. All combinations were valid, see last
column of Table 3.5.3 on page 55, thus the inclusion proved.
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w = 2 w = 3 w = 4
|τ | = √2 −0.58012 −0.09074 0.13996
|τ | = √3 −0.16144 0.18474 0.33464
|τ | = √4 −0.00918 0.28178 0.39816
|τ | = √5 0.07304 0.33224 0.42884

Table 3.5.1: Values (given five decimal places) of ν = 1
2 − |τ |cV

|τ |w−1 for different |τ | and w. A
negative sign means that this value is a “problematic value”.

q = |τ |2 p Re(τ) Im(τ) w ` found? ` |τ |−` fU ε
2 −2 −1 1 2 true 8 0.1909 0.03003
2 −1 −0.5 1.323 2 true 4 0.7638 0.02068
2 0 0 1.414 2 true 6 0.3819 0.1484
2 1 0.5 1.323 2 true 4 0.7638 0.02068
2 2 1 1 2 true 7 0.27 0.08352
2 −2 −1 1 3 true 2 1.671 0.4505
2 −1 −0.5 1.323 3 true 2 1.671 0.4726
2 0 0 1.414 3 true 2 1.671 0.4505
2 1 0.5 1.323 3 true 2 1.671 0.4726
2 2 1 1 3 true 2 1.671 0.4505
3 −3 −1.5 0.866 2 true 1 1.984 0.03641
3 −2 −1 1.414 2 true 2 1.146 0.5543
3 −1 −0.5 1.658 2 true 2 1.146 0.4581
3 0 0 1.732 2 true 1 1.984 0.03641
3 1 0.5 1.658 2 true 2 1.146 0.4581
3 2 1 1.414 2 true 2 1.146 0.5543
3 3 1.5 0.866 2 true 1 1.984 0.03641
4 −3 −1.5 1.323 2 true 1 2.037 0.9164
4 −2 −1 1.732 2 true 1 2.037 0.4633
4 −1 −0.5 1.936 2 true 1 2.037 0.3227
4 0 0 2 2 true 1 2.037 0.9633
4 1 0.5 1.936 2 true 1 2.037 0.3227
4 2 1 1.732 2 true 1 2.037 0.4633
4 3 1.5 1.323 2 true 1 2.037 0.9164

Table 3.5.2: Upper bound inclusion value(η) ∈ τ2w−1V checked for “problematic values” of |τ |
and w, cf. (d) of Proposition 3.5.1 on page 51. The dependence of p, q and τ is given by
τ2 − pτ + q = 0. We have p2 < 4q, since τ is assumed to be imaginary quadratic.
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3.5 Bounds for the Value of Non-Adjacent Forms

q = |τ |2 p Re(τ) Im(τ) w k found? k 2 |τ |−k fU ε valid for ` ≤ k?
2 −2 −1 1 2 true 10 0.1909 0.03003 true
2 −1 −0.5 1.323 2 true 7 0.5401 0.138 true
2 0 0 1.414 2 true 8 0.3819 0.1484 true
2 1 0.5 1.323 2 true 7 0.5401 0.138 true
2 2 1 1 2 true 9 0.27 0.03933 true
2 −2 −1 1 3 true 4 1.671 0.2737 true
2 −1 −0.5 1.323 3 true 4 1.671 0.2682 true
2 0 0 1.414 3 true 4 1.671 0.0969 true
2 1 0.5 1.323 3 true 4 1.671 0.2682 true
2 2 1 1 3 true 4 1.671 0.2737 true
3 −3 −1.5 0.866 2 true 3 1.323 0.5054 true
3 −2 −1 1.414 2 true 3 1.323 0.04922 true
3 −1 −0.5 1.658 2 true 4 0.7638 0.4729 true
3 0 0 1.732 2 true 3 1.323 0.5054 true
3 1 0.5 1.658 2 true 4 0.7638 0.4729 true
3 2 1 1.414 2 true 3 1.323 0.04922 true
3 3 1.5 0.866 2 true 3 1.323 0.5054 true
4 −3 −1.5 1.323 2 true 2 2.037 0.9164 true
4 −2 −1 1.732 2 true 2 2.037 0.4633 true
4 −1 −0.5 1.936 2 true 2 2.037 0.3227 true
4 0 0 2 2 true 2 2.037 0.9633 true
4 1 0.5 1.936 2 true 2 2.037 0.3227 true
4 2 1 1.732 2 true 2 2.037 0.4633 true
4 3 1.5 1.323 2 true 2 2.037 0.9164 true

Table 3.5.3: Upper bound inclusion value(η1 . . . η`) + τ−`V ⊆ τ2w−1V checked for “problematic
values” of |τ | and w, cf. (e) of Proposition 3.5.1 on page 51. The dependence of p, q and τ is
given by τ2 − pτ + q = 0. We have p2 < 4q, since τ is assumed to be imaginary quadratic.
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Next we want to find a lower bound for the fractional value of a w-NAF. Clearly the w-NAF 0
has fractional value 0, so we are interested in cases, where we have a non-zero digit somewhere.

Proposition 3.5.2 (Lower Bound for the Fractional Value). The following is true:

(a) The following two statements are equivalent:

(1) There is an ` ∈ N0, such that for all ξ ∈ NAF0.`
w with non-zero most significant digit

the condition
|value(ξ)| > |τ |−` fU

is fulfilled.
(2) There exists a ν̃ > 0, such that for all ϑ ∈ NAF0.∞

w with non-zero most significant digit
the condition

|value(ϑ)| ≥ |τ |−1
ν̃.

holds.

(b) Let η ∈ NAF0.∞
w with non-zero most significant digit. Then

|value(η)| ≥ |τ |−1
fL

with fL = ν if ν > 0, where

ν =
1
2
− |τ | cV
|τ |w − 1

.

If ν ≤ 0, see Table 3.5.1 on page 54, then we set fL = ν̃ from Table 3.5.4 on page 58.

Proof of Proposition 3.5.2. (a) We have to prove both directions.

(1) =⇒ (2). Suppose there exists such an ` ∈ N0. We set

ν̃ = min
{
|τ |
(
|value(ξ)| − |τ |−` fU

) ∣∣∣ ξ ∈ NAF0.`
w with ξ−1 6= 0

}
.

Then clearly ν̃ > 0. Using (a) of Proposition 3.5.1 on page 51 with digits shifted `
to the right, i.e., multiplication by τ−`, the desired result follows by using the triangle
inequality.

(2) =⇒ (1). Now suppose there exists such a lower bound ν̃ > 0. Then there is an ` ∈ N0

such that |τ |−` fU < |τ |−1
ν̃. Since

|value(0.η−1 . . . η−`)| ≥ |τ |−1
ν̃ > |τ |−` fU

for all w-NAFs 0.η−1 . . . η−`, the statement follows.

(b) Set

M := τw value(η) = η−1τ
w−1 +

∑̀
i=2

η−iτ
w−i

Since η−1 6= 0, we can rewrite this to get

M = η−1τ
w−1 +

∑̀
i=w+1

η−iτ
w−i = η−1τ

w−1 +
`−w∑
k=1

η−(w+k)τ
−k.

Now consider the Voronoi cell Vη−1 for η−1 and V0 = V for 0. Since η−1 6= 0, these two are
disjoint, except parts of the boundary, if they are adjacent.
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3.5 Bounds for the Value of Non-Adjacent Forms

Figure 3.5.1: Lower bound for τ = 1
2 + 1

2

√−11 and w = 2. The procedure stopped at ` = 6. The
large circle has radius |τ |−` fU , the small circle is our lower bound with radius fL = ν̃. The dot
inside represents zero. The grey region has most significant digit zero, the black ones non-zero.

We know from (b) of Proposition 3.5.1 on page 51, that

M − η−1τ
w−1 =

`−w∑
k=1

η−(w+k)τ
−k ∈

⋃
z∈τw−1V

B
(
z, |τ |−w fU

)
,

so
M ∈

⋃
z∈τw−1Vη−1

B
(
z, |τ |−w fU

)
.

This means that M is in τw−1Vη−1 or in a |τ |−w fU -strip around this cell.

Now we are looking at τw−1V0 and using Proposition 3.2.5 on page 41, from which we know
that B

(
0, 1

2 |τ |w−1
)

is inside such a Voronoi cell. Thus, we get

|M | ≥ 1
2
|τ |w−1 − |τ |−w fU =

1
2
|τ |w−1 − cV

1− |τ |−w = |τ |w−1
ν

for our lower bound of M and therefore, by multiplying with τ−w one for value(η).

Looking in Table 3.5.1 on page 54, we see that there are some values where ν is not positive.
As in Proposition 3.5.1 on page 51, this is the case, if w = 2 and |τ | is

√
2,
√

3 or
√

4, and
if w = 3 and |τ | =

√
2. Since ν is monotonic increasing with |τ | and monotonic increasing

with w, there are no other non-positive values of ν than the above mentioned.

For those finite many problem cases, we use (a) to find a ν̃. The results are listed in Table 3.5.4
on the following page and an example is drawn in Figure 3.5.1.

Combining the previous two Propositions leads to the following corollary, which gives an upper
and a lower bound for the absolute value of a w-NAF by looking at the largest non-zero index.

Corollary 3.5.3 (Bounds for the Value). Let η ∈ NAFfin.∞
w , then we get

dNAF(η,0) fL ≤ |value(η)| ≤ dNAF(η,0) fU |τ | .

57



3 New Results

q = |τ |2 p Re(τ) Im(τ) w ` |τ |−` fU ν̃ log|τ |(fU/ν̃)
2 −2 −1 1 2 9 0.135 0.004739 18.66
2 −1 −0.5 1.323 2 7 0.27 0.105 9.726
2 0 0 1.414 2 8 0.1909 0.07422 10.73
2 1 0.5 1.323 2 7 0.27 0.105 9.726
2 2 1 1 2 9 0.135 0.04176 12.39
2 −2 −1 1 3 6 0.4177 0.1126 9.782
2 −1 −0.5 1.323 3 6 0.4177 0.04999 12.13
2 0 0 1.414 3 6 0.4177 0.0153 15.54
2 1 0.5 1.323 3 6 0.4177 0.04999 12.13
2 2 1 1 3 6 0.4177 0.1126 9.782
3 −3 −1.5 0.866 2 4 0.3819 0.003019 12.81
3 −2 −1 1.414 2 5 0.2205 0.04402 7.933
3 −1 −0.5 1.658 2 5 0.2205 0.08717 6.689
3 0 0 1.732 2 4 0.3819 0.003019 12.81
3 1 0.5 1.658 2 5 0.2205 0.08717 6.689
3 2 1 1.414 2 5 0.2205 0.04402 7.933
3 3 1.5 0.866 2 4 0.3819 0.003019 12.81
4 −3 −1.5 1.323 2 4 0.2546 0.07613 5.742
4 −2 −1 1.732 2 5 0.1273 0.03807 6.742
4 −1 −0.5 1.936 2 4 0.2546 0.0516 6.303
4 0 0 2 2 5 0.1273 0.07035 5.856
4 1 0.5 1.936 2 4 0.2546 0.0516 6.303
4 2 1 1.732 2 5 0.1273 0.0467 6.447
4 3 1.5 1.323 2 4 0.2546 0.07613 5.742

Table 3.5.4: Lower bounds for “problematic values” of |τ | and w, cf. (b) of Proposition 3.5.2 on
page 56. The dependence of p, q and τ is given by τ2 − pτ + q = 0. We have p2 < 4q, since τ is
assumed to be imaginary quadratic.
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Proof. Follows directly from Proposition 3.5.1 on page 51 and Proposition 3.5.2 on page 56.

Last in this section, we want to find out, if there are special w-NAFs, for which we know
for sure that all their expansions start with a certain finite w-NAF. We will show the following
lemma.

Lemma 3.5.4. Let
k ≥ k0 = max {19, 2w + 5} ,

let η ∈ NAF0.∞
w start with the word 0k, i.e., η−1 = 0, . . . , η−k = 0, and set z = value(η). Then

we get for all ξ ∈ NAFfin.∞
w that z = value(ξ) implies ξ ∈ NAF0.∞

w .

Proof. Let ξI .ξF ∈ NAFfin.∞
w . Then |value(ξI .ξF )| < fL implies ξI = 0, cf. Proposition 3.5.2 on

page 56. For our η we obtain z = |value(η)| ≤ |τ |−k fU , cf. Proposition 3.5.1 on page 51. So we
have to show that

|τ |−k fU < fL,

which is equivalent to

k > log|τ |
fU
fL
.

For the “non-problematic cases”, cf. Propositions 3.5.1 on page 51 and 3.5.2 on page 56, we
obtain

k > 2w − 1 + log|τ |A

with

A :=
1
ν

|τ | cV
|τ |w − 1

=
( |τ |w − 1

2 |τ | cV − 1
)−1

> 0,

where we just inserted the formulas for fU , fL and ν, and used ν > 0.
Consider the partial derivation of log|τ |A with respect to |τ |. We get

∂ log|τ |A
∂ |τ | =

1
loge |τ |︸ ︷︷ ︸
>0

ν︸︷︷︸
>0

|τ |w − 1
|τ | cV︸ ︷︷ ︸
>0

∂A

∂ |τ |︸ ︷︷ ︸
<0

< 0,

where we used |τ | > 1, w ≥ 2, and the fact that the quotient of polynomials |τ |
w−1

2|τ |cV is monotonic
increasing with |τ |. Further we see that A is monotonic decreasing with w, therefore log|τ |A,
too.

For |τ | = √5 and w = 2 we get log|τ |A = 5.84522, for |τ | = √3 and w = 3 we get log|τ |A =
1.70649, and for |τ | =

√
2 and w = 4 we get log|τ |A = 2.57248. Using the monotonicity from

above yields k ≥ 2w + 5 for the “non-problematic cases”.
For our “problematic cases”, the value of log|τ |

fU
fL

is calculated in Table 3.5.4 on the facing
page. Therefore we obtain k ≥ 19.

3.6 Numeral Systems with Non-Adjacent Forms

Let τ ∈ C be an algebraic integer, imaginary quadratic. Suppose that |τ | > 1. Let w ∈ N with
w ≥ 2. Further let D be a minimal norm representatives digit set modulo τw as in Definition 3.3.5
on page 45.

We are now able to show that in this setting, the digit set of minimal norm representatives is
indeed a width-w non-adjacent digit set. This is then extended to infinite fractional expansions
of elements in C.
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Theorem 3.6.1 (Existence and Uniqueness Theorem concerning Lattice Points). For each lattice
point z ∈ Z[τ ] there is a unique element ξ ∈ NAFfin

w , such that z = value(ξ). Thus D is a width-w
non-adjacent digit set. The w-NAF ξ can be calculated using Algorithm 3.6.1, i.e., this algorithm
terminates and is correct.

The uniqueness result is well known. The existence result is only known for special τ and w.
For example in Koblitz [40] the case τ = ± 3

2 + 1
2

√−3 and w = 2 was shown. There the digit set
D consists of 0 and powers of primitive sixth roots of unity. Blake, Kumar Murty and Xu [15]
generalised that for w ≥ 2. Another example is given in Solinas [64]. There τ = ± 1

2 + 1
2

√−7 and
w = 2 is used, and the digit set D consists of 0 and ±1. This result was generalised by Blake,
Kumar Murty and Xu [14] for w ≥ 2. The cases τ = 1 +

√−1, τ =
√−2 and τ = 1

2 + 1
2

√−11
were studied in Blake, Kumar Murty and Xu [12].

Algorithm 3.6.1 Algorithm to calculate a w-NAF ξ ∈ NAFfin
w for an element z ∈ Z[τ ].

1: `← 0
2: y ← z
3: while y 6= 0 do
4: if τ | y then
5: ξ` ← 0
6: else
7: Let ξ` ∈ D such that ξ` ≡ y (mod τw)
8: end if
9: y ← (y − ξ`) /τ

10: `← `+ 1
11: end while
12: ξ ← ξ`−1ξ`−2 . . . ξ0
13: return ξ

The proof follows a similar idea as in Section 3.5 on page 50 and in Matula [42]. There are
again two parts, one analytic part for all but finitely many cases, and the other, which proves
the remaining by the help of a simple procedure.

Proof. First we show that the algorithm terminates. Let y ∈ Z[τ ] and consider Algorithm 3.6.1
in cycle `. If τ | y, then in the next step the norm |y|2 ∈ N0 becomes smaller since |τ |2 > 1.

Let τ - y. If |y| < 1
2 |τ |w, then y ∈ D, cf. Proposition 3.2.5 on page 41 and Remark 3.3.6 on

page 45. Thus the algorithm terminates in the next cycle. If

|y| > |τ | cV
1− |τ |−w =

|τ |w+1
cV

|τ |w − 1
,

we obtain
|y| |τ |w > |y|+ |τ |w+1

cV ≥ |y|+ |ξ`| ≥ |y − ξ`| ,
which is equivalent to ∣∣∣∣y − ξ`τw

∣∣∣∣ < |y| .
So if the condition

|τ |w+1
cV

|τ |w − 1
<

1
2
|τ |w ⇐⇒ ν =

1
2
− |τ | cV
|τ |w − 1

> 0,
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with the same ν as in Proposition 3.5.2 on page 56, is fulfilled, the norm |y|2 ∈ N0 is descending
and therefore the algorithm terminating.

Now we consider the case, when ν ≤ 0. According to Table 3.5.1 on page 54 there are the
same finitely many combinations of τ and w to check as in Proposition 3.5.1 on page 51 and
Proposition 3.5.2 on page 56. For each of them, there is only a finite number of elements y ∈ Z[τ ]
with

|y| ≤ |τ |
w+1

cV
|τ |w − 1

,

so altogether only finitely many y ∈ Z[τ ] left to check, whether they admit a w-NAF or not. The
results can be found in the table in Appendix A. Every element that was to check, has a w-NAF.

To show the correctness, again let y ∈ Z[τ ] and consider Algorithm 3.6.1 on the preceding
page in cycle `. If τ divides y, then we append a digit ξ` = 0. Otherwise y is congruent to
a non-zero element ξ` of D modulo τw, since the digit set D was constructed in that way, cf.
Definitions 3.3.1 and 3.3.5. The digit ξ` is appended. Because τw divides y − ξ`, the next w − 1
digits will be zero. Therefore a correct w-NAF is produced.

For the uniqueness let ξ ∈ NAFfin
w be an expansions for the element z ∈ Z[τ ]. If τ | z, then

0 ≡ z = value(ξ) ≡ ξ0 (mod τ),

so τ | ξ0 ∈ D. Therefore ξ0 = 0. If τ - z, then τ - ξ0 and so ξ0 6= 0. This implies ξ1 = 0, . . . ,
ξw−1 = 0. This means ξ0 lies in the same residue class modulo τw as exactly one non-zero digit
of D (per construction of the digit set, cf. Definitions 3.3.1 and 3.3.5), hence they are equal.
Induction finishes the proof of the uniqueness.

So we have that all elements of our lattice Z[τ ] have a unique expansion. Now we want to get
a step further and look at all elements of C. We will need the following three lemmata, to prove
that every element of C has a w-NAF-expansion.

Lemma 3.6.2. The function value|NAFfin.fin
w

is injective.

Proof. Let η and ξ be elements of NAFfin.fin
w with value(η) = value(ξ). This implies that

τJ value(η) = τJ value(ξ) ∈ Z[τ ] for some J ∈ Z. By uniqueness of the integer w-NAFs, see
Theorem 3.6.1 on the facing page, we conclude that η = ξ.

Lemma 3.6.3. We have value
(
NAFfin.fin

w

)
= Z[1/τ ].

Proof. Let η ∈ NAFfin.fin
w and ηj = 0 for all |j| > J for some J ≥ 1. Then τJ value(η) ∈ Z[τ ],

which implies that there are some a, b ∈ Z such that

value(η) = aτ−(J−1) + bτ−J ∈ Z[1/τ ].

Conversely, if

z =
J∑
j=0

ηjτ
−j ∈ Z[1/τ ],

we have τJz ∈ Z[τ ]. Since every element of Z[τ ] admits an integer w-NAF, see Theorem 3.6.1
on the preceding page, there is an ξ ∈ NAFfin.fin

w with value(ξ) = z.

Lemma 3.6.4. Z[1/τ ] is dense in C.
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Proof. Let z ∈ C and K ≥ 0. Then τKz = u+ vτ for some reals u and v. We have∣∣∣∣z − buc+ bvc τ
τK

∣∣∣∣ < 1 + |τ |
|τ |K

,

which proves the lemma.

Now we can prove the following theorem.

Theorem 3.6.5 (Existence Theorem concerning C). Let z ∈ C. Then there is an η ∈ NAFfin.∞
w

such that z = value(η), i.e., each complex number has a w-NAF-expansion.

Proof. By Lemma 3.6.4 on the preceding page, there is a sequence zn ∈ Z[1/τ ] converging to z.
By Lemma 3.6.3 on the previous page, there is a sequence ηn ∈ NAFfin.fin

w with value(ηn) = zn
for all n. By Corollary 3.5.3 on page 57 the sequence dNAF(ηn, 0) is bounded from above, so
there is an ` such that ηn ∈ NAF`.fin

w ⊆ NAF`.∞w . By Proposition 3.3.9 on page 47, we conclude
that there is a convergent subsequence η′n of ηn. Set η := limn→∞ η

′
n. By continuity of value,

see Proposition 3.3.8 on page 46, we conclude that value(η) = z.

3.7 The Fundamental Domain

Let τ ∈ C be an algebraic integer, imaginary quadratic. Suppose that |τ | > 1. Let w ∈ N with
w ≥ 2. Further let D be a minimal norm representatives digit set modulo τw as in Definition 3.3.5
on page 45.

We now derive properties of the Fundamental Domain, i.e., the set of complex numbers repre-
sentable by w-NAFs which vanish left of the τ -point. The boundary of the fundamental domain
is shown to correspond to complex numbers which admit more than one w-NAF differing left of
the τ -point. Finally, an upper bound for the Hausdorff dimension of the boundary is derived.

Definition 3.7.1 (Fundamental Domain). The set

F := value
(
NAF0.∞

w

)
=
{

value(ξ)
∣∣ ξ ∈ NAF0.∞

w

}
.

is called fundamental domain.

The pictures in Figure 3.9.1 on page 73 can also be reinterpreted as fundamental domains
for the τ and w given there. The definition of the fundamental domain for a general τ ∈ C
and a general finite digit set containing zero is meaningful, too. The same is true for following
proposition, which is also valid for general τ ∈ C and a general finite digit set including zero.

Proposition 3.7.2. The fundamental domain F is compact.

Proof. The set NAF0.∞
w is compact, cf. Proposition 3.3.9 on page 47. The compactness of the

fundamental domain F follows, since F is the image of NAF0.∞
w under the continuous function

value, cf. Proposition 3.3.8 on page 46.

We can also compute the Lebesgue measure of the fundamental domain. This result can be
found in Remark 3.9.3 on page 77. We will need the results of Sections 3.8 and 3.9 for calculating
λ(F).

Next we want to get more properties of the fundamental domain. We will need the following
proposition, which will be extended in Proposition 3.7.7 on page 64.

Proposition 3.7.3. Let z ∈ F . If there exists a w-NAF ξI .ξF ∈ NAFfin.∞
w with ξI 6= 0 and

such that z = value(ξI .ξF ), then z ∈ ∂F .
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Proof. Assume that z ∈ intF . Then there is an εz > 0 such that B(z, εz) ⊆ intF . Let εz be
small enough such that there exists a y ∈ B(z, εz) ∩ Z[1/τ ] and a ϑ = ϑI .ϑF ∈ NAFfin.fin

w with
y = value(ϑ) and such that ϑI 6= 0. Let k be the right-length of ϑ.

Choose 0 < εy < τ−k−wfL such that B(y, εy) ⊆ intF . Since y ∈ F there is an η ∈ NAF0.∞
w

with y = value(η). Therefore, there is a y′ ∈ B(y, εy) ∩ Z[1/τ ] with y′ = value(η′) for some
η′ = η′I .η

′
F ∈ NAFfin.fin

w with η′I = 0 (by “cutting” the infinite right side of η).
As y′ − y ∈ Z[1/τ ], there is a ξ ∈ NAFfin.fin

w with value(ξ) = y′ − y. By Corollary 3.5.3 we
obtain dNAF(ξ,0) < εy/fL < τ−k−w. Thus ξ` = 0 for all ` ≥ −k − (w − 1).

Now y′ = y + (y′ − y) and we get a ϑ′ = ϑ′I .ϑ
′
F ∈ NAFfin.fin

w with value(ϑ′) = y′ by digit-wise
addition of ϑ and ξ. Note that at each index at most one summand (digit) is non-zero and that
the w-NAF-condition is fulfilled. We have ϑ′I 6= 0, since ϑI 6= 0.

So we got two different w-NAFs in NAFfin.fin
w for one element y′ ∈ Z[1/τ ], which is impossible

due to uniqueness, see Lemma 3.6.2 on page 61. Thus we have a contradiction.

The complex plane has a tiling property with respect to the fundamental domain. This fact is
stated in the following corollary to Theorem 3.6.1 on page 60 and Theorem 3.6.5 on the preceding
page.

Corollary 3.7.4 (Tiling Property). The complex plane can be tiled with scaled versions of the
fundamental domain F . Only finitely many different size are needed. More precisely: Let K ∈ Z,
then

C =
⋃

k∈{K,K+1,...,K+w−1}
ξ∈NAFfin

w
k 6= K + w − 1 implies ξ0 6= 0

(
τk value(ξ) + τk−w+1F) ,

and the intersection of two different τk value(ξ) + τk−w+1F and τk
′−w+1 value(ξ′) + τk

′F in this
union is a subset of the intersection of their boundaries.

Later, after Proposition 3.7.8 on page 65, we will know that the intersection of the two different
sets of the tiling in the previous corollary has Lebesgue measure 0.

Proof of Corollary 3.7.4. Let z ∈ C. Then, according to Theorem 3.6.5 on the preceding page,
there is a η ∈ NAFfin.∞

w with z = value(η). We look at the block ηK+w−1 . . . ηK+1ηK . If this
block is 0, then set k = K + w − 1, otherwise there is at most one non-zero digit in it, which
we call ηk. So the digits ηk−1, . . . , ηk−w+1 are always zero. We set ξ = . . . ηk+1ηk.0 . . ., and we
obtain

z − τk value(ξ) ∈ τk−w+1F .
Now set F = τk value(ξ) + τk−w+1F and F ′ = τk

′
value(ξ′) + τk

′−w+1F in a way that both
are in the union of the tiling with (k, ξ) 6= (k′, ξ′) and consider their intersection I. Since every
point in there has two different representations per construction, we conclude that I ⊆ ∂F and
I ⊆ ∂F ′ by Proposition 3.7.3 on the facing page.

Remark 3.7.5 (Iterated Function System). Let τ ∈ C andD be a general finite digit set containing
zero. We have two possibilities building the elements ξ ∈ NAF0.∞

w from left to right. We can
either append 0, what corresponds to a division through τ , so we define f0(z) = z

τ . Or we can
append a non-zero digit ϑ ∈ D• and then add w−1 zeros. In this case, we define fϑ(z) = ϑ

τ + z
τw .

Thus we get the iterated function system (fϑ)ϑ∈D, cf. Edgar [19] or Barnsley [11]. All fϑ are
similarities, and the iterated function system realizes the ratio list (rϑ)ϑ∈D with r0 = |τ |−1 and
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for ϑ ∈ D• with rϑ = |τ |−w. So our set can be rewritten as

F =
⋃
ϑ∈D

fϑ(F) =
1
τ
F ∪

⋃
ϑ∈D•

(
ϑ

τ
+

1
τw
F
)
.

Furthermore, if we have an imaginary quadratic algebraic integer τ and a minimal norm
representatives digit set, the iterated function system (fϑ)ϑ∈D fulfils Moran’s open set condition1,
cf. Edgar [19] or Barnsley [11]. The Moran open set used is intF . This set satisfies

fϑ(intF) ∩ fϑ′(intF) = ∅
for ϑ 6= ϑ′ ∈ D and

intF ⊇ fϑ(intF)

for all ϑ ∈ D. We remark that the first condition follows directly from the tiling property in
Corollary 3.7.4 on the previous page with K = −1. The second condition follows from the fact
that fϑ is an open mapping.

Now we want to have a look at a special case.

Remark 3.7.6 (Koch snowflake). Let τ = 3
2 + 1

2

√−3 and w = 2. Then our digit set consists of 0
and powers of primitive sixth roots of unity, i.e., D = {0} ∪ {ζk ∣∣ k ∈ N0 with 0 ≤ k < 6

}
with

ζ = eiπ/3, cf. Koblitz [40].
We get

F =
1
τ
F ∪

⋃
0≤k<6

(
ζk

τ
+

1
τ2
F
)
.

Since the digit set is invariant with respect to multiplication by ζ, i.e., rotation by π
3 , the same

is true for F . Using this and τ =
√

3eiπ/6 yields

F =
eiπ/2√

3
F ∪

⋃
0≤k<6

(
eikπ/3+iπ/2√

3
+

1
3
F
)
.

This is an iterated function system of the Koch snowflake2, it is drawn in Figure 3.9.1c on
page 73.

Next we want to have a look at the Hausdorff dimension of the boundary of F . We will need
the following characterisation of the boundary, which is an extension to Proposition 3.7.3 on
page 62.

Proposition 3.7.7 (Characterisation of the Boundary). Let z ∈ F . Then z ∈ ∂F if and only if
there exists a w-NAF ξI .ξF ∈ NAFfin.∞

w with ξI 6= 0, such that z = value(ξI .ξF ).

Proof. Let z ∈ ∂F . For every ε > 0, there is a y ∈ B(z, ε), such that y 6∈ F . Thus we have a
sequence (yj)j≥1 converging to z, where the yj are not in F . Therefore each yj has a w-NAF-
representation ηj ∈ NAFfin.∞

w with non-zero integer part. Now we will use the tiling property
stated in Corollary 3.7.4 on the preceding page. The fundamental domain F can be surrounded
by only finitely many scaled versions of F . So there is a subsequence (ϑj)j∈N0

of (ηj)j∈N0
with

fixed integer part ξI 6= 0. Due to compactness of F , cf. Proposition 3.7.2 on page 62, we find a
ξ = ξI .ξF with value z as limit of a converging subsequence of (ϑj)j∈N0

.
The other direction is just Proposition 3.7.3 on page 62, thus the proof is finished.

1“Moran’s open set condition” is sometimes just called “open set condition”
2The fact that the Koch snowflake has the mentioned iterated function system seems to be commonly known,

although we were not able to find a reference, where this statement is proved. Any hints are welcome.
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S

6= 0

01

02

. . .

0w−2

0w−1

0w

. . .

0k−2

6=
0

0

0 0

0

0

0

00

0

6= 0
6= 06= 0

Figure 3.7.1: Automaton A recognising
⋃
j∈N Ũj from right to left, see proof of Proposition 3.7.8.

The state S is the starting state, all states are valid end states. An edges marked with 6= 0 means
one edge for each non-zero digit in the digit set D. The state 6= 0 means that there was an non-
zero digit read, a state 0` means that ` zeros have been read.

The following proposition deals with the Hausdorff dimension of the boundary of F .

Proposition 3.7.8. For the Hausdorff dimension of the boundary of the fundamental domain
we get dimH ∂F < 2.

The idea of this proof is similar to a proof in Heuberger and Prodinger [31].

Proof. Set k := k0 + w − 1 with k0 from Lemma 3.5.4 on page 59. For j ∈ N define

Uj :=
{
ξ ∈ NAF0.j

w

∣∣ ξ−`ξ−(`+1) . . . ξ−(`+k−1) 6= 0k for all ` with 1 ≤ ` ≤ j − k + 1
}
.

The elements of Uj — more precisely the digits from index −1 to −j — can be described by the
regular expression (

ε+
∑
d∈D•

w−2∑
`=0

0`d

)(∑
d∈D•

k−1∑
`=w−1

0`d

)∗(k−1∑
`=0

0`
)
.

This can be translated to the generating function

G(Z) =
∑
j∈N

#UjZj =

(
1 + #D•

w−2∑
`=0

Z`+1

)
1

1−#D•∑k−1
`=w−1 Z

`+1

(
k−1∑
`=0

Z`

)

used for counting the number of elements in Uj . Rewriting yields

G(Z) =
1− Zk
1− Z

1 + (#D• − 1)Z −#D•Zw
1− Z −#D•Zw + #D•Zk+1

,

and we set
q(Z) := 1− Z −#D•Zw + #D•Zk+1.

Now we define
Ũj := {ξ ∈ Uj | ξ−j 6= 0}
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and consider Ũ :=
⋃
j∈N Ũj . The w-NAFs in this set — more precisely the finite strings from

index −1 to the index of the largest non-zero digit — will be recognised by the automaton A
which reads its input from right to left, see Figure 3.7.1 on the preceding page. It is easy to see
that the underlying directed graph GA of the automaton A is strongly connected, therefore its
adjacency matrix MA is irreducible. Since there are cycles of length w and w + 1 in the graph
and gcd(w,w + 1) = 1, the adjacency matrix is primitive. Thus, using the Perron-Frobenius
theorem we obtain

#Ũj = #(walks in GA of length j from starting state S to some other state)

=
(
1 0 . . . 0

)
M j
A

1
...
1

 = c̃
(
σ |τ |2

)j (
1 +O(sj))

for a c̃ > 0, a σ > 0, and an s with 0 ≤ s < 1. Since the number of w-NAFs of length j is
O
(
|τ |2j

)
, see Theorem 3.4.1 on page 48, we get σ ≤ 1.

We clearly have

Uj =
j⊎

`=j−k+1

Ũ`,

so we get

#Uj =
[
Zj
]
G(Z) = c

(
σ |τ |2

)j (
1 +O(sj))

for some constant c > 0.
To rule out σ = 1, we insert the “zero” |τ |−2 in q(Z). We obtain

q
(
|τ |−2

)
= 1− |τ |−2 −#D• |τ |−2w + #D• |τ |−2(k+1)

= 1− |τ |−2 − |τ |2(w−1)
(
|τ |2 − 1

)
|τ |−2w + |τ |2(w−1)

(
|τ |2 − 1

)
|τ |−2(k+1)

=
(
|τ |2 − 1

)
|τ |2(w−k−2)

> 0,

where we used the cardinality of D• from Lemma 3.3.3 on page 44 and |τ | > 1. Therefore we get
σ < 1.

Define

U :=
{

value(ξ)
∣∣ ξ ∈ NAF0.∞

w with ξ−`ξ−(`+1) . . . ξ−(`+k−1) 6= 0k for all ` ≥ 1
}
.

We want to cover U with squares. Let S be the closed paraxial square with centre 0 and width
2. Using Proposition 3.5.1 on page 51 yields

U ⊆
⋃

z∈value(Uj)

(
z + fU |τ |−j S

)

for all j ∈ N, i.e., U can be covered with #Uj boxes of size 2fU |τ |−j . Thus we get for the upper
box dimension, cf. Edgar [19],

dimBU ≤ lim
j→∞

log #Uj
− log(2fU |τ |−j)

.
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Inserting the cardinality #Uj from above, using the logarithm to base |τ | and 0 ≤ s < 1 yields

dimBU ≤ lim
j→∞

log|τ | c+ j log|τ |(σ |τ |2) + log|τ |(1 +O(sj))
j +O(1)

= 2 + log|τ | σ.

Since σ < 1, we get dimBU < 2.
Now we will show that ∂F ⊆ U . Clearly U ⊆ F , so the previous inclusion is equivalent to
F \ U ⊆ int(F). So let z ∈ F \ U . Then there is a ξ ∈ NAF0.∞

w such that z = value(ξ) and ξ
has a block of at least k zeros somewhere on the right hand side of the τ -point. Let ` denote the
starting index of this block, i.e.,

ξ = 0. ξ−1 . . . ξ−(`−1)︸ ︷︷ ︸
=:ξA

0kξ−(`+k)ξ−(`+k+1) . . . .

Let ϑ = ϑI .ϑAϑ−`ϑ−(`+1) . . . ∈ NAFfin.∞
w with value(ϑ) = z. We have

z = value(0.ξA) + τ−`−wzξ = value(ϑI .ϑA) + τ−`−wzϑ

for appropriate zξ and zϑ. By Lemma 3.5.4 on page 59, all expansions of zξ are in NAF0.∞
w .

Thus all expansions of

value(ϑIϑA) + τ−(w−1)zϑ − value(ξA) = τ `−1z − value(ξA) = τ−(w−1)zξ

start with 0.0w−1, since our choice of k is k0+w−1. As the unique NAF of value(ϑIϑA)−value(ξA)
concatenated with any NAF of τ−(w−1)zϑ gives rise to such an expansion, we conclude that
value(ϑIϑA) − value(ξA) = 0 and therefore ϑI = 0 and ϑA = ξA. So we conclude that all
representations of z as a w-NAF have to be of the form 0.ξA0w−1η for some w-NAF η. Thus,
by using Proposition 3.7.7 on page 64, we get z 6∈ ∂F and therefore z ∈ int(F).

Until now we have proved
dimB∂F ≤ dimBU < 2.

Because the Hausdorff dimension of a set is at most its upper box dimension, cf. Edgar [19] again,
the desired result follows.

3.8 Cell Rounding Operations

Let τ ∈ C be an algebraic integer, imaginary quadratic. In this section define operators working
on subsets (regions) of the complex plane. These will use the lattice Z[τ ] and the Voronoi cells
defined in Section 3.2. They will be a very useful concept to prove Theorem 3.10.1 on page 78.

Definition 3.8.1 (Cell Rounding Operations). Let B ⊆ C and j ∈ R. We define the cell packing
of B (“floor B”)

bBc9 :=
⋃

z∈Z[τ ]
Vz⊆B

Vz and bBc9,j :=
1
τ j
⌊
τ jB

⌋9 ,
the cell covering of B (“ceil B”)

dBe9 := bBCcC9 and dBe9,j :=
1
τ j
⌈
τ jB

⌉9 ,
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the fractional cells of B

{B}9 := B \ bBc9 and {B}9,j :=
1
τ j
{
τ jB

}9 ,
the cell covering of the boundary of B

∂(B)9 := dBe9 \ bBc9 and ∂(B)9,j :=
1
τ j
∂
(
τ jB

)9 ,
the cell covering of the lattice points inside B

bBe9 :=
⋃

z∈B∩Z[τ ]

Vz and bBe9,j :=
1
τ j
⌊
τ jB

⌉9
and the number of lattice points inside B as

#(B)9 := #(B ∩ Z[τ ]) and #(B)9,j := #
(
τ jB

)9
To get a slight feeling what those operators do, have a look at Figure 3.8.1 on the next page.

There brief examples are given. For the cell covering of a set B an alternative, perhaps more
intuitive description can be given by

dBe9 :=
⋃

z∈Z[τ ]
Vz∩B 6=∅

Vz.

The following proposition deals with some basic properties that will be helpful, when working
with those operators.

Proposition 3.8.2 (Basic Properties of Cell Rounding Operations). Let B ⊆ C and j ∈ R.

(a) We have the inclusions
bBc9,j ⊆ B ⊆ B ⊆ dBe9,j (3.8.1a)

and
bBc9,j ⊆ bBe9,j ⊆ dBe9,j . (3.8.1b)

For B′ ⊆ C with B ⊆ B′ we get bBc9,j ⊆ bB′c9,j, bBe9,j ⊆ bB′e9,j and dBe9,j ⊆ dB′e9,j,
i.e., monotonicity with respect to inclusion

(b) The inclusion
{B}9,j ⊆ ∂(B)9,j (3.8.2)

holds.

(c) ∂B ⊆ ∂(B)9,j and for each cell V ′ in ∂(B)9,j we have V ′ ∩ ∂B 6= ∅, so ∂(B)9,j is the
smallest union of cells that contains ∂B.

(d) For B′ ⊆ C with B′ disjoint from B, we get

#(B ∪B′)9,j = #(B)9,j + #(B′)9,j , (3.8.3)

and therefore the number of lattice points operation is monotonic with respect to inclusion,
i.e., for B′′ ⊆ C with B′′ ⊆ B we have #(B′′)9,j ≤ #(B)9,j. Further we get

#(B)9,j = #
(
bBe9,j

)
9,j = |τ |2j

λ
(
bBe9,j

)
λ(V )

(3.8.4)
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⌊
B

⌋9

⌊int(B)⌋9

⌈
B

⌉9

⌈int(B)⌉9

⌊
B

⌉9

⌊int(B)⌉9

{
B

}9

{int(B)}9

∂
(
B

)9

∂(int(B))9

Figure 3.8.1: Examples of the cell rounding operators of Definition 3.8.1 on page 67. As lattice
Z[τ ] with τ = 3

2 + 1
2

√−3 was used here.
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Proof. (a) bBc9,j ⊆ B follows directly from the definition. Since
⌊
BC
⌋9,j ⊆ BC , we get

dBe9,j = bBCcC9,j ⊇ (BC)C = B.

The inclusion bBc9,j ⊆ bBe9,j follows directly from the definitions and bBe9,j ⊆ dBe9,j
again by considering the complement, because bBCeC9,j = bBe9,j . Similarly, the monotonic-
ity can be shown.

(b) We have
{B}9,j = B \ bBc9,j ⊆ dBe9,j \ bBc9,j = ∂(B)9,j .

(c) We assume j = 0. Using (a) yields ∂B ⊆ B ⊆ dBe9. Let x ∈ ∂B. If x 6∈ B, then bBc9 ⊆ B
implies that x /∈ bBc9. So we get

x ∈ dBe9 \ bBc9 ⊆ dBe9 \ bBc9 = ∂(B)9 .
Now suppose x ∈ B. Consider all Voronoi cells Vi, i ∈ I, for a suitable finite index set I, such
that x ∈ Vi. We get x ∈ int

(⋃
i∈I Vi

)
. If all of the Vi are a subset of bBc9, then x ∈ int(B),

which is a contradiction to x ∈ ∂B. So there is at least one cell V ′ that is not a subset of
bBc9. Since

dBeC9 = bBCcC9C = int

 ⋃
z∈Z[τ ]

Vz⊆BC

Vz


and x 6∈ BC , V ′ is not in this union of cells. So V ′ is in the complement, i.e., V ′ ⊆ dBe9.
And therefore the statement follows.

Now we want to show that there is a subset of the boundary in each V -cell V ′ of ∂(B)9.
Assume V ′ ∩ ∂B = ∅. If V ′ ∩ B = ∅, then V ′ ⊆ BC , so V ′ is not a subset of dBe9,
contradiction. If V ′ ∩ B 6= ∅, then V ′ ⊆ B, since V ′ does not contain any boundary. But
then, V ′ ⊆ bBc9, again a contradiction.

(d) Since the operator just counts the number of lattice points, the first statement follows.

In the other statement, the first equality follows, because z ∈ B ∩ Z[τ ] ⇐⇒ Vz ⊆ bBe9
holds. Since bBe9,j consists of cells each with area λ

(
τ−jV

)
, the second equality is just,

after multiplying by λ
(
τ−jV

)
, the equality of the areas.

We will need some more properties concerning cardinality. We want to know the number
of points inside a region after using one of the operators. Especially we are interested in the
asymptotic behaviour, i.e., if our region becomes scaled very large. The following proposition
provides information about that.

Proposition 3.8.3. Let U ⊆ C bounded, measurable, and such that

#
(
∂(NU)9)9 = O

(
|N |δ

)
(3.8.5)

for N ∈ C.
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(a) We get

#
(bNUc9)9 = |N |2 λ(U)

λ(V )
+O

(
|N |δ

)
,

#
(dNUe9)9 = |N |2 λ(U)

λ(V )
+O

(
|N |δ

)
and

#(NU)9 = #
(bNUe9)9 = |N |2 λ(U)

λ(V )
+O

(
|N |δ

)
.

(b) We get
#((N + 1)U \NU)9 = O

(
|N |δ

)
.

Proof. (a) Considering the areas yields

#
(bNUc9)9 λ(V ) ≤ λ(NU) = |N |2 λ(U) ≤ #

(dNUe9)9 λ(V ) ,

since bNUc9 ⊆ NU ⊆ dNUe9, see Proposition 3.8.2 on page 68. If we use dNUe9 =
bNUc9 ∪ ∂(NU)9, we obtain

0 ≤ |N |2 λ(U)
λ(V )

−#
(bNUc9)9 ≤ #

(
∂(NU)9)9

Because #
(
∂(NU)9)9 = O

(
|N |δ

)
we get∣∣∣∣|N |2 λ(U)

λ(V )
−#

(bNUc9)9∣∣∣∣ = O
(
|N |δ

)
,

and thus the result follows.

Combining the previous result and Proposition 3.8.2 on page 68 proves the other two state-
ments.

(b) Let d ∈ R such that U ⊆ B(0, d). Let y ∈ (N + 1)U \NU . Obviously, this is equivalent to
y/(N + 1) ∈ U and y/N /∈ U , so there is a z ∈ ∂U on the line from y/N to y/(N + 1). We
get ∣∣∣z − y

N

∣∣∣ ≤ |y| · ∣∣∣∣ 1
N
− 1
N + 1

∣∣∣∣ =
|y|

|N + 1| ·
1
|N | ≤

d

|N | ,

and therefore
(N + 1)U \NU ⊆

⋃
z∈∂(NU)

B(z, d) .

Since the boundary ∂(NU) can be covered by O
(
|N |δ

)
cells, cf. (c) of Proposition 3.8.2 on

page 68 and the discs in
⋃
z∈∂(NU) B(z, d) have a fixed size, the result follows.

If the geometry of U is simple, e.g. U is a disc or U is a polygon, then we can check the
covering condition (3.8.5) of Proposition 3.8.3 on the preceding page by means of the following
proposition.

Proposition 3.8.4. Let U ⊆ C such that the boundary of U consists of finitely many rectifiable
curves. Then we get

#
(
∂(NU)9)9 = O(|N |)

for N ∈ C.
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Proof. Without loss of generality, we may assume that the boundary of U is a rectifiable curve
γ : [0, L] −→ C, which is parametrised by arc length. For any t ∈ [1/(2 |N |), L− 1/(2 |N |)], we
have

γ

([
t− 1

2 |N | , t+
1

2 |N |
])
⊆ B

(
γ(t),

1
2 |N |

)
,

as the straight line from γ(t) to γ(t′) is never longer than the arc-length of γ([t, t′]). Thus ∂U
can be covered by O(L |N |) discs of radius 1/(2 |N |) and consequently, ∂(NU) can be covered
by O(L |N |) discs of radius 1

2 . As Z[τ ] is a lattice, each disc with radius 1
2 is contained in at

most 4 Voronoi-cells, cf. Proposition 3.2.5 on page 41. Therefore, O(N) cells suffice to cover
∂(NU).

3.9 The Characteristic Sets Wη

Let τ ∈ C be an algebraic integer, imaginary quadratic. Suppose that |τ | > 1. Let w ∈ N with
w ≥ 2. Further let D be a minimal norm representatives digit set modulo τw as in Definition 3.3.5
on page 45. We denote the norm function by N : Z[τ ] −→ Z, and we simply have N (τ) = |τ |2.
Again for simplicity we set D• := D \ {0}.

In this section we define characteristic sets for a digit at a specified position in the w-NAF
expansion and prove some basic properties of them. Those will be used in the proof of Theo-
rem 3.10.1 on page 78.

Definition 3.9.1 (Characteristic Sets). Let η ∈ D•. For j ∈ N0 define

Wη,j :=
{

value(ξ)
∣∣ ξ ∈ NAF0.j+w

w with ξ−w = η
}
.

We call bWη,je9,j+w the jth approximation of the characteristic set for η, and we define

Wη,j :=
{
bWη,je9,j+w

}
Z[τ ]

.

Further we define the characteristic set for η

Wη :=
{

value(ξ)
∣∣ ξ ∈ NAF0.∞

w with ξ−w = η
}
.

and
Wη := {Wη}Z[τ ] .

For j ∈ N0 we set
βη,j := λ

(
bWη,je9,j+w

)
− λ(Wη) .

Note that sometimes the set Wη will also be called characteristic set for η, and analogously for
the set Wη,j . In Figure 3.9.1 on the next page some of these characteristic sets — more precisely
some approximations of the characteristic sets — are shown. The following proposition will deal
with some properties of those defined sets,

Proposition 3.9.2 (Properties of the Characteristic Sets). Let η ∈ D•.
(a) We have

Wη = ητ−w + τ−2w+1F .

(b) The set Wη is compact.
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3.9 The Characteristic Sets Wη

(a) Wη,j for τ = 1
2

+ 1
2

√−7, w = 2 and
j = 11

(b) Wη,j for τ = 1 +
√−1, w = 4 and j = 11

(c) Wη,j for τ = 3
2

+ 1
2

√−3, w = 2 and j = 7 (d) Wη,j for τ = 3
2

+ 1
2

√−3, w = 3 and j = 6

Figure 3.9.1: Characteristic sets Wη. Each figure can either be seen as approximation Wη,j

for Wη, or as values of w-NAFs of length j, where a scales Voronoi cell is drawn for each point.
Different colours correspond to the digits 1 and w from the left in the w-NAF. They are “marked”
whether they are zero or non-zero.
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(c) We get

Wη =
⋃
j∈N0

Wη,j = lim
j→∞

Wη,j .

(d) The set bWη,je9,j+w is indeed an approximation of Wη, i.e., we have

Wη = lim inf
j∈N0

bWη,je9,j+w = lim sup
j∈N0

bWη,je9,j+w.

(e) We have intWη ⊆ lim infj∈N0 bWη,je9,j+w.

(f) We get Wη − ητ−w ⊆ V , and for j ∈ N0 we obtain bWη,je9,j+w − ητ−w ⊆ V .

(g) For the Lebesgue measure of the characteristic set we obtain λ(Wη) = λ(Wη) and for its

approximation λ
(
bWη,je9,j+w

)
= λ(Wη,j).

(h) Let j ∈ N0. If j < w − 1, then the area of bWη,je9,j+w is

λ
(
bWη,je9,j+w

)
= |τ |−2(j+w)

λ(V ) .

If j ≥ w − 1, then the area of bWη,je9,j+w is

λ
(
bWη,je9,j+w

)
= λ(V ) ew +O(ρj)

with ew and ρ from Theorem 3.4.1 on page 48.

(i) The area of Wη is
λ(Wη) = λ(V ) ew,

again with ew from Theorem 3.4.1 on page 48.

(j) Let j ∈ N0. We get

βη,j =
∫
x∈V

(
1Wη,j

− 1Wη

)
(x) dx.

If j < w − 1, then its value is

βη,j =
(
|τ |−2(j+w) − ew

)
λ(V ) .

If j ≥ w − 1, then we get
βη,j = O(ρj) .

Again ew and ρ can be found in Theorem 3.4.1 on page 48.

Proof. (a) Is clear, since we have the digit η at index −w and an arbitrary w-NAF starting with
index −2w. Note that the elements in NAF0.∞

w start with index −1.

(b) Follows directly from (a), because F is compact according to Proposition 3.7.2 on page 62.
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3.9 The Characteristic Sets Wη

(c) Clearly we haveWη,j ⊆ Wη. Thus
⋃
j∈N0

Wη,j ⊆ Wη, and becauseWη is closed, the inclusion⋃
j∈N0

Wη,j ⊆ Wη follows. Now let z ∈ Wη, and let ξ ∈ NAF0.∞
w , such that value(ξ) = z.

Then there is a sequence of w-NAFs (ξ`)`∈N0
with finite right-lengths that converges to ξ

and clearly
value(ξ`) ∈

⋃
k∈N0

Wη,k.

Since evaluating the value is a continuous function, see Proposition 3.3.8 on page 46, we get

z = value(ξ) = value

(
lim
`→∞

ξ`

)
= lim
`→∞

value(ξ`) ∈
⋃
k∈N0

Wη,j .

The equality
⋃
j∈N0

Wη,j = limj→∞Wη,j is obvious, since Wη,j is monotonic increasing.

(d) First we show that we have
lim sup
j→∞

bWη,je9,j+w ⊆ Wη.

Let
z ∈ lim sup

j→∞
bWη,je9,j+w =

⋂
j∈N0

⋃
k≥j

bWη,ke9,k+w .
Then there is a j0 ≥ 0 such that z ∈ bWη,j0e9,j0+w. Further, for j`−1 there is a j` ≥ j`−1,
such that z ∈ bWη,j`e9,j`+w. For each ` ∈ N0 there is a z` ∈ Wη,j` ⊆ Wη with

|z − z`| ≤ cV |τ | |τ |−j`−w ,

since bWη,j`e9,j`+w consists of cells |τ |−j`−w V with centres out of Wη,j` . Refer to Propo-
sition 3.2.5 on page 41 for the constant cV |τ |. Thus we get z = lim`→∞ z` ∈ Wη, since
|τ |−j`−w tends to 0 for large ` and Wη is closed.

Using the closeness property of Wη again yields

lim sup
j→∞

bWη,je9,j+w ⊆ Wη.

Now we are ready to show the stated equalities. We obtain

Wη = lim
j→∞

Wη,j = lim inf
j→∞

Wη,j ⊆ lim inf
j→∞

bWη,je9,j+w ⊆ lim sup
j→∞

bWη,je9,j+w ⊆ Wη,

so equality holds everywhere.

(e) Let z ∈ intWη. Then there exists an ε > 0 such that B(z, ε) ⊆ intWη. For each k ∈ N0

there is a y ∈ τ−k−wZ[τ ] with the property that z is in the corresponding Voronoi cell, i.e.,
z ∈ y + τ−k−wV . For this y, there is also an ξ ∈ NAFfin.k+w

w such that y = value(ξ).

Clearly, if k is large enough, say k ≥ j, we obtain y + τ−k−wV ⊆ B(z, ε). From Propo-
sition 3.7.7 on page 64 (combined with (a)) we know that all w-NAFs corresponding to
the values in intWη must have η at digit −w and integer part 0. But this means that
value(ξ) ∈ Wη,k and therefore z ∈ bWη,ke9,k+w. So we conclude

z ∈
⋃
j∈N0

⋂
k≥j

bWη,ke9,k+w = lim inf
j→∞

bWη,je9,j+w .
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(f) Each w-NAF ξ ∈ NAF0.∞
w corresponding to a value in Wη − ητ−w starts with 2w− 1 zeros

from the left. Therefore
value(ξ) = τ1−2w value(ϑ)

for an appropriate w-NAF ϑ ∈ NAF0.∞
w . Thus, using value(ϑ) ∈ τ2w−1V from Proposi-

tion 3.5.1 on page 51, the desired inclusion follows.

The set bWη,je9,j+w − ητ−w ⊆ V consists of cells of type τ−j−wV , where their centres are
the fractional value of an element ξ ∈ NAF0.j+w

w . Again the first 2w − 1 digits are zero, so

value(ξ) = τ1−2w value(ϑ)

for an appropriate w-NAF ϑ ∈ NAF0.j−w+1
w . Suppose j ≥ w − 1. Using value(ϑ) +

τ−(j−w+1)V ⊆ τ2w−1V again from Proposition 3.5.1 on page 51, the statement follows. If
j < w − 1, then value(ϑ) = 0 and it remains to show that τ−j−wV ⊆ V . But this is clearly
true, since τ−1V ⊆ V according to Proposition 3.2.5 on page 41.

(g) As a shifted version of the sets Wη and bWη,je9,j+w is contained in V by (f), so the equality
of the Lebesgue measures follows directly.

(h) The set bWη,je9,j+w consists of of cells of type τ−j−wV , where their centres are the value
of an element ξ ∈ NAF0.j+w

w . The intersection of two different cells is contained in the
boundary of the cells, so a set of Lebesgue measure zero.

Suppose j ≥ w − 1. Since the digit ξ−w = η is fixed, the first 2w − 1 digits from the left
are fixed, too. The remaining word ξ−2w . . . ξ−(j+w) can be an arbitrary w-NAF of length
j − w + 1, so there are Cj−w+1,w choices, see Theorem 3.4.1 on page 48.

Thus we obtain

λ
(
bWη,je9,j+w

)
= Cj−w+1,w λ

(
τ−(w+j)V

)
= Cj−w+1,w |τ |−2(w+j)

λ(V ) .

Inserting the results of Theorem 3.4.1 on page 48 yields

λ
(
bWη,je9,j+w

)
=

 |τ |2(j−w+1+w)(
|τ |2 − 1

)
w + 1

+O
((

ρ |τ |2
)j−w+1

) |τ |−2(w+j)
λ(V )

= λ(V )
1

|τ |2(w−1)
((
|τ |2 − 1

)
w + 1

)
︸ ︷︷ ︸

=ew

+O(ρj) .

If j < w− 1, then bWη,je9,j+w consists of only one cell of size τ−j−wV , so the stated result
follows directly.

(i) Using (d), (e) and the continuity of the Lebesgue measure yields

λ

(
lim inf
j∈N0

bWη,je9,j+w
)
≤ lim inf

j∈N0
λ
(
bWη,je9,j+w

)
≤ lim sup

j∈N0

λ
(
bWη,je9,j+w

)
≤ λ

(
lim sup
j∈N0

bWη,je9,j+w
)
≤ λ

(
lim sup
j∈N0

bWη,je9,j+w
)

= λ(Wη) ≤ λ(intWη) + λ(∂Wη)

≤ λ
(

lim inf
j∈N0

bWη,je9,j+w
)

+ λ(∂Wη) .
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Since λ(∂Wη) = 0, combine (a) and Proposition 3.7.8 on page 65 to see this, we have equality
everywhere, so

λ(Wη) = lim
j∈N0

λ
(
bWη,je9,j+w

)
.

Thus the desired result follows from (h), because ρ < 1.

(j) Using (f) and (g) yields the first statement. The other result follows directly by using (h)
and (i).

Using the results of the previous proposition, we can finally determine the Lebesgue measure
of the fundamental domain F defined in Section 3.7.

Remark 3.9.3 (Lebesgue Measure of the Fundamental Domain). We get

λ(F) = |τ |2w−1
ew λ(V ) =

|τ | |Im(τ)|
(|τ |2 − 1)w + 1

,

using (a) and (i) from Proposition 3.9.2 on page 72, ew from Theorem 3.4.1 on page 48, and
λ(V ) = |Im(τ)| from Proposition 3.2.5 on page 41.

The next lemma makes the connection between the w-NAFs of elements of the lattice Z[τ ]
and the characteristic sets Wη,j .

Lemma 3.9.4. Let η ∈ D•, j ≥ 0. Let n ∈ Z[τ ] and let n ∈ NAFfin
w be its w-NAF. Then the

following statements are equivalent:

(1) The jth digit of n equals η.

(2) The condition
{
τ−(j+w)n

}
Z[τ ]
∈Wη,j holds.

(3) The inclusion
{
τ−(j+w)Vn

}
Z[τ ]
⊆Wη,j holds.

Proof. Define m by

mk :=

{
nk if k < j + w,
0 if k ≥ j + w

and m := value(m). Then, by definition, m ≡ n (mod τ j+w),{
τ−(j+w)n

}
Z[τ ]

=
{
τ−(j+w)m

}
Z[τ ]

and τ−(j+w)m ∈ F . As the jth digit of n only depends on the j +w least significant digits of n,
it is sufficient to show the equivalence of the assertions when n and n are replaced by m and m,
respectively.

By definition, mj = η is equivalent to τ−(j+w)m ∈ Wη,j .

(1) =⇒ (3). Assume now that τ−(j+w)m ∈ Wη,j . Then m ∈ τ j+wWη,j and

τ−(j+w)Vm ⊆ bWη,je9,j+w .
This implies

{
τ−(j+w)Vm

}
Z[τ ]
⊆Wj .

(3) =⇒ (2). This implication holds trivially.
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(2) =⇒ (1). So now assume that
{
τ−(j+w)m

}
Z[τ ]
∈Wη,j . Thus there is an m′ such that

τ−(j+w)m′ ∈ bWη,je9,j+w
and

τ−(j+w)m− τ−(j+w)m′ ∈ Z[τ ].

This immediately implies m′ ∈ Z[τ ] and m ≡ m′ (mod τ j+w). We also conclude that
m′ ∈ τ j+w bWη,je9,j+w. As m′ ∈ Z[τ ], this is equivalent to m′ ∈ τ j+wWη,j and there-
fore τ−(j+w)m′ ∈ Wη,j . By definition of Wη,j , there is a 0.m′ ∈ NAF0.j+w

w such that
τ−(j+w)m′ = value(0.m′), i.e., m′ = value(m′), and m′j = η. From m′ ≡ m (mod τ j+w)
we conclude that mj = η, too. (In fact, one can now easily show that we have m′ = m,
but this is not really needed.)

3.10 Counting the Occurrences of a non-zero Digit in a Region

Let τ ∈ C be an algebraic integer, imaginary quadratic. Suppose that |τ | > 1. Let w ∈ N with
w ≥ 2. Further let D be a minimal norm representatives digit set modulo τw as in Definition 3.3.5
on page 45.

We denote the norm function by N : Z[τ ] −→ Z, and we simply have N (τ) = |τ |2. We write
τ = |τ | eiθ for θ ∈ (−π, π]. Further Iverson’s notation [expr ] = 1 if expr is true and [expr ] = 0
otherwise, cf. Graham, Knuth and Patashnik [25], will be used.

In this section we will prove our main result on the asymptototic number of occurrences of a
digit in a given region.

Theorem 3.10.1 (Counting Theorem). Let 0 6= η ∈ D and N ∈ R with N ≥ 0. Further let
U ⊆ C be measurable with respect to the Lebesgue measure, U ⊆ B(0, d) with d finite, i.e., U
bounded, and set δ such that #

(
∂(NU)9)9 = O(Nδ

)
. Assume 1 ≤ δ < 2. We denote the number

of occurrences of the digit η in all width-w non-adjacent forms with value in the region NU by

Zτ,w,η(N) =
∑

z∈NU∩Z[τ ]

∑
j∈N0

[jth digit of z in its w-NAF-expansion equals η] .

Then we get

Zτ,w,η(N) = ewN
2 λ(U) log|τ |N +N2 ψη

(
log|τ |N

)
+O

(
Nα log|τ |N

)
+O

(
Nδ log|τ |N

)
,

in which the following expressions are used. The Lebesgue measure is denoted by λ. We have the
constant of the expectation

ew =
1

|τ |2(w−1)
((
|τ |2 − 1

)
w + 1

) ,
cf. Theorem 3.4.1 on page 48. Then there is the function

ψη(x) = ψη,M(x) + ψη,P(x) + ψη,Q(x) ,

where
ψη,M(x) = λ(U) (c+ 1− {x}) ew,

ψη,P(x) =
|τ |2(c−{x})
λ(V )

∞∑
j=0

∫
y∈{|τ |{x}−c bθ(bxc)U}9,j−w

(
1W

({
yτ j−w

}
Z[τ ]

)
− λ(W )

)
dy,
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with the rotation θ̂(x) = e−iθx−iθc, and

ψη,Q(x) = ψη,Q =
λ(U)
λ(V )

∞∑
j=0

βj
λ(V )

.

We have α = 2 + log|τ | ρ < 2, with ρ =
(

1 + 1
|τ |2w3

)−1

< 1, and

c =
⌊
log|τ | d− log|τ | fL

⌋
+ 1

with the constant fL of Proposition 3.5.2 on page 56.
Further, if there is a p ∈ N, such that e2iθpU = U , then ψη is p-periodic and continuous.

Remark 3.10.2. Consider the main term of our result. When N tends to infinity, we get the
asymptotic formula

Zτ,w,η ∼ ewN2 λ(U) log|τ |N.

This result is not surprising, since intuitively there are about N2 λ(U) w-NAFs in the region
NU , and each of them can be represented as a w-NAF with length log|τ |N . Therefore, using
the expectation of Theorem 3.4.1 on page 48, we get an explanation for this term.

Remark 3.10.3. Using a disc as region U , e.g. U = B(0, 1), yields that ψη is 1-periodic and
continuous for all valid τ . The reason is that the condition eiθpU = U is then clearly fulfilled for
every p, especially for p = 1.

The parameter δ is 1 for simple geometries like a disc or a polygon. See Proposition 3.8.4 on
page 71 for details.

Remark 3.10.4. If δ = 2 in the theorem, then the statement stays true, but degenerates to

Zτ,w,η(N) = O
(
N2 log|τ |N

)
.

This is a trivial result of Remark 3.10.2.

The proof of Theorem 3.10.1 on the facing page follows the ideas used by Delange [17]. By
Remark 3.10.4 we restrict ourselves to the case δ < 2.

We will use the following abbreviations. We set Z(N) := Zτ,w,η(N), and we set W := Wη

and Wj := Wη,j for our fixed η of Theorem 3.10.1 on the facing page. Further we set βj := βη,j ,
cf. Proposition 3.9.2 on page 72. By log we will denote the logarithm to the base |τ |, i.e.,
log x = log|τ | x. These abbreviations will be used throughout the remaining section.

Proof of Theorem 3.10.1. We know from Theorem 3.6.1 on page 60 that every element of Z[τ ] is
represented by a unique element of NAFfin

w . To count the occurrences of the digit η in NU , we
sum up 1 over all lattice points n ∈ NU ∩Z[τ ] and for each n over all digits in the corresponding
w-NAF equal to η. Thus we get

Z(N) =
∑

n∈NU∩Z[τ ]

∑
j∈N0

[εj(NAFw(n)) = η] ,

where εj denotes the extraction of the jth digit, i.e., for a w-NAF ξ we define εj(ξ) := ξj .
The inner sum over j ∈ N0 is finite, we will choose a large enough upper bound J later in
Lemma 3.10.5 on page 82.

Using

[εj(NAFw(n)) = η] = 1Wj

({ n

τ j+w

}
Z[τ ]

)
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from Lemma 3.9.4 on page 77 yields

Z(N) =
J∑
j=0

∑
n∈NU∩Z[τ ]

1Wj

({ n

τ j+w

}
Z[τ ]

)
,

where additionally the order of summation was changed. This enables us to rewrite the sum over
n as integral

Z(N) =
J∑
j=0

∑
n∈NU∩Z[τ ]

1
λ(Vn)

∫
x∈Vn

1Wj

({ x

τ j+w

}
Z[τ ]

)
dx

=
1

λ(V )

J∑
j=0

∫
x∈bNUe9 1Wj

({ x

τ j+w

}
Z[τ ]

)
dx.

We split up the integrals into the ones over NU and others over the remaining region and get

Z(N) =
1

λ(V )

J∑
j=0

∫
x∈NU

1Wj

({ x

τ j+w

}
Z[τ ]

)
dx+ Fη(N) ,

in which Fη(N) contains all integrals (with appropriate signs) over regions bNUe9 \ NU and
NU \ bNUe9.

Substituting x = τJy, dx = |τ |2J dy we obtain

Z(N) =
|τ |2J
λ(V )

J∑
j=0

∫
y∈τ−JNU

1Wj

({
yτJ−j−w

}
Z[τ ]

)
dy + Fη(N) .

Reversing the order of summation yields

Z(N) =
|τ |2J
λ(V )

J∑
j=0

∫
y∈τ−JNU

1WJ−j

({
yτ j−w

}
Z[τ ]

)
dy + Fη(N) .

We rewrite this as

Z(N) =
|τ |2J
λ(V )

(J + 1)λ(W )
∫
y∈τ−JNU

dy

+
|τ |2J
λ(V )

J∑
j=0

∫
y∈τ−JNU

(
1W

({
yτ j−w

}
Z[τ ]

)
− λ(W )

)
dy

+
|τ |2J
λ(V )

J∑
j=0

∫
y∈τ−JNU

(
1WJ−j

({
yτ j−w

}
Z[τ ]

)
− 1W

({
yτ j−w

}
Z[τ ]

))
dy

+ Fη(N) .

With τ−JNU =
⌊
τ−JNU

⌋9,j−w∪{τ−JNU}9,j−w, see Figure 3.10.1 on the next page, for each
integral region we get

Z(N) =Mη(N) + Zη(N) + Pη(N) +Qη(N) + Sη(N) + Fη(N) ,
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3.10 Counting the Occurrences of a non-zero Digit in a Region

τ−JNU
⌊
τ−JNU

⌋9 {
τ−JNU

}9
= ∪

Figure 3.10.1: Splitting up the region of integration τ−JNU .

in which Mη is “The Main Part”, see Lemma 3.10.8 on the following page,

Mη(N) =
|τ |2J
λ(V )

(J + 1)λ(W )
∫
y∈τ−JNU

dy, (3.10.1a)

Zη is “The Zero Part”, see Lemma 3.10.9 on page 83,

Zη(N) =
|τ |2J
λ(V )

J∑
j=0

∫
y∈bτ−JNUc9,j−w

(
1W

({
yτ j−w

}
Z[τ ]

)
− λ(W )

)
dy, (3.10.1b)

Pη is “The Periodic Part”, see Lemma 3.10.10 on page 83,

Pη(N) =
|τ |2J
λ(V )

J∑
j=0

∫
y∈{τ−JNU}9,j−w

(
1W

({
yτ j−w

}
Z[τ ]

)
− λ(W )

)
dy, (3.10.1c)

Qη is “The Other Part”, see Lemma 3.10.11 on page 85,

Qη(N) =
|τ |2J
λ(V )

J∑
j=0

∫
y∈bτ−JNUc9,j−w

(
1WJ−j − 1W

)({
yτ j−w

}
Z[τ ]

)
dy, (3.10.1d)

Sη is “The Small Part”, see Lemma 3.10.12 on page 86,

Sη(N) =
|τ |2J
λ(V )

J∑
j=0

∫
y∈{τ−JNU}9,j−w

(
1WJ−j − 1W

)({
yτ j−w

}
Z[τ ]

)
dy (3.10.1e)

and Fη is “The Fractional Cells Part”, see Lemma 3.10.13 on page 88,

Fη(N) =
1

λ(V )

J∑
j=0

∫
x∈bNUe9\NU 1Wj

({ x

τ j+w

}
Z[τ ]

)
dx

− 1
λ(V )

J∑
j=0

∫
x∈NU\bNUe9 1Wj

({ x

τ j+w

}
Z[τ ]

)
dx.

(3.10.1f)

To complete the proof we have to deal with the choice of J , see Lemma 3.10.5 on the following
page, as well as with each of the parts in (3.10.1), see Lemmata 3.10.8 to 3.10.13 on pages 82–88.
The continuity of ψη is checked in Lemma 3.10.14 on page 88.
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Lemma 3.10.5 (Choosing J). Let N ∈ R≥0. Then every w-NAF of NAFfin
w with value in NU

has at most J + 1 digits, where
J = blogNc+ c

with
c = blog d− log fLc+ 1

with fL of Proposition 3.5.2 on page 56.

Proof. Let z ∈ NU , z 6= 0, with its corresponding w-NAF ξ ∈ NAFfin
w , and let j ∈ N0 be the

largest index, such that the digit ξj is non-zero. By using Corollary 3.5.3 on page 57, we conclude
that

|τ |j fL ≤ |z| < Nd.

This means
j < logN + log d− log fL,

and thus we have

j ≤ blogN + log d− log fLc ≤ blogNc+ blog d− log fLc+ 1.

Defining the right hand side of this inequality as J finishes the proof.

Remark 3.10.6. For the parameter used in the region of integration in the proof of Theorem 3.10.1
on page 78 we get

τ−JN = |τ |{logN}−c θ̂(logN) ,

with the rotation θ̂(x) = e−iθbxc−iθc. In particular we get
∣∣τ−JN ∣∣ = O(1).

Proof. With τ = |τ | eiθ and the J of Lemma 3.10.5 we obtain

τ−JN = τ−blogNc−c |τ |logN = |τ |−c−blogNc+logN
e−iθ(blogNc+c) = |τ |{logN}−c θ̂(logN) .

Remark 3.10.7. Let γ ∈ R with γ ≥ 1, then

γJ = N log γγc−{logN} = O(N log γ
)
.

In particular |τ |2J = O(N2
)

and |τ |J = O(N).

Proof. We insert J from Lemma 3.10.5 and obtain

γJ = γblogNc+c = γlogNγc−{logN} = |τ |logN log γ
γc−{logN}

= N log γγc−{logN} = O(N log γ
)
.

Lemma 3.10.8 (The Main Part). For (3.10.1a) in the proof of Theorem 3.10.1 on page 78 we
get

Mη(N) = ewN
2 λ(U) logN +N2 ψη,M(logN)

with a 1-periodic function ψη,M,

ψη,M(x) = λ(U) (c+ 1− {x}) ew
and

ew =
1

|τ |2(w−1)
((
|τ |2 − 1

)
w + 1

) .
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Proof. We have

Mη(N) =
|τ |2J
λ(V )

(J + 1)λ(W )
∫
y∈τ−JNU

dy.

As λ
(
τ−JNU

)
= |τ |−2J

N2 λ(U) we obtain

Mη(N) =
λ(W )
λ(V )

(J + 1)N2 λ(U) .

By taking λ(W ) = λ(V ) ew from (i) of Proposition 3.9.2 on page 72 and J from Lemma 3.10.5
on the preceding page we get

Mη(N) = N2 λ(U) ew (blogNc+ c+ 1) .

Finally, the desired result follows by using x = bxc+ {x}.
Lemma 3.10.9 (The Zero Part). For (3.10.1b) in the proof of Theorem 3.10.1 on page 78 we
get

Zη(N) = 0.

Proof. Consider the integral

Ij :=
∫
y∈bτ−JNUc9,j−w

(
1W

({
yτ j−w

}
Z[τ ]

)
− λ(W )

)
dy.

We can rewrite the region of integration as⌊
τ−JNU

⌋9,j−w =
1

τ j−w
⌊
τ j−wτ−JNU

⌋9 =
1

τ j−w

⋃
z∈Tj−w

Vz

for some appropriate Tj−w ⊆ Z[τ ]. Substituting x = τ j−wy, dx = |τ |2(j−w) dy yields

Ij =
1

|τ |2(j−w)

∫
x∈

S
z∈Tj−w

Vz

(
1W

(
{x}

Z[τ ]

)
− λ(W )

)
dx.

We split up the integral and eliminate the fractional part {x}
Z[τ ] by translation to get

Ij =
1

|τ |2(j−w)

∑
z∈Tj−w

∫
x∈V

(1W (x)− λ(W )) dx︸ ︷︷ ︸
=0

.

Thus, for all j ∈ N0 we obtain Ij = 0, and therefore Zη(N) = 0.

Lemma 3.10.10 (The Periodic Part). For (3.10.1c) in the proof of Theorem 3.10.1 on page 78
we get

Pη(N) = N2 ψη,P(logN) +O(Nδ
)

with a function ψη,P ,

ψη,P(x) =
|τ |2(c−{x})
λ(V )

∞∑
j=0

∫
y∈{|τ |{x}−c bθ(bxc)U}9,j−w

(
1W

({
yτ j−w

}
Z[τ ]

)
− λ(W )

)
dy,

with the rotation θ̂(x) = e−iθx−iθc.
If there is a p ∈ N, such that eiθpU = U , then ψη,P is p-periodic.
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Proof. Consider

Ij :=
∫
y∈{τ−JNU}9,j−w

(
1W

({
yτ j−w

}
Z[τ ]

)
− λ(W )

)
dy.

The region of integration satisfies{
τ−JNU

}9,j−w ⊆ ∂(τ−JNU)9,j−w =
1

τ j−w

⋃
z∈Tj−w

Vz (3.10.2)

for some appropriate Tj−w ⊆ Z[τ ].
We use the triangle inequality and substitute x = τ j−wy, dx = |τ |2(j−w) dy in the integral to

get

|Ij | ≤ 1

|τ |2(j−w)

∫
x∈

S
z∈Tj−w

Vz

∣∣∣1W({x}Z[τ ]

)
− λ(W )

∣∣∣︸ ︷︷ ︸
≤1+λ(W )

dx.

After splitting up the integral and using translation to eliminate the fractional part, we get

|Ij | ≤ 1 + λ(W )

|τ |2(j−w)

∑
z∈Tj−w

∫
x∈V

dx =
1 + λ(W )

|τ |2(j−w)
λ(V ) #(Tj−w) .

Using #
(
∂(NU)9)9 = O(Nδ

)
as assumed and Equation (3.10.2) we gain

#(Tj−w) = O
(
|τ |(j−w)δ ∣∣τ−JN ∣∣δ) = O

(
|τ |(j−w)δ

)
,

because
∣∣τ−JN ∣∣ = O(1), see Remark 3.10.6 on page 82, and thus

|Ij | = O
(
|τ |δ(j−w)−2(j−w)

)
= O

(
|τ |(δ−2)j

)
.

Now we want to make the summation in Pη independent from J , so we consider

I :=
|τ |2J
λ(V )

∞∑
j=J+1

Ij

Again we use triangle inequality and we calculate the sum to obtain

|I| = O
(
|τ |2J

) ∞∑
j=J+1

O
(
|τ |(δ−2)j

)
= O

(
|τ |2J |τ |(δ−2)J

)
= O

(
|τ |δJ

)
.

Note that O
(
|τ |J

)
= O(N), see Remark 3.10.7 on page 82, so we obtain |I| = O(Nδ

)
.

Let us look at the growth of

Pη(N) =
|τ |2J
λ(V )

J∑
j=0

Ij .

We get

|Pη(N)| = O
(
|τ |2J

) J∑
j=0

O
(
|τ |(δ−2)j

)
= O

(
|τ |2J

)
= O(N2

)
,

84



3.10 Counting the Occurrences of a non-zero Digit in a Region

using δ < 2, and, to get the last equality, Remark 3.10.7 on page 82.
Finally, inserting the result of Remark 3.10.6 on page 82 for the region of integration, rewriting
|τ |2J according to Remark 3.10.7 on page 82 and extending the sum to infinity, as above described,
yields

Pη(N) =
|τ |2J
λ(V )

J∑
j=0

∫
y∈{τ−JNU}9,j−w

(
1W

({
yτ j−w

}
Z[τ ]

)
− λ(W )

)
dy

= N2 |τ |2(c−{logN})
λ(V )

∞∑
j=0

∫
y∈{|τ |{logN}−c bθ(blogNc)U}9,j−w

(
1W

({
yτ j−w

}
Z[τ ]

)
− λ(W )

)
dy︸ ︷︷ ︸

=:ψη,P(logN)

+O(Nδ
)
,

with the rotation θ̂(x) = e−iθx−iθc.
Now let

eiθpU = U ⇐⇒ e−iθpU = e−iθ0U.

Clearly the region of integration in ψη,P(x) is p-periodic, since x occurs as {x} and bxc. All
other occurrences of x are of the form {x}, i.e., 1-periodic, so period p is obtained.

Lemma 3.10.11 (The Other Part). For (3.10.1d) in the proof of Theorem 3.10.1 on page 78
we get

Qη(N) = N2ψη,Q +O(Nα logN) +O(Nδ
)
,

with

ψη,Q =
λ(U)
λ(V )

∞∑
j=0

βj
λ(V )

and α = 2 + log ρ < 2, where ρ < 1 can be found in Theorem 3.4.1 on page 48.

Proof. Consider

Ij,` :=
∫
y∈bτ−JNUc9,j−w

(
1Wη,`

− 1W
)({

yτ j−w
}
Z[τ ]

)
dy.

We can rewrite the region of integration and get⌊
τ−JNU

⌋9,j−w =
1

τ j−w
⌊
τ j−wτ−JNU

⌋9 =
1

τ j−w

⋃
z∈Tj−w

Vz

for some appropriate Tj−w ⊆ Z[τ ], as in the proof of Lemma 3.10.9 on page 83. Substituting
x = τ j−wy, dx = |τ |2(j−w) dy yields

Ij,` =
1

|τ |2(j−w)

∫
x∈

S
z∈Tj−w

Vz

(
1Wη,`

− 1W
)({x}

Z[τ ]

)
dx

and further

Ij,` =
1

|τ |2(j−w)

∑
z∈Tj−w

∫
x∈V

(
1Wη,`

− 1W
)
(x) dx︸ ︷︷ ︸

=β`

=
1

|τ |2(j−w)
#(Tj−w)β`,
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by splitting up the integral, using translation to eliminate the fractional part and taking β`
according to (j) of Proposition 3.9.2 on page 72. From Proposition 3.8.3 on page 70 we obtain

#(Tj−w)

|τ |2(j−w)
=

∣∣τ j−wτ−JN ∣∣2
|τ |2(j−w)

λ(U)
λ(V )

+O
(∣∣τ j−wτ−JN ∣∣δ
|τ |2(j−w)

)
=
∣∣τ−JN ∣∣2 λ(U)

λ(V )
+O

(
|τ |(δ−2)j

)
,

because
∣∣τ−JN ∣∣ = O(1), see Remark 3.10.6 on page 82.

Now let us have a look at

Qη(N) =
|τ |2J
λ(V )

J∑
j=0

Ij,J−j .

Inserting the result above and using β` = O(ρ`), see (j) of Proposition 3.9.2 on page 72, yields

Qη(N) = |τ |2J ∣∣τ−JN ∣∣2 λ(U)
λ(V )

J∑
j=0

βJ−j
λ(V )

+ |τ |2J
J∑
j=0

O
(
|τ |(δ−2)j

)
O(ρJ−j)

We notice that |τ |2J ∣∣τ−JN ∣∣2 = N2.
Therefore, after reversing the order of the first summation, we obtain

Qη(N) = N2 λ(U)
λ(V )

J∑
j=0

βj
λ(V )

+ |τ |2J ρJ
J∑
j=0

O
((

ρ |τ |2−δ
)−j)

.

If ρ |τ |2−δ ≥ 1, then the second sum is J O(1), otherwise the sum is O
(
ρ−J |τ |(δ−2)J

)
. So we

obtain

Qη(N) = N2 λ(U)
λ(V )

J∑
j=0

βj
λ(V )

+O
(
|τ |2J ρJJ

)
+O

(
|τ |δJ

)
.

Using J = Θ(logN), see Lemma 3.10.5 on page 82, Remark 3.10.7 on page 82, and defining
α = 2 + log ρ yields

Qη(N) = N2 λ(U)
λ(V )

J∑
j=0

βj
λ(V )

+O(N2+log ρ logN
)︸ ︷︷ ︸

=O(Nα logN)

+O(Nδ
)
.

Now consider the first sum. Since βj = O(ρj), see (j) of Proposition 3.9.2 on page 72, we
obtain

N2
∞∑

j=J+1

βj = N2O(ρJ) = O(Nα) .

Thus the lemma is proved, because we can extend the sum to infinity.

Lemma 3.10.12 (The Small Part). For (3.10.1e) in the proof of Theorem 3.10.1 on page 78 we
get

Sη(N) = O(Nα logN) +O(Nδ
)

with α = 2 + log ρ < 2 and ρ < 1 from Theorem 3.4.1 on page 48.

86



3.10 Counting the Occurrences of a non-zero Digit in a Region

Proof. Consider

Ij,` :=
∫
y∈{τ−JNU}9,j−w (1W`

− 1W )
({
yτ j−w

}
Z[τ ]

)
dy.

Again, as in the proof of Lemma 3.10.10 on page 83, the region of integration satisfies{
τ−JNU

}9,j−w ⊆ ∂(τ−JNU)9,j−w =
1

τ j−w

⋃
z∈Tj−w

Vz, (3.10.3)

for some appropriate Tj−w ⊆ Z[τ ].
We substitute x = τ j−wy, dx = |τ |2(j−w) dy in the integral to get

|Ij,`| = 1

|τ |2(j−w)

∣∣∣∣∣
∫
x∈

S
z∈Tj−w

Vz

(1W`
− 1W )

(
{x}

Z[τ ]

)
dx

∣∣∣∣∣ .
Again, after splitting up the integral, using translation to eliminate the fractional part and the
triangle inequality, we get

|Ij,`| ≤ 1

|τ |2(j−w)

∑
z∈Tj−w

∣∣∣∣∫
x∈V

(1W`
− 1W )(x) dx

∣∣∣∣︸ ︷︷ ︸
=|β`|

=
1

|τ |2(j−w)
#(Tj−w) |β`| ,

in which |β`| = O
(
ρ`
)

is known from (j) of Proposition 3.9.2 on page 72. Using #
(
∂(NU)9)9 =

O(Nδ
)
, Remark 3.10.6 on page 82, and Equation (3.10.3) we get

#(Tj−w) = O
(
|τ |(j−w)δ ∣∣τ−JN ∣∣δ) = O

(
|τ |δ(j−w)

)
,

because
∣∣τ−JN ∣∣ = O(1). Thus

|Ij,`| = O
(
ρ` |τ |(δ−2)(j−w)

)
= O

(
ρ` |τ |(δ−2)j

)
follows by assembling all together.

Now we are ready to analyse

Sη(N) =
|τ |2J
λ(V )

J∑
j=0

Ij,J−j .

Inserting the result above yields

|Sη(N)| = |τ |
2J

λ(V )

J∑
j=0

O
(
ρJ−j |τ |(δ−2)j

)
=
ρJ |τ |2J
λ(V )

J∑
j=0

O
((

ρ |τ |2−δ
)−j)

and thus, by the same argument as in the proof of Lemma 3.10.11 on page 85,

|Sη(N)| = ρJ |τ |2J O
(
J + ρ−J |τ |(δ−2)J

)
= O

(
ρJ |τ |2J J

)
+O

(
|τ |δJ

)
,

Finally, using Lemma 3.10.5 on page 82 and Remark 3.10.7 on page 82, we obtain

|Sη(N)| = O(Nα logN) +O(Nδ
)

with α = 2 + log ρ. Since ρ < 1, we have α < 2.
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Lemma 3.10.13 (The Fractional Cells Part). For (3.10.1f) in the proof of Theorem 3.10.1 on
page 78 we get

Fη(N) = O(Nδ logN
)

Proof. For the regions of integration in Fη we obtain

NU \ bNUe9 ⊆ dNUe9 \ bNUc9 = ∂(NU)9 =
⋃
z∈T

Vz

and

bNUe9 \NU ⊆ dNUe9 \ bNUc9 = ∂(NU)9 =
⋃
z∈T

Vz

for some appropriate T ⊆ Z[τ ] using Proposition 3.8.2 on page 68. Thus we get

|Fη(N)| ≤ 2
λ(V )

J∑
j=0

∫
x∈

S
z∈T Vz

1Wj

({ x

τ j+w

}
Z[τ ]

)
dx ≤ 2

λ(V )

J∑
j=0

∑
z∈T

∫
x∈Vz

dx,

in which the indicator function was replaced by 1. Dealing with the sums and the integral, which
is O(1), we obtain

|Fη(N)| = (J + 1)#T O(1) .

Since J = O(logN), see Lemma 3.10.5 on page 82, and #T = O(Nδ
)
, the desired result

follows.

Lemma 3.10.14. If the ψη from Theorem 3.10.1 on page 78 is p-periodic, then ψη is also
continuous.

Proof. There are two possible parts of ψη, where an discontinuity could occur. The first is {x}
for an x ∈ Z, the second is building {. . .}9,j−w in the region of integration in ψη,P .

The latter is no problem, i.e., no discontinuity, since∫
y∈{|τ |{x}−c bθ(bxc)U}9,j−w

(
1W

({
yτ j−w

}
Z[τ ]

)
− λ(W )

)
dy

=
∫
y∈|τ |{x}−c bθ(bxc)U

(
1W

({
yτ j−w

}
Z[τ ]

)
− λ(W )

)
dy,

because the integral of the region
⌊
|τ |{x}−c θ̂(bxc)U

⌋
9,j−w is zero, see proof of Lemma 3.10.9 on

page 83.
Now we deal with the continuity for x ∈ Z. Let m ∈ x+ pZ, let M = |τ |m, and consider

Zη(M)− Zη(M − 1) .

For an appropriate a ∈ R we get

Zη(M) = aM2 logM +M2 ψη(logM) +O(Mα logM) +O(M δ logM
)
,

and thus
Zη(M) = aM2m+M2 ψη(m)︸ ︷︷ ︸

=ψη(x)

+O(Mαm) +O(Mδm
)
.
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Further we obtain

Zη(M − 1) = a (M − 1)2 log(M − 1) + (M − 1)2 ψη(log(M − 1))

+O((M − 1)α log(M − 1)) +O
(

(M − 1)δ log(M − 1)
)
,

and thus, using the abbreviation L = log
(
1−M−1

)
and δ ≥ 1,

Zη(M − 1) = aM2m+M2 ψη(m+ L)︸ ︷︷ ︸
=ψη(x+L)

+O(Mαm) +O(Mδm
)
.

Therefore we obtain

Zη(M)− Zη(M − 1)
M2

= ψη(x)− ψη(x+ L) +O(Mα−2m
)

+O(Mδ−2m
)
.

Since #(MU \ (M − 1)U)9 is clearly an upper bound for the number of w-NAFs with values in
MU \ (M − 1)U and each of these w-NAFs has less than blogMc+ c digits, see Lemma 3.10.5
on page 82, we obtain

Zη(M)− Zη(M − 1) ≤ #(MU \ (M − 1)U)9 (m+ c) .

Using (b) of Proposition 3.8.3 on page 70 yields then

Zη(M)− Zη(M − 1) = O(Mδm
)
.

Therefore we get

ψη(x)− ψη(x+ L) = O(M δ−2m
)

+O(Mα−2m
)

+O(Mδ−2m
)
.

Taking the limit m→∞ in steps of p, thus L tends to 0, and using α < 2 and δ < 2 yields

ψη(x)− lim
ε→0−

ψη(x+ ε) = 0,

i.e., ψη is continuous for x ∈ Z.
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Chapter 4

Concluding Remarks and Some
Open Problems

In this last chapter some concluding remarks on the results of Chapter 3 can be found. Further,
there will also be mentioned some open problems in conjunction with those topics.

The analysis in Section 3.1 concerning Koblitz curves in characteristic 3 and 2-NAFs was
similar to the analysis of the balanced ternary number system. The analysis is only for the
rational integers and not for every element of the lattice Z[τ ].

In Section 3.2 we defined the Voronoi cell and the restricted Voronoi cell. In the latter defi-
nition, there was some freedom on choosing the boundary. In this work, one configuration was
fixed, but it might be interesting what changes when taking other configurations.

Section 3.3 contained the definition of the digit sets used. They consisted of minimal norm
representatives. But this is not the only meaningful choice. The question is: Are the presented
results and theorems true for other digit sets? Or perhaps it can be shown that they are true in
a more general setting.

In Section 3.3 there was also the definition of the τ -adic width-w non-adjacent form. One could
think about using other concepts. One very interesting question concerns the optimality those
representations. In the case of Koblitz curves in characteristic 2, the expansions are optimal, but
this is not true in general in the characteristic 3 case, see Section 2.5 for details. Can there be
proved a general statement which cases are optimal or non-optimal?

From Section 3.6 we know that every element of Z[τ ] admits a unique w-NAF for all imaginary
quadratic algebraic integers τ and all w ≥ 2. But is this true for a general algebraic integer τ? As
mentioned above, the digit set was fixed with minimal norm representatives. What can be said,
when other digit sets were used? Does every element of Z[τ ] still have a w-NAF representation?

Section 3.7 contained results on the fundamental domain. There it was shown that the dimen-
sion of the boundary is smaller than 2. But what is the exact value of it? Can this be calculated
in general or is it only possible to calculate it for specific τ and w by using some computer algebra
system?

One main result was the analysis of the w-NAFs in a certain region, e.g. in a disc (what means
all w-NAFs with absolute value smaller than a given N). It can be found in Section 3.10. Here
again this result was for imaginary quadratic algebraic integers τ . It was essential in the proof to
have “imaginary quadratic”, since in this case the Voronoi cell exists as described in Section 3.2.
But is it possible to prove a similar result for general algebraic integer τ? Another question is,
whether the exponent in the error term — it was called α — has a connection to the dimension
of the boundary of the fundamental domain.

91



4 Concluding Remarks and Some Open Problems

The last remark concerns w. It was always assumed that the integer w is at least 2. But what
is in the case w = 1? Clearly this would mean that we do not have a non-adjacency condition
and therefore a non-redundant number system. A lot of results are known for this case, but can
anything be said in general (for all w ∈ N) about that? What is the “correct” digit set to choose?
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Appendix A

Existence of “Small” w-NAFs

Table A.0.1: w-NAF-expansions ξ of elements z ∈ Z[τ ] with “small” norm for “problematic
values” of |τ | and w. “Small” norm means |·| ≤ (1− |τ |−w)−1 |τ | cV . The mapping z 7→ ξ implies
value(ξ) = z.

settings: q = |τ |2 = 2, p = −2, τ = −1 + 1i, w = 2, |·|2 ≤ 4.667
digit set D: 0 = 0 + 0τ , A = −1 + 0τ , B = −1− 1τ
mapping z 7→ ξ: −2 − 2τ 7→ A0B0A00, −2 − 1τ 7→ A0B0, −1 − 1τ 7→ B, 0 − 1τ 7→ A0,
−2 + 0τ 7→ B00, −1 + 0τ 7→ A, 0 + 0τ 7→ 0, 1 + 0τ 7→ A0B0A, 2 + 0τ 7→ A0B00,
0 + 1τ 7→ A0B0A0, 1 + 1τ 7→ A0B, 2 + 1τ 7→ B0, 2 + 2τ 7→ A00
settings: q = |τ |2 = 2, p = −1, τ = −0.5 + 1.323i, w = 2, |·|2 ≤ 4.667
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = −1 + 0τ
mapping z 7→ ξ: −2 − 1τ 7→ A00, −1 − 1τ 7→ A0A, 0 − 1τ 7→ B0, 1 − 1τ 7→ A00B,
−2+0τ 7→ B0B0, −1+0τ 7→ B, 0+0τ 7→ 0, 1+0τ 7→ A, 2+0τ 7→ A0A0, −1+1τ 7→ B00A,
0 + 1τ 7→ A0, 1 + 1τ 7→ B0B, 2 + 1τ 7→ B00
settings: q = |τ |2 = 2, p = 0, τ = 0 + 1.414i, w = 2, |·|2 ≤ 4.667
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 1 + 1τ
mapping z 7→ ξ: −1 − 1τ 7→ B0B, 0 − 1τ 7→ A0A0, 1 − 1τ 7→ A00B, −2 + 0τ 7→ A00,
−1 + 0τ 7→ A0A, 0 + 0τ 7→ 0, 1 + 0τ 7→ A, 2 + 0τ 7→ A0A00, −1 + 1τ 7→ A0B, 0 + 1τ 7→ A0,
1 + 1τ 7→ B

settings: q = |τ |2 = 2, p = 1, τ = 0.5 + 1.323i, w = 2, |·|2 ≤ 4.667
digit set D: 0 = 0 + 0τ , A = −1 + 0τ , B = 1 + 0τ
mapping z 7→ ξ: −1 − 1τ 7→ B00B, 0 − 1τ 7→ A0, 1 − 1τ 7→ A0A, 2 − 1τ 7→ A00,
−2 + 0τ 7→ B0B0, −1 + 0τ 7→ A, 0 + 0τ 7→ 0, 1 + 0τ 7→ B, 2 + 0τ 7→ A0A0, −2 + 1τ 7→ B00,
−1 + 1τ 7→ B0B, 0 + 1τ 7→ B0, 1 + 1τ 7→ A00A
settings: q = |τ |2 = 2, p = 2, τ = 1 + 1i, w = 2, |·|2 ≤ 4.667
digit set D: 0 = 0 + 0τ , A = −1 + 0τ , B = 1− 1τ
mapping z 7→ ξ: 2 − 2τ 7→ A00, 0 − 1τ 7→ A0, 1 − 1τ 7→ B, 2 − 1τ 7→ B0, −2 + 0τ 7→
B0A0B00, −1 + 0τ 7→ A, 0 + 0τ 7→ 0, 1 + 0τ 7→ B0A, 2 + 0τ 7→ B00, −2 + 1τ 7→ B0A0B0,
−1 + 1τ 7→ B0A0B, 0 + 1τ 7→ B0A0, −2 + 2τ 7→ B0A00
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settings: q = |τ |2 = 2, p = −2, τ = −1 + 1i, w = 3, |·|2 ≤ 2.792
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 1 + 1τ , C = −1 + 0τ , D = −1− 1τ
mapping z 7→ ξ: −2− 1τ 7→ B0, −1− 1τ 7→ D, 0− 1τ 7→ C0, −1 + 0τ 7→ C, 0 + 0τ 7→ 0,
1 + 0τ 7→ A, 0 + 1τ 7→ A0, 1 + 1τ 7→ B, 2 + 1τ 7→ D0
settings: q = |τ |2 = 2, p = −1, τ = −0.5 + 1.323i, w = 3, |·|2 ≤ 2.792
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 1 + 1τ , C = −1 + 0τ , D = −1− 1τ
mapping z 7→ ξ: −1 − 1τ 7→ D, 0 − 1τ 7→ C0, −1 + 0τ 7→ C, 0 + 0τ 7→ 0, 1 + 0τ 7→ A,
0 + 1τ 7→ A0, 1 + 1τ 7→ B

settings: q = |τ |2 = 2, p = 0, τ = 0 + 1.414i, w = 3, |·|2 ≤ 2.792
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 1 + 1τ , C = −1 + 0τ , D = −1− 1τ
mapping z 7→ ξ: 0− 1τ 7→ C0, −1 + 0τ 7→ C, 0 + 0τ 7→ 0, 1 + 0τ 7→ A, 0 + 1τ 7→ A0
settings: q = |τ |2 = 2, p = 1, τ = 0.5 + 1.323i, w = 3, |·|2 ≤ 2.792
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = −1 + 1τ , C = −1 + 0τ , D = 1− 1τ
mapping z 7→ ξ: 0 − 1τ 7→ C0, 1 − 1τ 7→ D, −1 + 0τ 7→ C, 0 + 0τ 7→ 0, 1 + 0τ 7→ A,
−1 + 1τ 7→ B, 0 + 1τ 7→ A0
settings: q = |τ |2 = 2, p = 2, τ = 1 + 1i, w = 3, |·|2 ≤ 2.792
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = −1 + 1τ , C = −1 + 0τ , D = 1− 1τ
mapping z 7→ ξ: 0 − 1τ 7→ C0, 1 − 1τ 7→ D, 2 − 1τ 7→ D0, −1 + 0τ 7→ C, 0 + 0τ 7→ 0,
1 + 0τ 7→ A, −2 + 1τ 7→ B0, −1 + 1τ 7→ B, 0 + 1τ 7→ A0
settings: q = |τ |2 = 3, p = −3, τ = −1.5 + 0.866i, w = 2, |·|2 ≤ 3.938
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 2 + 1τ , C = 1 + 1τ , D = −1 + 0τ , E = −2− 1τ ,
F = −1− 1τ
mapping z 7→ ξ: −3−2τ 7→ C0, −3−1τ 7→ B0, −2−1τ 7→ E, −1−1τ 7→ F , 0−1τ 7→ D0,
−1+0τ 7→ D, 0+0τ 7→ 0, 1+0τ 7→ A, 0+1τ 7→ A0, 1+1τ 7→ C, 2+1τ 7→ B, 3+1τ 7→ E0,
3 + 2τ 7→ F0
settings: q = |τ |2 = 3, p = −2, τ = −1 + 1.414i, w = 2, |·|2 ≤ 3.938
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 1 + 1τ , C = −1 + 0τ , D = −2 + 0τ , E = −1−1τ ,
F = 2 + 0τ
mapping z 7→ ξ: −2− 1τ 7→ A0B, −1− 1τ 7→ E, 0− 1τ 7→ C0, −1 + 0τ 7→ C, 0 + 0τ 7→ 0,
1 + 0τ 7→ A, 0 + 1τ 7→ A0, 1 + 1τ 7→ B, 2 + 1τ 7→ C0E
settings: q = |τ |2 = 3, p = −1, τ = −0.5 + 1.658i, w = 2, |·|2 ≤ 3.938
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 1 + 1τ , C = −1 + 1τ , D = −1 + 0τ , E = −1−1τ ,
F = 1− 1τ
mapping z 7→ ξ: −1 − 1τ 7→ E, 0 − 1τ 7→ D0, −1 + 0τ 7→ D, 0 + 0τ 7→ 0, 1 + 0τ 7→ A,
0 + 1τ 7→ A0, 1 + 1τ 7→ B

settings: q = |τ |2 = 3, p = 0, τ = 0 + 1.732i, w = 2, |·|2 ≤ 3.938
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 1 + 1τ , C = −1 + 1τ , D = −1 + 0τ , E = −1−1τ ,
F = 1− 1τ
mapping z 7→ ξ: 0− 1τ 7→ D0, −1 + 0τ 7→ D, 0 + 0τ 7→ 0, 1 + 0τ 7→ A, 0 + 1τ 7→ A0
settings: q = |τ |2 = 3, p = 1, τ = 0.5 + 1.658i, w = 2, |·|2 ≤ 3.938
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 1 + 1τ , C = −1 + 1τ , D = −1 + 0τ , E = −1−1τ ,
F = 1− 1τ
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mapping z 7→ ξ: 0 − 1τ 7→ D0, 1 − 1τ 7→ F , −1 + 0τ 7→ D, 0 + 0τ 7→ 0, 1 + 0τ 7→ A,
−1 + 1τ 7→ C, 0 + 1τ 7→ A0
settings: q = |τ |2 = 3, p = 2, τ = 1 + 1.414i, w = 2, |·|2 ≤ 3.938
digit set D: 0 = 0 + 0τ , A = 2 + 0τ , B = −1 + 1τ , C = −1 + 0τ , D = −2 + 0τ , E = 1−1τ ,
F = 1 + 0τ
mapping z 7→ ξ: 0 − 1τ 7→ C0, 1 − 1τ 7→ E, 2 − 1τ 7→ C0B, −1 + 0τ 7→ C, 0 + 0τ 7→ 0,
1 + 0τ 7→ F , −2 + 1τ 7→ F0E, −1 + 1τ 7→ B, 0 + 1τ 7→ F0
settings: q = |τ |2 = 3, p = 3, τ = 1.5 + 0.866i, w = 2, |·|2 ≤ 3.938
digit set D: 0 = 0 + 0τ , A = −1 + 1τ , B = −2 + 1τ , C = −1 + 0τ , D = 1−1τ , E = 2−1τ ,
F = 1 + 0τ
mapping z 7→ ξ: 3 − 2τ 7→ D0, 0 − 1τ 7→ C0, 1 − 1τ 7→ D, 2 − 1τ 7→ E, 3 − 1τ 7→ E0,
−1 + 0τ 7→ C, 0 + 0τ 7→ 0, 1 + 0τ 7→ F , −3 + 1τ 7→ B0, −2 + 1τ 7→ B, −1 + 1τ 7→ A,
0 + 1τ 7→ F0, −3 + 2τ 7→ A0
settings: q = |τ |2 = 4, p = −3, τ = −1.5 + 1.323i, w = 2, |·|2 ≤ 4.148
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 2 + 0τ , C = 3 + 1τ , D = 2 + 1τ , E = 1 + 1τ ,
F = −1 + 1τ , G = −1 + 0τ , H = −2 + 0τ , I = −3 − 1τ , J = −2 − 1τ , K = −1 − 1τ ,
L = 1− 1τ
mapping z 7→ ξ: −3− 1τ 7→ I, −2− 1τ 7→ J , −1− 1τ 7→ K, 0− 1τ 7→ G0, −2 + 0τ 7→ H,
−1 + 0τ 7→ G, 0 + 0τ 7→ 0, 1 + 0τ 7→ A, 2 + 0τ 7→ B, 0 + 1τ 7→ A0, 1 + 1τ 7→ E, 2 + 1τ 7→ D,
3 + 1τ 7→ C

settings: q = |τ |2 = 4, p = −2, τ = −1 + 1.732i, w = 2, |·|2 ≤ 4.148
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 2 + 0τ , C = 3 + 0τ , D = 1 + 1τ , E = −1 + 1τ ,
F = −2 + 1τ , G = −1 + 0τ , H = −2 + 0τ , I = −3 + 0τ , J = −2 − 1τ , K = −1 − 1τ ,
L = 1− 1τ
mapping z 7→ ξ: −2− 1τ 7→ J , −1− 1τ 7→ K, 0− 1τ 7→ G0, −2 + 0τ 7→ H, −1 + 0τ 7→ G,
0 + 0τ 7→ 0, 1 + 0τ 7→ A, 2 + 0τ 7→ B, 0 + 1τ 7→ A0, 1 + 1τ 7→ D, 2 + 1τ 7→ G0J
settings: q = |τ |2 = 4, p = −1, τ = −0.5 + 1.936i, w = 2, |·|2 ≤ 4.148
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 2 + 0τ , C = 1 + 1τ , D = 1 + 2τ , E = −1 + 1τ ,
F = −2+1τ , G = −1+0τ , H = −2+0τ , I = −1−1τ , J = −1−2τ , K = 1−1τ , L = 2−1τ
mapping z 7→ ξ: −1 − 1τ 7→ I, 0 − 1τ 7→ G0, −2 + 0τ 7→ H, −1 + 0τ 7→ G, 0 + 0τ 7→ 0,
1 + 0τ 7→ A, 2 + 0τ 7→ B, 0 + 1τ 7→ A0, 1 + 1τ 7→ C

settings: q = |τ |2 = 4, p = 0, τ = 0 + 2i, w = 2, |·|2 ≤ 4.148
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 2 + 0τ , C = 1 + 1τ , D = 2 + 2τ , E = 1 + 2τ ,
F = −1+1τ , G = −2+1τ , H = −1+0τ , I = −1−1τ , J = −1−2τ , K = 1−1τ , L = 2−1τ
mapping z 7→ ξ: 0− 1τ 7→ H0, −2 + 0τ 7→ A0B, −1 + 0τ 7→ H, 0 + 0τ 7→ 0, 1 + 0τ 7→ A,
2 + 0τ 7→ B, 0 + 1τ 7→ A0
settings: q = |τ |2 = 4, p = 1, τ = 0.5 + 1.936i, w = 2, |·|2 ≤ 4.148
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 2 + 1τ , C = 1 + 1τ , D = −1 + 2τ , E = −1 + 1τ ,
F = −1 + 0τ , G = −2 + 0τ , H = −2− 1τ , I = −1− 1τ , J = 1− 2τ , K = 1− 1τ , L = 2 + 0τ
mapping z 7→ ξ: 0 − 1τ 7→ F0, 1 − 1τ 7→ K, −2 + 0τ 7→ G, −1 + 0τ 7→ F , 0 + 0τ 7→ 0,
1 + 0τ 7→ A, 2 + 0τ 7→ L, −1 + 1τ 7→ E, 0 + 1τ 7→ A0
settings: q = |τ |2 = 4, p = 2, τ = 1 + 1.732i, w = 2, |·|2 ≤ 4.148
digit set D: 0 = 0 + 0τ , A = 2 + 0τ , B = 1 + 0τ , C = 1 + 1τ , D = −1 + 1τ , E = −1 + 0τ ,
F = −2 + 0τ , G = −3 + 0τ , H = −2− 1τ , I = −1− 1τ , J = 1− 1τ , K = 2− 1τ , L = 3 + 0τ
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mapping z 7→ ξ: 0 − 1τ 7→ E0, 1 − 1τ 7→ J , 2 − 1τ 7→ K, −2 + 0τ 7→ F , −1 + 0τ 7→ E,
0 + 0τ 7→ 0, 1 + 0τ 7→ B, 2 + 0τ 7→ A, −2 + 1τ 7→ B0K, −1 + 1τ 7→ D, 0 + 1τ 7→ B0
settings: q = |τ |2 = 4, p = 3, τ = 1.5 + 1.323i, w = 2, |·|2 ≤ 4.148
digit set D: 0 = 0 + 0τ , A = 1 + 0τ , B = 2 + 0τ , C = 1 + 1τ , D = −1 + 1τ , E = −2 + 1τ ,
F = −3 + 1τ , G = −1 + 0τ , H = −2 + 0τ , I = −1− 1τ , J = 1− 1τ , K = 2− 1τ , L = 3− 1τ
mapping z 7→ ξ: 0 − 1τ 7→ G0, 1 − 1τ 7→ J , 2 − 1τ 7→ K, 3 − 1τ 7→ L, −2 + 0τ 7→ H,
−1 + 0τ 7→ G, 0 + 0τ 7→ 0, 1 + 0τ 7→ A, 2 + 0τ 7→ B, −3 + 1τ 7→ F , −2 + 1τ 7→ E,
−1 + 1τ 7→ D, 0 + 1τ 7→ A0
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