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Abstract

During the last few years, Radio Frequency IdentificatioRIlY has gained increasing popu-
larity in supply chains for tracking the state of goods. Reackvelopments and achievements
together with a decrease of prices enable the tagging ofggondtem level in various scenar-
ios. With the increasing complexity of supply chains, alse tequirements to RFID systems
regarding localization and tracking have become more cexapl

This work presents an approach for localization and tragkirRFID tagged items in practical
applications based on probabilistic considerations. Tdweelty of this work is the fusion of
different information sources of an RFID system in a probstic framework. Hidden Markov
Models (HMMs) are used to model and classify RFID read evants sensor signals in an
identification point model. In addition to that, a probadtic model based on HMMs is used to
consider information from the business layer. The appat@riusion of the suggested models
allows for a reliable localization and tracking of RFID tag$practical applications.

Keywords: RFID, localization, business process modeling, HiddenkdaaModels






Kurzfassung

In den letzten Jahren verzeichnete die Radio Frequencyifidation (RFID) Technologie einen
enormen Aufschwung im Bereich der Logistik. Die rasantdanteitenden Entwicklungen
im Bereich von Transpondern und Lesegeraten ermogligserinzelne Guter in Lieferket-
ten von der Produktion bis zum Verkauf zu verfolgen. Diendt§ wachsende Komplexitat in
Geschaftsprozessen und Lieferketten stellt dabei austeingrofere Herausforderungen an die
eingesetzten RFID Systeme hinsichtlich der Lokalisierund der Nachverfolgung einzelner
Guter.

Diese Arbeit beschaftigt sich mit der Lokalisierung vonlIBFranspondern in praktischen

Anwendungsfallen auf Basis probabilistischer ModellazD werden die verschiedenen Infor-
mationsquellen eines RFID Systems in einem probabiliséisd-ramework kombiniert. Dieses
Framework beinhaltet ein auf Hidden Markov Modellen basiees Klassifikationsverfahren
fur RFID Lese-Events und Sensorsignale. Zusatzlich wiingorobabilistisches Prozess-Modell,
ebenfalls basierend auf Hidden Markov Modellen, fur digditibeziehung von Informationen

aus dem Business-Prozess Layer verwendet. Die geeignetbiKation dieser beiden Informa-

tionsquellen ermdoglicht eine zuverlassige Lokalisngruon RFID Transpondern in praktischen
Anwendungen.

Stichworter: RFID, Lokalisierung, Business Prozess Modellierung, tdiddlarkov Modell






Statutory Declaration

| declare that | have authored this thesis independentlyt tthave not used other than the
declared sources / resources, and that | have explicitlykaarall material which has been
guoted either literally or by content from the used sources.

Place Date Signature

Eidesstattliche Erklarung

Ich erklare an Eides statt, dass ich die vorliegende Arbeit selésthy verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt, uediéin benutzten Quellerowilich und
inhaltlich entnommene Stellen als solche kenntlich geirizade.

Ort Datum Unterschrift






Contents

i
IList of Figured ii
|Acknowledgements v
[1__Introduction| 1
[1.1 Automated ldentification - Auto-ID . . . . ... ... 1
[1.2_Radio Frequency Identification - RFID . . . . . . . . . oo v oot .. 4
1.3 Organization of thiswork . . . . . . .. ... 11
[2__Related Work 13
2.1 localizationusingRFEID . . . . . . oo 14
[2.2__Business Process Modeling and Workflow Mihing 17
2.3 Contribution of thiswotk . . . . . v o oo o 19
13 Hidden Markov Models - HMMs| 21
3.1 Anintroductionto HMMS . . . . . . o 21
3.2 Application of HMME . . . . . . o o 29
3.3 HMM training and classification in practical applicatfo . . . . . . . . . . . . 30
4 Probabilistic System Modéll 35
4.1 System components for localization and tradking 36
4.2 Identification point modelihg . . . . . . ... e 38
4.3 Businessprocessmodeling . . . ... ... 55
[E__Use Casés 71
Bl REIDMIddIEWANE . . .« o o o oo 17
5.2 Use Case 1: Application in fashion logistics 72
5.3 Use Case 2: Tracking Of fruit trdys . . . . v o v v v o e e e 77



l6__Concluding remarks 81
6.1 Futurewordk . . . ... ... 82

[A_Appendix 83
IA.1 Numerical values for the exemplary business procesemod. . . . . . . . . 83

Bibliographyl 87



List of Figures

L1 RFID systemblockdiagram . . . .. .. ... .. ... ..., 6
[1.2__Conveyor beltapplicationwith REID . . . . . . . . ... ... ... .... 9
1.3 _RFID portalapplication . . . . . . . . oo 10
3.1 Discrete Markov chain with four distinct states . . . . ........... 23
13.2__Exemplary Hidden Markov Model . . . . ... ... ... ......... 25

3.3 _Classification using HMMS . . . . . . . . o oo 33

4.1 __System components for localization and tradking . . . ...... . .. .... 37
4.2__RFID Conveyor belt application with two antennae . . . ...... ... ... 38

/ eature set for a tag passing an iden ation poin ntennae .. . .. 39
4.4 Windowed feature $et . . . . . . .o 41
4.5 Clustered feature SDACE . . . . . o v o o 43

4.8 Classification of feature sets . . . . . . . . .. ... 48
4.9 ROCSpate . . ... ... 50
[4.10 Classificationreshlt . . . . . . . . . . 52
4.11 Feature sets for three tags in subsequentlboxes 53
4.12 Classificationreshlt . . . . . . . . . . 54

4.15 HMM of a bUSINESS PrOCESS . . . .« v o v e e e e e 62
4.16 Classifier based on business process information . . ... ........ 63
417 Classifierfusion . . . . . . .. ... 64
4.18 Performance of an arbitrary |dentification point 65
4.19 Weighting factor computation . . . ... ... ... 67
4.20 Classification results . . . . . . . . ... e 68
4.21 Performance characteristics for varying procesereigls. . . . . ... .. . 69
5.1 Use Case 1: Physical SEtUD . . . . . . . . i e 73
5.2__Adaptive window border computation . . . ... ... ... ... 75
5.3 Exemplary RSSLPAern . . . . . . oo oo 76

5.4 _HMM of a practical business process . . . . . . . ...t e 79






Acknowledgements

First of all, I would like to thank my advisor, Dr. Markus Bremer for his academic and per-
sonal guidance during the creation of my Master Thesis. tmtless discussions, his critical
reflections on various theoretical and practical issuesiged me with important insights and
new ideas.

| would also like to thank DI Alexander Gauby, CTO of RF-IT 8wbns GmbH for creat-

ing the curiosity for the field of RFID and his support over kgt two years. My special thanks
go to my colleagues Michael Faschinger, Mario Katusic andniés Kempter for their help
and support.

Especially, | want to thank my flatmates and friends Manuethkein and Philipp Mattle for a
great time over the last five years, their personal supparttaeir friendship.

Finally, | want to express my sincerest gratitude to my farfor all the support and assistance
during my studies.

Michael Goller
Graz, Austria, September 2010






Introduction

The first chapter of this work gives an introductory overvigifield of Automated Identifica-
tion, with a special focus on Radio Frequency Identifica{i@RID). For this purpose, section
1.1 covers the principles of automated identification whsreection 112 deals with the basics
of RFID and RFID systems. Moreover, also the use of prolstlmlimodels in the field of local-
ization of RFID tags is motivated by a discussion of the vasieffects that introduce a random
behaviour in RFID systems.

1.1 Automated Identification - Auto-I1D

Walking into a store, buying clothes or food, books or DVDsisormal task in our every-
day life. Every product we buy usually has been transportkh@ way from manufacturing
over different storage halls and warehouses before it wallyfiplaced in the shelf of a store.
Along this way, products need to be identified for logistid ananagement purposes. This is
the point where Automated Identification (Auto-ID) comewiplay. Auto-ID summarizes dif-
ferent technologies that are concerned with the colleatfanformation about certain objects,
e.g. goods in a supply chain. The key feature of Auto-ID systés that data processing is
performed directly without human interaction. In order ®dble to identify objects, they are
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provided with an identifier which is nothing else but a uniguenber that is associated with the
considered object. In the context of Auto-ID, there are svammonly used terms that shall
be explained here for clarification. Atem is a certain object of interest, which is meant to be
identified by the Auto-ID system. The terms item and object lba used synonymously. As
stated above, items are provided with an identifier thataeestin a machine readable format
using atag or label. A reader is a device that is capable of performing an identification of
items by reading the item identifier. A well known example $oich a setup is the standard
optical bar code: Optical labels contain the item ident#ied bar code readers are used for the
identification. In commercial applications, items are nadggntagged(provided with the label
that contains the identifier) already during manufacturiAg identification point consists of
one or more readers that are used to identify objects aticeritical locations where informa-
tion needs to be acquired. Auto-ID systems have in commadrtlles are employed in some
kind of business processlin general, this term covers the organization of actisi@d tasks
that produce a certain product or offer a certain ser\EIcelfBHhe context of Auto-ID, business
processes describe the flow of goods over different stagehl,as manufacturing, storage and
transportation. These stages in the process can be mapipeatification points of an Auto-1D
system, where all incoming goods need to be identified inra@epdate their regarding the
level of detail at which items are tagged. The first family p$tems uses a unique identifier
for each and every single item. This is referred tatem level taggingand offers a higher
transparency at the cost of additional processing effdi® second family of systems aggre-
gates several items (possibly of the same type) to larges umiich are then provided with an
identifier. Regardless of the level of detail at which itemsiprocess are tagged, the task of
an Auto-ID system is to provide information that allows tdetenine the current position of an
item in the business process, i.eldoalizethe item. Consequentlyracking of an item is the
continuous determination of its position in the businessess.

To make an automated object identification possible, diffekinds of machine readable iden-
tifiers are widely used in the industry, such as bar codes hetagstripes and RFID (Radio
Frequency Identification) transponders. Over the lastadlesebar code labels have dominated
in industrial and commercial applications. Although thehtgology is not new, RFID tags have
gained increasing popularity during the last years whighasly caused by the decrease in tag
prices and the constantly improving performance. Curyetitere is a competition between bar
code and RFID systems, each having its advantages and digades. Bar codes, especially
the so called One-dimensional bar code are ubiquitous imaential applications. Almost ev-
ery product can be identified by means of its Universal Pro@acle (UPC) which is stored



1.1. Automated ldentification - Auto-ID

using a bar code that is printed onto the considered item.aAidges of this kind of iden-
tification are: Bar codes are very cheap, can be placed omwtslpé almost arbitrary size and
shape and moreover reading devices are in the low price sgghi@wever, bar codes also have
their drawbacks: One significant disadvantage is that ifiestion by means of an optical label
requires a clear line of sight between reader and label. USol, dirt or degeneration of the
carrier material of the optical label can have severe negatipact on the read performance.
Another drawback is that bar code readers can only identify/ lmar code at a time. Given a
large number of items, the identification has to be perforsegglentially which is a time con-
suming process. Moreover, bar code systems using the UBGlbaov for an identification of
the type of object, but not of the actual item itself. For epdanthere is a unique number for
all blue shirts of a certain manufacturer, but one can ndirgjaish between shirts of the same
type. For this reason, real item level tagging is not possibl

RFID tags do not suffer from these drawbacks. Since radiceware used for the commu-
nication between tag and reader, a line of sight connectigioi necessary as long as the tag
is not shielded by surrounding metal objects or water. Bygisin anti-collision mechanism,
up to several hundred tags can be identified within a seconchvig simply impossible when
using standard optical labels. Today, tag and label matwriars offer a huge variety of tags,
especially designed for specific applications in the ingustansportation and the retail sector.
Lately also so called “on metal tags” have been developedatieaespecially designed for tag-
ging metal objects.

Identification of goods on item level offers high transpaseonf the underlying business pro-
cess. Itis possible to track the history of an item back tonéufacturing place and date. On
contrast to bar code tagging, which only allows for an ide#tion of the type of object, RFID
tags offer the possibility to track a single, specific itenror the business process point of
view, knowing where a certain item is at a certain time instawvaluable information. Most
RFID systems today to a certain extend offer the possihititiocalize a tag. Identification
points at critical locations (outgoing goods, incoming de@tc.) provide information about
when a specific item left a factory or warehouse or was dedtvén a shop. Due to increasing
requirements to the supply chain, this information may hawe@ot be sufficient. Justin time /
just in place delivery and individual packing need more adea approaches. Individual pack-
ing for example makes an assignment between specific itechparkaging units necessary.
RFID technology has the potential to provide solutions ®sthrequirements, however there
are still challenging issues to overcome.
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Whereas RFID tags were predicted to replace optical barsceai®e years ago, today’s trends
say that both technologies will coexist in the future. Onahe hand, RFID tags are superior
when there is a large number of items to be identified withimartstime, however they are
much more costly than optical labels. Bar codes on the othaed loffer a high reliability and
allow to keep the costs for labels and reader hardware lowtHf®reason, most Auto-ID sys-
tems use a combination of both technologies. Packaging snith as boxes are most often
tagged with optical labels, whereas the contained itemeguéped with RFID tags.

After this general introduction to the field of Auto-ID, themainder of this chapter covers
a brief overview over the basic mechanisms in RFID systerdatlines problems in terms of
localization and tracking.

1.2 Radio Frequency ldentification - RFID

The history of contactless identification using radio wanasyes back to the 30ies of the last
century and has its origins in warfa@[lia]. During World Wamicrowave radars were used
to detect incoming aircrafts by means of backscatteredradves. The major question was
whether the detected plane belonged to allied or hostiefrTo solve this problem, German
pilots started with roll maneuvers in order to change the&kgeattered signal and indicate that
they are allied forces. This is a first, very primitive transsion of a single bit (friend or foe)
using backscattered radio signals.

The achievements in semiconductor industry enabled thelalewment of a variety of differ-
ent RFID transponders during the last decades. The mostigrmRFID technology for the
identification of a large number of items within a supply chaperates in the Ultra - High Fre-
guency (UHF) band arourtt0 MHz. This frequency band implies two consequences for mod-
ern RFID systems. First, the read range of up to several mxetguite considerable. Whereas
this is desired in some applications to enable a distantifttstion, there are also drawbacks
as will be discussed later on. Second, the short wavelerfggtynals in this frequency band
implies a compact tag size. The EPCGIlobal Class 1 Generﬁt@] standard is the latest
standard for UHF RFID systems. The advances in this starefsabled item level tagging in
virtually any application. The standard is built on the u$assive RFID tags, where pas-
sive indicates that the tag itself does not have a power gupptead, it gets energized by the
incoming radio wave and uses this energy to backscattemnation, such as its identifier or
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data stored in the memory. In order to solve the multiple s&peoblem when there are several
tags in the RF-field, an anti-collision mechanism roughlgdzhon the Slotted Aloha protocol

] is defined in the EPCGIlobal standard. During a so caltedntory round, a reader ener-
gizes all tags in the field of its antennae and singles outatedsponses (consisting of the tag
identifier) in a sequential manner. For this purpose, the thgose a random number which is
decremented at the start of every new round. As soon as theermupproaches zero, the tag
sends its identifier as response to the reader request.

Due to well known effects in UHF radio channels, such as ipath propagation and fading
], different problems which result in unreliable reagindo arise. Since the EPC Class 1
Generation 2 standard uses passive RFID tags, the firstgonolslto establish a stable energy
supply for each tag as it passes an identification point. Poegrilations in the used frequency
band limit the reader output power and hence careful antposdioning and orientation is
critical to solve this issue. The second problem is to rex#ne backscattered signal which is
several orders of magnitude smaller than the reader’s exnsignal. This problem is a major
challenge for reader manufacturers which provide highdiagher receiver sensitivities (up to
—80 dBm in state of the art readers). An additional challenge redutim the problem of the
shared medium: Several tag responses may overlap, cawsiisgpas on the channel which a
reader can not resolve in general. Since the standardizeddinsion algorithm is based on
picking random numbers, this additionally introduces @nized behaviour in the tag - reader
communication.

To summarize, the use of UHF signals offers advantages ssieghcansiderable read range
and compact tag sizes, but there are also drawbacks likéabieeread events due to unpre-
dictable wave propagation. Additionally, randomized hedar is introduced by means of the
anti-collision mechanism.

1.2.1 RFID Systems

Modern RFID systems consist of a variety of components aadesh common layered struc-
ture. The general layer model of an RFID system is shown inrdigud. The central layer of
every system is the middleware as connection between gpdsinces and a backend system.
Sensing devices in an RFID system can be RFID readers, barreaders, scales or motion
sensors, but also more common devices such as light basriaifsasound sensors for distance
measurements. These sensing devices have in common thaadfeire some information
about the items subject to a certain business process. haghers and ultrasound sensors can
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Figure 1.1: RFID system block diagram. The middleware can be considasetie cen-
tral layer of an RFID system. It serves as an abstractiorr lagsveen sensing
devices (RFID readers and sensors) that obtain informétion the physical
world and a backend system which is used to store and procEssmation
on a business process level. The task of the middleware isit@age the sens-
ing devices, collect information from these devices andripke condensed
information to the backend system.
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be used to detect the presence of objects, measure their spiee triggering RFID operations.
Bar code readers are still widely in use to identify packgginits (such as boxes or trays) on
conveyor belts. Finally, RFID readers acquire informatabout the RFID tagged items. On the
one hand, this information consists of the item’s identified possibly some memory content,
on the other hand, an RFID reader can also provide informatiout the reading process itself.
A read event for a specific tag consists of:

e The tag identified: As defined in the EPCGIlobal standard, every tag carrieseattifcer
of 96 or 240bit, which allows to assign a unique number toyesergle item in a process
chain.

e Timestampi: The time instant when the read event occurred. Usuallyjragntories
are performed periodically, for this reason each tag wiehmore than one read event,
separated by a unique timestamp.

e RSSI (Received Signal Strength Indicatar)nformation about the strength of the backscat-
tered signal. Most state of the art RFID readers provide t&8IRnformation in a loga-
rithmic scale (e.g. dBm), some even for the in-phase andrqia@ phase componerit (
and(@) of the received signal.

e Antenna index: Since most RFID readers have more than one antenna porh\ahéc
used in a time multiplexed manner, also information abogthtenna which inventoried
atag is provided.

In a more formal notation, a read event for a particular taty wientifier/, is a triple
e=1[t r i (1.1)

Ataginventory is therefore defined as the creation of a trigfer a tag with identifie as soon
as the tag enters the read range of the antenna. Since timéanyes carried out periodically,
each tag will have a seridsof M consecutive read events, whékkis also referred to agad

count:
e tt o0
€9 tg T9 ig
E=| | =] _ . (1.2)
ey I Tm v

The task of the middleware is to collect and evaluate therin&tion acquired by the sensing
devices and to report condensed information to the backesteérs. In general, the backend
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system is some kind of database that stores informationtd®elD tagged items, packaging
units, orders and deliveries. In contrast to the inventéigy tag, thedentification is defined as
reporting a tag to the backend system. Based on a seriestbéveats and sensor signafs,
the middleware has to decide whether or not the tag will berted to the backend system.

RFID systems are required to provide information about theent position of items sub-

ject to a certain business process, i.e. to localize the itethe process. In addition to that
it is necessary to keep track of items as they move througdiffexent stages of the process.
Considering the limited reliability of RFID read events,adust approach for localization and
tracking is required.

1.2.2 Use Cases

In modern logistics and supply chains, individual requiesnts for deliveries also lead to in-
creased requirements regarding the localization of itenttsd business process. In many appli-
cations it is desirable to know which packaging unit (e.goa or tray) contains which items,
or if a box or tray is packed correctly (i.e. contains all ttegns that it should contain according
to the order that was placed). Boxes and trays are usuatigpgated by motorized conveyor
belts inside storage halls, which offers the possibilitinttall identification points that provide
information about the content of boxes as they are passingnbyrder to allow for a reliable
assignment between items and packaging units (i.e. tagb@resk), a large spacing between
boxes would be ideal because antenna radiation patterm®tagebitrarily narrow and the read
range of UHF RFID systems is up to several meters. Additignakve propagation in prac-
tical applications is difficult to predict due to reflections metal items or the ground floor.
However, a large spacing between subsequent boxes canpai\néed for economic reasons.
Therefore, different approaches for the localization gktaith respect to packaging units need
to be considered. Figufe_1.2 depicts a typical conveyordgitication with an RFID identi-
fication point consisting of a single antenna. The convey®®bA and B contain a specific
number of tagged items and all RFID tags are inventoriedebades pass the antenna. Due to
the range of UHF radio signals and the antenna radiatioenpaittis very likely that tags in both
boxes will be inventoried at the same time, making it imploiesio establish an assignment be-
tween tagged items and boxes. This implies that the larggerahUHF signals, though desired
in some applications can also introduce problems wheningdquirements have to be fulfilled.

The effects described above also introduce so cdfiés® positive reads Depending on the
geometry and antenna orientation, it is possible that ¢bjecated in the vicinity of an iden-
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TN
A ] B
Lol
M Tags N Tags
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Figure 1.2: Conveyor belt application with RFID. In many practical dpations, pack-
aging units (boxes or trays) which contain a certain amofitagged items
are transported across storage halls using motorized yors/eThe boxest
and B are moving with a constant speednd an antenna is used in order to
identify the items in each box. An additional requiremeniehis to establish
an assignment between tags and boxes as they are passing by.

tification point that are not meant to be identified will beentoried. Imagine for example an
RFID portal as shown in figule1.3. In this scenario, boXesnd B are moving through the
portal with a constant speedand the items in these boxes should be identified by the RFD sy
tem. Since space is a scarce resource in storage hallsirigeagle zones” around identification
points can not be provided and for this reason, bois located right next to the identification
point. In contrast to the items in boxdésand B, the tagged items in bax should not be iden-
tified, and by no means be assigned to the content of the athdrdxes. Due to the large read
range, the RFID tags in baX will most probably be inventoried as well. If no classificati
among read events is performed, these tags will be repartdtetbackend system, causing a
false positive readHence, the task of identification points is not just to ineep all RFID tags
ever entering the reader field, but alsolassificatiorbetween objects that are actually and de-
liberately passing the identification point and objectsclirare located nearby. In this context,
not the exact location of goods (with respect to a coordisggtdem) needs to be known - it
suffices to have information about whether an item has paksddentification point along the
predefined trajectory or not. In other words, the localaaf goods is discretized according
to the level of detail required by the business process. Tématization needs to be chosen
such that identification points like the RFID portal in fig(Irt& can provide reliable information
about the current location of goods with respect to the lmssiprocess.

Usually, items in a business process have a predefined agstirand follow a certain tra-
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Figure 1.3: An RFID portal. In this application, the RFID systems is usedentify the
items in boxesA and B which are moving at a constant speethrough the
portal. Due to scarce space, boXs placed right next to the portal, but items
in box C should not be identified. Due to the considerable read rahgéi&
RFID systems, items in bo&' will be inventoried as well, which leads to a
false positive read if the middleware does not perform asdiaation of read
events.

jectory through the process. Moving back to the example ti¢hRFID portal in figuré_113,
this could mean that the tags in békalready have been moving through the portal (which
might be an identification point for incoming goods at a wakede) earlier and need not be
identified anymore. Hence, the business process is ablewderinformation that can be used
together with the information from RFID read events. On tbhevdside, business processes are
subject to errors, which result from human error or faulthandware and software. For this
reason, also the business process is not a fully reliabkesad information, similar to the read
events in the RFID system.

Based on these premises, this work presents an approaabbiastiocalization and tracking

of single items in an RFID business process. In this contegglization is always discretized

with respect to the actual requirements of the process. attatiat RFID read events as well
as business layer information are subject to random behamotivates a consideration of the
different information sources in a probabilistic framewoBince standardization is a vital issue
in the field of RFID, the presented system is based on staizéar&FID hardware, compliant

to the EPCGlobal Class 1 Generation 2 standard.

10
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1.3 Organization of this work

After this introduction that discussed the basic compamant tasks of an RFID system, chap-
ter[2 deals with related work done in the field of localizatiorRFID. Since the idea in this
work is to consider the information provided by the undemtybusiness process, also publica-
tions about process mining and modeling will be reviewedagalB then covers an introduc-
tion to the probabilistic model that will be used in this wddt modeling RFID read events
and business processes - the Hidden Markov Model. In chdptiae application of Hidden
Markov Models to RFID systems is described and evaluateaceSine developed models for
localization in RFID systems have found application in theustry, chaptdr]5 discusses two
use cases from ongoing projects. Finally, chapter 6 coesltitis work with a summary and an
outlook to possible future fields of research.

11
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Related Work

The topic on localization using RFID is subject to activeegash. Due to the decrease of hard-
ware costs, RFID readers and tags are used in various fieddisl@snal sources of information.
The first section in this chapter discusses related workerfigid of localization using RFID,
where a distinction between reader and tag localizationbeamade. Since the focus of this
work lies on the localization of RFID tags, the literatureiesv also concentrates on this aspect.
Another categorization in this context is whether the systeses probabilistic algorithms or
directly relies on measurements.

The second section deals with publications in the field ofri®ss process modeling and data
mining in processes. There is a large number of languagexiedly designed for modeling
business processes, but there is a lack of structure arat¢higracross those languages. Recent
approaches are dealing with more mathematical descrgptibhusiness processes that also al-
low for an evaluation of the model quality.

After a short summary of the related work in the field of lozation with RFID and busi-

ness process modeling, the final section in this chapteusisss the contribution of this work
and explains the advantages over previous approaches.
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Chapter 2. Related Work

2.1 Localization using RFID

In the last few years, there have been several approache$féwent applications in the context
of localization using RFID. A main distinction of applicatis can be made regarding whether
a system is concerned with the localization of RFID tags drelD readers. The first family of
applications uses one or more readers to determine thedoaztseveral RFID tags, whereas
the second family of applications deals with the localmatof RFID readers using reference
tags with known positions. An early system for localizinglBFags is called SpotO 5] that
uses several readers to perform a multilateration basedeomeasured RFID signal strength.
The multilateration uses an empirically found relatiopshetween received signal strength
and distance, following a quadratic equation. The authtatte $hat this approach suffers from
significant limitations which are caused by the fact thatgimple empirical model does not
consider fluctuations in the received signal strength. Thagvdacks regarding accuracy, sam-
pling rate and evaluation time do not allow for a reliabletegsoperation. The authors suggests
an extension to the presented system that uses custom taigh, again can be considered as
a significant disadvantage, since standardization in teid fs vital for large companies that
operate supply chains all over the world.

Another system, called LANDMARC (LocAtioN iDentificatioralsed on dynaMic Active RFID
Calibration) ] is based on the idea of a dense reader@mvient that is able to find a tag
location by the proximity to a reader. This approach usase&FID tags for calibration pur-
poses and finding the - nearest neighbours to a tag of interest. Since the usedvherds

not capable of reporting received signal strength inforomatthe transmit power of the RFID
readers is swept in a certain range to get a measure thatiiarsimthe RSSI. This measure

is obtained for every unknown tag and then compared to theefgtence tags by means of a
Euclidean distance computation. The nearest neighbours are found as the reference tags
that have the smallest Euclidean distance to the tag ofasiteSince the position of the refer-
ence tags is known, this allows for the computation of thddagtion up to a certain degree of
accuracy, depending on the number and placement of refetages as well as on the number
of used RFID readers. However, this approach has seveea\diatages. The first problem is
that the system relies on the use of active tags as referembah are much more costly than
passive RFID tags. The second issue results from the facti@d&FID hardware used imzs]
is not capable of providing information about the receivigmhal strength. The workaround of
sweeping the transmit power implies a considerable pratgssne which is not desirable in
practical applications. Last but not least, the use of sgveaders is another important cost
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factor in practical applications.

As an extension to the LANDMARC system i23], the authors[iﬁ] perform a localiza-
tion in a three - dimensional space and utilize RFID readapsble of reporting the received
signal strength. This eliminates the processing time thtoed by sweeping the transmission
power in the LANDMARC system. Instead of using active RFIQ4athe extended LAND-
MARC system uses passive tags also as reference tags, whathygeduces costs in practical
applications. The achieved accuracy lies in the range o &DMARC system, but still re-
quires several RFID readers for the computations.

Another approach that interprets the localization task 8ayesian problem is presented in
]. In this work, several RFID readers with rotating antaemre used and the task of localiza-
tion is formulated as an inverse problem. The presente@sysses RFID readers that are not
capable of providing RSSI information, for this reason tfas$mitting power is also swept in
a certain range. The posterior probability of detectinggaaithe given rotation angle can be
computed as
P(d]0)
P(d)
wheref = (z,y) denotes the location of the tag asidre the acquired data. In equatidn {2.1),
P(0) provides a priori information about possible tag locati@g. limited by walls or objects)
andP(d | 6) is the likelihood of receiving the data vectat a certain tag position and antenna
rotation. This likelihood can be acquired by means of an Riel@@er model which directly de-
pends on the antenna radiation pattern and transmissioarpbwspite this system also has the

PO|d) = P(0) (2.1)

drawbacks of long processing time (due to the necessaryrmswezp) and the need for several
RFID readers, it presents a novel interpretation of thelipa@gon problem within a statistical
framework.

Following the idea of a probabilistic interpretation, salether papers have been published
that formulate the localization task in a Bayesian conthrxdﬂ] and ], approaches that are
similar to the idea discussed above are presented and @ppleobile robots. The RFID sys-
tem attached to a robot is used to localize either the robsiwounding tags. In both cases, the
RFID reader model is learned from obtained read events atinéisapplied to a Monte-Carlo
localization. The RFID reader model learning is done in airgige manner. Given the known
tag positions and reader trajectory, the model stores etand not detected tags together with
the RSSI information. This set of read events is then usedntpate the likelihood of an obser-
vation (with a given RSSI value) at a given position. To dasesthe computational complexity,
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the considered space is discretized into several cells @alasian distribution of RSSI values
in a cell is assumed. The accurate results indicate thatititable to use a probabilistic ap-
proach for localization tasks with RFID. The big drawbackhathis approach is however that
a vast number of read events is needed in order to be able touterthe reader or tag location
using a Monte-Carlo algorithm. Considering a steady idieation point in a practical system
as discussed in chapfér 1, there is no possibility to obteindands of read events for tags that
are passing an identification point. In addition to that, ridsder model inﬂ?] only focuses
on the relative orientation and pose between the readenm@mtend tag, but does not include
environmental considerations, such as object materialgtdctical applications, such environ-
mental considerations are necessary in order to cope wighadypes of tags and tagged items.

The approach for localization discussedm [32] uses sedd&lFID snapshots to estimate the
position of a mobile robot. A snapshot consists of a list gionted tags within a certain time
frame together with the number of read events for each tag.evknt of tag detection is mod-
eled as a random process, following a Binomial distributibairing a training phase, a large
number of snapshots is recorded with a mobile robot that ispped with two independent
antennae. In the evaluation phase, the RFID snapshots iaugaced to the training data using
a Monte-Carlo localization. Since the system is relying ensely tagged environments (with
> 100 tags), the Particle Filter used for the Monte-Carlo loalan suffers from problems
with small particle WeightJBZ]. This method has the adagetthat no RFID reader model
needs to be built or learned, however a large number of reatgis necessary to achieve ac-
curate results.

An algorithm that is similar to the LANDMARC approach but ertls its idea in several ways
is presented irﬂ?]. In this work, two readers are used tordete the position of a tag with
respect taV reference tags by means of a multilateration. The noveltiiisvapproach is that
an adaptive Kalman Filter is used in order to compensatééonoisy RSSI information. More-
over, a probabilistic RFID map is generated that represéetsocation error for each reader.
In contrast to simple empirical models, a large scale path modeIBZ] as frequently found
in the literature is used to estimate the distance betweetatiget tag and the detected refer-
ence tags. Since the goal is to estimate the location of tkeawn tags with respect to the
reference tags and not to the readers, the localizatiorrisrpged among elements in the same
environment that suffer from the same physical effects aedefore show a certain error cor-
relation. Though the compensation of noisy RSSI infornreitsoa valuable and necessary step,
the suggested approach also relies on a large number of veats¢o provide an acceptable
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accuracy. Still, the suggested method could be of interastwit comes to the localization of
static objects when there is enough processing time. Hawtheeresults presented in the paper
are based on simulations only and have not been reprodutiedeai measurement data.

Besides the systems for localization in RFID discussed @bthere exist several other ap-
proaches which are based on Direction of Arrival (DoA) estiion @l]. The idea behind DoA
estimation is to derive the direction of an incoming signalnbeasuring the phase difference
between two antennae. Currently, no off-the-shelf RFIRIes®ffers the possibility to acquire
this information and hence this technique can not be applistandard RFID products.

Some of the publications above provide information aboatabcuracy that can be achieved
using the presented approach. These metrics however &oeiltito interpret and do not allow
for an objective comparison, since the used setups diffgrfstantly regarding the number of
used readers or reference tags and quantization interCalgently, there is no standardized
way of comparing the performance of localization systemsguRFID in terms of accuracy.
For this reason, the review above focuses on criteria tleatativated from a practical point of
view, such as number of readers needed, required procdssi@@nd the use of standardized
RFID hardware.

2.2 Business Process Modeling and Workflow Mining

Modeling of phenomena of any kind is nothing else than anratisbon of ongoing processes
that allows to explain certain observations. This staténcan also be applied to business
process models, where the goal is to describe a process irmalfped language that can be
understood and interpreted by others. It is quite difficuttdver all facets of a business process
and there exist a huge number of modeling Iangu@s [20k€elamguages focus on different
modeling aspects and lack a structural hierarchy. Neviedbgeefficient modeling languages are
the key to describe large and complex processes and arechiefiled optimization potential.
Furthermore, modeling languages allow for a simulationrotpsses, which reduces costs in
the design phase of a new process.

The Architecture of Integrated Information Systems (ARfi&mework EV] IS a very popu-
lar and powerful way to describe processes within a comp&mlowing a structured view,
ARIS considers every process as part of a larger enterpiogkeinThe aspect of process mod-
eling within ARIS is covered by Event Driven Process ChaERB(Cs) that describe a series of
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activities with clearly defined inputs and outputs. The téewent driven” arises from the fact
that nearly all activities in a company are triggered by s@vent. Considering the example
application in figuré 113, an identification point for incargigoods is triggered by the delivery
of goods to a certain warehouse. On the next layer, RFID readtg are triggered by tagged
items moving through an RFID portal etc. Since itis posdibie process to require more than
one input and produce more than one output, ARIS is able teefrd®tisions in a process and
governs these decisions by simple probability measuregagUsich measures, it is possible
to make statements about how likely the outcome of a certaiogss chain is. However, the
ARIS framework does not provide mathematical instrumentevaluate processes regarding
their outcomes and does not allow for more complex mathealativestigations. Besides this
drawback, ARIS is a very flexible and popular tool that is @bleut every process chain in a
larger context, making it suitable to model large and complesiness processes.

Another common approach for modeling business processgscially in the field of software
oriented processes are Petri NJ‘E [33] which are capablesarithing concurrent processes.
Petri Nets are the background for many commonly used maglimguages as the discussion
in [@] implies. Petri Nets are good at modeling concurretivéies in processes, however they
do not have the possibility to obtain any quantitative infation about a process. For example,
it is not possible to get any information about how often gpecsfic path of two or more pos-
sibilities has been chosen or which steps in a process aradkelikely ones. The discussion
in chaptefll indicates that knowledge about the stages ahd gaough a business process
implicitly provide descriptive power that can be used asdulitaonal source of information in
RFID driven processes. For this reason, a process modeastbapable of making quantitative
statements rather than expressing structural dependdadlesirable.

Starting from a Bayesian viewpoint, there have been seagaloaches to find a mathemat-
ically descriptive and flexible way to model business preess The authors 4] describe
an efficient mapping of Petri Nets onto Hidden Markov ModelsiMs) and shows how to use
the HMM in order to evaluate the model quality. In contrasthi® Petri Net representation, the
HMM implicitly allows for the computation of a quantitativgiality measure, as will be shown
later in chaptdrl3. The work [24] is focused on general bissipeocesses rather than the special
features of processes employing RFID. The novelty is howéat business processes can be
described by means of a HMM, which provides great flexib#ibd descriptive power. On the
downside, the idea is restricted to so called Simple Petis Méich explicitly do not allow for
parallelism. This drawback however does not negativelgcafthe modeling of supply chain
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business processes, since tagged items are usually netstdjwo or more concurrent tasks,
but are rather processed in a sequential manner. The auntlboesver state that a generalization
to concurrent tasks is possible at the expense of compnghitomplexity and traceability.

An alternative approach, coming from the field of workflow mup(also called process min-
ing) uses the capabilities of HMMs to cluster sequentiahdedm event Iogsl]l]. In general,
workflow mining is concerned with the extraction of tempguatterns from event logs. Such
an event log is a list of records that were made whenever antgéh a certain process was
performed. In this case, HMMs can be used to find similar oraégtate sequences in the
event logs. Due to its flexibility, the approach of represent business process as Hidden
Markov Model seems a lot more suitable to mathematicallydes business processes than
other modeling languages which focus on the process steictu

2.3 Contribution of this work

Localization in RFID is a popular topic with a lot of recentlighigations. The two major prob-
lems regarding localization are concerned with readellilcatgon on the one, and tag localiza-
tion on the other hand. In general, there are several methatidirectly rely on measurements
of the received signal strength by means of a multilatenaéiod methods that use statistical
approaches to compensate for noisy measurements.

Due to the randomized nature of UHF signals and tag deteetemts, a probabilistic ap-
proach seems suitable also for localization purposes. @$dts in the publications reviewed
above show that localization of RFID tags can be achieveddas probabilistic considera-
tions. However, all presented methods rely on a large numbRFID read events which can
not be provided in most practical applications like the odesionstrated in chaptel 1. Some
of the methods discussed above provide an accuracy whichereynot be needed for prac-
tical purposes. To decide whether a tag is moving throughr&lpar is located besides it, an
exact localization with respect to a coordinate system tshnecessary. Besides this fact, the
presented methods do not consider the whole RFID systenmathérrfocus on modeling the
tag-reader communication. Since the business processiah\R#ID systems operate offer a
great descriptive power about the current state of a tagcah#ination of a model for tag -
reader communication with a business process model is thodogrovide the solutions for the
problems outlined in the first chapter.
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To be able to consider information from the business protags, a formal description of
ongoing processes is needed. Using this description, ildha® possible to perform a quanti-
tative evaluation of every step in the process. The disonsghove indicates that a probabilistic
view of business processes is suitable and that a mappimgdoomonly used process models
(such as Petri Nets) onto Hidden Markov Models is possibleeréfore, the consideration of
the whole RFID system in a probabilistic model is promisiogolve localization and tracking
tasks.

The novelty in the presented work is the fusion of differemtirses of information that be-
long to different layers in an RFID system. As discussed iaptéil, RFID read events and
the underlying business process layer both can not be ceesichs a fully reliable source of
information. The idea is hence to take these sources ofrirdtion and consider them together
in a probabilistic model to perform localization and tragkon a business process level. Due to
the fact that probabilistic models are able deal with randloictuations, the suggested system
is expected to be more reliable in terms of localization carag to systems that rely on RFID
read events only. Since standardization is a critical ifsuRFID processes, the developed sys-
tem is solely based on EPCGlobal standard compliant RFIBersaand standardized passive
RFID tags.
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Hidden Markov Models - HMMs

Hidden Markov Models (HMMs) are a flexible stochastic toal fieodeling times series. The
first publications about the theory of HMMs range back to tB80k and since then, they have
been applied in several fields such as speech recognititiarpalassification and bio informat-
ics. The first section in this chapter presents a short inttdn to the theory and application of
HMMs, especially with a focus on modeling and classificatbbtime series and is based on the
tutorial by Lawrence R. Rabinl]. Whereas section 3i€flgrcovers general applications
of Hidden Markov Models. Finally, sectidn 3.3 describestthaing of HMMs from a practical
point of view and explains how trained HMMs can be used fossifecation of unknown time
series.

3.1 An introductionto HMMs

Phenomena in the physical world in general can be observettlays of signals. Consider for
example a vehicle moving at a certain speed, the air preasunglicator for weather conditions
or electrical currents. The state of the vehicle can be roogitby continuously measuring its
speed. An important step that is necessary to allow for dengtions in a mathematical way
is to find a model of the considered physical phenomenon.Hf®purpose, systems with ded-
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icated inputs and outputs are used. The system mathenhatiesicribes the relationship be-
tween the inputs and outputs. Such systems usually cortbelphysical process in a simplified
way by neglecting certain effects. Ohm’s law for example goad model for the relationship
between the electric current in a conductor and the appliddge, provided that the voltage
remains constant or changes slowly over time. However,asdwt model the behaviour cor-
rectly when high frequencies are used.

Depending on the type of physical phenomenon, there arerdift families of signals and sys-
tems. One important family deals with phenomena that came@alescribed in a deterministic
manner but require stochastic considerations. In thisesttn$tochastic signals are interpreted
as a realization of a random process. A more illustrativerpretation is that a random process
is a “black box” that produces a random sequence of outputs.simplest form of a random
process is a discrete time random process, which meanshthaystem produces an output at
discrete time instances rather than in a continuous marteseamples for random processes
are Gaussian processes, Poisson processes and Markosggc8ince HMMs can be viewed
as an extension to Markov processes, the first part of thisdottion briefly covers discrete
Markov processes.

3.1.1 Discrete Markov processes

A discrete Markov process is a system withdistinct statess;, Ss, ..., Sy, where the state
of the system changes at regular, discrete time instamiste= 1,2,...,7. Such a system
is depicted in figuré 3l1, withv = 4 states and some example state transitions. The current
state of the system can be observed (sampled) at the presentstant, and is denoted ag,
following the notation inl]. From each state, the systeaymhange to any other state with
a certain probability. These probabilities can be writtea icompact form using the transition
probability matrix

a; ... Q1N

A= - (3.1)

any ... QNN
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Figure 3.1: Discrete Markov chain withiv = 4

wherea;; denotes the probability that the systems changes its stateS; to S;. The matrix
A is a so called row stochastic matrix, which means that itsremm up to 1

» a;=1 Vie{l...N} (3.2)

and all entries are non-negative:

Markov chains can be classified regarding their transitimabilities. Whereas the most gen-
eral type of model allows arbitrary state transitions (@&.g.> 0Vi, j € {1...N}), some models
only allow for certain state transitions. A detailed dissios of the different model types is pro-
vided in ].

A special case of Markov processes are systems that obeygherfier Markov assumption.
This assumption states that the current state only depentiealirect predecessor state, i.e.

P(Qt =5; ‘ qt—1 = Sj7Qt—2 = Sk, .. ) = P(Qt =5; ‘ qt—1 = Sj)- (3-4)

The Markov assumption provides a simplification in termsarhputational complexity, since
the current state is conditionally independent of earlredpcessor states. Another simplifi-
cation is achieved by the assumption that the transitiobaiihties are independent of time
which means that the matriX is constant. A commonly discussed example in the literature
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considers the weather as a three state Markov process with

e StateS;: rain or snow
e StateS,: cloudy

e StateSs3: sunny.

Given proper transition probabilities, the model can belusgredict the weather, i.e. compute
the probability that the weather is sunny tomorrow, giveseslations of previous days. In
order to be able to compute the probability of a given seqeietie initial state probabilities
need to be known, i.e. the probabilities that the systentestan a certain state. This can be
expressed in terms of

™ =[m,...,7N], (3.5)

wherer; = P(q; = S;) denotes the probability that the system started in statdo compute
the probability of a certain state sequerize= 535353515153, consider the initial probability
P(q; = S3) and the transition probabilities accordingi®¢gs = S5 | g1 = S3), P(q3 = S3| ¢2 =
S3) etc:

P(O|(mw,A)) =73 - ass - ass - as - a1 - a13. (3.6)

Using this framework, it is possible to evaluate the proliglof observed sequences and pre-
dict the probability of future states.

3.1.2 Hidden Markov Models

The type of model discussed above is appropriate whenegestétte of a system can be ob-
served directly, such as it is the case with the weather-pl@nWhereas the weather can be
observed to decide if it is sunny, rainy or cloudy some systean not be observed directly,
but only e.g. through noisy measurements. In this case teera#tion that is made can be
considered to have a probabilistic dependency on the tate ef the system. This extension
leads to the Hidden Markov Model. The term hidden resultenftbe fact that the true state

of the system can not be observed. To extend the weatherpdxaoconsider a prisoner that is
locked in a cell, deep down in the tower of London. The cellgdnet have any windows and

therefore the prisoner can not observe the weather (i.estéte of the system) directly. Due to
increasing boredom, the prisoner tries to guess about théhereoutside. At noon, the warder
serves lunch and depending on the weather, he carries arellenbith him. The fact whether

the warder carries an umbrella or not is the only piece ofeavig the prisoner has about the
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weather outside. The observation at time instant therefore reduces to the event “umbrella”
or “no umbrella” and depends on the true system state in aapibétic manner. Since the
weather forecast is not fully reliable, it may happen thatwarder carries an umbrella despite
it is not raining outside. On the opposite, it may also happean he left his umbrella at home
hoping for good weather, but it is raining despite that. Rarg state of the system, there is
a probability that the warder takes the umbrella with hirmi&ir to the transition probability
matrix A, this can be summarized in the observation magifor discrete HMMs:

bll blM
B=|:1 . (3.7)

le bNM

whereb;; denotes the probability that the system “emits” the synibobeing in states;. Since

it is possible that the number of symbols does not equal thebeun of states in the system (as
with the weather example abov@),is a/N x M matrix, whereN denotes the number of states
in the system and/ is the number of symbols. For the weather example, therelisamre
symbol, for thisreaso = 1, i.e. B is a3 x 1 matrix. An example of a Hidden Markov model
with NV = 3 states and/ = 3 observation symbols is shown in figlire]3.2.

In order to compute the probability for a system being in daterstate given the current

a1 22 a33
aio 23
hidden
51 52 55 states
a1 aso
bll b2 b12 b22 b3 b23 b33
O observable
! O Os symbols

Figure 3.2: Hidden Markov Model withV = 3 andM = 3

observation, Bayes’ rule can be used:

P(Ut = Ok | qr = SJ)P<Qt = S])
P(Ut = Ok)

Plg = 5 lve = Op) = (3.8)
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More general, the transition and emission probabiliti&saafor the computation of the proba-
bility for any given sequence of observatiais= 0,0, . .. Or.

To summarize, a Hidden Markov Model denoted)ois characterized by the following quanti-
ties:

e The number of possible system stafés Despite the fact that the system states are not
observable, they can still have a physical meaning, as Wihvieather example.

e The state transition probabilities, summarized in thediteoan matrix A. In the most
general form, every state can reach any other state withimgéesstep, which means that
Clij>0 VZ,]G{lN}

e The number of distinct symbol¥ which can be emitted by the system. As discussed ear-
lier, it is possible that the number of symbols is smallergagn larger) than the number
of distinct system states.

e The symbol observation probabilities, summarized in theeolation matrixB.
e The initial state distributionr.
Since the two parametefd and N are implicitly given by the observation and transition prob
ability matricesA andB respectively, the HMM can be represented as a triple
A= (m A B). (3.9)
The literature discusses three basic problems with HMMswioich solutions exist as well
known and widely used algorithms:

Problem 1: Given an observation sequer@e= 0,0, . .. Or, whatis the probability?(O | \),
i.e. the probability that this sequence was generated bynibael \? The brute force
approach for solving this problem is to evaluate the prdiiegs of all possible state se-
guencegs) of lengthT

PO[X) =Y PO[Q.NP(Q]N). (3.10)
al Q

The expression above assumes statistical independenbe observations, and can be
expanded to

P(O[A) Z T H gy —1q:bg. (O)- (3.11)

al Q t=1
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Unfortunately, this approach requires a computationaifgasible number af7" - N7+!
operations, which is why more efficient algorithms, as treeRbrward-Backward proce-
dure EB&] have been developed. Since this introductioreiamhto give a brief overview
over Hidden Markov Models from a practical point of view, tieader is referred t(ELJZl]
for a more detailed discussion of the Forward-Backward gulace.

The question about the probability of a given observatiafusace can be extended to
a classification task. Consider a set/ofHidden Markov Models\;, \s, ... A\x and an
arbitrary sequence®. In order to find out which class the sequence most likely rogdo
to, the probabilities?(O| \;), i = 1...K need to be computed. The model with the
highest likelihood best describes the observed sequenkeeante represents the class of
the signal.

Problem 2: The second problem deals with finding the “best” state setpi@n= ¢:1q> . . . g7

of a system given an observation sequeficdn this context, “best” means optimal ac-
cording to some criterion, such as the “single best stat&graon. This criterion chooses
the states that are individually most likely, i.e. maximi2g), O | A). The question about
the actual system states given an observation sequenceoigreared quite frequently in
communications engineering, where the goal is to decodadhlly sent symbols from
the received observations. The algorithm used for decoaimgbservation sequence is
called Viterbi algorithmﬂl], which is similar to the ForvekBackward procedure, ex-
cept for a maximization step over previous states.

Problem 3: The last problem for HMMs is the estimation of the model paztars
A= (m A B) (3.12)

from a set of given observation sequences. This procedusdased to as training of a
Hidden Markov Model using labeled data represented by mafasisservation sequences.
In general, there is no closed solution to this problem. &lae, however, several itera-
tive algorithms like the Baum-Welch algorithim [4] which che used to find local max-
ima of the probabilityP(Olbe)\). An intuitive method, closely related to the Baum-Welch

algorithm is presented in [21] and is based on counting tlcarmence of events:

7; = expected frequency of being in stateat timet = 1 (3.13)
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expected number of transitions from stateo S;
Q;5 = "
/ expected number of transitions from state

(3.14)

o expected number of times in stafeobserving symbod; (3.15)
v expected number of times in staie ’ :

A detailed description of the computations involved in tlaegmeter estimation is given
in [Iﬂ]. All methods used for estimating the model paransetéra HMM have in com-
mon that the quality of the estimation relies heavily on theice of initial parameters,
since only local maxima of the probability can be found. Fos reason, a good initial
choice form, A andB is vital for the estimation of parameters and the descregiower
of the resulting HMM. Besides the choice of model type, hundfeystem stated” and
emission symbold/, the parameter estimation is the key step in the design of SMM
Whereas the former three can be managed most often in argtfargvard manner, the
latter needs special attention. One approach is to iragdahe parameters with uniformly
distributed values, another approach is to use knowledgatahe underlying physical
process if available. Another problem that comes into plagnvtraining a HMM is the
fact that the training data will always be finite and thereforay be insufficient to cover
all aspects of the underlying process. A possible solutiaihis problem of insufficient
training data is to increase the training data set which msetomes not possible or im-
practical.

So far, the discussion about Hidden Markov Models was abaaeats with discrete observa-
tion symbols and sequences. For modeling certain processksignals in the real world it is
sometimes necessary to consider a more general type of HMigrenobservation symbols are
emitted according to continuous probability density fuoas (PDFs) rather than discrete prob-
abilities. A common approach to deal with such models is tosater the PDFs as a mixture
of Gaussian densities. For such mixtures, algorithms ferestimation of the mixture compo-
nent weights and the parameters of the underlying Gaussiasitees existlﬂZ]. In contrast to
discrete HMMs, the observation probabilities are no lorgmiected in a matrixB of discrete
probabilities, but rather as a set of PDFs.
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3.2 Application of HMMs

After giving a brief introduction about Markov chains anddden Markov Models, this section
provides a general overview over possible applicationsMiM$. Moreover, the application of
HMMs to RFID systems and business process modeling is nietlva

HMMs can be used for classification and recognition taské ssschandwriting recognition,
gesture or motion recognition from video signals or speedognition. All recognition sys-
tems have in common that they perform a feature extractiom fa given signal to derive an
abstract representation by means of a time series. Thetedrieatures are then processed by a
set of HMMs and possibly some post processor which is coedewith certain characteristics
of the considered time series, such as grammar for speech.

For example, HMMs are widely used in speech recognition deoto find and recognize basic
units of speech, such as phonemes, syllables or even whotiswior this purpose, a feature
extraction from the given speech signal is performed whioktroften includes a spectral repre-
sentation. This representation is then analyzed by a setwviqusly trained HMMs. Basically,
the HMMs perform a classification task and give answer to IBroll (i.e. how likely is it
that the considered model produced the current set of odis@ng) as discussed in the previous
section.

The attractiveness of HMMs mainly results from the fact ttiety are not concerned with
the actual signal representation (e.g. voltage over tilmgt)rather rely on extracted features.
Whenever it is possible to extract common features from argsignal, HMMs can be used
for recognition and classification tasks if certain assuomgt (such as the first order Markov
assumption) are fulfilled up to a certain degree.

In an RFID system, read events are reported in a standardiagds shown in equatidn 1.2.
Such a series of read events can be interpreted as a sighial $shédject to random fluctuations
as will be described later in chaptér 4. Together with infation from other sensing devices,
an abstract representation of these signals can be founchgsof a feature extraction. This
representation can be mapped to a discrete time series efvalti®on sequences which can be
modeled by means of a HMM. Using the mathematical framewbHW\Ms, it is also possible
to classify unknown feature sets. This makes HMMs suitainetfe application to RFID sys-
tems, since identification points need to perform a clasgitio of read events in order to report
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reliable information to the backend system.

Similarly, HMMs can also be used to model business procedsea process, the identifica-
tion of an item at a certain stage yields a discrete obsenvatymbol. For example, if an item
with identifier I was identified at a “goods-in” identification point, the mlieldtare will report
to that backend system that the item with identifievas read at identification poikt An item
moving through the different stages of the process hencdiaithp provides an observation
sequence of the last stages in the process

O=klmn, (3.16)

wherek, ..., n denote the the corresponding identification points. Thiseokation sequence
can be modeled by a HMM in a straight forward way, since naieagxtraction and mapping to
observation symbols is necessary. Conversely, HMMs wifit@piate parameters can be used
to determine the probability of certain trajectories thgbuhe business process, which in turn
can be used to support the localization of items. This dsonasmplies that HMMs are well
suited for modeling RFID business processes. Moreovey, phavide a flexible and elegant
mathematical framework to numerically represent and etalinformation from the business
process layer.

3.3 HMMtraining and classification in practical applicatio ns

This section describes from a general point of view how HMMs be used for classification
of signals obtained from sensing devices in an RFID systernerdas the structure and char-
acteristic of the HMM depends on the setup of the considatedtification point, training and
classification follow a general procedure.

In general, discrete HMMs require discrete observatiomerges for training and classifica-

tion. For this reason, a mapping from the signals obtainewh fsensing devices in the RFID

system to discrete valued observation sequences needfartok This abstract representation
is derived by extracting appropriate features from theagnTo account for the fact that dis-

crete time series are needed, the available signals needs@niypled in an appropriate manner.
Every sample yields & dimensional feature vector

E=[fi foo. fil (3.17)
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which means that the features spaniatimensional vector spa@®*. Consequently, sampling
a signalK times, yields a feature set &f feature vectors

F=[f £ .. fx| (3.18)

In order to model the temporal evolution of the feature vebpmeans of a discrete HMM,
it is necessary to assign every feature vector to a specifiergation symboO;, O,, ... O,,.
This is a common problem in statistical data analysis ancktleist a variety of algorithms for
this task. One standard approach is to use the K-Means thigoas described ir[f}zS]. The K-
Means algorithm tries to find/ sets of clusters in d dimensional feature space by minimizing
the sum of squares within each clust&r

k
argmin ) > |If; — I (3.19)
=1 ijOi

wherep, denotes the mean (or centroid) of clust®r Applying the K-Means algorithm to a
set of training data

Fl fll f12 cee flK

- F for £ ... f

F— .2 _ 2.1 22 2.K (320)
FL le fLQ e fLK

of size L yields M clusters that can be interpreted as the observation syrobtie HMM as
discussed in chaptét 3. This means that the number of mdahaigsters equals the number
of observation symbol8d/ of the HMM. Provided these clusters, each feature set cauttir
be mapped to a series of observation symbols that can be aiseadrt the considered HMM,
for example with the Baum-Welch algorithm.

As mentioned earlier in this chapter, learning algorithike the Baum-Welch algorithm rely
heavily on a good initial guess of the parameters, sincedneynly able to find local maxima
of the probability functionP(O | , A, B) in a recursive manner. One approach is to establish
an initial guess from a physical interpretation of the medgirocess. This, however is a time
consuming iterative process that requires a lot of expestk@dge and intuition.

Another possibility is to randomly initialize, A andB, estimate the values from the given data

set and evaluate the likelihood of the found model. This @doce is repeated until the model
with the best parameters (yielding the highest likelihogedpund, or until the number of iter-

31



Chapter 3. Hidden Markov Models - HMMs

Algorithm 1 HMM Learning in pseudo-code
for : = 1 to MAXITERATIONS do
initialize A; with random numbers
initialize B; with random numbers
initialize ; with random numbers
estimater, A andB and evaluaté (O | \; = (7, A, B)) using the Baum-Welch algorithm
end for
A = arg mixxP(O |\ = (7, A,B))

ations exceeds a certain limit. The corresponding pseode-is shown in algorithin 1. Given
the structure of a HMM (i.e. the number of stat¥sand the number of observation symbols
M), the HMM learned this way best describes the observatita sitO. A third possibility

to obtain the parameters of the HMM is to combine the two apgnes described above. For
example, it is sometimes possible to obtain an initial gdiesthe prior state probability vector
7 from a physical interpretation whereas the transition philities can be initialized randomly.

Applying the training procedure described above to difierdasses of feature sets leads to
a set of HMMs which can be used to classify unknown feature $&ir this purpose, the same
kind of sampling and feature extraction needs to be apptieyéry given unknown signal set.
The next step is then to assign every sampled feature vecéordbservation symbol. As stated
above, the observation symbols are equivalent to the chidezived by the K-Means algorithm.
Each clusteiO; can be described by its mean vectgrand covariance matriX; that can be
estimated from the training feature vectors belonging tariqular cluster. In order to assign
an unknown feature vector to one of thé clusters, the Mahalanobis distance

di =\ (6 — )T — ) i= 1M j=1.. K (3.21)

is computed for each feature vector and cluster respegtiVak feature vector is then assigned
to the cluster that yields the smallest Mahalanobis diganthis way, a series ok feature
vectors is mapped to an observation sequénaghich can be evaluated by means of the trained
HMMs. For this purpose, th&’ previously trained HMMs are used to evaluate the obsemvatio
sequence) by calculating the probabilitie®, = P(O |)\;). The classifier chooses the HMM
that yields the highest probability and outputs the cowesiing class. A general classifier for

N different signal classes using HMMs is shown in figuré 3.3.
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Signal sources HMM B
» )\1 >
,
2
Feature extractiop — Obs. sequenge Hk/lM > S
2 @ Y =1
o —
[}
a)
| Hvm | P
Ty >

Figure 3.3: A general classifier for a set d¥ different classes. Given a set of signal
sources, a feature extraction is performed that yields eratis time feature
setF. This feature set is mapped to an observation sequénttet can be

classified by evaluating the probabilitiéy, ..., Py. The classifier outputs
the label of the class with the highest probability of prddgcthe particular
sequence.

Using the mechanisms for training and classification dbsdriabove allows to consider
RFID read events and sensor signals in a probabilistic nattva¢ can account for random
fluctuations. Due to the mathematical framework providetHMMs, also an efficient classifi-
cation of signals is possible.
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Probabilistic System Model

After the general introduction to Hidden Markov Models ahéit applications to RFID system
and business process modeling, this chapter presenttsdaiaut the suggested system for lo-
calization.

Section 4.1l discusses the different types of informatianeses in an RFID system and shows
how these sources can be considered in an appropriate whkcédization and tracking tasks.
Based on this discussion, the general localization systehitacture is presented.

Sectior 4.2 deals with the details of modeling RFID read tvand sensor signals by means of
HMMs based on an exemplary identification point. For thisgoge, the extraction of features
from the available signals and the mapping to discrete ¥aien sequences is described. In
the next step, details about the training of HMMs and a modaluation are presented. This
includes an evaluation of the developed classificatioresystased on real RFID read events.

Finally, sectio 413 presents an approach to consider essiprocesses employing RFID in

a probabilistic framework by means of a HMM. For this reasofgrmal set of rules that map
a given business process to a HMM is discussed. The obtanoedgs model is then used to-
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gether with the classification of feature sets for local@matasks. The section concludes with
an evaluation of the overall system based on simulatiortsesu

4.1 System components for localization and tracking

Considering the general layer model of an RFID system as shovigure[1.1, there are dif-
ferent components in an RFID system that can be considersalases of information. On the
lower layers, there are RFID readers and sensors that gravidrmation about RFID tagged
items and objects around an identification point. As statethaptef L, this information is sub-
ject to random fluctuations for various reasons. Besideséhsing devices, also the backend
system can be interpreted as an information source in tefrbgsiness process information.
The backend system is able to store information about eagyetd item, including the recent
stages in the process or the physical condition of items agsl tSimilar to RFID read events,
this business process information is subject to fluctuateord errors.

The idea in this work is hence to combine the two differentetypf information sources —
both considered as not fully reliable — and use them togdtrdpcalization and tracking of
items in the business process. For this purpose, a likalilgdor an item passing an identifi-
cation point is computed based on the information obtairyetthé® sensing devices in the RFID
system. In addition to that, the localization system cogrsidnformation from the business
process, denoted §. The result of the localization is an estimate of the curpasitionx of
an item in the process and can be used to update the busigesfii@rmation. The structure
of the suggested system is shown in figure 4.1.

The mechanisms for localization and tracking are well sufte the implementation in the
middleware of an RFID system. As shown in the general systegnvaew in figure[ 11, the
middleware is the central layer of every RFID system witkifeéces to sensing devices and the
backend system. For this reason, the necessary infornfédierior localization as outlined in
figure[4.1 does not require extensive changes to the artini¢eaf an RFID system.

Starting from this general system architecture, the falhgawo sections describe the prob-
abilistic modeling of identification points and businesegasses using HMMs. Besides an
in-depth discussion of HMM training and the classificatidrfeature sets, this also includes
an evaluation of the derived models using real RFID readtevamd an exemplary business
process.
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Business process

Identification point »| Localization / Tracking

Figure 4.1: System components for localization and tracking. An idimaiion point in
an RFID systems provides a certain likelihadd of items passing the identi-
fication point, based on RFID read events and informatiomfother sensing
devices. Together with the informatidi provided by the business process,
this likelihood can be used to estimate the current locatiofian item in the
process.
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4.2 ldentification point modeling

The problem statement in chapiér 1 briefly outlines the requents to identification points
using RFID. This section presents a probabilistic modelidentification points based on an
exemplary conveyor belt application.

4.2.1 Physical setup

The physical setup of the example identification point isvahan figure[4.2. Boxes with a

A > (% )

/N N
e e v
L4 Tags Lp Tags L¢ Tags
i
Lightbarrier \ Conveyor belt
Lp Tags

Ground floor

Ly Tags Ly Tags

Figure 4.2: RFID conveyor belt application with two antennae. Boxes$ toetain a spe-
cific numberL; of tagged items are transported by a conveyor with constant
speedv. In addition to that, there are boxes located besides theegon for
example on the ground floor. The task is to identify the itemhe conveyor
and assign them to the correct box. For this purpose, twamaatand a light
barrier as sensing devices are used.

specific number of items are transported on a conveyor att@oinspeed). The suggested
approach uses an RFID reader with two antennae and a lighébas sensing devices. The
light barrier is meant to give information about when a bopassing the identification point
by means of a digital signal. On the one hand, this signalesl uig trigger the processing, on
the other hand it also provides information about when a bmt&re the area between the two
antennae. The two antennae are connected to an RFID reaubér iwlurn reports read events
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4.2. Identification point modeling

to a host PC over an Ethernet connection. The conveyor betiristantly moving boxes with
tagged items into the RF - field of the two antennae. Moredkiere are boxes located near the
identification point which contain tags that will also beemoried.

4.2.2 Signals from sensing devices

After a description of the physical setup of the identificatpoint, it is helpful to have a look
the signals provided by the RFID reader and the light bar@ven that a box with a tagged
item is passing the identification point at constant speaslto expect that the tag will be first
seen on antennd; as soon as it enters the field that is determined by the antewition
pattern. As the conveyor belt moves on, there will be an apgihg section where the tag is
inventoried by both antennae in an alternating manner.fguhis period, the light barrier will
indicate that there is currently a box present. Finallyreheill be a stage where the tag is only
seen on antennd,. Figure[4.B shows the resulting signals obtained from the events on
the two antennae and the light barrier. Although the readtsvebtained by the RFID reader
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Figure 4.3: RSSI pattern and light barrier signal for a single tag passivo antennae at
constant speed.

provide a pure discrete time signal, the plot in figuré 4.3wemts the sampled points for a more
convenient view. In addition to that, the the output of tightibarrier signal is scaled to the
magnitude of the RSSI values. Theaxis in figurd 4.B displays a time axis that is shifted to the
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time instant at which the box was exactly at the center ofdleatification point. Hence, read
events that occurred prior to this time instant show a negaitnestamp.

There are three interesting facts about the RSSI patteons tihe two antennae in figure 4.3.
The first fact is that the sampling intervals between two sghsnt read events are not constant,
i.e. read events are not subject to uniform sampling witheesto time. The reasons for the non
uniform sampling are twofold: On the one hand, there areiphysffects on the channel which
cause that the intervals between two inventory rounds aggengg on the other hand there are
also reasons located at the protocol layer as read eventspameed to the host PC. The second
interesting issue is that the amplitude of the signals shilmetuations and discontinuities. The
orientation and angle between tag and reader antenna, tagfacturing issues and multipath
propagation across the physical channel are possible £éoiséhese fluctuations. The third
noteworthy fact about the RSSI pattern is the limited nundfeead events for each tag pass-
ing the identification point. Depending on the speed of tiggea item, the antenna radiation
pattern, the transmitted power and the total number of tagsd field, it is possible to obtain
RSSI patterns with several ten read events in most praetpgaications. The number of read
events is an implicit measure of “how well” a tag was seen gegiic identification point. The
more read events, the more information can be obtained fnemadrresponding RSSI pattern.

4.2.3 HMM Training

Provided these signals, a feature extraction that enabiespgping to discrete observation se-
quences as discussed in secfiod 3.3 can be applied. To owvert® issue of non uniform
sampling intervals, a windowing technique is suggesteawgplits the whole RSSI pattern up
into K windows of equal lengtfiy,,. Considering the symmetry of the physical setup and the
RSSI pattern, it is suitable to perform a symmetric windayaicross the RSSI pattern, indicat-
ing that K is an odd number. Figufe 4.4 shows the RSSI pattern discadmr@ withK' = 5
windows of lengthly, = 900 ms. The total frame length is then

Ty = K - Ty = 4500 ms. (4.1)

The values forK and Ty, were chosen according to the following considerations: fiisé
parameter to be chosen is the total frame length which wasted&o the length of the RSSI
pattern. It is chosen such that the frame contains all readtsyi.e. the RSSI pattern is not
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Figure 4.4: Windowed feature set for a single tag across two antennae.

truncated. Once the frame length is chosen, the number afomis K is the next parameter
to be determined. Given a fixed frame length, a compromisdseebe found between the
number of read events per window and the frequency at thalsigme sampled. If the window
size is small, this yields a higher sampling frequency bsi &nplies that the number of read
events within each window will be rather low. This is a disadtage for the feature extraction,
since the variance of the chosen features increases.

For the representation in a discrete state sequence, rigaistes need to be extracted from
the available signals within each window. These featurelside information about the current
light barrier state (i.e. whether a box is present or not),diso statistics regarding the RSSI
pattern. Possible features regarding the RSSI pattern are

e Number of read events in a window
e RSSI statistics (median, mean value, variance .. .)

e RSSI signal energy in a window

s=(r[nl,rin]) =) |rin]? (4.2)

for real valued signals in a linear scale. The drawback & theasure is that the unit
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of RSSI values differs from manufacturer to manufacturet isrsometimes provided in
logarithmic scale, for which the signal energy can not bemated this way.

e Slope of the RSSI pattern or higher order derivatives

Considering the random fluctuations of RSSI patterns, mmaditieal functions like first or
higher order derivatives do not seem to be an appropriatesumeathough the slope of the
RSSI could provide information about whether a tag is moumgards an antenna or not.
Statistical moments like mean or variance would comperfsattne fluctuations of the RSSI
pattern, however these moments do not cope well with statisiutliers. Hence, the median
value seems to be an appropriate feature. The same arguppdiesao the signal energy within
a window: Due to its integrating nature, outliers do not ¢desably affect the signal energy
and hence could be used as a robust feature of the RSSI patteennumber of read events
inside a window is another possibility to obtain a statisfithe reported read events, especially
in cases where no RSSI information is available. Considehat state of the art RFID readers
do provide an RSSI value, other features such the media® ekl expected to be more de-
scriptive. Provided these facts, the median RSSI valuenvitach window is chosen as feature
for the RSSI pattern. The resulting feature vector is hence

f= [fAl 7:142 u]T (4 3)

where the tilde operator stands for the median amdkenotes the output signal of the light
barrier in an appropriate scale. In this case, the chose¢urésaspan vector space with= 3
dimensions which also allows for a convenient graphicarprtetation. For the mapping of
feature sets to discrete observation symbols, signals ft6ftags in several boxes passing
the identification point have been recorded. After extrarthe features above, the K-Means
algorithm can be applied to cluster the resulting featuitors in a set of\/ groups. Figure
4.3 shows the result of applying the K-Means algorithm tofdature sets, with a number of
clusters respectively observation symbolsidéf = 4. The four symbols correspond to four
physically meaningful states of a tag within a window:

e Tag is seen on antenmy, corresponding to the observation symbgl

e Tag is seen on anteny and on antenna, and the light barrier signal indicates that a
box is between the antennae, corresponding to the obsemstmbolO,

e Tag is seen on anten, corresponding to the observation symbgl

e Tag is not inventoried at all, corresponding to observasymbolO,.
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Figure 4.5: Feature space with clustered data points and cluster a@sitrbhe plot shows
feature vectors from 165 tags passing the identificationtpdihe data points
in thed = 3 dimensional space are grouped idtb= 4 clusters, correspond-
ing to the observation symbols of a HMM.
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In figure[4.5, the median values for the RSSI pattern on aaténrrespectively4, have been
normalized to the interval . . . 1], whereas the light barrier signal is weighted with a factor o
ks = 5. Since the light barrier provides a deterministic signlis information is weighted
stronger than the fluctuating information obtained fromR&SI pattern. Figurie 4.5 does not
provide information about the temporal evolution of featsets, since it shows the whole set of
obtained feature vectors, regardless of the actual sequdlavertheless it provides an intuitive
interpretation of the extracted features that correspordifterent states of a tag passing the
identification point. In addition to the cluster centroitlse K-Means algorithm also provides
a mapping between every feature vedioand the containing cluster, which can be used to
determine the discrete time observation sequeénceé),, ... Ok . For the first four tags from
the data set in figule 4.5, the corresponding observatiamesegs are

o) = 0,040,050, (4.4)

0%2) = 0,0, 0,050, (4.5)

o) = 0,0, 0,050, (4.6)
and

O = 0,01 0,05 05, (4.7)

This shows that four tags, though located in the same boxegspaiss the identification point
take different trajectories through the feature spaces dhectly results from the random na-
ture of the feature sets, which are illustrated in figureé 4i6tlie four tags mentioned above.
Whereas tags, . . . I, provide a sufficient number of read events, the tag with iflent/; suf-
fers from a relatively low read count, resulting in the olva¢ion sequenc@®V). This illustrates
the random fluctuations of RSSI patterns, especially wheretis a large number of tags in the
field of the reader. Despite the tags. .. I, are moving in the same box across the conveyor
belt, the feature sets and resulting observation sequaneegiite different. This is an issue for
which a HMM as a versatile stochastic model for time serigsazaount for.

Considering that the number of observation symbols for &sellting HMM is derived from

the number of clusters in the feature space, the next stepdgfine the number of hidden
states. This can be derived in a straight forward manner thanprevious discussion about the
physical states of a tag and hence the number of statssequal to the number of observation
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Figure 4.6: Feature sets of four tags inside the same box passing theficktion point.

Whereas the light barrier provides a deterministic sigtied, RSSI patterns
show strong fluctuations in amplitude, sampling intervald aumber of read

events.
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symbols:
M=N=4 (4.8)

for the shown example. With the structure of the HMM definé, obtained feature sek
mapped to a set of observation sequeri¢esin be used to train the HMM, i.e. find appropriate
values forr, A andB according to the discussion[in 8.3.

The Hidden Markov Model derived in the discussion aboveasgnts the class of tags passing
the identification point at a constant speed. Since the thkedadentification point is to dis-
tinguish between moving and stationary tags (perform aiflaation of the considered feature
sets), the same derivations can be applied to the classtmingtey tags. The idea is hence to
use a second HMM representing the class of stationary tafydlows from theoretical consid-
erations regarding the received signal strength that tagsipg an identification point show a
different behaviour than tags which are stationary in thefiRl@ of an antenna. The latter class
of tags will have a more or less constant feature set thaperguposed by random fluctuations.
The feature sets for two stationary tags are shown in figifeaé. another box was passing the
identification point. Due to the fact that the light barriggreal does not provide information
about the state of stationary tags, the feature space tuorstay tags only consists of the me-
dian RSSI value on each antenna. The obtained signals camajyeechto discrete observation
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Figure 4.7: RSSI pattern and light barrier signal for two stationarystagxt to the con-
veyor belt as another box is passing the identification pointcontrast to
moving tags, the RSSI patterns are relatively constantstilisuperimposed
by random fluctuations.

symbols using the procedure described above. The phystg sndicates that the structure
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of the HMM representing stationary tags is equivalent todtnecture of the HMM modeling
moving tags, regarding number of hidden stateand number of observation symbadls. The
behaviour of the HMM, resulting from the transition and alva#ion probabilities however will
be different, since stationary tags are likely to stay in ate state in the feature space, emit-
ting the same observation symbols again and again. Thenggmmocess of the second HMM
is straightforward with an appropriate data set of statipitags.

The explanations and discussions so far showed how to depvebabilistic model of an iden-
tification point using Hidden Markov Models. The first stegomocessing the signals obtained
from sensing devices is to apply a windowing technique tplitisshe signal up intd{ windows

of equal length. The next step is to extract robust featus the windowed signals. These
steps are necessary for abstracting a discrete time seoéslinom the reported read events.
The extracted features span@ndimensional vector space, where every sample point &rigin
from the feature extraction within a single window. In orderobtain a training set of obser-
vationsO from the RSSI patterns, the data points in the feature speed to be partitioned
into M labeled clusters, corresponding to the discrete observaymbolsO, ... O,, of the
HMM. Using this training data set, the parameters of the HMiW be estimated by employing
an iterative algorithm.

The HMMs obtained this way describe the behaviour of movimgjstationary tags at an identi-
fication point and can account for random fluctuations in R&®erns. Moreover, it is possible
to use these HMMs for the classification of feature sets. Txt section deals with the clas-
sification of unknown feature set and presents a framewarkhi® evaluation of classifiers.
Using this framework, the performance of the presented ifod@&lentification points will be
evaluated.

4.2.4 Classification using HMMs

With two appropriately trained HMMs, a classifier with a stiwre similar to the one shown in
figure[3.3 can be used to distinguish between feature setsrfroving and stationary tags. The
classifier for the particular example with two classes isashin figure[4.8. The classification
is based on the probabilities

P(O|\) (4.9)
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that the an observation sequence derived from the featumeasegenerated by one of the two
HMMs. This is done most easily by computing the likelihootdladLL ratio)
P(O[M)

A(O)= ———= < 4.10
as frequently used in statistical hypothesis testing. THsaript/ denotes that this likelihood
ratio corresponds to an identification point. In the equaabove,y denotes an appropriate
threshold value. The feature extraction also provides wedes valuesy; andw, which can
be interpreted as a measure of the reliability of the cureature set, for example the number
of obtained read events. In general, a binary classifiegassin unknown object to one of two

| Hm h
' LLratio | Y =1
—
. X O
Feature extractiof —> Obs. sequenge
Ay
Arsy '
HMM [
> Ao —>
w1y
W2

v

Figure 4.8: Classification of feature sets at an identification pointsé&hon the signals
from sensing devices and the corresponding mapping toatiésabservation
symbols, two HMMs are used to evaluate the probability ofdhserved se-
guence. The classification is performed by evaluation ofréiselting likeli-
hood ratioA; = %. The feature extraction additionally provides two scalar
factorsw, andws which can be interpreted as a reliability measure of the used
features.
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. actual positive: X = 1 | negative: X=0
assigned
positive:Y =1 true positive | false positive
negativey =0 false negative | true negative

Table 4.1: Confusion Matrix of a binary classifier. The actual classrobhject is denoted
by X whereas the classification result is denoted’by

classes. In this case, the outpuof the classifier can take the valuesr 1, therefore € {0, 1}.

An output ofY” = 1 means that the considered feature set belongs to a tag vehpelssing the
identification point and” = 0 stands for stationary tags. Hence, there are four posbili
for the classification result, summarized in the so calledfusion matrix ], presented in
table[4.1, whereX denotes the actual class of the unknown pattern. A trueipesiescribes
an outcome where the classifier assigns the unknown objeectly to the specific class, i.e.
Y = X = 1. Inthe case of feature sets originating from tags passindeattification point,
this means that the classifier correctly decides that afeagt belongs to a tag which is passing
the identification point. A true negative is also straightfard: The classifier correctly decides
that the unknown object does not belong to the consideresd alady” = X = 0. For a feature
set, this means that the identification point correctlyg@ssihe corresponding tag to the class
of stationary tags. A false positive as outcome of the diassion means that the classifier as-
signs the object to the considered class, despite it belmngsme other class” = 1, X = 0.
Mapped to an identification point, this means that the di@sgrroneously assigns a feature set
to the class of tags passing the identification point. A faksgative finally indicates that a tag
passing the identification point is considered as statigrieenceY = 0, X = 1. Both types

of errors introduce severe problems in RFID systems, becawgsrrect data is reported to the
backend system.

Two common metrics, directly following from the confusioratrix are the false positive rate
(also called “false alarm rate’-a and the true positive rate (also called “hit rate” or “reQall
Py. Given a set of labeled test - data, it is possible to estirtieige two metrics according to

- Nep

FA Nn (4.11)
and N
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where
Nep. .. number of false positives
Ny .. .total number of negatives
Ntp...number of true positives
Np. . .total number of positives

These two performance metrics can be visualized in the 3edcROC (Receiver Operating
Characteristic) space, which is suitable for the comparigalifferent classifiers regarding their
performancé_—él]. The general ROC space in fiqure 4.9 shaws thteresting points. First, the
point (0, 0) represents classifiers that always reject objects fromdbigament to a considered
class. On the one hand, this means that no false positivesazam, on the other hand there
are also no true positives, since the classifier always tejee unknown pattern. The point
(1,1) represents the opposite strategy, where all objects armgnasisto the considered class,
regardless of the observed data. In this case, all trueiypesdre met, but the false positive rate
also equald’a = 1. The point(0, 1) in the ROC space represents perfect classification: There
are no false positives, sinég, = 0, and the classifier is able to assign all true positives to the
correct class, hencBy, = 1. The line P, = Pra in figure[4.9 represents the performance of
a randomly guessing classifier. If the true positives aresgee right ab0 % of the time, also
the false positives will bé&0 %. The ROC space allows for an intuitive interpretation of the

0.4r R
031 -
0.2F 2

01t »

Pea
Figure 4.9: General ROC space. The ROC space can be used to assess thedajual
binary classifiers by means of the true positive rBig and the false alarm
rate Pea. The point (0,1) in the ROC space represents a perfect fitadin
result.
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classifier performance. The closer the resulting point thécupper left cornefo, 1), the better
is the performance of the classifier. Conversely, as sooheagesulting point lies in the lower
right section of the ROC space (below the lifg = Pra), the performance of the classifier is
worse than guessing. Whereas discrete classifiers onlybilt class of an unknown object,
scoring classifiers also provide a probability measurettiebbject belongs to this class. In the
case of two competing HMMs, this score is provided by theliliiad ratio

A1(0) = % S 7. (4.13)
By sweeping the threshold for the likelihood ratio in the intervaj € [—oo, 40|, @ ROC
curve can be derived by evaluating the false positive arelgasitive rate for every value of
This way, it is also possible to derive an optimum valuesf@s will be demonstrated later.

This framework for the performance analysis of classifisrapplied to the classification of
RSSI patterns using a test data set. The data set consigdokés, each containing 15 tagged
items (trousers and shirts), making up a total of 225 movags tand 10 stationary tags in the
vicinity of the reader antennae. The stationary tags hatbe tmnsidered for every box passing
the identification point, hence the total number of statigriags is 150. This test data set is
representative for many practical applications in theilr@tdustry, where it is common that
boxes contain around 15-20 tags on average. The resulti@ydR@e is shown in figurie4.10.
Analyzing the ROC curve now also allows for the determinatbthe threshold parameter
by picking the point that is closest to the point of perfeetssification. For this reason, the
Euclidean distance from every point along the ROC curve éqothint of perfect classification
is computed, and the point with the smallest distance iseogeldingy = 1. This is quite
intuitive, since two HMMs of the same structure are used,tAerccomputed probabilities will
be within the same range. The likelihood ratio test hences&eevaluate

A(0) = % <1, (4.14)
whereA;(0) > 1 indicates the assignment to the class of moving tags,Aa(@) < 1 stands
for the assignment to the class of stationary tags. The margase ofA;(O) = 1 will per
definition also assign a feature set to the class of tagsmgag® identification point. This gives
the classifier a rather liberal behaviour in the case of d¢gsabng evidence.

For the optimal value ofy = 1, the results regarding false positive and true positive aae
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Figure 4.10: Classification result in the ROC spade:a = 0.0067 andFp = 1 fory = 1.
These results imply that a single tag was erroneously asgigmthe class of
tags passing the identification point, despite it is statigrin the vicinity of
the reader antenna.

Nep=1 and Ntp = 225 (415)

yielding
Pea = 0.0067 and Py =1. (4.16)

This shows that the descriptive power of the trained Hiddemkdv Models is suitable to per-
form a classification between stationary tags and tags thaiassing the identification point.

Since the task of an identification point is not only to digtirsh between moving and station-
ary tags, the approach above needs to be extended in ordEvid@ an assignment between
tags and packaging units. The physical setup of the coreziddentification point in figurie 4.2
suggests that due to the small spacing between subsequead, ltds highly probable that the
time-frame of the current box will contain also read everdgftags in the previous and subse-
guent boxes. This issue is demonstrated in fiqurel 4.11. Tdtespbws RSSI patterns for three
tags located in three consecutive boxes where the timeefiaroentered to the timestamps of
the box in the middle. The distance between the three boxesh@sen ag, = 0.5 m to meet
the requirements in practical applications. There is aiggmt overlap of the consecutive fea-
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ture sets: When the second box enters the read range of amenthe first box is still located
under antennal,. To solve this issue and provide an assignment between tabgackaging
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Figure 4.11: Feature sets for tags in three consecutive boxes. The spaaiing between
two subsequent boxes cause a significant overlap of theréesets.

units, the classification approach discussed above nedus égtended. In general, every tag
will be considered irl” consecutive time frames and classification processes. egaestly,
this means that there will BE likelihood ratios

Ar=[An Apn... ALl (4.17)

computed for each tag. To assign a tag to a box, simply theftiamee with the highest like-
lihood ratio needs to be found. This means that the assignb&ween tag and box can be
established%} time-frames after the box was passing the identificatiomtpevhere[-] de-
notes the ceiling round operator. The same consideratigply o stationary tags, which will
also be considered in the time-frames of subsequent boreisl case, the set of likelihood
ratios will always indicate that the considered tag is stary and hence the tag will never be
assigned to any box. Figure 4112 shows the result of theifitat®n process when an assign-
ment between tags and packaging units is performed. Thedagb is equal to the tests that
were performed for the classification among stationary aoding tags. The optimal point in
the ROC space provides the following results regardingfatssitive and true positive rate:

Nep=0 and Ntp = 224 (418)
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Figure 4.12: Classification result in the ROC space for the assignmemtdmt tags and
boxes: Pea = 0.0 and Pp = 0.9956 for v = 1. This result implies an
error free assignment between tags and boxes. However, owimgntag
was considered to be stationary.

yielding
Pea=0.00 and Pp = 0.9956. (4.19)

A closer look at the result shows that a single tag was coreidas stationary, despite it was
located in a box passing the identification point. The assgm between tags and boxes how-
ever was error free, which points out that the suggestedaphiris suitable for the localization
of RFID tags in practical applications.

4.2.5 Summary

The previous discussion presents a probabilistic modeidtmtification points in RFID sys-
tems. Using this model it is possible to perform a classificabf feature sets obtained from
RFID read events and sensor signals. Moreover, this apprcat be extended to perform an
assignment between tags and packaging units, which is a comeguirement to RFID sys-
tems.

Since the read events reported by RFID readers suffer froomaniform sampling, a window-
ing technique is used to obtain a discrete time series ofifeatectors. Every feature vector
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represents a robust statistic of the RSSI pattern in eactdomircombined with deterministic
information from other sensing devices. The set of featexdars is mapped to a discrete time
observation sequence which can be modeled and evaluatefHisIMs.

The presented experimental results proof that the sugtjestecept is suitable for the local-
ization of RFID tags in practical applications. Since itfiags to know the location of tags with
respect to packaging units, the localization can be peddrivy means of a classification of
feature sets. Whereas demonstrated on a specific apphicttie concept is extendable to other
applications, such as RFID portals or dockdoors. Provitleddct that the physical setup of
the identification point is optimized to report a sufficienimber of RFID read events, HMMs
can be used to build a classifier that performs a classificdtédween moving and stationary
tags. In addition to that, it is possible to establish angasaent between tags and packaging
units as the pass an identification point. Since the probldaise positive reads is encountered
quite frequently in UHF RFID systems, this methods is pramgi$o enhance the performance
of identification points.

4.3 Business process modeling

The previous section was dealing with a probabilistic mdaleidentification points that can be
used in order to perform localization by means of a classifina This section describes how
business process information can be used in order to suppatization and tracking tasks. For
this purpose, every stage of the process is considered asateeof a Hidden Markov Model.

The representation of a business process as HMM makes amratibal treatment possible and
allows for the evaluation of the flow of goods in the process.

4.3.1 Basic approach

In general, the task of an RFID system in business procesdeseéport the identification of
items at certain identification points to the backend syst&milar to many other information
processing systems, the layer model of an RFID system asmshofigure[1.1 suggests that
there are in general three types of packets that can be exetidetween the layers of a system:

e Control packets: These include certain commands, for el@abgiween the middleware
and RFID readers, such as power settings, poll intervatppob settings etc. This type
of information is used to define the behaviour of an identifocapoint or RFID reader.
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e Status packets: Especially large RFID systems need to b&aneshregarding the status
of devices, connections etc. This is usually done by senstisiys packets in predefined
intervals. For an RFID reader, such a packet can includenmdton about its tempera-
ture, antenna connection status, current output powerTétis information is collected
by the middleware and also reported to the backend systemdoagement purposes.

e Data packets: Contain the actual information acquired bYRRID systems, such as read
events and sensor data. On the higher layers, this infommatinsists of abstract process
data, e.g. that an item has changed its location frota B.

The information flow in a RFID system is shown in figlre 4.13.ubl, the middleware col-
lects information about read events and reports directithédbackend system. Consequently,
there is usually no data information flow concerning prockgsa from the backend system to
the middleware. The basic idea of this section is to estalalisinformation flow between the
backend system and the middleware as illustrated by therred an figure[4.1B in order to
support localization tasks. This data flow provides theress process informatiol as de-
picted in the system architecture in figlirel4.1. As brieflylinatl in chaptel]l, the underlying
business process is able to provide descriptive informatlmout the tracked items subject to
the process. Provided that process information is availebthe middleware, certain issues
regarding the localization of items can be investigatedhftbe business process viewpoint.
Since business processes also suffer from uncertainga#tirgy from hardware defects or hu-
man error, also a probabilistic model for business proseappears suitable as discussed in
chaptel’2. To account for information on the business lemelattempt to model processes
using Hidden Markov Models is presented. This approachigesva framework that can be
used to investigate on the following three questions in alDRIFystem. First, it is possible to
obtain information about the history of every tagged itenaiprocess. This means that the
localization system has the possibility to “ask” where amitcame from and how likely it is
according to the business process that this particulariggnventoried at the current location.
In a mathematical formulation, this can be described as

P(IDW™ | H). (4.20)

In the equation above, the term (D stands for the identification event of a tagged item at an
identification point:. This probability measure can be used in order to suppodi#ssification
regarding false positive and false negative reads. Conaghan the conveyor belt application
presented in the previous section. If an item was alreadytiiied at this stage earlier, the
likelihood according to the process that it will again begpag this identification point is rather
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Backend - System
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\ 4 \ 4
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\4 A4

Identification Point /
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Figure 4.13: Information flow in an RFID system. Similar to many other imf@tion
processing systems, there are control, status and datatpaoichanged be-
tween the different layer of the system. According to thegested system
architecture in figure_4l 1, establishing a data flow betwberbackend sys-
tem and the middleware allows to support localization aadking in RFID
systems.
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low. Second, the use of business information enables gardgmpensate for weak RFID read
events, which were also discussed already in the previau®se The approach of modeling
and classifying feature sets with HMMs relies on the infotiorathat is contained in the pro-
vided RSSI pattern. Data from the business level can paotiypensate for a potential lack of
information in case of weak read events. If an item providésmanumber of read events as
it passes an identification point, the classification precaght decide that this item was not
passing the identification point due to the lack of evideriEehowever the item is following
its ideal trajectory through the states of the businessga®icthe likelihood according to the
business process that this item is inventoried at the paatiedentification point will be rather
high. Third, the use of business layer information can aksdélpful for problems beyond
localization. For example, it possible to derive certairaswges and statements about hardware
components in an RFID system, like RFID tags and readerssi@enfor example a simple
business process as shown in figure ¥.14 where goods arganeenby identification points
at four stages. Imagine that one box leaving the factoryigeal/a sufficient amount of read

Factory Shop
1

Outgoing Incoming
Goods g Goods

A4

Sales area

Manufacturing

Figure 4.14: Example of a simple, linear business process with four stage

events at the first two identification points, but was hardlgd by the third RFID reader for
incoming goods. Then again, the tagged items were identirethe sales floor with a high
number of read events. This indicates that the RFID tagsdarctimsidered box perform well,
but there is a certain probability for hardware problemsatitientification point for incoming
goods. Conversely, tags that continuously provide weatk egants might suffer from degraded
performance. This is in particular interesting for taggeanis that are subject to periodic pro-
cesses, in which the RFID tags can be replaced at a certgi. sta

These are issues that can not be considered by identifiqaiots that operate in an isolated
manner. Since the backend system has the possibility te sttmrmation about tagged items
across the different stages of a process, it becomes applaatproviding this information to

the middleware and offers considerable advantages.

The remainder of this section provides a formal set of ruhes specify how to model busi-
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ness processes using HMMs and shows how the informationda@by the business process
can be used in order to support the localization of items.hAtdnd of this section, simulation
results from an illustrative business process examplebeilpresented.

4.3.2 Mapping business processes to HMMs

In order to be able to consider the information provided leylibisiness process, it is necessary
to find a mathematical representation by means of a model.midpmping of common process
models such as Petri Nets to Hidden Markov Models which affere mathematical flexibility
has been covered in recent publicaticﬁlslﬂ, 24]. These qathldns present a general frame-
work for creating HMMs from Petri Nets and use them for dataing and the evaluation of
the quality of derived process models. This work focuses$erapplication of HMMs to model
business processes for RFID systems. As discussed earlieisichapter, an RFID business
process consists of a set of distinct identification poicastesponding to the stages of the pro-
cess. These stages can be interpreted as the states of aMddeov Model. The transition
probabilities between the different states are defined byules governing the process. The
possible structures of HMMs offer a great flexibility for nmedishg processes: Whereas most
processes are strictly linear, HMMs are also able to accfauribops and periodic processes,
simply by choosing appropriate transition probabilitietvieen the corresponding states. The
choice of transition probabilities also makes it possilblertodel uncertainties. Considering
the example process in figure 4.14, it is possible that itddpscertain stages in linear process
models, either due to hardware defects or the lack of RFID esants. This behaviour can also
be modeled by HMMs, by allowing transitions not only to theedt successor state, but also to
the next state after that.

To map a given process to a Hidden Markov Model denoted gythe following consider-
ations need to be applied:

e Every identification point that acquires information abthé items subject to the process
corresponds to one state in the HMM. Since there are also tyjhes of readers (bar code
readers, scales etc), the term identification point neeth& tconsidered in an extended
way. In addition to that, one state of the HMM is required todeladefect tags, i.e. tags
that can not be identified by means of an RFID reader.

e The prior state distribution probabilitiesare derived in a straight forward manner from
the rules describing the business process. For example gmuesses employing RFID
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have one or more “tagging stations” which are used to att&ibRags to the considered
items. These tagging stations can be considered as thstsii@in most cases.

e The transition probabilities,;; follow directly from the ideal trajectory of an object
through the different stages of the process. Whereas tlgsiie simple and intuitive
for linear process chains, more complex structures suclo@ssl|additionally require
considerations about possible successors to each statbewcdrresponding transition
frequencies.

e The observation probabilitigs; will equal unity for most cases, but can also be adjusted
to consider crosstalk between closely spaced RFID ideatidic points.

e To allow for arbitrary state transitions, the transitiomlpability matrix A needs to be
modified such that there are no impossible state transitidhss is done by setting all
zero probabilities to an arbitrary small valeeThis can be thought of adding some noise
to the state transitions, which in turn provides the correidéiMM with more flexibility.

To ensure thatA is a row stochastic matrix (i.e. the rows sum up to 1), theofeihg
modifications need to be made:

. H{(mn") | A(m,n)>0}| —
A(m,n) = ot aommoy Al =0 (4.21)
A(m,n) —e A(m,n) >0

where|{(m,n’) | A(m,n’) = 0}| denotes the number of elements in romthat are equal
to zero and{(m,n’) | A(m,n’) > 0}| denotes the number of elements in rewwhich
are greater than zero. Depending on whether the procesgristly dinear left to right
process, backward transitions may or may not be allowed.s@hee modifications need
to be done for the prior state probabilities vectoin order to allow for arbitrary start
states.

The rules above indicate that some expert knowledge is sagem order to find good param-
eters that define the behaviour of the Hidden Markov Modehc&ithis is an issue that may
not be fulfilled, especially when considering large and clexprocesses, the parameters of the
business process HMMi = (7, A, B) can also be learned by means of logged observation
sequences. This training procedure can be performed irathe gerative way as described in

sectior 3.B.

To demonstrate the application of these rules to a givembasiprocess, a slightly more com-
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plex example compared to the process in figurel4.14 is irgegstil. Consider a process in the
retail sector, consisting of the following five identificati points:

e 1 - Packing table: After the manufacturing of clothes, they jut in packaging units
for transportation. Packing tables are used quite fredyiasttagging stations (in order
to provide the items with RFID tags) and for quality assueanthis identification point
consists of a single RFID reader per table that reports taetiiier of each item to the
backend system.

e 2 - Outgoing goods: As soon as the assembled packaging ueita@ant to leave the
factory, their content is checked by means of an RFID porthich allows for the iden-
tification of a large number of items, e.g. on pallets. At gt&sge, it is only possible to
check if the current delivery is complete, since no assigrirbetween items and packag-
ing units can be established.

e 3 - Incoming goods I: The ordered items are shipped from tbig to the storage hall
of a shop, where the completeness of the order is again cthdgkeneans of an RFID
portal.

e 4 - Incoming goods Il: Assuming a complete order, every pguigunit is checked
a second time while it is moved on a conveyor belt to its ddssterage space. This
identification is used in order to guarantee that every pgidgaunit contains the desired
items.

e 5 - Unpacking table: As soon as the items are meant to be ptatedsales floor in the
shop, they need to be unpacked from the boxes in the stordigddiging this process,
another identification is performed, similar to the packiagle at the beginning of the
process.

Applying the mapping rules to the process above yields thevtBWiown in figuréd 4.155, where
the transition probabilities have not yet been providedhwidditional noise. Since there are
five identification points in this process, the total numbiestates in the HMM is six, because
the defect state needs to be added. The transition praiebdcross the different states follow
straight forward from the process description above. lreptd account for the possibility that
items are not inventoried at the identification points 3, 4 &nalso transitions to the states
after the direct successors are allowed. Identificatiomtsd and 6 are however expected to
provide reliable information, since human interactionngolved during packing and unpack-
ing. The transition probability for every state to enter tledect state is according to the defect
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Figure 4.15: HMM structure for the exemplary business process with fiages. In addi-
tion to the stages of the process, a defect state needs todmdedan order
to account for the possibility that a tag can not be identifigdan RFID
reader. The transition probabilities between the statésifdrom the rules
governing the process. For the sake of simplicity, the ofasen symbols
are not shown. The numerical values of the HMM are provideabipendix

Al

probability P, of the used RFID tags, which is specified by the manufacturer. the sake
of simplicity, the observation symbols with the accordinglgabilities are not shown in figure
415, sincé;; = 1Vi=j.

Using this HMM, it is possible to compute the probabil®(O | \gz) of trajectories (i.e. ob-
servation sequencé&d = 0,0, ... Oy ) for any given item in the process. The calligraphic
notation is used here in order to distinguish the quantitbesesponding to the business process
from the quantities used in the previous section to modaladgat an identification point. The
likelihood of an observed sequence can be compared to ahddservation sequenag;, by
means of the likelihood ratio

Ps(0) _ P(O]Ag)

As(O) = 510y = PIO: ) @.22)

The ideal observation sequence is the sequence that masirthiz likelihood at the current
identification point and can be determined in a straight &sdvmanner from the transition
probability matrix A. The likelihood ratio computed this way indicates to whicttead an
observation sequence of states represents a valid sequoehedusiness process. The resulting
structure is depicted in figute 4]16. The derived processatnmah now be used in addition to
the RFID read events and sensor signals to perform a cladgificat an identification point.
For this reason, the classification system is extended bipubmess process classifier. There
exist different methods of combining the result of sevelassifiers, especially for classifiers
offering a “soft output” by means of a probability measurthea than a class label onlm25].
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Figure 4.16: Classification according to the business layer informatibine observation
sequence&) is compared to the ideal sequen®@g of an item at the current
stage of the process. This provides the likelihdgglof the item’s trajectory
through the process.

One approach, calleBayes Averages to compute the average posterior probability from all
classifiers. Since the classifiers in this work provide Ilik@bd measures rather than posterior
probabilities, this idea needs to be adapted accordinglyaskign a tag in one of two classes,
a weighted sum of the classification result based on therwdd&geature sets and the business
layer classification is computed:

A= U}lA] + U}QAB § ’5/ (423)

where? denotes an appropriate threshold value in the domain ofikbhood A. The scalar
factorsw; andw, can be used to adjust the weights of either classificationltre3 he two
weights are chosen such that

w1 + we = 1. (4.24)

The structure of the suggested classifier, based on thenfabtbe identification point classifier
and the business layer information is shown in figurel4.17general, the feature extraction
is able to provide reliability measures of the extractedueasets. The idea for the fusion
of the two classifiers is to use these reliability measureseghts for the individual classifi-
cation results. Since the number of read events is a measul®i well a tag was seen at
an identification point, this is one possibility to deriveaiability measure. In order to ful-
fil the requirement of equatidn 424, the total number of reagnts needs to be normalized.
Furthermore, it is suitable to apply a deterministic fuotto the number of read events that
adjusts the weights accordingly. The final decision aboaiptrticular sequence of read events
is performed by evaluating the weighted sum of the individikalihood ratios.
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Figure 4.17: Classifier fusion: The classification reslf based on the information ob-
tained from the feature s@ and the classification resultz according to
the business process information are used together forisiategvhether an
item was identified at the particular identification point.

4.3.3 Model Evaluation

The performance of the system depicted in fiqurel4.17 is ardlipy means of a simulation. To
demonstrate the effects when business layer informatioansidered, the identification point
“incoming goods I” from the exemplary business processesihmulated. For this purpose, an
arbitrary identification point classifier, characterizedts false positive and true positive rate is
combined with the business process classifier as descnlbe previous paragraph. To show
the descriptive power of the business layer informatiorglbdrately weak classifier is chosen
for the evaluation of feature sets. The chosen classifieased on two overlapping Gaussian
distributions for tags passing the identification point atationary tags. The corresponding
ROC curve is shown in figufe 4118. The chosen classifier hassiderable false positive rate
and a moderate true positive rate which would not be acckpitalpractice.

In general, a process as shown in figure .15 is subject to tmaskof errors. First, there

is the possibility that an item is not identified by an RFIDderat a particular stage of the
process. This is an issue for which the process model caruattmr by choosing appropriate
transition probabilities. Second, there is the possiniliit items are not moving along the ideal
trajectory through the process. Applied to the example iar&gl.I5, this could mean that an
item that has already been shipped through the RFID pontahé@ming goods is by accident
passing the same identification point again. Or even worsé&ean from a later stage of the
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Figure 4.18: ROC curve of the simulated identification point classifiers =
0.085, Pp = 0.917.

process is again shipped through the RFID portal for incgngimods. From a process point of
view, there are hence two possibilities:

e Items following a valid trajectory through the businessgass are passing an identifi-
cation point. These items have a high probability of beingnidied according to the
process model.

¢ Items following an invalid trajectory through the procesSonsequently, these items
should not be identified at the considered identificatiompsince the probability ac-
cording to the business process model is low.

Considering the possibility that items can also be placedarvicinity of an identification point
without shipping them through deliberately, this givesrfpassible combinations:

¢ Items following the ideal trajectory through the businegscpss are passing an identifi-
cation point.

¢ Items following an invalid trajectory through the businpsscess are located in the vicin-
ity of an identification point.

¢ Items following an invalid trajectory through the busingsscess are passing an identifi-
cation point.
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¢ Items following the ideal trajectory through the businesxpss are located in the vicinity
of an identification point.

To account for these possibilities resulting from procesparfections, a noise level is intro-
duced in the simulation which specifies the percentage wist®llowing an invalid trajectory
through the business process:

B # of erroneous identification events
- # of total identification events

(4.25)

For examplep = 0.1 means that 5% of all identification events result from tags déine passing
a particular identification point though they should be iother stage of the process and 5%
result from stationary tags that should actually be ideadifyielding a total percentage of 10%.

As described in sectidn 4.2, the feature extraction prevaleeliability measure,, w, of the

considered features. As an exemplary reliability measoréelature sets obtained from RFID
read events and sensor signals, the simulation also ircitadees for the number of inventories
for each tag. Based on empirical data, the read count is &sstofhave a Gaussian distribution

M ~ N (par, o3) (4.26)

wherey,, = 20 ando?, = 100 represent the mean value and variance of the Gaussian distri
bution. Using this measure, the weighting factaris computed by means of an empirically
found function

wi = f(m) = —/m (4.27)

wherek, is a normalizing factor that can be interpreted as the makieapected number of
read events;, = ﬁ The function applied to the number of read events ensuat$ita clas-
sification result obtained by unreliable read events getvavweight, as shown in figurle 4.119.
For the extreme case of a single read event 1, the classification result of this read events
is almost neglected in favour of the business process irdbom, sincew; <. Conversely, if
the number of read events is high, the classification resartt the identification point classifier
is considered as more reliable and the business informggatsa lower weight. Whereas the
general relationship between the weighting faetgrand the number of read events as relia-
bility measure is based on the considerations above, theifumin equatiori 4.27 was found
empirically.

Using the described setup, several simulations are peefbrnthe first simulation considers
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Figure 4.19: Empirically found relationship between weighting factordarelative read
count. The weighting factar; is computed according to the relative number
of read events. The lower the number of read events, the l@aadso the

weight on the classification result of the identificationroi

a reliable business process with= 0. The ROC curve fo = 10000 identification events is
shown in figuré 4.20. In comparison to the identification palassifier, the result is improved
considerably. The false alarm rate decreased by simultesheimcreasing the true positive rate.
Mapping this result to the RSSI pattern classifier preseimnetde last section suggests that a
perfect classification is possible if the identificationmtainodel is used in combination with
reliable business layer information. Moreover, the ressitiow that this approach is suitable to
compensate for weak RFID read events and weak classifie@rpehce.

To show the impact of imperfect business processes, thesmaxtlation shows the classifi-
cation results when the noise level is varied in the inteft¥a).5]. A noise level ofn = 0.5
means that half of all read events result from tags that arénnthe appropriate stage of the
process. This is a value that exceeds the amount of everfigaigarocess by far, nevertheless
it demonstrates the system behaviour if no reliable busipescess information is available.

For every noise leveh, the performance characteristics of the system are eealudtigure
[4.21(a) shows the resulting true positive rate as a funaifdhe process noise level, whereas
the corresponding false positive rate is visualized in 8¢u21(b). An increasing amount of
process noise leads to a degradation of the classifier peaifure: The true positive rate de-
creases whereas the false positive rate constantly ireged$e effects of unreliable business
processes can be compensated to a certain extend by thditistizanature of the HMM. If,
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Figure 4.20: ROC curve for the classification in an error free businessgs® withn = 0:
Pea = 0.058, Pp = 0.944. Compared to the isolated identification point,
the performance is improved significantly by considerinigrimation from
the business process layer.

however the process noise dominates, the performance of/érall system might decrease to
a level that is even below an isolated identification poirr iealistic process noise levels, the
business layer information provides a valuable supporrims of localization.

This evaluation proofs that considering business layarmétion in an appropriate model is
suitable for improving the localization of RFID tags in piaal applications. Since HMMs

can account for errors in the process, the localizatiomlpdity on a particular identification

point can be significantly increased. Combined with the epgin of modeling RSSI patterns
and sensor signals with HMMs, the results are promising kapece the performance of RFID
systems in practical applications.
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Figure 4.21: Performance characteristics for varying process noissdein increase of
the process noiseyields to a degradation of the classifier performance. The
detection rate constantly decreases, whereas the faise r@te is increasing

with n.
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Use Cases

Due to the fact that the RFID market is constantly growingrerend more business processes
in the industry use RFID systems for localization and traglof goods. The developed models
have been implemented in a middleware and are used in s@vejatts in the industry. In this
chapter, sectioh 5.1 gives a general overview over the dasian RFID middleware and de-
scribes how the mechanisms for localization can be intedratexisting software frameworks.
The remainder of this chapter then describes two use caselscanthe derived models have
been adapted in order to fulfill the particular requiremeridsie to the fact that the projects
implementing the developed models are still ongoing, ongiminary results from integration
tests are available.

5.1 RFID middleware

As briefly discussed in chapter 1, the middleware is the aeklayer of an RFID system. The

core functionality is hence the integration of various kaate components, such as RFID read-
ers and bar code scanners on the one, and interfaces to bawkeiness applications on the
other hand. To the developer of an application, hardwarepom@nts need to be abstracted in
a standardized way, such that differences in the variowsstgp RFID readers are covered by a
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dedicated software layer. Depending on the particulariegipdn, the middleware also needs to
provide management tools and interfaces to other apmitats well as mechanisms for user
interaction.

Considering an object-oriented approach in software dgveént, the developed models can
be implemented in encapsulated classes which can easitydggated into an existing software
framework. Since tag read events are reported in a starédardiay, appropriate data structures
can be used to store these events for processing. The usdkbwade is based on the Microsoft
.NET framework and the programing language C#. Besideshfecboriented approach, this
language offers various comfortable features, such ascasitdelegates (also called events).
The algorithms for classification using HMMs are based on aHihplementation under the
Code Project Open License (CPOB [9].

After this brief introduction, the next two sections coventuse cases from ongoing projects
in the industry.

5.2 Use Case 1: Application in fashion logistics

The first use case where the developed models have beendaggdiks with tracking of clothes

in a logistic warehouse, where goods are transported indomxenotorized conveyor belts. The
speed of the conveyor beltis= 0.6 %' and packaging units contain 20 tags on average, with
a maximum of up to 80 tags. The requirements to the RFID systensimilar to the ones
described in chaptét 1:

e The RFID system needs to establish an assignment betweeéls gad packaging units,
i.e. tags and boxes. In order to check the content of packeeisfor correctness and

e perform a classification of read events in order to filter algd positive reads.

Due to the given geometry in the storage hall, the possiloiions for installing an identifica-
tion point are limited to a region where several conveyot lets are closely spaced to each
other. The physical setup of the identification point caimsgsof the antennael; and A, is
depicted in figuré 511. Boxes on ling, pass the identification point where the content is in-
ventoried. The RFID system is ought to report the contenvefyebox to the backend system,
which compares the identified tags to a given target list.aseof a mismatch, the considered
box is directed to an alternative destination, where itd@anis checked manually. For this
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Figure 5.1: Use Case 1. Physical setup. The identification point opgiata storage hall
with a total of five conveyor belt lines, ... Ls. The task of the RFID system
is to perform a classification regarding false positive seaigd to establish an

assignment between tags and moving boxes.
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reason, the processing time available to the RFID systemmited: The content of a box must
be reported to the backend system before the consideredpassing the so called “pusher”
(denoted a9 in figure[5.1), an actuating device that changes the dinectiadhe box by push-
ing it on another conveyor belt. Link, is meant for boxes with correct content, wherégs
transports boxes to another destination where the corgeafteécked manually. The approach
discussed in chaptel 4 for establishing an assignment battags and packaging units can not
be followed in this case, because the classification resuleeded immediately after the box
left the read range of the second antenna. One idea to copehstfact is to consider tags
from preceding or succeeding boxes in the background HMNMrttwalels stationary tags. As it
turned out during a simulation, this does not provide satisiry results, because the different
feature sets can not be sufficiently modeled by a single HMM.tkis reason, there are two
more HMMs used, which represent tags from preceding andegdacg boxes. The training
of these HMMs is straight forward: Consider feature setsreteding or succeeding tags and
assign the features to observation sequences which caméhesed as a training data set. An
unknown feature can then be classified as demonstrated jiecizh

An additional challenge in this setup is that the conveydr ipay stop at any time due to a
congestion of boxes. On the one hand, this issue has a bigvdistage, because the Hidden
Markov Model for the classification of feature sets are bagethe assumption of a continuous
movement of the tagged items. If this is not the case, thesifieation of the extracted time

series will provide false results since it is based on a wrasgumption. On the other hand,
this also provides the advantage that boxes which are ldcaflet underneath an antenna will
provide a sufficient amount of read events for classificafitme conveyor belt is stopped. Nev-
ertheless, some modifications need to be made to the appsaggested in chapter 4 in order
to ensure that the extracted feature set is according todhmealization of the time-axis when

the conveyor belt is stopped.

To consider the issue of a stopping conveyor, an additioigaiadi signal is used that indicates
the current state of the conveyor belt — either running ormeting. Under normal conditions,
the window borders for the extraction of features are coegbatcording to the chosen window
size and the time instant when the box is passing the idattdic point. Given that the con-
veyor is stopped, the tags inside a box do not physically gbdneir state. For this reason, the
window border computation is based on a timer that starte@s as a box enters the read range
of the first antenna. This time instant is indicated by mediadight barrier signal. The timer is
initialized with the window size and is constantly decregsts value, as long as the conveyor
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belt is moving. The moment when the timer value attains zedicates the timestamp of the
next window border. The timer is then reinitialized and tstalecrementing its value again. In
case that the conveyor stops while the box is in the read rahtiee identification point, the

timer is paused and the window border is delayed appropyriat@is mechanism for adaptive
window borders is shown in figute 5.2.

ts ty

\ 4

ty to ts t

t; ...box enters read range, timer startds first window border
ty .. .timer elapsed; is second window border

t3 ...conveyor stops, pause timer

t, ...conveyor starts, resume timer

ts ...timer elapseg; is third window border

Figure 5.2: Adaptive window border computation

Using this mechanism allows us to consider the fact thatdhgeyor belt might stop during
operation, without the need of modifying the Hidden Markowdél for classification. The
RSSI pattern of a tag that stopped twice while passing thdifti@ation point is shown in figure
5.3. The window borders in figute 5.3 were computed accortbrifpe considerations above
and are adapted properly to the periods where the conveltas Iséopped.
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Figure 5.3: RSSI pattern in case of a stopping conveyor

Filtering out false positive reads from tags in the oppoditection on adjacent conveyor
belts requires another modification. Since tags that arsim@she identification point in the
opposite direction will also move through the feature spacthe opposite direction, it be-
comes apparent that the HMM for tags moving in the correcatiion will output a very low
likelihood. To detect tags moving in the opposite directianledicated HMM can be used that
represents tags moving in the backward direction. The imptged system hence uses a total
of five HMMs (forward, backward, stationary, preceding andceeding tags). The HMM that
outputs the highest likelihood for a given observation sege represents the estimated class.

This use case demonstrates the flexibility of the suggegtpach. The basic idea of model-
ing RSSI patterns and sensor signals as discrete time séfiees the possibility to account for
various kinds of behavioural patterns. The classificatibieature sets using HMMs allows to
report reliable information to the backend system.

The results that were achieved using this approach duriranasite integration test proof the
concept with performance metrics equal to the results irptegious chapter. Due to the fact
that the discussed use case represents a pilot projecthatpharticular customer, the shown
identification point operates in an isolated manner. Fa tdason, it is not possible to include
business layer information to support the classificatioreal events. A project that deals with
a whole process using RFID is described in the next section.
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5.3 Use Case 2: Tracking of fruit trays

The second use case to be described covers the trackingiofrérys during the harvesting

season of the year. The considered fruit trays (containptpB00 kg of fruit, mostly apples

and pears) are used for transportation and storage. Theftts RFID system is to keep track
of every single tray throughout the periodic process. F& tbason, every tray is equipped
with two RFID tags that have a unique identifier. On the onedhdme use of two tags is for

redundancy purposes, on the other hand it also offers isedelaFID readability. In addition to

that, bar code labels are attached to the trays, contaihengame unique identifiers.

Since the trays carry a considerable amount of fruit witthimgter content, the setup of identi-
fication points is quite challenging. Water in general iscabig radio waves in the considered
frequency range. This means that RFID tags can be shieldedctrded in case they are sur-
rounded by water. For this reason, a sophisticated opttroizaf the geometry of identification
points regarding placement and direction of antennae.dsgssary in order to provide reliable
RFID read events.

From the process perspective, there are several stageseiyr ®uit tray throughout a life
cycle:

Step 1: The first stage for every tagged tray is the issuing to a spdaifimer. This delivery is
monitored by handheld devices. The person delivering tnesthas to identify all trays
by means of their RFID tags and / or bar code labels. The irdaon about which trays
were shipped to a specific farmer is stored in a central daéaba

Step 2: After the fruit harvest, trays issued to one specific farmerraturned by a lorry to the
central storage hall. The lorries are unloaded using ptilleks that ship the fruit trays
through one of four RFID portals. Every pallet truck used dotoading the lorry can
carry up to six trays. The RFID portals are set out adjaceantBach other in a so called
dockdoor configuration, where it is necessary to determineugh which portal a tray
was shipped. After the identification by means of the RFICigder the trays are weighed
to determine the amount of harvested fruit.

Step 3: After the inbound of trays, they are moved to a storage halabgrklift which is
equipped with RFID hardware. Instead of using an RFID patabch storage hall entry,
RFID tags assembled in the ground floor are used to assob@titrent fruit tray with
the specific storage hall number. When the forklift passesutjh the hall entry, it will
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read the floor tags and hence know that it shipped the cuyreattied fruit trays to the
particular storage hall.

Step 4. After the so called interim storage, fruit trays are remofredn the storage hall by
RFID equipped forklifts and carried to a sorting plant whigtretrays are emptied and the
different cultivars of fruits are stored in new trays. The thys are cleaned and can again
be shipped to a farmer, be used as storage for sorted frudaroeven be destroyed in
case they are in bad physical condition. In any case, thadenes! trays get the specific
status “unassigned”, which means that they can be reusey ipeat of the process where
necessary.

Step 5: Sorted fruits are stored in trays which are then again mowed ¢ertain long term
storage hall by an RFID equipped forklift. After sorting,rayt contains a single cultivar
of fruit.

Step 6: At the end of the storage period which is up to one year, tragsemoved from the
storage hall by RFID equipped forklifts and carried to pagkines. There, each tray is
identified by an RFID reader, and the content of the tray ikpaanto smaller packaging
units for reselling in supermarkets. After this step, tlagy tis again cleaned and will be
reused in the process or destroyed.

The description above indicates that this process is ratiraplex in contrast to the simpler ex-
amples covered in chapier 4. Whereas most processes irdigtriy are linear, this process is
periodic and trays can take various trajectories throughlifierent stages. Applying the formal
set of rules derived in the last chapter, this process candpped to a Hidden Markov Model
with nine distinct states. The transition probabilitiesvieen these states have been derived
in discussions with the particular customer and are basembonting absolute frequencies of
the occurrence of events. The resulting HMM is depicted inr&g5.4, where the observation
symbols are not shown for the sake of simplicity.

The first issue in this process is to resolve the crosstalkdet the adjacently placed RFID
portals at the inbound of fruit trays. These four portalsehbeen summarized in a “Macro
state” in the process HMM in figute 5.4, despite they are a®red as four distinct identifica-
tion points with appropriate observation symbol prob#ébsi. Regarding the transition proba-
bilities, the four portals are considered to be equallylyikin order to account for the crosstalk
problem between adjacent portals, the RSSI signal energyany tag moving through the por-
tal is compared to all other portals. Based on this inforaraind the prior knowledge that
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Figure 5.4: HMM representing the business process for the trackingwf frays. The
transition probabilities have been rounded to three ddsiraad transitions
with a probability below the noise thresholdare not shown, except for the

defect state. 79



Chapter 5. Use Cases

every tray is equipped with two RFID tags, an assignment éetwRFID portal and fruit tray
can be established. In addition to this mechanism, the iftstion point for incoming trays
considers information provided by the business layer ieptd account for stationary tags and
weak RFID read events.

The next stage where a localization is performed is the indda a specific storage hall. This
issue is solved by providing each storage hall entry withrftags that will be read by the RFID

equipped forklift. This idea was realized mainly for economeasons: Due to the large hum-
ber of storage halls, this solution is cheaper than progiéwvery storage hall entry with RFID

readers and antennae. Since it suffices to know in whichgtdrall a fruit tray is located, the

localization in this case can be achieved by the assignnmeanteen fruit trays and the storage
hall identifier represented by the floor tags. Later stagebeprocess perform simpler local-
ization tasks, because trays are singulated for the pretegs of sorting and packing.

This use case demonstrates that also the mapping of rathgaleo business processes onto
Hidden Markov Models is possible, since loops and altengagiaths can be considered by
means of appropriate transition probabilities. The HMM fkeaible framework to consider ar-
bitrary process chains and provides the mathematical to@#iciently evaluate the likelihood
of certain events. The results from recent integratiorstesthe four portal identification points
for incoming trays provided satisfactory results. With tbk-out of the system in autumn 2010,
long term test results will become available.
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According to economic studies, the worldwide RFID markestesadily growing. Due to the
advances in reader and tag technology combined with sogatesti standardization, tagging of
objects on item level has become reality in various appboat With the increasing possibili-
ties, also the requirements to RFID systems have becomatlersVhereas first systems where
used to inventory pallets of goods in simple business psssggoday’s systems keep track of
the location of every single item in complex and multi-lageéisupply chains. RFID systems
operating under the EPCGlobal standard in the UHF band dloa simultaneous identifica-
tion of hundreds of items up to a distance of several meteesid@s the obvious advantages,
there are also challenges and drawbacks. The large reaé irgngduces unwanted behaviour
whenever information about the exact location of goods dgired. Since RFID readers in
general report all tags that are currently present in thdi&#; sophisticated mechanisms for
localization and tracking goods are necessary.

For this reason, the topic on localization in RFID has bedarestvely investigated in the last
few years. Systems for localization have to cope with d#ferchallenges that result from
physical phenomena on the channel, but also from the useéevhee and software. As pointed
out during the discussion in this work, RFID read events algext to random fluctuations
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in several ways. In order to derive information about theatam of RFID tags in practical
applications, a model is required which takes into accolistrandom behaviour. In contrast
to previous approaches, this work combines a flexible mantdRFID read events and sensor
signals with information from the underlying business g This combination results in a
probabilistic framework that can be used to perform regédbtalization and tracking of goods
in a business process. Considering the requirements ofigabsystems, the localization of
goods can most often be reduced to the simpler task of cleetsifin. Hence, Hidden Markov
Models are used which allows for a classification of obs@&matequences in a flexible way.
The goal is not to compute the position or trajectory of tagk wespect to a coordinate sys-
tem, but rather to provide information required by the bassprocess, such as an assignment
between goods and packaging units. In order to allow foriabkd localization, the presented
work also includes a probabilistic process model that ie &toprovide quantitative information
about every item in the process. Moreover, this kind of madel also deal with uncertain-
ties and imperfections of business processes due to itblderature. The results presented
throughout the evalution of the approach indicate thatitiga is capable of fulfilling practical
requirements. The developed models have been implementadrently ongoing projects in
the industry and provided satisfactory results during tiediqinary integration tests.

6.1 Future work

A potential drawback of the presented model for read everdssansor signals is the require-
ment for a sufficiently high number of read events to perforsohisticated and reliable clas-
sification. Especially when the number of tags in the RF-figkigh, the anti-collission mech-

anism specified in the EPCGlobal standard introduces rarnamaviour and the number of
read events for each tag decreases significantly. For tasore future research could include
a distinct modeling of the anti-collision mechanism. Thigdal could be used together with
a stochastic pathloss model in order to interpolate theirddaRSSI patterns. Alternatively,

other methods for increasing the number of read events grpeing adaptive changes in the
configuration could be investigated.

Another topic for possible future research is the fusioniffetent classification results. As
briefly discussed in chapter 4, there exist several appesaithcombine different classification
results in a consistent Bayesian formulation. For this psep a way of assigning posterior
probabilities to a series of read events needs to be founds idéa is of particular interest,
when more than two classifiers are combined.
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Appendix

The appendix provides the numerical values for the modelrpaters of the HMM representing
the exemplary business in in chagdter 4.

A.1 Numerical values for the exemplary business process metl

The Hidden Markov Modeh of the exemplary business process in figurel4.15 is chaizeter
by the following parameters:

=0 099 0.0025 0.0025 0.0025 0.0025

1.0 0 0 0 0 0
1.0-107% 0.00667  0.74 0.24  0.00667 0.00667
1.0-107% 0.00667 0.00667  0.74 0.24  0.00667
1.0-107% 0.00667 0.00667 0.00667  0.74 0.24
1.0-107% 0.0025 0.0025 0.0025 0.0025 0.99
1.0-107% 0.0025 0.0025 0.0025 0.0025 0.99
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Appendix A. Appendix

B = I6><6

wherel denotes the identity matrix.
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