
Analysis of sequences of machine

states

Martin Stimpfl

May 5, 2010

Analysis of sequences of machine
states

Master’s Thesis

at

Graz University of Technology

submitted by

Martin Stimpfl

Knowledge Management Institute (KMI),

Graz University of Technology

A-8010 Graz, Austria

May 5, 2010

c©Copyright 2010 by Martin Stimpfl

Advisor: Dipl.-Ing. Dr.techn. Michael Granitzer

2

Analyse von
Maschinenzustandssequenzen

Diplomarbeit

an der

Technischen Universität Graz

vorgelegt von

Martin Stimpfl

Institut für Wissensmanagement (IWM),

Technische Universität Graz

A-8010 Graz

May 5, 2010

c©Copyright 2010, Martin Stimpfl

Diese Arbeit ist in englischer Sprache verfasst.

Betreuer: Dipl.-Ing. Dr.techn. Michael Granitzer

3

Abstract

Data Mining is a keyword for methods and algorithms which are more and more

evolving and raising expectations in many fields of information technology nowadays.

Computer-aided ”mining” for complex correlations in huge bulks of data is a topic of

particular interest for a software company from Graz being engaged in data analysis

for manufacturing plants.

This thesis is about a first scenario from this manufacturing area: the recognition

of patterns in the history of states of an arbitrary manufacturing machine taken over

time. There is nearly no information available but the states themselves and their

duration. The question therefore is if there exist significant correlations between the

states of the machine.

For this analysis the data’s sequential nature allows two different approaches: one

using classical techniques from the field of supervised classification, the other one

applying methods from the field of sequence- or episode-mining. First this thesis in-

troduces different applicable methods from both fields. Afterwards it presents results

from conducted experiments showing that a recognition of meaningful patterns is pos-

sible.

4

Kurzfassung

Data Mining ist ein Schlagwort, in das heutzutage viele Erwartungen im Bereich der

Informatik gesteckt werden. Das maschinen-unterstützte ”Graben” und ”Fördern”

von komplexen Zusammenhängen in großen Datenbeständen ist auch von Interesse

für eine Grazer Softwarefirma, die sich mit Datenanalyse im Bereich der Produktion

beschäftigt.

Diese Arbeit bearbeitet ein erstes Szenario dem sich die Firma widmen möchte:

das Erkennen von Mustern in der Zustandshistorie einer produzierenden Maschine.

Außer der Sequenz der Zustände und deren Dauer steht nur wenig Information zur

Verfügung, die verwendet werden kann. Die Frage ist daher, ob zwischen den einzelnen

Maschinenzuständen signifikante Korrelationen bestehen.

Die sequentielle Natur der Daten bedingt zwei unterschiedliche Zugänge der Bear-

beitung: zum einen bieten sich klassische Methoden der Klassifikation, zum anderen

Methoden des so genannten Sequence- beziehungsweise des Episode-Mining an. Diese

Arbeit präsentiert zunächst verschiedene mögliche Ansätze aus beiden Gebieten, um

danach eine Methode aufzugreifen und Ergebnisse erster Versuche zu liefern. Diese

Versuchen sollen zeigen, dass ein Auffinden von Mustern möglich ist.

5

6

Danksagung

Ich möchte mich auf diesem Weg aus tiefstem Herzen bei meinen Eltern bedanken,

die mir durch ihre Unterstützung meinen bisherig sorgenfreien und zielgerichteten

Lebensweg aufopfernd und liebevoll ermöglicht haben. Es lässt sich hier nicht zu

Papier bringen, wie dankbar ich für die Chancen und Möglichkeiten bin, die sich mir

durch ihren Einsatz und ihre Mühen aufgetan haben und die mich voller Spannung

zukünftigen Herausforderungen entgegen blicken lassen.

Großer Dank gilt auch dem Betreuer dieser Arbeit Dr.techn. Michael Granitzer,

welcher sich äußerst hilfsbereit und mit großem Engagement dem Thema dieser Arbeit

gewidmet hat. Ihm ist es zu verdanken, dass ein Aufgreifen des Themas im Zuge der

Dilpomarbeit und eine komplikationslose Abarbeitung möglich waren. Seine fachliche

Unterstützung war für diese Arbeit von essentieller Bedeutung.

Besonders möchte ich meiner Freundin Katharina danken, deren Unterstützung und

Begleitung die letzten Jahre meines Studiums bereicherten und zu einer ganz beson-

deren und wertvollen Zeit für mich machten.

Meinen Dank spreche ich auch allen Menschen aus, die mich in verschiedenen Bere-

ichen meines Lebens begleiten und begleitet haben.

7

Contents

Danksagung . 7

1 Introduction 14

1.1 Application scenario . 14

1.2 Goal of this thesis . 15

1.3 Notation . 16

2 Problem Statement 17

3 Classification 19

3.1 Decision Theory . 19

3.2 Naive Bayes Classifier . 21

3.3 Logistic Regression and Maximum Entropy Model 22

3.4 Support Vector Machines . 25

3.4.1 SVM for the separable case . 25

3.4.2 SVM for the non-separable case 28

3.4.3 SVM for the multi-class case . 29

3.4.4 SVM compared to probabilistic classifiers 30

3.5 Graphical Models . 31

3.5.1 Directed Conditional Independence Graph 31

3.5.2 Undirected Conditional Independence Graph 31

3.5.3 Factor Graph . 33

3.6 Hidden Markov Models . 34

3.7 Conditional Random Fields . 35

4 Sequence Mining 38

4.1 Further definitions . 38

4.2 Apriori algorithms . 39

4.2.1 GSP . 39

4.2.2 SPADE . 41

8

4.2.3 SPAM . 44

4.3 Pattern-growth algorithms . 44

4.3.1 FreeSpan . 44

4.3.2 PrefixSpan . 45

4.4 Constraint based sequence mining . 47

4.5 Combining sequence mining and classification 48

4.6 Episode Mining . 48

5 Approach 52

5.1 Preliminary approaches . 53

5.2 The original data set . 53

5.3 Vectorization . 54

5.4 Dimension weighting . 57

5.5 Evaluation methods . 59

5.5.1 Distance measure . 60

5.5.2 Increase in probability . 61

6 Experiments 65

6.1 Synthetic data equally distributed . 65

6.2 Synthetic data non equally distributed 68

6.3 Analysis of Machine 62 . 69

6.4 Analysis of Machine 65 . 73

7 Conclusion and Outlook 78

Appendix A - Synthetic datasets 79

7.1 Equally distributed . 80

7.2 Non-equally distributed . 83

Appendix B - Real datasets 84

7.3 Machine 62 . 85

7.4 Machine 65 . 89

Appendix C - Results in detail 92

7.5 Synthetic data equally distributed . 94

7.6 Synthetic data non equally distributed 96

7.7 Machine 62 . 97

7.7.1 K=30, N=1, no IDF, E = 1 . 97

9

7.7.2 K=30, N=1, IDF, E = 1 . 98

7.7.3 K=30, N=1, no IDF, E = 2 . 99

7.7.4 K=30, N=1, no IDF, E = 3 . 100

7.7.5 K=30, N=2, no IDF, E = 1 . 101

7.7.6 K=30, N=2, IDF, E = 1 . 102

7.7.7 K=30, N=2, no IDF, E = 3 . 103

7.7.8 K=30, N=2, IDF, E = 3 . 104

7.7.9 K=30, N=3, no IDF, E = 1 . 105

7.8 Machine 65 . 107

7.8.1 K=30, N=3, IDF, E = 3 . 107

10

List of Figures

3.1 Simple classification task . 20

3.2 Logistic Sigmoid Function . 23

3.3 Support Vector Machine Margin for linear separable case 26

3.4 Support Vector Machine Margin for not linear separable case 28

3.5 Decision boundary - One versus the rest 29

3.6 Decision boundary - One versus one . 30

3.7 Conditional Independence Graphs . 32

3.8 Factor Graphs . 33

3.9 Kth order Markov chain . 34

3.10 Hidden Markov chain . 35

3.11 Linear chain CRF according to [SM06] 36

3.12 Linear chain CRF according to [KT07] 37

4.1 Different kind of episodes . 49

5.1 Example how S is transformed . 55

5.2 Example how S is transformed . 57

5.3 Distances of machine states in the original and the label sequence 61

5.4 Two kind of charts . 62

6.1 Visual evaluation of the equally distributed synthetic data set 66

6.2 Visual evaluation of the non equally distributed synthetic data set . . . 68

6.3 Machine 62, K = 30, N = 1, no idf, E = 1 70

6.4 Machine 62, K = 30, N = 2, no idf, E = 1 72

6.5 Machine 62, K = 30, N = 3, no idf, E = 1 73

6.6 Area charts for machine 62 with different degrees of E for parameters

K = 30, N = 1, no idf . 74

6.7 Area charts for machine 62 with and without IDF for parameters K =

30, N = 1, E = 1 . 75

11

6.8 Area charts for machine 62 with N = 2 and different combinations of

IDF and E . 76

6.9 Area chart for machine 65 with N = 3, K = 30, IDF and E = 3 76

6.10 Area chart for machine 65 with N = 3, K = 30, IDF and E = 3 for only

label 1421 versus the rest . 77

7.1 Distribution of labels of synthetic data set equally distributed 80

7.2 Distribution of labels of synthetic data set non-equally distributed . . . 83

7.3 Distribution of labels of machine 62 . 85

7.4 Distribution of labels of machine 65 . 89

12

List of Tables

4.1 Sequence database according to the example of [JHY05] 40

4.2 Vertically transformed version of the sequence database in table 4.1 . . 42

4.3 Pattern candidate ab being constructed from frequent patterns a and b

according to table 4.2 . 43

4.4 Combination of two 3-length frequent patterns abc and abd to construct

abcd . 43

6.1 Excerpt from Appendix C to illustrate the numbers of labels 37 and 43

for the equally distributed synthetic data set. 67

6.2 Excerpt from Appendix C to illustrate the numbers of labels 18 and 35

for the non equally distributed synthetic data set. 69

6.3 Excerpt from Appendix C to illustrate the numbers of interesting labels

of machine 62 with different choices for N 71

6.4 Excerpt from Appendix C to illustrate the numbers of label 1421 of

machine 65. 74

13

1 Introduction

Data Mining is a popular term nowadays. Computational power combined with more

and more approved methods and algorithms make it possible that computers help

humans analysing and understanding bulks of data by searching and identifying in-

teresting patterns. The purpose of Data Mining is gathering information from sets of

data reaching sizes that make it hard for humans to interpret it on one’s own. Facing

how much data is generated day by day in different scopes of our every day life (see

[GRC+07] for details) it seems these techniques get indispensable for understanding

the information documented by data.

Working for a software solutions company the question arose if the application of

state-of-the-art Data-Mining-methods in data sets generated by the firm’s software

tools would help to unearth information as well as knowledge not being apparent at

the moment. Information about manufacturing machines is recorded and filed in these

data sets. Analysing these sets is clearly one of the main issues the company wants

to enable its customers. Therefore the company’s software tools already provide some

kind of visual Data-Mining possibilities. What is being assumed is that there exist

patterns in this data whose discovery is not covered by the existing methods yet.

Amongst others the states a machine took over time are recorded. It is of interest

if there exist correlations between these states and if a particular state entails other

ones. The answering of this question is the topic of this thesis.

This first chapter presents the thesis’ purpose, its motivation and backgrounds in

terms of analysing a sequence of machine data. At the beginning the company is

introduced in more detail. Thereby the working field which made this work evolve and

the expected results are inducted. In the end notations are listed which are apparent

throughout the hole work.

1.1 Application scenario

The company which made the thesis possible is named GAMED R© and is located in

Graz, Austria. At this moment GAMED holds two offices namely, the headquarters in

14

Graz and another-one in Peking, China whereas 17 employees are engaged in Graz and

around 8 in Peking. Since 1985 the company’s fields of work include several software

solutions for manufacturing services, amongst others an efficiency- and productivity-

analysis tool called OEE-AnalyserTM.

The OEE-AnalyserTMinvestigates if manufacturing machines work in time with the

effectiveness and quality they are supposed to do and provides the user with useful

visual analysis tools by applying the well-known OEE(overall equipment effectiveness)-

method forming part of the maintenance process TPM (total productive maintenance)

[Nak89].

According to the OEE-method a machine’s performance is evaluated by four factors:

1. the loading,

2. the availability,

3. the performance and

4. the quality

The loading is the time the machine is to work in proportion to the total calendar

time. The availability says in what time the machine actually worked and so expresses

unforeseen downtimes. The ratio between the target-speed of the machine and the

speed it actually worked at is given by the performance. At last the quality states the

scrap’s proportion to the total number of units produced.

1.2 Goal of this thesis

Important for the OEE-evaluation is keeping track of states the machine takes over

time. These states document if a machine is producing, if it is broken, maintained or

something different. The analysis of the states’ history is therefore a crucial part of

interpreting how well a machine performed, if it met the targets or underachieved.

According to this it is of high interest if there exist repeating patterns in the time-

line of the machine states, such as if certain machine states lead to another ones. Such

knowledge is of high value when operating a machine and analysing its performance.

Different machines could be compared as well according to pattern occurrences. Fur-

thermore a system equipped with this information of correlations between states may

act as an early-warning-system for major machine breaks if according patterns exist.

How many data there is generated varies from plant to plant but to give a feeling that

computer-aided methods are inevitable: there are around 150 lines of data generated

15

per day for one machine that is investigated in the experiments’ section 6. In the

machine’s plant there are around 30 other machines installed. A system searching

for patterns and summarizing it is the main idea behind this work. In section 2

the problem is formally defined and the detailed expectations of this work are listed.

Chapter 3 and 4 theoretically provide and introduce possible methods and algorithms

whereas in chapter 6 first concepts are applied and evaluated.

1.3 Notation

This section gives a brief overview of notations used throughout this thesis.

−→x denotes a column vector.

−→x T denotes a row vector.

(x1, ..., xK) parenthesis indicate the variables x1, ..., xK to be dimensions of a vector
−→x or −→x T where K is the size of the vector.

p(x) denotes a probability distribution over some variable x.

p(x|y) denotes a probability distribution over some variable x conditioned on the fact

that variable y has already taken a fixed value.

I an over-line indicates an arbitrary variable I being an item set.

{i1, ..., iK} braces indicate the variables i1, ..., iK to form a set I of variables where

K is the size of I. im 6= in holds for every 1 ≤ m ≤ K, 1 ≤ n ≤ K and m 6= n.

Ŝ a hat indicates an arbitrary variable S being a sequence which is defined later on.

〈s1, ..., sK〉 indicate the variable s1, ..., sK being sequence items of a sequence Ŝ where

K is the length of a sequence.

S stands for the history of the states of a machine and indicates the sequence we

want to analyse and understand.

16

2 Problem Statement

The purpose of this thesis is to unearth correlations in between states of manufacturing

machines. Before possible techniques addressing this problem can be presented one

has to face the problem in more detail. Therefore this section introduces the formal

problem statement associated with the outlined application scenario. The history of

states a machine takes over time can be understood as a sequence of events taking

place one after another in the time-line. Therefore this section defines a sequence.

Furthermore it has to made clear what information one expects to gather from that

sequence.

Let the history of a machine’s states be denoted by S. A machine can take one

particular state out of several possible at one moment. This set of possible states is

written as I = {i1, i2, ..., iH} where ih ∈ I and H is the number of different states. A

sequence Ŝ = 〈s1, s2, ...sL〉 is an ordered list where L denotes its length and sl ∈ Ŝ

represents the state of a machine at time l. s1, s2, ...sL are referred to as sequence

items. S can therefore be understood as such a sequence. Additionally to the sequence

there exist duration information as well as date information and shift information of

every sequence item sl in S whereby this correlation is not defined at the moment. A

sequence ŜK
t = 〈st, st+1, ..., st+K−1〉 is a subsequence of Ŝ denoted by ŜK

t ⊑ Ŝ where

t is the start point of ŜK
t in Ŝ and K the subsequence’s length. One can say that

subsequence ŜK
t is contained by Ŝ.

Given no further information but the sequence Ŝ = 〈s1, s2, ...sL〉 and the additional

information in S we want to know if there exist repeating patterns in Ŝ. To be more

precise it is of interest whether machine state ih can be predicted by the information

provided by it’s predecessors in Ŝ and so if there exists a correlation between several

ih’s. One could generalize this problem to getting a deeper understanding of the

sequence at hand and finding regularities if there exist some. This is to be supported

and facilitated by state-of-the-art computer algorithms and heuristics.

Several machine-aided methods exist which tackle the problem from particular an-

gles. Some yield solutions which are more or less simple to understand and to read for

humans. Others may be difficult to be interpreted but may lead to more sophisticated

17

results and performances for prediction. It has to be stated that in the end the focus

has to lie on human interpretable solutions as the understanding of the sequence of

machine states is essential. Nevertheless methods yielding more complicated but so-

phisticated solutions can be used for evaluation if prediction is possible at all. One can

assume that if these methods don’t manage to construct proper solutions the simpler

ones won’t either. So the entire work may be grouped into three parts:

1. presenting possible methods being able to tackle the problem of finding correla-

tion between several machine states ih,

2. evaluating if a prediction of a particular machine state ih is possible by using

the information of such correlations and

3. if yes, understanding the correlations, what means which machine states are

responsible for predicting what others and the order between them.

Problem (1) is addressed by chapters 3 and 4 where probabilistic and non-probabilistic

methods are introduced and explained. (2) is evaluated in the experiments’ section in

chapter 6. Although the methods for solving problem (3) are theoretically presented

its realisation is not part of this thesis and may be an objective for further works.

18

3 Classification

This chapter introduces the concepts of probabilistic and non-probabilistic classifier.

It is based on the work of [Bis07], [KT07] and [SM06] and thereby gives an summary

over the methods.

3.1 Decision Theory

Let us consider the problem again. We want to know if there exist patterns in the

sequence of machine states Ŝ in S such that an item ih can be predicted by using

the information provided by ih’s predecessors in Ŝ. This problem can be generalized

to a decision or classification problem as it is called in the science field of Machine

Learning, Pattern Recognition and Data Mining [Bis07] [KT07].

Classification is the mapping of an input vector −→x = (x1, x2, ...xN) on a target

label y which is a discrete variable. Each xn ∈ −→x is called a feature which can take

discrete as well as continuous and binary values. Methods performing such a mapping

are called classifiers and try to find representative feature value ranges for each label

value. The mapping of −→x to a continuous variable y is called regression problem and

is not further discussed here (see [Bis07] for further information). Figure 3.1 illustrates

a simple classification task in a two-dimensional feature-space.

The x’s and y’s are input data points whereas x and y indicates their class-membership.

The border which separates the x’s from the y’s is called decision boundary.

When −→x represents the input vector and y the target label in general there exist

three ways how to tackle the problem of finding this decision boundary:

• The generative approach where one tries to model the joint probability distribu-

tion of the variables p(y,−→x).

• The discriminative approach where the conditioned probability distribution p(y|−→x)

is directly modelled.

• A non probabilistic, direct mapping by constructing a function where it’s output

directly determines the class label.

19

Figure 3.1: A simple classification task where the x’s are data points of class X and

the y’s those of class Y. The red line forms a possible decision boundary.

The advantage of probabilistic methods compared to the direct mapping is that one

gets an insight how confident a decision for a value of y can be made compared to

other values by considering the probabilities. It can be considered as a drawback that

in direct mapping solutions one only gets the information if a label value was chosen

or not.

Different methods exist which all model these probability distributions or mappings

in slightly different ways as we shall see shortly. Some construct more or less simple

models for classification what may lead to poor results in classifying complex data.

Others generate highly sophisticated models which may yield good results on complex

data but are hard to interpret and to understand for humans or computational infea-

sible. As the understanding of the sequence at hand is important in this work those

sophisticated algorithms may be used rather for evaluation if patterns for classification

in the data exist. In the end understandable and interpretable models about the data

have to be constructed.

Classification is usually done in two phases called Training- and Test-phase. In

the former the algorithms introduced in the next chapters construct models of the

information provided by the data. The latter exists for testing how well the constructed

model generalizes (or how well it performs) on data the algorithm has not seen for

training. Therefore the data set is split into a training- and a test-data set. Fitting

the algorithm’s model to the data is then performed on the training set whereas the

evaluation of the model’s performance is done on the test set. There exist several ways

to accomplish this. One is to simply cut the data set in two at a certain point. Another

one is called n-fold-cross-validation where the whole data set is cut into n pieces and

20

in n runs every piece is considered once as test set while the merged remaining pieces

form the training set. The outcome of different runs are then combined to one. [WF02]

gives an introduction to this topic.

In the following an overview over such classification algorithms and methods is given

as well as a slightly different approach of handling this task called Sequence or Episode

Mining in chapter 4. In chapter 6 the outcome of first experiments using one of the

presented methods is summarized. It should make clear that the applied algorithm did

find correlations between several machine states what makes the prediction of some of

them possible.

3.2 Naive Bayes Classifier

The first classification method presented is called Naive Bayes Classifier. It belongs

to the family of generative approaches by trying to construct an assumed probability

distribution p(−→x , y) over the data.

The probability distribution p(y|−→x) which is to be modelled in the end can be

expressed according to Bayes’ theorem by

p(y|−→x) =
p(−→x |y) ∗ p(y)

p(−→x)
. (3.1)

As according to [KT07] and [WF02] the denominator p(−→x) is just a normalization

constant and can therefore be omitted for classification it is that

p(y|−→x) ∝ p(−→x |y) ∗ p(y) = p(−→x , y) (3.2)

according to the sum rule of probability theory 1.

When −→x = (x1, x2, ..., xN) we can rewrite the probability distribution:

p(y|−→x) ∝ p(y, xN , xN−1, xN−2, ..., x1). (3.3)

According to the sum rule this can be expressed by

p(y|−→x) ∝ p(y)∗p(x1|y)∗p(x2|x1, y)∗..∗p(xN |xN−1, ..., x1, y) = p(y)

m∏

n=1

p(xn|xn−1, ..., x1, y).

(3.4)

As it is practically impossible to model all dependencies between the input dimen-

sions xn ∈ −→x it is assumed that the dimensions are independent of each other condi-

tioned on y such that p(xn|xn−1, ..., x1, y) = p(xn|y). Equation 3.4 therefore simplifies

1p(X, Y) = p(Y |X) ∗ p(X) [Bis07]

21

to

p(y|−→x) ∝ p(y)

m∏

i=1

p(xn|y) (3.5)

which forms the Naive Bayes classifier.

Because of the conditional independence assumption this classifier builds up a sim-

plified model about the data being inspected. Even though Naive Bayes performs

surprisingly well on many real world classification tasks (see for instance [KM02] for

email classification) it performs worse than logistic regression on average and gives

only poor probability estimates according to [SM06].

To apply the Naive Bayes classifier one has to model the probability distribution

of the label p(y) and the probability distribution of the input vector conditioned on

the label p(−→x |y) (this means the probability distribution of −→x is modelled for each

class independently) to achieve p(y|−→x) according to equation 3.1. Alternatively one

could model p(−→x , y) directly. All the probability distributions have to be constructed

under the Naive Bayes assumption of conditional independence between the features

xn. The decision boundaries between two classes will occur in this method implicitly.

They happen in the input space of −→x where probabilities of different classes are equal.

As for our mining task ofS we assume that a machine state ih somehow emerge from

it’s predecessors in S and as the predecessors are ih’s themselves we imply that there

exists a strong correlation between the features xn. As there exist algorithms which

take this correlation explicitly into account (algorithms such as the Hidden Markov

Models in section 3.6 shall be introduced shortly) the simple Naive Bayes classifier will

not be the first choice in the experiments in chapter 6. Nevertheless since it forms the

basis of section 3.6 it is of essential interest.

3.3 Logistic Regression and Maximum Entropy Model

Section 3.2 explained the Naive Bayes Classifier which falls into the family of generative

models. That is because one has to model the probability distribution p(−→x , y) for its

application and could sample synthetic data points from it. However there is no real

reason to model the entire joint probability distribution of p(−→x , y) when one is only

interested in the conditional distribution p(y|−→x) for a sole classification task.

For logistic regression one tries to directly construct the conditional distribution

p(y|−→x) by assuming the distribution’s form takes the logistic sigmoid function (or the

softmax function when y takes more than two values). This is illustrated by Figure

3.2.

22

Figure 3.2: Two Gaussian distributions of two class label values L1 and L2. The red

line is the conditional probability of p(L1|x) which takes the form of the

logistic sigmoid function.

However not for every conditional probability distribution p(y|−→x) a logistic sigmoid

function can be assumed so [Bis07] introduces the probit regression which acts as

a threshold model for more general Gaussian distributions and finally introduces the

Laplace Approximation for approximating unknown probability distributions to enable

a Bayesian treating of the problem.

[KT07] explains the Maximum Entropy Model which is based on the Principle of

Maximum Entropy [Jay57]. This says that if there just exists incomplete information

about a probability distribution the only unbiased assumption which can be made

about the distribution is a probability distribution ”which is as uniform as possible

given the available information” [Jay57]. As one cannot be sure if the data excerpt

to be analysed contains the whole information for the variables’ entire probability

distributions this means the distribution to be chosen is the one which maximizes the

entropy fulfilling the constraints provided by the excerpt. For p(y|−→x) the conditional

entropy model

H(y|−→x) = −
∑

x∈χ,y∈Γ

p(y,−→x) log p(y|−→x) (3.6)

has to be applied.

χ contains all the possible input values whereas Γ contains all possible output values

which means all possible combinations of input and output values are used for H(y|−→x)

and not just those which actually appear in the data. The problem to be solved

is to find the maximal entropy model H(y|−→x) which is consistent with the data’s

23

constraints.

Finding the maximum for H(y|−→x) is achieved by setting the derivative of H(y|−→x)

fulfilling the constraints to zero. The equation to be deviated is formulated with the

help of Lagrange-multipliers and is expressed as follows:

Λ(p,
−→
λ) = H(y|−→x) +

m∑

i

λi

(
E(fi) − E′(fi)

)
+ λm+1

(∑

y∈γ

p(y|−→x − 1)

)
. (3.7)

The first term in equation 3.7 is the maximum entropy model which is to be max-

imized by setting it’s derivate to zero. The first addend represents the constraints

provided by the data. E′(fi) is the the probability distribution p′(y,−→x) as it appears

in the data while E(fi) is the model probability distribution. The fi’s are the features

of the data. They are binary functions fi(y,
−→x) ∈ 0, 1 where 1 ≤ i ≤ I where I is the

number of possible combinations of input values and labels. When N is the number

of instances in the trainings-dataset τ the probability distribution E′(fi) is calculated

by

E′(fi) =
1

N

∑

(x,y)∈τ

fi(x, y). (3.8)

Each fi stands for a possible combination of input value and label value. Equation

3.8 does nothing else than counting how often a specific combination of those values

appears in the trainings data and setting it in relation to the number of training

instances.

According to [KT07] the model probability distribution which is searched during

the maximization is defined as follows:

E(fi) ≈
1

N

∑

x∈τ

∑

y∈Γ

p(y|x)fi(x, y). (3.9)

As the model distribution has to capture all constraints given by the distribution

gathered from the data the first addend in equation 3.7 emerges from the constraint

E(fi) = E′(fi). The second addend in equation 3.7 ensures the result is a proper

probability distribution. This is achieved by setting
∑

y∈Γ

p(y|x) = 1 for all x and

p(y|x) ≥ 0 for all x,y.

The derivation the equation 3.7 and equalizing with zero is discussed in detail in

[KT07]. In the end the Maximum Entropy model is expressed as:

p(y|−→x) =
1

Z(x)
exp

(m∑

i=1

λifi(
−→x , y)

)
, (3.10)

24

where

Z(x) =
∑

y∈Γ

exp

(m∑

i=1

λifi(
−→x , y)

)
. (3.11)

3.4 Support Vector Machines

The Support Vector Machines (SVM) [CV95] fall into the family of the direct-mapping-

approaches. Originally they do not produce a probabilistic output although there exist

approaches of extending SVMs in such a way [CL01]. Training SVMs to get them

solving a classification task on a given dataset means to solve an optimization problem

of where to place the decision boundary in the feature space and to find a proper shape

for the boundary so that it fits the data well.

3.4.1 SVM for the separable case

The approach of SVM’s in a separable case is to place the boundary in between the

data-points of different labels. In the basic version of SVMs these boundaries are

considered to be linear. As there are indefinite possibilities of how to place that linear

boundary the SVM places it exactly in the middle between the data-points. This is

equivalent to placing the boundary where it’s nearest data points of each label have

maximum distance. Figure 3.3 illustrates this for a two-class classification problem.

The problem can be formulated as maximizing the margin which is the region between

the boundary and it’s nearest data points of each label.

The decision boundary indicated by the dashed line in Figure 3.3 can be formulated

as

y(−→x) = −→w Tφ(−→x) + b (3.12)

where φ(−→x) denotes a feature-space transformation of input vector −→x . A feature space

transformation φ(−→x) is a non-linear transformation of input vector −→x which might

make linear separation of data possible in feature space when it is not possible in the

original space of −→x what is discussed in detail later. For the linear separable case

there is simply φ(−→x) = −→x . −→w is the vector normal to the decision boundary which

determines it’s orientation while b is the so called threshold value and is responsible for

the offset of the boundary to the origin. For the two-class case the sign of the outcome

indicates if the data point −→x belongs to one or the other class. The outcome’s absolute

value is the distance of the data point to the decision boundary in relation to the norm

of vector −→w . The outcome divided by −→w ’s norm gives the actual distance. The goal

of fitting the SVM to a given dataset is to determine the proper values of −→w and b.

25

Figure 3.3: Decision boundary determined by a SVM for a linear separable case. The

area between the nearest data points of each label and the boundary is

called margin which is maximized when choosing the right boundary. The

nearest data points are called Support Vectors which are surrounded by

circles in the figure.

The nearest data points in figure 3.12 are called support vectors. When fitting the

SVM to a dataset one chooses −→w and b such that y(−→x) = 1 for support vectors

belonging to one class and y(−→x) = −1 for support vectors belonging to the other class

(all other vectors −→x therefore have a value y(−→x) > 1). When tn signifies the actual

class of point −→x one can write this constraint as

y(−→x) ∗ tn ≥ 1 (3.13)

what holds for every point in a data set if it is correctly classified by equation 3.12.

As the margin in figure 3.3 is then given by 2
||−→w ||2

to maximize this means to minimize
1
2 ||

−→w ||22.

This can be done by using Lagrange multipliers
−→
λ = (λ1..λN) where N and λn ∈

−→
λ

is the size of the data set what leads to the following equation

L(−→w , b,
−→
λ) =

1

2
||−→x ||22 −

N∑

n=1

λn

(
tn(−→w Tφ(−→x) + b) − 1

)
. (3.14)

Setting the derivate of equation 3.14 with respect to −→w and b to zero leads to

−→w =
N∑

n=1

λnφn(−→x) (3.15)

26

and

0 =
N∑

n=1

λntn. (3.16)

Substituting these two results back into 3.14 gives the dual representation of the prob-

lem of which a kernel formulation in the form k(x, x′) = φ(−→x)Tφ(
−→
x′) arises. As

mentioned before the feature space transformation φ(−→x) allows the space of −→x to be

transformed non-linearly into another feature space. With the help of the kernel func-

tion the whole problem can be transformed into a feature space of higher dimension

in which the problem might get linear separable when this is not possible in the origi-

nal space. When transforming back the learned decision hyperplane into the original

space this gives a non-linear decision boundary or plane. Such kernels can be designed

differently. [Bis07] gives an introduction and examples what common designs exist

and how to construct new ones.

When substituting equation 3.15 back into equation 3.12 this gives

y(−→x) =

N∑

n=1

λntnk(x, xn) + b. (3.17)

This means the value for an input vector −→x is determined by the values of λn and

b which have been defined by solving the dual representation of equation 3.14 and

the kernel evaluation of −→x with each xn multiplied by it’s original label. Because

the problem has been solved by the help of Lagrange multipliers and constraint 3.13

forms an inequality constraint the solution of this optimization problem satisfy the

Karush-Kuhn-Tucker (KTT) [Kar39] [KT50] conditions which say

λn ≥ 0

tn(−→w Tφ(−→x) + b) ≥ 0

λn

(
tn(−→w Tφ(−→x) + b)

)
= 0.

This means that either λn = 0 or tn(−→w Tφ(−→x) + b) = 1. So data points for which

λn = 0 play no role for the evaluation equation 3.17. The remaining have y(−→x) = 1

and are hence the support vectors. According to this, the evaluation of what class

new data points −→x belong to depends on a kernel transformation done with −→x and

the support vectors. The remaining vectors not being support vectors can be omitted

for this evaluation.

27

Figure 3.4: Decision boundary determined by a SVM for a not linear separable case.

3.4.2 SVM for the non-separable case

In practical applications data points from different labels are not entirely separable and

are therefore somehow overlapping each other. The concepts introduced yet only allow

the data to be separable properly so they have to be modified slightly. To accomplish

this so-called slack variables ξ are introduced. To goal is to allow misclassifications but

to softly penalize it according to the distance from the decision boundary. The slack

variables ξ are assigned to every data point and are defined to be ξ = 0 for correctly

classified data points and ξ = |tn − y(xn)| for misclassified ones. Figure 3.4 illustrates

this.

The constraint for placing the decision boundary 3.13 is then reformulated to

y(−→xn) ∗ tn ≥ 1 − ξn (3.18)

for every data point xn from the dataset and ξn being it’s slack variable. Instead of

minimizing solely 1
2 ||

−→x ||22 one now minimizes C

N∑

n=1

ξn +
1

2
||−→x ||22 during optimization

where C > 0 is a trade-off parameter between the maximum margin size and the

penalty gathered by ξ. The equation to be optimized formulated again with the help

of Lagrange multiplies
−→
λ = (λ1..λN) and −→µ = (µ1..µN) where N denotes the size of

the data set and µn ∈ −→µ is therefore

L(−→w , b,
−→
λ ,−→µ) =

1

2
||−→x ||22 +C

N∑

n=1

ξn−
N∑

n=1

λn

(
tn(−→w Tφ(−→x)+ b)−1

)
−

N∑

n=1

µnξn (3.19)

28

Figure 3.5: Decision boundaries illustrating the one-versus-the-rest approach for three

classes what leads to ambiguous regions. The dashed lines symbolize deci-

sion boundaries.

where

N∑

n=1

µnξn makes sure that ξn ≥ 0 for all 1 ≤ n ≤ N .

3.4.3 SVM for the multi-class case

Only the two-class classification has been discussed so far. The question is how to

formulate the decision boundary defined in equation 3.12 for theK > 2 classes problem.

The first approach is called one-versus-the-rest where for K classes K − 1 decision

boundaries are introduced each solving a two-class problem.

Figure 3.5 illustrates the problem in the case of three classes what leads to a am-

biguous region on the top of the figure. Another approach is named one-versus-one

where K(K − 1)/2 decision boundaries are used. Every decision boundary votes for

one class and the one class most voted is chosen. As figure 3.6 shows this may lead to

ambiguous regions as well.

There exists one possibility which overcomes the problem of these ambiguous regions.

It stipulates one linear function of the form

yk(−→x) = −→w T
k φ(−→x) + bk (3.20)

for every class 1 ≤ k ≤ K where K denotes the number of classes and assigns class m

29

Figure 3.6: Decision boundaries illustrating the one-versus-one approach for three

classes what leads to ambiguous regions too. The dashed lines symbol-

ize decision boundaries.

if ym(−→x) > yn(−→x) for every m 6= n and 1 ≤ m ≤ K, 1 ≤ n ≤ K.

The decision boundary between two classes m and n then arises from ym(−→x) =

yn(−→x) and is defined by

0 = (−→wm −−→w n)Tφ(−→x) + (bm − bn) (3.21)

which takes the same form as the decision boundary for the two-class case (see equation

3.12) and has therefore the same geometric properties.

All these approaches suffer two major limitations for the training of a SVM. First,

every decision boundary has to be trained on different tasks what leads to different

scales for the outcome of different yk(−→x). Second, the SVM is trained on imbalanced

data sets when only one of K classes is said to have outcome +1 while all the others

have −1. [Bis07] gives an introduction of how these problems are faced in practical

applications.

3.4.4 SVM compared to probabilistic classifiers

Compared to the probabilistic classifiers discussed so far there is a major difference.

Probabilistic classifiers build a model based on a given dataset and do not need nothing

else for classifying new data but the constructed model. The SVM uses information

30

from the data set directly for it’s model building namely the support vectors. There

exist several other methods which do that such as the K-Nearest-Neighbour algorithm

[Bis07]. This algorithm classifies new data points −→x according to it’s distance to other

data points of different labels. For classification the one label is chosen of which K

data points are nearest to −→x . This means when implementing this algorithm on a

computer the hole trainings-data-set has to be kept in memory for classifying new

data points whereas for the SVM only the support vectors have to be saved.

3.5 Graphical Models

Probability distributions can be represented by probabilistic graphical models. There

are two kind of representations: the Conditional Independence Graph and the Factor-

ization Graph. The probability distributions constructed by the Naive Bayes classifier

of section 3.2 can be expressed as such a graphical model as well which is shown in

figure 3.7. Graphical models lay the basis for the concepts explained in sections 3.6

and 3.7 following this one.

3.5.1 Directed Conditional Independence Graph

The Conditional Independence Graph can be either directed or undirected. Probability

variables are represented by the nodes in both the directed and undirected graph. The

edges indicate conditional dependence properties between the variables. Figure 3.7

gives an example for both versions of the joint probability distribution of the variables

a, b, c, d. The left figure represents a directed graph and can be read as the probability

distribution p(a, b, c, d) = p(a) ∗ p(b) ∗ p(c|a, b) ∗ p(d|c). Such a model is also called

Bayesian Network and can generally be expressed as

p(−→x) =

N∏

x=1

p(xn|pn) (3.22)

where −→x = (x1, .., xN) denotes the vector containing all variables xn ∈ −→x and pn

represents xn’s parent nodes (meaning nodes on which xn is conditioned).

3.5.2 Undirected Conditional Independence Graph

The right figure in figure 3.7 is an undirected conditional independence graph. It is a

more general representation than the directed one. Undirected graphs are also called

Markov Random Fields what foretells some kind of relationship to the probabilistic

31

Figure 3.7: Three conditional independence graphs - the left one representing the Naive

Bayes assumption of section 3.2 (conditional independence of input vari-

ables), the one in the middle representing an arbitrary directed graph and

the right one representing its undirected version. The dotted ellipses in

the right model indicate maximal cliques.

model described in section 3.7. The joint probability distribution is derived from the

maximal cliques of the graph which are indicated by shaded ellipses in figure 3.7. A

maximal clique is defined as a sub-graph of the original graph where all nodes are

interconnected and adding any other node from the original graph would violate this

constraint. When a maximal clique is denoted by C and it’s variables as xC the joint

probability is expressed by potential functions ψC(xC) over the maximal cliques C

written as

p(−→x) =
1

Z

∏

C

ψC(−→xC) (3.23)

where −→x = (x1, .., xN) is the vector containing all K variables and

Z =
∑

x

∏

C

ψC(−→xC). (3.24)

Note that the only constraint of the potential functions ψC(xC) is to be larger than

zero. They do not have to be of a probabilistic nature. This gives more generality and

freedom of choice how the variables in xC are related but makes the denominator Z

necessary so that the outcome of equation 3.23 is actually probabilistic.

The Maximum Entropy Classifier described in section 3.3 can be expressed by such

potential functions:

p(y|−→x) =
1

Z(x)

m∏

i=1

exp
(
λifi(

−→x , y)
)
. (3.25)

32

Figure 3.8: Two factor graphs

Directed graphs can be transformed into undirected ones. Actually the right graph

in figure 3.7 represents the undirected version of the graph in the middle. The top

edge has to be added in the undirected graph because the definition requires a maximal

clique to be fully connected. As the joint distribution of the left graph contains the

factor p(c|a, b) these three variables a, b, c have to be in one clique of the undirected

version.

3.5.3 Factor Graph

Factor graphs make this ”partitioning” of the original graph explicit and introduce the

concept of factors. The joint probability of a graph’s variables is given by

p(−→x) =
∏

s

fs(
−→xs) (3.26)

where fs denotes a factor and −→xs holds the variables contained in factor fs.

Both the directed and undirected conditional independence graph are special cases

of the factor graph. For the former equation 3.22 is the factors; for the latter equation

3.23 is the factors.

Figure 3.8 illustrates two factor graphs. The factors are represented by black squares

and are interconnected with the variables which are contained by the factor. Note that

both two graphs represent possible versions of the conditional dependency graphs in

figure 3.7.

33

Figure 3.9: Kth order Markov chain

3.6 Hidden Markov Models

Markov Models take the nature of sequences explicitly into account and therefore yield

consideration of dependencies between sequence-items. When talking about Markov

Models one speaks about states and transitions in between them. What is being

inspected are the probabilities of a variable for taking different values when it has seen

a sequence of other values in the past. The classification mapping this time is not from

an input vector −→x onto some arbitrary other discrete variable y but is a mapping onto

xt based on the observations of xt in the past what is the vector −→x = (xt−1, xt−2, ...)

when 1 ≤ t ≤ T describes the steps in time. In the case of S variable xt would be the

state a manufacturing machine takes at a moment. With a Markov Model one could

calculate the transition probabilities of the machine’s state into another one based

amongst other upon the information provided by former states.

The probability distribution of a probability variable x at time t is given by

p(xt|xt−1, ..., x1) ∝ p(xt|xt−1, xt−2, .., xt−K). (3.27)

The joint distribution of an entire sequence is therefore given by

p(xt, xt−1, ...x2, x1) = p(x1) ∗ p(x2|x1) ∗ p(x3|x2, x1) ∗ ... ∗ p(xt|xt−1, xt−2, .., xt−K).

(3.28)

If K = 1 this model is called first-order Markov chain and according to K Kth order

Markov chain. The joint probability can be expressed as a graph as it is illustrated in

Figure 3.9.

The circles symbolize the states whereas the arrows indicate conditional dependen-

cies between them. Intuitively it is not necessary in a very long sequence that one

34

Figure 3.10: Hidden Markov chain

state depends on all of it’s predecessors. Furthermore according to [Bis07] the number

of parameters in a Kth order Markov chain grows exponentially with K so this model

is impracticable for large values of K.

The Hidden Markov Model (HMM) overcomes this. A latent variable is introduced

which kind of summarizes everything important that has happened in the past [Ben96].

Hereby the conditional dependencies between the states themselves are eliminated.

What value the new latent variable takes at a certain time-step is conditioned solely

on the value it took one time-step before. The different states are conditioned on the

values of the latent variable. The states at different time-steps are therefore dependant

on each other through the latent variable. If the latent variable is indicated by l the

probability distribution variable x taking the different states at time-step t is given by

p(xt|xt−1, ..., x1) = p(lt|lt−1) ∗ p(xt|lt). (3.29)

The joint probability distribution of an entire sequence is given by

p(xt, xt−1, ..., x1) =

T∏

t=1

p(lt|lt−1) ∗ p(xt|lt). (3.30)

Figure 3.10 illustrates this graphically.

[Ben96] states in practical applications l and the values it can take have a particular

meaning. Obviously it should be designed complex enough so it can actually capture

all important information from the past.

3.7 Conditional Random Fields

As the Hidden Markov Model described in section 3.6 is the sequential version of

the generative Naive Bayes classifier (section 3.2) there exists a sequential version

35

Figure 3.11: Linear chain CRF according to [SM06]

for the discriminative Maximum Entropy Classifier from section 3.3 as well. This

classifier named Conditional Random Field (CRF) is described in this section and

was first introduced by [LMP01]. The Maximum Entropy Classifier’s advantage is

the reduction of parameters to be estimated as described earlier. This is because the

probability distribution p(−→x) of input vector −→x does not have to be modelled. Because

of this according to [KT07] there exist applications where the CRF is of higher order

than K = 1. This means the probability distribution of a sequence’s observation at

time step t is not just conditioned on a variable from time step t − 1 but on several

others as well. [KT07] and [SM06] give examples of different designs.

The one design similar to the Hidden Markov Model called Linear Chain CRF is

discussed in detail here as it suites well for explaining the fundamental theory behind

Conditional Random Fields.

The CRF is generally formulated as

p(
−→
l |−→x) =

1

Z(−→x)

∏

C

ψC(−→xC ,
−→
lC) (3.31)

where the denominator is defined by

Z(−→x) =
∑

l′

∏

C

ψC(−→xC ,
−→
l′). (3.32)

When comparing equation 3.31 to 3.23 one sees the only difference is the added
−→
l

which comes from the conditioned probability distribution which has to be estimated

by the model.

[SM06] defines the linear chain CRF as follows

p(
−→
l |−→x) =

1

Z(−→x)
exp

(m∑

i=1

λifi(lt, lt−1,
−→xt)

)
(3.33)

36

Figure 3.12: Linear chain CRF according to [KT07]

where t represents time steps and −→xt symbolizes the observations in −→x which are

needed for the computation at time step t. Denominator Z(−→x) is given by

Z(−→x) =
∑

l

exp

(m∑

i=1

λifi(lt, lt−1,
−→xt)

)
. (3.34)

Figure 3.11 visualizes this concept. [KT07] amend this by introducing the concept

of parameter tying. This means feature function fi does not use it’s own parameter −→xt

any-more but references the hole input vector −→x . fi receives a new input parameter j

which denotes the information for which time step the calculation is done. The linear

chain CRF takes therefore the following form:

p(
−→
l |−→x) =

1

Z(−→x)
exp

(n∑

j=1

m∑

i=1

λifi(lj , lj−1,
−→xt , j)

)
(3.35)

where Z(−→x) is given analogously to equation 3.34 −→xt exchanged by −→x and extended

by the parameter j. Figure 3.12 illustrates this.

37

4 Sequence Mining

Given a set of sequences Ŝ1, Ŝ2, ..., Ŝn Sequence Mining is the term for algorithms which

search for common sub-sequences in Ŝ1, Ŝ2, ..., Ŝn. Sequence Mining is no classification

method per se but it can be useful for finding common sub-sequences occurring before

some machine state in S. As the sequence mining algorithms compare multiple se-

quences a possible application would be chopping S into pieces so that one piece maps

on a particular state. Multiple pieces mapping on the same machine state may then

be analysed by such sequence mining algorithms to find out common sub-sequences.

Those algorithms decide whether a sub-sequence in several sequences is common

or not based on a threshold or support that one stipulates in advance. The first

sequence algorithm GSP was introduced 1995 by [AS95]. As being often referenced in

other scientific papers the algorithms described in this chapter seem to be the primal

approaches yet existing. This chapter is based on the work of existing scientific work

which are all referenced throughout this chapter. None of the described methods is

derived by myself.

4.1 Further definitions

Srikant and Agrawal’s [AS95] definitions of a sub-sequence are slightly different to the

definitions in chapter 2. They define a sequence B̂ = 〈b1, b2, .., bN 〉 as subsequence of

Â = 〈a1, a2, .., aM 〉 if N ≤ M and there exist integers 1 ≤ i1 < i2 < ... < iN ≤ M

such that b1 = ai1, b2 = ai2, ... , bN = aiN . This means that between two sequence

items ax, ay in Â where 1 ≤ x < y ≤ M corresponding to two adjacent items bz, bz+1

in subsequence B̂ where 1 ≤ z ≤ N there might exist several aq1, aq2, ..., aqO
where

x < aq1 < aq2 < ... < aqO
< y saying that there might exist a gap of arbitrary size

between ax and ay in Â. Throughout the hole chapter this definition is used when

speaking of a subsequence. In the chapters afterwards the definition of chapter 2 is

used again.

In addition they add the term of the sequence database
⊕

as a set of tuples 〈sid, Ŝ〉

where sid is the sequence id of sequence Ŝ. A tuple 〈sid, Ŝ〉 contains another sequence

38

Â when Ŝ ⊒ Â and therefore S is a super-sequence of Â and Â is a sub-sequence of

Ŝ. The support of a sequence Â is defined by the number of tuples 〈sid, Ŝ〉 in the

sequence database which contain Â. They call a sequence Â a sequential pattern if

it’s support in sequence database
⊕

exceeds a pre-defined positive integer denoted as

support threshold.

Furthermore the term element of a sequence is introduced which may not be of high

interest for our actual task but may enable some sort of multi-dimensional sequence

mining as discussed in [JHY05]. In a sequence Ŝ = 〈s1, s2, ...sL〉 sn is denotes an

element of Ŝ. It can be either an item ih ∈ I = {i1, ..., iH} directly or another set

of items {i1, ..., iH} called transactions. Those transactions are a set of items which

happened at the same time. This means the order of the items in a transaction does

not matter. The origin of those transactions lies in the purpose Srikant and Agrawal

introduced GSP for namely, customer behaviour. A transaction represents actions of a

customer he has done at the same time or for which this can be assumed, for example

ordering different books in one step. An example for a sequence of item set I = {a, b, c}

containing a transaction could be 〈ac(ab)b〉. An item ik can appear multiple times in

different elements of a sequence Ŝ but can never appear more than once in one element

and therefore in one transaction.

4.2 Apriori algorithms

The first family of algorithms presented is the family based on the apriori-principle

which states that every super-pattern of an infrequent pattern cannot be frequent. Two

algorithms are introduced; first the GSP algorithm and second the SPADE algorithm.

In the end the concept of a third algorithm called SPAM is shortly noted.

4.2.1 GSP

As mentioned in the introduction of this chapter the GSP algorithm was the first

sequence mining algorithm and was introduced by [AS95]. It is an algorithm which

builds up candidate sequential patterns based on a horizontal data representation.

The algorithm grows candidate patterns from length one until it can’t find no more

candidates. It therefore evaluates every possible combination of items from the item set

until it reaches the stopping criterion for every search branch. The stopping criterion

is the apriori principle which means that it stops growing a candidate branch when

the support of the candidate is below the threshold. When the algorithm finds a

39

Sequence id Sequence

1 〈a(abc)(ac)d(cf)〉

2 〈(ad)c(bc)(ae)〉

3 〈(ef)(ab)(df)cb〉

4 〈eg(af)cbc〉

Table 4.1: Sequence database according to the example of [JHY05]

non-frequent pattern at a certain branch it stops growing it. Until then it performs a

candidate-generation-and-test search in which it iteratively combines frequent patterns

found at a certain iteration to generate new candidates for the next iteration and

finally tests if the candidates are actually frequent in the given sequences. This is best

illustrated in a short example which is adopted from [JHY05].

Table 4.1 contains an example sequence database which should serve for explanation

purposes. Analysing the four sequences of table 4.1 GSP works as follows. First it

scans the database for frequent sequential patterns of length 1. It therefore finds

〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, 〈f〉 : 3, 〈g〉 : 1. Given a support threshold of 2

the sequential pattern 〈g〉 is considered as frequent and it’s search branch for further

growing is closed. All other patterns are investigated more deeply.

GSP works iteratively so the results from one iteration are passed to the next and

used as seeds for generating new pattern-candidates. In each step it combines the

seeds by piecing the seeds together. This combination of two seeds is only possible

if the subsequence gathered from the first seed by deleting it’s first item equals the

subsequence from the second seed by deleting it’s last item. The result of combining

two seeds Ŝ1 and Ŝ2 is Ŝ1 extended by the last item of Ŝ2. It has to be checked

whether the last item of Ŝ2 can be added both as part of the last transaction in Ŝ1

and as item on its own respectively. This means in iteration two of our example

GSP finds 51 new pattern-candidates by combining the seeds what leads to the set

{〈aa〉, 〈ab〉, ..., 〈af〉, 〈ba〉, ..., 〈ff〉, 〈(ab)〉, 〈(ac)〉, ..., 〈(ef)〉}.

Srikant and Agrawal explain the candidate-testing algorithm of GSP in [AS95] con-

sidering gap constraints. For evaluating if a sequence contains several candidate pat-

terns they use a hash tree structure of the candidate patterns for efficiently reducing

the number of candidates to be checked. The support of a candidate is given by the

number of sequences it contains. If the support of a candidate is below the support

threshold this candidate is deleted from the set. This means this algorithm produces

40

candidates what does not mean these candidates are actually frequent. In fact, it

produces candidates which need not to occur in the sequences to be analysed at all.

In this way of combining the different seeds in one iteration GSP reduces the search

space of candidate patterns. Nevertheless [JHY05] states three ”inherent costs”.

First the GSP algorithm may have to generate many candidate patterns. When Nc

depicts the number of seeds in one iteration the total number of candidates to

be generated is calculated by N2
c + Nc(Nc−1)

2 . The first addend stands for the

seeds that have to be combined as own element whereas the second stands for

the combination as part of the last transaction. [JHY05] gives an example that

for 1000 seeds at an iteration this algorithm will produce 10002 +
1000 ∗ 999

2
=

1, 499, 500 candidates.

Second [JHY05] criticizes the many database scans the algorithm has to perform what

is supposed to be very costly.

Related to the first point is third which says that this algorithm has severe problems

mining long sequences. [JHY05] shows that for a sequence of length 100 where

every item appears only once in the sequence GSP has to generate approximately

1030 candidates.

4.2.2 SPADE

SPADE is similar to GSP an algorithm that is based on the apriori-principle and was

introduced by [Zak01]. Unlike GSP it does not use a horizontal data representation

but transforms the sequence database into a vertical one and so combines different

subsequences or patterns slightly different what leads to less database accesses and

”reduced computational costs by using efficient search schemes” according to [Zak01].

A horizontal representation means a tuple in the database to consist of the follow-

ing entries: SID, EID, Elements; whereas SID depicts the sequence id, EID denotes

the time a sequence element ”happened” and this element is denoted by the entry

Elements.

Table 4.2 illustrates the vertically transformed version of the first sequence in table

4.1. Similar to GSP SPADE grows sequential patterns from length one. For each

pattern the information in which sequence SID at which time EID it is contained is

stored in the vertical representation. In this way the support of the pattern is easily

evaluated by counting the distinct SID’s. Patterns of the length l+1 are generated by

41

SID EID Elements

1 1 a

1 2 (abc)

1 3 (ac)

1 4 d

1 5 (cf)

2 1 (ad)

2 2 c

2 3 (bc)

...

Table 4.2: Vertically transformed version of the sequence database in table 4.1

combining patterns of length l similar to GSP and making use of the apriori-principle.

Therefore the tuples containing the SID’s and EID’s of all the elements in the pattern

are considered.

If an item is denoted by i for a pattern of length l these tuples are stored as follows:

SID,EID(i1), EID(i2), ..., EID(il). Each pattern has therefore a set of such tuples.

The tables in figure 4.3 illustrate this concept for the length-1 pattern a, b and their

combination ab. When combining two patterns SPADE uses a slightly different method

from that of GSP. Whereas GSP deletes the first item in the first sequence and the

last from the second sequence to check if the resulting subsequences are equal SPADE

combines patterns with the same prefix of length k − 1 when k depicts the length of

the pattern. [Zak01] uses the fact that a sequence Ŝ can be constructed from two of

its subsequences of the sequence’s length - 1. Namely, the first being the one with the

last item deleted from Ŝ and the second having dropped the second to the last item of

Ŝ. This way not all EID’s of all items in the pattern have to be stored as mentioned

before but only the last. When merging two patterns with the same prefix of length

k−1 when k depicts the length of the pattern three candidates are constructed namely,

one with the last item from the first pattern as last item, one with the last item of

the second pattern as last item and one having the two last items in one transaction.

For all these candidates its constructing patterns’ last items have to be investigated of

having the right EID’s. This means for instance if two patterns Ŝ1 = abc and Ŝ2 = abd

construct a candidate abcd the EID of c in Ŝ1 has to be lower than the one of d in Ŝ2

to increment the support of abcd by one.

42

a

SID EID

1 1

1 2

1 3

2 1

.. ..

b

SID EID

1 2

2 3

.. ..

ab

SID EID(a) EID(b)

1 1 2

2 1 3

..

Table 4.3: Pattern candidate ab being constructed from frequent patterns a and b

according to table 4.2. The support of ab is a intersection of the support of

a and b whereas for a particular SID the EID’s have to appear in the right

order.

abc

SID EID

1 15

1 20

4 20

abd

SID EID

1 15

1 22

4 25

abcd

SID EID

1 22

4 25

Table 4.4: Combination of two 3-length frequent patterns abc and abd to construct

abcd. Only one EID namely the one of the last item per occurrence of

the patterns is stored. When combining two frequent patterns to a new

candidate only the one EID has to be investigated of being in the right

order.

Figure 4.4 illustrates this example. If the number of distinct SID’s in the pattern’s

set of SID’s and EID’s (e.g. its support) is below the support threshold this pattern

is considered infrequent and not used for further combinations.

Although SPADE brings plenty of improvements compared to GSP [JHY05] states

that it still generates too many pattern candidates in it’s breadth-first search to grow

long sequential patterns. That is why the authors introduce PrefixSpan which be-

longs to the family of pattern-growth algorithms [HPY99] and is explained in the next

chapter.

43

4.2.3 SPAM

The SPAM-algorithm [AGYF02] is another apriori-approach which chooses a bitmap-

representation of the sequences what leads to the advantage of generating sequential

candidate patterns by bit-operations which can be done very efficiently. In the ex-

periments done by [AGYF02] the algorithm outperforms GSP, SPADE and even the

pattern-growth algorithms described in the next section on large datasets.

4.3 Pattern-growth algorithms

These algorithms search for common sequential patterns in sequences by partitioning

the sequence database where the patterns are searched. Two algorithms are discussed;

the first being the FreeSpan [HPMA+00] algorithm and the second being the PrefixSpan

[JHY05] algorithm which is actually based on the former.

4.3.1 FreeSpan

The idea of FreeSpan is to partition the sequence database according to projections to

reduce the search space for new candidate patterns. A Ŝ-projected-database is the set

of sequences which contain the sequence Ŝ. Furthermore the set of sequential patterns

is divided into disjoint subsets. When I = {i1, i2, ..., iN} is the item set containing

all frequent items (this means all patterns of length one - these patterns are sorted in

descending order according to their support) the patterns can be divided as follows:

the patterns containing i1 but no item after i1 in I, the patterns containing i1 and i2

but no item after i2 in I and so on. This means the nth subset contains all items i1 to

in but no item after in in I.

Based on these principles the algorithm first searches for all length-one frequent

patterns and sorts them in descending order according to their support. After that it

builds the projected databases of every length-one frequent pattern and searches for

further frequent patterns of length two. Again the algorithm constructs the projected

databases of the length-two frequent patterns to search for length-three patterns and

so on.

Let’s take again the example database of table 4.1 for illustration purposes where the

support threshold is 2. As GSP FreeSpan first finds the length-1 one frequent patterns

in the following order: 〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, 〈f〉 : 3. Next the algorithm

constructs the projected databases. First the one for pattern 〈a〉 is processed leading to

the 〈a〉-projected-database {〈aaa〉, 〈aa〉, 〈a〉, 〈a〉}. Mining this projected database only

44

〈aa〉 is found as frequent length-two pattern. Processing 〈b〉 leads to the 〈b〉-projected-

database which takes the following form: {〈a(ab)a〉, 〈aba〉, 〈(ab)b〉, 〈ab〉}. Three length-

two sequential patterns are extracted from this database: {〈ab〉, 〈ba〉, 〈(ab)〉〉. Building

the 〈ab〉-projected-database takes the form {〈a(ab)a〉, 〈aba〉} resulting in the frequent

length-two pattern 〈aba〉. The mining of all the other projected databases of length-

two patterns does not result in any longer frequent patterns as well as mining the

projected database of pattern 〈aba〉 so the projected database construction is stopped

here. The algorithm proceeds with length-one pattern c to continue this proceedings

for all frequent patterns.

According to [HPMA+00] this algorithm outperforms GSP but has the disadvan-

tage of constructing many non-trivial databases as stated by [JHY05]. The algorithm

PrefixSpan introduced by [JHY05] and discussed in the next section fixes the order

of item projection and allows the application of a technique called pseudo-projection

which faces this problem.

4.3.2 PrefixSpan

The PrefixSpan [JHY05] algorithm exploits a projection technique similar to the

FreeSpan algorithm although it projects the databases slightly different. First of all

PrefixSpan brings the element in a transaction in a alphabetical order. A sequence

a(ba) would therefore be the same as a(ab). As the items in one transaction happen all

at the same time this transformation is valid. The database projections do not consist

of whole sequences any-more but contain the suffixes of the sequences which follow on

a particular sequence prefix P̂ when the database is projected with respect to P̂ .

The definitions of a prefix and a suffix of a sequence are stated as follows. Given a

sequence Ŝ = 〈s1, s2, s3, ..., sN 〉 a sequence P̂ = 〈p1, p2, p3, ..., pM 〉 is called a prefix of

Ŝ if

- si = pi for every i < M

- pM ⊆ sM and

- all items in transaction (sM − pM) are alphabetically after the ones in pM .

Sequence Q̂ = 〈q1, q2, ..., qO〉 where q1 = (sM −pM), O = N −M +1 and qj = sM+j−1

for 1 < j 6 O is called suffix of sequence Ŝ with respect to P̂ . The suffix Q̂ of Ŝ with

respect to P̂ is empty if prefix P̂ is not a suffix of sequence Ŝ.

Again the set of sequential patterns is split into several subsets as we have seen it

similarly for FreeSpan. This works slightly different this time. First the complete set

45

of sequential patterns can be divided into subsets, each corresponding to the set of

sequences having the length-one pattern xn as prefix when {x1, x2, ..., xn} denotes the

frequent patterns of length one in the given sequences. These subsets can be further

divided. When prefix P̂ is a sequential pattern of length l let the set of length l + 1-

sequential-patterns having P̂ as prefix be the set {Ŝ1, Ŝ2, ..., ŜM}. Ŝ1, Ŝ2, ..., ŜM can

be prefixes again on their own and so divide the entire set of frequent patterns into M

further disjoint subsets. The mth subset where 1 ≤ m ≤M are the frequent patterns

with Ŝm as their prefix.

The algorithm then grows frequent patterns from length one to recursively project

the sequence databases with respect to the frequent patterns of length l when searching

for patterns of length l + 1. In the projected databases frequent items (or patterns

of length one) are searched and concatenated to pattern responsible for the database

projection. This gives a new frequent pattern and a new possibility for a projection.

The algorithm is best illustrated by the example from table 4.1 with support thresh-

old 2. Once again the algorithm finds the frequent patterns of length one: 〈a〉 : 4, 〈b〉 :

4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, 〈f〉 : 3. After this subpatterns with prefix 〈a〉 are searched.

Therefore the 〈a〉-projected-database is constructed which takes to following form:

〈a(abc)(ac)d(cf)〉, 〈(d)c(bc)(ae)〉, 〈(b)(df)cb〉, 〈(f)cbc〉. A transaction which contains

an underline like (d) means that the following items (in this case the d) is contained

in the same transaction as the pattern responsible for the projection. In the 〈a〉-

projected-database the algorithm searches for frequent items again. This time it finds:

a : 2, b : 4, b : 2, c : 4, d : 2, f : 2 resulting in the length-two frequent patterns in this

search branch: 〈aa〉 : 2, 〈ab〉 : 4, 〈(ab)〉 : 2, 〈ac〉 : 4, 〈ad〉 : 2, 〈af〉 : 2. The result opens

new branches for mining for frequent patterns. The projection of the sequence database

with respect to 〈aa〉 leads to 〈(bc)(ac)d(cf)〉, 〈(e)〉 where no new frequent items are

found. The 〈ab〉-projected database takes the form 〈(c)(ac)d(cf)〉, 〈(c)(ae)〉, 〈c〉 lead-

ing to frequent items (c) : 2, a : 2, c : 2. The 〈a(bc)〉-projected-database has one

frequent item, namely a : 2 while all the other projections of length-three patterns in

this branch have no frequent items. The resulting frequent patterns with prefix 〈ab〉

are therefore 〈a(bc)〉 : 2, 〈〈a(bc)a〉 : 2, 〈aba〉 : 2, 〈abc〉 : 2. The same is done with all the

other branches.

This kind of projection allows to apply a technique which [JHY05] calls Pseudo-

Projection. The projected-databases are therefore not constructed actually physically

but with the help of pointers and offset-information the projecting can be accomplished

directly in the original sequences. Details how this can be done are given in [JHY05].

46

4.4 Constraint based sequence mining

All the algorithms are extended in that way that it is possible to search for sequential

patterns by defining constraints. This has two advantages:

1. the user is not overwhelmed with sequential patterns he is not interested in

2. when the constraints are pushed deeply into the mining algorithm the search

space is reduced leading to a better performance

This is why all authors of the algorithms described so far extended their algorithms

in that way. In [GRS99] the authors describe how to extent the GSP algorithm. As

they consider regular expressions to be a very powerful way for defining constraints

a framework is presented which describes how to push regular expressions into the

algorithm. Because regular expressions are not anti-monotone, what means that a

sequence fulfilling a pattern constraint does not mean that all of it subsequences fulfil

this constraint either, they present several algorithms which push the constraint at

different levels of degree into the GSP algorithm. Because a regular expression can be

thought of as a automata one can distinguish if the sequence is

- legal with respect to a state of the automata, what means that every two elements

in the sequence are described by an edge between two states of the automata,

- valid with respect to a state of the automata, what means that every two elements

in the sequence are described by an edge between two states of the automata

and the last element of the sequence corresponds to an end-state or

- valid to the automata, what means that every two elements in the sequence are

described by an edge between two states of the automata and the last element of

the sequence corresponds to an end-state and the first element to a start-state.

According to this [GRS99] introduces the Spirit(N)-algorithm which simply checks if all

elements in a sequence actually occur in the regular expression, the Spirit(L)-algorithm

which requires the sequence to be legal with respect to some state of the regular ex-

pression, the Spirit(V)-algorithm which requires the sequence to be valid with respect

to some state of the regular expression and the Spirit(R)-algorithm which requires

the sequence to be valid to the regular expression. As according to [GRS99] there is

no efficient method for the Spirit(R)-algorithm to generate pattern candidates but a

brute-force method the Spirit(V)-algorithm is named the overall winner in performance

on mining general sequences.

47

SPADE is extended by [Zak00] to incorporate constraints in the algorithm. M.J.

Zaki shows how to push constraints into the algorithm concerning the length (number

of overall elements) and width (number of elements in one transaction) of a pattern,

the minimum and maximum gaps between two elements in a pattern, the maximum

duration of a pattern, constraints about particular elements and a class handling.

[PHW07] explains how constraints are pushed into the PrefixSpan-algorithm. Item

constraints, length constraints, gap constraints, regular expressions and aggregate

functions are handled and grouped according to monotonicity (every super-sequence

also fulfil the constraints fulfilled by a sequence), anti-monotonicity and succinctness

(constraints provide information so that sequential patterns fulfilling the constraints

can be constructed directly) by the authors.

4.5 Combining sequence mining and classification

Sequence mining and classification could fit together well as sequence mining may

reduce the feature space for the classification task. [LZO99] proposes exactly this

combination and states that in an experiment on three datasets the classification ac-

curacy could be improved by 10-50%. The authors believe that three heuristics are

essential for selecting the right features:

1. Features should be frequent

2. Features should be distinctive

3. Features should not be redundant

According to this [LZO99] proposes an algorithm which is an extension of the SPADE-

algorithm and considers the heuristics listed above.

Furthermore [TL09] introduces a new apriori-based algorithm for mining distinctive

features. Instead of using common classification algorithms the authors apply their

own classifier constructed by a scoring metric.

4.6 Episode Mining

Sequence Mining is an approach where common patterns in different sequences are

searched and presented to the user. In our case of mining the history of machine

states S the only way of applying a sequence mining algorithm would be to slice the

sequence of states in S. When one is just interested in finding common patterns

48

Figure 4.1: Different kind of episodes. The one above the a symbolises a serial episode,

the one above the b symbolises a parallel episode and the one above the c

symbolises a non-serial and non-parallel episode.

containing some machine state then the slices would form the neighbourhood nearby

that one interesting state.

Things get more complicated if one searches for patterns without knowing which

machine states should be involved. Every possible slice of a certain length would have

to be cut out from the one sequence and grouped for each machine state they are

mapping on. For each state common patterns would have to be searched by applying

sequence mining algorithms and amongst those states the common patterns would

have to be compared to find exclusive ones. Besides the fact that this procedure seems

to be very complicated there is a major issue with choosing the length of such a slice.

As one does not know how long the patterns might be the length of the slices has to

be chosen arbitrarily. If they are chosen too short it might be that longer patterns

are cut off and will not be found. Choosing the length of the slices too long may lead

to finding patterns where the machine states are widely spread [CG03]. This could

be a problem if the occurrences of different machine states is strongly varying leading

to a higher probability a certain subsequence is actually found. Another problem is

described by [MR04] where the authors state that in sequence mining the frequency of

a pattern is determined by the number of sequences containing it. So if there appears a

pattern more than one time in a sequence its frequency count is nevertheless increased

just by 1.

Episode Mining tries to overcome these drawbacks. It is explicitly designed for

finding all possible re-occurring patterns called episodes in one long sequence.

One of the first scientific works concerning episode mining is [MTV97]. They for-

mally introduce what an episode is. They consider a sequence equally as in sequence

mining as an ordered set of events happening one after another. As an episode they

consider a triple (V ,≤, g) where V is a set of nodes, ≤ is a partial order and g : V → I

where I is the set of events is a mapping associating each node with an event type.

49

Figure 4.1 illustrates different kind of episodes. The nodes A,B,C are nodes from

set V . In episode mining it is searched for multiple occurrences of events which can

be mapped to these patterns. The left pattern above the (a) is a serial pattern which

states that an event has to happen after another. Patterns searched and found in

sequence mining only take the form of a serial pattern. Furthermore in episode mining

there exist the parallel pattern where the relative order between two states is not fixed

and the non-parallel and non-serial pattern where two events precede in a non fixed

order before another event.

[MTV97] proposes two kinds of search algorithms. The first one called WINEPI is a

window based algorithm which shifts a window of a certain size across the hole sequence

and handles each subsequence finding place in the window as the sequence algorithms

handle their sequences. The frequency of an episode is thereby determined by the

number of windows in which the episode occurs. The size of the window has to be

chosen by the user as well as a threshold for the ratio of the overall number of possible

windows compared to the number of windows containing a pattern that indicates if

that pattern is considered frequent or not. Episode candidates are thereby generated

equally as candidate patterns are generated by the sequence mining algorithm GSP

namely, by combining existing ones. Indeed it is the same generate-and-test apriori

approach as applied by GSP. Candidates are tested by scanning over the sequence

using an automata to check whether a candidate is entirely contained in a window.

The second algorithm is called MINEPI and handles the problem slightly different.

This algorithm introduces the concept of minimal occurrences. The authors state that

an episode has a minimal occurrence in a time window where it does not occur in

any sub-window of it. Here a support threshold (number of minimal occurrences) has

to be defined by the user to distinguish a frequent episode from a non-frequent one.

Candidate episodes of length l are again constructed by combining frequent episodes

of length l− 1. To verify if an candidate episode is actually frequent only the minimal

occurrences of the sub-episodes have to be considered. The algorithm therefore needs

some data-structure to store the information about the minimal occurrences. When

scanning over the minimal occurrences of the sub-episodes of a candidate episode again

an automation is used to detect occurrences.

In the same context[MTV97] introduces episode rules. Episode rules state that

if there exists a frequent episode e1 which is contained by another frequent episode

e2 how probable is e2 within a certain time window when e1 occurs within another

time window? Therefore frequent episodes are sliced in two so that only the minimal

occurrences of the sub-episodes have to be considered for calculating the probability.

50

As it is not quite clear of how to choose these window sizes [MR04] gives an heuristic

of how to do so.

[LSU07b] gives an introduction for efficiently working with and restricting the au-

tomata used for candidate testing. The authors state that only distinct and non-

overlapped occurrences of episodes in a sequence should count for their frequency to

provide efficiency in space and time complexity of the algorithm. Distinct means oc-

currences of episodes share no events with other ones. Non-overlapping means an

occurrence of an episode does not begin in between the events of another occurrence.

The same authors introduce in [LSU07a] the concept of episodes when the events

of episodes are combined with a duration information which might be of particular

interest in our case. In fact in [LSU07a] the authors inspect a log of machine states

similar to the case of this thesis. They give an introduction of how to handle the time

information and give some principal design hints. In episode generation and testing

their algorithm proposed works similar to that of [MTV97].

51

5 Approach

This chapter describes the approach how the experiments in chapter 6 were accom-

plished. First of all it shortly repeats what is the goal of the experiments to subse-

quently introduce the approach of how the experiments were conducted and therefore

how the original data was preprocessed and provided to the algorithm used for the

experiments.

The experiments and evaluations are done to face problem (2) as explained in the

introduction of this thesis what is, showing that patterns exploitable for a classification

task (meaning correlations between machine states in sequence S) exist in real-world

data-sets and that finding them is possible.

The experiments are accomplished with a tool called LibSVM [CL01] for construct-

ing Support Vector Machines so the problem of achieving the thesis’ goal is handled as

a classification task. libSVM is chosen because it is a tool well approved and Support

Vector Machines are said of being able to handle better the curse of dimensionality

problem than other methods [BDLR06]. The curse of dimensionality states that clas-

sification algorithms’ performances decrease with the number of features used for the

classification task. This means adding more features to the instances of the trainings-

and test-sets should not make the SVM to suffer that hard as other methods in clas-

sification. Choosing the Support Vectors to be instances on the borders of each class

in the feature space the interpretation of the constructed model should be possible as

well. To keep the model built by the Support Vector Machine more interpretable only

linear basis functions for feature transformation are used.

Algorithms and methods falling in the sequence- and episode mining approach are

not used in the experiments because no appropriate freely-available software-tools were

found at the time this thesis is being written. The application (and therefore maybe

an implementation) of a method described in chapter 4 is left open for further works.

In this chapter first preliminary approaches not meeting the expected results are

introduced. Then the procedure of transforming the original data set into a represen-

tation which can be interpreted by a Support Vector Machine is described.

52

5.1 Preliminary approaches

This section shortly summarizes what other methods had been tried out before making

use of Support Vector Machines by applying LibSVM and why the results accomplished

were not satisfying.

The first method investigated were Conditional Random Fields as described in sec-

tion 3.7. A tool called MALLET [McC02] was applied but as its task is to classify

and tag text and documents it did not fit the task at hand. For its sequence tagging

(what means to classify a sequence’s items) MALLET seems to include the informa-

tion provided by a sequence item’s successor. This lead to the fact that MALLET

classifies randomly generated sequences containing no patterns with an accuracy of

> 98% when the task is processed as in our case.

A freely available PrefixSpan 4.3.2 implementation [Tab10] was tried out. That

for, subsequences mapping on a particular machine state in S were cut out of the

sequence of machine states Ŝ to search for common patterns. Unfortunately this

implementation does not provide gap constraints so the number of resulting, mostly

irrelevant patterns is overwhelming so that the examination of actually useful patterns

in short time becomes not possible. Other freely available sequence- and episode mining

implementations were not found at this time.

Before using the Support Vector Machine algorithm of LibSVM another sequence

tagging algorithm was applied called SVMHMM [Joa10]. It is a tool that trains Hidden

Markov Models (section 3.6) using the Support Vector Machine formulation. This

means in all equations of section 3.4 there are transition and emission probabilities

according to the Hidden Markov Models introduced. For details [Joa10] refers to

[ATH03]. One major drawback of this method is that there is no possibility to give

weightings on target labels in the data. Reasons why one should do that in very

imbalanced data sets like the one used in the experiments for this thesis are given in

[AKJ04]. Another problem is that the algorithm is not able to output the confidence

by what the algorithm made its classifications (see section 5.5.2 why the confidence is

important for the experiments).

After those methods LibSVM was applied and yielded first promising results.

5.2 The original data set

The original data is stored in a relational database system. One table in this system

stores the sequence of machine states in the following form:

53

machine status date from date to shift nr

BU10 SCHM 27.07.2007 09:46:46 07.08.2007 09:47:50 1

OL13 PROD 27.07.2007 09:46:32 07.08.2007 09:47:55 1

BU10 PROD 27.07.2007 09:45:10 27.07.2007 09:46:46 1

..

As the sequence of states is logged for more than one machine the first column from

the left indicates what machine the data row belongs to - in this case the top row is

an entry of machine ”BU10” the row in the middle of machine ”OL13” and the lower

row of machine ”BU10” again. The second column from the left indicates the name

of the state which lasts from ”date from” until ”date to” denoted by the third and

fourth column from the left - in this example there is the state ”SCHM” logged which

lasted from 09:46:46 o’clock until 09:47:50 o’clock on the 27th of July 2007 for machine

”BU10”. Additionally in the rightmost column there is the shift recorded in which

this state occurred (in this case the status ”SCHM” took place in the first shift).

In this way the states of each machine are logged over the time without gaps.

The machine states reach from production (indicated by ”PROD” in the example)

to planned and unforeseen downtimes. To extract the sequence of states for one ma-

chine only the rows concerning this machine have to be considered (which means the

leftmost column must contain the name of the machine). According to the time in-

formation (”date from” and ”date to”) the states recorded in column status form the

sequence of states for one machine. In other words; reading column ”status” top down

in rows concerning one machine gives the sequence of states in Sfor this machine.

”date from” and ”date to” provide additional duration information.

To make it possible that a Support Vector Machine builds models about this data

it has to be transformed and represented in a different way what is the topic for the

rest of this chapter.

5.3 Vectorization

In chapter 3 classification was explained as the mapping from an input vector −→x on a

discrete value of a variable y. In other words representative value combinations in the

dimensions of −→x are searched for each value y can take.

The sequence of states for one machine in S has the form Ŝ = 〈s1, s2, ...sL〉 where

L is the length of the sequence (s1, s2, ...sL denote the column ”state” in the original

data table read top down for one machine). In the task of predicting an sequence item

54

Figure 5.1: Example how S is transformed. The blue arrow symbolizes the history of

machine states. In this example four possible states are possible, namely A,

B, C and D. The metric in this example would simply count the occurrences

of each state until three states before the label. In the two blue boxes two

example instances are given. On the left of each box the label is separated

by a vertical line from the features. On the right hand side each state A,

B, C, D is assigned its value. Note that this is just an example as the

duration of every state is ignored and states have take Integer values in

LibSVM.

sl the item itself is clearly the label that is to be predicted and can therefore be seen

as the variable y. As we want to construct a mapping onto sl from its predecessors

in Ŝ it is them providing the information for input vector −→x . Therefore it is crucial

to decide how many predecessors are considered and how the information about their

distance to the label in Ŝ, their duration and the number of their occurrences nearby

the label is provided to the Support Vector Machine.

LibSVM receives its training- and test-data via an ASCII-file. In this file each line

represents an instance of either the training-set or the test-set. One such line has to

take the following form:

Label Feature1:<value1> Feature2:<value2> ... FeatureQ:<valueQ>

Label depicts the label (and therefore variable y) which is represented by an Integer

value. The features Featurex forming the input vector −→x are represented by Integer

values as well. Each dimension of −→x is thereby one Featurex. The values of the features

< valueX > take Float values. These values should be expressive enough to separate

different classes (machine states in the broader sense) if the separation is possible. The

question is therefore how to design these values as we have to transform the discrete

formulation of S into a numerical one.

Figure 5.1 illustrates an example of how training- and test-instances are generated

from the history of machine states S for being processed by the Support Vector Ma-

55

chine. For each machine state on the time-line one instance in the form of the two blue

boxes is generated. In this example the value of each feature is given by the number

of states occurring within the window of states being considered. Other informations

such as the duration of each state or its distance to the label my be considered as well

as we shall see shortly. This technique is called sliding window -technique as a window

of a defined value is shifted one item after another over a sequence. Each subsequence

finding place in the window is extracted to form one instance of whether training- or

test-dataset.

First the right size K for the window is chosen. If Ŝ = 〈s1, s2, ...sL〉 describes the

sequence of machine states in S then a subsequence finding place in the window can be

denoted by ŜK
t where 1 ≤ t ≤ L−K is an arbitrary start point in Ŝ. This window is

then shifted across S by incrementing the subsequence’s start index t from 1 to L−K.

After each incrementation ŜK
t = 〈st, st+1, ..., st+K−1〉 is transformed into whether a

training- or test-instance by extracting the label y and constructing the input vector
−→x .

The label y is the last item st+K−1 of ŜK
t and can therefore take as value each

possible machine state ih ∈ I if I = {i1, ..., iH} denotes the set of possible machine

states. −→x is constructed from the information provided by st, st+1, ..., st+K−2. Before

it can be explained how these sequence items contribute to −→x it has to be described

what the dimensions of −→x (which are the features) are. Each dimension xn ∈ −→x

stands for a possible predecessor of label st+K−1. Such a predecessor might be a single

machine state ih as well a transition from ih1 ∈ I to one or several other machine

states ih2, ih3, ..., ihT ∈ I. T hereby denotes the length and therefore the number

how many machine states are being considered in one transition(if T = 1 then this

transition is simply ih). Such a transition can be denoted by dn = ih1 • ih2 • ... • ihT .

For a transition ih1 • ih2 • ... • ihT to appear in sequence Ŝ a subsequence of the form

ŜT
t = 〈ih1, ih2, ..., ihT 〉 has to be contained at some point t in Ŝ (therefore a transition

corresponds to the one particular subsequence containing all the transition’s items

and having the transition items’ order). This concept is illustrated in figure 5.2. One

dimension xn therefore corresponds to the nth possible unique transition of machine

states in the history of a machine, denoted by dn. Because a transition corresponds

to a subsequence the number of dimensions in −→x is given by the number of unique

subsequences from length 1 to length N (where N has to be predefined) found in the

machine history of states Ŝ. When referring to xn we refer to the sequence of machine

states contained in dn.

Every subsequence Ŝn
t′ where t ≤ t′ ≤ K − n and n = 1..N appearing in ̂SK−1

t

56

Figure 5.2: Example how S is transformed. K depicts the number of machine states

considered before a label. N stands for the number of state transitions

to be regarded in the feature space of a label. In this example there is

k = 3 and n = 2 leading to the blue box instance example where the state

transitions AA,AB,AC,AD,BA, ...,DD considered.

influences the value of only the corresponding dimension xn ∈ −→x . The presence of a

transition dn in ̂SK−1
t shall be denoted by dn ∈ ̂SK−1

t . The absence of a possible tran-

sition dn in ̂SK−2
t is denoted by dn 6∈ ̂SK−2

t and leads to the corresponding dimension

xn having value zero. How the presence of a transition dn in ̂SK−1
t influences the value

of its corresponding dimension xn is described in the next section.

5.4 Dimension weighting

In the previous section it was explained how the data from the history of machine

states S has to be transformed for being processed by the Support Vector Machine

learning algorithm LibSVM. It was explained that for the generation of training- and

test-instances for the classification task a sliding window technique is applied. This

sliding window is shifted over the sequence of machine states Ŝ in S whereas of each

subsequence ̂SK−1
t finding place in the window an instance for whether the training-

or test-dataset is generated. Thereby the label y is extracted and the input vector −→x

is generated. While the previous section described what the dimensions xn ∈ −→x stand

for this section gives insight how the values for each dimension are generated.

As the previous section mentioned if a transaction of machine states dn = ih1 • ih2 •

... • ihT where ih1, ih2, ..., ihT ∈ I denoting the set of possible machine states does

not occur in ̂SK−1
t then its dimension xn in −→x has got value zero in the training-

or test-instance constructed from ̂SK−1
t . If dn does occur in ̂SK−1

t there are several

57

values xn could take which are all listed as different metrics in the following.

The first metric is a simple check whether the transaction dn occurs in ̂SK−1
t and

therefore would be

xn =





1 dn ∈ ̂SK−1
t

0 otherwise
. (5.1)

The second metric is a counting how often a transaction dn occurs in ̂SK−1
t . So if

#dn ∈ ̂SK−1
t denotes the number dn occurs in ̂SK−1

t the metric is defined as

xn = #dn ∈ ̂SK−1
t . (5.2)

The third metric is an exponential function whose base is the summarized distance

of the occurrences of transaction dn in ̂SK−1
t to label state st+K−1 in Ŝ (meaning by

distance the number of other states between st+K−1 and the last state of an occurrence

of dn). This can be summarized as

xn = exp(E) =
∑

dn∈̂
S

K−1

t

(
t+K − 1 − pos(dn)

)E
(5.3)

where pos(dn) denotes the index of the last machine state of a particular occurrence

of transaction dn in Ŝ.

By combining these metrics it is hoped to achieve a better performance in the

experiments. So it makes sense to combine the second with the third metric what

doubles the number of dimensions xn whereas the first half taking values calculated by

the second metric and the second half taking values calculated by the third metric. As

the value for xn computed by the third metric is a summary of multiple occurrences of

dn it may be that xn would take the same value in an training- or test-instance when dn

appeared once nearby the label y as when it appeared multiple times in greater distance

to y. Combined with the counting metric it is assumed that the Support Vector

Machine is able to distinguish between these two cases. Nevertheless an overlapping

of values for dimensions xn ∈ −→x for different circumstances in subsequences Sk
i in the

third metric exists even when being combined with the other metrics. This drawback

is taken into account and left open for designing more sophisticated metrics or using

more sophisticated data mining methods than Support Vector Machines.

It has to be mentioned that in the end the values have to be normalised when

different metrics are combined so that one does not measure with different scales.

Throughout the experiments in section 6 all values are normalised to have zero as

mean value and a standard deviation of 1. [SS06] proposes this way of normalisation

58

when the absolute minimum and maximum values of variables are not know such as

in this case.

The original data sets are summarized in Appendix B by which it should get clear

that there is a heavy imbalance how often machine states appear in the data sets. That

is why a feature weighting method is introduced which is called ”term frequency-inverse

document frequency”(idf) in information retrieval [SB87]. For machine states that

occur very often the probability is high that they occur in ̂SK−1
t for the instances of

almost all label states. The assumption in idf is that features appearing less often might

separate classes better in a classification task. Therefore dimensions corresponding to

machine states transaction that appear less often are given a higher weighting. In

addition infrequent machine states leading to other states might be of higher interest

than the most frequent ones as this would result in clearer patterns. The concept of

idf can be expressed as

xn = xn ∗ log
(#dn ∈ Ŝ

L−K

)
(5.4)

where L denotes the length of the sequence Ŝ in S and K the length of the transaction

dn.

As well as the sequence of machine states itself and its positions of states the duration

of the machine states transitions are taken into account. The duration of an occurrence

of a transition is the summarized duration of all its machine states. Therefore the

input vector −→x is expanded by adding new dimensions xn which take as value the

summarized duration of a machine state transition in subsequence ̂SK−1
t . It has to

be noted that in between the dimensions xn ∈ −→x there exists no explicit connection

which can be taken into account for training the Support Vector Machine.

5.5 Evaluation methods

What is being evaluated in a classification task is how well the model built by a classifier

like the Support Vector Machine upon the training-dataset performs on predicting the

right labels for a test-set the algorithm has not seen in training-phase. Two ways of

evaluating the performance are done. This chapter explains the two ways.

A classical approach would be to compare common characteristics like the Accuracy

[WF02] as ratio how often the Support Vector Machine labelled the right machine state

to the total number of test-instances. Indeed it turned out during the experiments that

such a measure is not very appropriate for evaluating the performance of the Support

Vector Machine on sequence data. The reasons are given in the next two sections.

59

5.5.1 Distance measure

The first reason why a measure like the accuracy described above is not appropriate

is, because of the sequential nature very often there occurs a blurring in the labelling.

One could think of the labels predicted by the Support Vector Machine as a second

sequence. In the end there are two sequences of machine states: the first being the

original sequence of S and the second being the sequence of labels indicating the

machine states the Support Vector Machine suggested for each test-instance. It might

be that if a machine state appears in the sequence of S at time step a it does not

appear exactly at time a in the sequence of labels but somewhere in its neighbourhood

at time step b. The accuracy as it was defined before would only count labels which are

placed at exact the right position as correct but as this blurring cannot be considered

to be entirely wrong one can use the distance from a test-instance to the right label

as an error-measure.

To give an example: in the synthetic data sets generated to show that the methods

applied do work and described in detail in section 6.1 there are patterns introduced

such that one machine state A appears almost exclusively before another one B at a

position which is varying from one to two positions from time to time. In one test

set this label appears 40 times. 22 times out of that 40 the Support Vector Machine

placed the label for state B at exactly the time it appeared in S what leads to an

accuracy as defined above of 55%. When taking a more detailed look it turned out

that 13 times the Support Vector Machine placed that label for state B in the close

neighbourhood of the time step it actually appeared in S. This would lead to the fact

that the Support Vector Machine would have labelled all occurrences of the pattern

(because five times state B appeared without the corresponding state A) if the close

neighbourhood is considered correct as well. As the variation of positions in patterns

of real-world data can be assumed to be much more varying it makes sense to take the

neighbourhood in the sequence of labels of the time step a machine state occurs in S

into account.

Therefore for each label the average distance from a to b may be considered. The

lesser these distances are the better the constructed model is or the more significant

patterns exist. This can be done the other way around as well namely, determining

the average distance from b to a. This distances indicate how ”good” the guesses of

the Support Vector Machine are. The distance is a crucial measure because it directly

influences in what time span a machine state may be predicted. Figure 5.3 illustrates

this concept.

60

Figure 5.3: Distances of machine states in the original and the label sequence. The

upper sequence symbolizes an extract of S whereas the lower could be a

labelling sequence generated by a Support Vector Machine. So for instance

the first state A in S was correctly labelled as an A by the SVM. For the

second state B in S the Support Vector Machine erroneously labelled an A

as well. One could now measure the distance from that state B in S to the

first occurrence of a labelled B which is in this case of length 3. Vice-versa

the distance from label B to the next equivalent in S is 1 as indicated by

the second arrow. One sees one drawback of this method in this example

as one label could be used for measuring the distance to two or more items

in S and vice-versa.

5.5.2 Increase in probability

The second reason why classical evaluations like the accuracy measure above is rather

inappropriate for our case gets illustrated in section 6.2 of the experiments’ chapter. In

this section it should get clear that what the Support Vector Machine actually labels

and therefore assumes as machine state for a particular test-instance is not of highest

interest because of the imbalanced number of machine states. This imbalance might

lead to the fact that a very rare machine state does not get labelled by the Support

Vector Machine because the overall probability that another very frequent state follows

is still higher - even though there exists a pattern which makes the probability for that

infrequent state slightly higher. To put this into an example: if there exists a state

A which appears in 20% of all instances and another state B which appears in only

5% of all cases then there might exist a pattern for state B which make its probability

of an appearance to double to 10% for a certain test-instance. But even though this

probability increase the Support Vector Machine will label state A as its probability

of (a little bit less than) 20% is still higher then the 10% of state B.

What can be done with LibSVM is not just to output the labelled machine state

61

Figure 5.4: The two kind of evaluation charts. The left chart is the area chart symbol-

izing the probability distribution of the different labels estimated for each

test-instance by the Support Vector Machine. Note that LibSVM works

with numerical labels only so the machine states have to be mapped onto

numbers which are listed on the chart’s legend. The right chart illustrates

the distribution of labels given by the test data (blue boxes) and the labels

predicted by the Support Vector Machine (orange diamonds).

but to additionally output the probability each machine state takes for being labelled

for one particular test-instance (naturally the Support Vector Machine picks the one

machine state with highest probability as the label and these probabilities express the

confidence by which a machine state is chosen as a label compared to the others). It

is variations of probabilities for each machine state from one instance to another what

might give insight if there exist patterns for that state or not.

This can be done in two ways. The first one is an instance-by-instance search for an

increase of that probability for each machine state. To facilitate this search two kind

of charts are used what gives the possibility of a visual analysis. Figure 5.4 introduces

these two kind of charts.

On the left-hand-side one sees an area chart which is used for showing the probability

distribution of each machine state to be labelled estimated by the Support Vector

Machine at a certain moment. According to this on the vertical axis there is plotted

62

the cumulated probability which ranges from 0 to 1. The horizontal axis symbolizes

each test-instance what leads to the fact that the probability distribution of each label

is shown over the time where each time step may take a different duration which is

the nature of our test-instances in these experiments. Therefore each number on the

horizontal axis is a test-instance and on the vertical axis for each such test-instance

the probability of each label is plotted by the area. When there are strong differences

in a label’s probability from one test-instance to another it can be assumed that the

Support Vector Machine found some patterns leading to this variation.

The right-hand-side chart takes for the horizontal axis the same information as the

left chart which is each test-instance. This time on the vertical axis each label is

plotted. What is being compared is what label a certain test-instance took (blue

boxes) and what labels the Support Vector Machine assumed for this test-instance

(orange diamonds). In the end the Support Vector Machine picks the label with the

highest probability for a test-item what is to say that this label takes most area for

the test-item in the left chart. When these two charts are laid one above another so

that the vertical axis fit they can be well compared and it can be investigated if the

appearance of a machine state as a test-instance leads to a corresponding increase in

probability.

The second way of evaluating the increase in probability is to average the increase

for each machine state and to put it into a number. What is being compared is the

average probability the Support Vector Machine assumes for such a machine state

when it does appear as a test-instance and when it does not. If the former average

value is significantly higher than the latter it can be assumed the Support Vector

Machine found patterns in the data which lead to this correct increase in probability.

Furthermore with the help of the probabilities a ranking for each test-instance can be

constructed giving each machine state a rank according to their probabilities. The first

ranked machine state would therefore have the highest probability, the second ranked

machine state the second highest probability and so on where the last ranked machine

state would have the least probability. The average ranking of a machine state when

it should be predicted compared to it’s overall average ranking could be compared as

well.

The numbers of all evaluations are given in detail in appendix C. The main figures

analysed for the experiments’ evaluation are therefore

- the average increase of probability of a machine state when it appears as a test-

instance (which is accomplished by comparing the values of prob hit denoting

63

the average probability of a machine state when it appears as a test-instance and

the values of prob rest denoting the average probability of a machine state when

it does not appear)

- the average increase of ranks of a machine state when it appears as a test-instance

(which is accomplished by comparing the values of rnk hit denoting the average

rank of a machine state when it appears as a test-instance and the values of rnk

rest denoting the average rank of a machine state when it does not appear)

hi rnk hit, hi rnk and lo rnk are additional information which give the highest rank

of a machine state when it appears as a test-instance , the highest rank of a machine

state when it does not appear as a test-instance and the lowest rank of a machine

state.

In the next section the outcome of the experiments is summarized.

64

6 Experiments

In this chapter the results of the experiments conducted for this thesis are summarized

and evaluated. These Experiments are to show that there exist correlations in between

machine states in S and that the application of the presented method is able to

detect them. Experiments are done on four datasets: two synthetic sets to illustrate

how the Support Vector Machine performs on known data and two original OEE-

AnalyserTMdata sets gathered by a customer of GAMED to find first patterns which

might be of interest.

This is done on four datasets. The first two are synthetic datasets which are built in

several ways for understanding how the applied algorithm performs and how solutions

look like. These synthetic datasets have the advantage that information can be pushed

into them so that an evaluation how well the algorithm unearths this information gets

possible. The second dataset is a real-world dataset where it is to be shown that

machine states can be predicted by other ones.

6.1 Synthetic data equally distributed

First of all the evaluation methods described in the previous section are shown on

synthetic data sets to give a feeling how these behave on data containing only one

pattern. Therefore two synthetic data sets have been constructed. They take the

same form as the sequence of machine states in the original data from the OEE-

AnalyserTMso they are handled and transformed as though they were original data.

In the first set all the machine states are randomly appended one to another whereas

all the states appear approximately equally often in the set. The second synthetic

data set is the same but the states appear unequally often. In both data sets there

appears one small pattern namely, one machine state that appears almost exclusively

at one position before another one. Both synthetic data sets are described in detail

in Appendix A. The equally distributed data set is analysed in this section - the non

equally distributed in the next.

This synthetic test-set is analysed with the following parameters: 30 states before a

65

Figure 6.1: Visual evaluation of the equally distributed synthetic data set. The prob-

abilities of all the labels are equally distributed as they are put together

randomly. Only the one distribution in the black circle varies as this is

the machine state having one other state appearing almost exclusively be-

fore it. In the lower chart one sees that this variation suffice to make the

Support Vector Machine actually predicting correctly that label for this

test-item.

label are being considered so K is set to 30. As the pattern appears only for a machine

state and not for a transition no transitions are considered so N is set to 1. Metrics

two 5.2 and three 5.3 of section 5.4 are combined. The parameter E of metric three is

set to 1. No durations of machine states are taken into account as well as idf (5.4 in

section 5.4) is switched off.

Figure 6.1 shows an extract of the charts for the equally distributed synthetic data

set. As one can see all the probabilities but one are equally distributed in the upper

chart as being expected because no patterns exist for these labels. The only information

the Support Vector Machine is provided with for these labels is the overall number

these labels occur in the data set. The one probability distribution that varies in the

upper chart is the probability of that label 43 whose machine state has another state

appearing almost exclusively before it. Here the Support Vector Machine unearths

this pattern and raises the probability for that label at a moment the label actually

66

label count rnk hit rnk rest prob hit prob rest

..

36 45 31.82 30.37 0.017417578 0.017474243

37 42 2.29 2.26 0.020117208 0.020146249

43 37 10.95 52.94 0.035496723 0.009532571

..

Table 6.1: Excerpt from Appendix C to illustrate the numbers of labels 37 and 43 for

the equally distributed synthetic data set.

appears in the test-set.

Also the numerical evaluation methods indicate that there exists a pattern for label

43. It is the label having minimum distance from both the test-item to the next

correctly predicted label and the label being predicted to the next correct test-item.

Label 37 is another label having very low mean distance from the test-item to the

next correct label (10.6 versus 38.12). But when looking at the average distance from

the predicted labels to the next correct test-item one sees that this distance is much

higher than that of label 43. Additionally the ratio between the number of label 37

actually appearing in the test-sequence and the label being predicted by the Support

Vector Machine takes 1:38 whereas this ratio takes 1:4 for label 43.

When looking at the ranking according to the probabilities of each label this fact

gets underlined. Despite the fact label 43 takes only the average rank 10.95 when an

test-item appears with that label it has most variation in average probability when

being to be predicted and when not (0.035 versus 0.009) as well as in ranking it takes

rank 52 in average when it is not to be predicted which is an increase of about 42

ranks. Furthermore out of 37 cases when label 43 should have been predicted by the

Support Vector Machine 29 times the label takes a rank below the first five ranks.

The remaining 8 times might exists due to the fact that not always there appears this

exclusive machine state before the one corresponding to label 43.

When looking at label 37 there is nearly no difference in all that numbers when

comparing the averages in moments the label should have been predicted and when

not. The fact why there is so little distance from an test-item taking that label to the

next predicted label gets clear by the rankings as well. Label 37 has an overall average

rank of 2 and is therefore predicted very often by the Support Vector Machine. Table

6.1 give the exact numbers of the two labels.

67

Figure 6.2: Visual evaluation of the non equally distributed synthetic data set.

6.2 Synthetic data non equally distributed

The second synthetic data set being inspected is the one with non equally distributed

numbers of occurrences of each label. This time again there exist labels which have

almost exclusive other labels appearing before them. This time these are the labels 35

and 18 whereas label 35 appears much more often in the data set than label 18.

Figure 6.2 shows the visual evaluation of this synthetic data set. This time the

probabilities of each label are not equally distributed any more. One sees that the

Support Vector Machine gives a higher probability to those labels that appear more

often than others. This yields to a problem. As one can see the two labels for which

patterns exist do have variations in their probability distributions when the test-items

appear but these variations do no suffice for the Support Vector Machine to actually

place the label (no orange diamond) because due to their overall frequency other labels

are still more probable. This leads to the fact that the variation in probabilities and

numbers should be considered in more detail than the actual placement of labels by

the Support Vector Machine. Another problem might be that the variation of the less

frequent label 18 (red) is much weaker than that of the more frequent label 35 (blue).

The variation in numbers uncovers the patterns of these two labels once again. This

68

label count rnk hit rnk rest prob hit prob rest

..

17 1 42.0 34.89 2.34735E-4 9.261885E-4

18 3 16.0 38.24 0.022868035 7.084805E-4

35 12 4.33 30.68 0.09712201 0.0028474857

..

Table 6.2: Excerpt from Appendix C to illustrate the numbers of labels 18 and 35 for

the non equally distributed synthetic data set.

time looking at the distance from the test-items taking these labels to its predictions

and vice-versa does not make much sense because label 35 is just labelled 6 times out

of 12 occurrences and label 18 is labelled 0 times out of 3 occurrences. Although the

average distance of a predicted label 35 to the next test-items is very good (0.33) the

average distance of a test-item to the next label is rather poor (34.11) because this

label was simply predicted so little.

When looking at the variations of probabilities and rankings things clear up. Label

35 and 18 are the only ones with major differences in both probabilities and rankings.

So label 35 increases by an average of 25 ranks when a test-item appears in the test-

data and label 18 increases by 22 ranks. When looking at the average probabilities of

these two labels one sees that even when these two items have an increased probability

at moments an corresponding test-item appears there exist other labels which have an

higher overall probability. Table 6.4 gives the exact numbers

6.3 Analysis of Machine 62

The purpose of the experiments done on real-world data from the OEE-AnalyserTMis

to show if there exist patterns exploitable for a classification in the data and to find

a configuration of parameters that makes the Support Vector Machine to perform as

well as possible. What is being compared are different configurations of the parameter

N (saying how many machine states in one transition are being considered), idf 5.4

turned on and off and different exponential values E for the third metric 5.3 of section

5.4. Throughout all the experiments on real-world data metric two 5.2 and three 5.3

of section 5.4 are being combined.

The first real-world data set to be inspected is the one of a manufacturing machine

69

Figure 6.3: Machine 62, K = 30, N = 1, no idf, E = 1

with name ”62”. In the following different parameter settings are evaluated.

Figure 6.3 shows the first area chart of machine 62 with parameters K=30, N=1, no

idf and E=1. What one can see here is that the chart differs greatly from the ones of

the synthetic data. Labels like the ones corresponding to the upper light green area

seem to have moments of high probability (at the right of the white Roman numbers)

and others of very low probability. This means the Support Vector Machine must have

seen patterns in the data so that it gives reason to increase the probability there.

When looking at the numbers one sees that the label indicted by the green area at

the right of the Roman letter I. and taking number 14 has an increased probability of

around 7 times (which are only 0.8 percent in this case) when it should be predicted

compared to the moments it should not leading to an increase of 10 ranks (from rank

35 to rank 25). Label 44 corresponding to the light green area at the right of II. and

III. has got an increase in probability from 0.2% to 2% yielding rank 15 when being

to be predicted compared to rank 31 for the rest.

Figure 6.4 shows the same chart for the same machine and parameter settings but

instead of N = 1 there is N = 2. The probabilities seem to be more varying than in

figure 6.3 so it seems to be more different to the randomly distributed synthetic data

sets. There appear more colours and therefore more labels than just those of the most

frequent ones as in figure 6.3. The increased area of that label being label 14 in the

figure 6.3 near test-item 110 has gone what is correct as there actually appears no

such label in the test-data. That increase of label 44 in the previous example which is

label 504 in this example is still there although there is no such label in the test-data

as well. Beside that label there is a new increase in area from another label namely

label 415. In this case indeed there is such a label in the test data around that area.

The increase of probability for label 14 being label 172 in this example has decreased

to 5 times as well as the increase of ranks to 5 ranks at the moments it should be

70

label count rnk hit rnk rest prob hit prob rest

..

14 2 25.5 35.11 0.009159606 0.0013156764

44 5 15.4 31.48 0.021003464 0.0023319414

..

label count rnk hit rnk rest prob hit prob rest

..

172 2 31.5 36.31 0.0052873464 0.0013985289

415 357 18.55 18.82 0.008784693 0.007971122

504 5 17.8 31.41 0.02010085 0.002630011

..

label count rnk hit rnk rest prob hit prob rest

..

1143 357 20.39 19.59 0.007745415 0.008021714

1923 5 20.6 31.97 0.015886622 0.0033250265

2226 2 32.0 37.47 0.0029192201 0.0014225753

..

Table 6.3: Excerpt from Appendix C to illustrate the numbers of interesting labels of

machine 62 with different choices for N. The upper table contains the figures

for N=1, the middle for N=2 and the lower for N=3

predicted by the Support Vector Machine. Probability and ranks have also increased

slightly fewer for label 504 (corresponding to label 44 of the previous example). Label

415 shows nearly no increase in both probability and ranking. One problem might be

the fact showing when analysing figure 6.4 in more detail. The grey vertical line shows

that the increase of the label’s probability happens short after the test-item takes the

label. At the moment the test-item takes the label its probability is still at 2% and

increases to 8% four items later. Other labels like 198 show an increase in ranks from

16 to around 6.5 which is an increase in probability by about 6 times.

When setting N = 3 it seems the variations of areas in the chart grow sharper and

more. For label 2226 (14 or 172 previously) the probability increase has shrunk further

but taking not very much effect on the increase of ranks as well as for label 1923 (44

or 504 formerly). Interestingly label 1143 (415 formerly) has in this example even a

decreasing probability in moments when it should be predicted compared to the rest

71

Figure 6.4: Machine 62, K = 30, N = 2, no idf, E = 1

although in figure 6.5 it seems the dislocation of increasing probability has lowered. It

seems the prediction of this label is in this example very often off-place. Generally it

has to be stated the numbers of this experiment do not indicate a better performance

than the previous experiment. Label 1923 is the one with almost highest increase in

ranks (11 ranks) - that is only outperformed by label 666 which only appears one time

in the test-dataset. This holds for even the two labels indicated by I. and II.

Instead of increasing N there is the possibility of changing parameter E of metric

three. Figure 6.6 compares area charts of different choices of E. There are no great

differences but things seem to sharpen a little bit more with greater E. Also the

numbers speak the same language. For almost all labels the increase of probability

and ranks is a little bit higher for higher choices of exponential growth. This may

lead to the assumption that machine states near the machine state to be predicted are

more important for the prediction than machine states far away.

The inverse document frequency is the next thing to be compared. Figure 6.7 shows

the chart for K=30, N = 1 and E = 1. Again there are not many differences between

the two charts. Some peaks of areas seem to get clearer when enabling IDF and others

seem to shrink. As well as the charts the numbers don’t give explicit hints of whether

IDF increases performance or not. Some labels have an higher increase in probability

and ranks when IDF is turned on and others have a lower. It may depend on the task

of whether it should be turned on or off. Furthermore it may be useful to consider

both versions of evaluation.

72

Figure 6.5: Machine 62, K = 30, N = 3, no idf, E = 1

In the following the three possibilities of parameter variation are tried to be com-

bined. Therefore different N, different E and IDF being turned on or off are combined

with each other. It is evaluated if these combinations lead to better results than the

experiments before.

Figure 6.8 illustrates the comparison of area charts containing different combinations

of IDF and E. There are only slight differences between each of them. For instance IDF

seems to shift the orange area at the top a little bit more towards test-item 196 where

the correct label actually takes place. E > 1 makes things a little bit more ”peakier”

- one may get the impression that there are slightly more colours apparent in the

corresponding charts. The numbers impart the same. Greater E slightly outperforms

the lower one for almost every label. IDF yields better performance only for particular

labels - for others it may decrease performance.

6.4 Analysis of Machine 65

In this section another machine is evaluated. The most promising parameter config-

urations from experiments in the previous section are therefore applied for analysing

the manufacturing machine with number 65.

In a first evaluation the parameters are chosen to be K = 30, N = 3, and E = 3.

A particular eye catcher in figure 6.9 is the dark red area around figures I. and II.

73

Figure 6.6: Area charts for machine 62 with different degrees of E for parameters K =

30, N = 1, no idf

It is the area of label 1421 which is also identified by the numbers to have a particular

pattern. Label 1421 has an increase of about 20% when it should be labelled and

therefore an increase of around 21 ranks. It might be of interest in this evaluation

what makes the prediction of this labels so accurate.

Figure 6.10 shows an area chart where all the labels to be predicted are renamed:

label 1421 is renamed to label 1 and the rest to label -1. Now the goal of the Support

Vector Machine is to build a model being able of predicting this label 1. On the bottom

one sees when label 1 appeared for a test-item (blue) and when the Support Vector

Machine predicted this label (orange). In this chart it gets clear the Support Vector

Machine found some pattern which lets it increase the probability for that label at

the right moments. After considering this conspicuity with one expert from GAMED

label count rnk hit rnk rest prob hit prob rest

..

1421 16 5.38 36.85 0.2838963 0.0042724586

..

Table 6.4: Excerpt from Appendix C to illustrate the numbers of label 1421 of machine

65.

74

Figure 6.7: Area charts for machine 62 with and without IDF for parameters K = 30,

N = 1, linear E = 1

it was figured out this label is corresponding to a machine state which forms the end

state of another state. This means there exists a state which in most cases followed

by another one forming the pattern unearthed by the Support Vector Machine.

75

Figure 6.8: Area charts for machine 62 with N = 2 and different combinations of IDF

and E

Figure 6.9: Area chart for machine 65 with N = 3, K = 30, IDF and E = 3

76

Figure 6.10: Area chart for machine 65 with N = 3, K = 30, IDF and E = 3 for only

label 1421 versus the rest

77

7 Conclusion and Outlook

In this thesis an overlook over computer-aided methods and heuristics being able to

analyse and comprehend a given sequence has been given. One of these methods was

evaluated on real-world data. It was showed that during this evaluation involving Sup-

port Vector Machines a pattern was found that actually exists in the data. According

to this the method represents a tool that is able to handle at least simple patterns.

The question what kind of patterns the Support Vector Machine manages to detect

and to what degree has to be analysed in more detail in future works.

Further engineering in feature representation might lead to better results as well

as the application of sequential classifiers like Hidden Markov Models or Conditional

Random Fields. Sequence Mining and Episode Mining algorithms might give good

insights as well.

In the end it is the particular task which determines what methods should be ap-

plied and how features are to be represented. The ambiguity which machine states

are of actual interest formed the greatest problem in evaluating the Support Vector

Machine’s performance. It has to be clearly defined what states should be predicted

so that a proper evaluation is possible. The task is to be better formulated for further

investigations.

A topic that has not been considered at all in this work is how stationary this

problem is. This has to say that in the experiments the sequence of machine states

has been considered as hardly not changing. This might be a problem when there

are changes in machine states leading to others over time. This thought should be

considered in further works.

Another main issue might be the different durations of machine states. Although

in the experiments it has been tried to consider these durations it might be good to

rethink how this is done. As for prediction there is a fixed number of machine states

considered these unequal durations lead to different time spans in the features. This

problem might be overcome by unfolding the machine states in time.

When the knowledge of related machine states is to be used as an early-warning

system one has to think about the offset by which an prediction of a state is possible.

78

What might be another interesting point is an evaluation if test-labels around a

drastic peak in the evaluation area-chart form a sequence which is of practical interest

on its own. When there is such a drastic peak this means there has to be a significant

difference to other parts of the test-data. It could be analysed what makes such peaks

happen and if this reason has a particular meaning.

Facing the visual evaluation methods in this thesis it may be evaluated how well

these are applicable in practical tasks. This means, are they suited for enabling non-

datamining experts to solve concrete problems?

In the end this thesis lays the basis for further works and investigations and presented

from which different angles the problem can be tackled.

79

Appendix A - Synthetic datasets

This chapter describes the two synthetic datasets used in chapter 6 in more detail.
For each there is first given a chart visualising the distribution of occurrences for each
label. In addition a table lists the exact figures of that distributions.

7.1 Equally distributed

Figure 7.1: Distribution of labels of synthetic data set equally distributed

Figure 7.1 shows a chart which indicates the number of occurrences of each label.
In the following the table with exact numbers is given. Label 31 is treated specially.
It is appearing as almost every second label. For training and testing in classification
instances mapping onto it are removed from the sets. This label exists because such a
label and corresponding machine state exists in the real-world data and after all the
synthetic data sets should adapt some properties of the real-world sets.

The occurrences of each label except label 43 are constructed randomly by applying
the rand- function in JAVA. As one sees the distribution is far from being perfect
equally. This might arise from the imperfect standard random function in JAVA.
Label 43 is the one label for which there exists a pattern in the data. As being noted
in the table below it appears 195 times. 185 times it is preceded by label 56 which
appears 211 times in total. There is also a slight variation in the position of label 56
before 43.

80

label number of occurrences ratio to maximum occurrence
1 213 61.74647887323944
10 206 63.84466019417476
11 220 59.78181818181818
12 180 73.06666666666666
13 186 70.70967741935483
14 201 65.43283582089552
16 200 65.76
17 185 71.09189189189189
18 197 66.76142131979695
19 213 61.74647887323944
2 229 57.43231441048035
20 197 66.76142131979695
21 214 61.45794392523364
22 198 66.42424242424242
23 190 69.22105263157894
24 231 56.935064935064936
25 228 57.68421052631579
26 191 68.8586387434555
27 219 60.054794520547944
28 209 62.92822966507177
29 208 63.23076923076923
3 189 69.58730158730158
30 205 64.15609756097561
31 13152 1.0
32 199 66.09045226130654
33 177 74.30508474576271
34 210 62.628571428571426
35 205 64.15609756097561
36 208 63.23076923076923
37 230 57.18260869565217
38 183 71.8688524590164
39 201 65.43283582089552
4 210 62.628571428571426
40 191 68.8586387434555
41 198 66.42424242424242
42 200 65.76
43 195 67.44615384615385
44 199 66.09045226130654
45 203 64.78817733990148
46 192 68.5
47 189 69.58730158730158

81

label number of occurrences ratio to maximum occurrence
48 200 65.76
49 229 57.43231441048035
5 226 58.19469026548673
50 195 67.44615384615385
51 187 70.33155080213903
52 200 65.76
53 220 59.78181818181818
54 219 60.054794520547944
55 211 62.33175355450237
56 211 62.33175355450237
57 211 62.33175355450237
58 195 67.44615384615385
59 213 61.74647887323944
6 204 64.47058823529412
7 202 65.10891089108911
8 183 71.8688524590164
9 203 64.78817733990148

82

7.2 Non-equally distributed

Figure 7.2: Distribution of labels of synthetic data set non-equally distributed

Figure 7.2 shows the chart of the labels’ distributions for the synthetic data set
non-equally distributed. Again the occurrences of each label are constructed with the
help of the rand function in JAVA.

This time label 18 and 35 are the ones having patterns. Label 18 appears 17 times
totally from which in 16 times it is preceded by label 31 which occurs 19 times in total.
Label 35 appears 35 in total; 52 times it is preceded by label 21 which occurs 59 times
in total.

In the following table the exact number of occurrences for each label are listed.

label number of occurrences ratio to maximum occurrence
1 398 46.15075376884422
10 5 3673.6
11 392 46.857142857142854
12 182 100.92307692307692
13 1919 9.571651902032308
14 675 27.21185185185185
15 205 89.6
16 18 1020.4444444444445
17 18 1020.4444444444445

83

label number of occurrences ratio to maximum occurrence
18 17 1080.4705882352941
19 658 27.914893617021278
2 640 28.7
20 11 1669.8181818181818
21 59 311.3220338983051
22 642 28.610591900311526
23 40 459.2
24 2 9184.0
25 4 4592.0
26 48 382.6666666666667
27 7 2624.0
28 314 58.496815286624205
29 284 64.67605633802818
3 38 483.36842105263156
30 22 834.9090909090909
31 19 966.7368421052631
32 50 367.36
33 648 28.34567901234568
34 1999 9.188594297148574
35 55 333.96363636363634
36 1988 9.23943661971831
37 195 94.1948717948718
38 1 18368.0
39 399 46.03508771929825
4 1 18368.0
40 6 3061.3333333333335
41 965 19.03419689119171
42 379 48.46437994722955
43 18368 1.0
44 1910 9.61675392670157
45 267 68.7940074906367
46 1 18368.0
47 67 274.14925373134326
48 1 18368.0
5 15 1224.5333333333333
6 4 4592.0
7 21 874.6666666666666
8 340 54.023529411764706
9 672 27.333333333333332

84

Appendix B - Real datasets

In this chapter the real-world data sets from the OEE-AnalyserTMare discussed in
detail. This is done the same way as with the synthetic data sets in the previous
chapter; first a chart is given which visualises the distribution of each label and second
the detailed numbers of that distributions are listed.

7.3 Machine 62

Figure 7.3: Distribution of labels of machine 62

Figure 7.3 shows the distribution of numbers of labels from machine 62. Except
for that one label occurring more than 5000 times it seems to be very similar to the
distribution of the synthetic data set non-equally distributed. In the following the
detailed numbers of occurrences are given.

85

label number of occurrences ratio to maximum occurrence
1 177 30.073446327683616
10 7 760.4285714285714
11 282 18.875886524822697
12 5323 1.0
13 30 177.43333333333334
14 63 84.4920634920635
15 3 1774.3333333333333
16 2006 2.653539381854437
17 34 156.55882352941177
19 10 532.3
2 1 5323.0
20 264 20.16287878787879
21 46 115.71739130434783
22 663 8.028657616892911
23 104 51.18269230769231
24 4 1330.75
25 122 43.631147540983605
26 6 887.1666666666666
27 26 204.73076923076923
29 427 12.466042154566745
3 1 5323.0
30 34 156.55882352941177
31 1719 3.096567771960442
32 296 17.98310810810811
33 280 19.010714285714286
34 29 183.55172413793105
35 143 37.22377622377623
36 21 253.47619047619048
37 105 50.695238095238096
38 8 665.375
39 36 147.86111111111111
4 1 5323.0
40 431 12.350348027842227
41 654 8.13914373088685
42 79 67.37974683544304
43 22 241.95454545454547
44 42 126.73809523809524
45 557 9.556552962298024
46 787 6.7636594663278276
47 1551 3.4319793681495807
48 4 1330.75
5 5 1064.6
51 2247 2.368936359590565

86

label number of occurrences ratio to maximum occurrence
52 109 48.8348623853211
53 2 2661.5
54 7 760.4285714285714
55 7 760.4285714285714
6 1200 4.435833333333333
7 10 532.3
8 47 113.25531914893617
9 25 212.92

The data of machine 62 is used in different experiments. Amongst others there is
a variation of the parameter N in some experiments. This variation leads to different
labels being associated with the machine states. In the following an overview is given
in which the associated labels for each value of N gets apparent. The labels given in
the table above are the one from N=1.

N=1 N=2 N=3
AALG 49 286 2375
ANFNST 24 184 1573
ANFST E 44 504 1923
AUSW 19 102 798
BESP 35 423 505
BetU St 4 231 964
DAB 7 166 884
DGMA 16 100 2129
ENTG 22 482 1212
EROB 51 296 357
FAUS 17 324 2419
FNSP 1 158 201
FOEDB 29 415 1143
FRTG Start 14 172 2226
GRK 30 575 1313
GSTAB 8 8 12
GUHB 27 566 1306
IH 20 242 1643
IHWZ 42 360 1770
KEBR 36 202 926
KEMA 54 378 454
KEML 48 368 444
KOB GST 43 597 2018
KOLB 34 270 1669
OFEN 40 125 2169

87

N=1 N=2 N=3
OFF 25 26 29
OPTI 23 331 1733
PAUS 33 198 242
PRES 46 430 1848
PRGU 15 405 1820
PRGUE 3 456 2571
PROD 28 569 1986
REIN 41 207 1595
RUE/W/R 9 397 1124
RUE/W/R En 38 589 666
RUES 5 232 1627
RUESE 2 455 537
SAN E 10 167 1552
SAN ST 55 532 604
SCHI 11 546 1964
SCHM 12 550 1967
SCHMR 6 5 702
SCHT 21 555 1971
SORG 45 134 2182
SROB 37 47 1412
STEI 18 406 2504
STSA 31 34 2075
TABE 32 267 997
UBSP 47 432 517
UNBE 50 69 78
WAEi 26 337 403
WAIN 39 353 431
WALG 52 439 525
WART 13 240 304
WARTE 53 83 92

88

7.4 Machine 65

Figure 7.4: Distribution of labels of machine 65

In the following the exact numbers are listed again.

label number of occurrences ratio to maximum occurrence
1022 133 50.07518796992481
1041 2 3330.0
1065 9 740.0
1102 280 23.785714285714285
1191 167 39.880239520958085
1199 460 14.478260869565217
1290 296 22.5
1421 36 185.0
1436 35 190.28571428571428
1454 899 7.4082313681868746
1481 48 138.75
1498 171 38.94736842105263
1521 22 302.72727272727275
158 142 46.901408450704224

89

label number of occurrences ratio to maximum occurrence
1598 259 25.714285714285715
1636 38 175.26315789473685
1682 58 114.82758620689656
1725 158 42.151898734177216
1810 21 317.14285714285717
1845 95 70.10526315789474
1848 6660 1.0
1855 4 1665.0
1896 62 107.41935483870968
195 457 14.573304157549234
1977 1857 3.5864297253634896
2013 1256 5.302547770700637
2025 118 56.440677966101696
2062 154 43.246753246753244
21 171 38.94736842105263
2239 23 289.5652173913044
2244 1 6660.0
2377 7 951.4285714285714
2409 3 2220.0
249 19 350.5263157894737
299 648 10.277777777777779
332 6 1110.0
353 25 266.4
368 2 3330.0
380 18 370.0
426 41 162.4390243902439
437 621 10.72463768115942
448 105 63.42857142857143
458 16 416.25
530 51 130.58823529411765
587 37 180.0
623 529 12.589792060491494
711 12 555.0
789 1 6660.0
823 58 114.82758620689656
851 15 444.0
877 29 229.6551724137931
9 119 55.96638655462185

As there are only experiments made with N=3 for machine 65 there is no variation
in labels. Nevertheless in the following the label assignment to machine states is given.

90

AALG 2199
ANFNST 1436
ANFST E 1810
AUSW 711
BESP 426
BetU E 2409
BetU St 851
DAB 789
DGMA 1977
ENTG 1102
EROB 299
FAUS 2239
FNSP 158
FOEDB 1041
FRTG Ende 1065
FRTG Start 2062
GRK 1199
GSTAB 9
GUHB 1191
IH 1498
IHWZ 1636
KEBR 823
KEMA 380
KEML 368
KOB GST 1896
KOLB 1521
OFEN 2013
OFF 21
OPTI 1598
PAUS 195
PRES 1725
PRGU 1682
PRGUE 2377
PROD 1872
REIN 1454
RUE/W/R 1022
RUE/W/R En 587
RUES 1481
RUESE 458
SAN E 1421
SAN ST 530
SCHI 1845
SCHM 1848

91

SCHMR 623
SCHT 1855
SORG 2025
SROB 1290
STAUS 2244
STEI 2324
TABE 877
UBSP 437
UNBE 64
WAEi 332
WAIN 353
WALG 448
WART 249
WARTE 68

92

Appendix C - Results in detail

In this appendix the exact numbers of experiments are given. Therefore the rankings
and probabilities are given. Thereby

- count indicates how often a label occurred for a test-item,

- rnk hit is the average rank of a label when it appeared for a test-item,

- rnk rest is the overall average rank of a label,

- prob hit is the average probability of a label when it appeared for a test-item,

- prob rest is the overall average probability of a label

- hi rnk hit is the highest rank a label took when it appeared for a test-item,

- hi rnk is the highest rank a label tool when it not appeared for a test-item,

- lo rnk is the lowest rank a label took.

93

7.5 Synthetic data equally distributed

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
1 41 16.24 16.48 0.018418401 0.018424843 8 3 50
10 31 10.65 12.4 0.018951211 0.018796338 3 1 41
11 46 19.15 21.36 0.018539267 0.018336559 1 1 57
12 35 54.54 54.28 0.015410052 0.015500172 47 37 57
13 33 46.3 46.63 0.01645671 0.016456626 35 22 57
14 38 30.58 30.25 0.017508669 0.017490327 17 8 52
16 39 34.79 34.32 0.017231306 0.01725645 24 18 55
17 34 50.15 49.07 0.016228065 0.016282171 45 27 57
18 39 38.87 39.75 0.017016616 0.016917475 24 20 57
19 41 14.85 17.97 0.018623557 0.018415468 1 1 57
2 53 11.87 11.27 0.018867947 0.01894908 1 1 48
20 41 42.15 42.56 0.016803818 0.016776022 32 27 56
21 39 11.46 11.57 0.018793937 0.018837443 5 2 36
22 30 22.2 21.58 0.01793862 0.018041812 14 7 47
23 33 44.45 40.01 0.016614674 0.016899042 27 13 57
24 54 9.44 9.38 0.01900932 0.019045338 3 2 28
25 40 1.85 1.9 0.020282488 0.020228963 1 1 12
26 30 36.03 34.16 0.017178541 0.017267616 27 17 51
27 42 9.9 10.16 0.01903218 0.018998098 3 1 42
28 46 30.17 30.78 0.017426264 0.017458893 13 7 56
29 46 31.61 32.89 0.017418843 0.017338179 17 13 54
3 29 31.41 33.59 0.017423196 0.017293364 21 13 55
30 35 18.37 17.77 0.018329868 0.018313214 12 3 37
32 43 43.33 43.03 0.016744535 0.016766297 35 26 54
33 29 51.69 52.37 0.016027443 0.01587993 44 37 57
34 44 24.82 25.17 0.017758748 0.01779985 18 12 47
35 31 15.35 14.0 0.018520467 0.018647518 6 1 45
36 45 31.82 30.37 0.017417578 0.017474243 15 10 54
37 42 2.29 2.26 0.020117208 0.020146249 1 1 11
38 31 47.03 48.18 0.016448127 0.016363077 37 23 56
39 39 33.33 31.7 0.017325014 0.01740358 21 16 55
4 45 27.33 27.61 0.017685296 0.017656157 11 6 52
40 31 34.81 34.6 0.01727643 0.01724684 20 17 52
41 33 26.52 26.28 0.017820766 0.017757362 12 6 56
42 41 38.29 38.22 0.017049495 0.017018035 20 17 56
43 37 10.95 52.94 0.035496723 0.009532571 1 1 57
44 39 37.9 37.1 0.01707625 0.017112128 31 23 54
45 39 28.85 27.81 0.017646896 0.017627535 21 14 48
46 43 51.19 50.93 0.015905695 0.015962299 37 23 57
47 33 42.73 43.48 0.016759798 0.016732804 36 21 54
48 48 48.63 48.63 0.016416023 0.016340293 39 32 56

94

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
49 47 4.89 5.19 0.019536382 0.019535705 1 1 18
5 53 14.6 15.03 0.0186495 0.018599227 2 1 45
50 37 41.41 42.18 0.016916687 0.016808182 28 25 56
51 39 52.69 52.69 0.015963653 0.01591417 45 36 57
52 31 23.0 21.79 0.017983874 0.018020436 15 5 41
53 38 5.03 4.98 0.019522801 0.019575214 2 1 20
54 42 9.36 9.7 0.019033356 0.018996233 5 2 28
55 39 16.46 15.52 0.018404597 0.01848627 10 4 35
56 41 18.98 18.5 0.018241193 0.01825494 14 4 38
57 44 25.18 24.87 0.017851295 0.017847072 14 6 55
58 47 50.55 51.23 0.015966546 0.015843289 30 21 57
59 34 6.68 7.55 0.019412838 0.019260956 2 1 26
6 42 30.21 31.78 0.017477447 0.017406985 20 13 55
7 29 12.93 14.16 0.018685017 0.018593268 8 4 32
8 30 47.17 47.52 0.016372116 0.016410286 34 23 57
9 43 35.37 35.27 0.017226212 0.017212374 28 18 48

95

7.6 Synthetic data non equally distributed

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
1 64 13.98 13.96 0.02347191 0.023458097 13 12 17
11 45 12.76 12.76 0.024749856 0.024729885 12 12 16
12 26 21.88 21.91 0.010035277 0.009998254 20 19 24
13 260 2.95 2.88 0.116870366 0.11724668 1 1 5
14 97 7.18 7.38 0.04094426 0.040815804 6 6 11
15 33 20.85 20.71 0.010901642 0.011039787 20 19 23
16 3 35.33 33.08 6.2630937E-4 0.0010405619 31 21 46
17 1 42.0 34.89 2.34735E-4 9.261885E-4 42 20 46
18 3 16.0 38.24 0.022868035 7.084805E-4 9 9 46
19 96 7.48 7.44 0.040890608 0.04071502 6 6 11
2 89 10.69 10.75 0.037874725 0.03770167 6 6 12
20 2 34.0 34.57 6.97135E-4 6.2831695E-4 33 29 39
21 13 24.15 24.22 0.00377679 0.0038204333 24 23 28
22 103 9.76 9.78 0.038403396 0.03854183 6 6 12
23 4 28.25 27.84 0.0023390176 0.0023661645 27 25 31
26 6 26.33 26.46 0.0026098231 0.0026639048 26 25 31
27 2 37.0 39.28 4.4918148E-4 3.5831245E-4 36 32 44
28 47 17.06 17.01 0.019050214 0.019075356 17 16 19
29 54 18.61 18.64 0.014644032 0.0146345785 18 17 22
3 3 27.67 27.72 0.0023512335 0.0023570715 27 24 34
30 6 32.33 33.76 8.6383056E-4 7.3523185E-4 31 26 40
31 3 30.33 30.16 0.0011769066 0.001279235 30 29 34
32 8 25.38 25.54 0.0030355875 0.0029850886 25 24 29
33 107 8.86 8.86 0.03933485 0.039342187 6 6 12
34 272 1.51 1.5 0.120906785 0.12080914 1 1 5
35 12 4.33 30.68 0.09712201 0.0028474857 1 1 46
36 293 1.82 1.82 0.12068765 0.120589435 1 1 5
37 24 20.5 20.46 0.011196534 0.011167285 20 19 23
39 54 12.76 12.52 0.02491871 0.02523719 12 12 17
41 137 5.0 5.01 0.05818919 0.058194384 5 4 6
42 53 14.92 14.91 0.02268741 0.022690216 14 12 17
44 256 3.79 3.81 0.11451875 0.11429803 2 1 5
45 33 18.48 18.49 0.014808574 0.01485331 18 18 20
47 8 23.13 23.11 0.0055160336 0.0054167295 23 22 25
5 1 31.0 32.91 0.0013242 8.406924E-4 31 26 39
7 4 33.5 33.34 7.658145E-4 7.7279826E-4 30 28 40
8 41 16.1 15.98 0.020827515 0.020933904 15 12 18
9 83 6.76 6.89 0.041399833 0.04123792 6 6 12

96

7.7 Machine 62

7.7.1 K=30, N=1, no IDF, E = 1

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
1 59 16.22 17.79 0.011015005 0.008507028 5 4 34
11 65 11.0 12.63 0.018880881 0.016587222 5 3 37
12 1203 1.19 1.39 0.30906543 0.24994291 1 1 9
14 2 25.5 35.11 0.009159606 0.0013156764 16 4 50
16 281 3.53 4.35 0.110846445 0.08801599 1 1 17
19 3 45.0 43.11 3.964537E-4 6.3150085E-4 43 6 50
20 44 8.98 14.88 0.06539071 0.015048013 1 1 30
21 18 24.61 27.4 0.0024907666 0.0022900633 17 12 40
22 155 7.19 8.3 0.0453102 0.03411928 4 2 19
23 20 18.15 19.89 0.009182677 0.0061671766 10 5 32
24 1 42.0 40.31 9.09156E-4 4.920507E-4 42 34 46
25 18 16.06 19.07 0.013292966 0.0070127905 3 1 32
27 3 25.67 30.61 0.0048272433 0.0021007294 20 4 43
29 357 18.23 18.66 0.0077314125 0.0074325316 7 2 39
30 3 25.33 25.72 0.00231901 0.0025429158 23 17 36
31 486 3.84 4.25 0.10445312 0.086587735 1 1 24
32 85 11.82 12.55 0.019773368 0.016190587 5 4 32
33 74 8.14 15.66 0.04528512 0.012191676 1 1 33
34 3 25.67 27.29 0.0026369735 0.002245601 23 16 41
35 56 16.68 18.38 0.010899559 0.006790939 9 6 28
36 6 30.33 31.83 0.0014563538 0.0013618151 29 19 41
37 34 18.26 18.41 0.0064905826 0.0061988197 9 8 36
38 1 28.0 38.56 0.00216489 6.45747E-4 28 13 46
39 12 25.0 28.42 0.003912834 0.0021892993 15 12 40
40 84 9.62 9.68 0.026184997 0.025100073 6 4 20
41 165 6.78 10.16 0.058391802 0.030025177 1 1 34
42 15 20.87 22.55 0.0058888993 0.004514415 16 8 37
43 4 29.25 30.37 0.002638425 0.0016041243 27 19 42
44 5 15.4 31.48 0.021003464 0.0023319414 6 2 47
45 295 6.83 15.98 0.073821574 0.016860258 1 1 38
46 173 6.4 8.13 0.059553925 0.039157495 1 1 34
47 441 3.77 6.61 0.15517029 0.07462353 1 1 23
48 1 38.0 40.42 6.1671E-4 4.913858E-4 38 31 47
51 577 2.8 2.98 0.13570529 0.118561305 1 1 11
52 21 17.14 17.4 0.01014407 0.0068716328 9 7 32
54 3 37.33 38.82 0.00139455 5.591995E-4 34 31 50
6 277 5.07 5.84 0.07612375 0.05722388 1 1 21
7 1 50.0 42.5 1.35897E-4 5.849211E-4 50 11 50
9 5 34.0 34.79 0.0013329316 0.0012455418 33 3 50

97

7.7.2 K=30, N=1, IDF, E = 1

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
1 59 15.54 18.51 0.011730533 0.008018025 9 6 36
11 65 11.52 12.56 0.01828558 0.01604745 6 4 30
12 1203 1.19 1.38 0.32170987 0.26770505 1 1 9
14 2 21.0 33.09 0.0145543 0.0014095363 10 7 43
16 281 3.7 4.71 0.110662736 0.078428 1 1 20
19 3 43.0 44.24 3.9262566E-4 8.8502135E-4 39 1 50
20 44 8.18 13.77 0.053203795 0.016203132 1 1 34
21 19 21.42 26.94 0.004111712 0.0024147236 14 12 35
22 155 7.1 8.43 0.046892665 0.033370823 2 1 21
23 20 17.5 20.41 0.010118714 0.006333709 9 1 35
24 1 40.0 41.46 8.45182E-4 4.9063016E-4 40 31 46
25 18 18.11 18.71 0.009311404 0.0071306117 6 2 34
27 3 30.0 32.0 0.002359417 0.001716267 24 8 45
29 357 16.63 18.74 0.00970973 0.006935291 6 6 39
30 3 23.67 26.07 0.0023411198 0.002589651 20 17 37
31 486 3.36 4.0 0.1112861 0.08710421 1 1 15
32 85 11.84 12.7 0.019042017 0.015993519 4 3 32
33 74 7.62 15.15 0.050360996 0.013784075 1 1 40
34 3 27.33 27.66 0.0022453668 0.002176236 25 18 37
35 56 16.27 17.86 0.010535993 0.007213206 8 6 30
36 6 31.17 30.77 0.0019037226 0.0015557829 28 16 40
37 34 18.94 19.19 0.0063962718 0.0057369545 13 8 30
38 1 7.0 38.88 0.0364003 6.3077617E-4 7 7 45
39 12 22.58 28.62 0.0048805554 0.0022957462 15 7 40
40 84 9.63 9.81 0.028393194 0.02595225 3 1 24
41 165 7.79 10.12 0.047873624 0.02859599 2 1 27
42 15 20.07 21.41 0.0066953176 0.0049833464 16 9 37
43 4 29.75 29.18 0.0019126075 0.0018557394 27 20 38
44 5 20.2 32.72 0.012997238 0.0020747713 10 3 50
45 295 7.52 15.17 0.09855068 0.01799841 1 1 36
46 173 6.49 7.62 0.059662137 0.040031403 1 1 23
47 441 4.2 7.19 0.13701287 0.063616686 1 1 25
48 1 43.0 40.58 5.01199E-4 5.1050965E-4 43 35 45
51 577 2.74 3.2 0.14138682 0.110899925 1 1 13
52 21 15.67 19.75 0.016728716 0.0059114317 4 2 34
54 3 38.33 38.47 0.001238339 6.189348E-4 34 27 49
6 277 4.5 5.25 0.08263445 0.0627188 1 1 16
7 1 46.0 46.23 2.41841E-4 3.7439176E-4 46 15 50
9 5 32.6 31.84 0.0017543469 0.0016594426 30 4 45

98

7.7.3 K=30, N=1, no IDF, E = 2

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
1 59 16.0 17.91 0.011908074 0.008480641 5 4 37
11 65 11.09 12.54 0.018702293 0.016274761 5 3 36
12 1203 1.19 1.42 0.31351262 0.25008926 1 1 9
14 2 25.5 35.89 0.009716357 0.0011782077 16 4 50
16 281 3.41 4.26 0.11424325 0.09003476 1 1 18
19 3 45.0 42.77 4.4540735E-4 7.011049E-4 43 2 50
20 44 8.05 15.04 0.08331654 0.014739875 1 1 31
21 19 24.21 27.08 0.0025349348 0.0022922896 16 12 40
22 155 7.16 8.3 0.04535632 0.033961516 3 1 21
23 20 18.25 19.63 0.009711733 0.0061831027 10 5 32
24 1 42.0 39.97 0.00108051 4.9798796E-4 42 32 46
25 18 15.94 19.7 0.0153695345 0.006685966 3 1 33
27 3 25.67 30.69 0.00513968 0.0020941196 20 4 44
29 357 18.06 18.64 0.007603182 0.007246921 7 4 38
30 3 24.33 25.58 0.0023342867 0.0025381248 21 16 36
31 486 3.84 4.29 0.10450554 0.08634935 1 1 25
32 85 11.79 12.57 0.01973992 0.01602516 5 5 33
33 74 7.46 16.55 0.05939559 0.011570003 1 1 35
34 3 24.67 27.14 0.002698213 0.002234079 23 16 42
35 56 16.05 18.16 0.011744863 0.00691063 7 5 27
36 6 30.83 31.56 0.0014530554 0.0013572738 30 20 42
37 34 18.12 18.34 0.006657267 0.006170752 9 8 35
38 1 25.0 38.8 0.00406661 6.325889E-4 25 17 47
39 12 23.42 28.69 0.0049950033 0.0022041118 11 9 41
40 84 9.36 9.62 0.026726456 0.025197523 6 4 22
41 165 6.74 10.29 0.062332857 0.02883097 1 1 30
42 15 20.0 22.29 0.0066317995 0.0045232503 15 8 37
43 4 29.5 30.11 0.0025602377 0.0016062683 26 19 43
44 5 14.2 32.97 0.031265795 0.0021423155 4 2 49
45 295 6.85 15.68 0.07344967 0.016579712 1 1 37
46 173 6.31 8.15 0.059486713 0.03915854 1 1 34
47 441 3.69 6.64 0.15616381 0.0733867 1 1 24
48 1 36.0 40.06 5.62797E-4 5.047543E-4 36 30 47
51 577 2.78 2.99 0.1368579 0.11915179 1 1 18
52 21 17.1 17.27 0.010781474 0.0069441106 9 5 33
54 3 36.0 38.66 0.0013165455 5.68184E-4 32 31 50
6 277 5.06 5.85 0.077054694 0.057458356 1 1 24
7 1 49.0 42.27 1.18946E-4 5.6846347E-4 49 11 50
9 5 32.0 34.17 0.0018762766 0.0012736904 27 3 48

99

7.7.4 K=30, N=1, no IDF, E = 3

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
1 59 15.97 17.94 0.012459078 0.008440086 5 4 38
11 65 11.18 12.54 0.018825617 0.016026836 7 3 35
12 1203 1.19 1.44 0.31644994 0.25070927 1 1 12
14 2 25.0 36.42 0.010864495 0.0011154306 15 5 50
16 281 3.38 4.24 0.11480725 0.09041501 1 1 19
19 3 45.33 42.27 4.6560704E-4 7.1863364E-4 42 2 50
20 44 7.45 15.19 0.09205907 0.014216684 1 1 32
21 19 24.16 26.85 0.0025897664 0.0023049926 16 13 38
22 155 7.13 8.28 0.045291837 0.03393828 3 1 22
23 20 17.95 19.46 0.010108447 0.0062047327 11 6 32
24 1 43.0 39.75 0.0012379 4.987051E-4 43 32 46
25 18 15.61 19.88 0.016574135 0.0066180117 2 1 34
27 3 26.0 30.55 0.004994443 0.0020803967 21 5 44
29 357 17.93 18.54 0.007639746 0.0072302544 7 5 38
30 3 23.33 25.49 0.00236207 0.0025431712 21 15 38
31 486 3.84 4.27 0.104551405 0.0867221 1 1 25
32 85 11.8 12.57 0.019742414 0.015937114 4 4 34
33 74 7.0 17.28 0.068681166 0.011136994 1 1 37
34 3 24.33 27.07 0.0028342668 0.002223589 23 16 42
35 56 16.21 18.18 0.011670574 0.0068670567 7 6 28
36 6 30.5 31.42 0.0014879679 0.0013607763 28 19 42
37 34 17.85 18.37 0.0066917674 0.0060975575 7 7 35
38 1 16.0 39.47 0.0116955 6.122715E-4 16 11 50
39 12 23.33 28.96 0.006187161 0.0022157372 9 7 42
40 84 9.21 9.57 0.027124973 0.025338797 6 4 24
41 165 6.67 10.35 0.06576489 0.02852807 1 1 29
42 15 19.27 22.23 0.0070971576 0.004471399 15 8 36
43 4 29.75 29.97 0.0025441626 0.0016023314 26 20 44
44 5 14.2 33.97 0.042299647 0.0020996553 3 1 49
45 295 6.79 15.21 0.073376104 0.016839173 1 1 37
46 173 6.22 8.09 0.059534565 0.039380383 1 1 34
47 441 3.7 6.69 0.15705676 0.07255858 1 1 28
48 1 38.0 39.73 4.93882E-4 5.1176344E-4 38 29 47
51 577 2.77 3.0 0.1376296 0.118903376 1 1 20
52 21 17.81 17.14 0.010216745 0.006973415 11 6 32
54 3 36.33 38.36 0.0012213796 5.730431E-4 33 31 50
6 277 5.05 5.87 0.077225804 0.057393175 1 1 26
7 1 48.0 42.09 1.0739E-4 5.569632E-4 48 12 50
9 5 30.2 33.82 0.002447713 0.0012851959 26 4 46

100

7.7.5 K=30, N=2, no IDF, E = 1

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
100 281 3.22 4.19 0.11809773 0.08895014 1 1 19
102 3 43.33 43.5 5.18922E-4 8.1905606E-4 42 9 50
125 84 9.6 9.7 0.02834346 0.027408708 4 2 28
134 295 9.61 14.61 0.04274919 0.015855314 1 1 29
158 59 14.37 15.83 0.014203187 0.011833607 4 1 35
166 1 47.0 43.59 0.00305522 7.3070073E-4 47 23 50
172 2 31.5 36.31 0.0052873464 0.0013985289 26 9 50
184 1 43.0 41.13 0.00104971 7.641148E-4 43 32 47
198 74 6.57 16.53 0.08093588 0.014567796 1 1 35
202 6 30.17 31.7 0.001640515 0.0017446481 29 20 44
207 165 6.82 10.79 0.07405537 0.031742062 1 1 29
242 44 10.3 14.8 0.05155094 0.016430281 1 1 31
26 18 13.94 18.62 0.02538245 0.008289937 2 1 35
267 85 12.41 13.29 0.017601991 0.015610943 5 4 30
270 3 25.67 26.74 0.0031909433 0.0028506245 23 15 40
296 577 2.93 3.3 0.12931678 0.11110032 1 1 15
331 20 16.6 20.71 0.016786072 0.0066650286 3 3 35
34 486 3.93 4.47 0.10488326 0.08416824 1 1 23
353 12 24.0 28.22 0.0070748893 0.00297113 10 7 45
360 15 21.33 21.99 0.0064983848 0.006898382 14 1 37
368 1 39.0 40.23 9.26176E-4 7.923522E-4 39 32 46
378 3 36.0 38.63 0.0017131713 8.87273E-4 31 27 49
397 5 32.8 34.19 0.002279915 0.0016304638 31 4 49
415 357 18.55 18.82 0.008784693 0.007971122 6 4 38
423 56 16.25 18.36 0.0120978 0.0073747328 4 3 29
430 173 7.22 8.29 0.047905408 0.037033137 2 1 29
432 441 4.19 7.24 0.12511289 0.06988443 1 1 31
439 21 20.48 18.71 0.00766144 0.0072714984 12 6 35
47 34 17.68 19.61 0.008315065 0.0065158615 6 3 34
482 155 7.85 8.68 0.04115494 0.0330036 3 1 23
5 277 5.34 5.89 0.07563554 0.059547786 1 1 18
504 5 17.0 31.69 0.019589465 0.0031780053 7 2 49
546 65 11.97 13.03 0.018325845 0.017657433 6 1 35
550 1203 1.28 1.54 0.29409552 0.24129374 1 1 17
555 19 23.84 26.53 0.00456284 0.0030132225 16 10 36
566 3 25.0 30.02 0.006047456 0.002666049 18 6 44
575 3 23.67 25.57 0.0023512067 0.0031698092 23 14 38
589 1 20.0 37.62 0.00951089 0.0010347115 20 12 46
597 4 31.25 30.34 0.0034324075 0.002013553 29 15 47

101

7.7.6 K=30, N=2, IDF, E = 1

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
100 281 3.55 4.41 0.10867579 0.084287256 1 1 14
102 3 43.0 44.15 5.3614E-4 7.89279E-4 38 5 50
125 84 9.38 9.58 0.028424624 0.027330354 4 1 21
134 295 7.77 14.8 0.122698575 0.018624207 1 1 36
158 59 14.83 17.39 0.013294931 0.008703658 7 6 33
166 1 50.0 48.22 0.00171733 5.252571E-4 50 24 50
172 2 31.0 34.33 0.0049827853 0.0015514193 27 7 47
184 1 41.0 42.4 0.00200958 6.9849833E-4 41 30 48
198 74 5.88 17.48 0.096767314 0.013438139 1 1 36
202 6 32.67 31.01 0.0015483489 0.0019178591 29 16 42
207 165 7.98 11.72 0.06597308 0.02679263 1 1 28
242 44 8.95 13.78 0.054641984 0.018105894 1 1 33
26 18 14.22 17.56 0.019106098 0.008466635 2 2 33
267 85 12.41 13.06 0.017166331 0.015083741 7 5 31
270 3 27.33 27.15 0.0026899998 0.0026318328 26 17 37
296 577 2.97 3.33 0.12858644 0.108136 1 1 11
331 20 16.6 21.67 0.017304119 0.0056918464 3 3 37
34 486 3.6 4.06 0.10449362 0.08719588 1 1 18
353 12 22.5 27.8 0.008751279 0.0030723098 7 4 42
360 15 19.53 20.66 0.0074383756 0.0061165765 14 3 37
368 1 41.0 40.13 0.00114895 7.702137E-4 41 35 47
378 3 38.0 38.15 0.0013097808 9.1250247E-4 34 25 46
397 5 31.6 31.11 0.003476356 0.001972233 29 9 43
415 357 15.12 18.04 0.016024066 0.009216924 2 2 39
423 56 16.39 18.13 0.011107482 0.007385604 10 7 29
430 173 7.02 7.93 0.046645943 0.03856049 2 1 24
432 441 4.4 7.13 0.13402574 0.0692834 1 1 27
439 21 18.62 20.27 0.008857663 0.0059504462 10 4 36
47 34 18.03 19.25 0.0065150405 0.0059223888 11 7 30
482 155 7.85 8.64 0.04125815 0.032602858 3 1 23
5 277 5.04 5.55 0.07613949 0.061599575 1 1 16
504 5 17.8 31.41 0.02010085 0.002630011 7 1 48
546 65 11.85 12.5 0.017717006 0.01742221 6 1 26
550 1203 1.25 1.52 0.2982157 0.24832918 1 1 11
555 19 19.84 27.2 0.0053759585 0.002793828 12 8 36
566 3 30.0 31.73 0.00294801 0.002185916 23 7 44
575 3 23.67 25.71 0.0026705898 0.0030666322 20 13 35
589 1 4.0 39.43 0.0631743 9.6031243E-4 4 4 47
597 4 28.25 28.62 0.0023512999 0.002303836 25 19 38

102

7.7.7 K=30, N=2, no IDF, E = 3

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
100 281 3.15 4.17 0.12305855 0.091351636 1 1 16
102 3 43.0 42.39 8.487967E-4 8.497441E-4 41 8 50
125 84 9.5 9.71 0.029312849 0.026957272 3 2 28
134 295 8.69 14.25 0.05065411 0.016968904 1 1 30
158 59 13.83 16.0 0.01651966 0.011796968 4 1 33
166 1 46.0 43.18 0.00329692 7.3313975E-4 46 23 50
172 2 28.0 37.15 0.0076396456 0.0013352928 21 9 50
184 1 44.0 41.1 0.0013904 7.7659753E-4 44 25 49
198 74 6.0 18.1 0.0925243 0.01289229 1 1 36
202 6 30.5 31.57 0.0016693302 0.001754109 28 20 45
207 165 6.87 11.05 0.08534574 0.029990852 1 1 29
242 44 10.02 15.09 0.05611849 0.01600734 1 1 32
26 18 14.89 19.17 0.022901863 0.007934132 2 2 33
267 85 12.32 13.19 0.01753913 0.01586016 5 4 35
270 3 25.67 26.51 0.0035360835 0.0029078405 25 14 39
296 577 2.98 3.38 0.13108051 0.1114676 1 1 13
331 20 16.4 20.24 0.017338986 0.006855482 3 3 36
34 486 3.82 4.37 0.10467109 0.084446065 1 1 19
353 12 23.17 29.18 0.0098855365 0.0029159223 5 4 46
360 15 20.53 21.86 0.0067048655 0.0063688033 15 2 36
368 1 38.0 39.17 8.51817E-4 8.3796127E-4 38 30 46
378 3 35.67 38.61 0.0019364739 9.044016E-4 29 26 49
397 5 29.2 33.09 0.0029770941 0.0017477149 25 3 47
415 357 18.58 18.92 0.008873643 0.007930863 6 4 38
423 56 15.75 17.95 0.012781391 0.0076094335 7 3 28
430 173 6.86 8.08 0.049549438 0.038162418 2 1 28
432 441 4.11 7.14 0.12890391 0.0703989 1 1 31
439 21 19.52 18.08 0.0081280125 0.007490893 12 6 34
47 34 17.44 19.46 0.008079087 0.006535057 6 5 33
482 155 7.96 8.79 0.041757178 0.03258782 3 2 24
5 277 5.26 5.75 0.07751434 0.061278258 1 1 18
504 5 14.2 33.37 0.03802264 0.00261048 3 1 49
546 65 11.75 12.91 0.019027803 0.017482001 6 1 32
550 1203 1.29 1.62 0.29441527 0.23598726 1 1 17
555 19 23.79 26.27 0.0046214275 0.0030678038 16 10 35
566 3 25.0 30.07 0.0057487036 0.002609242 18 2 47
575 3 22.67 25.51 0.0026834833 0.0032069038 22 13 39
589 1 13.0 38.64 0.0246346 9.54635E-4 13 9 50
597 4 31.5 29.93 0.003315855 0.0020665878 27 18 45

103

7.7.8 K=30, N=2, IDF, E = 3

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
100 281 3.48 4.3 0.11163984 0.08677512 1 1 13
102 3 42.33 43.81 7.2832167E-4 7.902896E-4 37 7 50
125 84 9.38 9.57 0.028346712 0.026871793 3 2 20
134 295 7.52 14.41 0.1113041 0.018327171 1 1 36
158 59 13.92 17.39 0.014784195 0.008855222 7 5 34
166 1 50.0 48.05 0.00172229 5.2964065E-4 50 20 50
172 2 26.5 34.58 0.007055145 0.001646624 21 6 49
184 1 40.0 42.18 0.00266875 6.9905183E-4 40 24 48
198 74 5.81 18.53 0.10083153 0.012155976 1 1 38
202 6 32.67 31.1 0.0017365563 0.0018562059 28 18 42
207 165 7.98 11.69 0.0694123 0.02577325 1 1 27
242 44 8.45 13.92 0.058313895 0.017956747 1 1 32
26 18 15.0 17.8 0.020595727 0.008449989 2 1 32
267 85 12.27 12.87 0.016968546 0.015431252 8 5 31
270 3 28.0 27.44 0.002886527 0.002602861 27 17 36
296 577 2.85 3.22 0.12987745 0.110340096 1 1 12
331 20 15.8 21.06 0.016967917 0.00588038 3 3 35
34 486 3.53 4.06 0.10456436 0.087948345 1 1 18
353 12 22.75 28.35 0.010110551 0.0028990728 4 4 42
360 15 19.2 20.81 0.0074146553 0.006040017 12 3 40
368 1 40.0 39.53 0.00106661 7.751752E-4 40 33 45
378 3 36.0 38.59 0.0018249099 9.11448E-4 33 20 48
397 5 30.2 30.55 0.0038363896 0.0020890369 29 8 41
415 357 15.13 18.36 0.016042853 0.008843856 4 2 38
423 56 16.11 17.78 0.0115700355 0.007586866 10 7 29
430 173 6.85 7.9 0.04773054 0.039139733 2 1 24
432 441 4.3 7.06 0.1327201 0.06659905 1 1 27
439 21 18.24 19.6 0.009278352 0.006165326 10 5 34
47 34 18.29 19.5 0.006430832 0.0057018986 12 9 33
482 155 7.85 8.66 0.04131722 0.032210622 2 2 22
5 277 4.99 5.44 0.07811064 0.06409566 1 1 15
504 5 16.6 33.33 0.03678 0.0024400337 3 1 48
546 65 11.72 12.73 0.018468231 0.016796105 3 1 29
550 1203 1.25 1.53 0.2977843 0.24626236 1 1 11
555 19 19.95 26.63 0.0056829345 0.002932737 10 8 36
566 3 32.67 31.63 0.0027090332 0.0021493398 27 9 43
575 3 23.33 25.74 0.0026451934 0.0030691621 19 15 36
589 1 1.0 40.41 0.180557 8.396533E-4 1 1 47
597 4 30.0 28.85 0.00370809 0.0022465906 28 19 38

104

7.7.9 K=30, N=3, no IDF, E = 1

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
1124 5 32.0 33.33 0.0027243102 0.001888115 30 9 47
1143 357 20.39 19.59 0.007745415 0.008021714 4 1 36
1212 155 8.44 8.87 0.03529335 0.03145204 2 1 23
1306 3 28.67 30.9 0.0036627932 0.0025902053 21 11 48
1313 3 24.33 24.6 0.00248589 0.0036984598 23 15 34
1412 34 17.97 18.73 0.008078982 0.007797263 7 2 35
1573 1 43.0 41.39 0.00104473 9.505028E-4 43 33 46
1595 165 7.08 10.43 0.060398713 0.031275287 1 1 29
1643 44 11.55 14.5 0.035650857 0.015705172 1 1 30
1669 3 25.67 26.04 0.0034514733 0.0033260554 20 14 39
1733 20 16.6 20.57 0.015385384 0.0073712626 5 2 35
1770 15 20.53 22.04 0.006875855 0.00679303 15 3 35
1848 173 7.43 8.53 0.044951063 0.036249474 2 1 29
1923 5 20.6 31.97 0.015886622 0.0033250265 4 1 50
1964 65 12.42 13.08 0.016806116 0.016288461 6 3 27
1967 1203 1.37 1.5 0.2694871 0.24414629 1 1 13
1971 19 24.05 26.03 0.0040362626 0.0034228275 16 11 37
201 59 13.76 15.8 0.016149152 0.011312345 4 3 30
2018 4 31.5 29.73 0.0031936134 0.0024145406 29 15 42
2075 486 4.09 4.32 0.092172146 0.084570535 1 1 15
2129 281 3.68 4.17 0.11186209 0.0946677 1 1 16
2169 84 9.67 9.63 0.026500825 0.026872994 2 1 26
2182 295 11.29 16.36 0.028948225 0.013571558 2 1 34
2226 2 32.0 37.47 0.0029192201 0.0014225753 30 11 50
242 74 7.38 16.2 0.072567455 0.015769364 1 1 35
29 18 15.5 18.14 0.017657261 0.009052532 4 1 32
357 577 3.35 3.43 0.117494926 0.11778512 1 1 17
431 12 23.83 28.58 0.0063702655 0.0029440396 10 9 44
444 1 40.0 40.16 7.09125E-4 9.952817E-4 40 31 46
454 3 35.33 39.98 0.002660037 0.0010718377 27 25 50
505 56 16.46 18.59 0.011619484 0.0074681845 7 5 31
517 441 5.09 7.16 0.08391473 0.0580192 1 1 27
525 21 20.1 18.98 0.0063701486 0.0077697597 16 5 35
666 1 18.0 36.72 0.00839649 0.0013146203 18 11 46
702 277 5.35 5.4 0.07067999 0.06973554 1 1 20
798 3 43.33 42.7 7.736163E-4 9.646069E-4 41 17 50
884 1 47.0 45.75 0.00106159 8.112167E-4 47 32 50
926 6 30.5 31.69 0.001869565 0.002007122 29 16 46
997 85 12.96 13.19 0.014637523 0.015751766 6 2 27

105

106

7.8 Machine 65

7.8.1 K=30, N=3, IDF, E = 3

label count rnk hit rnk rest prob hit prob rest hi rnk hit hi rnk lo rnk
1022 38 15.39 19.71 0.021340128 0.009506838 1 1 37
1041 1 49.0 49.25 0.00102251 6.351222E-4 49 35 50
1102 42 9.64 10.95 0.026142478 0.021051712 2 2 36
1191 34 11.21 15.46 0.022888443 0.012489685 4 3 33
1199 140 8.04 9.05 0.028964233 0.026764065 3 2 28
1290 31 10.32 11.08 0.023497265 0.020622117 2 2 27
1421 16 5.38 36.85 0.2838963 0.0042724586 1 1 43
1436 3 23.67 27.85 0.012332614 0.0041290675 13 2 44
1454 185 3.64 5.62 0.1009643 0.059781272 1 1 34
1481 9 23.22 30.22 0.018983705 0.004007688 4 1 45
1498 21 16.05 19.75 0.018381711 0.011689994 5 1 36
1521 11 33.0 33.06 0.0017244699 0.0020605864 28 21 48
158 52 16.37 19.13 0.01155432 0.008543999 6 5 38
1598 58 11.6 12.39 0.024203015 0.017829731 4 2 31
1636 6 22.83 25.31 0.008466663 0.0043920637 15 7 44
1682 14 18.36 41.82 0.038498156 0.0016859878 1 1 50
1725 37 14.41 14.93 0.012032895 0.012116789 7 1 36
1810 5 22.8 34.37 0.03811567 0.0029142639 2 1 44
1845 19 21.89 22.49 0.0063998443 0.0061303293 12 3 45
1848 1156 1.06 1.7 0.42140484 0.30316722 1 1 14
1896 16 20.69 21.46 0.005590157 0.0058255414 14 9 37
195 91 5.26 10.37 0.08742543 0.027002785 1 1 30
1977 427 2.57 2.79 0.120043054 0.109552324 1 1 14
2013 306 3.26 3.97 0.098816685 0.07964777 1 1 26
2025 40 17.93 21.22 0.013083331 0.007317561 4 2 37
2062 65 8.48 28.67 0.07035491 0.0039577154 2 2 45
21 36 12.39 14.39 0.023008816 0.013987809 2 2 35
2239 3 29.67 28.21 0.0030967232 0.0031732686 24 17 39
2377 1 1.0 46.22 0.111964 0.0010755095 1 1 49
2409 1 48.0 48.01 2.70358E-4 7.462332E-4 48 10 50
249 1 36.0 38.38 0.00114652 0.0019383429 36 3 50
299 139 6.43 6.33 0.044088043 0.042637445 1 1 18
332 2 45.0 41.0 0.004090145 0.0010290567 45 17 50
353 8 27.25 32.12 0.005238265 0.0024403469 20 7 43
380 2 36.5 31.69 0.004338 0.0025762804 30 8 46
426 12 27.67 26.02 0.0047025373 0.0040082554 21 12 39
437 168 6.95 8.97 0.05444488 0.035537668 1 1 27
448 34 19.76 18.81 0.0072006905 0.00811605 15 4 32
458 5 16.4 43.98 0.08141647 0.0012979427 1 1 48
530 26 10.12 37.15 0.0629543 0.0036351774 1 1 45
587 14 12.79 38.94 0.05677954 0.0027252273 1 1 50
623 127 7.0 7.37 0.036979515 0.034276165 2 2 21
823 25 22.52 24.13 0.005502004 0.0045518624 18 14 40
851 3 32.33 37.62 0.0045917197 0.0016382508 32 9 50
877 2 27.0 28.34 0.0028885999 0.0032403003 26 12 43
9 13 18.31 19.63 0.010193065 0.007846659 5 3 37

107

Bibliography

[AGYF02] Jay Ayres, Johannes Gehrke, Tomi Yiu, and Jason Flannick. Sequential
pattern mining using a bitmap representation. pages 429–435. ACM
Press, 2002.

[AKJ04] Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz. Applying sup-
port vector machines to imbalanced datasets. In In Proceedings of the
15th European Conference on Machine Learning (ECML, pages 39–50,
2004.

[AS95] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns,
1995.

[ATH03] Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann. Hidden
markov support vector machines, 2003.

[BDLR06] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. The curse of
highly variable functions for local kernel machines. In Yair Weiss, Bern-
hard Schölkopf, and John Platt, editors, Advances in Neural Information
Processing Systems 18, pages 107–114. MIT Press, Cambridge, MA, 2006.

[Ben96] Yoshua Bengio. Markovian models for sequential data. Neural Computing
Surveys, 2:129–162, 1996.

[Bis07] Christopher M. Bishop. Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Springer, 1 edition, October 2007.

[CG03] Gemma Casas-Garriga. Discovering unbounded episodes in sequential
data. In PKDD, pages 83–94, 2003.

[CL01] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support
vector machines, 2001. Software available at http://www.csie.ntu.

edu.tw/~cjlin/libsvm.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Ma-
chine Learning, pages 273–297, 1995.

[GRC+07] John F. Gantz, David Reinsel, Christopher Chute, Wolfgang Schlicht-
ing, John Mcarthur, Stephen Minton, Irida Xheneti, Anna Toncheva,
and Alex Manfrediz. Idc - the expanding digital universe: A forecast of
worldwide information growth through 2010. Technical report, March
2007.

108

[GRS99] Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Spirit: Se-
quential pattern mining with regular expression constraints. In VLDB
’99: Proceedings of the 25th International Conference on Very Large Data
Bases, pages 223–234, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

[HPMA+00] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar
Dayal, and Mei-Chun Hsu. Freespan: frequent pattern-projected sequen-
tial pattern mining. In KDD ’00: Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
355–359, New York, NY, USA, 2000. ACM.

[HPY99] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation, 1999.

[Jay57] E. T. Jaynes. Information theory and statistical mechanics. Physical
Review Online Archive (Prola), 106(4):620–630, May 1957.

[JHY05] J.Pei J. Han and X. Yan. Sequential Pattern Mining by Pattern-Growth:
Principles and Extensions, volume Volume 180/2005 of Studies in Fuzzi-
ness and Soft Computing, pages 183–220. Springer Berlin / Heidelberg,
2005.

[Joa10] Thorsten Joachims. Svmhmm sequence tagging with structural support
vector machines, May 2010.

[Kar39] William Karush. Minima of functions of several variables with inequal-
ities as side conditions. Master’s thesis, Department of Mathematics,
University of Chicago, Chicago, IL, USA, 1939.

[KM02] Svetlana Kiritchenko and Stan Matwin. Email classification with co-
training, 2002.

[KT50] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceed-
ings of the Second Berkeley Symposium on mathematical Statistics and
Probability, pages 481–492. Berkeley, U. of Calif. Press, 1950.

[KT07] Roman Klinger and Katrin Tomanek. Classical Probabilistic Models and
Conditional Random Fields. Technical Report TR07-2-013, Department
of Computer Science, Dortmund University of Technology, December
2007.

[LMP01] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. Proc.
18th International Conf. on Machine Learning, pages 282–289, 2001.

[LSU07a] Srivatsan Laxman, P. Sastry, and K. Unnikrishnan. Discovering frequent
generalized episodes when events persist for different durations. IEEE
Trans. on Knowl. and Data Eng., 19(9):1188–1201, 2007.

109

[LSU07b] Srivatsan Laxman, P. S. Sastry, and K. P. Unnikrishnan. A fast algorithm
for finding frequent episodes in event streams. In KDD ’07: Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 410–419, New York, NY, USA, 2007. ACM.

[LZO99] Neal Lesh, Mohammed J. Zaki, and Mitsunori Ogihara. Mining features
for sequence classification. In KDD ’99: Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 342–346, New York, NY, USA, 1999. ACM.

[McC02] Andrew Kachites McCallum. Mallet: A machine learning for language
toolkit. http://mallet.cs.umass.edu, 2002.

[MR04] Nicolas Méger and Christophe Rigotti. Constraint-based mining of
episode rules and optimal window sizes. In Proceedings of the 8th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD’04, pages 313–324. Springer, 2004.

[MTV97] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of
frequent episodes in event sequences, 1997.

[Nak89] Seiichi Nakajima. TPM Development Program: Implementing Total Pro-
ductive Maintenance. Productivity Press, New York, December 1989.

[PHW07] Jian Pei, Jiawei Han, and Wei Wang. Constraint-based sequential pattern
mining: the pattern-growth methods. J. Intell. Inf. Syst., 28(2):133–160,
2007.

[SB87] Gerard Salton and Chris Buckley. Term weighting approaches in auto-
matic text retrieval. Technical report, Ithaca, NY, USA, 1987.

[SM06] C. Sutton and A. Mccallum. An introduction to conditional random fields
for relational learning. In L. Getoor and B. Taskar, editors, Introduction
to Statistical Relational Learning. MIT Press, 2006.

[SS06] Luai Al Shalabi and Zyad Shaaban. Normalization as a preprocess-
ing engine for data mining and the approach of preference matrix. In
DEPCOS-RELCOMEX ’06: Proceedings of the International Conference
on Dependability of Computer Systems, pages 207–214, Washington, DC,
USA, 2006. IEEE Computer Society.

[Tab10] Yasuo Tabei. Prefixspan: An implementation of prefixspan, May 2010.

[TL09] Vincent S. Tseng and Chao-Hui Lee. Effective temporal data classifica-
tion by integrating sequential pattern mining and probabilistic induction.
Expert Syst. Appl., 36(5):9524–9532, 2009.

[WF02] I. H. Witten and E. Frank. Data mining: practical machine learning
tools and techniques with Java implementations. ACM SIGMOD Record,
31(1):76–77, 2002.

110

[Zak00] Mohammed J. Zaki. Sequence mining in categorical domains: incorpo-
rating constraints. In CIKM ’00: Proceedings of the ninth international
conference on Information and knowledge management, pages 422–429,
New York, NY, USA, 2000. ACM.

[Zak01] Mohammed J. Zaki. Spade: an efficient algorithm for mining frequent
sequences. In Machine Learning Journal, special issue on Unsupervised
Learning, pages 31–60, 2001.

111

