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Abstract

In the present thesis a unified functional analytic approach to the treatment of self-adjoint
elliptic operators with Dirichlet, Neumann, Robin, and more general self-adjoint boundary
conditions on bounded and unbounded domains is provided. Moreover, Schrödinger oper-
ators on couplings of exterior and interior domains with transmission boundary conditions
are considered. In particular, Schrödinger operators with δ ′-interactions on hypersurfaces
are rigorously introduced.
The key results in the thesis are Schatten-von Neumann estimates for the resolvent power
differences of self-adjoint elliptic operators corresponding to the same differential expres-
sion and to distinct boundary conditions. Schatten-von Neumann estimates for the resol-
vent power differences of elliptic operators have a long history, starting in the middle of the
20th century with the seminal contributions by Povzner and Birman, followed by Grubb.
In this thesis certain new estimates with faster convergence of singular values are obtained.
The proofs of these estimates rely on Krein-type resolvent formulas, asymptotics of eigen-
values of the Laplace-Beltrami operator on the boundary and certain considerations of
algebraic nature.
A question of special interest, in connection with scattering theory, is the trace class prop-
erty of the analyzed resolvent power differences, which implies the existence and com-
pleteness of the wave operators. In the special case, that the resolvent power differences
are in the trace class, formulae for their traces are given.



Zusammenfassung

In der vorliegenden Dissertation wird eine Methode zur Behandlung von selbstadjungier-
ten elliptischen Operatoren mit Dirichlet-, Neumann-, Robin- und allgemeineren selbstad-
jungierten Randbedingungen auf beschränkten und unbeschränkten Gebieten vorgeschla-
gen, die auf der Erweiterungstheorie symmetrischer Operatoren basiert. Außerdem werden
Schrödinger-Operatoren auf äußeren und inneren Gebieten betrachtet, die durch Trans-
missionsbedingungen gekoppelt sind. Als Spezialfall werden Schrödinger-Operatoren mit
δ ′-Interaktionen auf Hyperflächen rigoros eingeführt.
Die entscheidenden Resultate der Dissertation sind Schatten-von Neumann Abschätzun-
gen der Resolventpotenzdifferenzen von selbstadjungierten elliptischen Operatoren, die
mit einem Differentialausdruck und verschiedenen Randbedingungen assoziiert sind. Schat-
ten-von Neumann Abschätzungen von Resolventpotenzdifferenzen elliptischer Operatoren
haben eine lange Geschichte, die in der Mitte des 20. Jahrhunderts mit den grundlegenden
Artikeln von Povzner, Birman und Grubb anfing. In dieser Dissertation sind bestimmte
neue Abschätzungen mit schnellerer Konvergenz von Singulärwerten enthalten. Die Be-
weise dieser Abschätzungen basieren auf der Kreinschen Resolventidentität, dem asym-
ptotischen Verhalten der Eigenwerten des Laplace-Beltrami Operators auf dem Rand und
einigen algebraischen Beobachtungen.
Eine Frage von speziellem Interesse, mit Verbindung zur Streutheorie, ist die Spurklasse-
eigenschaft der analysierten Resolventenpotenzdifferenzen, welche die Existenz und Voll-
ständingkeit der Welleoperatoren impliziert. In dem Spezialfall, dass die Resolventenpo-
tenzdifferenzen in der Spurklasse liegen, werden Formeln für ihre Spuren gegeben.



CONTENTS

1 Introduction 1
1.1 Elliptic operators on domains with compact boundaries . . . . . . . . . . 2
1.2 Schrödinger operators with δ and δ ′-potentials supported on compact hy-

persurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Robin Laplacians on a half-space . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Classes of operator ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Abstract classes of operator ideals . . . . . . . . . . . . . . . . . 9
2.1.2 Singular values, Sp and Sp,∞-classes . . . . . . . . . . . . . . . 11

2.2 Quasi boundary triples and their Weyl functions . . . . . . . . . . . . . . 17
2.2.1 Definitions and basic properties . . . . . . . . . . . . . . . . . . 17
2.2.2 Self-adjointness and Krein’s formulae . . . . . . . . . . . . . . . 23

2.3 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Notations and basic properties . . . . . . . . . . . . . . . . . . . 29
2.3.2 Estimates of singular values related to Sobolev spaces . . . . . . 30

2.4 Elements of mathematical scattering theory . . . . . . . . . . . . . . . . 33

3 Elliptic operators on domains with compact boundaries 37
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Elliptic operators with general self-adjoint boundary conditions . . . . . . 39

3.2.1 A quasi boundary triple and its Weyl function . . . . . . . . . . . 39
3.2.2 Self-adjointness and Krein’s formulae . . . . . . . . . . . . . . . 41

3.3 Operator ideal properties of resolvent power differences and trace formulae 44
3.3.1 Elliptic regularity and related Sp,∞-estimates . . . . . . . . . . . 45
3.3.2 Resolvent power differences in Sp,∞-classes and trace formulae . 47

3.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Schrödinger operators with δ and δ ′-potentials supported on hypersurfaces 61
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Schrödinger operators with δ -potentials on hypersurfaces . . . . . . . . . 65

4.2.1 A quasi boundary triple and its Weyl function . . . . . . . . . . . 65
4.2.2 Self-adjointness and Krein’s formulae . . . . . . . . . . . . . . . 68

4.3 Schrödinger operators with δ ′-potentials on hypersurfaces . . . . . . . . 71
4.3.1 A quasi boundary triple and its Weyl function . . . . . . . . . . . 71
4.3.2 Self-adjointness and Krein’s formulae . . . . . . . . . . . . . . . 74

i



4.4 Operator ideal properties of resolvent power differences and trace formulae 76
4.4.1 Elliptic regularity and some preliminary Sp,∞-estimates . . . . . 76
4.4.2 Resolvent power differences in Sp,∞-classes . . . . . . . . . . . 78

4.5 Sesquilinear forms approach . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1 Definitions via sesquilinear forms . . . . . . . . . . . . . . . . . 84
4.5.2 Finiteness of negative spectra . . . . . . . . . . . . . . . . . . . 86

4.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Robin Laplacians on a half-space 91
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Half-space Laplacians with general self-adjoint boundary conditions . . . 92

5.2.1 A quasi boundary triple and its Weyl function . . . . . . . . . . . 92
5.2.2 Self-adjointness and Krein’s formulae . . . . . . . . . . . . . . . 95

5.3 Operator ideal properties of resolvent power differences and trace formulae 97
5.3.1 Compactness of resolvent differences . . . . . . . . . . . . . . . 98
5.3.2 Elliptic regularity and related Sp and Sp,∞-estimates . . . . . . . 99
5.3.3 Resolvent power differences in Sp and Sp,∞-classes and trace for-

mulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

References 107

Bibliography 107

ii



1 INTRODUCTION

Partial differential equations play a major role in natural sciences and pure mathematics.
The present thesis is concerned with the fields of operator theory and analysis of partial
differential equations, more particular, spectral theory of elliptic differential operators. In
many situations it is useful and natural to associate linear operators with differential ex-
pressions, e.g. in quantum mechanics, where the observables are often self-adjoint partial
differential operators in Hilbert spaces, and their spectral properties are related to the be-
havior of the quantum mechanical systems.
The evolution of a quantum system is governed by the time-dependent Schrödinger equa-
tion. The behavior for large times of the solutions of this equation is the subject of analysis
in scattering theory. From the functional analytic point of view mathematical scattering
theory can be considered as perturbation theory of self-adjoint operators on the continuous
spectrum. The main objects are the wave operators and the corresponding scattering op-
erator, which relates “initial” and “final” characteristics of the process directly, bypassing
its consideration for finite times. The initial step in the solution of a scattering problem
usually consists in establishing the existence and completeness of the wave operators. One
possible way to show the existence and completeness of the wave operators for a pair of
self-adjoint operators is to prove that the difference of some integer powers of their resol-
vents belongs to the trace class ideal.
In the present thesis the author provides a unified approach to the treatment of self-adjoint
elliptic operators with Dirichlet, Neumann, Robin, and more general self-adjoint bound-
ary conditions on bounded and unbounded domains. The key results in the thesis are
Schatten-von Neumann estimates for the resolvent power differences of self-adjoint ellip-
tic operators corresponding to one differential expression and to distinct boundary con-
ditions. Schatten-von Neumann estimates for the resolvent power differences of elliptic
operators have a long history, starting in the middle of the 20th century with the seminal
contributions by Povzner [P53] and Birman [B62], followed by Grubb [G84]. In the thesis
certain new estimates with faster convergence of singular values are presented. A question
of special interest, in connection with scattering theory, is the trace class property of the
analyzed resolvent power differences, which implies the existence and completeness of
the wave operators. In the special case that the resolvent power differences are in the trace
class, we provide formulae for their traces.
The main content of the thesis is divided into four chapters, namely: Chapter 2 with pre-
liminary material, Chapter 3 on elliptic operators on domains with compact boundaries,
Chapter 4 on Schrödinger operators with couplings of interior and exterior domains, and
Chapter 5 on Robin Laplacians on a half-space. The introduction is further organized into

1



2 1 Introduction

three parts corresponding to the material presented in Chapters 3-5.
The main results of the thesis are partially reflected in five publications [BLL+10,BLL13,
BLL13a, BLL13b, LR12] jointly with Jussi Behrndt, Matthias Langer, Igor Lobanov, Igor
Popov, and Jonathan Rohleder.

1.1 Elliptic operators on domains with compact boundaries

In Chapter 3 we deal with self-adjoint realizations of a symmetric elliptic differential ex-
pression on a bounded or unbounded domain with a compact smooth boundary subject to
Dirichlet, Neumann, Robin and more general boundary conditions. We explain the main
results of Chapter 3 with the help of the Laplace differential expression. In the body of
the thesis the statements are formulated and proved for a second-order uniformly elliptic
differential expression with certain assumptions on the coefficients.
Let Ω⊂Rn be a bounded or unbounded domain with a compact C∞-smooth boundary ∂Ω.
We denote by−∆D and−∆N the self-adjoint Dirichlet and Neumann Laplacians on Ω. For
a bounded self-adjoint operator B, which acts in the Hilbert space L2(∂Ω), we define the
operator −∆[B] as

−∆[B] f :=−∆ f ,

dom
(
−∆[B]

)
:=
{

f ∈ H3/2(Ω) : ∆ f ∈ L2(Ω), B f |∂Ω = ∂ν f |∂Ω

}
,

(1.1.1)

where H3/2(Ω) is the fractional Sobolev space on Ω of order 3/2, f |∂Ω is the trace of f
on the boundary and ∂ν f |∂Ω is the trace of the normal derivative of f with the normal
pointing outwards. Using the second Green’s identity it is not difficult to show that the
operator −∆[B] is symmetric, whereas in order to show self-adjointness of −∆[B] certain
tools are required.
Our key tools are the notion of quasi boundary triples, and the associated γ-fields and Weyl
functions. This allows us to prove the Krein-type formula

(−∆[B]−λ )−1− (−∆N−λ )−1 = γ(λ )
(
I−BM(λ )

)−1Bγ(λ )∗, (1.1.2)

where λ ∈ ρ(−∆[B])∩ρ(−∆N). In this formula, the γ-field γ(λ ) : L2(∂Ω)→ L2(Ω) is the
solution operator for the boundary value problem

(−∆−λ ) f = 0, in Ω,

∂ν f |∂Ω = ϕ, on ∂Ω,
(1.1.3)

and the Weyl function M(λ ) : L2(∂Ω)→L2(∂Ω) is the corresponding Neumann-to-Dirichlet
map, which maps ϕ into the Dirichlet trace of the solution of the problem (1.1.3). As an
intermediate step in the proof of formula (1.1.2) we get self-adjointness of the operator
−∆[B].
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The main results of Chapter 3 are related to Schatten-von Neumann estimates for resolvent
power differences of the operators −∆D, −∆N and −∆[B]. We recall that the singular val-
ues sk(T ) of a compact operator T are the eigenvalues of the positive operator (T ∗T )1/2

arranged in non-increasing order and counted with their multiplicities. If the singular
values satisfy sk(T ) = O(k−1/p) as k → ∞ with some p > 0, then we write T ∈ Sp,∞.
The class Sp,∞ is called the weak Schatten-von Neumann class of order p. In particu-
lar, an operator T ∈ Sp,∞ with p ∈ (0,1) belongs to the trace class, which means that
{sk(T )}∞

k=1 ∈ `1(N).
According to the results, proved by Povzner [P53], Birman [B62] and Grubb [G84,G84a],
for all m ∈ N,

(−∆D−λ )−m− (−∆N−λ )−m ∈S n−1
2m ,∞, (1.1.4)

holds, and, moreover, this estimate is optimal. In the special case, that B is a multiplication
operator with a real-valued function β ∈C∞(∂Ω), it was also proved in [G84,G84a] that

(−∆D−λ )−m− (−∆[β ]−λ )−m ∈S n−1
2m ,∞, (1.1.5)

and that this estimate is also optimal. In the thesis the estimates (1.1.4) and (1.1.5) are
generalized to the pairs {−∆[B],−∆N} and {−∆[B],−∆D}. We emphasize that for the pair
{−∆[B],−∆N}, even in the case of a multiplication operator B, known results were not
optimal. As it is shown in Chapter 3, in this case singular values converge slightly faster,
which in view of the sharpness of the estimates (1.1.4) and (1.1.5) is a new phenomenon.
Namely, we prove that

(−∆[B]−λ )−m− (−∆N−λ )−m ∈S n−1
2m+1 ,∞

,

(−∆[B]−λ )−m− (−∆D−λ )−m ∈S n−1
2m ,∞.

(1.1.6)

In this sense the operator −∆[B] is closer to −∆N. These estimates are especially impor-
tant in the case of exterior domains, for which scattering problems make sense. Clearly,
for a sufficiently large number m we get n−1

2m+1 < 1 and n−1
2m < 1. Thus for such m the

resolvent power differences in (1.1.6) are trace class operators and by the Birman-Kato
criterion [Y92] the wave operators for the pairs {−∆[B],−∆N} and {−∆[B],−∆D} exist and
are complete, see Section 3.3 for the details.
Our proofs of the estimates in (1.1.6) rely on the formula (1.1.2), on elliptic regularity
theory and on the spectral asymptotics of the Laplace-Beltrami operator on ∂Ω.
It is worth mentioning that for B1 and B2 such that B1−B2 ∈S n−1

q ,∞ with some q > 0 we
get even a better estimate

(−∆[B2]−λ )−m− (−∆[B1]−λ )−m ∈S n−1
2m+q+1 ,∞

. (1.1.7)

In the special case, that the resolvent power differences in (1.1.6) and (1.1.7) are in the
trace class, we provide formulae for their traces extending the work of Carron [Ca02] to
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more general boundary conditions. In particular, for the pair {−∆[B],−∆N} this formula
has the form

tr
(
(−∆[B]−λ )−m− (−∆N−λ )−m)= tr

(
dm−1

dλ m−1

((
I−BM(λ )

)−1B
d

dλ
M(λ )

))
.

Note that on the left-hand side the trace of an operator in L2(Ω) appears, whereas on the
right-hand side the trace of an operator in L2(∂Ω) is computed. In this sense we reduce
the trace to the boundary. In Sturm-Lioville theory an analogous reduction of perturbation
determinants was given already sixty years ago by Jost and Pais in [JP51].
See Section 3.4 for further references and historical comments. The results of Chapter 3
are mainly contained in the works of the author [BLL+10, BLL13, BLL13b].

1.2 Schrödinger operators with δ and δ ′-potentials supported on
compact hypersurfaces

In Chapter 4 we study self-adjoint realizations of the Schrödinger differential expression
−∆+V in the Hilbert space L2(Rn) with certain coupling (transmission) boundary con-
ditions on a compact C∞-smooth, closed hypersurface. In the introduction we present our
results in the special important case V ≡ 0.
We deal with a compact C∞-smooth closed hypersurface Σ ⊂ Rn which separates the Eu-
clidean space Rn,n ≥ 2, into an interior bounded domain Ωi and an exterior unbounded
domain Ωe. By −∆free we denote the usual self-adjoint Laplacian in L2(Rn) with the do-
main dom(−∆free) = H2(Rn) and by −∆N,i,e we denote the direct sum of the self-adjoint
Neumann Laplacians on the domains Ωi and Ωe.
Usually the Schrödinger operator with a δ -interaction of a strength α ∈ L∞(Σ;R) supported
on Σ is defined via the closed semi-bounded sesquilinear form

tδ ,α [ f ,g] := (∇ f ,∇g)L2(Rn;Cn)− (α f |Σ,g|Σ)L2(Σ), dom tδ ,α := H1(Rn).

This way of definition is used in many papers. We refer the reader to Brasche, Exner,
Kuperin and Šeba [BEKS94] and the review paper [E08] by Exner for more details and
further references, see also Section 4.6 for historical comments.
The definition via the sesquilinear form does not immediately lead to an explicit character-
ization of the operator domain of the underlying self-adjoint operator, whereas the regular-
ity of the functions in the operator domain plays an important role in many applications. In
the thesis the author suggests another way of definition of the Schrödinger operator with a
δ -interaction supported on Σ of strength α , where the action and the domain are specified
explicitly. Set

H3/2
∆

(Rn \Σ) :=
{

f = fi⊕ fe ∈ H3/2(Ωi)⊕H3/2(Ωe) : ∆ fj ∈ L2(Ωj), j = i,e
}
.
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Then the operator −∆δ ,α can be defined as

−∆δ ,α f := (−∆ fi)⊕ (−∆ fe),

dom(−∆δ ,α) :=

{
f = fi⊕ fe ∈ H3/2

∆
(Rn \Σ) :

fi|Σ = fe|Σ =: f |Σ
∂νe fe|Σ +∂νi fi|Σ = α f |Σ

}
,

(1.2.1)

where fi|Σ, fe|Σ are the traces of f = fi⊕ fe from both sides of Σ and ∂νi fi|Σ, ∂νe fe|Σ are
the traces of the normal derivatives of f from both sides of Σ with the normals pointing
outwards Ωi and Ωe, respectively. Roughly speaking, the domain of the operator −∆δ ,α

consists of functions with coinciding traces from both sides of Σ and with a jump of the
normal derivative, which is connected with the usual trace via the function α . It follows
from the second Green’s identity that the operator −∆δ ,α is symmetric. For the proof of
self-adjointness we need certain tools.
Our key tools are similar as in the case of single domains in Chapter 3. We introduce
a γ-field γ̃ , which is in this case the single-layer potential, and the corresponding Weyl
function M̃, which is an analogue of the Neumann-to-Dirichlet map. This allows us to
prove the Krein-type formula

(−∆δ ,α −λ )−1− (−∆free−λ )−1 = γ̃(λ )
(
I−αM̃(λ )

)−1
αγ̃(λ )∗. (1.2.2)

As an intermediate step in the proof of this formula we get self-adjointness of the operator
−∆δ ,α . We also prove in Chapter 4 that the operator−∆δ ,α and the operator corresponding
to the form tδ ,α coincide, which relates our approach to the previously known one.
Furthermore, we obtain spectral estimates of the type (1.1.6) for the pairs {−∆free,−∆δ ,α}
and {−∆N,i,e,−∆δ ,α}. Namely, for all m ∈ N,

(−∆δ ,α −λ )−m− (−∆free−λ )−m ∈S n−1
2m+1 ,∞

,

(−∆δ ,α −λ )−m− (−∆N,i,e−λ )−m ∈S n−1
2m ,∞.

(1.2.3)

In this sense the operator −∆δ ,α is closer to the free Laplacian than to the decoupled
Neumann Laplacian. In particular, as a consequence of these estimates the wave operators
for the pair {−∆δ ,α ,−∆free} exist and are complete in all space dimensions. Our proofs of
Sp,∞-estimates in the case of δ -interactions are similar to the proofs in the case of single
domains without coupling. We use the formula (1.2.2), elliptic regularity theory and the
asymptotics of Laplace-Beltrami operator on Σ.
As a certain addition we provide trace formulae in the case that the resolvent power dif-
ferences in (1.2.3) are in the trace class. In these formulae the trace of the resolvent power
difference acting in L2(Rn) is reduced to the trace of a certain operator acting in L2(Σ).
For a more general differential expression −∆+V we assume some smoothness of V in
the neighborhood of Σ in order to prove the estimates (1.2.3).
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In the thesis also δ ′-interactions on hypersurfaces are encompassed. Since δ ′-interactions
are more singular, their treatment is more involved. Some particular results in the case of Σ

being a sphere are known, see Antoine, Gesztesy and Shabani [AGS87], Shabani [Sh88],
where the separation of variables is the main tool of analysis. The development of a general
approach to the treatment of Schrödinger operators with δ ′-interactions supported on hy-
persurfaces was posed by Pavel Exner as an unsolved problem in the review paper [E08].
We provide two ways for the definition of these operators. As we show, one can define
for a boundedly invertible real-valued function β : Σ→ R the Schrödinger operator with a
δ ′-interaction supported on Σ of the strength β via the closed, semi-bounded sesquilinear
form

tδ ′,β [ f ,g] :=
(
∇ fi,∇gi

)
L2(Ωi;Cn)

+
(
∇ fe,∇ge

)
L2(Ωe;Cn)

−
(
β
−1( fe|Σ− fi|Σ),ge|Σ−gi|Σ

)
L2(Σ)

,

dom tδ ′,β := H1(Ωi)⊕H1(Ωe).

In this definition the domain of the underlying self-adjoint operator is not easily visible. As
the second way, we propose to define Schrödinger operator with a δ ′-interaction explicitly
via its action and domain

−∆δ ′,β f := (−∆ fi)⊕ (−∆ fe),

dom(−∆δ ′,β ) :=

{
f = fi⊕ fe ∈ H3/2

∆
(Rn \Σ) :

fe|Σ− fi|Σ = β∂νe fe|Σ
∂νe fe|Σ +∂νi fi|Σ = 0

}
.

Roughly speaking, the domain of the operator−∆δ ′,β consists of functions with coinciding
normal derivatives on Σ and with the jump of the usual traces, which is connected with the
normal derivative via the function β . In order to see that the operator −∆δ ′,β is self-
adjoint, we follow our abstract methods with γ-fields and Weyl functions. Furthermore,
we connect the two proposed definitions by showing that the self-adjoint operator −∆δ ′,β
coincides with the self-adjoint operator corresponding to the form tδ ′,β .
We obtain estimates of the type (1.2.3) also for the pairs {−∆free,−∆δ ′,β} and
{−∆N,i,e,−∆δ ′,β}. As we show, for all m ∈ N,

(−∆δ ′,β −λ )−m− (−∆free−λ )−m ∈S n−1
2m ,∞,

(−∆δ ′,β −λ )−m− (−∆N,i,e−λ )−m ∈S n−1
2m+1 ,∞

.
(1.2.4)

In this sense the operator−∆δ ′,β is closer to the decoupled Neumann Laplacian than to the
free Laplacian. In particular, as a consequence of these results the wave operators for the
pair {−∆δ ′,β ,−∆free} exist and are complete in all space dimensions. For the trace class
resolvent power differences in (1.2.4) we provide corresponding trace formulae.
See Section 4.6 for further references and historical comments. The results of Chapter 4
are mainly contained in the joint work of the author [BLL13a].
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1.3 Robin Laplacians on a half-space

In Chapter 5 we are concerned with the half-space

Rn
+ := {(x,x′)T : x ∈ Rn−1,x′ ∈ R+

}
with the boundary ∂Rn

+. Our main focus is the usual Robin Laplace operator defined as

−∆[β ] f :=−∆ f ,

dom(−∆[β ]) :=
{

f ∈ H3/2(Rn
+) : ∆ f ∈ L2(Rn

+),β f |∂Rn
+
= ∂ν f |∂Rn

+

}
,

where f |∂Rn
+

and ∂ν f |∂Rn
+

denote the trace of f on the boundary of the half-space and
the trace of the normal derivative of f with the normal pointing outwards, respectively,
which are connected by the real-valued function β ∈ L∞(∂Rn

+). In order to show that the
operator −∆[β ] is self-adjoint in L2(Rn

+) we use our abstract approach with a modification
in the arguments due to the non-compactness of the boundary. As a particular case we also
treat the self-adjoint Neumann Laplacian −∆N on the half-space.
Let β1 and β2 be real-valued bounded functions on ∂Rn

+. The resolvent difference

(−∆[β2]−λ )−1− (−∆[β1]−λ )−1 (1.3.1)

is in general non-compact. Indeed, if we take two positive constants b1 6= b2 and assume
that β1 ≡ b1 and β2 ≡ b2, then a simple calculation shows that the essential spectra

σess(−∆[b1]) =
[
−b2

1,+∞
)

and σess(−∆[b2]) =
[
−b2

2,+∞
)

of the corresponding Robin Laplacians are distinct and thus the operator in (1.3.1) is evi-
dently non-compact.
The first result is concerned with the assumption on β2−β1 sufficent for the compactness
of the resolvent difference in (1.3.1). Namely, if for all ε > 0 the condition

µ
{

x ∈ ∂Rn
+ :
∣∣β2(x)−β1(x)

∣∣≥ ε}< ∞

holds with µ being the standard Lebesgue measure, then the resolvent difference in (1.3.1)
is compact. The proof of the compactness of the resolvent difference in (1.3.1) relies on the
compact embedding of H1(Ω) into L2(Ω) for a domain Ω of finite measure with a smooth
boundary. As a particular case, we get the condition on β for compactness of the resolvent
difference of−∆[β ] and−∆N. Using recent results by Malamud and Neidhardt [MN12] we
get that under this condition the absolutely continuous parts of the self-adjoint operators
−∆[β ] and −∆N are unitarily equivalent.
Another question is to find sufficient conditions on β1 and β2 such that for m ∈ N the
resolvent power difference

(−∆[β2]−λ )−m− (−∆[β1]−λ )−m (1.3.2)
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belongs to a Sp,∞-class of the same order as the first resolvent power difference in (1.1.6).
It turns out to be sufficient to require boundedness of all the partial derivatives of β1 and
β2 up to order 2m− 1 and to assume that β2−β1 is compactly supported, or at least that
n > 4m and

β2−β1 ∈ L
n−1

2m+1 (∂Rn
+).

Under these assumptions the resolvent power difference (1.3.2) belongs to the class S n−1
2m+1 ,∞

.
Here we rely on a result by Cwikel [Cw77] on Sp,∞-estimates of integral operators. The
cases of slower decaying β2−β1 are also considered in Chapter 5. The results for high re-
solvent powers complement papers by Birman [B62], Gorbachuk and Kutovoi [GorK82],
Derkach and Malamud [DM91], where only the first powers of resolvents were considered.
Moreover, for compactly supported β2−β1 and for some non-compactly supported β2−β1
we provide corresponding trace formulae for the resolvent power difference in (1.3.2). The
results of Chapter 5 are partially contained in the work of the author [LR12].



2 PRELIMINARIES

2.1 Classes of operator ideals

In this section we introduce the notion of classes of operator ideals. Further we define
singular values and related (weak) Schatten-von Neumann classes of operator ideals. Two
important technical lemmas are provided for Schatten-von Neumann estimates of resol-
vent power differences of self-adjoint operators. Throughout this section let H and K be
separable Hilbert spaces. Denote by S∞(H,K) the closed subspace of compact operators
in B(H,K); ifH=K, we simply write S∞(H).

2.1.1 Abstract classes of operator ideals

We define classes of operator ideals along the lines of [Pi87].

Definition 2.1. Suppose that for every pair of Hilbert spaces H, K we are given a subset
A(H,K) of S∞(H,K). The set

A :=
⋃

H,K Hilbert spaces

A(H,K)

is said to be a class of operator ideals if the following conditions are satisfied:
(i) the rank-one operators x 7→ (x,u)v are in A(H,K) for all u ∈H, v ∈ K;

(ii) A+B ∈ A(H,K) for A,B ∈ A(H,K);
(iii) CAB ∈ A(H1,K1) for A ∈ A(H,K), B ∈ B(H1,H), C ∈ B(K,K1).

Moreover, we write A(H) for A(H,H).

If A is a class of operator ideals, then the sets A(H,K) are two-sided operator ideals
for every pair H, K; for the latter notion see also, e.g. [GK69, Pi80]. For two classes of
operator ideals A, B we define the product

A ·B :=
{

T : there exist A ∈ A,B ∈B so that T = AB
}

and the adjoint of A by
A∗ :=

{
A∗ : A ∈ A

}
.

These sets are again classes of operator ideals; see [Pi87].

9
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Let H and K be linear operators in a separable Hilbert space H and assume that ρ(H)∩
ρ(K) 6= ∅. We are aiming to investigate operator ideal properties of the difference of the
m-th powers of the resolvents,

(H−λ )−m− (K−λ )−m, λ ∈ ρ(H)∩ρ(K), m ∈ N.

Recall that for two elements a and b of some non-commutative algebra the following for-
mula holds:

am−bm =
m−1

∑
k=0

am−k−1(a−b
)
bk. (2.1.1)

Substituting a and b by the resolvents of H and K, respectively, and setting

Tm,k(λ ) := (H−λ )−(m−k−1)
(
(H−λ )−1− (K−λ )−1

)
(K−λ )−k (2.1.2)

for λ ∈ ρ(H)∩ρ(K), m ∈ N and k = 0,1, . . . ,m−1, we conclude from (2.1.1) that

(H−λ )−m− (K−λ )−m =
m−1

∑
k=0

Tm,k(λ ) (2.1.3)

holds for all λ ∈ ρ(H)∩ρ(K) and m ∈ N. In the next lemma we show that (H−λ )−m−
(K−λ )−m belongs to the ideal A(H) for all λ ∈ ρ(H)∩ρ(K) if all the following operators
Tm,0(λ0),Tm,1(λ0), . . . ,Tm,m−1(λ0) belong to A(H) for some λ0 ∈ ρ(H)∩ρ(K).

Lemma 2.2. Let H and K be linear operators inH such that ρ(H)∩ρ(K) 6=∅. Let m∈N
and let Tm,k be as in (2.1.2). Assume that Tm,k(λ0) ∈ A(H) for some λ0 ∈ ρ(H)∩ ρ(K)
and all k = 0, . . . ,m−1. Then

(H−λ )−m− (K−λ )−m ∈ A(H)

holds for all λ ∈ ρ(H)∩ρ(K).

Proof. For λ ∈ ρ(H)∩ρ(K) define

Eλ := I +(λ −λ0)(H−λ )−1 and Fλ := I +(λ −λ0)(K−λ )−1. (2.1.4)

Clearly, Eλ commutes with (H−λ0)
−1 and Fλ commutes with (K−λ0)

−1. The resolvent
identity implies that

Eλ (H−λ0)
−1 = (H−λ )−1 and (K−λ0)

−1Fλ = (K−λ )−1,

and hence also

E l
λ
(H−λ0)

−l = (H−λ )−l and (K−λ0)
−lF l

λ
= (K−λ )−l (2.1.5)
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for all l ∈ N. Set D1(λ ) := (H − λ )−1− (K − λ )−1, λ ∈ ρ(H)∩ ρ(K). Then (2.1.4)
and (2.1.5) imply that

Eλ D1(λ0)Fλ = (H−λ )−1Fλ −Eλ (K−λ )−1 = D1(λ ). (2.1.6)

For k = 0,1,2 . . . ,m−1 we obtain from (2.1.5) and (2.1.6) that

Tm,k(λ ) = (H−λ )−(m−k−1)Eλ D1(λ0)Fλ (K−λ )−k

= Em−k−1
λ

(H−λ0)
−(m−k−1)Eλ D1(λ0)Fλ (K−λ0)

−kFk
λ

= Em−k
λ

(H−λ0)
−(m−k−1)D1(λ0)(K−λ0)

−kFk+1
λ

= Em−k
λ

Tm,k(λ0)Fk+1
λ

holds for all λ ∈ ρ(H)∩ρ(K). By the assumption we have Tm,k(λ0) ∈ A(H) and hence
we conclude Tm,k(λ ) ∈ A(H) for k = 0, . . . ,m−1. This together with (2.1.3) yields that

(H−λ )−m− (K−λ )−m =
m−1

∑
k=0

Tm,k(λ ) ∈ A(H), λ ∈ ρ(H)∩ρ(K).

2.1.2 Singular values, Sp and Sp,∞-classes

Recall that the singular values (or s-numbers) sk(A), k = 1,2, . . . , of a compact operator
A∈S∞(H,K) are defined as the eigenvalues λk(|A|) of the non-negative compact operator
|A|= (A∗A)

1
2 ∈S∞(H), which are enumerated in non-increasing order and with multiplic-

ities taken into account. Note that for a non-negative operator A ∈S∞(H) the eigenvalues
λk(A) and singular values sk(A), k = 1,2, . . . , coincide. Let A∈S∞(H,K) and assume that
H and K are infinite-dimensional Hilbert spaces. Then there exist orthonormal systems
{ϕ1,ϕ2, . . .} and {ψ1,ψ2, . . .} in H and K, respectively, such that A admits the Schmidt
expansion

A =
∞

∑
k=1

sk(A)( · ,ϕk)ψk. (2.1.7)

It follows, for instance, from (2.1.7) and the corresponding expansion for A∗ ∈S∞(K,H)
that the singular values of A and A∗ coincide: sk(A) = sk(A∗) for k = 1,2, . . . ; see, e.g.
[GK69, II.§2.2]. Moreover, if G and L are separable Hilbert spaces, B ∈ B(G,H) and
C ∈ B(K,L), then the estimates

sk(AB)≤ ‖B‖sk(A) and sk(CA)≤ ‖C‖sk(A), k = 1,2, . . . , (2.1.8)

hold. If, in addition, B ∈S∞(G,H) we have

sm+n−1(AB)≤ sm(A)sn(B), m,n = 1,2 . . . . (2.1.9)
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The proofs of the inequalities (2.1.8) and (2.1.9) are the same as in [GK69, II.§2.1 and
§2.2], where these facts are shown for operators acting in the same space.
Recall that the Schatten–von Neumann ideals Sp(H,K) are defined by

Sp(H,K) :=
{

A ∈S∞(H,K) :
∞

∑
k=1

(sk(A))p < ∞

}
, p > 0.

Besides the standard Schatten–von Neumann ideals also the weak Schatten-von Neumann
ideals

Sp,∞(H,K) :=
{

A ∈S∞(H,K) : sk(A) = O(k−1/p), k→ ∞
}
, p > 0,

will play an important role later on. The sets

Sp :=
⋃
H,K

Sp(H,K) and Sp,∞ :=
⋃
H,K

Sp,∞(H,K).

are classes of operator ideals in the sense of Definition 2.1.
We refer the reader to [GK69, III.§7 and III.§14] and [Si05, Chapter 2] for a detailed study
of the classes Sp and Sp,∞. We list only some basic and well-known properties, which will
be useful for us. It follows from sk(A) = sk(A∗) that S∗p =Sp and S∗p,∞ =Sp,∞ hold.

Lemma 2.3. Let p,q,r,s, t > 0. Then the following statements are true:
(i) Sp,∞ ·Sq,∞ =Sr,∞ with p−1 +q−1 = r−1, or, equivalently

S 1
s ,∞
·S 1

t ,∞
=S 1

s+t ,∞
.

(ii) Sp ·Sq =Sr with p−1 +q−1 = r−1, or, equivalently S 1
s
·S 1

t
=S 1

s+t
;

(iii) Sp ⊂Sp,∞ and Sp′,∞ ⊂Sp for p′ < p.

Proof. In order to verify (i) let p,q > 0 and set r := pq
p+q . Let A ∈ Sp,∞(H,K) and B ∈

Sq,∞(G,H), that is, the inequalities sn(A) ≤ can−1/p and sn(B) ≤ cbn−1/q, n ∈ N, hold
with some constants ca,cb > 0. From (2.1.9) we obtain

s2n(AB)≤ s2n−1(AB)≤ sn(A)sn(B)≤
cacb

nr ≤
2rcacb

(2n)r ≤
2rcacb

(2n−1)r ,

which implies AB ∈ Sr,∞(G,K). In order to show equality, let A ∈ Sr,∞(H,K) with
Schmidt expansion

A = ∑
k

sk(A)( · ,ϕk)ψk.

Define operators B : H→K and C : H→H by

B = ∑
k

(
sk(A)

) q
p+q ( · ,ϕk)ψk, C = ∑

k

(
sk(A)

) p
p+q ( · ,ϕk)ϕk.

The relations A = BC, B ∈Sp,∞(H,K), C ∈Sq,∞(H,H) show that A ∈Sp,∞ ·Sq,∞. The
same arguments as in (i) can be used to show (ii). The inclusions in (iii) are trivial.
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The trace class of the class of nuclear operators S1 plays an important role later on. The
trace of a compact operator K ∈S1(H) is defined as

trK :=
∞

∑
k=1

λk(K),

where λk(K) are the eigenvalues of K and the sum converges absolutely. It is well-known
(see, e.g. [GK69, §III.8]) that for K1,K2 ∈S1(H)

tr(K1 +K2) = trK1 + trK2 (2.1.10)

holds. Moreover, for K1 ∈B(H,K) and K2 ∈B(K,H) such that K1K2 ∈S1(K) and K2K1 ∈
S1(H) one has

tr(K1K2) = tr(K2K1). (2.1.11)

The following two lemmas will be used in the next chapters to show that certain resolvent
power differences of elliptic operators are in some classes Sp,∞ or Sp.

Lemma 2.4. Let H and G be some Hilbert spaces. Let H and K be linear operators in
H and assume that for some λ0 ∈ ρ(H)∩ ρ(K) there exist operators F1 ∈ B(G,H) and
F2 ∈ B(H,G) such that

(H−λ0)
−1− (K−λ0)

−1 = F1F2. (2.1.12)

Let a > 0 and b1,b2 ≥ 0 be such that a ≤ b1 +b2 and set b := b1 +b2−a. Moreover, let
r ∈ N∪{∞} and assume that for k = 0,1, . . . ,r−1

(K−λ0)
−kF1 ∈S 1

ak+b1
,∞ and F2(K−λ0)

−k ∈S 1
ak+b2

,∞ (2.1.13)

holds. Then for l = 1,2, . . . ,r and all λ ∈ ρ(H)∩ρ(K)

(H−λ )−l− (K−λ )−l ∈S 1
al+b ,∞

. (2.1.14)

The statement of the lemma is true with Sp,∞-classes replaced by Sp-classes.

Proof. We prove the statement by induction with respect to l. Using the factorization in
(2.1.12), the assumptions in (2.1.13) with k = 0 and Lemma 2.3 (i) we obtain that

(H−λ0)
−1− (K−λ0)

−1 = F1F2 ∈S 1
b1
,∞ ·S 1

b2
,∞ =S 1

b1+b2
,∞ =S 1

a+b ,∞
.

Now Lemma 2.2 with m = 1 implies that

(H−λ )−1− (K−λ )−1 ∈S 1
a+b

for all λ ∈ ρ(H)∩ρ(K), i.e. (2.1.14) is true for l = 1.
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For the induction step fix m ∈ N, 2 ≤ m ≤ r, and assume that (2.1.14) is satisfied for all
l = 1,2, . . . ,m−1. Let Tm,k be as in (2.1.2), and define for k = 0,1, . . . ,m−1

Dk := (H−λ0)
−k− (K−λ0)

−k.

Note that D0 = 0. Let us rewrite Tm,k(λ0) with k = 0,1, . . . ,m−1 as sums of two operators

Tm,k(λ0) =(H−λ0)
−(m−k−1)F1F2(K−λ0)

−k

=Dm−k−1F1F2(K−λ0)
−k +(K−λ0)

−(m−k−1)F1F2(K−λ0)
−k.

(2.1.15)

Note that the first summand is missing when k = m− 1. By the assumption (2.1.13) we
have

F1 ∈S 1
b1
,∞, F2(K−λ0)

−k ∈S 1
ak+b2

,∞,

(K−λ0)
−(m−k−1)F1 ∈S 1

a(m−k−1)+b1
,∞,

for k = 0,1, . . . ,m−1. By the induction assumption we also have

Dm−k−1 ∈S 1
a(m−k−1)+b ,∞

for k = 0,1, . . . ,m− 2 and and hence we obtain by Lemma 2.3 (i) that the first summand
in (2.1.15) is in the class

S 1
a(m−k−1)+b ,∞

·S 1
b1
,∞ ·S 1

ak+b2
,∞ =S 1

am+2b ,∞
⊂S 1

am+b ,∞
,

where we used that b≥ 0. The second summand in (2.1.15) is in the class

S 1
a(m−k−1)+b1

,∞ ·S 1
ak+b2

,∞ =S 1
am+b ,∞

.

Hence Tm,k(λ0) ∈S 1
am+b ,∞

for all k = 0,1, . . . ,m−1. Now Lemma 2.2 implies the validity
of (2.1.14) for l = m. The induction process yields that the statement is true for every
l = 1,2, . . . ,r. Similarly with the help of Lemma 2.3 (ii) one can show the analogous result
for Sp-classes.

Remark 2.5. In the proof of the last lemma we used the algebraic identity

am−bm =
m−1

∑
k=0

(
(am−k−1−bm−k−1)(a−b)bk +bm−k−1(a−b)bk

)
valid for any two elements a and b of a non-commutative algebra. In our case a =
(H−λ )−1 and b = (K−λ )−1. In applications to elliptic operators we take for K a self-
adjoint elliptic operator with known smoothing properties of its resolvent, while smoothing
properties of the resolvent of the operator H can be unknown and they may be weaker, see
Section 3.3 and Section 4.4.
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Lemma 2.6. Let H and G be some Hilbert spaces. Let H, K and L be linear operators in
H. Assume that for some λ0 ∈ ρ(H)∩ρ(K)∩ρ(L) there exist operators F1 ∈B(G,H) and
F2 ∈ B(H,G) such that

(H−λ0)
−1− (K−λ0)

−1 = F1F2. (2.1.16)

Let a > 0 and b1,b2 ≥ 0 be such that a≤ b1+b2 and set b := b1+b2−a. Let r ∈N∪{∞}
and assume also that for k = 0,1, . . . ,r−1

(L−λ0)
−kF1 ∈S 1

ak+b1
,∞ and F2(L−λ0)

−k ∈S 1
ak+b2

,∞. (2.1.17)

Moreover, assume that for k = 1,2, . . . ,r−1

(H−λ0)
−k− (L−λ0)

−k ∈S 1
ak ,∞

,

(K−λ0)
−k− (L−λ0)

−k ∈S 1
ak ,∞

.
(2.1.18)

Then for l = 1,2, . . . ,r and all λ ∈ ρ(H)∩ρ(K)

(H−λ )−l− (K−λ )−l ∈S 1
al+b ,∞

. (2.1.19)

The statement of the lemma is true with Sp,∞-classes replaced by Sp-classes.

Proof. By (2.1.16), (2.1.17) with k = 0, and the equality b = b1 +b2−a we get

(H−λ0)
−1− (K−λ0)

−1 = F1F2 ∈S 1
b1
,∞ ·S 1

b2
,∞ =S 1

a+b ,∞
,

where we used Lemma 2.3 (i). Then by Lemma 2.2

(H−λ )−1− (K−λ )−1 ∈S 1
a+b ,∞

for all λ ∈ ρ(H)∩ρ(K). Thus the statement is true for l = 1.
Let us fix l ∈N, 2≤ l ≤ r, and define for k = 0,1, . . . , l−1 the differences of k-th resolvent
powers

Dk := (H−λ0)
−k− (L−λ0)

−k,

Gk := (K−λ0)
−k− (L−λ0)

−k.

Note that D0 = G0 = 0. First we rewrite each of the operators Tl,0(λ0) and Tl,l−1(λ0)
in (2.1.2) as a sum of two operators

Tl,0(λ0) = S1 +S2 and Tl,l−1(λ0) = S3 +S4,
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where S1 =Dl−1F1F2, S2 =(L−λ0)
−(l−1)F1F2, S3 =F1F2Gl−1 and S4 =F1F2(L−λ0)

−(l−1).
By the assumptions (2.1.17), (2.1.18), the equality b = b1 + b2− a and by Lemma 2.3 (i)
we obtain that

S1 ∈S 1
a(l−1) ,∞

·S 1
b1
,∞ ·S 1

b2
,∞ =S 1

al+b ,∞
.

S2 ∈S 1
b1
,∞ ·S 1

a(l−1)+b2
,∞ =S 1

al+b ,∞
,

S3 ∈S 1
b1
,∞ ·S 1

b2
,∞ ·S 1

a(l−1) ,∞
=S 1

al+b ,∞
,

S4 ∈S 1
b1
,∞ ·S 1

a(l−1)+b2
,∞ =S 1

al+b ,∞
.

We conclude that
Tl,0(λ0), Tl,l−1(λ0) ∈S 1

al+b ,∞
. (2.1.20)

Further we rewrite the operator Tl,k(λ0) in (2.1.2) with k ∈ N, 1 ≤ k ≤ l− 2, as a linear
combination of four operators

Tl,k(λ0) := S5 +S6 +S7−S8,

where

S5 = Dl−k−1F1F2Gk, S6 = (L−λ0)
−(l−k−1)F1F2Gk,

S7 = Dl−k−1F1F2(L−λ0)
−k, S8 = (L−λ0)

−(l−k−1)F1F2(L−λ0)
−k.

By assumptions (2.1.17), (2.1.18), the equality b= b1+b2−a and Lemma 2.3 (i) we obtain
that

S5 ∈S 1
a(l−k−1) ,∞

·S 1
b1
,∞ ·S 1

b2
,∞ ·S 1

ak ,∞
=S 1

al+b ,∞
,

S6 ∈S 1
a(l−k−1)+b1

,∞ ·S 1
b2
,∞ ·S 1

ak ,∞
=S 1

al+b ,∞
,

S7 ∈S 1
a(l−k−1) ,∞

·S 1
b1
,∞ ·S 1

ak+b2
,∞ =S 1

al+b ,∞
,

S8 ∈S 1
a(l−k−1)+b1

,∞ ·S 1
ak+b2

,∞ =S 1
al+b ,∞

.

Hence we conclude that
Tl,k(λ0) ∈S 1

al+b ,∞
, (2.1.21)

for all k= 1,2, . . . , l−2. Thus, summarizing (2.1.20) and (2.1.21), we obtain that Tl,k(λ0)∈
S 1

al+b ,∞
for all k = 0,1, . . . , l− 1. Now Lemma 2.2 implies the statement. Similarly with

the help of Lemma 2.3 (ii) one can show analogous statement for Sp-classes.

Remark 2.7. In the proof of the last lemma we used the algebraic identity for m ≥ 2 and
arbitrary elements a, b and c of a non-commutative algebra

am−bm =
(

f0 +h0
)
+
(
gm−1 +hm−1

)
+

m−2

∑
k=1

(
ek + fk +gk−hk

)
,
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where

ek =(am−k−1− cm−k−1)(a−b)(bk− ck),

fk =(am−k−1− cm−k−1)(a−b)ck,

gk =cm−k−1(a−b)(bk− ck),

hk =cm−k−1(a−b)ck.

In our case a = (H−λ )−1, b = (K−λ )−1 and c = (L−λ )−1. In applications to elliptic
operators we take for L a self-adjoint elliptic operator with known smoothing properties
of its resolvent, while smoothing properties of the resolvents of H and K can be unknown,
and they may be weaker, see Section 3.3.

2.2 Quasi boundary triples and their Weyl functions

In this section we introduce the abstract concept of quasi boundary triples and associated
Weyl functions useful in extension theory. We provide complete proofs of main statements
related to this concept. One can find most of these proofs in [BL07, BL12, BLL13] in
a slightly different form. We start with with basic statements and definitions of the key
objects, further we derive Krein’s formulae, study spectral relations of Birman-Schwinger
type and give sufficient conditions for self-adjointness of extensions. All this material is
intensively used throughout the further chapters.

2.2.1 Definitions and basic properties

The concept of quasi boundary triples is a generalization of the notion of (ordinary) bound-
ary triples from [Bru76, DM91, GorGor91, Ko75]. Quasi boundary triples are particularly
useful when dealing with elliptic boundary value problems from an operator and extension
theoretic points of view. Generalized boundary triples from [DHMS06, DM95] are a par-
ticular case of quasi boundary triples. In this subsection we provide some general facts on
quasi boundary triples.

Definition 2.8. Let A be a closed, densely defined, symmetric operator in a Hilbert space(
H,(·, ·)H

)
. A triple {G,Γ0,Γ1} is called a quasi boundary triple for A∗ if

(
G,(·, ·)G

)
is a

Hilbert space and for some linear operator T ⊂ A∗ with T = A∗ the following holds:
(i) Γ0,Γ1 : domT →G are linear mappings, and the mapping Γ :=

(
Γ0
Γ1

)
has dense range

in G×G;
(ii) A0 := T � kerΓ0 is a self-adjoint operator inH;

(iii) for all f ,g ∈ domT the abstract Green’s identity

(T f ,g)H− ( f ,T g)H = (Γ1 f ,Γ0g)G− (Γ0 f ,Γ1g)G (2.2.1)
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holds.

We remark that a quasi boundary triple for A∗ exists if and only if the deficiency indices
n±(A) = dimker(A∗∓ i) of A coincide. Moreover, if {G,Γ0,Γ1} is a quasi boundary triple
for A∗, then A coincides with T � kerΓ and the operator A1 := T � kerΓ1 is symmetric in
H. We also mention that a quasi boundary triple with the additional property ranΓ0 = G is
a generalized boundary triple in the sense of [DHMS06, DM95].
The proposition below contains a sufficient condition for a triple {G,Γ0,Γ1} to be a quasi
boundary triple. It can be found in [BL07, BL12].

Proposition 2.9. Let H and G be Hilbert spaces and let T be a linear operator in H.
Assume that Γ0,Γ1 : domT → G are linear mappings such that the following conditions
are satisfied:

(a) Γ =
(

Γ0
Γ1

)
: domT →G×G has dense range, and kerΓ is dense inH;

(b) The identity (2.2.1) holds for all f ,g ∈ domT ;

(c) T � kerΓ0 contains a self-adjoint operator A0.
Then A := T � kerΓ is a closed, densely defined, symmetric operator; the operator A0
coincides with T � kerΓ0; the operator T is closable and T = A∗ holds. Finally, the triple
{G,Γ0,Γ1} is a quasi boundary triple for A∗.

Proof. As the first preliminary step of the proof we verify that T ∗ ⊂ T . By the abstract
Green’s identity the operator T � kerΓ0 is symmetric. Since the symmetric operator T �
kerΓ0 contains the self-adjoint operator A0, these operators coincide, and we have the
following chain of inclusions

T ∗ ⊂ A∗0 = A0 ⊂ T. (2.2.2)

The abstract Green’s identity yields that A is symmetric. Let us show that A = T ∗. We start
with the inclusion

A⊂ T ∗.

Let us take an arbitrary g ∈ domA and an arbitrary f ∈ domT . Since g ∈ domA, we have
Γg = 0. Thus we get

(T f ,g)H− ( f ,Ag)H = (T f ,g)H− ( f ,T g)H = (Γ1 f ,Γ0g)G− (Γ0 f ,Γ1g)G = 0.

This calculation implies that g ∈ domT ∗ and that T ∗g = Ag. Therefore the inclusion A ⊂
T ∗ holds. Next we are aiming to show the opposite inclusion

T ∗ ⊂ A.

Let us now take an arbitrary g ∈ domT ∗ and an arbitrary f ∈ domT . Using the inclusion
T ∗ ⊂ T , which is shown in (2.2.2), we get

0 = (T f ,g)H− ( f ,T ∗g)H = (T f ,g)H− ( f ,T g)H = (Γ1 f ,Γ0g)G +(Γ0 f ,−Γ1g)G .
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This means that
(−Γ1g

Γ0g

)
is orthogonal to the range of the mapping Γ in the Hilbert space

G ×G. By assumption (a) of the proposition the range of Γ is dense in G ×G, which
implies that Γg = 0. We have shown that g ∈ domA and that T ∗g = T g = Ag, thus T ∗ ⊂ A.
Altogether this yields that A = T ∗. Employing, then, the density of kerΓ in H we obtain
that T is closable and that T = A∗. Now by Definition 2.8 the triple {G,Γ0,Γ1} is a quasi
boundary triple for A∗.

Next we recall the definition of the γ-field and the Weyl function associated with the quasi
boundary triple {G,Γ0,Γ1} for A∗. Note that the decomposition

domT = domA0 +̇ ker(T −λ ) = kerΓ0 +̇ ker(T −λ )

holds for all λ ∈ ρ(A0), so that Γ0 � ker(T −λ ) is invertible for all λ ∈ ρ(A0).

Definition 2.10. Let A be a closed, densely defined, symmetric operator in a Hilbert space
H. Let {G,Γ0,Γ1} be a quasi boundary triple for A∗ with T ⊂ A∗ and A0 = T � kerΓ0.
Then the (operator-valued) functions γ and M defined by

γ(λ ) :=
(
Γ0 � ker(T −λ )

)−1 and M(λ ) := Γ1γ(λ ), λ ∈ ρ(A0),

are called the γ-field and the Weyl function corresponding to the quasi boundary triple
{G,Γ0,Γ1}.

These definitions coincide with the definitions of the γ-field and the Weyl function in
the case that {G,Γ0,Γ1} is an ordinary boundary triple, see [DM91]. Note that for each
λ ∈ ρ(A0) the operator γ(λ ) maps ranΓ0 into H and M(λ ) maps ranΓ0 into ranΓ1. Fur-
thermore, as an immediate consequence of the definition of M(λ ) we obtain that

M(λ )Γ0 fλ = Γ1 fλ , fλ ∈ ker(T −λ ), λ ∈ ρ(A0). (2.2.3)

In the next proposition we collect some properties of the γ-field and the Weyl function; all
the statements are proven in [BL07], but for completeness of the thesis we provide these
proofs. Recall that the space of bounded everywhere defined linear operators from H into
G is denoted by B(H,G). We set B(G) := B(G,G).
Proposition 2.11. Let A be a closed, densely defined, symmetric operator in a Hilbert
space H. Let {G,Γ0,Γ1} be a quasi boundary triple for A∗ with the γ-field γ and the Weyl
function M. Then for λ ,µ ∈ ρ(A0) the following assertions hold.

(i) γ(λ ) is a bounded, densely defined operator from G intoH. The adjoint of γ(λ ) has
the representation

γ(λ )∗ = Γ1(A0−λ )−1 ∈ B(H,G).

(ii) M(λ ) is a densely defined (in general unbounded) operator in G and for λ ∈ ρ(A0)
the inclusion M(λ )⊂M(λ )∗ holds, and(

M(λ )−M(µ)
)
ϕ = (λ −µ)γ(µ)∗γ(λ )ϕ, ϕ ∈ ranΓ0. (2.2.4)

In particular, if ranΓ0 = G, then M(λ ) = M(λ )∗ and M(λ ) ∈ B(G).



20 2 Preliminaries

(iii) If A1 = T � kerΓ1 is a self-adjoint operator inH and λ ∈ ρ(A0)∩ρ(A1), then M(λ )
maps ranΓ0 bijectively onto ranΓ1, and

M(λ )−1
γ(λ )∗ ∈ B(H,G).

Proof. (i) Let us fix λ ∈ ρ(A0). Since domγ(λ ) = ranΓ0 and the set ranΓ0 is dense in G,
the operator γ(λ ) is densely defined. Let us take arbitrary elements ϕ ∈ ranΓ0 and g ∈H.
Since λ ∈ ρ(A0), there exists h ∈ domA0 such that (A0−λ )h = g. Further, applying the
abstract Green’s identity we get(

γ(λ )ϕ,g
)
H =

(
γ(λ )ϕ,(A0−λ )h

)
H =

(
γ(λ )ϕ,T h

)
H−

(
T γ(λ )ϕ,h

)
H =

=
(
Γ0γ(λ )ϕ,Γ1h

)
G−

(
Γ1γ(λ )ϕ,Γ0h

)
G =

(
ϕ,Γ1(A0−λ )−1g

)
G ,

where we used that Γ0h = 0. Since ranΓ0 is dense in G, we get from the last calculation
that γ(λ )∗ = Γ1(A0−λ )−1. Note that the operator γ(λ )∗ is closed and everywhere defined
inH. Thus γ(λ )∗ ∈ B(H,G) and γ(λ )⊂ γ(λ )∗∗ is bounded.
(ii) Let us again fix some λ ∈ ρ(A0). By definition the operator M(λ ) maps ranΓ0 into
ranΓ1. Since ranΓ0 is dense G, the operator M(λ ) is densely defined. Let us now take
arbitrary fλ ∈ ker(T − λ ) and gµ ∈ ker(T − µ). Applying the abstract Green identity
(2.2.1) and using the property (2.2.3) of the Weyl function M we obtain

(λ −µ)( fλ ,gµ)H =(T fλ ,gµ)H− ( fλ ,T gµ)H

=(Γ1 fλ ,Γ0gµ)G− (Γ0 fλ ,Γ1gµ)G

=
(
M(λ )Γ0 fλ ,Γ0gµ

)
G−

(
Γ0 fλ ,M(µ)Γ0gµ

)
G .

(2.2.5)

This calculation with µ = λ implies that M(λ ) ⊂M(λ )∗. Within the notation ϕ := Γ0 fλ

and ψ := Γ0gµ we can rewrite the formula (2.2.5) as

(λ −µ)(γ(λ )ϕ,γ(µ)ψ)H =
((

M(λ )−M(µ)
)
ϕ,ψ

)
G

Since dom(γ(µ)∗) =H and ranΓ0 is dense in G, we get the identity (2.2.4). If ranΓ0 =
G, then M(λ ) is everywhere defined. Thus M(λ ) = M(λ )∗, M(λ ) is closed, and hence
M(λ ) ∈ B(G).
(iii) The first assertion of this item follows from the decomposition

domT = domA1uker(T −λ )

which is valid for all λ ∈ ρ(A1). Indeed, let us fix λ ∈ ρ(A1)∩ρ(A0) and take an arbitrary
ϕ ∈ ranΓ1. Then there exists f ∈ domT such that Γ1 f = ϕ . We can decompose f as
f = f1 + fλ , where f1 ∈ domA1 and fλ ∈ ker(T −λ ). Note that by definition of the Weyl
function we get

M(λ )Γ0 fλ = Γ1 fλ = Γ1( f − f1) = Γ1 f = ϕ,
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and we conclude that ϕ ∈ ran(M(λ )).
For the second part of (iii) note that {G,Γ1,−Γ0} is also a quasi boundary triple if A1
is self-adjoint. It is easy to see that in this case the corresponding γ-field is γ̃(λ ) =
γ(λ )M(λ )−1. Since ran(γ(λ )∗) ⊂ ranΓ1 by item (i), the operator M(λ )−1γ(λ )∗ is de-
fined on H. Now the boundedness of γ̃(λ ), which follows from (i), and the relation
M(λ )⊂M(λ )∗ imply that M(λ )−1γ(λ )∗ is bounded.

Throughout this thesis we shall often use product rules for holomorphic operator-valued
functions. Let Hi, i = 1, . . . ,4, be Hilbert spaces, U a domain in C and let A : U →
B(H3,H4), B : U → B(H2,H3), C : U → B(H1,H2) be holomorphic operator-valued
functions. Then

dm

dλ m

(
A(λ )B(λ )

)
= ∑

p+q=m
p,q≥0

(
m
p

)
A(p)(λ )B(q)(λ ), (2.2.6)

dm

dλ m

(
A(λ )B(λ )C(λ )

)
= ∑

p+q+r=m
p,q,r≥0

m!
p!q!r!

A(p)(λ )B(q)(λ )C(r)(λ ) (2.2.7)

for λ ∈U . If A(λ )−1 is invertible for every λ ∈U , then relation (2.2.6) implies the fol-
lowing formula for the derivative of the inverse,

d
dλ

(
A(λ )−1)=−A(λ )−1A′(λ )A(λ )−1. (2.2.8)

In the next lemma we consider higher derivatives of γ-field and Weyl function associated
with some quasi boundary triple.

Lemma 2.12. For all λ ∈ ρ(A0) and all k ∈ N the following hold.

(i)
dk

dλ k γ(λ )∗ = k!γ(λ )∗(A0−λ )−k;

(ii)
dk

dλ k γ(λ ) = k!(A0−λ )−k
γ(λ );

(iii)
dk

dλ k M(λ ) =
dk−1

dλ k−1

(
γ(λ )∗γ(λ )

)
= k!γ(λ )∗(A0−λ )−(k−1)

γ(λ ).
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Proof. (i) We prove the statement by induction. For k = 1 we have

d
dλ

γ(λ )∗ = lim
µ→λ

1
µ−λ

(
γ(µ)∗− γ(λ )∗

)
= lim

µ→λ

1
µ−λ

Γ1
(
(A0−µ)−1− (A0−λ )−1)

= lim
µ→λ

Γ1(A0−µ)−1(A0−λ )−1 = lim
µ→λ

γ(µ)∗(A0−λ )−1

= γ(λ )∗(A0−λ )−1,

where we used Proposition 2.11 (i). If we assume that the statement is true for k ∈ N, then

dk+1

dλ k+1 γ(λ )∗ = k!
d

dλ

(
γ(λ )∗(A0−λ )−k

)
= k!

[( d
dλ

γ(λ )∗
)
(A0−λ )−k + γ(λ )∗

d
dλ

(A0−λ )−k
]

= k!
[

γ(λ )∗(A0−λ )−1(A0−λ )−k + γ(λ )∗k(A0−λ )−k−1
]

= k!(1+ k)γ(λ )∗(A0−λ )−(k+1),

which proves the statement in (i) by induction.
(ii) This assertion is obtained from (i) by taking adjoints.
(iii) It follows from Proposition 2.11 (ii) that, for ϕ ∈ domM(λ ) = ranΓ0,

d
dλ

M(λ )ϕ = lim
µ→λ

1
µ−λ

(
M(µ)−M(λ )

)
ϕ = lim

µ→λ

γ(λ )∗γ(µ)ϕ = γ(λ )∗γ(λ )ϕ.

By taking closures we obtain the claim for k = 1. For k ≥ 2 we use (2.2.6) to get

dk

dλ k M(λ ) =
dk−1

dλ k−1

(
γ(λ )∗γ(λ )

)
= ∑

p+q=k−1
p,q≥0

(
k−1

p

)(
dp

dλ p γ(λ )∗
)

dq

dλ q γ(λ )

= ∑
p+q=k−1

p,q≥0

(
k−1

p

)
p!γ(λ )∗(A0−λ )−pq!(A0−λ )−q

γ(λ )

= ∑
p+q=k−1

p,q≥0

(k−1)!γ(λ )∗(A0−λ )−(k−1)
γ(λ ) = k!γ(λ )∗(A0−λ )−(k−1)

γ(λ ),

which finishes the proof.
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2.2.2 Self-adjointness and Krein’s formulae

Throughout this subsection we assume that the following hypothesis holds.

Hypothesis 2.1. We assume that A is a closed, densely defined, symmetric operator in a
Hilbert space H, and {G,Γ0,Γ1} is a quasi boundary triple for A∗ with T ⊂ A∗, Ai = T �
kerΓi, i = 0,1, γ-field γ and Weyl function M.

In the next theorem we show a connection between the point spectra of the operator A1
and of the operator-valued function M(·), and we provide a factorization for the resolvent
difference of A0 and A1.

Theorem 2.13. Assume that Hypothesis 2.1 holds and that the operator A1 is self-adjoint.
Then the following statements hold.

(i) For all λ ∈ R∩ρ(A0)

λ ∈ σp(A1) ⇐⇒ 0 ∈ σp(M(λ ))

and the multiplicities of these eigenvalues coincide.

(ii) The formula
(A0−λ )−1− (A1−λ )−1 = γ(λ )M(λ )−1

γ(λ )∗ (2.2.9)

holds for all λ ∈ ρ(A1)∩ρ(A0).

Proof. (i) For the proof it is sufficient to show that γ(λ ) maps kerM(λ ) onto ker(A1−λ )
bijectively. For this purpose, let us take an arbitrary ϕ ∈ kerM(λ ). Note that γ(λ )ϕ ∈
ker(T −λ ) and that

Γ1γ(λ )ϕ = M(λ )ϕ = 0.

Thus γ(λ )ϕ ∈ ker(A1−λ ) and, therefore, γ(λ ) maps kerM(λ ) into ker(A1−λ ). Let us
now take an arbitrary fλ ∈ ker(A1−λ ). By the computation

M(λ )Γ0 fλ = Γ1 fλ = 0

we get that Γ0 fλ ∈ kerM(λ ). Since γ(λ )Γ0 fλ = fλ , we conclude that γ(λ ) maps kerM(λ )
onto ker(A1−λ ) surjectively, whereas injectivitity of this mapping follows from its invert-
ibility.
(ii) Let us fix λ ∈ ρ(A1)∩ρ(A0). By item (i) the operator M(λ ) is invertible. By Proposi-
tion 2.11 (iii) dom

(
M(λ )−1)= ranΓ1 and by item (i) of the same proposition ranγ(λ )∗ ⊂

ranΓ1. Thus the operator γ(λ )M(λ )−1γ(λ )∗ is everywhere defined in H. For an arbitrary
element g ∈H we define

f := (A0−λ )−1g− γ(λ )M(λ )−1
γ(λ )∗g ∈ domT. (2.2.10)
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By the calculation

Γ1 f = Γ1(A0−λ )−1g−Γ1γ(λ )M(λ )−1
γ(λ )∗g =

= γ(λ )∗g−M(λ )M(λ )−1
γ(λ )∗g = 0

we get that f ∈ domA1. Observe that

(A1−λ ) f = (T −λ )(A0−λ )−1g− (T −λ )γ(λ )M(λ )−1
γ(λ )∗g = g,

which implies f = (A1−λ )−1g. Recall that g is an arbitrary element ofH and the formula
(2.2.9) follows from (2.2.10).

Further we deal with extensions of A, which are restrictions of T corresponding to some
abstract boundary condition. Usually [BL07, DM91, DM95] restrictions of T and simulta-
neously extensions of A are defined for a linear relation Θ⊂ G×G as follows

AΘ f := T f , domAΘ :=
{

f ∈ domT : Γ f ∈Θ

}
. (2.2.11)

For our purposes it turns out to be more convenient to define for a linear operator B in G
the restriction A[B] of T

A[B] := T f , domA[B] :=
{

f ∈ domT : BΓ1 f = Γ0 f
}
. (2.2.12)

Comparing with definition (2.2.11) the operator A[B] corresponds to the linear relation
Θ = B−1. For the relation between the operator A[B] and other operators considered in this
section see Figure 2.1.

A0

⊂

A ⊂
⊂

⊂
A[B] ⊂ T ⊂ T = A∗.

A1

⊂

Figure 2.1: This figure shows how the operator A[B] is related to the other operators intro-
duced in this section.

In the next proposition we provide a connection between the point spectra of the operator
A[B] and of the operator-valued function I−BM(·).
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Proposition 2.14. Assume that Hypothesis 2.1 holds. Let B be a bounded self-adjoint
operator in G and let A[B] be the operator corresponding to B via (2.2.12). Then for all
λ ∈ R∩ρ(A0)

λ ∈ σp(A[B]) ⇐⇒ 0 ∈ σp(I−BM(λ ))

and the multiplicities of these eigenvalues coincide.

Proof. We use similar type arguments as in the proof of Theorem 2.13 (i). We show that
γ(λ ) maps ker(I−BM(λ )) onto ker(A[B]−λ ) bijectively. Note that for any ϕ ∈ ker(I−
BM(λ )) we get

BΓ1γ(λ )ϕ = BM(λ )ϕ = ϕ = Γ0γ(λ )ϕ.

Thus γ(λ )ϕ ∈ ker(A[B]−λ ) and, hence, γ(λ ) maps ker(I−BM(λ ) into ker(A[B]−λ ). Let
us take an arbitrary fλ ∈ ker(A[B]−λ ). Note that

(I−BM(λ )Γ0 fλ = Γ0 fλ −BΓ1 fλ = 0,

and hence Γ0 fλ ∈ ker(I−BM(λ )). Since γ(λ )Γ0 fλ = fλ , we get that γ(λ ) maps ker(I−
BM(λ )) onto ker(A[B]−λ ) surjectively. Whereas the injectivity of this mapping follows
from its invertibility.

Theorem 2.15. Assume that Hypothesis 2.1 holds. Let B be a bounded self-adjoint op-
erator in G and let A[B] be the operator corresponding to B via (2.2.12). Assume that
λ ∈ ρ(A0) \ σp(A[B]) or, equivalently, that ker(I − BM(λ )) = {0}. Then the following
assertions are true:

(i) g ∈ ran(A[B]−λ ) if and only if Bγ(λ )∗g ∈ ran(I−BM(λ ));
(ii) for all g ∈ ran(A[B]−λ ) we have

(A[B]−λ )−1g = (A0−λ )−1g+ γ(λ )
(
I−BM(λ )

)−1Bγ(λ )∗g. (2.2.13)

Proof. Fix some point λ ∈ ρ(A0), which is not an eigenvalue of A[B]. Then, by Proposi-
tion 2.14, ker(I−BM(λ )) = {0} and the inverses (A[B]−λ )−1 and (I−BM(λ ))−1 are the
operators inH and G, respectively.
Let us take arbitrary g ∈ ran(A[B]−λ ). We show that Bγ(λ )∗g ∈ ran(I−BM(λ )) and that
the formula (2.2.13) holds. Set

f := (A[B]−λ )−1g− (A0−λ )−1g ∈ domT.

Note that f ∈ ker(T −λ ) and, in particular, by (2.2.3)

M(λ )Γ0 f = Γ1 f . (2.2.14)

The application of Γ0 and Γ1 to f gives us

Γ0 f = Γ0(A[B]−λ )−1g and Γ1 f = Γ1(A[B]−λ )−1g− γ(λ )∗g,
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where we used Proposition 2.11 (i) in the second formula. Continuing computations, we
get

BM(λ )Γ0 f = BΓ1 f = BΓ1(A[B]−λ )−1g−Bγ(λ )∗g =

= Γ0(A[B]−λ )−1g−Bγ(λ )∗g = Γ0 f −Bγ(λ )∗g,

and further (
I−BM(λ )

)
Γ0 f = Bγ(λ )∗g.

Thus, it holds that Bγ(λ )∗g ∈ ran(I−BM(λ )) and that

Γ0 f =
(
I−BM(λ )

)−1Bγ(λ )∗g.

Applying then γ(λ ) to both hand sides, we obtain

f = γ(λ )
(
I−BM(λ )

)−1Bγ(λ )∗g.

Since g is arbitrary element in ran(A[B]−λ ), the formula (2.2.2) holds.
Next we show the converse implication in (i). Assume that

Bγ(λ )∗g ∈ ran(I−BM(λ )).

Since dom(I−BM(λ )) = domγ(λ ), we conclude that the element

f := (A0−λ )−1g+ γ(λ )
(
I−BM(λ )

)−1Bγ(λ )∗g ∈ domT (2.2.15)

is well-defined. Computing, we get

BΓ1 f = Bγ(λ )∗g+BM(λ )
(
I−BM(λ )

)−1Bγ(λ )∗g

=
(
I−BM(λ )

)−1Bγ(λ )∗g = Γ0 f .

Thus f ∈ domA[B] and, moreover,

(A[B]−λ ) f = (T −λ ) f = (T −λ )(A0−λ )−1g+0 = g,

where we used formula (2.2.15). Hence, we get that g ∈ ran(A[B]−λ ).

Corollary 2.16. Assume that Hypothesis 2.1 holds. Let B be a bounded self-adjoint oper-
ator in G and let A[B] be the operator corresponding to B via (2.2.12). Assume that A[B] is
self-adjoint. Then the following formulae

(A[B]−λ )−1− (A0−λ )−1 = γ(λ )
(
I−BM(λ )

)−1Bγ(λ )∗,

(A[B]−λ )−1− (A0−λ )−1 = γ(λ )B
(
I−M(λ )B

)−1
γ(λ )∗

(2.2.16)

hold for all λ ∈ ρ(A[B])∩ρ(A0).
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Proof. If the operator A[B] is self-adjoint, then for all λ ∈ ρ(A[B])∩ ρ(A0) we get that
ran(A[B]− λ ) = H and the first formula in (2.2.16) follows directly from the formula in
Theorem 2.15 (ii). The second formula in (2.2.16) follows after certain straightforward
transformations of the first formula, which we omit.

In the next theorem we provide a factorization for the resolvent difference of A[B1] and A[B2]

assuming that A[B1] and A[B2] are both self-adjoint.

Theorem 2.17. Assume that Hypothesis 2.1 holds. Let B1 and B2 be bounded self-adjoint
operators in G. Let the operators A[B1] and A[B2] correspond to B1 and B2 via (2.2.12),
respectively. Assume that A[B1] and A[B2] are self-adjoint. Then the formula

(A[B2]−λ )−1− (A[B1]−λ )−1 =

γ(λ )
(
I−B2M(λ )

)−1
(B2−B1)

(
I−M(λ )B1

)−1
γ(λ )∗

holds for all λ ∈ ρ(A[B2])∩ρ(A[B1])∩ρ(A0).

Proof. We take the difference of the first factorization in Corollary 2.16 applied to A[B2]

and A0 and the second factorization of the same corollary applied to A[B1] and A0, and we
get the formula

(A[B2]−λ )−1− (A[B1]−λ )−1 =

γ(λ )
((

I−B2M(λ )
)−1B2−B1

(
I−M(λ )B1

)−1
)

γ(λ )∗.

The difference in the middle(
I−B2M(λ )

)−1B2−B1
(
I−M(λ )B1

)−1

can be further factorized as(
I−B2M(λ )

)−1
(B2−B1)

(
I−M(λ )B1

)−1
,

which implies the statement.

The next two lemmas play a role in the proofs of sufficient conditions for self-adjointness
of A[B].

Lemma 2.18. Assume that Hypothesis 2.1 holds. Let B be a bounded self-adjoint operator
in G, and let A[B] be the operator corresponding to B via (2.2.12). Then the operator A[B]
is symmetric.
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Proof. By the abstract Green’s identity we have for arbitrary f ,g ∈ domA[B]

(A[B] f ,g)H− ( f ,A[B]g)H = (Γ1 f ,Γ0g)G− (Γ0 f ,Γ1g)G =

= (Γ1 f ,BΓ1g)G− (BΓ1 f ,Γ1g)G = 0,
(2.2.17)

where we used self-adjointness of B. This calculation shows that the operator A[B] is sym-
metric.

Lemma 2.19. Assume that Hypothesis 2.1 holds, that ranΓ0 = G and that M(λ )∈S∞(G).
Let B be a bounded self-adjoint operator in G. Then(

I−BM(λ )
)−1

,
(
I−M(λ )B

)−1 ∈ B(G)

holds for all λ ∈ C\R.

Proof. Let us fix λ ∈C\R, and suppose that there exists a non-trivial element ϕ ∈ ker(I−
BM(λ )). Then γ(λ )ϕ ∈ ker(T −λ ) and

BΓ1γ(λ )ϕ = BM(λ )ϕ = ϕ = Γ0γ(λ )ϕ.

Thus γ(λ )ϕ is an eigenvector of A[B] corresponding to the non-real eigenvalue λ . This is a
contradiction with the fact that A[B] is symmetric proven in Lemma 2.18. Hence, I−BM(λ )
is injective. By the assumptions on the operators M(λ ) and B we get that BM(λ )∈S∞(G)
and thus I−BM(λ ) is also surjective. We immediately obtain that (I−BM(λ ))−1 ∈B(G).
Analogous arguments show that (I−M(λ )B)−1 ∈ B(G).

In the next theorem we prove that the operator A[B] is self-adjoint under a certain assump-
tion on the Weyl function and the operator B.

Theorem 2.20. Assume that Hypothesis 2.1 holds, that ranΓ0 =G and that M(λ )∈S∞(G)
for all λ ∈ ρ(A0). Let B be a bounded self-adjoint operator in G and let A[B] be the operator
corresponding to B via (2.2.12). Then the operator A[B] is self-adjoint in the Hilbert space
H.

Proof. By Lemma 2.18 the operator A[B] is symmetric, and by Lemma 2.19 the operator
(I−BM(λ ))−1 is bounded and everywhere defined in G for all λ ∈C\R. Thus, according
to Theorem 2.15 (i), ran(A[B]− λ ) = H for all such λ and therefore the operator A[B] is
self-adjoint.

In the next theorem we show self-adjointness of A[B] under other assumptions on the Weyl
function. We also prove that under these assumptions A[B] is lower-semibounded and we
estimate the corresponding lower bound.
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Theorem 2.21. Assume that Hypothesis 2.1 holds, that A0 is semi-bounded, that ranΓ0 =G
and that ∥∥M(λ )

∥∥→ 0 as λ →−∞.

Let B be a bounded self-adjoint operator in G and let A[B] be the operator corresponding
to B via (2.2.12). Then the following statements hold.

(i) The operator A[B] is self-adjoint in the Hilbert spaceH.
(ii) There exists r ∈ R such that (−∞,r)⊂ ρ(A0) and the condition

‖M(λ )‖ · ‖B‖< 1

holds for all λ < r. For such r ∈ R the estimate A[B] ≥ rIH holds.

Proof. According to the assumption on the operator A0 there exists r′ ∈R such that (−∞,r′)⊂
ρ(A0), and by the assumption on the Weyl function the exists r < r′ such that for all λ < r
the condition ‖M(λ )‖ · ‖B‖< 1 holds. In this case we obtain that

(
I−BM(λ )

)−1 ∈ B(G)
for all λ ∈ (−∞,r). Then by Theorem 2.15 (i) we get that ran(A[B] − λ ) = H for all
λ ∈ (−∞,r). Note that by Lemma 2.18 the operator A[B] is symmetric. Therefore, the
operator A[B] is self-adjoint and satisfies A[B] ≥ rIH.

2.3 Sobolev spaces

Throughout this thesis Sobolev spaces will play an important role. We provide some
necessary notations and basic properties. For more details the reader is referred to the
monographs [AF03, G09, LM68, McL00]. Furthermore, in this section we derive some
consequences of Schatten-von Neumann properties of compact embeddings or compact
weighted embeddings between Sobolev spaces of distinct orders. More on this the reader
can find in [HT03, Si05, A90, G96, T78].

2.3.1 Notations and basic properties

Let Ω⊆ Rn be one of the following open sets.
(i) The whole space Rn, n≥ 1.

(ii) The half-space Rn
+ :=

{
(x,x′)> : x ∈ Rn−1,x′ ∈ R+

}
, n ≥ 2, with the boundary

∂Rn
+ = Rn−1.

(iii) A bounded or an unbounded domain of dimension n≥ 2 with a compact C∞-boundary
∂Ω.

By Hs(Ω) and Hs(∂Ω), s≥ 0, we denote the standard (L2-based) Sobolev spaces of order
s of functions in Ω and on ∂Ω, respectively. The Sobolev spaces W k,∞(Ω) and W 1,∞(∂Ω)
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of L∞-functions are defined by

W k,∞(Ω) :=
{

f ∈ L∞(Ω) : ∂
α f ∈ L∞(Ω), |α| ≤ k

}
, k ∈ N0,

W 1,∞(∂Ω) :=
{

h ∈ L∞(∂Ω) : ∇h ∈ L∞(∂Ω;Rn−1)
}
,

where α = (α1,α2, . . . ,αn) ∈Nn
0 is a multi-index, |α| := ∑

n
i=1 αi. Observe that the follow-

ing implications hold:

f ∈ Hk(Ω), g ∈W k,∞(Ω) =⇒ f g ∈ Hk(Ω), k ∈ N0;

h ∈ H1(∂Ω), k ∈W 1,∞(∂Ω) =⇒ hk ∈ H1(∂Ω).
(2.3.1)

For our studies we also need some non-standard spaces with mixed regularity. We denote
by Hs

∂Ω
(Ω) with s ≥ 0 the subspace of L2(Ω), which consists of functions that belong to

Hs in a neighborhood of ∂Ω, i.e.,

Hs
∂Ω

(Ω) :=
{

f ∈ L2(Ω) : ∃ domain Ω
′ ⊂Ω such that

∂Ω
′ ⊃ ∂Ω and f �Ω

′ ∈ Hs(Ω′)
}
.

(2.3.2)

For k ∈N0 we denote by W k,∞
∂Ω

(Ω) the subspace of L∞(Ω) which consists of functions that
belong to W k,∞ in a neighborhood of ∂Ω, i.e.,

W k,∞
∂Ω

(Ω) :=
{

f ∈ L∞(Ω) : ∃ domain Ω
′ ⊂Ω such that

∂Ω
′ ⊃ ∂Ω and f �Ω

′ ∈W k,∞(Ω′)
}
.

(2.3.3)

Observe that for k ∈ N0 the implication

f ∈ Hk
∂Ω

(Ω), g ∈W k,∞
∂Ω

(Ω) =⇒ f g ∈ Hk
∂Ω

(Ω) (2.3.4)

holds.

2.3.2 Estimates of singular values related to Sobolev spaces

The first lemma of this subsection turns out to be useful for Sp,∞-estimates of resolvent
power differences of elliptic operators in the case of domains with compact boundaries.

Lemma 2.22. Let Σ be an (n− 1)-dimensional compact C∞-smooth manifold without
boundary, let K be a Hilbert space and B ∈ B(K,Hr1(Σ)) with ranB ⊂ Hr2(Σ) where
r2 > r1 ≥ 0. Then B is compact and its singular values sk satisfy

sk(B) = O
(
k−

r2−r1
n−1
)
, k→ ∞.

In particular, B ∈S n−1
r2−r1

,∞(K,H
r1(Σ)) and B ∈Sp(K,Hr1(Σ)) for p > n−1

r2−r1
.
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Proof. Let Λr1,r2 := (I−∆Σ
LB)

r2−r1
2 , where ∆Σ

LB denotes the Laplace–Beltrami operator on
Σ. The operator Λr1,r2 is an isometric isomorphism from Hr2(Σ) onto Hr1(Σ). From [A90,
(5.39) and the text below] we obtain for the asymptotics of the eigenvalues λk(I−∆Σ

LB)∼
Ck

2
n−1 with some constant C. Hence,

sk(Λ
−1
r1,r2

) = O
(
k−

r2−r1
n−1
)
, k→ ∞.

We can write B in the form
B = Λ

−1
r1,r2

(Λr1,r2B). (2.3.5)

The operator B is closed as an operator from K into Hr1(Σ), hence also closed as an oper-
ator from K into Hr2(Σ), which implies that it is bounded from K into Hr2(Σ). Therefore
the operator Λr1,r2B is bounded from K into Hr1(Σ), and hence the assertions follow from
(2.3.5).

For the next lemma we need some preparatory work. The following condition on a bounded
function α : Rn−1→ R with n≥ 2 will play a role

µ
({

x ∈ Rn−1 : |α(x)| ≥ ε
})

< ∞ for all ε > 0, (2.3.6)

here µ denotes the Lebesgue measure on Rn−1. We remark that condition (2.3.6) includes,
e.g., the case that α belongs to Lq(Rn−1) for some q≥ 1, and the case that sup|x|≥r |α(x)|→
0 as r→ ∞.

Lemma 2.23. Let K be a Hilbert space and let K ∈ B(K,L2(Rn−1)) be an operator with
ranK⊂H1(Rn−1). If α ∈L∞(Rn−1) satisfies condition (2.3.6), then αK ∈S∞(K,L2(Rn−1)).

Proof. In view of the assumption on α there exists a sequence

Ω1 ⊂Ω2 ⊂ ·· · ⊂Ωm ⊂ . . .

of smooth domains of finite measure whose union is all of Rn−1 such that for each m ∈ N
we have

sup
Rn−1\Ωm

|α(x)|< 1
m .

For each m∈N let χm be the characteristic function of the set Ωm. Denote by Pm the canon-
ical projection from L2(Rn−1) to L2(Ωm) and by Jm the canonical embedding of L2(Ωm)
into L2(Rn−1). Then ran(PmχmK)⊂H1(Ωm) and, by embedding statements, PmχmK :K→
L2(Ωm) is compact; see [EdEv75, Theorem 3.4 and Theorem 4.11] and [EdEv87, Chap-
ter V]. Since αJm is bounded, it turns out that αχmK = αJmPmχmK is compact. From the
assumption (2.3.6) on α it follows easily that the sequence of operators αχmK converges
to αK in the operator-norm topology. Thus also αK is compact, which is the assertion of
this lemma.
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Remark 2.24. The condition in Lemma 2.23 can be slightly weakened using the optimal
prerequisites on a domain Ω which imply compactness of the embedding of H1(Ω) into
L2(Ω); see, e.g., [EdEv87, Chapter VIII]. To avoid too inconvenient and technical assump-
tions, we restrict ourselves to the condition (2.3.6).

The lemma below is the main ingredient in the proof of Schatten-von Neumann properties
for the resolvent power differences of elliptic operators on the half-space.

Lemma 2.25. Let K be a Hilbert space and let K ∈ B(K,L2(Rn−1)) be an operator with
ranK ⊂ Hs(Rn−1) with s > 0. Let α ∈ L∞(Rn−1) be real-valued.

(i) If α is compactly supported, or, if n−1
s > 2 and α ∈ L(n−1)/s(Rn), then

αK ∈S n−1
s ,∞(K,L

2(Rn−1)).

(ii) If α ∈ Lp(Rn−1) with p≥ 2 and p > n−1
s , then

αK ∈Sp(K,L2(Rn−1)).

Let us recall that a function f is said to belong to the weak Lebesgue space Lp,∞(Rn−1) for
some p > 1, if the condition

sup
t>0

(
t p

µ
(
{x ∈ Rn−1 : | f (x)|> t}

))
< ∞

is satisfied, where µ again denotes the Lebesgue measure on Rn−1. This will play a role in
the following proof.

Proof of Lemma 2.25. Note that in the proof we speak about classes of operator ideals
and do not indicate Hilbert spaces K and L2(Rn−1). Let us assume that α has a compact
support and that Ω ⊂ Rn−1 is a bounded, smooth domain with Ω ⊃ suppα . Let P be the
canonical projection in L2(Rn−1) onto L2(Ω), let J be the canonical embedding of L2(Ω)
into L2(Rn−1), and let α̃ := α|Ω. Since ran(PK) ⊂ Hs(Ω) and Ω is a bounded, smooth
domain, the embedding operator from Hs(Ω) into L2(Ω) is contained in the class S n−1

s ,∞,

see [HT03, Theorem 7.8]. It follows PK ∈S n−1
s ,∞ as a mapping from K into L2(Ω). Since

Jα̃ is bounded, we obtain αK = Jα̃PK ∈S n−1
s ,∞.

The proofs of the remaining statements make use of the spectral estimates for the operator
αD in L2(Rn−1) with

D = (I−∆Rn−1)−s/2 = g(−i∇), g(x) = (1+ |x|2)−s/2, x ∈ Rn−1, (2.3.7)

where the formal notation g(−i∇) can be made precise with the help of the Fourier trans-
form. We remark that D, regarded as an operator from L2(Rn−1) into Hs(Rn−1) is an
isometric isomorphism. The function g belongs to L(n−1)/s,∞(Rn−1). In fact, one easily
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verifies that the set {x ∈ Rn−1 : |g(x)|> t} is contained in the ball of radius t−1/s centered
at zero, and the formula for the volume of a ball leads to the claim. Since n−1

s > 2 and
α ∈ L(n−1)/s(Rn), the result by Cwikel in [Cw77] yields that

αD ∈S n−1
s ,∞;

see also [Si05, Theorem 4.2]. We conclude that

αK = αDD−1K ∈S n−1
s ,∞.

Thus we have proved (i).
In order to show (ii) let us assume that α ∈ Lp(Rn−1) with p≥ 2 and p > n−1

s . It is easy to
check that g in (2.3.7) belongs to Lr(Rn−1) for each r > n−1

s . Now we can conclude that
α and g are both in Lp(Rn−1). Standard result [Si05, Theorem 4.1] implies that

αD ∈Sp.

It follows that

αK = αDD−1K ∈Sp.

which is the assertion of (ii).

2.4 Elements of mathematical scattering theory

In this section we define the wave operators and the scattering operator, and discuss some
of their basic properties. The study of the wave operators and of the scattering operator
was motivated by needs of physics, especially, of quantum mechanics. For a physical point
of view we refer to [FM93]. Scattering theory also has its independent mathematical value
as a part of perturbation theory of operators, see the monographs [RS79-III, K95, Y92].
Further let H be a Hilbert space, and let H0, H be self-adjoint operators acting in H.
In the following we denote by Pac

0 and Pac the orthogonal projectors onto the absolutely
continuous subspaces H(ac)

0 ⊂ H and H(ac) ⊂ H of the self-adjoint operators H0 and H,
respectively. The absolutely continuous parts of the operators H and H0 are specified as

Hac
0 := Pac

0 H0Pac
0 and Hac := PacHPac.

Definition 2.26. The wave operators W±(H,H0) are defined as

W±(H0,H) := s− lim
t→±∞

eitHe−itH0Pac
0 ,

provided that the corresponding strong limit exists. The wave operators W±(H0,H) are
called complete, if

ranW±(H0,H) =Hac(H).
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Note that W±(H0,H) are isometric on the absolutely continuous subspace H(ac)
0 of the

operator H0 and satisfy the intertwining property

W±(H0,H)H0 f = HW±(H0,H) f for all f ∈H(ac)
0 .

Provided that the wave operators for the pair {H0,H} exist and are complete, the absolutely
continuous parts Hac

0 and Hac are unitarily equivalent. In the thesis we use Birman-Kato
criterion for the existence and completeness of the wave operators.

Theorem 2.27 (Birman-Kato). If for two self-adjoint operators H0 and H in a Hilbert
spaceH, some m ∈ N and an arbitrary λ0 ∈ ρ(H0)∩ρ(H) the resolvent power difference
satisfies

(H−λ0)
−m− (H0−λ )−m ∈S1(H),

then the corresponding wave operators W±(H0,H) exist and are complete.

A typical application of the Birman-Kato criterion is the proof of the existence and com-
pleteness of the wave operators for a pair of Schrödinger operators

H0 :=−∆+V0 and H =−∆+V0 +V, (2.4.1)

acting in the Hilbert space L2(Rn). Under the assumption that real-valued potentials V0
and V satisfy

V0 ∈ L∞(Rn) and V (x)≤ C
(1+ |x|)ρ

with some constants C > 0 and ρ > n the wave operators for the pair {H0,H} exist and
are complete. For the proof of the Birman-Kato result, further applications to Schrödinger
operators and other criteria for existence and completeness of wave operators the reader is
addressed to the monographs [RS79-III,Y92]. It worth mentioning that some other criteria
lead to better results for particular classes of operators.
In applications the scattering operator plays an important role, see [Y10].

Definition 2.28. The scattering operator S is defined as

S(H0,H) :=W+(H0,H)∗W−(H0,H),

provided that the wave operators W±(H0,H) from Definition 2.26 exist.

If the wave operators are complete, then the scattering operator S(H0,H) is unitary inH(ac)
0

and it commutes with H0 in the sense

H0S(H0,H) f = S(H0,H)H0 f for all f ∈H(ac)
0 .

In Chapter 3 we prove in Corollaries 3.14 and 3.16 existence and completeness of the
wave operators for pairs of self-adjoint elliptic operators on an exterior domain subject to
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one elliptic differential expression and with distinct boundary conditions. In Chapter 4
we prove in Corollaries 4.23 and 4.27 existence and completeness of the wave operators
for pairs of Schrödinger operators with a δ or δ ′-interaction on a hypersurface and of
the free Schrödinger operators without singular perturbations. Finally, in Chapter 5 we
prove in Corollaries 5.16 and 5.18 existence and completeness of the wave operators for
pairs of self-adjoint Robin Laplacians on the half-space. All these proofs use Schatten-
von Neumann estimates of resolvent power differences and the Birman-Kato criterion.
Our results cover all space dimensions, although in some cases for higher dimensions
we assume more smoothness of the coefficients in the differential expressions or in the
boundary conditions.





3 ELLIPTIC OPERATORS ON DOMAINS WITH COMPACT
BOUNDARIES

In this chapter we define self-adjoint realizations of a formally symmetric elliptic partial
differential expression subject to Robin and more general non-local self-adjoint boundary
conditions on bounded interior and unbounded exterior domains. We provide a modifi-
cation of the Birman-Schwinger principle for the characterization of the point spectra of
these realizations and we prove Krein’s formulae for their resolvent differences.
As the underlying problem of this chapter we study Schatten-von Neumann properties of
the resolvent power differences of self-adjoint elliptic operators. This problem has a long
history in analysis, see Section 3.4 for historical remarks. Our results in this direction ex-
tend and complement the works [BS79,BS80,B62,G11,G11a,G84,G84a,M10]. In partic-
ular, a new case is presented, where the singular values converge slightly faster than for the
well-studied case of the resolvent power difference of Dirichlet and Neumann realizations.
From these estimates we come to the conclusions about the existence and completeness of
the wave operators. Furthermore, for resolvent power differences belonging to the trace
class we provide formulae for their traces. Recently such a type of trace formulae attracted
attention [CGNZ12, Ca02, GZ12] in connection with the spectral shift function. Most of
the results of this chapter are contained in the works [BLL+10, BLL13, BLL13b] of the
author.

3.1 Preliminaries

Let Ω ⊂ Rn, n ≥ 2, be a bounded or an unbounded domain with a compact C∞-boundary
∂Ω. We denote by (·, ·) and (·, ·)∂Ω the inner products in the Hilbert spaces L2(Ω) and
L2(∂Ω), respectively.
Throughout this chapter we are concerned with the formally symmetric elliptic partial
differential expression

(L f )(x) :=−
n

∑
j,k=1

∂ j
(
a jk∂k f

)
(x)+a(x) f (x), x ∈Ω, (3.1.1)

with bounded, real-valued coefficients a jk ∈C∞(Ω) satisfying a jk(x) = ak j(x) for all x∈Ω

and j,k = 1, . . . ,n, and a bounded, real-valued coefficient a ∈C∞(Ω). We assume that all
the first partial derivatives of the coefficients a jk are bounded. Furthermore, L is assumed

37
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to be uniformly elliptic, i.e. the condition

n

∑
j,k=1

a jk(x)ξ jξk ≥C
n

∑
k=1

ξ
2
k

holds for some C > 0, all ξ = (ξ1, . . . ,ξn)
> ∈ Rn and x ∈Ω.

For a function f ∈C∞(Ω) we introduce the following trace

∂L f |∂Ω :=
n

∑
j,k=1

a jkν j∂k f
∣∣
∂Ω

,

with the normal vector field ~ν = (ν1,ν2, . . . ,νn) pointing outwards Ω. For s > 3/2 the
trace mapping

Hs(Ω) 3 f 7→
{

f |∂Ω,∂L f |∂Ω

}
∈ Hs−1/2(∂Ω)×Hs−3/2(∂Ω) (3.1.2)

is the continuous extension of the trace mapping defined on C∞-functions and the mapping
in (3.1.2) is surjective onto Hs−1/2(∂Ω)×Hs−3/2(∂Ω).
Besides the Sobolev spaces Hs(Ω) defined in Section 2.3 the spaces

Hs
L(Ω) :=

{
f ∈ Hs(Ω) : L f ∈ L2(Ω)

}
, s≥ 0, (3.1.3)

equipped with the scalar product (·, ·)s +(L·,L·) and the corresponding norm will be use-
ful.
Observe that for s ≥ 2 the spaces Hs

L(Ω) and Hs(Ω) coincide. We also note that Hs
L(Ω),

s ∈ (0,2), can be viewed as an interpolation space between H2(Ω) an H0
L(Ω). The trace

mapping can be extended to a continuous mapping

Hs
L(Ω) 3 f 7→

{
f |∂Ω,∂L f |∂Ω

}
∈ Hs−1/2(∂Ω)×Hs−3/2(∂Ω), s ∈ [0,2), (3.1.4)

where each of the mappings

Hs
L(Ω) 3 f 7→ f |∂Ω ∈ Hs−1/2(∂Ω), s ∈ [0,2),

Hs
L(Ω) 3 f 7→ ∂L f |∂Ω ∈ Hs−3/2(∂Ω), s ∈ [0,2),

is surjective, see [LM68, Chapter 2, §7.3].
We also recall from [LM68,F67] (see also [BLL13, Theorem 4.2]) that the second Green’s
identity holds for all f ,g ∈ H3/2

L (Ω)(
L f ,g

)
−
(

f ,Lg
)
=
(

f |∂Ω,∂Lg|∂Ω

)
∂Ω
−
(
∂L f |∂Ω,g|∂Ω

)
∂Ω

. (3.1.5)

In view of the assumptions on the coefficients in the expression L the minimal symmetric
operator

A f := L f , domA := H2
0 (Ω),
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is closed and densely defined in the Hilbert space L2(Ω), see, e.g., [ADN59, Be65, Br60],
cf. [M10, Section 3.1]. The minimal operator A has infinite deficiency indices, and its
adjoint operator has the form

A∗ f = L f , domA∗ =
{

f ∈ L2(Ω) : L f ∈ L2(Ω)
}
.

The self-adjoint extensions of A subject to Dirichlet and Neumann boundary conditions

AD f := L f , domAD :=
{

f ∈ H2(Ω) : f |∂Ω = 0
}
,

AN f := L f , domAN :=
{

f ∈ H2(Ω) : ∂L f |∂Ω = 0
}
,

(3.1.6)

will be important later. For the proofs of the self-adjointness of the operators AD and AN
we refer to [Br60, Theorem 5 (iii)] and [Be65, Theorem 7.1 (a)].

3.2 Elliptic operators with general self-adjoint boundary conditions

In this section we use quasi boundary triples for a definition and study of self-adjoint
realizations A[B] of L subject to the non-local boundary condition of the form

B f |∂Ω = ∂L f |∂Ω

with a bounded self-adjoint operator B in L2(∂Ω).

3.2.1 A quasi boundary triple and its Weyl function

For a proper definition of a quasi boundary triple for A∗ we specify the operator T as
below

T f := L f , domT := H3/2
L (Ω), (3.2.1)

where the space H3/2
L (Ω) is defined as in (3.1.3), and we introduce the boundary map-

pings

Γ0 : domT → L2(∂Ω), Γ0 f := ∂L f |∂Ω,

Γ1 : domT → L2(∂Ω), Γ1 f := f |∂Ω.
(3.2.2)

In the first proposition of this section we prove that the triple {L2(∂Ω),Γ0,Γ1} is a quasi
boundary triple for A∗ and we show also some basic properties of this quasi boundary
triple.

Proposition 3.1. Let the self-adjoint operators AN and AD be as in (3.1.6). Let the op-
erator T be as in (3.2.1) and the mappings Γ0, Γ1 be as in (3.2.2). Then the triple
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Π = {L2(∂Ω),Γ0,Γ1} is a quasi boundary triple for A∗. The restrictions of T to the
kernels of the boundary mappings are

T � kerΓ0 = AN and T � kerΓ1 = AD;

and the ranges of these mappings are

ranΓ0 = L2(∂Ω) and ranΓ1 = H1(∂Ω).

Proof. In order to show that the triple Π is a quasi boundary triple for A∗ we employ
Proposition 2.9. Let us check that the triple Π satisfies conditions (a), (b) and (c) of that
proposition. Since H2(Ω)⊂ domT , by (3.1.2) we have

H1/2(∂Ω)×H3/2(∂Ω)⊂ ran
(

Γ0
Γ1

)
.

The set H1/2(∂Ω)×H3/2(∂Ω) is, clearly, dense in L2(∂Ω)×L2(∂Ω). Note that the set
kerΓ0 ∩ kerΓ1 ⊃ C∞

0 (Ω) is dense in L2(Ω). Therefore the condition (a) is verified. The
abstract Green’s identity(

T f ,g
)
−
(

f ,T g
)
=
(
Γ1 f ,Γ0g

)
∂Ω
−
(
Γ0 f ,Γ1g

)
∂Ω

for all f ,g ∈ domT is equivalent to (3.1.5). That is the condition (b) holds. The operator
T � kerΓ0 contains the self-adjoint elliptic operator AN subject to the Neumann boundary
condition on ∂Ω. Thus the condition (c) holds for the triple Π, and by Proposition 2.9
the triple Π is a quasi boundary triple for the adjoint of the closed, densely defined, sym-
metric operator T � (kerΓ0 ∩ kerΓ1). It remains to show that T � (kerΓ0 ∩ kerΓ1) = A.
Indeed, the restriction T � kerΓ0 contains the self-adjoint operator AN and the restriction
T � kerΓ1 contains the self-adjoint operator AD. By the abstract Green’s identity operators
T � kerΓ0 and T � kerΓ1 are both symmetric, thus T � kerΓ0 = AN and T � kerΓ1 = AD.
As a consequence of these considerations we get

T � (kerΓ0∩kerΓ1) = (T � kerΓ0)∩ (T � kerΓ1) = AN∩AD = A.

Hence the triple Π is a quasi boundary triple for A∗.
The properties of the boundary mappings

ranΓ0 = L2(∂Ω) and ranΓ1 = H1(∂Ω),

follow from (3.1.4).

In the next proposition we clarify the basic properties of the γ-field and the Weyl function
associated with the quasi boundary triple Π from Proposition 3.1. In the terminology
of [McL00, G96] these operators turn out to be the Poisson operator and the Neumann-to-
Dirichlet map, respectively.
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Proposition 3.2. Let the self-adjoint operators AD and AN be as in (3.1.6) Let Π be the
quasi boundary triple from Proposition 3.1. Let γ and M be the γ-field and the Weyl
function associated with the quasi boundary triple Π as in Definition 2.10.

(i) The γ-field γ is defined for all λ ∈ ρ(AN) and

γ(λ ) : L2(∂Ω)→ L2(Ω), γ(λ )ϕ := fλ (ϕ),

where fλ (ϕ) is the unique solution in the space H3/2
L (Ω) of the problem

(L−λ ) f = 0, in Ω,

∂L f |∂Ω = ϕ, on ∂Ω.

(ii) The Weyl function M is defined for all λ ∈ ρ(AN) and

M(λ ) : L2(∂Ω)→ L2(∂Ω), M(λ )ϕ = fλ (ϕ)|∂Ω,

where fλ (ϕ) = γ(λ )ϕ . For all λ ∈ ρ(AN)
(
λ ∈ ρ(AN)∩ρ(AD)

)
the operator M(λ )

maps L2(∂Ω) into (onto) H1(∂Ω). The operator M(λ ) is compact for all λ ∈ ρ(AN).

Proof. (i) The mapping properties of the γ-field γ follow from (3.2.1), (3.2.2) and Defini-
tion 2.10.
(ii) The mapping properties of the Weyl function M follow from (3.2.2), Definition 2.10,
Proposition 2.11 (iii) and Proposition 3.1. The compactness of the operator M(λ ) follows
from the compactness of the embedding of H1(∂Ω) into L2(∂Ω), cf. Lemma 2.22.

3.2.2 Self-adjointness and Krein’s formulae

In the next theorem we establish a relation between the point spectra of the self-adjoint op-
erator AD and of the operator-valued function M(·). Moreover, we provide a factorization
(Krein’s formula) for the resolvent difference of AN and AD.

Theorem 3.3. Let AN and AD be the self-adjoint operators as in (3.1.6). Let γ and M be
the γ-field and the Weyl function from Proposition 3.2. Then the following statements hold.

(i) For all λ ∈ R∩ρ(AN)

λ ∈ σp(AD) ⇐⇒ 0 ∈ σp
(
M(λ )

)
and the multiplicities of the eigenvalues coincide.

(ii) The formula
(AN−λ )−1− (AD−λ )−1 = γ(λ )M(λ )−1

γ(λ )∗ (3.2.3)

holds for all λ ∈ ρ(AD)∩ρ(AN).
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Proof. (i) The equivalence between the point spectra follows from Theorem 2.13 (i) with
the self-adjoint operator A1 = AD.
(ii) Krein’s formula follows from Theorem 2.13 (ii) with A0 = AN and A1 = AD.

As in (2.2.12) we introduce a family of restrictions of T parametrized by an operator acting
on the boundary.

Definition 3.4. We define for a bounded self-adjoint operator B in L2(∂Ω) the restriction
A[B] of T as below

A[B] := T � ker(BΓ1−Γ0), (3.2.4)

which is equivalent to

A[B] f := L f , domA[B] :=
{

f ∈ H3/2
L (Ω) : B f |∂Ω = ∂L f |∂Ω

}
.

If B is a multiplication operator with a real-valued function β ∈ L∞(∂Ω), then we write
A[β ] instead of A[B]. For the relation between the operator A[B] and the other operators
considered in this section see Figure 3.1.

AN

⊂

A ⊂
⊂

⊂
A[B] ⊂ T ⊂ T = A∗.

AD

⊂

Figure 3.1: This figure shows how the operator A[B] is related to the other operators intro-
duced in this chapter. The operators AN, AD and A[B] are self-adjoint in L2(Ω),
cf. Theorem 3.5.

In the next theorem we show that A[B] is self-adjoint. We establish a characterization of
the point spectrum of A[B] in terms of the point spectrum of the operator-valued function
I−BM(·). This characterization can be viewed as an analogue of the Birman-Schwinger
principle. Moreover, we provide a factorization (Krein’s formula) for the resolvent differ-
ence of A[B] and AN.

Theorem 3.5. Let AN be the self-adjoint operator as in (3.1.6). Let γ and M be the γ-
field and the Weyl function from Proposition 3.2. Let B be a bounded self-adjoint operator
in L2(∂Ω). Let A[B] be the operator corresponding to B via (3.2.4). Then the following
statements hold.

(i) The operator A[B] is self-adjoint in the Hilbert space L2(Ω).
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(ii) For all λ ∈ ρ(AN)∩R

λ ∈ σp(A[B]) ⇐⇒ 0 ∈ σp(I−BM(λ ))

and the multiplicities of these eigenvalues coincide.

(iii) The formulae

(A[B]−λ )−1− (AN−λ )−1 = γ(λ )
(
I−BM(λ )

)−1Bγ(λ )∗,

(A[B]−λ )−1− (AN−λ )−1 = γ(λ )B
(
I−M(λ )B

)−1
γ(λ )∗

hold for all λ ∈ ρ(A[B])∩ρ(AN).

Proof. (i) By Proposition 3.1 the range of the boundary mapping Γ0 coincides with L2(∂Ω).
According to Proposition 3.2 (ii) the values of the Weyl function M are compact operators.
By the assumptions the operator B is bounded and self-adjoint in L2(∂Ω) and the statement
follows from Theorem 2.20.
(ii) The equivalence between the point spectra follows from Proposition 2.14.
(iii) Krein’s formulae follow from self-adjointness of A[B] and Corollary 2.16 with A0 =
AN.

In the next theorem we obtain a factorization (Krein’s formula) for the resolvent difference
of A[B1] and A[B2].

Theorem 3.6. Let AN be the self-adjoint operator in (3.1.6). Let γ and M be the γ-field and
the Weyl function from Proposition 3.2. Let B1 and B2 be bounded self-adjoint operators
in L2(∂Ω). Let A[B1] and A[B2] be the self-adjoint operators corresponding via (3.2.4) to
B1 and B2, respectively. Then the formula

(A[B2]−λ )−1− (A[B1]−λ )−1 =

γ(λ )
(
I−B2M(λ )

)−1
(B2−B1)

(
I−M(λ )B1

)−1
γ(λ )∗

holds for all λ ∈ ρ(A[B2])∩ ρ(A[B1])∩ ρ(AN). In this formula the middle terms on the
right-hand side satisfy (I−B2M(λ ))−1,(I−M(λ )B1)

−1 ∈ B
(
L2(∂Ω)

)
.

Proof. Since the operators A[B1] and A[B2] are both self-adjoint by Theorem 3.5 (i), Krein’s
formula follows from Theorem 2.17. The properties of the middle terms are a consequence
of Lemma 2.19.

It follows from Definition 3.4 that domA[B] ⊂ H3/2(Ω). It is also expected that certain
smoothing properties of the operator B in the boundary condition lead to the inclusion
domA[B] ⊂ H2(Ω). In the next theorem we clarify these smoothing properties. This result
is also proved in [G11a, Proposition 2.3 (i)] and [Be65, Theorem 7.1 (a)] by other meth-
ods.
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Theorem 3.7. Let B be a bounded self-adjoint operator in L2(∂Ω). Let A[B] be the operator
corresponding to B via (3.2.4). Assume that

f ∈ H1(∂Ω) =⇒ B f ∈ H1/2(∂Ω).

Then the inclusion domA[B] ⊂ H2(Ω) holds.

Proof. Let f be an arbitrary function from domA[B] ⊂ domT . Let us fix λ ∈ C \R. In
view of the decomposition

domT = domANuker(T −λ ) (3.2.5)

we write f as f = fN + fλ with fN ∈ domAN and fλ ∈ ker(T − λ ). Observe that by
(3.1.6) the component fN ∈ H2(Ω). It remains to show that also fλ ∈ H2(Ω). Indeed,
Proposition 3.1 implies that Γ1 fλ ∈ H1(∂Ω), and the assumption of the theorem yields
that

Γ0 fλ = BΓ1 fλ ∈ H1/2(∂Ω).

In view of the decomposition (3.2.5) and the trace theorem (3.1.2) the mapping Γ0 is a
bijection between the spaces ker(T −λ )∩H2(Ω) and H1/2(∂Ω). Thus Γ0 fλ ∈ H1/2(∂Ω)
implies that fλ ∈ H2(Ω). Since fN and fλ both belong to H2(Ω), we clearly get that
f ∈ H2(Ω) and the claim is proven.

As a consequence of the last theorem we provide assumptions on the function β for H2-
regularity of the operator domain of A[β ]

Corollary 3.8. Assume that a real-valued β satisfies β ∈W 1,∞(∂Ω). Then the inclusion
domA[β ] ⊂ H2(Ω) holds.

Proof. By (2.3.1) the operator of multiplication with β satisfies the implication

f ∈ H1(∂Ω) =⇒ β f ∈ H1(∂Ω)⊂ H1/2(∂Ω),

and the claim follows from the last theorem.

3.3 Operator ideal properties of resolvent power differences and trace
formulae

The main results of this section are Sp,∞-estimates for the resolvent power differences of
self-adjoint elliptic operators. As a consequence of these estimates we get the existence
and completeness of the wave operators for the scattering pairs formed by two self-adjoint
elliptic operators on exterior domains. In the case of trace class resolvent power differences
we provide trace formulae, where the trace of the resolvent power difference is reduced to
the trace of an operator acting on the boundary.
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3.3.1 Elliptic regularity and related Sp,∞-estimates

In this subsection we provide estimates of the singular values of the γ-field and the Weyl
function from Proposition 3.2, their derivatives and some related compact operators. For
this purpose we use properties of the compact embeddings between Sobolev spaces, given
in Lemma 2.22, and elliptic regularity theory.
Furthermore, we make use of the local Sobolev spaces Hs

∂Ω
(Ω) defined in Subsection 2.3.1.

Note that for all s≥ 0 and λ ∈ ρ(AN) the implication

f ∈ Hs
∂Ω

(Ω) =⇒ (AN−λ )−1 f ∈ Hs+2
∂Ω

(Ω) (3.3.1)

holds, see [McL00, Theorem 4.18], where this property is formulated in the language of
regularity of the solutions for boundary value problems.
In the next lemma we show certain smoothing properties of the γ-field γ and the Weyl
function M from Proposition 3.2. This lemma is used in the proof of Theorem 3.12 in the
next subsection.

Lemma 3.9. Let γ and M be the γ-field and the Weyl function from Proposition 3.2. For
all s≥ 0 the following holds:

(i) ran
(
γ(λ ) � Hs(∂Ω)

)
⊂ H

s+ 3
2

∂Ω
(Ω) for all λ ∈ ρ(AN);

(ii) ran
(
γ(λ )∗ � Hs

∂Ω
(Ω)
)
⊂ Hs+ 3

2 (∂Ω) for all λ ∈ ρ(AN);

(iii) ran
(
M(λ ) � Hs(∂Ω)

)
⊂ Hs+1(∂Ω) for all λ ∈ ρ(AN);

(iv) ran
(
M(λ ) � Hs(∂Ω)

)
= Hs+1(∂Ω) for all λ ∈ ρ(AD)∩ρ(AN).

Proof. It follows from the decomposition domT = domANuker(T −λ ), λ ∈ ρ(AN), and
the properties of the Neumann trace [LM68, Chapter 2, §7.3] that the restriction of the
mapping Γ0 to

ker(T −λ )∩H
s+ 3

2
∂Ω

(Ω)

is a bijection onto Hs(∂Ω). Hence, by the definition of the γ-field, we obtain

ran
(
γ(λ ) � Hs(∂Ω)

)
= ker(T −λ )∩H

s+ 3
2

∂Ω
(Ω)⊂ H

s+ 3
2

∂Ω
(Ω).

Thus the claim (i) is shown.
According to Proposition 2.11 (i) and the definition of Γ1 we have

γ(λ )∗ = Γ1(AN−λ )−1.

The properties of the Dirichlet trace [LM68, Chapter 2, §7.3] and the smoothing property
(3.3.1) yield the inclusion

ran
(
γ(λ )∗ � Hs

∂Ω
(Ω)
)
⊂ Hs+ 3

2 (∂Ω)
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for all s≥ 0. Thus we have shown assertion (ii).
Assertion (iii) follows from the definition of M(λ ), item (i), the fact that Γ1 is the trace
operator and properties of the latter.
To verify (iv) let ψ ∈ Hs+1(∂Ω). Since λ ∈ ρ(AD), we have the decomposition domT =

domADuker(T −λ ) and there exists a unique function fλ ∈ ker(T −λ )∩H
s+ 3

2
∂Ω

(Ω) such
that fλ |∂Ω = ψ . Hence

Γ0 fλ = ϕ ∈ Hs(∂Ω) and M(λ )ϕ = ψ,

that is, Hs+1(∂Ω)⊂ ran
(
M(λ ) � Hs(∂Ω)

)
, and (iii) implies the assertion.

Another application of the smoothing property (3.3.1) gives the following proposition, in
which we provide certain preliminary Sp,∞-estimates that are useful in the proofs of the
main results in the next subsection.

Proposition 3.10. Let AN be the self-adjoint operator from (3.1.6), and let γ be the γ-field
from Proposition 3.2. Then for λ ,µ ∈ ρ(AN) and k ∈ N0 the following statements hold:

(a) γ(µ)∗(AN−λ )−k ∈S n−1
2k+3/2 ,∞

(
L2(Ω),L2(∂Ω)

)
;

(b) (AN−λ )−k
γ(µ) ∈S n−1

2k+3/2 ,∞

(
L2(∂Ω),L2(Ω)

)
;

(c) γ(µ)∗(AN−λ )−k ∈S n−1
2k+1/2 ,∞

(
L2(Ω),H1(∂Ω)

)
.

Proof. As ran(AN−λ )−1 = domAN⊂H2
∂Ω

(Ω) we conclude from (3.3.1) that the inclusion

ran
(
(AN−µ)−1(AN−λ )−k

)
⊂ H2k+2

∂Ω
(Ω)

holds for all k ∈ N0. Moreover, by Proposition 3.1 we have AN = T � kerΓ0, and Proposi-
tion 2.11 (i) implies

γ(µ)∗(AN−λ )−k = Γ1(AN−µ)−1(AN−λ )−k

and hence
ran
(
γ(µ)∗(AN−λ )−k)⊂ H2k+3/2(∂Ω) (3.3.2)

by the properties of the trace map Γ1, cf. (3.1.2). Now the estimate (a) follows from
(3.3.2) and Lemma 2.22 with K = L2(Ω), Σ = ∂Ω, r1 = 0 and r2 = 2k+ 3

2 . The estimate
(b) follows from the estimate (a) by taking the adjoint. The estimate (c) follows from
(3.3.2) and Lemma 2.22 with K = L2(Ω), Σ = ∂Ω, r1 = 1 and r2 = 2k+ 3

2 .

In the proofs of the trace formulae we use estimates of singular values for the derivatives
of the γ-field γ and the Weyl function M associated with the quasi boundary triple from
Proposition 3.1.
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Proposition 3.11. Let γ and M be the γ-field γ and the Weyl function from Proposition 3.2.
Then for all λ ∈ ρ(AN) the following holds:

(i) for k ∈ N0

dk

dλ k γ(λ ) ∈S n−1
2k+3/2 ,∞

(
L2(∂Ω),L2(Ω)

)
,

dk

dλ k γ(λ )∗ ∈S n−1
2k+3/2 ,∞

(
L2(Ω),L2(∂Ω)

)
;

(ii) for k ∈ N0
dk

dλ k M(λ ) ∈S n−1
2k+1 ,∞

(
L2(∂Ω)

)
.

Proof. The claim (i) follows from Lemma 2.12 (i), (ii) and Proposition 3.10 (a), (b). By
Lemma 2.12 (iii)

dk

dλ k M(λ ) = k!γ(λ )∗(AN−λ )−(k−1)
γ(λ ).

Then Proposition 3.10 (a) gives us

dk

dλ k M(λ ) ∈S n−1
2(k−1)+3/2 ,∞

·S n−1
3/2 ,∞

=S n−1
2k+1 ,∞

,

where the last equality follows from Lemma 2.3 (i). That is the claim (ii).

3.3.2 Resolvent power differences in Sp,∞-classes and trace formulae

In the next theorem we prove Sp,∞-properties for the resolvent power difference of the
self-adjoint elliptic operators AD and AN. In the case, that the resolvent power difference
is in the trace class, we provide the corresponding trace formula.

Theorem 3.12. Let AD and AN be the self-adjoint operators defined in (3.1.6). Then the
following statements hold.

(i) For all λ ∈ ρ(AN)∩ρ(AD) and all m ∈ N

(AN−λ )−m− (AD−λ )−m ∈S n−1
2m ,∞

(
L2(Ω)

)
. (3.3.3)

(ii) If m > n−1
2 , then the resolvent power difference in (3.3.3) is in the trace class, and

for all λ ∈ ρ(AN)∩ρ(AD)

tr
(
(AN−λ )−m− (AD−λ )−m

)
=

1
(m−1)!

tr

(
dm−1

dλ m−1

(
M(λ )−1M′(λ )

))
.

(3.3.4)
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Proof. (i) We prove this item by applying Lemma 2.4. Fix an arbitrary λ0 ∈ C\R and let
γ and M be as in Proposition 3.2. By Theorem 3.3 (ii) the resolvent difference of AD and
AN at the point λ0 can be written in the form

(AD−λ0)
−1− (AN−λ0)

−1 =−γ(λ0)M(λ0)
−1

γ(λ 0)
∗.

Furthermore, by Proposition 3.2 (ii) the operator M(λ0) is bijective and closed as an opera-
tor from L2(∂Ω) onto H1(∂Ω). Hence, dom

(
M(λ0)

−1)= H1(∂Ω) and, since M(λ0)
−1 is

closed as an operator from H1(∂Ω) onto L2(∂Ω), we get M(λ0)
−1 ∈B

(
H1(∂Ω),L2(∂Ω)

)
.

Set
H := AD, K := AN, F1 :=−γ(λ0), F2 := M(λ0)

−1
γ(λ 0)

∗.

Then Proposition 3.10 (b) and (c) imply that the assumptions in Lemma 2.4 are satisfied
with

a =
2

n−1
, b1 =

3/2
n−1

, b2 =
1/2

n−1
, r =+∞.

Since b = b1 +b2−a = 0, Lemma 2.4 implies that

(AD−λ )−m− (AN−λ )−m ∈S n−1
2m ,∞

(
L2(Ω)

)
for all λ ∈ ρ(AN)∩ρ(AD) and all m ∈ N.
(ii) The proof of this item is split into three steps.
Step 1. Let us introduce the operator-valued function

S(λ ) := M(λ )−1
γ(λ )∗, λ ∈ ρ(AN)∩ρ(AD).

Note that the product is well defined since

ran(γ(λ )∗)⊂ H1(∂Ω) = dom(M(λ )−1).

Since AD is self-adjoint, it follows from Proposition 2.11 (iii) that S(λ ) is a bounded oper-
ator from L2(Ω) to L2(∂Ω) for all λ ∈ ρ(AN)∩ρ(AD). We prove the following smoothing
property for the derivatives of S:

u ∈ Hs
∂Ω

(Ω) ⇒ S(k)(λ )u ∈ Hs+2k+1/2(∂Ω), s≥ 0, k ∈ N0, (3.3.5)

by induction. Since γ(λ )∗ maps Hs
∂Ω

(Ω) into Hs+3/2(∂Ω) for s≥ 0 by Lemma 3.9 (ii) and
M(λ )−1 maps Hs+3/2(∂Ω) into Hs+1/2(∂Ω) by Lemma 3.9 (iv), relation (3.3.5) is true for
k = 0. Now let l ∈ N0 and assume that (3.3.5) is true for every k = 0,1, . . . , l. By (2.2.6),
(2.2.8) and Lemma 2.12 (i), (iii) we have

S′(λ )u =
d

dλ

(
M(λ )−1)

γ(λ )∗u+M(λ )−1 d
dλ

γ(λ )∗u

=−M(λ )−1M′(λ )M(λ )−1
γ(λ )∗u+M(λ )−1

γ(λ )∗(AN−λ )−1u

=−M(λ )−1
γ(λ )∗γ(λ )M(λ )−1

γ(λ )∗u+S(λ )(AN−λ )−1u

= S(λ )(AN−λ )−1u−S(λ )γ(λ )S(λ )u
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for all u ∈ L2(Ω). Hence, with the help of (2.2.6), (2.2.7) and Lemma 2.12 (ii), we obtain

S(l+1)(λ ) =
dl

dλ l

(
S(λ )(AN−λ )−1−S(λ )γ(λ )S(λ )

)
= ∑

p+q=l
p,q≥0

(
l
p

)
S(p)(λ )

dq

dλ q (AN−λ )−1

− ∑
p+q+r=l
p,q,r≥0

l!
p!q!r!

S(p)(λ )γ(q)(λ )S(r)(λ )

= ∑
p+q=l
p,q≥0

l!
p!

S(p)(λ )(AN−λ )−(q+1) (3.3.6)

− ∑
p+q+r=l
p,q,r≥0

l!
p!r!

S(p)(λ )(AN−λ )−q
γ(λ )S(r)(λ ).

By the induction hypothesis, smoothing property (3.3.1) and Lemma 3.9 (i), we have, for
s≥ 0 and p,q≥ 0, p+q = l,

u ∈ Hs
∂Ω

(Ω)

=⇒ (AN−λ )−(q+1)u ∈ Hs+2q+2
∂Ω

(Ω)

=⇒ S(p)(λ )(AN−λ )−(q+1)u ∈ Hs+2q+2+2p+1/2(∂Ω) = Hs+2(l+1)+1/2(∂Ω)

and for s≥ 0 and p,q,r ≥ 0, p+q+ r = l,

u ∈ Hs
∂Ω

(Ω)

=⇒ S(r)(λ )u ∈ Hs+2r+1/2(∂Ω)

=⇒ γ(λ )S(r)(λ )u ∈ Hs+2r+1/2+3/2
∂Ω

(Ω)

=⇒ (AN−λ )−q
γ(λ )S(r)(λ )u ∈ Hs+2r+2+2q

∂Ω
(Ω)

=⇒ S(p)(λ )(AN−λ )−q
γ(λ )S(r)(λ )u ∈ Hs+2r+2+2q+2p+1/2(∂Ω)

= Hs+2(l+1)+1/2(∂Ω),

which, together with (3.3.6), shows (3.3.5) for k = l + 1 and hence, by induction, for all
k ∈ N0. Therefore, an application of Lemma 2.22 yields that

S(k)(λ ) ∈S n−1
2k+1/2 ,∞

(
L2(Ω),L2(∂Ω)

)
, k ∈ N0, λ ∈ ρ(AN)∩ρ(AD). (3.3.7)
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Step 2. Using Krein’s formula from Theorem 3.3 (ii) and (2.2.6) we can write, for m ∈ N
and λ ∈ ρ(AN)∩ρ(AD),

(AN−λ )−m− (AD−λ )−m =
1

(m−1)!
· dm−1

dλ m−1

(
(AN−λ )−1− (AD−λ )−1

)
=

1
(m−1)!

· dm−1

dλ m−1

(
γ(λ )S(λ )

)
=

1
(m−1)! ∑

p+q=m−1
p,q≥0

(
m−1

p

)
γ
(p)(λ )S(q)(λ ). (3.3.8)

By Proposition 3.11 (i), (3.3.7) and Lemma 2.3 (i)

γ
(p)(λ )S(q)(λ ) ∈S n−1

2p+3/2 ,∞
·S n−1

2q+1/2 ,∞
=S n−1

2(p+q)+2 ,∞
=S n−1

2m ,∞ (3.3.9)

for p,q with p+q = m−1.
Step 3. If m > n−1

2 , then n−1
2m < 1 and, by Lemma 2.3 (iii) and (3.3.9), each term in the sum

in (3.3.8) is a trace class operator and, by a similar argument, also S(q)(λ )γ(p)(λ ). Hence
the resolvent power difference in (3.3.3) is a trace class operator, and we can apply the
trace to (3.3.8) and use (2.1.10), (2.1.11) and Lemma 2.12 (iii) to obtain

(m−1)! tr
(
(AN−λ )−m− (AD−λ )−m

)
= tr

(
∑

p+q=m−1
p,q≥0

(
m−1

p

)
γ
(p)(λ )S(q)(λ )

)

= ∑
p+q=m−1

p,q≥0

(
m−1

p

)
tr
(

γ
(p)(λ )S(q)(λ )

)

= ∑
p+q=m−1

p,q≥0

(
m−1

p

)
tr
(

S(q)(λ )γ(p)(λ )
)

= tr

(
∑

p+q=m−1
p,q≥0

(
m−1

p

)
S(q)(λ )γ(p)(λ )

)
= tr

(
dm−1

dλ m−1

(
S(λ )γ(λ )

))

= tr
(

dm−1

dλ m−1

(
M(λ )−1

γ(λ )∗γ(λ )
))

= tr
(

dm−1

dλ m−1

(
M(λ )−1M′(λ )

))
,

which finishes the proof.
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Remark 3.13. As the reader might note the proof of item (ii) in Theorem 3.12 includes also
an alternative of item (i), which is slightly more complicated in the author’s opinion.

The previous theorem has a direct application in the mathematical scattering theory. We
consider the pair {AD,AN} of self-adjoint operators as a scattering system. The next corol-
lary shows that the wave operators for the scattering system {AD,AN} exist in any space
dimension. The trace formula is also provided.

Corollary 3.14. Let AD and AN be the self-adjoint operators defined in (3.1.6). The wave
operators W±(AD,AN) for the scattering pair {AD,AN} exist and are complete, and hence
the absolutely continuous parts of AD and AN are unitary equivalent.

Proof. By Theorem 3.12 for integer m > n−1
2 the m-th powers difference of the resolvents

of AD and AN is in the trace class and the claim follows from Theorem 2.27.

Further we provide Sp,∞-estimates for the resolvent power difference of A[B] and AN. In
this case we observe faster convergence of singular values than in Theorem 3.12. Note that
A[B] can also be the usual Robin Laplacian with a real-valued bounded coefficient in the
boundary condition.

Theorem 3.15. Let AN be the self-adjoint operator as in (3.1.6). Let B be a bounded self-
adjoint operator in L2(∂Ω) and let A[B] be the self-adjoint operator corresponding to B
via (3.2.4). Then the following statements hold.

(i) For all λ ∈ ρ(A[B])∩ρ(AN) and all m ∈ N

(A[B]−λ )−m− (AN−λ )−m ∈S n−1
2m+1 ,∞

(
L2(Ω)

)
. (3.3.10)

(ii) If m > n
2−1, then the resolvent power difference in (3.3.10) is in the trace class and,

for all λ ∈ ρ(A[B])∩ρ(AN)

tr
(
(A[B]−λ )−m− (AN−λ )−m

)
=

1
(m−1)!

tr

(
dm−1

dλ m−1

((
I−BM(λ )

)−1BM′(λ )
))

.

Proof. (i) We prove this item by applying Lemma 2.4. Fix an arbitrary λ0 ∈ C\R and let
γ , M be as in Proposition 3.2. By Theorem 3.5 the resolvent difference of A[B] and AN can
be written in the form

(A[B]−λ0)
−1− (AN−λ0)

−1 = γ(λ0)
(
I−BM(λ0)

)−1Bγ(λ 0)
∗,

where (I−BM(λ0))
−1B ∈ B

(
L2(∂Ω)

)
. By Proposition 3.10 (a) and (b) the assumptions

in Lemma 2.4 are satisfied with

H = A[B], K = AN, F1 = γ(λ0), F2 =
(
I−BM(λ0)

)−1Bγ(λ 0)
∗,
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and with

a =
2

n−1
, b1 = b2 =

3/2
n−1

, r =+∞.

Since b = b1 +b2−a = 1
n−1 , Lemma 2.1.14 implies the statement.

(ii) The formula in this item is proved in a more general form in Theorem 3.17 further,
where one should set B2 = B and B1 = 0.

Corollary 3.16. Let AN be the self-adjoint operator as in (3.1.6). Let B be a bounded self-
adjoint operator in L2(∂Ω) and let A[B] be the self-adjoint operator corresponding to B
via (3.2.4). Then the wave operators W±(A[B],AN) for the scattering pair {A[B],AN} exist
and are complete, and hence the absolutely continuous parts of A[B] and AN are unitary
equivalent.

In the next theorem we prove Sp,∞-properties of the resolvent power differences for the
self-adjoint operators A[B1] and A[B2]. It turns out that the singular values in this case also
converge faster than in Theorem 3.12 and, under some conditions, faster than in Theo-
rem 3.15. Furthermore, we provide the corresponding trace formulae, where the trace of
the resolvent power difference of A[B1] and A[B2] is expressed in terms of the Weyl func-
tion, its derivative and the operators B1 and B2, cf. [BMN08, CGNZ12, GZ12] for one-
dimensional Schrödinger operators and other finite-rank situations. We also mention that
the special case of classical Robin boundary conditions, where B1 and B2 are multiplication
operators with real-valued L∞-functions, is contained in Theorem 3.17.

Theorem 3.17. Let the self-adjoint operator AN be as in (3.1.6). Let B1 and B2 be bounded
self-adjoint operators in L2(∂Ω). Set

t :=

{
n−1

q , if B1−B2 ∈Sq,∞, q > 0,

0, otherwise.

Let A[B1] and A[B2] be the self-adjoint operators in L2(Ω) corresponding via (3.2.4) to B1
and B2, respectively. Then the following statements hold.

(i) For all λ ∈ ρ(A[B1])∩ρ(A[B2]) and all m ∈ N

(A[B2]−λ )−m− (A[B1]−λ )−m ∈S n−1
2m+t+1 ,∞

(
L2(Ω)

)
. (3.3.11)

(ii) If m > n−t
2 −1, then the resolvent power difference in (3.3.11) is a trace class oper-

ator and, for all λ ∈ ρ(A[B1])∩ρ(A[B2])∩ρ(AN),

tr
(
(A[B2]−λ )−m− (A[B1]−λ )−m

)
=

1
(m−1)!

tr
(

dm−1

dλ m−1

(
U(λ )M′(λ )

))
,

(3.3.12)

where U(λ ) :=
(
I−B2M(λ )

)−1
(B2−B1)

(
I−M(λ )B1

)−1.
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Proof. (i) Let us fix λ0 ∈ C\R and let γ and M be as in Proposition 3.2. By Theorem 3.6
for all λ ∈ ρ(A[B2])∩ρ(A[B1])∩ρ(AN)

(A[B2]−λ0)
−1− (A[B1]−λ0)

−1

= γ(λ0)
(
I−B2M(λ0)

)−1
(B2−B1)

(
I−M(λ0)B1

)−1
γ(λ 0)

∗,

where the operators (I − B2M(λ0))
−1 and (I −M(λ0)B1)

−1 are bounded and closed in
L2(∂Ω). Now Proposition 3.10 (a), (b) and Theorem 3.15 imply that the assumptions in
Lemma 2.6 are satisfied with

H = A[B2], K = A[B1], L = AN,

F1 = γ(λ0)
(
I−B2M(λ0)

)−1
, F2 = (B2−B1)

(
I−M(λ0)B1

)−1
γ(λ 0)

∗,

and with

a =
2

n−1
, b1 =

3/2
n−1

, b2 =
3/2+ t
n−1

, r =+∞.

Lemma 2.6 yields the statement for all λ ∈ ρ(A[B2])∩ρ(A[B1])∩ρ(AN) and the points in
the discrete set ρ(A[B1])∩ρ(A[B2])∩σ(AN) can be included via contour integrals.
(ii) In order to shorten notation and to avoid the distinction of several cases, we set

Ar :=

S n−1
r ,∞

(
L2(∂Ω)

)
if r > 0,

B
(
L2(∂Ω)

)
if r = 0.

It follows from Lemma 2.3 (i) and the fact that Sp,∞(L2(∂Ω)), p > 0 is an ideal in the
space B(L2(∂Ω)) that

Ar1 ·Ar2 = Ar1+r2, r1,r2 ≥ 0. (3.3.13)

The assumption on the difference of B1 and B2 yields

B2−B1 ∈ At . (3.3.14)

The proof of item (ii) is divided into four steps.
Step 1. Let B be a bounded self-adjoint operator in L2(∂Ω) and set

T (λ ) :=
(
I−BM(λ )

)−1
, λ ∈ ρ(A[B])∩ρ(AN),

where T (λ ) ∈ B(L2(∂Ω)) by Lemma 2.19. We show that

T (k)(λ ) ∈ A2k+1, k ∈ N, (3.3.15)

by induction. Relation (2.2.8) implies that

T ′(λ ) = T (λ )BM′(λ )T (λ ), (3.3.16)
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which is in A3 by Proposition 3.11 (ii). Let l ∈N and assume that (3.3.15) is true for every
k = 1, . . . , l, which implies in particular that

T (k)(λ ) ∈ A2k, k = 0, . . . , l. (3.3.17)

Then

T (l+1)(λ ) =
dl

dλ l

(
T (λ )BM′(λ )T (λ )

)
= ∑

p+q+r=l
p,q,r≥0

l!
p!q!r!

T (p)(λ )BM(q+1)(λ )T (r)(λ )

by (3.3.16) and (2.2.7). Relation (3.3.17), the boundedness of B, Proposition 3.11 (ii) and
(3.3.13) imply that

T (p)(λ )BM(q+1)(λ )T (r)(λ ) ∈ A2p ·A2(q+1)+1 ·A2r = A2(l+1)+1

since p+q+r = l. This shows (3.3.15) for k = l+1 and hence, by induction, for all k ∈N.
Since T (λ ) ∈ B(L2(∂Ω)), we have

T (k)(λ ) ∈ A2k, k ∈ N0, λ ∈ ρ(AN), (3.3.18)

and by similar considerations also

dk

dλ k

(
I−M(λ )B

)−1 ∈ A2k, k ∈ N0, λ ∈ ρ(AN). (3.3.19)

Step 2. With B1, B2 as in the statement of the theorem set

T1(λ ) :=
(
I−M(λ )B1

)−1 and T2(λ ) :=
(
I−B2M(λ )

)−1

for λ ∈ ρ(A[B1])∩ρ(A[B2])∩ρ(AN). We can write U(λ ) = T2(λ )(B2−B1)T1(λ ) and hence

U (k)(λ ) =
dk

dλ k

(
T2(λ )(B2−B1)T1(λ )

)
= ∑

p+q=k
p,q≥0

(
k
p

)
T (p)

2 (λ )(B2−B1)T
(q)

1 (λ ).

By (3.3.18), (3.3.19) and (3.3.14), each term in the sum satisfies

T (p)
2 (λ )(B2−B1)T

(q)
1 (λ ) ∈ A2p ·At ·A2q = A2k+t ,

and hence
U (k)(λ ) ∈ A2k+t , k ∈ N0, λ ∈ ρ(AN). (3.3.20)



3.3 Operator ideal properties of resolvent power differences and trace formulae 55

Step 3. By applying Theorem 3.6 to A[B1] and A[B2] we obtain that, for λ ∈ ρ(A[B1])∩
ρ(A[B2])∩ρ(AN),

(A[B2]−λ )−1− (A[B1]−λ )−1

= γ(λ )
[(

I−B2M(λ )
)−1

(B2−B1)
(
I−M(λ )B1

)−1
]
γ(λ )∗ = γ(λ )U(λ )γ(λ )∗.

Taking derivatives we get, for m ∈ N,

(A[B2]−λ )−m− (A[B1]−λ )−m

=
1

(m−1)!
· dm−1

dλ m−1

(
(A[B2]−λ )−1− (A[B1]−λ )−1

)
=

1
(m−1)!

· dm−1

dλ m−1

(
γ(λ )U(λ )γ(λ )∗

)
=

1
(m−1)! ∑

p+q+r=m−1
p,q,r≥0

(m−1)!
p!q!r!

γ
(p)(λ )U (q)(λ )

dr

dλ r γ(λ )∗. (3.3.21)

By Proposition 3.11 (i) and (3.3.20), each term in the sum satisfies

γ
(p)(λ )U (q)(λ )

dr

dλ r γ(λ )∗ ∈S n−1
2p+3/2 ,∞

·S n−1
2q+t ,∞

·S n−1
2r+3/2 ,∞

=S n−1
2m+t+1 ,∞

. (3.3.22)

Step 4. If m > n−t
2 −1, then n−1

2m+t+1 < 1 and, by Lemma 2.3 (iii) and (3.3.22), all the terms
in the sum in (3.3.21) are trace class operators, and the same is true if we change the order
in the product in (3.3.22). Hence we can apply the trace to the expression in (3.3.21) and
use (2.1.10), (2.1.11) and Lemma 2.12 (iii) to obtain

(m−1)! tr
(
(A[B2]−λ )−m− (A[B1]−λ )−m

)
= tr

(
∑

p+q+r=m−1
p,q,r≥0

(m−1)!
p!q!r!

γ
(p)(λ )U (q)(λ )

dr

dλ r γ(λ )∗

)

= ∑
p+q+r=m−1

p,q,r≥0

(m−1)!
p!q!r!

tr
(

γ
(p)(λ )U (q)(λ )

dr

dλ r γ(λ )∗
)

= ∑
p+q+r=m−1

p,q,r≥0

(m−1)!
p!q!r!

tr
(

U (q)(λ )
( dr

dλ r γ(λ )∗
)

γ
(p)(λ )

)
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= tr

(
∑

p+q+r=m−1
p,q,r≥0

(m−1)!
p!q!r!

U (q)(λ )
( dr

dλ r γ(λ )∗
)

γ
(p)(λ )

)

= tr
(

dm−1

dλ m−1

(
U(λ )γ(λ )∗γ(λ )

))
= tr

(
dm−1

dλ m−1

(
U(λ )M′(λ )

))
,

which shows (3.3.12).

Remark 3.18. As the reader might note the proof of item (ii) of Theorem 3.17 contains
also an alternative proof of item (i) of the same theorem.

In the next corollary we provide results for the pair of A[B] and AD.

Corollary 3.19. Let the assumptions be as in Theorem 3.15 and let AD be the self-adjoint
operator as in (3.1.6). Then the following holds.

(i) For all λ ∈ ρ(A[B])∩ρ(AD) and all m ∈ N.

(AD−λ )−m− (A[B]−λ )−m ∈S n−1
2m ,∞

(
L2(Ω)

)
. (3.3.23)

(ii) If m > n−1
2 , then the resolvent power difference in (3.3.23) is a trace class operator,

and, for all λ ∈ ρ(A[B])∩ρ(AD)∩ρ(AN),

tr
(
(A[B]−λ )−m− (AD−λ )−m

)
=

1
(m−1)!

tr
(

dm−1

dλ m−1

(
V (λ )M′(λ )

))
(3.3.24)

where V (λ ) :=
(
I−M(λ )B

)−1M(λ )−1.

Proof. (i) By Theorem 3.12 and Theorem 3.15

X1(λ ) := (AN−λ )−m− (AD−λ )−m ∈S n−1
2m ,∞

(
L2(Ω)

)
X2(λ ) := (A[B]−λ )−m− (AN−λ )−m ∈S n−1

2m+1 ,∞

(
L2(Ω)

)
.

(3.3.25)

hold for all λ ∈ ρ(A[B])∩ρ(AD)∩ρ(AN). Note that S n−1
2m+1 ,∞

⊂ S n−1
2m ,∞. Taking the dif-

ference we get the statement for all λ ∈ ρ(A[B])∩ ρ(AD)∩ ρ(AN) and the points in the
discrete set ρ(A[B])∩ρ(AD)∩σ(AN) can be included via contour integrals.

(ii) If m > n−1
2 , then n−1

2m < 1 and hence, by item (i) and Lemma 2.3 (iii), the operator in
(3.3.23) is a trace class operator. Using Theorem 3.12 (ii) and Theorem 3.15 (ii) we obtain

tr
(
(A[B]−λ )−m− (AD−λ )−m

)
= tr

(
X1(λ )+X2(λ )

)
=

1
(m−1)!

tr

(
dm−1

dλ m−1

[(
M(λ )−1 +

(
I−BM(λ )

)−1B
)

M′(λ )
])

.
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Since

M(λ )−1 +
(
I−BM(λ )

)−1B

=
(
I−BM(λ )

)−1
[(

I−BM(λ )
)
+BM(λ )

]
M(λ )−1 =V (λ ),

this implies (3.3.24).

3.4 Comments

The realizations of elliptic differential expressions with differential operators of appropri-
ate orders in the boundary conditions have already been studied up to the end of 50s, see,
e.g., Agmon, Douglis and Nirenberg [ADN59] and as well as the comments in [LM68,
Section 2.10]. These boundary conditions are called local, because it is possible to de-
fine their meaning in a neighborhood of a point. Results on elliptic differential operators
and solvability of elliptic boundary value problems with more general non-local bound-
ary conditions go back to the seminal paper by Vishik [V52] and then were followed by
the works of Bade and Freeman [BF62], Freeman [F62] and Beals [Be65]. In particular,
in [BF62, Be65, F62] certain subfamilies of closed realizations were parametrized. This
progress was accompanied by the development of the abstract extension theory due to
Calkin [C39], Krein [K47], Vishik [V52] and Birman [B56] and by the results in the the-
ory of elliptic boundary value problems published by Lions and Magenes in the works
from 1960 to 1963 and collected in [LM68]. Using these two theories Grubb [G68] pa-
rameterized all closed realizations of a given elliptic differential expression via operators
acting on the boundary and solved the converse problem of finding the boundary operator
for a given closed realization.
In the recent past the Weyl function for elliptic differential operators was introduced, which
is a generalization of the Titchmarsh-Weyl coefficient well-known in Sturm-Liouville the-
ory. This notion and the corresponding new operator-theoretical methods gave a new im-
pulse for the investigation of elliptic differential operators with general boundary con-
ditions. Amrein and Pearson [AP04] introduced an analogue of the Titchmarsh-Weyl
function for Schrödinger operators on three-dimensional exterior domains. Soon after
that there appeared the works on symmetric elliptic differential expressions on general
smooth domains by Behrndt and Langer [BL07], Post [Po07], Ryzhov [R07] and Alpay
and Behrndt [AB09], where the Weyl function was defined as the well-known Neumann-
to-Dirichlet or Dirichlet-to-Neumann maps and used together with Krein’s formula for
spectral analysis. Using the approach of [BL07], Behrndt and Rohleder extended in [BR12]
some results of the classical Titchmarsh-Weyl theory to the case of Schrödinger operators
on exterior domains.
Recently also an analogue of the Weyl function was introduced for non-symmetric dif-
ferential expressions and a corresponding Krein-type formula was provided, see Brown,
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Marletta, Naboko, and Wood [BMNW08], Brown, Grubb and Wood [BGW09] and Mala-
mud [M10]. Note that Weyl functions in the non-symmetric case were introduced earlier in
the abstract setting by Malamud and Mogilevskii in [MM02]. Weyl functions and Krein’s
formulae in the case of non-smooth domains were given by Gesztesy and Mitrea [GM08,
GM08a, GM11], Grubb [G08], Posilicano and Raimondi [PR09], and Abels, Grubb, and
Wood [AGW10].
Schatten-von Neumann estimates for resolvent power differences of elliptic differential
operators have a long history in spectral theory. The estimates in Theorem 3.12 (i) and
Corollary 3.19 (i) in the case that L is a Schrödinger differential expression −∆+q with a
real-valued, possibly unbounded potential q on an exterior domain Ω⊂ R3 go back to the
pioneering paper by Povzner [P53]. In that paper the operator in the boundary condition
was a multiplication operator with a real-valued bounded function β . Povzner proved
in [P53, Theorem 1.4] that

(A[β ]−λ )−1− (AD−λ )−1 ∈S2(L2(Ω)).

His proof heavily depends on the space dimension and on the special form of the differen-
tial expression.
Using variational methods, Birman [B62] improved and extended the result of Povzner
to arbitrary space dimensions, general elliptic differential expressions and also to mixed
Robin-Dirichlet boundary conditions. The estimates in Theorem 3.12 (i) and Corollary 3.19
are encompassed by [B62, Theorem 2.3] in the case of m = 1. It was shown by Birman and
Solomyak in [BS80, Theorem 3], see also [BS79], that the singular values for the resolvent
difference (m = 1) in Theorem 3.12 (i) have an asymptotic behavior such that this resol-
vent difference can not belong to a better class in the scale of weak Schatten-von Neumann
classes.
In the case that B1 and B2 are multiplication operators or more general pseudo-differential
operators of certain orders the estimate in Theorem 3.17 (i) follows from the spectral the-
ory of singular Green operators developed by Grubb in [G12, G84]. Using this theory she
obtained in [G84, Theorem 5.1], see also [G74,G84a], the asymptotic behavior of singular
values for the resolvent power difference in Theorem 3.12 (i). Later in [G11a, Theorem
3.5] and [G12a] the asymptotic behavior of singular values for the resolvent power differ-
ence in Theorem 3.17 (i) was provided in the case of multiplication operators B1 and B2
with additional smoothness of the coefficients. Schatten-von Neumann estimates in the
case of non-local boundary conditions are also contained in [M10] by Malamud. In partic-
ular, the estimate in Corollary 3.19 (ii) is partially covered by [M10, Proposition 4.9].
Already sixty years ago a reduction formula of the type given in Subsection 3.3.2 appeared
in the paper [JP51] by Jost and Pais, where the perturbation determinant for a Schrödinger
operator on an interval was reduced to the boundary. A multi-dimensional Jost-Pais for-
mula was proved recently by Gesztesy, Mitrea and Zinchenko in [GMZ07]. The trace
formula in Theorem 3.12 (ii) is contained in the paper [Ca02, Théorème 2.2] by Carron in
a slightly different context. The trace formulae in Theorems 3.15, 3.17 and Corollary 3.19
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are new to the best of the author’s knowledge. Their analogues for one-dimensional oper-
ators were shown recently, see [CGNZ12, GZ12].
The results on Sp-estimates of resolvent differences contained in the works of the au-
thor [BLL+10, BLL13] were applied by Mugnolo and Nittka in [MN12, Theorem 4.3] to
convergence of semigroups in Sp-norms.





4 SCHRÖDINGER OPERATORS WITH δ AND δ ′-POTENTIALS
SUPPORTED ON HYPERSURFACES

In this chapter self-adjoint Schrödinger operators with δ and δ ′-interactions supported on
compact smooth hypersurfaces are defined explicitly via their action and domain and also
implicitly via sesquilinear forms. We show that both ways of definition lead to the same
self-adjoint operators. It is worth mentioning that our definitions of surface δ and δ ′-
interactions are also compatible with the definitions of point δ and δ ′-interactions in the
one-dimensional case [AGHH05, AK00].
In the case of δ -interactions the sesquilinear form approach was already known [BEKS94]
and has been used in many papers, e.g., [EK03,EY02,EY04,KV07], while the explicit way
of definition is new. In the case of δ ′-interactions for general hypersurfaces no rigorous
approach has been developed until now, see [E08, Open Problem 7.2].
The main advantage of the definition via action and domain is that the regularity of the
functions in the operator domain is given explicitly, which is important in many appli-
cations. Whereas in the definition via sesquilinear forms this regularity is hidden in the
form. In particular, we provide a sufficient condition for H2-regularity of the operator
domains.
As the main problem of this chapter we study Schatten-von Neumann properties of the re-
solvent power differences of the free Schrödinger operator and Schrödinger operators with
surface interactions. We prove better convergence of the singular values in some cases. As
a direct consequence of Schatten-von Neumann estimates for resolvent power differences
we get the existence and completeness of the wave operators for the corresponding scat-
tering pairs. At the end of this chapter we also prove finiteness of the negative spectra for
the Schrödinger operators with surface δ and δ ′-interactions. Most of the results of this
chapter are contained in the work of the author [BLL13a].

4.1 Preliminaries

Let Σ⊂ Rn, n≥ 2, be a compact connected C∞-smooth hypersurface, which separates the
Euclidean space Rn into a bounded interior domain Ωi and an unbounded exterior domain
Ωe. In particular, the hypersurface Σ coincides with the boundaries ∂Ωi and ∂Ωe of the
interior and exterior domains. We often decompose a function f ∈ L2(Rn) = L2(Ωi)⊕
L2(Ωe) in the form f = fi⊕ fe, where fi = f � Ωi and fe = f � Ωe. We agree to denote
by (·, ·), (·, ·)i, (·, ·)e and (·, ·)Σ the inner products in the Hilbert spaces L2(Rn), L2(Ωi),
L2(Ωe) and L2(Σ), respectively. When it is clear from the context, we denote the inner

61



62 4 Schrödinger operators with δ and δ ′-potentials supported on hypersurfaces

products in the Hilbert spaces L2(Rn;Cn), L2(Ωi;Cn), and L2(Ωe;Cn) of vector-valued
functions also by (·, ·), (·, ·)i and (·, ·)e, respectively.
Throughout this chapter we deal with the Schrödinger differential expression

L :=−∆+V, (4.1.1)

where V : Rn→ R is a bounded potential. By Li and Le we denote the restrictions of the
differential expression L onto Ωi and Ωe, respectively. With the notation Vi :=V �Ωi and
Ve :=�Ωe we can clarify that Li acts on Ωi as−∆+Vi and that Le acts on Ωe as−∆+Ve.
It is convenient to deal with the spaces

Hs
∆(Ωi) :=

{
fi ∈ Hs(Ωi) : ∆ fi ∈ L2(Ωi)

}
, s≥ 0,

Hs
∆(Ωe) :=

{
fe ∈ Hs(Ωe) : ∆ fe ∈ L2(Ωe)

}
, s≥ 0.

For s≥ 0 we use short notations

Hs(Rn \Σ) := Hs(Ωi)⊕Hs(Ωe), Hs
∆(R

n \Σ) := Hs
∆(Ωi)⊕Hs

∆(Ωe). (4.1.2)

For a function f ∈ Hs
∆
(Rn \Σ) with s ≥ 0 we denote by fi|Σ and fe|Σ its traces from both

sides of Σ and we denote by ∂νi fi|Σ and ∂νe fe|Σ its traces of normal derivatives from both
sides of Σ with normals pointing outwards Ωi and Ωe, respectively. For s > 3/2 the map-
ping

Hs(Rn \Σ) 3 f 7→
{

fi|Σ, fe|Σ,∂νi fi|Σ,∂νe fe|Σ
}

(4.1.3)

is well-defined and surjective onto (Hs−1/2(Σ))2× (Hs−3/2(Σ))2, and for s ∈ [0,2) the
mapping

Hs
∆(R

n \Σ) 3 f 7→
{

fi|Σ, fe|Σ,∂νi fi|Σ,∂νe fe|Σ
}

(4.1.4)

is also well-defined as the mapping into (Hs−1/2(Σ))2×(Hs−3/2(Σ)2. Separately, the map-
pings

Hs
∆(R

n \Σ) 3 f 7→ { fi|Σ, fe|Σ},
Hs

∆(R
n \Σ) 3 f 7→ {∂νi fi|Σ,∂νe fe|Σ}

are surjective onto (Hs−1/2(Σ))2 and onto (Hs−3/2(Σ))2, respectively.
We denote by Hs

Σ
(Ωi) and Hs

Σ
(Ωe) with s≥ 0 the subspaces of L2(Ωi) and L2(Ωe), respec-

tively, defined as in (2.3.2) with ∂Ω = Σ, and Ω = Ωi or Ω = Ωe, respectively. Then we
define certain mixed regularity spaces consisting of L2-functions on Rn, which belong to
Hs in a neighborhood of Σ or both one-sided neighborhoods of Σ, respectively, i.e.,

Hs
Σ(Rn) :=

{
f ∈ L2(Rn) : ∃ domain Ω

′ ⊂ Rn such that

Ω
′ ⊃ Σ and f �Ω

′ ∈ Hs(Ω′)
}
,

Hs
Σ(Rn \Σ) := Hs

Σ(Ωi)⊕Hs
Σ(Ωe).

(4.1.5)
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It is worth mentioning that Hs
Σ
(Rn)( Hs

Σ
(Rn \Σ) for s > 0.

For k ∈ N0 we denote by W k,∞
Σ

(Ωi) and W k,∞
Σ

(Ωe), respectively, the subspaces of L∞(Ωi)
and L∞(Ωe), defined as in (2.3.3) with ∂Ω = Σ and Ω = Ωi or Ω = Ωe. We also make use
of certain mixed regularity spaces consisting of L∞-functions on Rn which belong to W k,∞

in a neighborhood of Σ or both one-sided neighborhoods of Σ. Namely,

W k,∞
Σ

(Rn) :=
{

f ∈ L∞(Rn) : ∃ domain Ω
′ ⊂ Rn such that

Ω
′ ⊃ Σ and f �Ω

′ ∈W k,∞(Ω′)
}
,

W k,∞
Σ

(Rn \Σ) :=W k,∞
Σ

(Ωi)×W k,∞
Σ

(Ωe).

(4.1.6)

It is worth mentioning that W k,∞
Σ

(Rn)(W k,∞
Σ

(Rn \Σ) for k ∈ N.

For f ,g∈H3/2
∆

(Rn\Σ) and h∈H1(Rn\Σ) the following first and second Green’s identities
hold: (

L f ,h
)
=
(
∇ f ,∇h

)
+
(
V f ,h

)
−
(
∂νi fi|Σ,gi|Σ

)
Σ
−
(
∂νe fe|Σ,ge|Σ

)
Σ

(4.1.7)

and (
L f ,g

)
−
(

f ,Lg
)
=
((

fi|Σ,∂νigi|Σ
)

Σ
−
(
∂νi f |Σ,g|Σ

)
Σ

)
+
((

fe|Σ,∂νege|Σ
)

Σ
−
(
∂νe f |Σ,ge|Σ

)
Σ

)
.

(4.1.8)

The minimal operators associated with the differential expressions Li and Le are defined
by

Ai fi := Li fi, domAi := H2
0 (Ωi),

Ae fe := Le fe, domAe := H2
0 (Ωe).

The operators Ai and Ae are densely defined, closed and symmetric with infinite deficiency
indices, acting in the Hilbert spaces L2(Ωi) and L2(Ωe), respectively, with the adjoints of
the form

A∗i fi := Li fi, domA∗i := H0
∆(Ωi),

A∗e fe := Le fe, domA∗e := H0
∆(Ωe).

The direct sum of Ai and Ae

Ai,e := Ai⊕Ae, domAi,e := H2
0 (Ωi)⊕H2

0 (Ωe), (4.1.9)

is a densely defined, closed, symmetric operator with infinite deficiency indices in the
Hilbert space L2(Rn) = L2(Ωi)⊕L2(Ωe) and with the adjoint of the form

A∗i,e = L f , domA∗i,e = H0
∆(R

n \Σ).
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Furthermore, we introduce the operators

Ti fi := Li fi, domTi := H3/2
∆

(Ωi),

Te fe := Le fe, domTe := H3/2
∆

(Ωe),

and their direct sum

Ti,e := Ti⊕Te, domTi,e = H3/2
∆

(Rn \Σ).

It can be shown that A∗i = T i, A∗e = T e, and hence A∗i,e = T i,e.
Next we define usual self-adjoint Dirichlet and Neumann realizations of the differential
expressions Li and Le in L2(Ωi) and L2(Ωe), respectively:

AD,i fi := Li fi, domAD,i :=
{

fi ∈ H2(Ωi) : fi|Σ = 0
}
,

AD,e fe := Le fe, domAD,e :=
{

fe ∈ H2(Ωe) : fe|Σ = 0
}
,

AN,i fi := Li fi, domAN,i :=
{

fi ∈ H2(Ωi) : ∂νi fi|Σ = 0
}
,

AN,e fe := Le fe, domAN,e :=
{

fe ∈ H2(Ωe) : ∂νe fe|Σ = 0
}
.

Further, we define direct sums

AD,i,e := AD,i⊕AD,e,

domAD,i,e :=
{

f ∈ H2(Rn \Σ) : fi|Σ = fe|Σ = 0
}
,

(4.1.10)

and

AN,i,e := AN,i⊕AN,e,

domAN,i,e :=
{

f ∈ H2(Rn \Σ) : ∂νi fi|Σ = ∂νe fe|Σ = 0
}
,

(4.1.11)

which are self-adjoint operators in L2(Rn). Finally, we denote the usual self-adjoint (free)
realization of L in L2(Rn) by

Afree f := L f , domAfree := H2(Rn). (4.1.12)

One can associate quasi boundary triples Πi and Πe with the adjoints A∗i and A∗e as in
Proposition 3.1. Denote the corresponding Weyl functions as in Proposition 3.2 by Mi and
Me. These functions are well-defined on ρ(AN,i) and ρ(AN,e), respectively. For ϕ ∈ L2(Σ)
and λ ∈ ρ(AN,j) with j = i,e the boundary value problem

(Lj−λ ) fj = 0, in Ωj,

∂νj fj|Σ = ϕ, on Σ,

is uniquely solvable in H3/2
∆

(Ωj). Denote its unique solution by fλ ,j, then

Mj(λ )ϕ = fλ ,j|Σ, j = i,e. (4.1.13)

The operators Mi(λ ) and Me(λ ) are, in fact, the Neumann-to-Dirichlet maps associated
with the differential expressions Li−λ and Le−λ , respectively.
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4.2 Schrödinger operators with δ -potentials on hypersurfaces

In this section we use quasi boundary triples to define and study the Schrödinger operator
Aδ ,α formally corresponding to the differential expression

Lδ ,α =−∆+V −α〈δΣ, · 〉δΣ,

where δΣ is the δ -distribution supported on Σ.

4.2.1 A quasi boundary triple and its Weyl function

It is convenient to define a quasi boundary triple not for A∗i,e itself, but for the adjoint of
a symmetric intermediate extension of Ai,e. The method of intermediate extensions is in-
spired by the general considerations for ordinary boundary triples in [DHMS00, Section 4].
We define the extension

Ã := Afree∩AD,i,e = L �
{

f ∈ H2(Rn) : fi|Σ = fe|Σ = 0
}

(4.2.1)

of the orthogonal sum Ai,e in (4.1.9) as the underlying symmetric operator for the quasi
boundary triple. Furthermore, we define the operator

T̃ := Ti,e �
{

fi⊕ fe ∈ H3/2
∆

(Rn \Σ) : fi|Σ = fe|Σ
}
, (4.2.2)

and we specify the following two boundary mappings from dom T̃ into L2(Σ)

Γ̃0 : dom T̃ → L2(Σ), Γ̃0 f := ∂νi fi|Σ +∂νe fe|Σ,

Γ̃1 : dom T̃ → L2(Σ), Γ̃1 f := fi|Σ = fe|Σ.
(4.2.3)

Note that the mappings Γ̃0, Γ̃1 are well defined because of the properties of the trace
mappings (4.1.4).
In the first proposition of this section we prove that {L2(Σ), Γ̃0, Γ̃1} is a quasi boundary
triple for Ã∗ and we show basic properties of this triple.

Proposition 4.1. Let the operators AD,i,e and Afree be as in (4.1.10) and (4.1.12), respec-
tively. Let the operators Ã and T̃ and the mappings Γ̃0,Γ̃1 be, respectively, as in (4.2.1),
(4.2.2) and (4.2.3). Then the triple Π̃ = {L2(Σ), Γ̃0, Γ̃1} is a quasi boundary triple for Ã∗.
The restrictions of T̃ to the kernels of the boundary mappings are

T̃ � ker Γ̃0 = Afree and T̃ � ker Γ̃1 = AD,i,e;

and the ranges of these mappings are

ran Γ̃0 = L2(Σ) and ran Γ̃1 = H1(Σ).
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Proof. We show that the triple Π̃ satisfies the conditions (a), (b) and (c) in Proposition 2.9.
For the condition (a), let ϕ ∈H1/2(Σ) and ψ ∈H3/2(Σ) be arbitrary. By (3.1.2) there exist
fi ∈ H2(Ωi) and fe ∈ H2(Ωe) such that

∂νi fi|Σ = ϕ, fi|Σ = ψ, ∂νe fe|Σ = 0, fe|Σ = ψ.

Since H2(Rn \Σ) ⊂ H3/2
∆

(Rn \Σ), we have f := fi⊕ fe ∈ dom T̃ and Γ̃0 f = ϕ , Γ̃1 f = ψ .
Hence, we get

H1/2(Σ)×H3/2(Σ)⊂ ran
(

Γ̃0

Γ̃1

)
.

The set H1/2(Σ)×H3/2(Σ) is, clearly, dense in L2(Σ)×L2(Σ); note that also the set ker Γ̃0∩
ker Γ̃1 is dense in L2(Rn), which implies together that (a) of Proposition 2.9 is satisfied.
Next let f = fi⊕ fe and g= gi⊕ge be two arbitrary functions in dom T̃ . Since the functions
f and g in dom T̃ satisfy the boundary conditions fi|Σ = fe|Σ = f |Σ and gi|Σ = ge|Σ = g|Σ,
we have by Green’s identity (4.1.8)(

T̃ f ,g
)
−
(

f , T̃ g
)
=
(

f |Σ,∂νigi|Σ +∂νege|Σ
)

Σ
−
(
∂νi fi|Σ +∂νe fe|Σ,g|Σ

)
Σ
, (4.2.4)

which shows that condition (b) of Proposition 2.9 is fulfilled. Since T̃ � ker Γ̃0 contains the
self-adjoint operator Afree, also the condition (c) is satisfied. Hence we can apply Propo-
sition 2.9, which implies that T̃ � (ker Γ̃0∩ ker Γ̃1) is a densely defined closed symmetric
operator and that the triple Π̃ = {L2(Σ), Γ̃0, Γ̃1} is a quasi boundary triple for its adjoint.
Note that the operators and that T̃ � ker Γ̃0 and T̃ � ker Γ̃1 are symmetric by (4.2.4), and they
contain self-adjoint operators Afree and AD,i,e, respectively. Therefore T̃ � ker Γ̃0 =Afree and
T̃ � ker Γ̃1 = AD,i,e. Hence we get

T̃ � (ker Γ̃0∩ker Γ̃1) =
(
T̃ � ker Γ̃0

)
∩
(
T̃ � ker Γ̃1

)
= Afree∩AD,i,e = Ã.

Since, for j = i and j = e, the mapping fj 7→ fj|Σ is surjective from H3/2
∆

(Ω j) onto H1(Σ)

and the mapping fj 7→ ∂νj fj|Σ is surjective from H3/2
∆

(Ωj) onto L2(Σ), it follows easily
that ran Γ̃1 = H1(Σ) and ran Γ̃0 ⊂ L2(Σ). In order to see that Γ̃0 maps surjectively onto
L2(Σ), let us fix an arbitrary χ ∈C∞

0 (Rn) such that χ ≡ 1 on an open neighbourhood of Ωi.
Let SL be the single-layer potential associated with the hypersurface Σ and the differential
expression−∆+1; see, e.g. [McL00, Chapter 6] for the definition and properties of single-
layer potentials. By [McL00, Theorem 6.11, Theorem 6.12 (i)], for an arbitrary ϕ ∈ L2(Σ),
the function f := χSLϕ belongs to dom T̃ and satisfies the condition

∂νe fe|Σ +∂νi fi|Σ = ϕ,

hence Γ̃0 f = ϕ , and thus ran Γ̃0 = L2(Σ).
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In the next proposition we clarify the basic properties of the γ-field and the Weyl func-
tion associated with the quasi boundary triple Π̃ from Proposition 4.1. In the terminology
of [McL00] the γ-field turns out to be the single layer potential associated with the hy-
persurface Σ and the differential expression L−λ , see also Remark 4.3 after the proposi-
tion.

Proposition 4.2. Let the self-adjoint operators AD,i,e and Afree be as in (4.1.10) and (4.1.12),
respectively. Let Π̃ be the quasi boundary triple from Proposition 4.1. Let γ̃ and M̃ be the
γ-field and the Weyl function associated with the quasi boundary triple Π̃ as in Defini-
tion 2.10. Let Mi and Me be the Weyl functions defined in (4.1.13). Then the following
statements hold.

(i) The γ-field γ̃ is defined for all λ ∈ ρ(Afree) and

γ̃(λ ) : L2(Σ)→ L2(Rn), γ̃(λ )ϕ = fλ (ϕ),

where fλ (ϕ) is the unique solution in H3/2
∆

(Rn \Σ) of the problem

−∆ f +V f −λ f = 0, in Rn \Σ,

fi|Σ = fe|Σ = 0, on Σ,

∂νi fi|Σ +∂νe fe|Σ = ϕ, on Σ.

(ii) The Weyl function M̃ is defined for all λ ∈ ρ(Afree) and

M̃(λ ) : L2(Σ)→ L2(Σ), M̃(λ )ϕ = fλ (ϕ)|Σ,

where fλ (ϕ) = γ̃(λ )ϕ . For all λ ∈ ρ(Afree) ( λ ∈ ρ(Afree)∩ρ(AD,i,e) ) the operator
M̃(λ ) maps L2(Σ) into (onto) H1(Σ). The operator M̃(λ ) is compact for all λ ∈
ρ(Afree). Moreover, the identity

M̃(λ ) =
(
Mi(λ )

−1 +Me(λ )
−1)−1 (4.2.5)

holds for all λ ∈ ρ(Afree)∩ρ(AD,i,e)∩ρ(AN,i,e).

Proof. (i) The mapping properties of the γ-field γ̃ follow from (4.2.2), (4.2.3) and Defini-
tion 2.10.
(ii) The mapping properties of the Weyl function M̃ follow from (4.2.3), Definition 2.10,
Proposition 2.11 (iii) and Proposition 4.1. The compactness of the operator M̃(λ ) follows
from the compactness of the embedding of H1(Σ) into L2(Σ), cf. Lemma 2.22.
In order to prove the identity (4.2.5), let λ ∈ ρ(Afree)∩ρ(AD,i,e)∩ρ(AN,i,e). For such λ

the operator M̃(λ ) is invertible, and the same holds true for Mi(λ ) and Me(λ ); cf. Propo-
sition 3.2 and Theorem 2.13 (i). If M̃(λ )ϕ = ψ for some ϕ ∈ L2(Σ) and ψ ∈ H1(Σ), then
there exists an f = fi⊕ fe ∈ ker(T̃ −λ ) such that

Γ̃0 f = ϕ and Γ̃1 f = ψ.
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As fi ∈ ker(Ti−λ ) and fe ∈ ker(Te−λ ), we have

∂νi
fi|Σ = Mi(λ )

−1( fi|Σ) = Mi(λ )
−1

ψ,

∂νe fe|Σ = Me(λ )
−1( fe|Σ) = Me(λ )

−1
ψ,

and hence

M̃(λ )−1
ψ = ϕ = ∂νi fi|Σ +∂νe fe|Σ = Mi(λ )

−1
ψ +Me(λ )

−1
ψ.

Since this is true for arbitrary ψ ∈ H1(Σ), relation (4.2.5) follows.

We remark that the quasi boundary triple from Proposition 4.1 and the Weyl function above
appear also implicitly in [AP04] and [R09, Section 4] in a different context.

Remark 4.3. Assume for simplicity that the potential V in the differential expression L
in (4.1.1) is identically equal to zero. In this case the γ-field γ̃ and the Weyl function M̃
are, roughly speaking, extensions of the acoustic single-layer potential for the Helmholtz
equation. In fact, if Gλ , λ ∈ C\R, is the integral kernel of the resolvent of Afree, then for
all ϕ ∈C∞(Σ) we have(

γ̃(λ )ϕ
)
(x) =

∫
Σ

Gλ (x,y)ϕ(y)dσy, x ∈ Rn \Σ,

and (
M̃(λ )ϕ

)
(x) =

∫
Σ

Gλ (x,y)ϕ(y)dσy, x ∈ Σ,

where σy is the natural Lebesgue measure on Σ. For more details we refer the reader
to [McL00, Chapter 6]; see also [CK83, Co88].

4.2.2 Self-adjointness and Krein’s formulae

In the first theorem of this subsection we establish a correspondence between the point
spectra of the self-adjoint operator AD,i,e and of the operator-valued function M̃(·). More-
over, we provide a factorization (Krein’s formula) for the resolvent difference of Afree and
AD,i,e.

Theorem 4.4. Let the self-adjoint operators AD,i,e and Afree be as in (4.1.10) and (4.1.12).
Let γ̃ and M̃ be the γ-field and the Weyl function from Proposition 4.2. Then the following
statements hold.

(i) For all λ ∈ R∩ρ(Afree)

λ ∈ σp(AD,i,e) ⇐⇒ 0 ∈ σp(M̃(λ ))

and the multiplicities of these eigenvalues coincide.
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(ii) The formula

(Afree−λ )−1− (AD,i,e−λ )−1 = γ̃(λ )M̃(λ )−1
γ̃(λ )∗

holds for all λ ∈ ρ(AD,i,e)∩ρ(Afree).

Proof. The equivalence between the point spectra in item (i) and Krein’s formula in item
(ii) follow from the corresponding items of Theorem 2.13 with self-adjoint A0 = Afree and
A1 = AD,i,e.

We introduce a family of restrictions on the operator T̃ parameterized by a bounded real-
valued function on Σ.

Definition 4.5. For a real-valued function α ∈ L∞(Σ) the Schrödinger operator with δ -
potential on the hypersurface Σ and strength α is defined as follows:

Aδ ,α := T̃ � ker(αΓ̃1− Γ̃0),

which is equivalent to

Aδ ,α f =−∆ f +V f ,

domAδ ,α =

{
f ∈ H3/2

∆
(Rn \Σ) :

fi|Σ = fe|Σ = f |Σ
∂νe fe|Σ +∂νi fi|Σ = α f |Σ

}
.

(4.2.6)

The definition of Aδ ,α is compatible with the definition of a point δ -interaction in the
one-dimensional case [AGHH05, Section I.3], [AK00] and the definitions of the operators
with δ -potentials on hypersurfaces given in [AGS87, Sh88] and in [BEKS94]; see also
Proposition 4.30. Note also that the domain of Aδ ,α is contained in H1(Rn); cf. Proposi-
tion 4.30.

Afree

⊂

Ai,e ⊂ Ã ⊂
⊂

⊂
Aδ ,α ⊂ T̃ ⊂ Ti,e

AD,i,e

⊂

T̃ = Ã∗

T i,e = A∗i,e

Figure 4.1: This figure shows how the operator Aδ ,α is related to the other operators in-
troduced in this section. The operators Afree, Aδ ,α and AD,i,e are self-adjoint in
L2(Rn); cf. Theorem 4.6.
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The next theorem contains the proof of self-adjointness of Aδ ,α and provides a factorization
(Krein’s formula) for the resolvent difference of Aδ ,α and Afree, cf. [BEKS94, Lemma
2.3 (iii)]. Item (ii) in Theorem 4.6 can be viewed as a variant of the Birman–Schwinger
principle; it coincides with the one in [BEKS94].

Theorem 4.6. Let Aδ ,α be as above and let Afree be the self-adjoint operator defined
in (4.1.12). Let γ̃ and M̃ be the γ-field and the Weyl function from Proposition 4.2. Then
the following statements hold.

(i) The operator Aδ ,α is self-adjoint in the Hilbert space L2(Rn).

(ii) For all λ ∈ R∩ρ(Afree)

λ ∈ σp(Aδ ,α) ⇐⇒ 0 ∈ σp
(
I−αM̃(λ )

)
and the multiplicities of these eigenvalues coincide.

(iii) The formula

(Aδ ,α −λ )−1− (Afree−λ )−1 = γ̃(λ )
(
I−αM̃(λ )

)−1
α γ̃(λ )∗.

holds for all λ ∈ ρ(Aδ ,α)∩ρ(Afree). In this formula the middle term on the right-
hand side satisfies (I−αM̃(λ ))−1 ∈ B(L2(Σ)).

Proof. (i) By Proposition 4.1 the range of the boundary mapping Γ̃0 coincides with L2(Σ).
According to Proposition 4.2 the values of the Weyl function M̃ are compact operators. By
the assumptions on the function α the operator of multiplication with α is bounded and
self-adjoint in L2(Σ) and the statement follows from Theorem 2.20.
(ii) The spectral equivalence follows from Proposition 2.14.
(iii) Krein’s formula follows from self-adjointness of Aδ ,α and Corollary 2.16 with A0 =AN
and A[B] = Aδ ,α . The property of the middle term follows from Lemma 2.19.

Recall that the spaces H3/2
∆

(Rn \Σ) and H2(Rn \Σ) are defined as in Section 4.1 and the
space W 1,∞(Σ) is defined as in Section 2.3. It follows from Definition 4.5 that domAδ ,α ⊂
H3/2

∆
(Rn \Σ). As in the previous chapter additional smoothness of the coefficient in the

boundary condition leads to domAδ ,α ⊂ H2(Rn \Σ). In the next theorem we clarify this
property.

Theorem 4.7. Assume that a real-valued function α satisfies α ∈W 1,∞(Σ). Let the self-
adjoint operator Aδ ,α be as in Definition 4.5. Then the inclusion domAδ ,α ⊂ H2(Rn \Σ)
holds.

Proof. For any function f ∈ domAδ ,α we have f ∈ dom T̃ ⊂H3/2
∆

(Rn\Σ). Then by Propo-
sition 4.1 (i)

Γ̃1 f ∈ H1(Σ).
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The definition of the operator Aδ ,α , the assumptions on the smoothness of α and the prop-
erty (2.3.1) imply that

Γ̃0 f = αΓ̃1 f ∈ H1(Σ). (4.2.7)

Let us fix λ ∈ C\R. By the decomposition

dom T̃ = domAfreeuker(T̃ −λ ) (4.2.8)

the function f ∈ domAδ ,α can be represented as f = ffree + fλ with ffree ∈ domAfree and
fλ ∈ ker(T̃ − λ ). It is clear that ffree ∈ H2(Rn) ⊂ H2(Rn \Σ). The relation (4.2.7) and
Afree = T̃ � ker Γ̃0 yield

Γ̃0 fλ = Γ̃0 f ∈ H1(Σ)⊂ H1/2(Σ). (4.2.9)

The properties of the trace map in (4.1.3) show that Γ̃0 maps dom T̃ ∩H2(Rn \Σ) onto
H1/2(Σ), and hence (4.2.8) implies that Γ̃0 maps

ker(T̃ −λ )∩H2(Rn \Σ)

bijectively onto H1/2(Σ). The last observation and (4.2.9) show that fλ ∈ H2(Rn \Σ), and
therefore f = ffree + fλ ∈ H2(Rn \Σ).

4.3 Schrödinger operators with δ ′-potentials on hypersurfaces

In this section we use quasi boundary triples to define and study the Schrödinger operator
Aδ ′,β formally corresponding to the differential expression

Lδ ′,β =−∆+V −β 〈δ ′Σ, · 〉δ ′Σ,

where δ ′
Σ

is the normal derivative of the δ -distribution supported on Σ.

4.3.1 A quasi boundary triple and its Weyl function

Again it is convenient to define a quasi boundary triple not for A∗i,e itself, but for the adjoint
of a symmetric intermediate extension of Ai,e. We define an extension

Â := Afree∩AN,i,e = L �
{

f ∈ H2(Rn) : ∂νi fi|Σ = ∂νe fe|Σ = 0
}

(4.3.1)

of the orthogonal sum Ai,e in (4.1.9) as the underlying symmetric operator for the quasi
boundary triple. Furthermore, we define the operator

T̂ := Ti,e �
{

fi⊕ fe ∈ H3/2
∆

(Rn \Σ) : ∂νe fe|Σ +∂νi fi|Σ = 0
}
, (4.3.2)

and specify the following two boundary mappings from dom T̂ into L2(Σ)

Γ̂0 : dom T̂ → L2(Σ), Γ̂0 f := ∂νe fe|Σ

Γ̂1 : dom T̂ → L2(Σ), Γ̂1 f := fe|Σ− fi|Σ.
(4.3.3)
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Note that the mappings Γ̂0, Γ̂1 are well defined because of the properties of the trace
mappings (4.1.4).
In the first proposition of this section we prove that {L2(Σ), Γ̂0, Γ̂1} is a quasi boundary
triple for Â∗ and we show basic properties of this triple.

Proposition 4.8. Let the operators AN,i,e and Afree be as in (4.1.11) and (4.1.12), respec-
tively. Let the operators Â and T̂ and the mappings Γ̂0,Γ̂1 be as in (4.3.1), (4.3.2) and
(4.2.3), respectively. Then the triple Π̂ = {L2(Σ), Γ̂0, Γ̂1} is a quasi boundary triple for Â∗.
The restrictions of T̂ to the kernels of the boundary mappings are

T̂ � ker Γ̂0 = AN,i,e and T̂ � ker Γ̂1 = Afree;

and the ranges of these mappings are

ran Γ̂0 = L2(Σ) and ran Γ̂1 = H1(Σ).

Proof. One can see that Π̂ is a quasi boundary triple for Â∗ in a similar way as in the proof
of Proposition 4.1. The abstract Green’s identity is a consequence of (4.1.8). Basically,
the same argumentation as before yields that T̂ � ker Γ̂0 = AN,i,e, T̂ � ker Γ̂1 = Afree and
that ran Γ̂0 = L2(Σ), ran Γ̂1 ⊂ H1(Σ). Further we show surjectivity of Γ̂1 onto H1(Σ).
Fix a function χ ∈ C∞

0 (Rn) as in the proof of Proposition 4.1, i.e. such that χ ≡ 1 on
an open neighbourhood of Ωi. Let DL be the double-layer potential associated with the
hypersurface Σ and the differential expression −∆+ 1; see, e.g. [McL00, Section 6] for
the discussion of double-layer potentials. By [McL00, Theorem 6.11, Theorem 6.12 (ii)]
for an arbitrary ϕ ∈ H1(Σ) the function f := χDLϕ belongs to dom T̂ and satisfies the
condition

fe|Σ− fi|Σ = ϕ,

hence Γ̂1 f = ϕ , and thus ran Γ̂1 = H1(Σ).

In the next proposition we clarify the basic properties of the γ-field and the Weyl function
associated with the quasi boundary triple Π̂ from Proposition 4.8.

Proposition 4.9. Let the self-adjoint operators AN,i,e and Afree be as in (4.1.11) and (4.1.12),
respectively. Let Π̂ be the quasi boundary triple from Proposition 4.8. Let γ̂ and M̂ be the
γ-field and the Weyl function associated with the quasi boundary triple Π̂ as in Defini-
tion 2.10. Let Mi and Me be the Weyl functions defined in (4.1.13). Then the following
statements hold.

(i) The γ-field γ̂ is defined for all λ ∈ ρ(AN,i,e) and

γ̂(λ ) : L2(Σ)→ L2(Rn), γ̂(λ )ϕ = fλ (ϕ),

where fλ (ϕ) is the unique solution in H3/2
∆

(Rn \Σ) of the problem

−∆ f +V f −λ f = 0, in Rn \Σ,

∂νe fe|Σ =−∂νi fi|Σ = ϕ, on Σ.
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(ii) The Weyl function M̂ is defined for all λ ∈ ρ(AN,i,e) and

M̂(λ ) : L2(Σ)→ L2(Σ), M̂(λ )ϕ = fλ ,e(ϕ)|Σ− fλ ,i(ϕ)|Σ,

where fλ (ϕ) = γ̂(λ )ϕ . For all λ ∈ ρ(AN,i,e) ( λ ∈ ρ(AN,i,e)∩ρ(Afree) ) the operator
M̂(λ ) maps L2(Σ) into (onto) H1(Σ). The operator M̂(λ ) is compact for all λ ∈
ρ(AN,i,e). Moreover, the identity

M̂(λ ) = Mi(λ )+Me(λ ) (4.3.4)

holds for all λ ∈ ρ(AN,i,e).

Proof. (i) The mapping properties of the γ-field γ̂ follow from (4.3.3), (4.3.2) and Defini-
tion 2.10.
(ii) The mapping properties of the Weyl function M̂ follow from (4.3.3), Definition 2.10,
Proposition 2.11 (iii) and Proposition 4.8. The compactness of the operator M̂(λ ) follows
from the compactness of the embedding of H1(Σ) into L2(Σ), cf. Lemma 2.22.
Let us verify the identity (4.3.4). For this let λ ∈ ρ(AN,i,e), so that the operators Mi(λ ),
Me(λ ) and M̂(λ ) all exist. If M̂(λ )ϕ = ψ for some ϕ ∈ L2(Σ) and ψ ∈ H1(Σ), then there
exists f = fi⊕ fe ∈ ker(T̂ −λ ) such that

Γ̂0 f = ϕ and Γ̂1 f = ψ.

As fi ∈ ker(Ti−λ ) and fe ∈ ker(Te−λ ), we have

fi|Σ = Mi(λ )(∂νi fi|Σ) =−Mi(λ )ϕ,

fe|Σ = Me(λ )(∂νe fe|Σ) = Me(λ )ϕ,

and hence
M̂(λ )ϕ = fe|Σ− fi|Σ = Me(λ )ϕ +Mi(λ )ϕ.

Since this is true for arbitrary ϕ ∈ L2(Σ), relation (4.3.4) follows.

Remark 4.10. Assume for simplicity that the potential V in the differential expression L in
(4.1.1) is identically equal to zero. Note that the problem in Proposition 4.9 (i) is decoupled
into an interior and an exterior problem. Let, as in Remark 4.3, Gλ be the integral kernel
of the resolvent of Afree. Then for all ψ ∈C∞(Σ)(

γ̂(λ )ψ
)
(x) =

∫
Σ

[
∂νi(y)Gλ (x,y)

]
(M̂(λ )ψ)(y)dσy, x ∈ Rn \Σ,

and (
M̂(λ )−1

ψ
)
(x) =−∂νi(x)

∫
Σ

[
∂νi(y)Gλ (x,y)

]
ψ(y)dσy, x ∈ Σ,



74 4 Schrödinger operators with δ and δ ′-potentials supported on hypersurfaces

where ∂νi(x) and ∂νi(y) are the normal derivatives with respect to the first and second argu-
ments with normals pointing outwards of Ωi, and σy is the natural Lebesgue measure on Σ.
Note that the operator γ̂(λ ) is, roughly speaking, an extension of the acoustic double-layer
potential for the Helmholtz equation multiplied with M̂(λ ) and M̂(λ )−1 is a hypersingular
operator, see, e.g. [McL00, Chapter 6] and [CK83, Co88]. The representation of M̂(λ )−1,
given above, appears also in [R09] in a slightly different context.

4.3.2 Self-adjointness and Krein’s formulae

In the first theorem of this subsection we establish a correspondence between the point
spectra of the self-adjoint operator Afree and of the operator-valued function M̂(·). More-
over, we provide a factorization (Krein’s formula) for the resolvent difference of Afree and
AN,i,e.

Theorem 4.11. Let the self-adjoint operators AN,i,e and Afree be as in (4.1.11) and (4.1.12),
respectively. Let γ̂ and M̂ be the γ-field and the Weyl function from Proposition 4.9. Then
the following statements hold.

(i) For all λ ∈ R∩ρ(AN,i,e)

λ ∈ σp(Afree) ⇐⇒ 0 ∈ σp(M̂(λ ))

and the multiplicities of these eigenvalues coincide.

(ii) The formula

(AN,i,e−λ )−1− (Afree−λ )−1 = γ̂(λ )M̂(λ )−1
γ̂(λ )∗

holds for all λ ∈ ρ(AN,i,e)∩ρ(Afree).

Proof. The equivalence between the point spectra in item (i) and Krein’s formula in item
(ii) follow from the corresponding items of Theorem 2.13 with self-adjoint A0 = AN,i,e ans
A1 = Afree.

We introduce a family of restrictions on the operator T̂ parameterized by a boundedly
invertible real-valued function on Σ.

Definition 4.12. For a real-valued function β such that 1/β ∈ L∞(Σ) the Schrödinger op-
erator with δ ′-potential on the hypersurface Σ and strength β is defined as follows:

Aδ ′,β := T̂ � ker(Γ̂1−β Γ̂0),

which is equivalent to

Aδ ′,β f =−∆ f +V f ,

domAδ ′,β =

{
f ∈ H3/2

∆
(Rn \Σ) :

∂νi fi|Σ =−∂νe fe|Σ
fe|Σ− fi|Σ = β∂νe fe|Σ

}
.

(4.3.5)
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The definition of Aδ ′,β is compatible with the definition of a point δ ′-interaction in the
one-dimensional case [AGHH05, Section I.4], [AK00] and the definition of the operator
with δ ′-potentials on spheres given in [AGS87,Sh88]. Note that, in contrast to the domain
of Aδ ,α , the domain of Aδ ′,β is not contained in H1(Rn).

AN,i,e

⊂

Ai,e ⊂ Â ⊂
⊂

⊂
Aδ ′,β ⊂ T̂ ⊂ Ti,e

Afree

⊂

T̂ = Â∗

T i,e = A∗i,e

Figure 4.2: This figure shows how the operator Aδ ′,β is related to the other operators in-
troduced in this chapter. The operators AN,i,e, Aδ ′,β and Afree are self-adjoint in
L2(Rn), cf. Theorem 4.13.

The next theorem is the counterpart of Theorem 4.6 and can be proved in the same way.
Theorem 4.13 shows self-adjointness of Aδ ′,β , provides a factorization for the resolvent
difference of Aδ ′,β and AN,i,e via Krein’s formula and a variant of the Birman–Schwinger
principle.

Theorem 4.13. Let Aδ ′,β be as above and let AN,i,e be the self-adjoint operator defined
in (4.1.11). Let γ̂ and M̂ be the γ-field and the Weyl function from Proposition 4.9. Then
the following statements hold.

(i) The operator Aδ ′,β is self-adjoint in the Hilbert space L2(Rn).

(ii) For all λ ∈ R∩ρ(AN,i,e)

λ ∈ σp(Aδ ′,β ) ⇐⇒ 0 ∈ σp
(
I−β

−1M̂(λ )
)

and the multiplicities of these eigenvalues coincide.

(iii) The factorization (Krein’s formula)

(Aδ ′,β −λ )−1− (AN,i,e−λ )−1 = γ̂(λ )
(
I−β

−1M̂(λ )
)−1

β
−1

γ̂(λ )∗

holds for all λ ∈ ρ(Aδ ′,β )∩ρ(AN,i,e). In this formula the middle term on the right-
hand side satisfies (I−β−1M̂(λ ))−1 ∈ B(L2(Σ)).

Recall that the spaces H3/2
∆

(Rn \Σ) and H2(Rn \Σ) are defined as in Section 4.1 and the
space W 1,∞(Σ) is defined as in Section 2.3. It follows from Definition 4.12 that domAδ ′,β ⊂
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H3/2
∆

(Rn \Σ). As in the previous chapter additional smoothness of the coefficient in the
boundary condition leads to domAδ ′,β ⊂ H2(Rn \Σ). In the next theorem we clarify this
property.

Theorem 4.14. Assume that a real-valued function β is such that 1/β ∈W 1,∞(Σ). Let
the self-adjoint operator Aδ ′,β be as in Definition 4.12. Then the inclusion domAδ ′,β ⊂
H2(Rn \Σ) holds.

Proof. The proof is analogous to the proof of Theorem 4.7 with Aδ ,α , Afree, T̃ , Γ̃0, Γ̃1 and
α replaced by Aδ ′,β , AN,i,e, T̂ , Γ̂0, Γ̂1 and 1/β , respectively. Instead of the decomposi-
tion (4.2.8) one can use the decomposition

dom T̂ = domAN,i,euker(T̂ −λ ), λ ∈ C\R.

4.4 Operator ideal properties of resolvent power differences and trace
formulae

In this section we obtain Sp,∞-estimates for the resolvent power differences of the self-
adjoint Schrödinger operators with distinct couplings on the hypersurface Σ. As a conse-
quence of these estimates we get sufficient conditions for the existence and completeness
of the wave operators for the scattering pairs formed by the free Schrödinger operator Afree
and one of the Schrödinger operators Aδ ,α , Aδ ′,β , AN,i,e and AD,i,e with certain couplings.
In the case of trace class resolvent power difference we provide formulae, where the trace
of the resolvent power difference, acting in Rn, is reduced to the trace of a certain operator
acting on Σ.

4.4.1 Elliptic regularity and some preliminary Sp,∞-estimates

In this subsection we first provide a typical regularity result for the functions (Afree−λ )−1 f
and (AN,i,e−λ )−1 f if f and V satisfy some additional local smoothness assumptions. This
fact is then used to obtain estimates for the singular values of certain compact operators
arising in the representations of the resolvent power differences of the self-adjoint opera-
tors Aδ ,α , Aδ ′,β , Afree, AN,i,e and AD,i,e. In the next lemma we make use of the local Sobolev
spaces W k,∞

Σ
(Rn), W k,∞

Σ
(Rn \Σ) and Hk

Σ
(Rn), Hk

Σ
(Rn \Σ) defined in Section 4.1.

Lemma 4.15. Let AN,i,e and Afree be the self-adjoint operators from and (4.1.11) and
(4.1.12), respectively, and let m ∈ N0. Then the following assertions hold.

(i) If V ∈W m,∞
Σ

(Rn), then for all λ ∈ ρ(Afree) and k = 0,1, . . . ,m,

f ∈ Hk
Σ(Rn) =⇒ (Afree−λ )−1 f ∈ Hk+2

Σ
(Rn).
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(ii) If V ∈W m,∞
Σ

(Rn \Σ), then for all λ ∈ ρ(AN,i,e) and k = 0,1, . . . ,m,

f ∈ Hk
Σ(Rn \Σ) =⇒ (AN,i,e−λ )−1 f ∈ Hk+2

Σ
(Rn \Σ).

Proof. We verify only assertion (i); the proof of (ii) is similar. We proceed by induction
with respect to k. For k = 0 the statement is an immediate consequence of H0

Σ
(Rn) =

L2(Rn) and domAfree = H2(Rn). Suppose now that the implication in (i) is true for some
fixed k < m and let f ∈ Hk+1

Σ
(Rn). Then, in particular, f ∈ Hk

Σ
(Rn) and hence

u := (Afree−λ )−1 f ∈ Hk+2
Σ

(Rn)⊂ Hk+1
Σ

(Rn)

by assumption. As k + 1 ≤ m and V ∈ W m,∞
Σ

(Rn), it follows from (2.3.4) that Vu ∈
Hk+1

Σ
(Rn). Therefore f −Vu ∈ Hk+1

Σ
(Rn), and since the function u satisfies the partial

differential equation
−∆u−λu = f −Vu, in Rn,

standard results on elliptic regularity yield that u ∈ Hk+3
Σ

(Rn); see, e.g. [McL00, Theo-
rem 4.18].

An application of the previous lemma gives the following proposition, in which we provide
certain preliminary Sp,∞-estimates that are useful in the proofs of our main results in the
next subsection.

Proposition 4.16. Let AN,i,e and Afree be the self-adjoint operators from (4.1.11) and
(4.1.12), respectively, and let γ̃ and γ̂ be the γ-fields from Propositions 4.2 and 4.9, re-
spectively. Then for a fixed m ∈ N0 the following statements hold.

(i) If V ∈W 2m,∞
Σ

(Rn), then, for all λ ,µ ∈ ρ(Afree) and k = 0,1, . . . ,m,

(a) γ̃(µ)∗(Afree−λ )−k ∈S n−1
2k+3/2 ,∞

(
L2(Rn),L2(Σ)

)
,

(b) γ̃(µ)∗(Afree−λ )−k ∈S n−1
2k+1/2 ,∞

(
L2(Rn),H1(Σ)

)
,

(c) (Afree−λ )−k
γ̃(µ) ∈S n−1

2k+3/2 ,∞

(
L2(Σ),L2(Rn)

)
.

(ii) If V ∈W 2m,∞
Σ

(Rn \Σ), then, for all λ ,µ ∈ ρ(AN,i,e) and k = 0,1, . . . ,m,

(a) γ̂(µ)∗(AN,i,e−λ )−k ∈S n−1
2k+3/2 ,∞

(
L2(Rn),L2(Σ)

)
,

(b) γ̂(µ)∗(AN,i,e−λ )−k ∈S n−1
2k+1/2 ,∞

(
L2(Rn),H1(Σ)

)
,

(c) (AN,i,e−λ )−k
γ̂(µ) ∈S n−1

2k+3/2 ,∞

(
L2(Σ),L2(Rn)

)
.

Proof. We prove assertion (i); the proof of (ii) is analogous. As

ran(Afree−λ )−1 = domAfree = H2(Rn)⊂ H2
Σ(Rn)
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we conclude from Lemma 4.15 (i) that the inclusion

ran
(
(Afree−µ)−1(Afree−λ )−k)⊂ H2k+2

Σ
(Rn)

holds for all k = 0,1, . . . ,m. Moreover, since by Proposition 3.1 we have Afree = T̃ � ker Γ̃0,
Proposition 2.11 (ii) implies that

γ̃(µ)∗(Afree−λ )−k = Γ̃1(Afree−µ)−1(Afree−λ )−k

and hence
ran
(
γ̃(µ)∗(Afree−λ )−k)⊂ H2k+3/2(Σ) (4.4.1)

by the properties of the trace map Γ̃1, cf. (4.1.3). Now the estimates in (a) and (b) follow
from (4.4.1) and Lemma 2.22 with K = L2(Rn), r2 = 2k+ 3

2 and with r1 = 0 for (a) and
r1 = 1 for (b), respectively. The estimate in (c) follows from (a) by taking the adjoint. Note
that in the proof of item (ii) one needs Lemma 4.15 (ii).

4.4.2 Resolvent power differences in Sp,∞-classes

In the next two theorems we obtain Sp,∞-estimates for the resolvent power differences
of the self-adjoint free and decoupled Schrödinger operators Afree and AN,i,e, AD,i,e with
certain local smoothness assumptions on the potential V in the differential expression.

Theorem 4.17. Let AD,i,e and Afree be the self-adjoint operators defined in (4.1.10) and
(4.1.12), respectively. Let M̃ be the Weyl function from Proposition 4.2. Assume that for
some m ∈ N the potential V satisfies V ∈W 2m−2,∞

Σ
(Rn). Then the following statements

hold.
(i) For all l = 1,2, . . . ,m and all λ ∈ ρ(Afree)∩ρ(AN,i,e)

(Afree−λ )−l− (AD,i,e−λ )−l ∈S n−1
2l ,∞

(
L2(Rn)

)
. (4.4.2)

(ii) If m > n−1
2 , then for all l ∈N such that n−1

2 < l ≤m, and all λ ∈ ρ(Afree)∩ρ(AD,i,e)
the resolvent power difference in (4.4.2) belongs to the trace class, and the formula

tr
(
(Afree−λ )−l− (AD,i,e−λ )−l)

=
1

(l−1)!
tr

(
dl−1

dλ l−1

(
M̃(λ )−1M̃′(λ )

)) (4.4.3)

holds.

Proof. (i) Fix an arbitrary λ0 ∈ C \R and let γ̃ be the γ-field as in Proposition 4.2. By
Theorem 4.4 (ii) the resolvent difference of Afree and AD,i,e at the point λ0 can be written
in the form

(Afree−λ0)
−1− (AD,i,e−λ0)

−1 = γ̃(λ0)M̃(λ0)
−1

γ̃(λ 0)
∗.
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Furthermore, by Proposition 4.2 (ii) the operator M̃(λ0) is bijective and closed as an opera-
tor from L2(Σ) onto H1(Σ). Hence, dom

(
M̃(λ0)

−1)=H1(Σ) and since, M̃(λ0)
−1 is closed

as an operator from H1(Σ) into L2(Σ), we conclude that M̃(λ0)
−1 ∈ B

(
H1(Σ),L2(Σ)

)
. Set

H := AD,i,e, K := Afree, F1 := γ̃(λ0), F2 := M(λ0)
−1

γ̃(λ 0)
∗.

Then Proposition 4.16 (i) implies that the assumptions in Lemma 2.4 are satisfied with

a =
2

n−1
, b1 =

3/2
n−1

, b2 =
1/2

n−1
, r = m.

Since b = b1 +b2−a = 0, Lemma 2.4 implies

(Afree−λ )−l− (AD,i,e−λ )−l ∈S n−1
2l ,∞

(
L2(Rn)

)
for all λ ∈ ρ(AN,i,e)∩ρ(Afree).

(ii) For all l ∈ N such that n−1
2 < l ≤ m, the operator in (4.4.2) belongs to the trace class

by item (i). The trace formula can be proved as in Theorem 3.12 (ii) with AD, AN, M and γ

replaced by AD,i,e, Afree, M̃ and γ̃ , respectively.

Theorem 4.18. Let AN,i,e and Afree be the self-adjoint operators defined in (4.1.11) and
(4.1.12), respectively. Let M̂ be the Weyl function from Proposition 4.9. Assume that for
some m ∈ N the potential V satisfies V ∈W 2m−2,∞

Σ
(Rn \Σ). Then the following statements

hold.
(i) For all l = 1,2, . . . ,m and all λ ∈ ρ(Afree)∩ρ(AN,i,e)

(AN,i,e−λ )−l− (Afree−λ )−l ∈S n−1
2l ,∞

(
L2(Rn)

)
. (4.4.4)

(ii) If m > n−1
2 , then for all l ∈N such that n−1

2 < l ≤m, and all λ ∈ ρ(Afree)∩ρ(AN,i,e)
the resolvent power difference in (4.4.4) belongs to the trace class, and the formula

tr
(
(AN,i,e−λ )−l− (Afree−λ )−l)

=
1

(l−1)!
tr

(
dl−1

dλ l−1

(
M̂(λ )−1M̂′(λ )

)) (4.4.5)

holds.

Proof. (i) We fix an arbitrary λ0 ∈ C\R and let γ̂ be the γ-field from Proposition 4.9. By
Theorem 4.11 (ii) the resolvent difference of Afree and AN,i,e at the point λ0 can be written
in the form

(AN,i,e−λ0)
−1− (Afree−λ0)

−1 = γ̂(λ0)M̂(λ0)
−1

γ̂(λ 0)
∗.

Furthermore, by Proposition 4.9 (ii) the operator M̂(λ0) is bijective and closed as an op-
erator from L2(Σ) onto H1(Σ). Hence, dom

(
M̂(λ0)

−1) = H1(Σ) and since, M̂(λ0)
−1 is
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closed as an operator from H1(Σ) into L2(Σ), we conclude M̂(λ0)
−1 ∈ B

(
H1(Σ),L2(Σ)

)
.

Set
H := Afree, K := AN,i,e, F1 := γ̂(λ0), F2 := M̂(λ0)

−1
γ̂(λ 0)

∗.

Then Proposition 4.16 (ii) (b) and (c) imply that the assumptions in Lemma 2.4 are satisfied
with

a =
2

n−1
, b1 =

3/2
n−1

, b2 =
1/2

n−1
, r = m.

Since b = b1 +b2−a = 0, Lemma 2.4 implies

(AN,i,e−λ )−l− (Afree−λ )−l ∈S n−1
2l ,∞

(
L2(Rn)

)
for all λ ∈ ρ(AN,i,e)∩ρ(Afree).

(ii) For all l ∈ N such that n−1
2 < l ≤ m, the operator in (4.4.4) belongs to the trace class

by item (i). The trace formula can be proved as in Theorem 3.12 (ii) with AD, AN, M and γ

replaced by Afree, AN,i,e, M̂ and γ̂ , respectively.

As a consequence of Theorems 4.17 and 4.18 we derive sufficient condition for the ex-
istence and completeness of the wave operators of the scattering pairs {Afree,AD,i,e} and
{Afree,AN,i,e}.
Corollary 4.19. Let AD,i,e, AN,i,e and Afree be the self-adjoint operators defined in (4.1.10),(4.1.11)
and (4.1.12), respectively. Assume that the potential V satisfies V ∈W k,∞

Σ
(Rn) with k >

n−3. Then the following statements hold.
(i) The wave operators W±(Afree,AD,i,e) for the scattering pair {Afree,AD,i,e} exist and

are complete, and hence the absolutely continuous parts of AD,i,e and Afree are uni-
tary equivalent.

(ii) The wave operators W±(Afree,AN,i,e) for the scattering pair {Afree,AN,i,e} exist and
are complete, and hence the absolutely continuous parts of AN,i,e and Afree are uni-
tary equivalent.

Remark 4.20. In particular, if V ≡ 0, then the wave operators for the scattering pairs
{Afree,AD,i,e} and {Afree,AN,i,e} exist and are complete for all space dimensions n ≥ 2
and σac(AD,e) = σac(AN,e) =

[
0,∞

)
.

Remark 4.21. Note that for the pair {Afree,AN,i,e} the assumption in Corollary 4.19 on the
smoothness of the potential V can be slightly weakened, cf. Theorem 4.18.

In the next theorem we obtain Sp,∞-estimates for the resolvent power difference of the self-
adjoint operators Aδ ,α and Afree. One can observe that the singular values may converge
faster than in Theorems 4.17 and 4.18.

Theorem 4.22. Let α ∈ L∞(Σ) be a real-valued function on Σ, and let Aδ ,α and Afree be
the self-adjoint operators defined in (4.2.6) and (4.1.12), respectively. Let M̃ be the Weyl
function from Proposition 4.2. Assume that the potential V satisfies V ∈W 2m−2,∞

Σ
(Rn) for

some m ∈ N. Then the following statements hold.
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(i) For all l = 1,2, . . . ,m and all λ ∈ ρ(Aδ ,α)∩ρ(Afree)

(Aδ ,α −λ )−l− (Afree−λ )−l ∈S n−1
2l+1 ,∞

(
L2(Rn)

)
. (4.4.6)

(ii) If m> n
2−1, then for all l ∈N such that n

2−1< l≤m, the resolvent power difference
in (4.4.6) belongs to the trace class, and the formula

tr
(
(Aδ ,α −λ )−l− (Afree−λ )−l)

=
1

(l−1)!
tr

(
dl−1

dλ l−1

((
I−αM̃(λ )

)−1
αM̃′(λ )

))

holds.

Proof. (i) We prove item (i) by applying Lemma 2.4. Fix an arbitrary λ0 ∈C\R, and let γ̃

be as in Proposition 4.2. By Theorem 4.6 the resolvent difference of Aδ ,α and Afree at the
point λ0 can be written in the form

(Aδ ,α −λ0)
−1− (Afree−λ0)

−1 = γ̃(λ0)
(
I−αM̃(λ0)

)−1
αγ̃(λ 0)

∗,

where (I−αM̃(λ0))
−1α ∈ B(L2(Σ)). Proposition 4.16 (i) (a) and (c) imply that the as-

sumptions in Lemma 2.4 are satisfied with

H = Aδ ,α , K = Afree, F1 = γ̃(λ0), F2 =
(
I−αM̃(λ0)

)−1
αγ̃(λ 0)

∗,

a =
2

n−1
, b1 = b2 =

3/2
n−1

, r = m.

Since b = b1 +b2−a = 1
n−1 , Lemma 2.4 implies the assertion of the theorem.

(ii) By item (i) the operator in (4.4.6) belongs to the trace class for all l ∈ N such that
n
2 − 1 < l ≤ m. The trace formula can be proved as in Theorem 3.17 (ii) with A[B1], A[B2],
M, γ , B1 and B2 replaced by Aδ ,α , Afree, M̃, γ̃ , α and 0, respectively.

The next corollary shows that for sufficiently smooth potentials V the wave operators of
the scattering system {Aδ ,α ,Afree} exist in any space dimension.

Corollary 4.23. Let the assumptions be as in Theorem 4.22. If, for some k > n− 4, the
potential V satisfies V ∈ W k,∞

Σ
(Rn), then the wave operators W±(Aδ ,α ,Afree) exist and

are complete, and hence the absolutely continuous parts of Aδ ,α and Afree are unitary
equivalent.

Remark 4.24. In particular, if V ≡ 0, then W±(Aδ ,α ,Afree) exist and are complete in any
space dimension n≥ 2. Furthermore, we obtain that σac(Aδ ,α) = [0,∞).
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In the next theorem we obtain Sp,∞-estimates for the resolvent power differences of the
self-adjoint operators Aδ ′,β and AN,i,e. One can notice the same faster convergence of the
singular values as in Theorem 4.22.

Theorem 4.25. Let β be a real-valued function on Σ such that 1/β ∈ L∞(Σ), and let
Aδ ′,β and AN,i,e be the self-adjoint operators defined in (4.3.5) and (4.1.11), respectively.
Let M̂ be the Weyl function from Proposition 4.9. Assume that the potential V satisfies
V ∈W 2m−2,∞

Σ
(Rn \Σ) for some m ∈ N. Then the following statements hold.

(i) For all l = 1,2, . . . ,m and all λ ∈ ρ(Aδ ′,β )∩ρ(Afree)

(Aδ ′,β −λ )−l− (AN,i,e−λ )−l ∈S n−1
2l+1 ,∞

(
L2(Rn)

)
. (4.4.7)

(ii) If m> n
2−1, then for all l ∈N such that n

2−1< l≤m, the resolvent power difference
in (4.4.7) belongs to the trace class, and the formula

tr
(
(Aδ ′,β −λ )−l− (AN,i,e−λ )−l)

=
1

(l−1)!
tr

(
dl−1

dλ l−1

((
I−β

−1M̂(λ )
)−1

β
−1M̂′(λ )

))

holds.

Proof. (i) Fix an arbitrary λ0 ∈ C \R and let γ̂ be the γ-field from Proposition 4.9. By
Theorem 4.13 the resolvent difference of Aδ ′,β and AN,i,e at the point λ0 can be written in
the form

(Aδ ′,β −λ0)
−1− (AN,i,e−λ0)

−1 = γ̂(λ0)
(
I−β

−1M̂(λ0)
)−1

β
−1

γ̂(λ 0)
∗,

where (I−β−1M̂(λ0))
−1β−1 ∈ B(L2(Σ)). Proposition 4.16 (i) (a) and (c) imply that the

assumptions in Lemma 2.4 are satisfied with

H = Aδ ′,β , K = Afree, F1 = γ̂(λ0), F2 =
(
I−β

−1M̂(λ0)
)−1

β
−1

γ̂(λ 0)
∗,

a =
2

n−1
, b1 = b2 =

3/2
n−1

, r = m.

Since b = b1 +b2−a = 1
n−1 , Lemma 2.4 implies the assertion of the theorem.

(ii) By item (i) the operator in (4.4.7) belongs to the trace class for all l ∈ N such that
n
2 − 1 < l ≤ m. The trace formula can be proved as in Theorem 3.17 (ii) with A[B2], A[B1],
M, γ , B2 and B1 replaced by Aδ ′,β , AN,i,e, M̂, γ̂ , 1/β and 0, respectively.

In next theorem we get Sp,∞-properties of the resolvent power difference of Aδ ′,β and
Afree.
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Theorem 4.26. Let β be a real-valued function on Σ such that 1/β ∈ L∞(Σ), and let
Aδ ′,β , AN,i,e and Afree be the self-adjoint operators defined in (4.3.5), (4.1.11) and (4.1.12),
respectively. Let M̂ be the Weyl function from Proposition 4.9. Assume that the potential V
satisfies V ∈W 2m−2,∞

Σ
(Rn \Σ) for some m ∈ N. Then the following statements hold.

(i) For all l = 1,2, . . . ,m and all λ ∈ ρ(Aδ ′,β )∩ρ(Afree)

(Aδ ′,β −λ )−l− (Afree−λ )−l ∈S n−1
2l ,∞

(
L2(Rn)

)
. (4.4.8)

(ii) If m > n−1
2 , then, for all l ∈N such that n−1

2 < l ≤m, the resolvent power difference
in (4.4.8) belongs to the trace class, and the formula

tr
(
(Aδ ′,β −λ )−l− (Afree−λ )−l)

=
1

(l−1)!
tr

(
dl−1

dλ l−1

((
I− M̂(λ )β−1)−1M̂(λ )−1M̂′(λ )

))
holds.

Proof. (i) Let us fix λ0 ∈ ρ(Aδ ′,β )∩ρ(Afree)∩ρ(AN,i,e). By Theorem 4.18 (i)

(Afree−λ0)
−l− (AN,i,e−λ0)

−l ∈S n−1
2l ,∞

(
L2(Rn)

)
. (4.4.9)

By Theorem 4.25 (i)

(Aδ ′,β −λ0)
−l− (AN,i,e−λ0)

−l ∈S n−1
2l+1 ,∞

(
L2(Rn)

)
. (4.4.10)

Taking the difference of (4.4.9) and (4.4.10) we get the claim for all λ ∈ ρ(Aδ ′,β ) ∩
ρ(Afree)∩ρ(AN,i,e). In order to include the points in the discrete set ρ(Aδ ′,β )∩ρ(Afree)∩
σ(AN,i,e) we argue with contour integrals.
(ii) By item (i) the operator in (4.4.8) belongs to the trace class for all l ∈ N such that
n−1

2 < l ≤ m. The trace formula can be proved as in Corollary 3.19 (ii) with A[B], AD, AN,
M and B replaced by Aδ ′,β , Afree, AN,i,e, M̂ and β−1, respectively.

The following corollary is the counterpart of Corollary 4.23 for the scattering system
{Aδ ′,β ,Afree}.

Corollary 4.27. Let the assumptions be as in Theorem 4.25. If the potential V satisfies
V ∈W k,∞

Σ
(Rn \Σ) with k > n− 3, then the wave operators W±(Aδ ′,β ,Afree) exist and are

complete, and hence the absolutely continuous parts of Aδ ′,β and Afree are unitary equiva-
lent.

Remark 4.28. In particular, if V ≡ 0, then W±(Aδ ′,β ,Afree) exist and are complete in any
space dimension n≥ 2. Furthermore, we obtain that σac(Aδ ′,β ) = [0,∞).
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Remark 4.29. In Chapter 3 trace formulae were proven for C∞-smooth coefficients, whereas
in this chapter we formulate trace formulae for rough potentials and say that the proof is
analogous. In the complete proofs of Theorem 4.17 (ii), Theorem 4.18 (ii), Theorem 4.22 (ii),
Theorem 4.25 (ii) and Theorem 4.26 (ii) one should tackle the smoothness of the potential
V carefully, using Lemma 4.15.

4.5 Sesquilinear forms approach

Another rigorous way to define self-adjoint Schrödinger operators with surface interactions
uses closed semi-bounded sesquilinear forms and the first representation theorem. We
show below that both approaches lead to the same operators. The sesquilinear form in the
δ -case is well-known, see e.g. [BEKS94], while the form in the δ ′-case is new to the best
of the author’s knowledge.
Throughout this section we always assume that V ≡ 0 and we write −∆δ ,α and −∆δ ′,β
instead of Aδ ,α and Aδ ′,β , respectively. Using sesquilinear forms we also prove finiteness
of the negative spectra of −∆δ ,α and −∆δ ′,β .

4.5.1 Definitions via sesquilinear forms

In the first proposition of this subsection we provide a closed semi-bounded sesquilinear
form such that the self-adjoint operator −∆δ ,α corresponds to this form by the first repre-
sentation theorem.

Proposition 4.30. The sesquilinear form

tδ ,α [ f ,g] :=
(
∇ f ,∇g

)
−
(
α f |Σ,g|Σ

)
Σ

defined for f ,g ∈ H1(Rn) is symmetric, closed and semi-bounded from below. The self-
adjoint operator corresponding to tδ ,α is −∆δ ,α , i.e.,

(−∆δ ,α f ,g) = tδ ,α [ f ,g]

holds for all f ∈ dom(−∆δ ,α) and g ∈ H1(Rn).

Proof. Since α is a real-valued function, it follows that the form tδ ,α is symmetric. In
order to show that this form is closed and semi-bounded, we consider the forms

t[ f ,g] := (∇ f ,∇g) and t′[ f ,g] :=−
(
α f |Σ,g|Σ

)
Σ

on H1(Rn), so that tδ ,α = t+ t′ holds. Note that t is closed and non-negative. Let t ∈ (1
2 ,1)

be fixed. Since the trace map is continuous, there exists ct > 0 such that ‖ f |Σ‖Ht−1/2(Σ) ≤
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ct‖ fi‖Ht(Ωi) is valid for all f = fi⊕ fe ∈ Ht(Rn). Hence it follows from Ehrling’s lemma
that for every ε > 0 there exists a constant Ci(ε) such that

‖ f |Σ‖Σ ≤ ct‖ fi‖Ht(Ωi) ≤ ε‖ fi‖H1(Ωi)
+Ci(ε)‖ fi‖L2(Ωi)

(4.5.1)

holds for all f = fi⊕ fe ∈H1(Rn). Since ‖ f‖H1(Rn)≥‖ fi‖H1(Ωi)
and ‖ f‖L2(Rn)≥‖ fi‖L2(Ωi)

,
the estimate (4.5.1) implies

‖ f |Σ‖Σ ≤ ε‖ f‖H1(Rn)+Ci(ε)‖ f‖L2(Rn) (4.5.2)

The estimate (4.5.2) yields that the form t′ is bounded with respect to t with form bound
< 1, and hence tδ ,α = t+ t′ is closed and semi-bounded by [K95, Theorem VI.1.33]. Thus
by the first representation theorem [K95, Theorem VI.2.1] the self-adjoint operator −∆̃δ ,α

corresponds to the form tδ ,α .

It remains to show that −∆̃δ ,α = −∆δ ,α . First we show the inclusion dom(−∆δ ,α) ⊂
dom tδ ,α . For this let f = fi⊕ fe ∈ dom(−∆δ ,α). According to (4.2.6) we have, in partic-
ular,

fi ∈ H3/2(Ωi)⊂ H1(Ωi), fe ∈ H3/2(Ωe)⊂ H1(Ωe), and fi|Σ = fe|Σ.

Making use of [AF03, Theorems 5.24 and 5.29] a standard extension argument implies
that f ∈ H1(Rn) and hence dom(−∆δ ,α)⊂ dom tδ ,α .
Next let f = fi⊕ fe ∈ dom(−∆δ ,α) and g = gi⊕ ge ∈ dom tδ ,α . Then tδ ,α [ f ,g] is well
defined. By the first Green’s identity (4.1.7) we have

(∇ fi,∇ fi)i− (∂νi fi|Σ,gi|Σ)Σ = (−∆ fi,gi)i,

(∇ fe,∇ge)e− (∂νe fe|Σ,ge|Σ)Σ = (−∆ fe,ge)e.

Using this and the relation α f |Σ = ∂νe fe|Σ +∂νi fi|Σ we obtain

tδ ,α [ f ,g] = (∇ f ,∇g)−
(
α f |Σ,g|Σ

)
Σ

= (∇ fi,∇gi)i +(∇ fe,∇ge)e−
(
∂νi fi|Σ,gi|Σ

)
Σ
−
(
∂νe fe|Σ,ge|Σ

)
Σ

= (−∆ fi,gi)i +(−∆ fe,ge)e =
(
−∆ f ,g

)
.

Now the first representation theorem (see [K95, Theorem VI.2.1]) implies that f ∈ dom(−∆̃δ ,α)

and −∆̃δ ,α f = −∆ f ; thus −∆δ ,α ⊂ −∆̃δ ,α . Since both operators −∆δ ,α and −∆̃δ ,α are
self-adjoint, we conclude that −∆δ ,α =−∆̃δ ,α .

In the second proposition of this subsection we provide a symmetric closed semi-bounded
sesquilinear form such that the self-adjoint operator −∆δ ′,β corresponds to this form by
the first representation theorem.
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Proposition 4.31. The sesquilinear form

tδ ′,β [ f ,g] :=
(
∇ f ,∇g

)
−
(
β
−1( fe|Σ− fi|Σ),ge|Σ−gi|Σ

)
Σ

defined for f ,g ∈ H1(Rn \ Σ) is symmetric, closed and semi-bounded from below. The
self-adjoint operator corresponding to tδ ′,β is −∆δ ′,β , i.e.,

(−∆δ ′,β f ,g) = tδ ′,β [ f ,g]

holds for all f ∈ dom(−∆δ ′,β ) and g ∈ H1(Rn \Σ).

Proof. Since β is a real-valued function, it follows that the form tδ ′,β is symmetric. In
order to show that it is closed and semi-bounded, we consider the forms

t[ f ,g] := (∇ f ,∇g) and t′[ f ,g] :=−
(
β
−1( fe|Σ− fi|Σ),ge|Σ−gi|Σ

)
Σ

on H1(Rn \Σ), so that tδ ′,β = t+ t′ holds. Note that t is closed and non-negative. Let
t ∈ (1

2 ,1) be fixed. Since the trace map is continuous, there exists ct > 0 such that
‖ fi|Σ‖Ht−1/2(Σ) ≤ ct‖ fi‖Ht(Ωi) is valid for all fi ∈ Ht(Ωi). Hence it follows from Ehrling’s
lemma that for every ε > 0 there exists a constant Ci(ε) such that

‖ fi|Σ‖Σ ≤ ct‖ fi‖Ht(Ωi) ≤ ε‖ fi‖H1(Ωi)
+Ci(ε)‖ fi‖L2(Ωi)

(4.5.3)

holds for all fi ∈H1(Ωi). We decompose the exterior domain in the form Ωe = Ωe,1∪Ωe,2,
where Ωe,1 is bounded, Ωe,2 is unbounded, and the C∞-boundary of Ωe,1 is the disjoint
union of Σ and ∂Ωe,2. The restriction of a function fe to Ωe,1 is denoted by fe,1. Then
again the continuity of the trace map and Ehrling’s lemma show that for every ε > 0 there
exists a constant Ce(ε) such that

‖ fe|Σ‖Σ = ‖ fe,1|Σ‖Σ ≤ ‖ fe,1|∂Ωe,1‖L2(∂Ωe,1)

≤ ε‖ fe,1‖H1(Ωe,1)
+Ce(ε)‖ fe,1‖L2(Ωe,1)

≤ ε‖ fe‖H1(Ωe)
+Ce(ε)‖ fe‖L2(Ωe)

(4.5.4)

holds for all fe ∈H1(Ωe). The estimates (4.5.3) and (4.5.4) yield that the form t′ is bounded
with respect to t with form bound < 1, and hence tδ ′,β = t+ t′ is closed and semi-bounded
by [K95, Theorem VI.1.33]. The remaining statement follows from [K95, Theorem VI.2.1]
and similar arguments as in the proof of Proposition 4.30.

4.5.2 Finiteness of negative spectra

In this subsection we show that the negative spectra of the self-adjoint operators −∆δ ,α

and −∆δ ′,β are finite. We recall some preparatory facts on semi-bounded quadratic forms
first.
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Definition 4.32. For a (not necessarily closed or semi-bounded) quadratic form q in a
Hilbert spaceH we define the number of negative squares κ−(q) by

κ−(q) :=sup
{

dimF : F linear subspace of domq ,

such that ∀ f ∈ F \{0} : q[ f ]< 0
}
.

Assume that A is a (not necessarily semi-bounded) self-adjoint operator in a Hilbert space
Hwith the corresponding spectral measure EA(·). Define the possibly non-closed quadratic
form sA by

sA[ f ] := (A f , f )H, domsA := domA.

If, in addition, A is semi-bounded, then by [K95, Theorem VI.1.27] the form sA is clos-
able, and we denote its closure by sA. According to the spectral theorem for self-adjoint
operators and [BS87, 10.2 Theorem 3]

dimranEA(−∞,0) = κ−(sA) = κ−(sA). (4.5.5)

In particular, if κ−(sA) is finite, then the self-adjoint operator A has finitely many negative
eigenvalues with finite multiplicities.
Now we are ready to formulate and prove the main results of this subsection. We mention
that finiteness of the negative spectrum in the case of δ -potentials on hypersurfaces was
also shown in [BEKS94] by other methods.

Theorem 4.33. Let α,β : Σ→ R be such that α,1/β ∈ L∞(Σ) and let the self-adjoint
operators −∆δ ,α and −∆δ ′,β be as above. Then the following statements hold.

(i) σess(−∆δ ,α) = σess(−∆δ ′,β ) = [0,∞).

(ii) The self-adjoint operators −∆δ ,α and −∆δ ′,β have finitely many negative eigenval-
ues with finite multiplicities.

Proof. (i) According to Theorem 4.22 (i) the resolvent difference of the self-adjoint oper-
ators −∆δ ,α and −∆free is compact; thus

σess(−∆δ ,α) = σess(−∆free) = [0,∞).

Analogously, according to Theorem 4.26 (i) the resolvent difference of the self-adjoint
operators −∆δ ′,β and −∆free is also compact. Hence

σess(−∆δ ′,β ) = σess(−∆free) = [0,∞).

(ii) Let us introduce the (in general non-closed) quadratic forms

s−∆δ ,α
[ f ] :=

(
−∆δ ,α f , f

)
, dom(s−∆δ ,α

) := dom(−∆δ ,α),

s−∆
δ ′,β [ f ] :=

(
−∆δ ′,β f , f

)
, dom(s−∆

δ ′,β ) := dom(−∆δ ′,β ).



88 4 Schrödinger operators with δ and δ ′-potentials supported on hypersurfaces

Applying the first Green’s identity (4.1.7) to these expressions and taking the definitions
(4.2.6), (4.3.5) of the domains of the operators −∆δ ,α , −∆δ ′,β into account we obtain

s−∆δ ,α
[ f ] =

(
−∆ fi, fi

)
i +
(
−∆ fe, fe

)
e

=
(
∇ fi,∇ fi

)
i−
(
∂νi fi|Σ, fi|Σ

)
Σ
+
(
∇ fe,∇ fe

)
e−
(
∂νe fe|Σ, fe|Σ

)
Σ

=
(
∇ f ,∇ f

)
−
(
α f |Σ, f |Σ

)
Σ

and

s−∆
δ ′,β [ f ] =

(
−∆ fi, fi

)
i +
(
−∆ fe, fe

)
e

=
(
∇ fi,∇ fi

)
i−
(
∂νi fi|Σ, fi|Σ

)
Σ
+
(
∇ fe,∇ fe

)
e−
(
∂νe fe|Σ, fe|Σ

)
Σ

=(∇ f ,∇ f )+
(
β
−1( fe|Σ− fi|Σ), fi|Σ

)
Σ
−
(
β
−1( fe|Σ− fi|Σ), fe|Σ

)
Σ

=
(
∇ f ,∇ f

)
−
(
β
−1( fe|Σ− fi|Σ), fe|Σ− fi|Σ

)
Σ
.

For a bounded function σ : Σ→ R define the quadratic form qσ

qσ [ f ] :=
(
∇ f ,∇ f

)
−
(
σ fi|Σ, fi|Σ

)
Σ
−
(
σ fe|Σ, fe|Σ

)
Σ
, domqσ := H1(Rn \Σ).

It follows from [B62, Theorem 6.9] (cf. the proof of Proposition 4.31 above) that the
form qσ is closed and semi-bounded, and the self-adjoint operator corresponding to qσ

has finitely many negative eigenvalues with finite multiplicities. Thus, by (4.5.5), we have
κ−(qσ )< ∞. It can easily be checked that

dom(s−∆δ ,α
)⊂ dom(q|α|/2) and ∀ f ∈ dom(s−∆δ ,α

) : s−∆δ ,α
[ f ]≥ q|α|/2[ f ].

Using the inequality |a−b|2 ≤ 2(|a|2 + |b|2) for complex numbers a,b we obtain

dom(s−∆
δ ′,β )⊂ dom(q2/|β |) and ∀ f ∈ dom(s−∆

δ ′,β ) : s−∆
δ ′,β [ f ]≥ q2/|β |[ f ].

These observations yield that

κ−(s−∆δ ,α
)≤ κ−(q|α|/2)< ∞ and κ−(s−∆

δ ′,β )≤ κ−(q2/|β |)< ∞.

From this and (4.5.5) it follows that the negative spectra of −∆δ ,α and −∆δ ′,β are finite.

4.6 Comments

Schrödinger operators with point δ -interactions in the simplest one-dimensional case ap-
peared already more than eighty years ago in the paper [KP31] by Kronig and Penney,
where they were used in the quantum mechanical model of a charged free particle in a
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one-dimensional lattice. It took thirty years, until a model of a point δ -interaction in the
three-dimensional case based on the operator extension theory was proposed by Berezin
and Faddeev in [BF61]. An approach to point interactions in arbitrary space dimensions
based on Pontryagin spaces was developed by Shondin [Sho88]. For more details on point
interactions see the monographs [AGHH05, AK00] and the references therein.
Schrödinger operators with δ and δ ′-potentials on hypersurfaces were investigated system-
atically first only in the late 80s under additional symmetry assumptions in [AGS87,Sh88]
by Antoine, Gesztesy and Shabani. In these papers the main tool of analysis is the reduc-
tion to Sturm-Liouville operators via separation of variables. A rigorous approach to the
definition and the spectral analysis of Schrödinger operators with δ -interactions on general
hypersurfaces is provided in [BEKS94] by Brasche, Exner, Kuperin and Šeba. In particu-
lar, Krein’s formula and a variant of the Birman-Schwinger principle in Theorem 4.6 are
already contained in [BEKS94, Corollary 2.1 and Corollary 2.3], which are derived from
the corresponding sesquilinear form, cf. Proposition 4.30.
The development of an approach to δ ′-interactions on general hypersurfaces has been
posed as an open problem in [E08, Open problem 7.2]. The treatment of these poten-
tials is more involved because they are more singular. In the thesis a solution of this open
problem is presented.
Schatten-von Neumann estimates for the resolvent power differences of the free operator
Afree and the decoupled operators AD,i,e and AN,i,e were investigated by Deift and Simon
[DS75, Lemma 3], Jensen and Kato [JK78], Bardos, Guillot, and Ralston [BGR82], Grubb
[G84a] and more recently by Carron in [Ca02, Théorème 1.1] and by Alpay and Behrndt
in [AB09, Theorem 4.4 (iii)]. It seems that analogous estimates for δ and δ ′-couplings,
given in Theorems 4.22, 4.25 and 4.26, were not obtained before. The trace formulae in
Subsection 4.4.2 extend the corresponding trace formula in [Ca02, Théorème 2.2] to the
case of δ and δ ′-couplings.
The proof of finiteness of the negative spectra for the operators −∆δ ,α and −∆δ ′,β in
Theorem 4.33 is reduced to a result by Birman [B62, Theorem 6.9], which states finiteness
of negative spectra of Robin Laplacians on exterior domains. In the case of δ -interactions
finiteness of negative spectra can also be deduced from the spectral estimates in [BEKS94,
Theorem 4.2 (iii)]. The operator −∆δ ′,β with β having unbounded inverse can be treated
as in Marletta and Rosenblum [MR09], and in this case the number of negative eigenvalues
can be infinite.
Finally, we mention some of the recent significant papers in the area of interactions sup-
ported on hypersurfaces: Brown, Eastham, and Wood [BEW09], Exner [E03, E05], Exner
and Fraas [EF09], Exner and Ichinose [EI01], Exner and Kondej [EK02, EK03], Exner
and Yoshitomi [EY02], Kondej and Veselic [KV07] for studies of eigenvalues; Birman,
Shterenberg, and Suslina [BSS00], Exner and Fraas [EF07], Exner and Yoshitomi [EY01],
Suslina and Shterenberg [SuSh01] for results on the absolutely continuous spectrum; Exner
and his co-authors [EK05, EN03, EY02a, EY04] for related problems on Schrödinger op-
erators with δ -interactions. The contents of these papers are partially reviewed in [E08],
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see also the references in this review paper.



5 ROBIN LAPLACIANS ON A HALF-SPACE

In this chapter we define self-adjoint Laplace operators on a half-space subject to Robin
and more general non-local self-adjoint boundary conditions. We provide an analogue of
the Birman-Schwinger principle for the characterization of the point spectra and Krein’s
formula for the resolvent differences.
Furthermore, we give a sufficient condition for H2-regularity of the operator domains. As
the underlying problem of this chapter we study compactness of the resolvent differences
and Schatten-von Neumann properties of the resolvent power differences of self-adjoint
Robin Laplacians. The non-compactness of the boundary leads to serious changes in the
proofs in comparison with the previous chapters. The Schatten-von Neumann estimates in
this chapter complement the works [GorK82, DM91, B62]. The material of this chapter is
partially contained in the work of the author [LR12].

5.1 Preliminaries

Let Rn
+, n ≥ 2, be the half-space

{
(x′,xn)

> : x′ ∈ Rn−1,xn ∈ R+

}
with the boundary

∂Rn
+. We denote by (·, ·) and (·, ·)∂Rn

+
the inner products in the Hilbert spaces L2(Rn

+)

and L2(∂Rn
+), respectively. Throughout this chapter we deal with the Laplace differential

expression on Rn
+. For a function f ∈C∞(Rn

+) we introduce the following trace

∂ν f |∂Rn
+

:=−∂xn f |∂Rn
+
.

For s > 3/2 the trace mapping

Hs(Rn
+) 3 f 7→

{
f |∂Rn

+
,∂ν f |∂Rn

+

}
∈ Hs−1/2(∂Rn

+)×Hs−3/2(∂Rn
+) (5.1.1)

is the extension by continuity of the trace mapping defined on C∞-functions and the map-
ping in (5.1.1) is surjective onto Hs−1/2(∂Rn

+)×Hs−3/2(∂Rn
+). Besides the Sobolev

spaces Hs(Rn
+) defined in Section 2.3 we also actively employ the spaces

Hs
∆(R

n
+) :=

{
f ∈ Hs(Rn

+) : ∆ f ∈ L2(Rn
+)
}
, s≥ 0. (5.1.2)

Observe that for s ≥ 2 the spaces Hs
∆
(Rn

+) and Hs(Rn
+) coincide. We also note that for

s ∈ (0,2) the space Hs
∆
(Rn

+) can be viewed as an interpolation space between H2(Rn
+) and

H0
∆
(Rn

+). By [F67] the trace mapping admits an extension by continuity to the mapping

Hs
∆(R

n
+) 3 f 7→

{
f |∂Rn

+
,∂ν f |∂Rn

+

}
∈ Hs−1/2(∂Rn

+)×Hs−3/2(∂Rn
+), (5.1.3)

91
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with s ∈ [0,2), where the mappings

Hs
∆(R

n
+) 3 f 7→ f |∂Rn

+
∈ Hs−1/2(∂Rn

+), s ∈ [0,2),

Hs
∆(R

n
+) 3 f 7→ ∂ν f |∂Rn

+
∈ Hs−3/2(∂Rn

+), s ∈ [0,2),
(5.1.4)

are surjective onto Hs−1/2(∂Rn
+) and onto Hs−3/2(∂Rn

+), respectively. We also recall that
for f ,g ∈ H3/2

∆
(Rn

+) the second Green’s identity(
−∆ f ,g

)
−
(

f ,−∆g
)
=
(

f |∂Rn
+
,∂νg|∂Rn

+

)
∂Rn

+
−
(
g|∂Rn

+
,∂ν f |∂Rn

+

)
∂Rn

+
(5.1.5)

holds.
The minimal symmetric operator

A f :=−∆ f , domA := H2
0 (Rn

+),

is closed and densely defined in L2(Rn
+) with the adjoint of the form

A∗ f =−∆ f , domA∗ = H0
∆(R

n
+).

Self-adjoint extensions of A subject to Dirichlet and Neumann boundary conditions

AD f :=−∆ f , domAD :=
{

f ∈ H2(Rn
+) : f |∂Rn

+
= 0
}
,

AN f :=−∆ f , domAN :=
{

f ∈ H2(Rn
+) : ∂ν f |∂Rn

+
= 0
} (5.1.6)

will be actively used further. For the proof of their self-adjointness we refer to [G09,
Chapter 9].

5.2 Half-space Laplacians with general self-adjoint boundary
conditions

In this section we make use of quasi boundary triples for a proper definition and study of
self-adjoint realizations A[B] of −∆ subject to a non-local boundary condition

B f |∂Rn
+
= ∂ν f |∂Rn

+

with a bounded self-adjoint operator B in L2(∂Rn
+).

5.2.1 A quasi boundary triple and its Weyl function

For a definition of a quasi boundary triple for A∗ we specify the operator T as below

T f :=−∆ f , domT := H3/2
∆

(Rn
+), (5.2.1)



5.2 Half-space Laplacians with general self-adjoint boundary conditions 93

where the space H3/2
∆

(Rn
+) is defined in (5.1.2). We require also the boundary mappings

Γ0 : domT → L2(∂Rn
+), Γ0 f := ∂ν f |∂Rn

+
,

Γ1 : domT → L2(∂Rn
+), Γ1 f := f |∂Rn

+
.

(5.2.2)

In the first proposition of this section we prove that {L2(∂Rn
+),Γ0,Γ1} is a quasi boundary

for A∗ and we show some basic properties of this quasi boundary triple.

Proposition 5.1. Let the self-adjoint operators AN and AD be as in (5.1.6). Let the
operator T be as in (5.2.1) and the mappings Γ0,Γ1 be as in (5.2.2). Then the triple
Π = {L2(∂Rn

+),Γ0,Γ1} is a quasi boundary triple for A∗. The restrictions of T to the
kernels of the boundary mappings are

T � kerΓ0 = AN and T � kerΓ1 = AD;

and the ranges of these mappings are

ranΓ0 = L2(∂Rn
+) and ranΓ1 = H1(∂Rn

+).

Proof. In order to show that the triple Π is a quasi boundary triple for A∗ we use Propo-
sition 2.9. Let us check that the triple Π satisfies the conditions (a), (b) and (c) of that
proposition. Since H2(Rn

+)⊂ domT , by (5.1.1) we have

H1/2(∂Rn
+)×H3/2(∂Rn

+)⊂ ran
(

Γ0
Γ1

)
.

The set H1/2(∂Rn
+)×H3/2(∂Rn

+) is clearly dense in L2(∂Rn
+)×L2(∂Rn

+). Note that also
the set kerΓ0 ∩ kerΓ1 ⊃ C∞

0 (Rn
+) is dense in L2(Rn

+). Thus the condition (a) is verified.
The abstract Green’s identity(

T f ,g
)
−
(

f ,T g
)
=
(
Γ1 f ,Γ0g

)
∂Rn

+
−
(
Γ0 f ,Γ1g

)
∂Rn

+

for all f ,g∈ domT is equivalent to (5.1.5). The condition (b) is also checked. The operator
T � kerΓ0 contains the self-adjoint Laplacian AN subject to Neumann boundary condition
on ∂Rn

+. Thus the condition (c) holds for the triple Π. Therefore, by Proposition 2.9
the triple Π is a quasi boundary triple for the adjoint of the closed symmetric operator
T �
(

kerΓ0∩kerΓ1
)
.

It remains to show that T �
(

kerΓ0 ∩ kerΓ1
)
= A. The operator T � kerΓ0 contains the

self-adjoint operator AN and the operator T � kerΓ1 contains the self-adjoint operator AD.
By the abstract Green’s identity the operators T � kerΓ0 and T � kerΓ1 are both symmetric,
thus T � kerΓ0 = AN and T � kerΓ1 = AD. As a consequence

T �
(

kerΓ0∩kerΓ1) =
(
T � kerΓ0)∩

(
T � kerΓ1

)
= AN∩AD = A.
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Hence the triple Π is a quasi boundary triple for A∗.
The properties of the boundary mappings

ranΓ0 = L2(∂Rn
+) and ranΓ1 = H1(∂Rn

+)

follow from (5.1.4)

In the next proposition we clarify the basic properties of the γ-field and the Weyl function
associated with the quasi boundary triple Π from Proposition 5.1. In the terminology
of [G09], these operators turn out to be the Poisson operator and the Neumann-to-Dirichlet
map, respectively.

Proposition 5.2. Let the self-adjoint operators AD and AN be as in (5.1.6). Let Π be
the quasi boundary triple from Proposition 5.1. Let γ and M be, respectively, the γ-field
and the Weyl function associated with the quasi boundary triple Π. Then the following
statements hold.

(i) The γ-field γ is defined for all λ ∈ C\R+ and

γ(λ ) : L2(∂Rn
+)→ L2(Rn

+), γ(λ ) f = fλ (ϕ),

where fλ (ϕ) is the unique solution in the space H3/2
∆

(Rn
+) of the problem

(−∆−λ ) f = 0, in Rn
+,

∂ν f |∂Rn
+
= ϕ, on ∂Rn

+.

(ii) The Weyl function M is defined for all λ ∈ C\R+ and

M(λ ) : L2(∂Rn
+)→ L2(∂Rn

+), M(λ )ϕ = fλ (ϕ)|∂Rn
+
,

where fλ (ϕ) = γ(λ )ϕ . The operator M(λ ) maps L2(∂Rn
+) onto H1(∂Rn

+). For
λ < 0 it holds that ‖M(λ )‖ ≤ 1√

−λ
, and, in particular, the limit property

lim
λ→−∞

∥∥M(λ )
∥∥= 0

holds.

Proof. As a preliminary step, note that σ(AD) = σ(AN) =R+ and thus C\R+ = ρ(AD)∩
ρ(AN).
(i) The mapping properties of the γ-field γ follow from (5.2.1), (5.2.2) and Definition 2.10.
(ii) The mapping properties of the Weyl function follow from (5.2.2), Definition 2.10,
Proposition 2.11 (iii), and Proposition 5.1.
For λ < 0 the Weyl function M can be represented as

M(λ ) = (−∆Rn−1−λ )−1/2,
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where −∆Rn−1 is the standard self-adjoint Laplace operator in L2(Rn−1) with the usual
domain H2(Rn−1), see, e.g., [G09, Chapter 9]. As a consequence of this representation we
obtain ∥∥M(λ )

∥∥≤ 1√
−λ

,

and the limit property follows automatically.

5.2.2 Self-adjointness and Krein’s formulae

In the next theorem we provide a factorization (Krein’s formula) for the resolvent differ-
ence of the self-adjoint operators AN and AD.

Theorem 5.3. Let AN and AD be the self-adjoint operators as in (5.1.6). Let γ and M be
the γ-field and the Weyl function from Proposition 5.2. Then the formula

(AN−λ )−1− (AD−λ )−1 = γ(λ )M(λ )−1
γ(λ )∗

holds for all λ ∈ C\R+.

Proof. Krein’s formula follows from Theorem 2.13 (ii) with A0 = AN and A1 = AD.

Further, we define Laplace operators on the half-space with non-local boundary condi-
tions.

Definition 5.4. For a bounded self-adjoint operator B in L2(∂Rn
+) we define the restriction

A[B] of T as below
A[B] := T � ker(BΓ1−Γ0), (5.2.3)

which is equivalent to

A[B] f =−∆ f , domA[B] =
{

f ∈ H3/2
∆

(Rn
+) : B f |∂Rn

+
= ∂ν f |∂Rn

+

}
.

AN

⊂

A ⊂
⊂

⊂
A[B] ⊂ T ⊂ T = A∗.

AD

⊂

Figure 5.1: This figure shows how the operator A[B] is related to the other operators intro-
duced in this chapter. The operators AN, AD and A[B] are self-adjoint in L2(Rn

+),
cf. Theorem 5.5.
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In the next theorem we show that the operator A[B] is self-adjoint. Moreover, we establish a
characterization of the point spectrum of A[B] in terms of the point spectrum of the operator-
valued function I−BM(·) and we provide a factorization for the resolvent difference of
A[B] and AN.

Theorem 5.5. Let AN be the self-adjoint operator as in (5.1.6). Let γ and M be the γ-field
and the Weyl function from Proposition 5.2. Let B be a bounded self-adjoint operator in
L2(∂Rn

+). Let A[B] be the operator corresponding to B via (5.2.3). Then the following
statements hold.

(i) The operator A[B] is self-adjoint in the Hilbert space L2(Rn
+) and

A[B] ≥−‖B‖2.

(ii) For all λ ∈ R−

λ ∈ σp(A[B]) ⇐⇒ 0 ∈ σp
(
I−BM(λ )

)
,

and the multiplicities of these eigenvalues coincide.

(iii) The formula

(A[B]−λ )−1− (AN−λ )−1 = γ(λ )
(
I−BM(λ )

)−1Bγ(λ )∗

holds for all λ ∈ ρ(A[B])∩ρ(AN).

Proof. (i) By Proposition 5.1 the range of the boundary mapping Γ0 coincides with the
auxiliary Hilbert space L2(∂Rn

+). By assumptions the operator B is bounded and self-
adjoint in L2(∂Rn

+). Hence, by Proposition 5.2 (ii) for all λ <−‖B‖2 the condition

‖M(λ )‖ · ‖B‖< 1,

holds, and Theorem 2.21 implies the statement.
(ii) The equivalence between the point spectra is a consequence of Proposition 2.14.
(iii) Krein’s formula follows from Corollary 2.16 in view of the self-adjointness of A[B].

In the next theorem we obtain a factorization (Krein’s formula) for the resolvent difference
of A[B1] and A[B2].

Theorem 5.6. Let AN be the self-adjoint operator from (5.1.6), and let γ and M be the
γ-field and the Weyl function from Proposition 5.2. Let B1 and B2 be bounded self-adjoint
operators in L2(∂Rn

+), and let A[B1] and A[B2] be the self-adjoint operators corresponding
via (5.2.3) to B1 and B2, respectively. Then the formula

(A[B2]−λ )−1− (A[B1]−λ )−1 =

γ(λ )
(
I−B2M(λ )

)−1
(B2−B1)

(
I−M(λ )B1

)−1
γ(λ )∗
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holds for all λ ∈ ρ(A[B2])∩ρ(A[B1])∩ρ(AN). In this formula the middle terms satisfy

(I−B2M(λ ))−1,(I−M(λ )B1)
−1 ∈ B(L2(∂Rn

+))

for all λ ≤−max{‖B1‖2,‖B2‖2}.

Proof. Krein’s formula follows from Theorem 2.17, and self-adjointness of A[B1] and A[B2].
According to Proposition 4.2 (ii) we immediately get for all λ < −max{‖B1‖2,‖B2‖2}
the inequalities ‖BiM(λ )‖ < 1 with i = 1,2, which imply the properties of the middle
terms.

Furthermore, we formulate an analogue of Theorem 3.7 for the half-space case with anal-
ogous proof which is omitted.

Theorem 5.7. Let B be a bounded self-adjoint operator in L2(∂Rn
+), and let A[B] be the

operator corresponding to B via (5.2.3). Assume that

f ∈ H1(∂Rn
+) =⇒ B f ∈ H1/2(∂Rn

+).

Then the inclusion domA[B] ⊂ H2(Rn
+) holds.

If B is an operator of multiplication with a real-valued bounded function β , then we agree
to write A[β ] instead of A[B].

Corollary 5.8. Assume that β ∈ W 1,∞(∂Rn
+). Then the inclusion domA[β ] ⊂ H2(Rn

+)
holds.

5.3 Operator ideal properties of resolvent power differences and trace
formulae

Throughout this section we focus only on self-adjoint extensions with local Robin bound-
ary conditions, namely

A[β ] f :=−∆ f , domA[β ] :=
{

f ∈ H3/2
∆

(Rn
+) : β f |∂Rn

+
= ∂ν f |∂Rn

+

}
, (5.3.1)

where β is a real-valued L∞-function. We obtain sufficient conditions on β2−β1 ensuring
compactness or certain Schatten-von Neumann properties of the resolvent differences or
the resolvent power differences of the self-adjoint operators A[β1] and A[β2]. For the trace
class resolvent power differences we provide the corresponding trace formulae.
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5.3.1 Compactness of resolvent differences

In this subsection we give a sufficient condition on β2−β1 for compactness of the resolvent
difference of A[β1] and A[β2]. This condition includes the case of uniformly vanishing β2−
β1 with respect to all directions and also more general situations. In the particular case
β1 ≡ 0, i.e. A[β1] = AN, we pass to the conclusions about the absolutely continuous parts of
the operators using recent results of the work [MN12].
Let us recall condition (2.3.6) on a function α ∈ L∞(∂Rn

+), which is given first in Subsec-
tion 2.3.2, namely

µ
({

x ∈ ∂Rn
+ : |α(x)| ≥ ε

})
< ∞, for all ε > 0, (5.3.2)

here µ denotes the Lebesgue measure on ∂Rn
+.

Theorem 5.9. Let real-valued β1,β2 ∈ L∞(∂Rn
+) be such that β := β2−β1 satisfies con-

dition (5.3.2), and let A[β1] and A[β2] be the self-adjoint Robin Laplacians on the half-space
corresponding via (5.3.1) to β1 and β2, respectively. Then the following

(A[β2]−λ )−1− (A[β1]−λ )−1 ∈S∞(L2(Rn
+))

holds for all λ ∈ ρ(A[β2])∩ρ(A[β1]).

Proof. Let us fix λ0 < −max{‖β1‖2
∞,‖β2‖2

∞}. Let γ and M be the γ-field and the Weyl
function from Proposition 5.2. Theorem 5.6 claims, among other, that(

I−β2M(λ0)
)−1

,
(
I−M(λ0)β1

)−1 ∈ B
(
L2(∂Rn

+)
)
. (5.3.3)

Note that the mapping Γ0 is surjective onto L2(∂Rn
+), hence, by Proposition 2.11 (i)

γ(λ0) ∈ B
(
L2(∂Rn

+),L
2(Rn

+)
)
, (5.3.4)

and the adjoint of γ(λ0) can be represented as

γ(λ0)
∗ = Γ1(AN−λ0)

−1.

Note that ran((AN−λ0)
−1) ⊂ H2(Rn

+) and that Γ1 is the usual trace. Thus, by (5.1.1) it
holds that

ran(γ(λ0)
∗)⊂ H3/2(∂Rn

+)⊂ H1(∂Rn
+). (5.3.5)

According to Proposition 5.2 (ii), we get

ranM(λ0) = H1(∂Rn
+). (5.3.6)

Note that in view of (5.3.3) for an arbitrary ψ ∈ L2(∂Rn
+) the element

ϕ :=
(
I−M(λ0)β1

)−1
γ(λ0)

∗
ψ
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is well-defined. Applying the operator I−M(λ0)β1 to both hand sides in the last equation,
we obtain using (5.3.5) and (5.3.6) that

ϕ = γ(λ0)
∗
ψ +M(λ0)β1ϕ ∈ H1(∂Rn

+).

Now Lemma 2.23 and the assumptions on β yield

β
(
I−M(λ0)β1

)−1
γ(λ0)

∗ ∈S∞

(
L2(Rn

+),L
2(∂Rn

+)
)
. (5.3.7)

According to the factorization from Theorem 5.6 with B1 = β1 and B2 = β2

(A[β2]−λ0)
−1− (A[β1]−λ0)

−1

= γ(λ )
(
I−β2M(λ0)

)−1
β
(
I−M(λ0)β1

)−1
γ(λ0)

∗,

and using (5.3.3), (5.3.4) and (5.3.7) we get the claim for the point λ = λ0. Finally, ap-
plying Lemma 2.2 with m = 1 and A = S∞ we get the statement for all λ ∈ ρ(A[β2])∩
ρ(A[β1]).

The corollary below follows from the theorem above and [MN12, Proposition 5.11 (v) and
(vii)]

Corollary 5.10. Let the self-adjoint operator AN be as in (5.1.6). Let a real-valued β ∈
L∞(∂Rn) satisfy the condition (5.3.2), and let A[β ] be the self-adjoint Robin Laplacian on
the half-space corresponding to β via (5.3.1). Then the operator AN and the absolutely
continuous part of the operator A[β ] are unitary equivalent.

5.3.2 Elliptic regularity and related Sp and Sp,∞-estimates

In this subsection we obtain regularity of the functions (A[β ]− λ )−1 f under certain as-
sumptions on the smoothness of f and β . These results are then used to obtain estimates
of singular values for certain compact operators appearing in the representation of resol-
vent power differences of the self-adjoint operators A[β2] and A[β1].
In the next lemma we show smoothing properties of the γ-field γ and the Weyl function M
from Proposition 5.2.

Lemma 5.11. Let the self-adjoint operator AN be as in (5.1.6). Let γ and M be the γ-field
and the Weyl function from Proposition 5.2. Then the following smoothing properties

ran
(
γ(λ ) � Hs(∂Rn

+)
)
⊂ Hs+3/2(Rn

+),

ran
(
M(λ ) � Hs(∂Rn

+)
)
⊂ Hs+1(∂Rn

+),

hold for all λ ∈ C\R+ and all s≥ 0.
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Proof. Let us fix λ ∈ C\R+. According to the decomposition

domT = domANuker(T −λ ),

and, in view of (5.1.1) and (5.1.4), the mapping Γ0 is a bijection from Hs+3/2(Rn
+)∩

ker(T −λ ) onto Hs(∂Rn
+). Hence we conclude from Definition 2.10 that the first smooth-

ing property holds. Since M(λ ) = Γ1γ(λ ) and Γ1 is the usual trace, we get the second
smoothing property from (5.1.1).

Let the spaces W k,∞(∂Rn), k ∈ N0, be defined as in Section 2.3. In the next lemma we
prove a more involved smoothing property. This smoothing property plays an important
role in the further considerations.

Lemma 5.12. Let γ and M be the γ-field and the Weyl function from Proposition 5.2. Let
β ∈W m,∞(∂Rn) be real-valued with m ∈ N. Then the smoothing property

ran
(
(I−M(λ )β

)−1
γ(λ )∗ � Hs(Rn

+)
)
⊂ Hs+3/2(∂Rn

+)

holds for all λ <−‖β‖2
∞ and all s ∈

[
0,m− 1

2

]
.

Proof. Let us fix λ0 < −‖β‖2
∞, and let us take an arbitrary ψ ∈ Hs(Rn

+). Recall that AN
is the realization of the Laplace differential expression on the half-space subject to the
Neumann boundary condition, and thus λ0 ∈ ρ(AN). Elliptic regularity of the Neumann
Laplacian on the half-space, see, e.g. [W87, Lemma 13.1], yields

(AN−λ0)
−1

ψ ∈ Hs+2(Rn
+). (5.3.8)

By Proposition 2.11 (i) with A0 = AN we can express γ(λ0)
∗ as

γ(λ0)
∗ = Γ1(AN−λ0)

−1.

In view of the last expression, the property of the trace (5.1.1) and the smoothing property
(5.3.8) we get

γ(λ0)
∗
ψ ∈ Hs+3/2(∂Rn

+). (5.3.9)

According to our choice of λ0 we obtain by Theorem 5.6 that the operator (I−M(λ0)β )
−1 ∈

B(L2(∂Rn
+)), and thus the element

ϕ :=
(
I−M(λ0)β

)−1
γ(λ0)

∗
ψ

is well-defined. Applying the operator I−M(λ0)β to both hand sides of the last equation
we get

ϕ = γ(λ0)
∗
ψ +M(λ0)βϕ. (5.3.10)
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Suppose that ϕ ∈ H l(∂Rn
+) with some l ∈ [0,m]∩N0. According to the assumptions on β

we conclude that βϕ ∈ H l(∂Rn
+). Furthermore, by Lemma 5.11

M(λ )βϕ ∈ H l+1(∂Rn
+). (5.3.11)

Finally, the equation (5.3.10) and the smoothing properties (5.3.9) and (5.3.11) give the
following rule:

ϕ ∈ H l(∂Rn
+) =⇒ ϕ ∈ Hmin{l+1,s+3/2}(∂Rn

+),

which is true for all l = 0,1,2, . . . ,m. Note that s+3/2≤m+1. We start from l = 0, and,
following the rule above, we get in the end that ϕ ∈ Hs+3/2(∂Rn

+), which is equivalent to
our claim.

In the next lemma we prove smoothing property for the Robin Laplacian A[β ] under some
assumptions on the coefficient β in the boundary condition.

Lemma 5.13. Let β ∈W m,∞(∂Rn
+) be real-valued with m ∈ N , and let A[β ] be the self-

adjoint Robin Laplacian corresponding to β via (5.3.1). Then the smoothing property

ran
(
(A[β ]−λ )−1 � Hs(Rn

+)
)
⊂ Hs+2(∂Rn

+)

holds for all λ <−‖β‖2
∞ and all s ∈

[
0,m− 1

2

]
.

Proof. Let γ and M be the γ-field and the Weyl function from Proposition 5.2. Let us fix
λ0 < −‖β‖2

∞, and let us take an arbitrary ψ ∈ Hs(Rn
+). By Theorem 5.5 (i) the operator

A[β ] is self-adjoint in L2(Rn
+) and, in addition, it holds that λ0 ∈ ρ(A[β ])∩ ρ(AN). By

Lemma 4.15, with the assumption on β taken into account, we observe that(
I−M(λ0)β

)−1
γ(λ0)

∗
ψ ∈ Hs+3/2(∂Rn

+).

Since s+1/2≤ m, the last observation, the assumption on β and (2.3.1) yield

β
(
I−M(λ0)β

)−1
γ(λ0)

∗
ψ ∈ Hs+1/2(∂Rn

+).

Applying the γ-field, we get by Lemma 5.12

γ(λ0)β
(
I−M(λ0)β

)−1
γ(λ0)

∗
ψ ∈ Hs+2(Rn

+).

Note that (AN− λ0)
−1ψ ∈ Hs+2(Rn

+) as well. By Krein’s formula, provided in Theo-
rem 5.6, with B1 = β and B2 = 0 we get

(A[β ]−λ0)
−1

ψ =

= (AN−λ0)
−1

ψ︸ ︷︷ ︸
∈Hs+2(Rn

+)

+γ(λ0)β
(
I−M(λ0)β

)−1
γ(λ0)

∗
ψ︸ ︷︷ ︸

∈Hs+2(Rn
+)

∈ Hs+2(Rn
+),

which is equivalent to the claim because ψ ∈ Hs(Rn
+) is arbitrary.
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The proposition below is the key result of this subsection and it plays a prominent role in
the proof of the main results in this chapter.

Proposition 5.14. Let the self-adjoint operator AN be as in (5.1.6). Let γ and M be the
γ-field and the Weyl function from Proposition 5.2. Let β ∈W 2m−1,∞(∂Rn

+) with m ∈ N
and α ∈ L∞(∂Rn

+) be real-valued, and let A[β ] be the self-adjoint Robin Laplacian corre-
sponding to β via (5.3.1). Then for k = 0,1,2, . . . ,m− 1 and λ < −‖β‖2

∞ the following
holds.

(i) If α is compactly supported, or at least α ∈ L
n−1

2k+3/2 (∂Rn
+) with n−1

2k+3/2 > 2, then

α
(
I−M(λ )β

)−1
γ(λ )∗(A[β ]−λ )−k ∈S n−1

2k+3/2 ,∞

(
L2(Rn

+),L
2(∂Rn

+)
)
,

(A[β ]−λ )−k
γ(λ )

(
I−βM(λ )

)−1
α ∈S n−1

2k+3/2 ,∞

(
L2(∂Rn

+),L
2(Rn

+)
)
.

(ii) If α ∈ Lp(∂Rn
+) with p≥ 2 such that p > n−1

2k+3/2 , then

α
(
I−M(λ )β

)−1
γ(λ )∗(A[β ]−λ )−k ∈Sp

(
L2(Rn

+),L
2(∂Rn

+)
)
,

(A[β ]−λ )−k
γ(λ )

(
I−βM(λ )

)−1
α ∈Sp

(
L2(∂Rn

+),L
2(Rn

+)
)
.

Proof. Let us fix λ0 < −‖β‖2
∞. Lemma 5.13 and the assumption on β imply that for

k = 0,1,2, . . . ,m−1
ran
(
(A[β ]−λ0)

−k)⊂ H2k(Rn
+).

Further, we apply Lemma 5.12 and get

ran
((

I−M(λ0)β
)−1

γ(λ0)
∗(A[β ]−λ0)

−k)⊂ H2k+3/2(∂Rn
+).

The items of this proposition follow from the corresponding items of Lemma 2.25 with
s = 2k+3/2.

5.3.3 Resolvent power differences in Sp and Sp,∞-classes and trace formulae

In the following two main theorems of this chapter we provide Sp and Sp,∞-properties of
the resolvent power differences of the self-adjoint Robin Laplacians A[β1] and A[β2] on the
half-space. For these results smoothness of β1 and β2, and decay of β1−β2 are important.
In the proofs the key idea consists in factorizing |β | in a proper way.

Theorem 5.15. Let β1,β2 ∈W 2m−1,∞(∂Rn
+) be real-valued, and denote β := β2−β1. Let

A[β1] and A[β2] be the self-adjoint Robin Laplacians on the half-space corresponding via
(5.3.1) to β1 and β2, respectively. Assume that l ∈ [1,m]∩N is arbitrary.

(i) If at least one of these two conditions:
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(a) β is compactly supported;

(b) n > 4l and β ∈ L
n−1
2l+1 (∂Rn

+);
holds, then

(A[β2]−λ )−l− (A[β1]−λ )−l ∈S n−1
2l+1 ,∞

(
L2(Rn

+)
)

(5.3.12)

for all λ ∈ ρ(A[β1])∩ρ(A[β2]).
(ii) If m > n

2 − 1, l ∈ N such that n
2 − 1 < l ≤ m, and at least one of the conditions (a)

or (b) in item (i) holds, then for all λ ∈ ρ(A[β1])∩ρ(A[β2]) the operator in (5.3.12)
belongs to the trace class, and the following formula

tr
(
(A[β2]−λ )−l− (A[β1]−λ )−l

)
=

1
(l−1)!

tr

(
dl−1

dλ l−1

(
U(λ )M′(λ )

))

holds, where U(λ ) := (I−β2M(λ )
)−1

β
(
I−M(λ )β1

)−1.

Proof. (i) Let us fix λ0 <−max{‖β1‖2
∞,‖β2‖2

∞}. By Theorem 5.5 the resolvent difference
of the self-adjoint operators A[β1] and A[β2] can be expressed as

(A[β2]−λ0)
−1− (A[β1]−λ0)

−1

= γ(λ0)
(
I−β2M(λ0)

)−1
β
(
I−M(λ0)β1

)−1
γ(λ0)

∗.
(5.3.13)

For all s ∈ [0,1], we define the operators

Fs(λ0) :=γ(λ0)
(
I−β2M(λ0)

)−1|β |s,

Gs(λ0) :=sign(β )|β |s
(
I−M(λ0)β1

)−1
γ(λ0)

∗.

Observe that for each s ∈ [0,1] the resolvent difference in (5.3.13) can be rewritten

(A[β2]−λ0)
−1− (A[β1]−λ0)

−1 = F1−s(λ0)Gs(λ0).

Denote s(k) := 2k+3/2
2l+1 for k = 0,1,2, . . . , l−1. Hence, the operators Tl,k(λ0) as in (2.1.2)

with H = A[β1] and K = A[β2] can be represented as

Tl,k(λ0) = (A[β2]−λ0)
−(l−k−1)F1−s(k)λ0) ·Gs(k)(λ0)(A[β1]−λ0)

−k.

If β is compactly supported (condition (a) holds), then also |β |1−s(k) and sign(β )|β |s(k)
are compactly supported. Hence Proposition 5.14 (i) and Lemma 2.3 yield

(A[β2]−λ0)
−(l−k−1)F1−s(k)(λ0) ∈S n−1

2l−2k−1/2 ,∞
,

Gs(k)(λ0)(A[β1]−λ0)
−k ∈S n−1

2k+3/2 ,∞
.

(5.3.14)
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If β is such that condition (b) holds, then for all k = 0,1,2 . . . , l−1 we obtain

|β |1−s(k) ∈ L
n−1

2l−2k−1/2 (∂Rn
+) and sign(β )|β |s(k) ∈ L

n−1
2k+3/2 (∂Rn

+).

Note that under assumption n > 4l we have

n−1
2l−2k−1/2

> 2 and
n−1

2k+3/2
> 2

for all k = 0,1,2, . . . , l−1. Proposition 5.14 (i) and Lemma 2.3 yield

(A[β2]−λ0)
−(l−k−1)F1−s(k)(λ0) ∈S n−1

2l−2k−1/2 ,∞
,

Gs(k)(λ0)(A[β1]−λ0)
−k ∈S n−1

2k+3/2 ,∞
.

(5.3.15)

Now we can conclude from (5.3.14) in the case, that condition (a) holds, and from (5.3.15)
in the case, that condition (b) holds, that

Tl,k(λ0) ∈S n−1
2l−2k−1/2 ,∞

·S n−1
2k+3/2 ,∞

=S n−1
2l+1 ,∞

.

for all k = 0,1,2, . . . , l−1. Finally, Lemma 2.4 implies the statement.
(ii) The trace formula can be proved as in Theorem 3.17 (ii) with certain modifications,
which are not explained in order to avoid repetitions.

Corollary 5.16. If, under the assumptions of the last theorem, β is compactly supported
and m> n

2−1, then the wave operators W±(A[β1],A[β2]) for the scattering pair {A[β1],A[β2]}
exist and are complete. Hence, the absolutely continuous parts of A[β1] and A[β2] are unitary
equivalent.

In the next theorem we consider the special case of an integrable difference of the Robin
coefficients.

Theorem 5.17. Assume that n = 2 or n = 3 holds. Let β1,β2 ∈W 1,∞(∂Rn
+) be real-valued,

and assume that β := β2− β1 ∈ L1(∂Rn
+) holds. Let A[β1] and A[β2] be the self-adjoint

Robin Laplacians on the half-space corresponding via (5.3.1) to β1 and β2, respectively.
Then the property

(A[β2]−λ )−1− (A[β1]−λ )−1 ∈S1
(
L2(Rn

+)
)

(5.3.16)

holds for all λ ∈ ρ(A[β1])∩ρ(A[β2]), and the trace of the resolvent difference in (5.3.16)
can be expressed as

tr
(
(A[β2]−λ )−1− (A[β1]−λ )−1

)
= tr

(
U(λ )M′(λ )

)
,

where U(λ ) :=
(
I−β2M(λ )

)−1
β
(
I−M(λ )β1

)−1.
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Proof. Let us fix λ0 <−max{‖β1‖2
∞,‖β2‖2

∞}. Observe that√
|β |,

√
|β |sign(β ) ∈ L2(Rn−1).

Note that for n= 2 or n= 3 the inequality 2(n−1)
3 < 2 holds. Hence, by Proposition 5.14 (ii)√

|β |
(
I−M(λ0)β1

)−1
γ(λ0)

∗ ∈S2,

γ(λ0)
(
I−β2M(λ0)

)−1√|β |sign(β ) ∈S2.
(5.3.17)

By Theorem 5.5 the resolvent difference of self-adjoint operators A[β1] and A[β2] can be
expressed as

(A[β2]−λ0)
−1− (A[β1]−λ0)

−1 = γ(λ0)
(
I−β2M(λ0)

)−1
β
(
I−M(λ0)β1

)−1
γ(λ0)

∗.

In view of this factorization and of (5.3.17) we get

(A[β2]−λ0)
−1− (A[β1]−λ0)

−1 ∈S2 ·S2 =S1.

Using Lemma 2.4 we conclude that

(A[β2]−λ )−1− (A[β1]−λ )−1 ∈S1

for all λ ∈ ρ(A[β1])∩ρ(A[β2]).
The trace formula can be proven as in Theorem 3.17 (ii).

Corollary 5.18. Under the assumptions of the last theorem, the corresponding wave op-
erators W±(A[β1],A[β2]) for the scattering pair {A[β1],A[β2]} exist and are complete. Hence,
the absolutely continuous parts of A[β1] and A[β2] are unitary equivalent.
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