CHAPTER V.

MEASUREMENT AND ESTIMATION OF THE FLOW OF WATER.

Abstract

Weight of Water-Units of Volume and Time-Discharge-Action of Gravity-Theoretical Velocity-Path traversed by a jet of Water issuing with a known Velocity-Orifices in thin Plates, or thin-edged Orifices-Coefficient of Velocity - True mean Velocity under small Charges-Contraction of the Fluid Vein-Coefficient of Discharge-Circular Orifices-Rectangular Orifices-True mean Velocity-Experiments by Poncelet and Lesbros-Notches and Weirs-Rectangular and Triangular Notches-Right-angled Triangular Notches-Experiments by Messrs. Blackwell and Simpson, and Boileau-Suppressed Contraction-Velocity of Approach-Separating Weirs-Submerged Orifices and Weirs-Adjutages: Cylindrical, Conically Converging, and Conically Diverging-Shoots-Discharge under a rariable Head-Time of Emptying Prismatic and other Reservoirs-Discharge from one Vessel into another-Flow of Water through uniform Channels-Mean Velocity determined by Maximum Surface VelocityAccelerating and Retarding Forces-Mean Velocity of Flow in Rivers and open Channels, and through long and short PipesFriction caused by Bends and sudden Enlargements-Total Loss of Head, and final Velocity-Determination of the Section when the Discharge and Head are given.

IN the following passages, water will be regarded as an inelastic fluid, it having been found (p .18) that excessive pressure is required to effect even a very small diminution in bulk, inappreciable under ordinary practical circumstances.

The units which are adopted for the measurement of water are the cubic foot and the gallon. The weight of a cubic foot of water varies, of course, with the temperature-at its maximum density ($39 \cdot 1^{\circ} \mathrm{Fahr}$.), it weighs 62.425 lbs . avoirdupois; at 62° Fahr. it weighs 62.355 lbs . The imperial gallon contains 10 lbs . avoirdupois of water $\left(62^{\circ}\right.$ Fahr. and the barometer at 30 inches), so that a cubic foot of water contains 6.235 gallons. In practice it is usual to consider the cubic foot of water as weighing 62.5 lbs . and containing 6.25 gallons. Of the units of time, the second is coupled mostly with the cubic foot; the minute is frequently used for the discharge of streams; while the hour and day are employed with thousands or millions of gallons in speaking of the delivery of large quantities of water. The units of discharge, compounded from the units of volume and of time, are very numerous. Perhaps, on the whole, the cubic foot per second and the gallon per day are the most customary.

Discharge.-The discharge of a stream or current of water is the product of the sectional area of the stream, and the mean velocity with which the several 'threads' of water in that stream are flowing. Thus, if it be found by careful measurement that the section of a stream at right angles to its flow is 30 sq. feet, and also that its mean velocity is 2 feet per second, it will be shown that the discharge is 60 cubic feet per second. In the same way, the mean velocity may be found, if the discharge be divided by the area of the section. These two elements of the true section and true mean velocity are all that is essential for the calculation; and it is the determination of the values of the same under varying conditions which constitutes, in great part, the science of hydraulics.

The velocity of a current of water is due to the action of a force, mostly the force of gravity, but in any case a force of which gravity may be made a measure.

The Theoretical Velocity, or that due to the force of gravity, is given by the formulawhich, for measure in feet, becomes

$$
\begin{equation*}
v=\sqrt{2 g \mathrm{H}} \tag{1}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
v & =\sqrt{64 \cdot 4 \mathrm{H}} \quad . \quad . \quad . \quad . \\
\text { or } v & =8.025 \sqrt{\mathrm{H}} . \quad . \quad .
\end{array}\right\}
$$

This is the velocity in feet per second* which a body would acquire upon falling in a vacuum through a height equal to H , and, but for the retarding effect of friction, to be hereafter mentioned, it would be the velocity which a stream of water would acquire upon flowing down a channel through a height equal to \mathbf{H}; or the velocity with which a jet of water would issue from an orifice in the side of a reservoir, the head of water or 'charge' upon that orifice being equal to H. In the latter case, the velocity of issue would be the same as if the

* The value $64 \cdot 4$, or twice the measure of the force of gravity, varies slightly with the latitude, but not to an extent worth recognising in hydraulic formulæ.
total head or charge $(\mathrm{H}=m+n)$ consisted partly of the influence of a column of water of the height m, and partly of that of a loaded piston, the pressure upon which is equal to the weight of a column of water of the height n. On the other hand, if the stream were issuing from a closed vessel, in which a partial vacuum was maintained, the height of a column of water that would be a measure of the vacuum must be subtracted from the actual head of water or charge. In the following table are given some values of v for corresponding values of \boldsymbol{H}. For measures in inches, $v=27 \cdot 8$.

Head			Head			Head			Head			Head		Head		
Feet and inches	Feet		Feet and inches	Feet		Feet and inches	Feet		Feet and inches	Feet		Feet and inches		Feet inc		
$0 \quad 0 \frac{1}{8}$	- 0104	-819	0 3 ${ }^{\frac{1}{2}}$	-2916	4.334	$0 \quad 9 \frac{1}{2}$	$\cdot 7916$	$7 \cdot 140$	29	2.7500	$13 \cdot 308$	96	24.735	22	0	$37 \cdot 641$
$\begin{array}{ll}0 & 0 \\ 0 & \frac{8}{16}\end{array}$. 0156	1.003	0 3 $0^{\frac{5}{8}}$	- 3020	$4 \cdot 410$	$\begin{array}{ll}0 & 9 \\ 0\end{array}$	- 8125	$7 \cdot 233$	$210 \frac{1}{2}$	2.8749	13.607	$9 \quad 9$	$25 \cdot 058$	22	6	$38 \cdot 066$
0 0-016	- 0208	1.158	0 3 ${ }^{\frac{3}{4}}$	- 3125	$4 \cdot 486$	010	. 8333	$7 \cdot 325$	$3{ }^{3}$	$3 \cdot 0000$	13.990	100	$25 \cdot 377$	23	0	$38 \cdot 487$
$\begin{array}{lll}0 & 0 & 0 \frac{5}{16}\end{array}$. 0260	1.295	$0 \quad 3 \frac{4}{8}$	-3229	4.560	$010 \frac{1}{4}$	-8541	$7 \cdot 417$	$3{ }^{3} 1 \frac{1}{2}$	$3 \cdot 1249$	$14 \cdot 186$	103	$25 \cdot 693$	23	6	$38 \cdot 903$
$0 \quad 0 \quad 0 \frac{3}{8}$	-0312	1.418	04	-3333	$4 \cdot 633$	$0 \quad 10 \frac{1}{2}$	-8749	$7 \cdot 506$	3	$3 \cdot 2500$	14.467	106	$26 \cdot 004$	24	0	$39 \cdot 315$
0 0 $0 \frac{7}{16}$	-0364	1.532	$0 \quad 4 \frac{1}{8}$	$\cdot 3437$	4.705	$0 \quad 10 \frac{3}{4}$	-8958	$7 \cdot 595$	$3 \quad 4 \frac{1}{2}$	$3 \cdot 3749$	14.743	109	$26 \cdot 312$	24	6	39•722
$0 \quad 0 \frac{1}{2}$	-0416	1.638	0 4,	-3541	4.775	011	-9166	$7 \cdot 683$	36	$3 \cdot 5000$	15.013	110	$26 \cdot 616$	25	0	$40 \cdot 125$
$\begin{array}{ll}0 & 0 \frac{9}{16}\end{array}$	- 0468	1.737	$0 \quad 4 \frac{3}{8}$	- 3645	4.845	0 111 $\frac{1}{4}$	$\cdot 9374$	$7 \cdot 770$	$3 \quad 7 \frac{1}{2}$	3.6249	$15 \cdot 279$	113	$26 \cdot 917$	25	6	$40 \cdot 525$
0 0 $\frac{5}{8}$	- 0520	1.831	0 - 4 , 1	- 3749	4.914	$011 \frac{1}{2}$	-9582	7.856	$3 \quad 9$	3.7500	15.540	116	$27 \cdot 214$	26	0	$40 \cdot 920$
$000 \frac{11}{16}$	-0572	1.920	0	- 3853	4.982	$0 \quad 11 \frac{3}{4}$	-9791	7.941	$310 \frac{1}{2}$	3.8749	15.797	11.9	27.501	26	6	$41 \cdot 312$
$0 \quad 0 \frac{3}{4}$	-0625	$2 \cdot 006$	$0 \quad 4 \frac{3}{4}$	- 3958	$5 \cdot 049$	10	1.0000	$8 \cdot 025$	40	4.0000	$16 \cdot 050$	120	27.800	27	0	$41 \cdot 700$
$\begin{array}{lll}0 & 0 & \frac{1}{1} \frac{3}{6}\end{array}$	-0677	2.088	$\begin{array}{lll}0 & 4 & 4 \\ 0\end{array}$	-4062	$5 \cdot 114$	$10 \frac{1}{2}$	1.0416	$8 \cdot 190$	42	$4 \cdot 1666$	16.381	123	28.088	27	6	$42 \cdot 084$
$\begin{array}{lll}0 & 0 & \frac{7}{8}\end{array}$	-0729	$2 \cdot 167$	05	- 4166	$5 \cdot 180$	$1{ }^{1}$	1.0833	$8 \cdot 352$	44	$4 \cdot 3333$	$16 \cdot 705$	126	$28 \cdot 373$	28	0	$42 \cdot 465$
$000{ }^{1} 5$. 0781	$2 \cdot 243$	$0 \quad 51$	- 4270	$5 \cdot 244$	$111 \frac{1}{2}$	1-1249	$8 \cdot 512$	4.6	$4 \cdot 5000$	$17 \cdot 023$	129	$28 \cdot 655$	28	6	$42 \cdot 842$
$01^{0} 1$. 0833	$2 \cdot 316$	$0 \quad 5 \frac{1}{4}$	- 4374	5.308	12	1-1666	$8 \cdot 668$	48	4.6666	$17 \cdot 336$	130	$28 \cdot 935$	29	0	$43 \cdot 216$
0 O $1 \frac{1}{8}$	-0937	$2 \cdot 457$	$0 \quad 5 \frac{3}{8}$	- 4478	$5 \cdot 371$	$1 \quad 2 \frac{1}{2}$	1-2082	$8 \cdot 821$	410	4.8333	$17 \cdot 643$	13	$29 \cdot 212$	29	6	$43 \cdot 587$
$0 \quad 1 \frac{1}{4}$	-1041	$2 \cdot 590$	$0 \quad 5 \frac{1}{2}$	- 4582	$5 \cdot 433$	13	1.2500	8.972	50		$17 \cdot 944$	136	$29 \cdot 486$	30	0	$43 \cdot 955$
$0 \quad 1 \frac{3}{8}$	$\cdot 1145$	$2 \cdot 716$	0 5 5	- 4686	$5 \cdot 494$	$1 \quad 3 \frac{1}{2}$	1.2916	$9 \cdot 120$	$5 \quad 3$		$18 \cdot 388$	139	29.758	30	6	44.320
$01 \frac{1}{2}$	-1250	2.837	$0 \quad 5 \frac{3}{4}$	-4791	5.555	14	$1 \cdot 3333$	$9 \cdot 266$	5		18.820	14.0	$30 \cdot 027$	31	0	$44 \cdot 682$
$0 \quad 1 \frac{5}{8}$	-1353	2.953	$0 \quad 5 \frac{7}{8}$	-4895	$5 \cdot 615$	$1 \quad 4 \frac{1}{2}$	1.3749	$9 \cdot 410$	59		$19 \cdot 243$	14.6	30.558	31	6	$45 \cdot 041$
$0{ }_{0} 1 \frac{3}{4}$	-1458	$3 \cdot 064$	06	- 5000	$5 \cdot 674$	15	1.4166	$9 \cdot 551$	60		$19 \cdot 657$	150	31.081	32	0	$45 \cdot 397$
$01 \frac{7}{8}$	$\cdot 1562$	$3 \cdot 172$	$0 \quad 6 \frac{1}{4}$	-5208	$5 \cdot 791$	$1 \quad 5 \frac{1}{2}$	1.4582	$9 \cdot 791$	63		$20 \cdot 063$	156	31.595	32	6	$45 \cdot 750$
02	-1666	$3 \cdot 276$	$0 \quad 6 \frac{1}{2}$	- 5416	5.906	16	1.5000	$9 \cdot 828$	$6 \quad 6$		$20 \cdot 460$	160	$32 \cdot 100$	33	0	$46 \cdot 101$
$0 \quad 2 \frac{1}{8}$	-1770	$3 \cdot 377$	$0 \quad 6 \frac{3}{4}$	- 5625	$6 \cdot 018$	17	1.5833	10.098	6		20.850	$16 \quad 6$	$32 \cdot 598$	33	6	$46 \cdot 449$
$0 \quad 2 \frac{1}{4}$	-1874	$3 \cdot 475$	07^{4}	- 5833	$6 \cdot 129$	18	1.6666	$10 \cdot 360$	$7 \quad 0$		21.232	170	$33 \cdot 088$	34	0	$46 \cdot 794$
$0 \quad 2 \frac{3}{8}$	-1978	$3 \cdot 570$	$0 \quad 7 \frac{1}{4}$	-6041	$6 \cdot 237$	19	17500	$10 \cdot 616$	$7 \quad 3$		21.608	176	33.571	34	6	$47 \cdot 137$
$0 \quad 2 \frac{1}{2}$	-2082	$3 \cdot 663$	$0 \quad 7 \frac{1}{2}$	-6249	6.344	110	1.8333	$10 \cdot 866$	76		$\underline{21.977}$	180	34.047	35	0	$47 \cdot 447$
$0 \quad 2 \frac{5}{8}$	- 2186	$3 \cdot 753$	$0 \quad 7 \frac{3}{4}$	-6458	$6 \cdot 449$	111	1.9166	$11 \cdot 110$	$7 \quad 9$		22.341	186	34.517	36	0	$48 \cdot 151$
$0 \quad 2 \frac{3}{4}$	-2291	$3 \cdot 841$	08	-6666	6.552	20	2.0000	11-349	80		22.698	190	34.981	37	0	48.815
$0 \quad 2 \frac{7}{8}$	-2395	3.928	$0 \quad 8 \frac{1}{4}$	-6874	6.654	$2 \quad 1 \frac{1}{2}$	$2 \cdot 1249$	$11 \cdot 698$	8		23.050	196	35.438	38	0	$49 \cdot 470$
03	-2500	$4 \cdot 012$	$0 \quad 8 \frac{1}{2}$	$\cdot 7082$	6.754	23	9.2500	$12 \cdot 037$	8		23.397	$20 \quad 0$	35.889	39	0	$50 \cdot 117$
$0 \quad 3 \frac{1}{8}$	-2604	4.095	$0{ }_{0}^{0} 88 \frac{3}{4}$	-7291	6.852	$2 \quad 4 \frac{1}{2}$	$2 \cdot 3749$	$12 \cdot 367$	$\begin{array}{ll}8 & 9 \\ 9 & \end{array}$		23.738	206	36.335		0	$50 \cdot 755$
$03 \frac{1}{4}$	- 2708	$4 \cdot 176$	09	-7500	6.950	26	$2 \cdot 5000$	$12 \cdot 688$	90		24.075	210	$36 \cdot 775$			
$0 \quad 3 \frac{3}{8}$	- 2812	$4 \cdot 256$	$0 \quad 9 \frac{1}{4}$	$\cdot 7708$	$7 \cdot 045$	$27 \frac{1}{2}$	$2 \cdot 6249$	13.002	93		$24 \cdot 407$	216	$37 \cdot 211$			

The velocity of a jet of water being known, the path it will follow may be readily traced; for it may be shown to be a parabola whose parameter is equal to four times the height due to the velocity of projection. If the body be projected in the direction A Y (fig. 19) with a velocity due to the height of h, then

$$
\begin{equation*}
y^{2}=4 h x \text {. } \tag{2}
\end{equation*}
$$

from which expression any value may be determined, when the other two are known.

Fig. 19.

Discharge through Orifices and over Notches and Weirs.

Orifices in thin Plates, or thin-edged Orifices.-It is necessary here to define what is meant by a thin-edged orifice, as mistakes often arise on this point. The thin edge should be formed on the inner side of the plate, as in fig. 20, so that for all practical purposes the orifice shall, as far as the current of water is concerned, be the same as if it were formed in a very thin plate. Let a (fig. 21) be a reservoir in which the level of the water is maintained constant, and let an orifice, the area of which is known, be perforated in the vertical side of the reservoir at в. From what has already been said, it might be inferred that, in calculating the discharge from the orifice B , the following process only would suffice. Ascertain the velocity due to the head from the level of still water to the centre of the orifice, regarding it as the mean of the velocity of the several threads, and multiply this by the area of the orifice. This is sometimes

Fig. 20.
 called, although not with strict accuracy, the theoretical discharge; and it is in excess of the actual discharge
from two causes, which are, first, the friction of the water against the sides of the orifice, and, second, a diminution in the actual section of the current of water, termed the 'contraction.'

Fig. 21.

The friction diminishes the velocity of the current, and $v^{\prime} \div v=m$, wherein v^{\prime} is the actual, and v the theoretical, velocity-is the coefficient of velocity-which has to be determined by experiment. It is found that the velocity is proportional to the square root of the head or charge, the coefficient remaining practically constant at about $m=975$.

When the head or charge is greater than about three or four times the height of the orifice, it is sufficiently accurate to regard the mean theoretical velocity as that due to the height from the surface of the still water to the centre of gravity of the orifice. It may be shown* that, for heads less than this, the greatest error cannot exceed four per cent. in the case of circular orifices, and six per cent. in the case of rectangular ones, in excess of the values given by formulæ mathematically correct, even when the upper side of the orifice is on the level of still water, the orifice thus becoming a 'notch.'

The contraction of the fluid vein is caused by the convergence of the fluid threads towards the centre of the orifice, as shown in fig. 22. If the orifice be circular and in the thin vertical side of a reservoir, the maximum

Fig. 22. contractions will occur at a distance from the orifice equal to half its diameter. If the jet issue
 downwards, it will be greater, and if upwards at a less distance than this. With rectangular orifices, the section of the vein varies continually. With circular ones, the form of sections is preserved, but its dimensions are gradually reduced, until at the point of maximum contraction, as above, the diameter is only $\cdot 785$ of the original diameter, and, in consequence, the area is diminished from 1 to $\cdot 785^{2}$, or from 1 to 616 . It may be shown that in fig. 22 the radius 0 c is equal to $1 \cdot 22$. The amount of contraction is influenced by the position of the orifice with regard to the sides of the reservoir, being least when the orifice is near the upper surface of the water, and near a side or bottom of the reservoir, and greatest when most distant from the same. Generally, the coefficients for friction and contraction are combined into a 'coefficient of discharge,' being the ratio of the actual to the theoretical discharge. This will be theoretically the product of the coefficients of velocity and contraction. Numerous experiments, details of which will be found in treatises on Hydraulics, have been conducted with a view to determine practically the value of this coefficient c in the equation

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{A}} \sqrt{2 g \mathrm{H}} \tag{3}
\end{equation*}
$$

in which D is the discharge, and A the area of the orifice. As might be expected, from the irregularities in the conduct of the experiments, the coefficients are very variable.

Circular Orifices.-Michelotti determined, from orifices of 1 to 3 inches in diameter, a coefficient of 614 ; while from Bossut's experiments with smaller orifices, a mean of 62 is obtained. Rennie's experiments give even larger coefficients; here, however, $\cdot 62$ will be considered a fair average; so that
which, for cubic feet per second, becomes

$$
\mathrm{D}=62 \times \mathrm{A} \sqrt{2 g \mathrm{H}}
$$

$$
\left.\begin{array}{rl}
\mathrm{D} & =5 \mathrm{~A} \sqrt{\mathrm{H}} \text { nearly } \tag{4}\\
& =3.908 d^{2} \sqrt{\mathrm{H}} \cdot \\
\cdot & \cdot \\
. & \cdot \\
\hline
\end{array}\right\}
$$

d being the diameter of the orifice in feet.
Rectangular Orifices - It has been seen that the velocity of any horizontal layer of water will vary as $\sqrt{\mathrm{H}}$.
 From this, it may be shown that if the horizontal distances y, y^{\prime} (fig. 23) be drawn, representing this velocity, due to the several heads, the curve a C thus determined will be a parabola, with its vertex at A; and the volume of water discharged will be the prism ABCDEF, whose base is the parabolic segment ABC, and height the width $A D$ of the stream of water. From a well-known property of the parabola, the
 so that, calling l the width of the stream, we have for the volume discharged-

$$
\mathrm{D}=\frac{2}{3} \times l \times \mathrm{AB} \sqrt{2 g(\mathrm{AB})}
$$

or, to introduce the coefficient of discharge, and adopt the usual form and notation,

$$
\begin{equation*}
\mathrm{D}=c \times \frac{2}{3} \times l \sqrt{2 g} \times h \sqrt{h} \tag{5}
\end{equation*}
$$

[^0]But the discharge from a rectingular orifice в с (fig. 24) will be that due to the height A c, minus that due to the height AB; or, symbolically,

$$
\begin{equation*}
\mathrm{D}=c \times \frac{2}{3} \times l \sqrt{2 g}\left(h \sqrt{h}-h_{1} \sqrt{h_{1}}\right) . \tag{6}
\end{equation*}
$$

in which h is the head to the bottom, and h_{1} to the top of the orifice. If for the height of the orifice $\left(h-h_{1}\right), d$ be substituted, A for $l \times d$, and the head be measured to the centre of the orifice, the discharge will become very nearly

Fig. 24.

$$
\begin{equation*}
\mathrm{D}=c\left(1-\frac{d^{2}}{96 \mathrm{H}^{2}}\right) \mathrm{A} \sqrt{2 g \mathrm{II}} \tag{7}
\end{equation*}
$$

The formula commonly used, however, is

$$
\begin{equation*}
\mathrm{D}=c \mathrm{~A} \sqrt{2 g \mathrm{H}} \tag{8}
\end{equation*}
$$

the coefficient c including an approximate correction for the incompleteness of the remainder of the expression.
With a view to determine the coefficients of discharge c, for rectangular orifices, a valuable series of experiments was conducted by Poncelet and Lesbros, at Metz. The apertures were about 8 inches wide, and of varying heights, while the heads or charges vary from less than half an inch to nearly 10 feet. It would appear from the experiments, that, for smaller and more oblong orifices, the coefficient increases as the head diminishes, while the reverse is the case with orifices which are larger and of proportions nearer a square. The following table is founded upon these experiments.

$\begin{aligned} & \text { Head of } \\ & \text { water } \\ & \div \text { depth of } \\ & \text { orifice } \end{aligned}$	Height of orifice \div breadth						Head of water \div depth	Height of orifice \div lreadth					
	1	$0 \cdot 5$	0.25	0.15	$0 \cdot 1$	0.05		1	0.5	0.25	$0 \cdot 15$	$0 \cdot 1$	0.05
$\cdot 05$	-	-	-	-	-	$\cdot 709$	2.50	-602	$\cdot 617$. 631	-630	- 640	-643
-10	-	-	-	-	-660	-698	3.00	-6035	$\cdot 616$	-630	-629	-6385	-640
-15	-	-	-	-638	-660	-691	3.50	-604	. 616	-629	-629	-637	-638
-20	-	-	- 612	-640	-659	-685	$4 \cdot 00$	-604	-615	-629	-628	$\cdot 6355$	-634
-25	-	-	$\cdot 617$	-640	-659	-682	4.50	-6045	-615	-628	-628	-634	-631
- 30	-	. 590	-622	-640	-658	-678	$5 \cdot 00$	-605	-615	-627	-627	-632	-627
$\cdot 35$	-	-595	-624	-639	-658	$\cdot 674$	$5 \cdot 50$	-6045	-614	- 626	-626	- 630	-625
-40	-	-600	-626	-639	-657	-671	6.00	-604	-614	- 624	-624	$\cdot 6275$	-623
-45	-	-602	-627	-638	-656	-669	6.50	-604	-613	-623	-623	-625	-621
$\cdot 50$	-	-605	-628	-638	- 655	$\cdot 667$	7.00	-6035	-613	-622	-622	-623	-620
-55	-	-607	-629	-637	$\cdot 655$	-665	7.50	-603	- 612	-621	-621	-621	- 618
-60	-572	-609	-630	-637	-654	-664	8.00	-602	- 611	-619	-619	- 618	-616
$\cdot 65$	-578	-609	- 630	- 637	-654	-662	$8 \cdot 50$	-602	-610	-618	$\cdot 617$	-6165	-615
$\cdot 70$	-582	-610	-631	-636	. 653	-661	9.00	-6015	-609	-616	- 616	-6155	-615
$\cdot 75$	- 585	-611	-631	-636	. 653	-660	$9 \cdot 50$	-6015	-608	-614	-614	-614	-614
-80	-587	-611	-632	-635	-652	-659	10.00	-601	-607	-613	-613	-613	- 613
$\cdot 85$	-589	-611	-632	-635	-652	. 658	11.00	- 601	-606	-611	-611	-6115	-612
$\cdot 90$	-591	-612	-633	-634	-651	-657	12.00	-601	-605	-609	- 610	-611	- 611
$\cdot 95$	-592	$\cdot 612$	-633	-634	-651	-656	13.00	-601	-604	-608	-609	-6095	$\cdot 610$
$1 \cdot 00$	-592	. 613	'634	-634	-650	-655	14.00	-601	-604	-607	-608	-609	-609
1.50	-598	-616	-632	-632	-645	-650	15.00	. 601	-603	-606	-607	. 608	. 609
$2 \cdot 00$	-600	$\cdot 617$	-631	$\cdot 631$	-642	-647							

With heads of less than from three to five times the height of the orifice, there is a perceptible depression of the water-line at the plate: the heads given in the table are measured to the level of still water above this depression. The coefficients include a correction for measuring the head from the centre of the orifice, instead of from the point where the mean velocity occurs, which is a little above the centre.

Notches and Weirs.-The formulæ given above will apply to notches and weirs, if the orifice be regarded as extending up to the level of the surface. Thus, if in equation (6), $h_{1}=0$, we shall have equation (5), which really gives the discharge over a weir, where h is the difference of level between the thin horizontal edge of the weir board and the still water, and l the length of the overfall.

FIG. 25.

$$
\begin{align*}
& \text { But } \quad l \times h=\mathrm{A} \\
& \text { therefore } \quad \mathrm{D}=c \times \frac{2}{3} \times \mathrm{A} \sqrt{2 g h} . \tag{9}
\end{align*}
$$

With a triangular notch, the discharge is

$$
\begin{equation*}
\mathrm{D}=c \times \frac{4}{15} l h \sqrt{2 g h} . \tag{10}
\end{equation*}
$$

in which l is the width of the notch at the level of still water, and h
 the distance of the apex below the same. In a notch of any given angle the proportion of height to base remains constant: for a right-angled triangular notch (fig. 26)

$$
\begin{equation*}
\mathrm{D}=c \times \frac{8}{15} h^{2} \sqrt{2 g h} . \tag{11}
\end{equation*}
$$

The observation of the true amount of head demands the exercise of great care, as the surface of the water is curved for some distance above the overfall. (See fig. 25.) Mr. Neville gives for the difference between the thickness of the sheet of water passing over the crest, and the head (h) measured to the level of still water,

$$
\begin{equation*}
h-h_{w}=\cdot 14 \sqrt{h} . \tag{12}
\end{equation*}
$$

for measures in feet. The difference, except for very small heads, will be found to vary from one-tenth to onequarter of the true head.*

The coefficients derived from direct experiments with notches and weirs are very variable, perhaps on account of some of the modifying causes to be hereafter mentioned. In the present instance, we shall class the coefficients for thin-edged weirs as follows:-

When the width of the weir is about one-fourth of that of the canal itself $\quad c=\cdot 600$
When the width of the weir is equal to the total width of the canal . . $c={ }^{\circ} 665$
Between the above limits ($b=$ width of the canal, and b^{\prime} that of the weir) . $c=\cdot 57+\frac{b^{\prime}}{10 b}$
For a right-angled triangular notch
$c=\cdot 617$
The coefficients for rectangular notches decrease as the depth of water flowing over is greater in proportion to the length of the notch. The coefficients for triangular notches vary with the form of the triangle; but when the form of the triangle is constant, it is probable that the coefficient will remain the same, whatever be the depth flowing over the notch.

The following table, which is from a valuable series of experiments by Mr. T. E. Blackwell, will show the effects of substituting for thin edges various broad crests of different inclinations. From the circumstances under which the experiments were conducted, it is probable that the coefficients are somewhat lower for the larger heads than what should be considered fair averages.

Coffficients of Discharge from Weirs, from Experiments by Mr. T. E. Blackwell.

	Thin plates, $\frac{1}{40}$ inch		Planks 2 inches thick, square on crest				Crests 3 feet wide					
	3 feet long	10 feet long	$\begin{aligned} & 3 \text { feet } \\ & \text { long } \end{aligned}$	6 feet long	$\begin{gathered} 10 \text { feet } \\ \text { long } \end{gathered}$	10 ft . long wing boards converging at an angle of 64	$\begin{aligned} & 3 \text { feet } \\ & \text { long, } \\ & \text { level } \end{aligned}$	$\begin{aligned} & 6 \text { feet } \\ & \text { long, } \\ & \text { level } \end{aligned}$	10 feet long, level	3 feet long, 1 in 18	$\begin{aligned} & 10 \text { feet } \\ & \text { long, } \\ & \text { fall } \\ & 1 \text { in } 18 \end{aligned}$	$\begin{gathered} 3 \text { feet } \\ \text { long, } \\ \text { fall } \\ 1 \text { in } 12 \end{gathered}$
1	-677	. 808	$\cdot 467$	-459	-435	$\cdot 754$	-452	-	$\cdot 381$	$\cdot 545$	467	
2	-675	-802	-509	-561	-585	-675	-482	-	$\cdot 479$	-546	$\cdot 495$. 533
3	-630	$\cdot 642$	-563	-597	-569	-	-441	-492	-	-537	-	. 539
4	-617	. 655	-549	-575	-602	-656	-419	-497	-	$\cdot 431$	515	-455
5	-601	-649	-588	-601	-609	-671	$\cdot 479$	-	-518	-516	--	
6	$\cdot 592$	-	-593	-608	-576	-	-501	-	-513	-	- 54.3	-531
7	-	-	-616	-608	-576	-	-488	$\cdot 497$	-	-513		527
8	-	-581	-606	-590	-548	-	-470	-	-468	-491	-507	527
9	-	-530	-600	-569	-558	-	-476	$\cdot 480$	-486	-492		
10	-	-	-614	-539	-	-	-	$\cdot 465$	$\cdot 455$			
12	-	-	-	- 525	-	-	-	. 467	15	-	-	-
14	-	-	-	-549	-	-	-	-	-	-	-	-
Mean	632	667	570	565	562	689	467	483	471	508	505	507

Experiments were conducted by Messrs. Blackwell and Simpson, at Chew Magna, in Somerset, with a 10 -feet weir formed as shown in figs. 27 and 28 ; the cill was a cast-iron plate, two inches thick, with a square top. In

[^1]the plan, fig. $27, \mathrm{~A}$ B is the overfall, to which the water was conducted by a channel of equal width. On the whole, it may be seen that the coefficients increase as the head is greater; but this is to be accounted for by the

Fig. 28.

fact that with the larger heads the velocity of approach (see p. 74) was considerable, but was nevertheless omitted from the calculations by which the coefficients were ascertained.

Coefficients of Discharge.

Experiments by Messrs. Simpson and Blackwell.

Head in feet	Coefficients	Head in feet	Coefficients	Head in feet	Coefficients
. 083 to $\cdot 073$	-591	$\cdot 3437$	-743	$\cdot 5$	$\cdot 749$
. 083 to $\cdot 088$	- 626	-3594	760	$\cdot 5156$	$\cdot 748$
- 182 to $\cdot 187$	-682	-3646	$\cdot 741$. 5156 to $\cdot 521$	$\cdot 747$
-229	-665	-3610	$\cdot 750$	$\cdot 5781$	$\cdot 772$
-2435	. 670	$\cdot 375$	-725	-639	$\cdot 717$
-2396	-655	-416	-780	-6666	-802
-2422	-653	$\cdot 4227$	$\cdot 781$	-66 to 734	$\cdot 737$
-2448	-654	- 4505	-749	.7448	-750
. 25 to $\cdot 253$	$\cdot 725$	$\cdot 453$ to $\cdot 456$	$\cdot 751$.75	-781
-3333	$\cdot 745$	-4948	.728	Mean.	$\cdot 723$

The following are the results of some experiments carried on by Boileau, at Metz, in 1854, with a vertical plank weir extending from side to side of the supplying channel :-

Head of weir above bottom of channel	Head	Mean coefficient
	Feet	Feet
3	$\cdot 2$ to $\cdot 6$	
$1 \cdot 3$	$\cdot 16$ to 5	$\cdot 645$
$\cdot 6$	$\cdot 15$ to $\cdot 25$	$\cdot 622$
625		

When the water in the lower channel rose to the level of the weir board, the results were as follow:-

Head of weir above bottom of channel	Head	Mean coefficient
Feet	Feet	
2	1 to $1 \cdot 6$	-694
1.8	- 6 to $1 \cdot 8$	-690
-6	$\cdot 36$ to $1 \cdot 3$	-675

With a plank weir 1.5 feet in height, leaning up stream four inches in a foot, the mean value of the coefficient was 620 , the heads varying from about 3 to 6 inches. When the weir board was still inclined, and the
tail-water rose to the crest, the latter being rounded to a semi-circle, the values of c were $\cdot 696$ and $\cdot 843$, with heads of about 3 and 6 inches respectively.*

Suppressed Contraction.-In all the cases treated above, except where otherwise specified, it has been supposed that the water has had the opportunity of flowing towards the orifice or overfall from all directions, the fluid threads converging freely, and thus bringing about the contraction of the stream. It frequently occurs, however, as already mentioned, that the contraction is suppressed on one or more sides of the opening, in consequence of the orifice being formed close to the walls or bottom of the reservoir. From experiments on rectangular orifices, Weisbach deduced the formula

$$
\begin{equation*}
c^{\prime}=c\left(1+\cdot 132 \frac{n}{p}\right) \tag{12~A}
\end{equation*}
$$

in which p is the perimeter of the orifice, n that part of it where the contraction is suppressed, c the coefficient of free contraction, as before, and c^{\prime} the coefficient of partial contraction. In a similar equation, M. Bidone gives $\cdot 152$, instead of $\cdot 132$; so that, adopting a mean value for c, we may consider approximately

$$
\begin{equation*}
c^{\prime}=c+\cdot 09 \frac{n}{p} \tag{13}
\end{equation*}
$$

Velocity of Approach.-When the discharge through an orifice or over a weir is from a channel in which there is a sensible velocity of approach, let v^{\prime} be that velocity in feet per second; then the head due to that velocity is, from (1),

$$
\mathrm{h}^{\prime}=v^{\prime 2} \div 64 \cdot 4
$$

and the discharge will be that due to the head $\left(H+h^{\prime}\right)$. Thus, the head being measured from the centre of the orifice,

$$
\left.\begin{array}{rl}
D & =c \mathrm{~A} \sqrt{64 \cdot 4\left(\mathrm{H}+\frac{v^{2}}{64 \cdot 4}\right)} \quad . \quad \bullet \quad . \tag{14}\\
& =c \mathrm{~A} \sqrt{64 \cdot 4 \mathrm{H}+v^{2}} . \quad . \quad . \quad
\end{array}\right\}
$$

The following, however, is a more correct formula for rectangular orifices, the true mean velocity of discharge being regarded:-

$$
\begin{equation*}
\mathrm{D}=\frac{2}{3} c l \sqrt{2 g}\left\{\left(h+h^{\prime}\right)^{\frac{3}{2}}-\left(h_{1}+h^{\prime}\right)^{\frac{3}{2}}\right\} \tag{15}
\end{equation*}
$$

in which h and h_{1} are the heads, measured from the bottom and top of the orifice respectively. For a notch or weir, h_{1} vanishes, and formula (15) becomes

$$
\begin{equation*}
\mathrm{D}=\frac{2}{3} c l \sqrt{2 g}\left\{\left(h+h^{\prime}\right)^{\frac{3}{2}}-h^{\frac{3}{2}}\right\} \tag{16}
\end{equation*}
$$

If A be the area of an orifice, and A_{1} the sectional area of the supplying canal, taken at right angles to the current,

$$
\frac{\mathrm{A}}{\mathrm{~A}_{1}}=\frac{v^{\prime}}{v}
$$

v and v^{\prime} being the mean velocities in the orifice and canal respectively. The head due to the velocity of approach ($v \mathrm{~A} \div \mathrm{A}_{1}$) will be

But $\mathbf{D}=v \times \mathbf{A}$; therefore

$$
\begin{equation*}
h^{\prime}=\frac{1}{2 g}\left(\frac{v A}{A_{1}}\right)^{2} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
h^{\prime}=\frac{\mathrm{D}^{2}}{2 g \cdot \mathrm{~A}_{1}{ }^{2}} \tag{17~A}
\end{equation*}
$$

An approximate value for the velocity of approach having been ascertained, the height h^{\prime} due to it is to be inserted in formula (15) or (16), and an approximate discharge computed. A new and closer value of h^{\prime} may then be obtained from (17) or (17A); and thus by continued substitution of the new values, any required degree of accuracy may be obtained. For general purposes, a mean velocity of approach, ascertained by one or other of the usual methods, will suffice for the determination of the discharge.

The foregoing is on the supposition that the whole of the discharge suffers a contraction whose coefficient is c. If, however, that part of the discharge which is due to the velocity of approach suffer no contraction, the head required to produce that velocity in the orifice, with contraction, will be

$$
\begin{equation*}
h^{\prime}=\frac{v^{2}}{2 g \cdot c^{2}} \cdot \frac{\mathrm{~A}^{2}}{\mathrm{~A}_{1}{ }^{2}} \tag{18}
\end{equation*}
$$

or, from equation $(17 \mathrm{~A})$,

$$
\begin{equation*}
h^{\prime}=\frac{D^{2}}{2 g c A_{1}{ }^{2}} \tag{18~A}
\end{equation*}
$$

* P. Boileau, Traité de la Mesure des Eaux Courantes, etc. Paris, 1854.

Separating Weirs.-It has been seen (p.69) that a jet of water issuing with a certain velocity describes a parabola whose parameter is four times the height to which that velocity is due. In a stream of considerable depth passing over a weir the various fluid threads will have velocities depending upon their depths below the surface. It will be sufficiently accurate for all practical purposes, however, to suppose that the stream will advance in a curved sheet A B C D (fig. 29), parallel on its upper and lower surfaces with the curve due to the mean velocity. The fluid layer having the mean velocity is that, $a b$, which is at four-ninths of the depth of the stream, measured from the level of still water, and the mean velocity is two-thirds of that due to the head, measured from the weir crest to the level of still water. In fig. 29 are shown two streams; the one in full lines ($\mathrm{AB}, \mathrm{C} \mathrm{D}$) has such a mean velocity that it will just fall within the distance F B; and the other in dotted lines ($\mathrm{A}^{\prime} \mathrm{B}^{\prime}, \mathrm{C}$ E), being due to a much greater head, is carried beyond the distance $\mathbf{F} \mathrm{E}$. The utility of the arrangement consists in separating the clear water of streams in their normal condition from the turbid water which rushes down in the times of floods; and in order that the weir may be properly adjusted, it is necessary to gauge the stream at such times as it
 commences to be turbid, that the flow of water may be known. The head above the weir due to such discharge will be given by the value of h in equation (9), and the corresponding parabolas may then be determined. From (2) we have

$$
y=2 \sqrt{h x}
$$

but the mean velocity of the sheet of water being two-thirds the velocity due to the head h above the weir, the horizontal distance y to which the cascade will leap in the height x will be

$$
\begin{equation*}
y=\frac{4}{3} \sqrt{h x} \tag{19}
\end{equation*}
$$

in which h is the height from the weir crest to the level of still water.
Submerged Orifices and Weirs.-The case represented by fig. 30 is known as a submerged or drowned orifice ; and it is evident that from all parts of the orifice the stream will issue with a velocity due to the head caused by the difference between the levels of still water in the upper and lower reservoir; thus

$$
\begin{equation*}
\mathrm{D}=c \mathrm{~A} \sqrt{2 g h_{0}} \tag{20}
\end{equation*}
$$

Fig. 30.

The coefficient of discharge c in equation (20) has been found to have a value of about $\cdot 5$.
When the orifice is only partially submerged (fig. 31) it may be considered divided into two parts- d_{1}, that below the level of the water in the lower reservoir, as a submerged orifice, and the remaining or upper part, d, as a free orifice; the total discharge will then be

$$
\begin{equation*}
\mathrm{D}=l \sqrt{2 g}\left\{c d_{1} \sqrt{h_{o}}+\frac{2}{3} c\left(h_{o} \sqrt{h_{o}}-h_{1} \sqrt{h_{1}}\right)\right\} \tag{21}
\end{equation*}
$$

Fig. 31. $\mathrm{D}=l \sqrt{2 g}\left\{c d_{1} \sqrt{h_{o}}+\frac{2}{3} c\left(h_{o} \sqrt{h_{o}}-h_{1} \sqrt{h_{1}}\right)\right\}$

If the water in the reservoir has a determined velocity of approach, the head h^{\prime}, due to that velocity, must be added to h_{o} and h_{1} above, and the new values substituted.

The case of a drowned weir (fig. 32) may be regarded as consisting of an ordinary free notch, with a head equal to h_{o}, and a submerged orifice whose height is d_{1}, the head being also h_{o}; so that

$$
\begin{equation*}
\mathrm{D}=l \sqrt{2 g}\left(\frac{2}{3} c h_{o} \sqrt{h_{o}}+c d_{1} \sqrt{h_{o}}\right) \tag{22}
\end{equation*}
$$

which, simplified, becomes

$$
\begin{equation*}
\mathrm{D}=l \sqrt{2 g h_{o}}\left(\frac{2}{3} c h_{o}+c d_{1}\right) \tag{22~A}
\end{equation*}
$$

Fig. 32.

Where there is a velocity of approach due to a head h^{\prime}, then h_{o} becomes $\left(h_{o}+h^{\prime}\right)$; and, from (21), we have

$$
\begin{equation*}
\mathrm{D}=l \sqrt{2 g}\left[c d_{1} \sqrt{h_{o}+h^{\prime}}+\frac{2}{3}\left\{\left(h_{o}+h^{\prime}\right)^{\frac{3}{2}}-h^{\frac{3}{2}}\right\}\right] \tag{23}
\end{equation*}
$$

The coefficient of discharge for the submerged sections of drowned weirs and partially submerged orifices may be taken as about the same as that already given for a completely submerged orifice, namely, $\cdot 5$. Series of careful experiments with drowned weirs and partially submerged orifices are much required.

Adjutages.-In the experiments hitherto referred to it has been supposed, except where otherwise stated, that the orifices and notches were formed either in thin plates or with a thin edge on the up-stream side. If the orifice be placed in the side of a vessel of a thickness large in proportion to the dimensions of the orifice, the coefficient is considerably influenced, whilst similar effect is produced by adjutages or mouth-pieces consisting of short tubes, which may be of various forms and dimensions.

Experiments by Bossut on cylindrical tubes 1 inch in diameter and 2 inches long gave coefficients varying from 818 to 803 , with heads of from 1 to 15 feet. Michelotti derived a mean coefficient of 814 with tubes of

Fig. 33.

Fig. 35.

Fig. 36.
 from $1 \frac{1}{2}$ to 3 diameters in length, and heads of from 3 to 20 feet. Having regard also to other experiments, $\cdot 815$ may be taken as a fair average.

If the tube project within the side of the reservoir (fig. 34), the coefficient will be reduced to $\cdot 715$.

If the inner end of the adjutage be rounded to the form of the contracted vein (figs. 22 and 35), the coefficient will be increased. Weisbach's experiments give $\cdot 958, \cdot 969, \cdot 975$ for heads of 1,5 , and 10 feet respectively, the tube being 9 inches in diameter and 1.5 inches long. A variation in the form of adjutage from that of the contracted vein will of course result in a reduction of the coefficient.

Conical convergent adjutages present some curious features. The velocity of the jets of water and the discharge vary with the angle of convergence of the sides, as will be seen from the following table, founded by Mr. Neville upon experiments by D'Aubuisson and Castel.*

Conical Convergent Tubes.

Converging Angle	Coefficient of Discharge	Coefficient of Velocity	$\begin{aligned} & \text { Converging } \\ & \text { Angle } \end{aligned}$	Coefficient of Discharge	Coefficient of Velocity	Converging Angle	Coefficient of Discharge	Coefficient of Velocity
$1{ }^{\circ}$. 858	-858	8°	-931	-933	20°	. 922	-971
2°	-873	. 873	10°	$\cdot 937$	-950	22°	$\cdot 917$.973
3°	-908	-908	12°	-942	-955	26°	. 904	-975
4°	-910	-909	14°	$\cdot 943$	-964	30°	-895	-976
5°	$\cdot 920$	$\cdot 916$	16°	. 937	$\cdot 970$	40°	-869	-980
6°	.925	. 923	18°	$\cdot 931$	$\cdot 971$	50°	-844	. 985

The experiments were made with tubes of $\cdot 61$ inches in diameter at the smaller end, and $1 \cdot 57$ inches long. It will be seen that the coefficient of discharge starts at 829 , the tube being then cylindrical, and gradually increases until it attains the maximum, at an angle of about $13 \frac{1}{2}^{\circ}$ or 14°; it then diminishes, the angle still increasing, until the latter attains its maximum, or 180°, when the orifice would be virtually in a plane plate. The coefficients of velocity increase with the angle. It must be understood that the smaller diameter is used in determining the coefficient, and not the larger or inner one. It is found with conical convergent adjutages, as with cylindrical ones, that the most favourable results are obtained when the length is about $2 \frac{1}{2}$ times the diameter.

The discharge from conical divergent tubes (fig. 37), when running full, is greater than that from conFig. 37. vergent tubes. It was found by Venturi, from his experiments, that a discharge 1.46 times the theoretic discharge from the smaller diameter $a b$, fig. 38 , might be obtained with a tube of 9 times the smaller diameter in length, diverging at an angle of $5^{\circ} 6^{\prime}$. If the mouth-piece be curved, as in fig. 38, the inner end being of the form of the contracted vein (fig. 22), $a \mathrm{c}$ being 9 times $a b$, and cD 1.8 times $a b$, the coefficient will rise to 1.57 ; so that the discharge will be $1.57 \div \cdot 62=2.53$ times that
 through a thin-edged orifice of the diameter of $a b$. If A B and $a b$ be correctly proportioned, the discharge through adjutages thus formed will be about equal to the theoretic discharge from an orifice of the diameter A B.
Experiments were conducted by Mr. Bateman, at Manchester, with rectangular orifices, sections of which are given on plate 26 , figs. 20,21 , and 22 . The coefficients derived from the experiments were $\cdot 697, \cdot 872$, and .947 respectively, with heads of from 1 to 4 feet above the centre of the openings.

Shoots.-When channels, open at the top, are attached to orifices, there is a diminution in the discharge, which is less as the discharge is greater ; and when the charges are from 2 to $2 \frac{1}{2}$ times greater than the height of the orifice itself, the effect of the addition of the shoot is inconsiderable; with very small heads, however, the discharge is diminished a fourth or more. Similar effects are produced when channels are attached to weirs or
overfalls, as the following table will show. The experiments were by Poncelet and Lesbros; the channel was $9 \cdot 84$ feet long, $\cdot 656$ feet wide-the same width as the overfall—and adjusted so as to be horizontal.

Head	Coefficient		$\begin{aligned} & \text { Loss per } \\ & \text { cent. } \end{aligned}$
	Without channel	$\begin{aligned} & \text { With } \\ & \text { channel } \end{aligned}$	
Feet			
0.675	$0 \cdot 582$	0.479	18
$0 \cdot 475$	$0 \cdot 590$	$0 \cdot 471$	20
0.337	0.591	0.457	23
$0 \cdot 196$	0.599	$0 \cdot 425$	29
$0 \cdot 147$	0.609	$0 \cdot 407$	33
0.091	$0 \cdot 622$	$0 \cdot 340$	45

Castel experimented on overfalls 8 inches wide and 8 inches long, inclined $4^{\circ} 18^{\prime}$, or 1 in $13 \cdot 3$: the reservoir itself was 2 feet 3 inches wide. With heads varying from $\cdot 36$ foot to $\cdot 16$ foot, the coefficient was found to vary only from $\cdot 526$ to $\cdot 530$.

Discharge under a Variable Head.-It may be shown from the fundamental laws of mechanics, that the time occupied by the complete discharge from a prismatic vessel is twice that in which the same volume would flow out under a constant head equal to that at the commencement of the flow. If $\mathrm{A}=$ the area of the vessel on plan, a the area of the orifice, and H the head at the commencement of the discharge, the above theorem may be expressed by the equation

$$
\begin{equation*}
\mathrm{T}=2 \times \frac{\mathrm{A} \sqrt{\mathrm{H}}}{c a \sqrt{2 g}} \tag{24}
\end{equation*}
$$

c being the coefticient of discharge, as before.
The time which will be occupied in discharging from a prismatic vessel a given quantity whose depth is k (fig. 39) will obviously be the difference between the times occupied in discharging from the heights H and h. Whence

$$
\begin{equation*}
\mathrm{T}=\frac{2 \mathrm{~A}}{c a \sqrt{2 g}}(\sqrt{\mathrm{H}}-\sqrt{\bar{h})} \tag{25}
\end{equation*}
$$

The discharge (D) for a given time is

$$
\begin{equation*}
\mathrm{D}=\mathrm{T} c a \sqrt{2 g}\left(\sqrt{\mathrm{H}}-\frac{\mathrm{T} c a \sqrt{2 g}}{4 \mathrm{~A}}\right) \tag{26}
\end{equation*}
$$

The following formula gives the time of discharge when a constant stream is flowing into the reservoir, at the rate of q cubic feet per second:-

$$
\begin{equation*}
\mathrm{T}=\frac{2 \mathrm{~A}}{(c a \sqrt{2 g})^{2}}\left\{c a \sqrt{2 g}(\sqrt{\mathrm{H}}-\sqrt{h})+q \text { hyp. log. } \frac{c a \sqrt{2 g \mathrm{H}}-q}{c a \sqrt{2 g \mathrm{H}}-q}\right\} \tag{27}
\end{equation*}
$$

Hyp. log. $=$ common log. $\times 2 \cdot 30258$.
If the time (T) be given, the value of h will give the level to which the water in the reservoir will have descended at the end of the time, under the same circumstances.

If the water in the reservoir be discharged over a weir, there being no influx into the basin, the time occupied in lowering the water from a head H to a head h will be

$$
\begin{equation*}
\mathrm{T}=\frac{3 \mathrm{~A}}{c l \sqrt{2 g}}\left(\frac{1}{\sqrt{\bar{h}}}-\frac{1}{\sqrt{-}}\right) \tag{28}
\end{equation*}
$$

For wedged-shaped reservoirs ($a b d c j k$, fig. 40), the time of complete discharge will be $1 \frac{1}{3}$ that of the same rolume discharged under the initial head; while for pyramidal reservoirs ($a b d c k$, fig. 41), the time of complete discharge is to that of the

Fig. 40.
 same volume under the initial head as $1 \frac{1}{5}$ to 1 .

The time required to discharge a reservoir with sloping sides and vertical ends (as $a b d c e f h g$, fig. 40), or a
reservoir with all its sides sloping equally (as $a b d c e f h g$, fig. 41), may be found by an obviously simple process

formulæ already given.
Let it now be supposed that a prismatic vessel is to be supplied by an orifice at its base from a reservoir whose surface remains at a constant level (fig. 42). If the level of the water in the lower reservoir or vessel also remain

Fig. 42.

orifice, or constant, and the orifice be submerged, the discharge will be simply that due to a head equal to the difference of level of the water-surfaces in the two reservoirs. If the water in the vessel rise as the flow proceeds, the discharge will be due to a head continually diminishing, so that the time occcupied in raising the water a given height will be twice that which would be occupied in discharging the same volume through a free

$$
\mathbf{T}=\frac{2 \mathrm{~A}}{c a \sqrt{2 g}}(\sqrt{\mathrm{H}}-\sqrt{h})
$$

as in equation (25), in which A is the section on plan of the receiving vessel, and a the area of the orifice. If the lower vessel be filled to the level of the water in the upper vessel, then the formula will become

$$
\mathrm{T}=\frac{2 \mathrm{~A} \sqrt{\mathrm{H}}}{c a \sqrt{2 g}}
$$

as in equation (24).
Next let it be supposed that the upper or supplying reservoir is prismatic and of known capacity (fig. 43), and that the discharge takes place from the one vessel to the other, the total quantity of water in the two vessels

Fig. 43.
 remaining constant. Let I and h be the heads of water, above the orifice or other communication, in the upper and lower vessels respectively, before the flow commences; x the height above the orifice of the water-surface in the upper reservoir after the flow has been proceeding during the time t; A and B the sections (on plan) of the upper and lower reservoirs respectively ; a the section of the passage of communication ; and c the coefficient of discharge through the same ; then

$$
\begin{equation*}
t=\frac{2 \mathrm{~A} \sqrt{\mathrm{~B}}}{c a \sqrt{2 g}(\mathrm{~A}+\mathrm{B})}\{\sqrt{\mathrm{B}(\mathrm{H}-h)}-\sqrt{(\mathrm{A}+\mathrm{B}) x-\mathrm{A} h-\mathrm{B} h}\} \tag{29}
\end{equation*}
$$

The time which would be occupied in bringing the two surfaces to the same level is given by the formula

$$
\begin{equation*}
t=\frac{2 \text { А в } \sqrt{\mathrm{H}-h}}{c a \sqrt{2 g(\mathrm{~A}+\mathrm{B})}} \tag{30}
\end{equation*}
$$

Flow of Water througi Uniform Channels.

Mean Velocity. -In open channels the mean velocity (v) may be ascertained from the maximum or mean surface velocities. The following is an adaptation of Prony's formula to measures in English feet, v being the maximum surface velocity :-

$$
\begin{equation*}
v=\left(\frac{7 \cdot 783+\mathrm{v}}{10 \cdot 345+\mathrm{v}}\right) \mathrm{v} \tag{31}
\end{equation*}
$$

This formula was derived from experiments in small channels. For large channels,

$$
\begin{equation*}
v=835 \mathrm{v} . \tag{32}
\end{equation*}
$$

Accelerating and retarding forces.-Water in flowing down a uniform channel is acted on by the force of gravity, which gives rise to the motion, and by certain resistances, commonly known as friction, tending to counteract or retard that motion. The velocity of the stream is at first gradually accelerated, but soon the maximum velocity is attained, and the channel is said to be 'in train,' the retarding forces being then equal to the accelerating forces, and the velocity becoming in consequence uniform.

We have seen that the velocity is proportionate to the square root of the height. The laws of the friction
of water may be stated as follows : (1) It is independent of the pressure. (2) It is proportionate to the surface in contact with the flowing water. (3) It is inversely proportionate to the area of the cross-section of the stream. (4) It is proportionate to the square of the velocity nearly. Experiment has shown that the resistance does not increase quite so rapidly as the square of the velocity, but that it would be more nearly given as proportionate to

$$
\left(a v+b v^{2}\right)
$$

in which a and b are constants.
Equating the accelerating and retarding forces, we have

$$
\begin{equation*}
2 g h=\left(a v+b v^{2}\right) \times l \times \frac{\mathrm{P}}{\mathrm{~s}} \tag{33}
\end{equation*}
$$

in which S is the section of the stream, and p the wetted perimeter or border. The value $\mathrm{S} \div \mathrm{P}=\mathrm{R}$ is known as the mean radius or hydraulic mean depth. Omitting $2 g$, as its value is constant and may therefore be embodied with the coefficient, we have

$$
\begin{equation*}
\mathrm{R} \frac{l}{l}=\left(a v+b v^{2}\right) \tag{34}
\end{equation*}
$$

from which

$$
\begin{equation*}
v=\sqrt{\frac{r h}{l b}+\frac{a^{2}}{4 b^{2}}}-\frac{a}{2 b} \tag{35}
\end{equation*}
$$

Different experimenters have assigned different values to the coefficients a and b, and the following are some of the resulting equations.

From Eytelwein's experiments with rivers, we have the general formula

$$
\left.\begin{array}{rl}
v & =\sqrt{8975 \cdot 4 \mathrm{R} \frac{h}{l}+\cdot 011886}-\cdot 109 \quad . \quad . \tag{36}\\
& =94 \cdot 5 \sqrt{\mathrm{R} \frac{h}{l}}-\cdot 11 \text { nearly } \quad . \quad . \quad .
\end{array}\right\}
$$

From experiments on canals in which the velocities did not exceed three feet per second, Prony derived coefficients which give

$$
\left.\begin{array}{rl}
v= & \sqrt{10607 \mathrm{R} \frac{h}{l}+\cdot 0556}-236 \tag{37}\\
& =10 \sqrt{\mathrm{R} \frac{h}{l}-.24 \text { nearly }} .
\end{array}\right\}
$$

An allowance should be made in the value of r when aquatic plants, reeds, \&c. interfere with the progress of the water. This is sometimes provided for by multiplying the wetted perimeter (or dividing R , which is the same thing) by 1.7 . No definite value, however, can be given when the conditions are liable to such extreme variations. Allowance must be made according to the judgment of experience, as, for instance, in the case of small water-courses pitched with materials of which the irregularities are comparatively large in proportion to the hydraulic mean depth.

For the coefficients a and b in (35), Mr. Neville gives for clear straight rivers

$$
x=\cdot 0000035 \quad b=\cdot 000115
$$

from which

$$
\left.\begin{array}{rl}
v & =\sqrt{8695 \cdot 6 \mathrm{R} \frac{h}{l}+\cdot 00023}-\cdot 0152 \quad . \quad . \tag{38}\\
& =93 \sqrt{\mathrm{R} \frac{h}{l}}-\cdot 02 \quad . \quad . \quad . \quad .
\end{array}\right\}
$$

Du Buat's well-known formula for rivers, pipes, and channels, was determined after a most careful study of the results of numerous experiments. For measures in feet, it is as follows :-

$$
\begin{equation*}
v=\frac{88 \cdot 5(\sqrt{\mathrm{R}}-\cdot 03}{\sqrt{\frac{\bar{l}}{h}}-\text { hyp. log. } \sqrt{\left(\frac{l}{h}+1 \cdot 6\right)}}-.084(\sqrt{\mathrm{R}-\cdot 03)} \tag{39}
\end{equation*}
$$

Mr. Neville gives the following general formula for pipes and channels :-

$$
\begin{equation*}
v=140 \sqrt{\mathrm{Rs}}-11 \sqrt[3]{\mathrm{Rs} s} \tag{40}
\end{equation*}
$$

in which $s=h-l$.

For pipes, Prony's coefficients, deduced from experiments by Du Buat, Bossut, and Couplet, give

$$
\left.\begin{array}{rl}
v & =\sqrt{9419 \cdot 7 \mathrm{R} \frac{h}{l}+\cdot 00665}-.0816 \tag{41}\\
& =97 \sqrt{\mathrm{R} \frac{h}{l}}-.08 \text { nearly. }
\end{array}\right\}
$$

The pipes he experimented upon were from 1 to 5 inches in diameter, 30 to 7,000 feet long, and one 19-inch pipe 4,000 feet long.

Eytelwein's coefficients, derived from the same experiments, give

If in (33) we substitute $\left(c_{f} v^{2}\right)$ for $\left(a v+b v^{2}\right)$, and solve for v, we shall have

$$
\begin{equation*}
v=\sqrt{\frac{2 g \mathrm{R} h}{c_{f} l}} \tag{43}
\end{equation*}
$$

c_{f} being the coefficient of friction, to which Weisbach has assigned the value

$$
\begin{equation*}
c_{f}=\left(\cdot 0036+\frac{0043}{V v}\right) \tag{44}
\end{equation*}
$$

thus recognising the principle that the friction diminishes somewhat as the velocity increases, and giving results for high velocities much nearer the truth.

In using (43) with Weisbach's coefficient (44), it is necessary first to obtain an approximate value for v, and for this either (41) or (42) may be used. An approximate value for c_{f} being then obtained from (44), it should be introduced into (43), from which the mean velocity, near enough for all practical purposes, may then be derived. Greater accuracy will, if required, be given by continued approximations, the new value for v being introduced into (44), and the process repeated.

Mr. Neville gives the following formula for pipes, recognising the principle above mentioned, and at the same time allowing the velocity to be computed at one operation :-

$$
\begin{equation*}
v=140 \sqrt{\mathrm{R} s}-11 \sqrt[3]{\mathrm{R} s} \tag{45}
\end{equation*}
$$

in which $s=h \div l$, as before. It may be remarked that this formula fails when $\mathrm{R} s=\cdot 000000235$; but this does not affect its practical value.
M. Darcy, from a series of nearly two hundred experiments on pipes varying from half an inch to twenty inches in diameter, and with velocities of from about 1 inch to nearly 20 feet per second, derived a coefficient, which, reduced to English measures, is

$$
\begin{equation*}
c_{t}=\cdot 005\left\{1+\frac{1}{\text { dia. in inches }}\right\} \tag{46}
\end{equation*}
$$

It has been found from observations on long pipe conduits of large diameter, that the formulæ in most general use-such as Du Buat's (39), Weisbach's (43 and 44), and others-give velocities considerably below those found to obtain in the cases referred to, and it has become the practice to make an addition-on an average, about 25 per cent.-to the velocities and discharges which these formulæ give. Darcy's expression for the coefficient (46) will, under certain conditions of velocity, give results nearer the truth; thus, with a 48 -inch castiron pipe in the Loch Katrine Works, having an inclination of 1 in 1056 , or 5 feet per mile, the actual velocity was found to be 3.46 feet per second, and Darcy's formula gives practically the same result, against about 3 feet for the common formulæ. Darcy's formula, however, inasmuch as it makes the coefficient depend only upon the hydraulic mean depth, does not accord with the received opinions on this subject.

Mr. Hawksley gives for pipes a formula which, reduced to measures in feet, gives

$$
\begin{equation*}
v=48 \sqrt{\frac{d_{\mathrm{H}}}{l+54 d}} \tag{47}
\end{equation*}
$$

This formula includes an allowance for the resistance at the orifice of entry, and is therefore applicable approximately, without modification, to short pipes. In all the formulæ for pipes and channels before given, h is the loss of head due to the friction in the pipe; and in long straight pipes this is the only loss of head that need be regarded. But in short pipes the loss of head from other causes is too large a percentage of the whole to be disregarded; so that before applying equations (39 to 46) to short pipes, we must deduct from h the several
other losses of head. Thus there is the head due to the velocity in the pipe-

$$
h=\frac{v^{2}}{2 g}
$$

and then there is the head due to the resistance at the orifice of entry-

$$
h=c_{r} \frac{v^{2}}{2 g}
$$

c_{r} being the ratio which this head has to that due to the velocity in the pipe. These together, or

$$
\begin{equation*}
h=\left(1+c_{r}\right) \frac{v^{2}}{2 g} \tag{48}
\end{equation*}
$$

may be shown to be the same as

$$
\begin{equation*}
h=\frac{1}{c_{d}{ }^{2}} \times \frac{v^{2}}{2 g} \tag{49}
\end{equation*}
$$

in which c_{d} may be either of the coefficients given for the cases represented in figs. 33,34 , and 35 . The loss of head due to bends and other resistances, if any, should also be deducted from h in the several formulx given for the velocity before applying them to cases of short pipes, and indeed when applying them to long pipes if these resistances are such as together to demand a large proportionate loss of head.

From (43) we shall have, for short straight pipes-

$$
\begin{equation*}
v=\sqrt{\frac{2 g h}{\frac{1}{c_{d}^{2}}+c_{f} \frac{l}{\mathrm{R}}}} \tag{50}
\end{equation*}
$$

in which $1 \div c_{d}{ }^{2}$ may be taken as $\cdot 664, \cdot 511$, and $\cdot 95$ for orifices of entry corresponding to figs. 33,34 , and 35 respectively.

For the resistance due to bends and curves, the following are Weisbach's formulæ for the coefficients for circular tubes:-

$$
\begin{equation*}
c_{b}=\frac{\theta}{180^{\circ}} \times\left\{\cdot 131+1 \cdot 847\left(\frac{d}{2 r}\right)^{\frac{7}{2}}\right\} \tag{51}
\end{equation*}
$$

and for rectangular tubes

$$
\begin{equation*}
c_{b}=\frac{\theta}{180^{\circ}} \times\left\{\cdot 124+3 \cdot 104\left(\frac{d}{2 r}\right)^{\frac{7}{2}}\right\} \tag{52}
\end{equation*}
$$

in which r is the radius of curvature of the pipe at the bend ; θ, the angle в Λ С (fig. 44), through which it is bent, and d the diameter, all in feet.

For angular bends or elbows in pipes, the coefficient of friction is given as

$$
\begin{equation*}
c_{a}=.946 \sin \cdot \frac{\theta}{2}+2 \cdot 05 \sin \cdot \frac{\theta}{2} \tag{53}
\end{equation*}
$$

in which θ is the angle в а с (fig. 45) made by the two parts of the pipe.
For the friction of diaphragms, and at sudden contractions and enlargements, let A_{1} and A_{2} (fig. 46) be the sectional areas of the channel in the two parts respectively, between which there is a diaphragm reducing the area to a.

Professor Rankine gives the following formula:-

$$
\begin{equation*}
c_{k}=(r-1)^{2} \tag{54}
\end{equation*}
$$

in which

$$
\begin{equation*}
v=\frac{\mathrm{A}_{2}}{a} \sqrt{2 \cdot 618-1 \cdot 618 \frac{a^{2}}{\mathrm{~A}_{1}{ }^{2}}} \tag{55}
\end{equation*}
$$

In the above cases the loss of head due to the co-efficient $\mathrm{C}_{b}, \mathrm{c}_{a}$, or c_{k}, will be $\mathrm{H}_{b}=\mathrm{C}_{b} \mathrm{v}^{2} \div 2 g ; \mathrm{h}_{a}=\mathrm{C}_{a} \mathrm{v}^{2} \div 2 g$; and $\mathrm{H}_{k}=\mathrm{C}_{k} \mathrm{~V}^{2} \div 2 \mathrm{~g}$. We have therefore for the total loss of head from all causes,

$$
\begin{equation*}
h=\left(\frac{1}{\mathrm{C}_{d}}+\mathrm{C}_{f} \frac{l}{\mathrm{R}}+\mathrm{C}_{b}+\mathrm{C}_{a}+\mathrm{C}_{k}\right) \frac{v^{2}}{2 g} . \tag{56}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\mathrm{v}=\sqrt{\frac{2 g \mathrm{H}}{\frac{1}{c_{d}{ }^{2}}+\mathrm{C}_{f} \frac{l}{\mathrm{R}}+\mathrm{C}_{b}+\mathrm{C}_{a}+\mathrm{C}_{k}}} \tag{57}
\end{equation*}
$$

in which C_{e} is the co-efficient for the orifice of entry (figs. $33,34,35$), c_{f} that of the friction in the pipe, and c_{b}, C_{α}, and C_{k}, the co-efficients for bends, enlargements, \&c. as first given. In most cases of practice all the coefficients, except c_{f} may be disregarded, as their values will generally be comparatively inconsiderable.

The formulæ that have been given are mostly for finding the mean velocity, when the loss of head, or virtual fall, is known; and the discharge may be computed by multiplying the mean velocity into the sectional area of the stream.

For pipes, Prony's coefficients, deduced from experiments by Du Buat, Bossut, and Couplet, give

$$
\left.\begin{array}{rl}
v & =\sqrt{9419 \cdot 7 \mathrm{R} \frac{h}{l}+\cdot 00665}-\cdot 0816 \tag{41}\\
& =97 \sqrt{\mathrm{R} \frac{h}{l}}-\cdot 08 \text { nearly. }
\end{array}\right\}
$$

The pipes he experimented upon were from 1 to 5 inches in diameter, 30 to 7,000 feet long, and one 19-inch pipe 4,000 feet long.

Eytelwein's coefficients, derived from the same experiments, give

$$
\left.\begin{array}{rl}
v & =\sqrt{11704 \mathrm{R} \frac{h}{l}+\cdot 01698}-13 \\
& =108 \sqrt{\mathrm{R} \frac{h}{l}}-\cdot 13 \text { nearly }
\end{array}\right\}
$$

If in (33) we substitute $\left(c_{f} v^{2}\right)$ for $\left(a v+b v^{2}\right)$, and solve for v, we shall have

$$
\begin{equation*}
v=\sqrt{\frac{2 g \mathrm{R} h}{c_{f} l}} \tag{43}
\end{equation*}
$$

c_{f} being the coefficient of friction, to which Weisbach has assigned the value

$$
\begin{equation*}
c_{f}=\left(\cdot 0036+\frac{0043}{V v}\right) \tag{44}
\end{equation*}
$$

thus recognising the principle that the friction diminishes somewhat as the velocity increases, and giving results for high velocities much nearer the truth.

In using (43) with Weisbach's coefficient (44), it is necessary first to obtain an approximate value for v, and for this either (41) or (42) may be used. An approximate value for c_{f} being then obtained from (44), it should be introduced into (43), from which the mean velocity, near enough for all practical purposes, may then be derived. Greater accuracy will, if required, be given by continued approximations, the new value for v being introduced into (44), and the process repeated.

Mr. Neville gives the following formula for pipes, recognising the principle above mentioned, and at the same time allowing the velocity to be computed at one operation :-

$$
\begin{equation*}
v=140 \sqrt{\mathrm{R} S}-11 \sqrt[3]{\mathrm{R} S} \tag{45}
\end{equation*}
$$

in which $s=h \div l$, as before. It may be remarked that this formula fails when $\mathrm{R} s=000000235$; but this does not affect its practical value.
M. Darcy, from a series of nearly two hundred experiments on pipes varying from half an inch to twenty inches in diameter, and with velocities of from about 1 inch to nearly 20 feet per second, derived a coefficient, which, reduced to English measures, is

$$
\begin{equation*}
c_{t}=\cdot 005\left\{1+\frac{1}{\text { dia. in inches }}\right\} \tag{46}
\end{equation*}
$$

It has been found from observations on long pipe conduits of large diameter, that the formulæ in most general use - such as Du Buat's (39), Weisbach's (43 and 44), and others-give velocities considerably below those found to obtain in the cases referred to, and it has become the practice to make an addition-on an average, about 25 per cent.-to the velocities and discharges which these formulæ give. Darcy's expression for the coefficient (46) will, under certain conditions of velocity, give results nearer the truth; thus, with a 48 -inch castiron pipe in the Loch Katrine Works, having an inclination of 1 in 1056, or 5 feet per mile, the actual velocity was found to be 3.46 feet per second, and Darcy's formula gives practically the same result, against about 3 feet for the common formulæ. Darcy's formula, however, inasmuch as it makes the coefficient depend only upon the hydraulic mean depth, does not accord with the received opinions on this subject.

Mr. Hawksley gives for pipes a formula which, reduced to measures in feet, gives

$$
\begin{equation*}
v=48 \sqrt{\frac{d \mathrm{H}}{l+54 d}} \tag{47}
\end{equation*}
$$

This formula includes an allowance for the resistance at the orifice of entry, and is therefore applicable approximately, without modification, to short pipes. In all the formulæ for pipes and channels before given, h is the loss of head due to the friction in the pipe; and in long straight pipes this is the only loss of head that need be regarded. But in short pipes the loss of head from other causes is too large a percentage of the whole to be disregarded; so that before applying equations (39 to 46) to short pipes, we must deduct from h the several
other losses of head. Thus there is the head due to the velocity in the pipe-

$$
h=\frac{v^{2}}{2 g}
$$

and then there is the head due to the resistance at the orifice of entry-

$$
h=c_{r} \frac{v^{2}}{2 g}
$$

c_{r} being the ratio which this head has to that due to the velocity in the pipe. These together, or

$$
\begin{equation*}
h=\left(1+c_{r}\right) \frac{v^{2}}{2 g} \tag{48}
\end{equation*}
$$

may be shown to be the same as

$$
\begin{equation*}
h=\frac{1}{c_{d}{ }^{2}} \times \frac{v^{2}}{2 g} \tag{49}
\end{equation*}
$$

in which c_{d} may be either of the coefficients given for the cases represented in figs. 33,34 , and 35 . The loss of head due to bends and other resistances, if any, should also be deducted from h in the several formulæ given for the velocity before applying them to cases of short pipes, and indeed when applying them to long pipes if these resistances are such as together to demand a large proportionate loss of head.

From (43) we shall have, for short straight pipes-

$$
\begin{equation*}
v=\sqrt{\frac{2 g h}{\frac{1}{c_{d}{ }^{2}}+c_{f} \frac{l}{\mathrm{R}}}} \tag{50}
\end{equation*}
$$

in which $1 \div c_{d}{ }^{2}$ may be taken as $\cdot 664, \cdot 511$, and $\cdot 95$ for orifices of entry corresponding to figs. 33,34 , and 35 respectively.

For the resistance due to bends and curves, the following are Weisbach's formulæ for the coefficients for circular tubes:-

$$
\begin{equation*}
c_{b}=\frac{\theta}{180^{\circ}} \times\left\{\cdot 131+1.847\left(\frac{d}{2 r}\right)^{\frac{7}{2}}\right\} \tag{51}
\end{equation*}
$$

and for rectangular tubes

$$
\begin{equation*}
c_{b}=\frac{\theta}{180^{\circ}} \times\left\{\cdot 124+3 \cdot 104\left(\frac{d}{2 r}\right)^{\frac{7}{2}}\right\} \tag{52}
\end{equation*}
$$

in which r is the radius of curvature of the pipe at the bend ; θ, the angle в Λ C (fig. 44), through which it is bent, and d the diameter, all in feet.

For angular bends or elbows in pipes, the coefficient of friction is given as

$$
\begin{equation*}
c_{a}=.946 \sin ^{2} \frac{\theta}{2}+2.05 \sin \cdot \frac{\theta}{2} \tag{53}
\end{equation*}
$$

in which θ is the angle в а с (fig. 45) made by the two parts of the pipe.
For the friction of diaphragms, and at sudden contractions and enlargements, let A_{1} and A_{2} (fig. 46) be the sectional areas of the channel in the two parts respectively, between which there is a diaphragm reducing the area to a.

Professor Rankine gives the following formula:-

$$
\begin{equation*}
c_{k}=(r-1)^{2} \tag{54}
\end{equation*}
$$

in which

$$
\begin{equation*}
v=\frac{\mathrm{A}_{2}}{a} \sqrt{2 \cdot 618-1 \cdot 618 \frac{a^{2}}{\mathrm{~A}_{1}{ }^{2}}} \tag{55}
\end{equation*}
$$

In the above cases the loss of head due to the co-efficient $\mathrm{c}_{b}, \mathrm{C}_{a}$, or C_{k}, will be $\mathrm{H}_{b}=\mathrm{C}_{b} \mathrm{v}^{2} \div 2 g ; \mathrm{h}_{a}=\mathrm{C}_{a} \mathrm{v}^{2} \div 2 g$; and $\mathrm{H}_{k}=\mathrm{C}_{k} \mathrm{~V}^{2} \div 2 g$. We have therefore for the total loss of head from all causes,

$$
\begin{equation*}
h=\left(\frac{1}{\mathrm{C}_{d}}+\mathrm{c}_{f} \frac{l}{\mathrm{R}}+\mathrm{C}_{b}+\mathrm{C}_{a}+\mathrm{C}_{k}\right) \frac{v^{2}}{2 g} . \tag{56}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\mathrm{v}=\sqrt{\frac{2 g \mathrm{II}}{\frac{1}{c_{d}^{2}}+\mathrm{c}_{f} \frac{2}{\mathrm{R}}+\mathrm{c}_{b}+\mathrm{C}_{a}+\mathrm{c}_{k}}} \tag{57}
\end{equation*}
$$

in which C_{e} is the co-efficient for the orifice of entry (figs. $33,34,35$), c_{f} that of the friction in the pipe, and C_{b}, \mathbf{C}_{a}, and c_{k}, the co-efficients for bends, enlargements, \&c. as first given. In most cases of practice all the coefficients, except c_{f} may be disregarded, as their values will generally be comparatively inconsiderable.

The formule that have been given are mostly for finding the mean velocity, when the loss of head, or virtual fall, is known; and the discharge may be computed by multiplying the mean velocity into the sectional area of the stream.

The loss of head due to several causes is given by 56 , or by transposition and reduction from any of the formula for notches, weirs, pipes, or channels in which it is involved. A well-known and very useful table of the loss of head due to friction in pipes running full has been calculated by Messrs. Thomson and Fuller of Bulfast, and will be found in the 'Engineer's, Architect's, and Contractor's Pocket-Book.'*

When the discharge and fall are given, to ascertain therefrom the dimensions of a required channel, it is necessary first to assume the dimensions of a channel of exactly similar form, and compute the discharge from it. We have seen the mean velocity to vary nearly as $\sqrt{\mathrm{R} s}$; in channels of similar sections R will vary with the linear dimensions λ, so that when s is constant the mean velocity will vary as $\sqrt{\lambda}$. The discharge will depend on the mean velocity and the section of the channel ; in similar channels the sections will be as the squares of the linear dimensions $\left(\lambda^{2}\right)$, so that the discharge will vary as $\lambda^{2} \sqrt{\lambda},=\sqrt{\lambda^{5}}$. Therefore the square root of the fifth power of the linear dimensions of the required channel is to that of the linear dimensions of the assumed channel as the required discharge is to that from the assumed channel or

$$
\sqrt{\lambda^{j}}: \sqrt{\lambda^{j}},:: \mathrm{D}: \mathrm{D}_{1}, \quad . \quad . \quad(58)
$$

With the assistance of Neville's table (in Appendix), the required dimensions of the new channel may be readily ascertained.

[^0]: * See Neville's Hydraulics.

[^1]: * Neville's Hydraulics,

