in agreement with Fig. 8.11.

FIGURE 8.11: The spherical approximation

We shall now introduce, in addition, the so-called planar approximation, that is, we neglect a relative error of

$$
\begin{equation*}
\frac{h}{R}<0.14 \% \tag{8-43}
\end{equation*}
$$

(cf. Moritz, 1980, p. 359). Then we may simplify (8-41) as

$$
\begin{equation*}
d v=R^{2} d \sigma d \eta \tag{8-44}
\end{equation*}
$$

so that $(8-40)$ becomes

$$
\begin{equation*}
V=G \rho R^{2} \iint_{\sigma} \int_{\eta=0}^{h} \frac{d \sigma d \eta}{l} \tag{8-45}
\end{equation*}
$$

Here the integral with respect to σ denotes integration over the full solid angle, and

$$
\begin{equation*}
\eta=r-R \tag{8-46}
\end{equation*}
$$

is the elevation of the volume element $d v$ above sea level (represented by the sphere $r=R$).

We may now split up (8-45) as

$$
\begin{equation*}
V=V^{\prime}+V^{\prime \prime} \tag{8-47}
\end{equation*}
$$

