

FIGURE 7.5: Possible choices of the vector x
The form ($7-38$) is motivated by the theory of generalized matrix inverses: if

$$
\begin{equation*}
A x=b \tag{7-39}
\end{equation*}
$$

is an underdetermined system of equations, the solution is formally given by

$$
\begin{equation*}
x=A^{-1} b \tag{7-40}
\end{equation*}
$$

where the generalized inverse has the form (T denotes the transpose)

$$
\begin{equation*}
A^{-1}=C A^{T}\left(A C A^{T}\right)^{-1} \tag{7-41}
\end{equation*}
$$

with any positive-definite symmetric square matrix C of appropriate dimension (cf. Bjerhammar, 1973, p. 110; Moritz, 1980, p. 164). Clearly (7-37) and (7-38) are special cases of ($7-39$) and ($7-40$) with ($7-41$).

The solution ($7-38$) satisfies the minimum condition

$$
\begin{equation*}
x^{T} P x=\text { minimum } \tag{7-42}
\end{equation*}
$$

where $P=C^{-1}$. This means that x represents the "shortest" distance of the plane (7-37) from the origin, but of course in a non-orthogonal coordinate system whose metric tensor is P. That any point in the plane can be reached by a suitable choice of P can be seen in the following way (Krarup, 1972).

As we have mentioned, eq. (7-37) defines an N-dimensional hyperplane in our ($N+1$)-dimensional space (Fig. 7.5). Choose, for the first N base vectors, any set of N mutually orthogonal unit vectors (in the Euclidean sense) spanning the hyperplane. For the remaining $(N+1)$ st base vector simply take the vector x leading from the origin to the desired point Q in the plane (Fig. 7.5). It is "orthogonal" to the hyperplane in the sense of the metric tensor P (though not in the Euclidean sense!) by the very condition ($7-42$), and its length is arbitrarily taken as unity.

Now we have found a set of $N+1$ linearly independent non-orthogonal vectors, and we must determine the metric tensor P for which they constitute an "orthonormal" set of base vectors. Let A now be the $(N+1) \times(N+1)$ matrix having as column vectors the

