

FIGURE 5.1: Ellipsoidal coordinates. Top: View from the front. Bottom: View from above.
whose axis coincides with the z-axis, and whose linear excentricity has the constant value E. The coordinate u is the semiminor axis of this "coordinate ellipsoid", $\bar{\theta}$ is the complement of the "reduced latitude" β of P with respect to this ellipsoid (for its definition cf. sec. 1.4), and λ is the geocentric longitude in the usual sense.

The ellipsoidal coordinates $u, \bar{\theta}, \lambda$ are related to x, y, z by the equations

$$
\begin{align*}
& x=\sqrt{u^{2}+E^{2}} \sin \bar{\theta} \cos \lambda \\
& y=\sqrt{u^{2}+E^{2}} \sin \bar{\theta} \sin \lambda \tag{5-1}\\
& z=u \cos \bar{\theta}
\end{align*}
$$

which can be read from the figure, considering that $\sqrt{u^{2}+E^{2}}$ is the semimajor axis of the ellipsoid whose surface passes through P.

