

FIGURE 4.7: The normal radius of curvature
order to have $x=r \cos \theta, y=r \sin \theta$ as usual for plane polar coordinates). This holds not only for the ellipsoid, but also for an arbitrary surface of revolution; cf. sec. 1.4.

From Fig. 4.7 we read

$$
y=r \sin \theta=R_{2} \sin \theta^{\prime}
$$

whence

$$
\begin{equation*}
R_{2}=r \frac{\sin \theta}{\sin \theta^{\prime}} \tag{4-150}
\end{equation*}
$$

The elementary triangle at P, shown in a magnified manner next to the main diagram (Fig. 4.7), gives

$$
\begin{equation*}
\sin \theta^{\prime}=-\frac{d x}{d s} \tag{4-151}
\end{equation*}
$$

Differentiating $x=r \cos \theta$ we have

$$
\begin{equation*}
d x=d r \cos \theta-r \sin \theta d \theta \tag{4-152}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
d s^{2}=d r^{2}+r^{2} d \theta^{2} \tag{4-153}
\end{equation*}
$$

In both formulas we put

$$
\begin{equation*}
d r=r_{\theta} d \theta \tag{4-154}
\end{equation*}
$$

by (4-149); in fact, by (4-147), r depends on θ only, so that here

$$
\begin{equation*}
r_{\theta}=\frac{\partial r}{\partial \theta}=\frac{d r}{d \theta} \tag{4-155}
\end{equation*}
$$

