by $(1-49)$. The result is $(4-10)$ with

$$
\begin{align*}
& K_{0}(q)=\frac{4 \pi G}{3} \int_{0}^{q} \rho(q) \frac{d}{d q}\left[A_{0}(q) q^{3}\right] d q \\
& K_{2}(q)=\frac{4 \pi G}{25} \int_{0}^{q} \rho(q) \frac{d}{d q}\left[B_{2}(q) q^{5}\right] d q \tag{4-26}\\
& K_{4}(q)=\frac{4 \pi G}{63} \int_{0}^{q} \rho(q) \frac{d}{d q}\left[C_{4}(q) q^{7}\right] d q
\end{align*}
$$

Here we have omitted the prime in the integration variable q^{\prime} as we did before. The argument q of $K_{i}(q)$, of course, is identical with the upper limit of the integral (but not with the integration variable!).

4.1.3 Potential of Shell E_{P}

We now consider the potential of the "shell" E_{P} bounded by the surfaces S_{P} and S. We apply the same trick as before (sec. 4.1.1., Fig. 4.3). We calculate V_{e} first not at P, but at a point P_{i} situated on the radius vector of P in such a way that $r<r^{\prime}$ is always satisfied and the series corresponding to (4-8),

FIGURE 4.4: Illustrating the computation of V_{e}

$$
\begin{equation*}
\frac{1}{l}=\sum_{n=0}^{\infty} \frac{r^{n}}{r^{\prime n+1}} P_{n}(\cos \psi) \tag{4-27}
\end{equation*}
$$

always converges (Fig. 4.4). For this "harmless" point we have

$$
\begin{equation*}
V_{e}\left(P_{i}\right)=G \iiint_{E_{P}} \frac{\rho}{l} d v=\sum_{n=0}^{\infty} r^{n} \cdot G \iint_{E_{P}} \frac{\rho}{r^{n+1}} P_{n}(\cos \psi) d v \tag{4-28}
\end{equation*}
$$

