

FIGURE 4.3: Illustrating the computation of V_{i}
The trick is to leave I_{P} but to calculate V first at a point P_{e} which lies on the radius vector of P but outside S_{P} in such a way that $r^{\prime}<r$ is always satisfied (Fig. 4.3). Thus we compute

$$
\begin{equation*}
V_{i}\left(P_{e}\right)=G \iiint_{I_{P}} \frac{\rho}{l} d v=\sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \cdot G \iiint_{I_{P}} \rho r^{\prime n} P_{n}(\cos \psi) d v \tag{4-9}
\end{equation*}
$$

(the interchange of sum and integral offers no problem because of the absolute convergence of the integrand series). Since $V_{i}\left(P_{e}\right)$ is harmonic, the shell between S_{P} and S being disregarded for the time being, and because of rotational symmetry, (4-9) must necessarily have the form (1-37) with zonal harmonics only:

$$
V_{i}\left(P_{e}\right)=\sum_{n=0}^{\infty} \frac{K_{n}}{r^{n+1}} P_{n}(\cos \theta)
$$

or

$$
\begin{equation*}
V_{i}\left(P_{e}\right)=\frac{K_{0}(q)}{r}+\frac{K_{2}(q)}{r^{3}} P_{2}(\cos \theta)+\frac{K_{4}(q)}{r^{5}} P_{4}(\cos \theta) \tag{4-10}
\end{equation*}
$$

neglecting higher-order terms. Here r, θ, λ are the spherical coordinates of P_{e} as usual; because of rotational symmetry there is no explicit dependence on longitude λ (no tesseral terms); and there are only even-degree zonal terms because of symmetry with respect to the equatorial plane. The coefficients K_{n} evidently depend on S_{P} and hence on its label q.

4.1.2 Change of Variable

The equation of any surface of constant density may be written as

