### 3.2.1 Stratification of Equisurfaces

Let $S(t)$ denote the set of equisurfaces (surfaces of constant density and of constant potential), as a function of a parameter $t$ (there is no danger of confusing it with time!). The parameter $t$ thus "labels" the individual equisurfaces and could, in principle, be selected in many ways. Formerly, we have labeled the equisurface by its mean radius $q$, but in Wavre's theory it is more convenient instead to take the parameter $t$ as the semiminor axis of the spheroidal equisurface under consideration. (This is well known since the ellipsoidal coordinate $u$ also has this character, cf. sec. 5.1. For the limiting ("free") surface $S$ we take $t=1$, so that $S=S(1)$.

We again assume rotational symmetry about the $z$-axis, knowing already that the stratification must also be symmetric with respect to the equatorial plane (invariance for $z \rightarrow-z$ ). Thus we have no dependence on longitude $\lambda$; as latitudinal coordinate we take a parameter $\Theta$ that labels the plumb lines as indicated in Fig. 3.2.


FIGURE 3.2: The geometry of stratification
Since the equisurfaces $t=$ const. are not parallel, their infinitesimal distance $d n$ differs, in general, from $d t$. We put

$$
\begin{equation*}
\frac{d n}{d t}=N(t, \Theta) \tag{3-32}
\end{equation*}
$$

where the function $N$ is unknown a priori. Note that $N$ is always positive (from geometry), dimensionless (by our choice of units) and equals 1 on the rotation axis $\Theta=0$. (The symbol $N$ has also been used for the geoidal height and the ellipsoidal normal radius of curvature!)

Since, by definition, the potential $W$ depends on $t$ only, we have for gravity

$$
\begin{equation*}
g=-\frac{\partial W}{\partial n}=-\frac{d W}{d t} / \frac{d n}{d t}=-\frac{1}{N} \frac{d W}{d t} . \tag{3-33}
\end{equation*}
$$

