

FIGURE 3.1: Rotation deforms a sphere into a spheroid
Thus the total effect of the change at the potential at point Q is

$$
\begin{equation*}
-G \iiint_{v} \zeta^{\prime} \frac{\partial \rho^{\prime}}{\partial q^{\prime}} \frac{1}{l} d v \tag{3-1}
\end{equation*}
$$

The meaning of $l=Q Q^{\prime}, q^{\prime}=O Q^{\prime}$ and ζ^{\prime} is seen from Fig. 3.1, G denoting the gravitational constant and v the volume of S.
2. The effect of the "bulge" (positive if E is above S, negative otherwise) can be considered as a surface layer on the sphere S, with surface density $\rho^{\prime} \zeta^{\prime}$ (the integration variable is denoted by a prime also if the integration point is on S). This gives the contribution

$$
\begin{equation*}
G \iint_{S} \zeta^{\prime} \rho^{\prime} \frac{1}{l} d S \tag{3-2}
\end{equation*}
$$

3. The centrifugal potential

$$
\begin{equation*}
\frac{1}{2} \omega^{2}\left(x^{2}+y^{2}\right) \tag{3-3}
\end{equation*}
$$

