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3. Effect of isostatic compensation. This effect Ac as expressed by (8-31b) is to

be added to (8-36) to give the isostatic anomaly
Agr=Agp+Ac=gp— Ar+Ac+F —q . (8—37)

Bouguer plate and topographic correction. The attraction Ay is conventionally
computed as

Ar=Ap-C (8-38)
as the difference of the attraction of a “Bouguer plate” (Fig. 8.9):
AB = 27|'Gpohp (8—39)

earth’s surface

=R

Bouguer
plate

sea level

FIGURE 8.9: Bouguer plate and terrain correction; note that the effect of both the
“positive” and the “negative” masses on C is always positive

and a “topographic correction”, or “terrain correction”, C which is usually quite small
but always positive. For more details cf. (Heiskanen and Moritz, 1967, pp. 130-133);
see also sec. 8.2.2 below. Isostatic and other reduced gravity anomalies may also be
defined so as to refer to the topographic earth surface rather than to sea level. This is
the modern conception related to Molodensky’s theory, which is outside the scope of
the present book (cf. Heiskanen and Moritz, 1967, secs. 8-2 and 8-11; Moritz, 1980,

Part D).

8.2 Isostasy as a Dipole Field

In the case of local compensation, the isostatically compensating mass inside a ver-
tical column is exactly equal to the topographic mass contained in the same column.
This holds for both the Pratt and the Airy concept, by the very principle of local
compensation. Fig. 8.10 illustrates the situation for the Airy—Heiskanen model. Ap-
proximately, the topography may be “condensed” as a surface layer on sea level S,
whereas the compensation, with appropriate opposite sign, is thought to be concentra-
ted as a surface layer on the surface Sy parallel to S, at constant depth 7" (7' is our
former Tp). Both surface elements dm for topography and —dm for compensation
thus form a dipole. This fact is also expressed by the difference A¢ — Ay in (8-37).
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A a
sea level So

dm = p,hdS

—dm = - AptdS=—p,hdS

FIGURE 8.10: Topographic and isostatic masses form a dipole

This simplified concept of isostasy as a dipole field goes indirectly back to Helmert
(1903) and was directly used by Jung (1956) and others. It is very useful for a deeper

qualitative understanding of isostatic anomalies (cf. Turcotte and Schubert, 1982,
p- 223). We shall follow (Moritz, 1968c).

8.2.1 Potential of the Topographic Masses

As a preparatory step, we first restrict ourselves to the topographic masses only, disre-
garding isostatic compensation until sec. 8.2.4. We shall restrict ourselves throughout
to the usual spherical approzimation, that is, we replace formally the geoid by a mean
terrestrial sphere of radius R; see Fig. 8.11. The potential of the topographic masses

(the masses outside the geoid) is
dv
V:Gp///T . (8-40)

The integral is extended over the exterior of the geoid (R < r < R + h); dv is the
element of volume, and [ is the distance between dv and the point P to which V

refers. The density p is assumed to be constant (we shall now write p instead of py).
We have in (8-40)

dv = r’dodr (8-41)

where do, as before is the element of solid angle, and

U= \/7'}, + 712 —2rprcosy (8-42)
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in agreement with Fig. 8.11.
earth’s surface

——

C il
et RS L. spherical
8 h Bouguer plate
5
=R terrestrial sphere

(sea level)

center of earth

FIGURE 8.11: The spherical approximation

We shall now introduce, in addition, the so-called planar approzimation, that is,
we neglect a relative error of

b <o1a% (8-43)

(cf. Moritz, 1980, p. 359). Then we may simplify (8-41) as
dv = R*dodn (8-44)

so that (8-40) becomes !
{ dod
V = GpR? // / T” : (8-45)
o n=0

Here the integral with respect to o denotes integration over the full solid angle, and
n=r—R (8-46)
is the elevation of the volume element dv above sea level (represented by the sphere

)
We may now split up (8-45) as

V=v'4v" (8-47)
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with | o e
V' = GpR // / = (8-48)
T n=0
wnd s 7 % dadn
V" = GpR // / == . (8-49)
o n=hp

Here V' represents the potential of the “spherical Bouguer plate”, that is, the
shell bounded by the two concentric spheres r = R and 7 = rp (see Fig. 8.11). The
potential of a spherical shell is, just as that of a point mass or of a homogeneous
sphere, given by

GM

Tp
where M is the mass of the shell and rp is the radius vector of P to which V' is to
refer. The mass of the shell is expressed by

V=

) (8-50)

M = AwRrphpp . (8-51)

Thus we simply have
V' = 4nGphpR . (8-52)

Now we shall consider V" as given by (8-49). Substituting

u=n-— hp
we find
h—hp
dod
V" = GpR? / / / = . (8-53)
o u=0
As a planar approximation (Moritz, 1980, p. 359) we may put
P=B4+(n—hp)l=0+u* , (8-54)
with [y given by
o =2R. sin% (8-55)
(Fig. 8.11). We write
g 1 u?\ "2
i S i [ B =
7 I ( s 2 ) (8-56)

and expand the expressions between parentheses as a binomial series, obtaining

=4 EE+§E_+.” (8-57)
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This is permissible since u/ly in V" is never greater than the terrain inclination, which
is considered small. By substituting the series (8-57) into (8-53) and integrating with
respect to v we find

V" = Vel Va4 Vi (8-58)
with
A=A
L, 2 L tR
Vi = GoR [/ .
pooll g i (8-59)
V; = —ZGpR [ T

This method of expanding into a series of powers of (h — hp)/ly was used by Molo-
densky in a different context (cf. Moritz, 1980, p. 360).
Thus we have from (8-47) and (8-52)

V =4nrGphpR+ Vi + Vo + - -- (8-60)

Neglecting terms of higher order, we have as a linear approzimation:

h—hp
lo

V = 4nGphpR + GpR? // do . (8-61)

This expression will be needed later.
8.2.2 Attraction of Topography

The vertical attraction A of the topographic masses is the negative vertical derivative
of the potential:

v 5} Wl

Taciie ol il 8-62

i G"///arp (z)dv 3 o

in agreement with (8-40) and comparable to (8-31a). By differentiating (8-42) we

find

al il rp — T CcosY

e fie i e e A 8-63

s I o

This can be written as

)
. (l) o anion. b (8-64)
Brp l 27‘p13 27‘pl
This transformation, simple as it is, will be fundamental for what follows.
By substituting (8-64) into (8-62) we find
i
A=BYaW (8-65)

ZTp
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where V is the potential considered in the preceding section, and

=% o

The quantity B can be essentially simplified by the use of the planar approxima-
tion. With rp = R, 7 +7p = 2R and with (8-44) and (8-46) we obtain

B = —GpR? (8-67)

o =0

This expression is comparable to (8-45) and will be split up in an analogous way:

B=B+B" (8-68)
with
hp h
n—np
B' = —-GpR? ———dodn , (8-69)
I
B" = —GpR? (8-70)
o n=hp

Here B’ represents the effect of the “spherical Bouguer plate”. The attraction of
this plate is expressed by

p_ OV _GM
a’l'p 1’?; 2

in agreement with (8-50). With (8-51), considering R/rp = 1, we find

A' = 4nGphp (8-71)
which represents the attraction of the spherical Bouguer plate, which is well known
to be twice the attraction of the plane Bouguer plate of the same thickness hp. We
now obtain B’ from (8-65) as

1
- e 2
Sl (8-72)

Using (8-71) and (8-52) we obtain with rp = R

B' = 2nGphp . (8-73)

Thus the contribution of the spherical Bouguer plate to B is numerically equal to the
attraction of the corresponding plane Bouguer plate. This simple fact will be of basic
significance for a deeper understanding of the Bouguer reduction; see sec. 8.2.5.
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Let us now consider B”, given by (8-70). As the integrand is easily seen to
decrease very rapidly to zero with increasing distance I, it is sufficient to consider a
neighborhood of, say, 50 km around the computation point P. Thus it is admissible
to replace the sphere by its tangential plane at P, which is taken as the zy-plane; see
Fig. 8.12. Then

Rdo = dzdy

l=\/:1:2+y’-{-(7]—’7vp)2 )

and (8-70) becomes

o h
—h
B'=—6p [ [ i dodydy . 8-74
P ] T R I
e
Since the integral is extended over the region that is crosshatched in Fig. 8.12,

earth’s surface

e
7 277777 Z Bouguer plate

zy— plane
(sea level)

FIGURE 8.12: The terrain correction

we recognize (8-74) easily as the mathematical expression of the (negative) terrain
correction C; see sec. 8.1.5. Thus we have

JZ iG] (8-175)
Combining (8-73) and (8-75) we find
B= 2nCphs—C . (8-76)

The conventional Bouguer reduction is based on (8-38), which is formally identical
with the right-hand side of (8-76); this again indicates the fact that the auxiliary
quantity B has some connection with Bouguer reduction; see sec. 8.2.5.

The planar approximation of (8-70) is obtained by replacing ! by lp = 2Rsin ’f
Now we can readily integrate with respect to 7 to get B” or C, by (8-75). The result

is
1 2 [[ (h—hp)?
== N SN % 8-T77
c > GpR [/ B do ( )
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Nor is it difficult to integrate (8-70) with respect to 7 if [ is expressed by (8-54).
The result is

1 il
B = 2xGphp + GoR? | <T = T) do s (8-78)
1 0

where lp and I; are given by (8-55) and (8-54) with n = h. This was already found
by Pellinen (1962).

Now it is easy to obtain the attraction A. Combining (8-65), with rp = R, and
(8-76) we have

1
A—21erhp—C+-2§V : (8-79)

We finally note that B has to A the same relation as the gravity anomaly Ag
to the gravity disturbance §g: compare (8-65) with eq. (2-151e) of (Heiskanen and
Moritz, 1967).

8.2.3 Condensation on Sea Level
The linear approximation (8-61) admits of a simple interpretation. We consider a
layer of surface density

Kk = ph (8-80)

on the mean terrestrial sphere 7 = R which represents the sea level. The potential of
this surface layer at a point P, of the surface is given by

—c [ 5 Rdo=cor? [[ 2 =
VS_G[/IoRda—GpR [/loda . (8-81)
This can be transformed as
d h—h
Vs = GpR*hp // 1_: + GpR? // s Pl . (8-82)

The first term on the right-hand side is the potential of a homogeneous spherical
surface layer, which is given by the same formula (8-50) as the potential of a homo-
geneous sphere or of a spherical shell. Since even (8-51) holds for our surface layer
(now rp = R exactly), the first term of (8-82) is given by (8-52), and we have

. ==
Vs = 4nGphpR + GpR? / / l—’“’ iz . (8-83)
- 0

This formula, which is rigorously valid for a spherical surface layer of density
(8-80), is seen to agree with the linear approximation (8-61) to the potential of the
topographic masses.

This immediately suggests a relation to the well-known condensation reduction
of Helmert (Heiskanen and Moritz, 1967, p. 145), in which the topographic masses
are compressed into a surface layer of density (8-80) on the geoid. We thus see that
the change of potential because of the condensation, V — Vs, is a small quantity of
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second order, because as a linear approximation V agrees with V5. Here we have
assumed that the point P, originally situated on the earth’s surface, goes over into
the corresponding point P, at sea level after condensation.

Thus, if we limit ourselves to the linear approximation which is often sufficient,
we may regard the potential V as being generated by a spherical surface layer, the
points P or P, being assumed to lie in both cases on the boundary of the attracting
masses.

We shall now further investigate this surface layer. Let us first consider the at-
traction A and the auxiliary quantity B introduced in sec. 8.2.2. The point P is
situated on the spherical surface, but at the outer boundary of the attracting masses.
Thus Ag, the attraction of the surface layer at P, is given by the negative ezternal
derivative of Vg, e.g., expressed by equation (1-17a) of (Heiskanen and Moritz, 1967,
p. 6). Thus we have

4 /1
= — e = .de . 8_84
As =27Gk G[/Earp (l) o ( )
To get the integrand, we must put » = R = rp in (8-64). We then obtain
1 K
As = 2mGr + EGRZ/ o do

and, with (8-80) and (8-81),

i
— — X 8-85
As = 2nGphp + S5 Vs (8-85)
We now consider the auxiliary quantity Bs defined in analogy to (8-65) as
f
Bs=As——Vs . 8-86
s S—3R'S ( )
We see that simply

Bs = 2nGphp (8-8T7)

which is formally identical with the attraction of a “plane Bouguer plate”. Equation
(8-84) indicates, however, that the quantity B is in reality related to the discontinuity
27w Gx of the normal derivative of the surface potential on an arbitrary surface rather
than to the attraction of a plane plate.

Let us now compare the quantities B for the actual topography and Bgs for the
surface layer. From (8-76) and (8-87) we obtain immediately

BaBe=C . (8-88)

This means that these two quantities differ by the terrain correction C.
This has a consequence which will be of basic significance. As a linear approxi-
mation, also the attractions A and Ag differ by C,

A=dgs@, (8-89)

e Bt =
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This follows at once from the fact that A and B differ only by V/2R and that as a
linear approximation V = Vs. Thus as a linear approximation, the potentials of the
original and of the condensed topography are equal, but the attractions differ by the
terrain correction.

8.2.4 Effect of Compensation

We shall now consider a crustal density model by which the linear correlation of the
free-air gravity anomalies with elevation can be explained and which at the same time
is simple. Obviously, isostatic compensation must in some way be taken into account.

If we look at the Airy—Heiskanen isostatic model, we see that the compensation is
given by the mountain roots which are some 30 km below sea level. The effect of this
type of compensation on the earth’s surface is thus quite similar as that of a surface
layer of density (—ph) on the sphere of radius R — T', where T' may be identified with
the normal thickness of the earth’s crust of about 30 km, formerly denoted by Tp; see
Fig. 8.13 and Fig. 8.10 above. The idea of regarding, for mathematical simplicity,

earth’s surface

sea level
—k=—ph

compensating layer

center of earth

FIGURE 8.13: Spherical equivalent of Fig. 8.10; note again the dipole character

the isostatic compensation as a surface layer on a sphere concentric to the terrestrial
sphere, was also used by Jung (1956, p. 590); we are following (Moritz, 1968c).

Let us now consider potential Vi and attraction A¢ of this compensation layer.
Since h << T, these quantities are almost the same whether referred to P or to P,
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(Fig. 8.13). We thus refer to P, and have

h
Vo = GpR? / Lo (8-90)
h
Bo = GpR'T /f g . (8-91)
s C

The quantity B¢ is defined in analogy to (8-—65) as

Bc = Ac = ﬁ Vc (8—92)

and is expressed by an appropriate modification of (8-67): the mass element pdadn
in (8-67) is replaced by the mass element xdo = phdo for a surface potential, and
n=-T, hp=0

With these changes, and on replacing the triple (volume) integral by a double (surface)
integral, (8-67) indeed reduces to (8-91).
We shall now define a mean elevation h,, by the equation

R’T
h., is thus a weighted average of A, the weight being proportional to
&
i&

and thus decreasing quickly with increasing distance. The sum of the weights must
be unity, that is
2
R .5 / / . (8-94)

That this is true is verified by considering a homogeneous surface layer of constant
density xo; the surface of a sphere of radius R — T' being 4m(R — T')?, we then have

4nGro(R - T)?

V) = ——————~
c R ’
P ArGro(R —T)?
& R?
and thus, by (8-92),
R—T)* .
Bé,‘ = Zﬂaﬂo% = 21I'GK,O (8—95)

with a relative error of about 1%. On the other hand, from (8-91),

Bl = GroR*T // ‘IIT” ' (8-96)
p C

Th
f&ct
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The comparison of (8-95) and (8-96) gives (8-94).
Substituting (8-93) into (8-91) we find

Bg = 2nGph,, (8-97)
so that by (8-92), :
Ac — 21I'Gphm 4 EE VC . (8—'98)

According to our model, assuming crust and mantle to be homogeneous, the gra-
vity anomaly Ag is caused only by the combined effect of topography and compen-
sation:

Ag=A—-A; , (8-99)

where A is the attraction of topography. Substituting (8-79) and (8-98) we thus have
1

Ag =2nGp(hp — hy) — C + E(V -Ve) . (8-100)

The last term, which is very small (of order 1 mgal) because V' and Vg are almost
equal, will be neglected, and there remains (on omitting the subscript P)

Ag =27Gp(h — h,) —C . (8-101)

This equation expresses the “free-air” gravity anomaly Ag (see below) correspon-
ding to our model. We clearly see the linear correlation with elevation, and we see
at once that the linear correlation should be even more pronounced if the terrain
correction C is added to Ag because

Ag+ C =2nGp(h — h,) . (8-102)
The Bouguer anomaly is generally defined as
Agp = Ag —2rGph+C (8-103)

by (8-36) and (8-38) with g — v = Ag; thus in our model (homogeneous crust and
mantle!) we simply have

Agp = —27Gph,, . (8-104)

The isostatic anomaly is obviously zero for the model:
Agr=0 . (8-105)

8.2.5 Conclusions Regarding Gravity Anomalies

Thus our model gives a reasonably realistic interpretation of the following empirical
facts (Heiskanen and Moritz, 1967, pp. 281-285):

1. The free-air anomalies (see below) fluctuate around zero but are linearly corre-
lated with elevation.
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2. The Bouguer anomalies in mountain areas are systematically negative and in-
crease in magnitude by
2wGp = 100 mgals (8-106)
per km of mean elevation h,,.

These facts, which are well known from observation to hold quite generally and of
which one is a consequence of the other, can be explained by isostatic compensation
as we shall discuss now in more detail.

Correlation with elevation. The free-air anomaly is defined by

Ag=gp+F—v ; (8-107)

cf. sec. 8.1.5 (only the free-air reduction F' is applied) and (Heiskanen and Moritz,
1967, pp. 146 and 293). Empirically, free-air anomalies are linearly correlated with
elevation, that is, approximately they satisfy a linear relation

Ag=a-+bh , (8-108)

where a and b are more or less constants.
On disregarding the terrain correction C, eq. (8-101) becomes

Ag =2wGp(h — hy) . (8-109)
The comparison with (8-108) shows that
b=2rGp (8-110)
and that
@ = —27Gphp (8-111)

essentially is nothing else than the Bouguer a}lomaly (8-104).
Linear correlation means that a linear functional relation is satisfied, not exactly
but on the average. Fluctuations occur for three main reasons:

1. Density anomalies in the crust and the mantle and, possibly, in the core have
been disregarded.

2. Isostatic equilibrium is not exact: local deviations from equilibrium occur.
These are the main reasons.

3. The terrain correction C has been disregarded. This indicates that the “modified
free-air anomaly” Ag + C should exhibit this correlation even better than Ag
itself, according to (8-102).

It is also clear that the parameter b in (8-108) is, for constant density p, really a
constant; cf. (8-110). The parameter a, however, is essentially the Bouguer anomaly,
by (8-104) and (8-111), and is therefore at best a “regional constant”, that is, it
varies, but much more slowly than Ag.
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Thus an expression such as (8-111) explains the facts we have mentioned at the
beginning of this section: the Bouguer anomalies in mountain areas are essentially
negative and approximately proportional to a mean elevation h,, in such a way that
a change in h,, of 1000 meters corresponds to a change in the Bouguer anomaly of
about 100 mgals; for an application see (Heiskanen and Moritz, 1967, p. 328).

On the other hand, a look on (8-109) explains why the free-air anomaly exhibits
no systematic tendency to either positive or negative (such a tendency is removed by
h., being subtracted from h) although it is approximately a linear function of h.

Our model corresponds to complete isostatic compensation but the manner of
compensation is quite unrealistic: we have assumed the compensating masses forming
a surface layer situated at a constant depth T" below sea level. The purpose of this
model, however, was only to furnish the simplest mathematical description of the
surface gravity field, and as such it is quite adequate. If a more realistic model, for
instance of Airy, Pratt, or even Vening Meinesz type, is considered, then the definition
(8-93) of h,, will be replaced by a more complicated one, but this is rather the only
change. The relevant formulas, such as (8-101), will still be valid, with h,, being
still some sort of a mean elevation, but with different weighting. The only essential
prerequisite is that the compensating masses produce approzimately the same potential
and the same attraction at the corresponding points P and P, (Fig. 8.13). If the major
part of the compensating masses is sufficiently deep, this will certainly be true. The
validity of our results is thus far wider than the rather special model would indicate.

The reason may be summarized as: equation (8-101) is valid in any isostatic model
if h,, is suitably defined; and the succeeding argument is based only on (8-101) and
on the prerequisite just mentioned.

The dipole character of isostasy is particularly evident from equations such as
(8-109).

A remark on the Bouguer reduction. As we have seen (eq. (8-71)), the attraction
of a spherical Bouguer plate is 4rGph and not 2wrGph. Thus, strictly speaking, it is
wrong to consider the term (8-39) as the attraction of an “infinite Bouguer plate”. In

fact, eq. (8-84) indicates that 2wrGph is in reality related to the discontinuity 2rGk
of the attraction of an arbitrary surface layer rather than to the attraction of a plane
plate.

Thus, so to speak, the term 2rGph represents the “local” effect of the Bouguer
plate, and this is exactly what we want. Standing at a point of elevation hp, it would
be grossly unrealistic to assume that the actual earth’s surface can be approximated
by a “spherical Bouguer plate” extending with constant elevation hp all around the
earth! The major part of the earth is covered by the oceans for which h = 0, so that
we can operate with a Bouguer plate only locally, and this local effect is 2rGphp even
for the sphere. This justifies the conventional way of computing Bouguer anomalies.
A further justification is provided by the fact that Bouguer anomalies usually are

not an end in themselves, but that they are, e.g., a means for computing isostatic
anomalies, for which

A—Ag=B-Bg (8-112)
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by (8-65) and (8-92), since V = Vi and hence (V — V;)/2R is very nearly zero; and
B is associated with the factor 27 and not 4, as (8-76) shows.

8.3 Inverse Problems in Isostasy

Consider Pratt’s model (sec. 8.1.1). The compensation takes place along vertical
columns; this is local compensation. There is a variable density contrast Ap given
in terms of elevation h by (8-3). The corresponding isostatic gravity anomaly Ag;
(8-37) will in general not be zero, partly because of imperfections in the model. The
inverse problem consists in trying to make

Agr=0 (8-113)

by determining a suitable distribution Ap(z) of the density anomaly in each vertical
column.

On the other hand, consider isostatic models of Airy and Vening Meinesz type.
Here the density contrast Ap is constant, but the Moho depth T is variable, depending
on the topography locally (Airy) or regionally (Vening Meinesz) in a prescribed way
(now T and T; are again used in the sense of sec. 8.1!). Here the inverse problem
would consist in making Agy zero by determining a suitable variable Moho depth T
for a prescribed constant density contrast Ap, which need not be 0.6 g/cm® but can
be any given value between 0 and 0.7 g/cm® (say).

Rather than making Agy zero, we may also prescribe the Bouguer anomaly field.
This amounts to the same since by (8-37), Agr = 0 implies

Ao =—Agp . (8-114)

So the problem is in fact: given Ay, to determine the compensating masses that
produce it. In the inverse Pratt problem this is done by seeking an appropriate
density contrast Ap, in the inverse Vening Meinesz problem this is achieved by suitably
selecting the Moho depth 7. Thus we have genuine inverse problems (with given
constraints) in the sense of Chapter 7 (cf. also Barzaghi and Sanso, 1986).

8.3.1 The Inverse Pratt Problem

The basic paper is (Dorman and Lewis, 1970). Consider a column defined by fixing
the spherical coordinates (8, A); the column extends from the earth’s surface radially
to the earth’s center (theoretically: this corresponds to D = R in sec. 8.1.1). In each
column Ap is a function of the radius vector 7 (or of depth), which accounts for the
functional dependence

Ap=Ap(r 0 X)), (8-115)
One assumes Ap to be linearly related to the topography (height k) by a “convolution”

Ap(r', 8, X') = / / (6", N'\K (', %')do (8-116)
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