and that, in some miraculous way, the third and the fourth term on the right-hand side of (7-78) could be made to vanish, whereas in some no less miraculous way V_{P} (V at some interior point P) would show up as an additive term. Then the result would obviously be

$$
\begin{equation*}
V_{P}=L_{1} V_{S}+L_{2}\left(\frac{\partial V}{\partial n}\right)_{S}+L_{3} \Delta \rho \tag{7-80}
\end{equation*}
$$

expressing V_{P} as a combination of linear functionals applied to the boundary values V and $\partial V / \partial n$ on S and to $\Delta \rho$ (which, by (7-4), is proportional to $\Delta^{2} V$ entering on the left-hand side of $(7-78))$. Since the boundary values V_{S} and $(\partial V / \partial n)_{S}$ are given, a very general solution would be obtained since the Laplacian of the density, $\Delta \rho$, may be arbitrarily assigned.

This daydream can be made true through the use of a so-called Green's function. Thus it is hoped that the reader is sufficiently motivated to follow the mildly intricate mathematical development to be presented now.

7.7.2 Transformation of Green's Identity

Let us first put

$$
\begin{equation*}
U=l, \tag{7-81}
\end{equation*}
$$

where l denotes the distance from the point $P\left(x_{P}, y_{P}, z_{P}\right)$ under consideration to a variable point (x, y, z) (Fig. 7.9):

$$
\begin{equation*}
l^{2}=\left(x-x_{P}\right)^{2}+\left(y-y_{P}\right)^{2}+\left(z-z_{P}\right)^{2} . \tag{7-82}
\end{equation*}
$$

Then, with

$$
\begin{equation*}
\Delta l=\frac{\partial^{2} l}{\partial x^{2}}+\frac{\partial^{2} l}{\partial y^{2}}+\frac{\partial^{2} l}{\partial z^{2}} \tag{7-83}
\end{equation*}
$$

as usual, we immediately calculate

$$
\begin{align*}
\Delta l & =\frac{2}{l} \tag{7-84}\\
\Delta^{2} l & =2 \Delta\left(\frac{1}{l}\right)=0 \tag{7-85}
\end{align*}
$$

so that (7-79) is satisfied. The only problem is the singularity of $1 / l$ at P (that is, for $l=0$). Therefore, we cannot apply ($7-78$) directly but must use a simple trick (which, by the way, is also responsible for the difference between Green's second and third identities; cf. (Heiskanen and Moritz, 1967, pp. 11-12) and, for more detail, (Sigl, 1985, pp. 92-94)).

We apply (7-78) not to v, but to the region v^{\prime} obtained from v by cutting out a small sphere S_{h} of radius h around P. This region v^{\prime} is bounded by S and by S_{h}, where the normal n_{h} to S_{h} points away from v^{\prime}, that is towards P (Fig. 7.9). Thus (7-78) is replaced by

$$
\begin{equation*}
\iiint_{v^{\prime}} l \Delta^{2} V d v=\iint_{S, S_{\mathrm{h}}}\left(-2 V \frac{\partial}{\partial n}\left(\frac{1}{l}\right)+\frac{2}{l} \frac{\partial V}{\partial n}-\Delta V \frac{\partial l}{\partial n}+l \frac{\partial \Delta V}{\partial n}\right) d S \tag{7-86}
\end{equation*}
$$

FIGURE 7.9: Illustrating the method of Green's function
where we have already taken into account $(7-81),(7-84)$, and (7-85) and where we have used the abbreviation

$$
\begin{equation*}
\iint_{S, S_{h}} d S=\iint_{S} d S+\iint_{S_{h}} d S_{h} \tag{7-87}
\end{equation*}
$$

Now

$$
\begin{equation*}
\iint_{S_{h}}\left(-2 V \frac{\partial}{\partial n_{h}}\left(\frac{1}{l}\right)\right) d S_{h} \doteq-2 V_{P} \iint_{S_{h}} \frac{\partial}{\partial n_{h}}\left(\frac{1}{l}\right) d S_{h} \tag{7-88}
\end{equation*}
$$

since, because of the continuity of $V, V \doteq V_{P}$ inside and on S_{h}, the approximation is becoming better and better as $h \rightarrow 0$. Fig. 7.9 shows that

$$
\begin{equation*}
\frac{\partial}{\partial n_{h}}=-\frac{\partial}{\partial l} \tag{7-89}
\end{equation*}
$$

so that

$$
\frac{\partial}{\partial n_{h}}\left(\frac{1}{l}\right)=-\frac{d}{d l}\left(\frac{1}{l}\right)=\frac{1}{l^{2}}=\frac{1}{h^{2}}
$$

since $l=h$ on S_{h}. Furthermore

$$
\begin{equation*}
d S_{h}=h^{2} d \sigma \tag{7-90}
\end{equation*}
$$

with $d \sigma$ denoting the element of the unit sphere as usual. Thus the integral (7-88) becomes

$$
\begin{equation*}
-2 V_{P} \iint_{\sigma} \frac{1}{h^{2}} h^{2} d \sigma=-2 V_{P} \iint_{\sigma} d \sigma=-8 \pi V_{P} \tag{7-91}
\end{equation*}
$$

which provides the "miraculous appearance" of V_{P} as promised towards the end of sec. 7.7.1!

Having achieved this, we shall kill the remaining terms in the integral over S_{h}. In fact,

$$
\begin{equation*}
\iint_{S_{h}} \frac{2}{l} \frac{\partial V}{\partial n} d S_{h}=\iint_{\sigma} \frac{2}{h} \frac{\partial V}{\partial n} h^{2} d \sigma=2 \iint_{\sigma} \frac{\partial V}{\partial n} h d \sigma \rightarrow 0 \tag{7-92}
\end{equation*}
$$

as $h \rightarrow 0$. Furthermore,

$$
\begin{equation*}
-\iint_{S_{h}} \Delta V \frac{\partial l}{\partial n} d S_{h}=\iint_{\sigma} \Delta V h^{2} d \sigma \rightarrow 0 \tag{7-93}
\end{equation*}
$$

since

$$
\frac{\partial l}{\partial n}=\frac{\partial l}{\partial n_{h}}=-\frac{\partial l}{\partial l}=-1
$$

and

$$
\begin{equation*}
\iint_{S_{h}} l \frac{\partial \Delta V}{\partial n} d S_{h}=\iint_{\sigma} \frac{\partial \Delta V}{\partial n} h^{3} d \sigma \rightarrow 0 \tag{7-94}
\end{equation*}
$$

Hence in the limit $h \rightarrow 0$, eq. (7-86) reduces to

$$
\begin{align*}
& \iiint_{v} l \Delta^{2} V d v=-8 \pi V_{P}+ \\
& \quad+\iint_{S}\left(-2 V \frac{\partial}{\partial n}\left(\frac{1}{l}\right)+\frac{2}{l} \frac{\partial V}{\partial n}-\Delta V \frac{\partial l}{\partial n}+l \frac{\partial \Delta V}{\partial n}\right) d S . \tag{7-95}
\end{align*}
$$

This equation has exactly the same relation to (7-78) as Green's third identity has to Green's second identity (cf. Heiskanen ạnd Moritz, 1967, pp. 11-12).

7.7.3 Lauricella's Theorems

What we still have to achieve is to eliminate the third and fourth terms of the integral on the right-hand side of ($7-95$). For this purpose we introduce an auxiliary function H which is biharmonic and regular (twice continuously differentiable) throughout v and assumes, together with its normal derivative, on the boundary surface S the same boundary values as the function (7-81):

$$
\begin{equation*}
H_{S}=l_{S}, \quad\left(\frac{\partial H}{\partial n}\right)_{S}=\left(\frac{\partial l}{\partial n}\right)_{S} \tag{7-96}
\end{equation*}
$$

The difference between the functions $U=l$ and H thus is that H is regular throughout v, whereas U has a singularity in its Laplacian at the point P; cf. (7-84). The point P is considered fixed in this context.

The existence and uniqueness of a solution H of the biharmonic equation

$$
\begin{equation*}
\Delta^{2} H=0 \tag{7-97}
\end{equation*}
$$

