7.6.5 Remarks on the General Solution

The proposed general set of solutions may be summarized as follows: the density is represented in the form (7-26) with ($7-27$):

$$
\begin{equation*}
\rho(r, \theta, \lambda)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \sum_{k=0}^{N} x_{n m k} r^{k} Y_{n m}(\theta, \lambda) \tag{7-51}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{n m k}=x_{n m k}^{(1)}+x_{n m k}^{(2)}, \tag{7-52}
\end{equation*}
$$

$x^{(1)}$ corresponding to the solution (7-38) and $x^{(2)}$ to any solution of the homogeneous equation ($7-48$) as before. The coefficients $a_{n m k}$ are given by ($7-35$):

$$
\begin{equation*}
a_{n m k}=\frac{4 \pi G R^{n+k+3}}{(2 n+1)(n+k+3)} . \tag{7-53}
\end{equation*}
$$

The set of solutions contains the following free parameters: an arbitrary positive definite symmetric matrix $\left[c_{i j}\right]$ in (7-38), different for each (m, n), and the "zero-potential-density vector" $x^{(2)}$ which is only subject to the condition that it satisfies (7-48). Evident restrictions such as the absence of the terms with $n=1$ and of the terms $k=0$ except for $n=0$ have already been mentioned.

Now there comes a surprise (Fig. 7.7). Unless $b=V_{n m}$ is zero, the end point of the

FIGURE 7.7: The sum $x=x^{(1)}+x^{(2)}$ again is of type $x^{(1)}$
vector x as given by ($7-52$) again lies in the hyperplane ($7-37$) and can therefore be represented in the form (7-38). Thus even the total solution (7-52), $x=x^{(1)}+x^{(2)}$, can be exclusively characterized by a certain matrix from our set of symmetric and positive definite matrices $\left[c_{i j}\right]$, so that we need only solutions of type $x^{(1)}$ as expressed by (7-38). Solutions of type $x^{(2)}$ are necessary only if $b=V_{n m}=0$. Of course, on a closer look, this is not so surprising after all.

In statistical terms, $C=\left[c_{i j}\right]$ represents the covariance matrix of the vector x; in case it is given, ($7-38$) expresses a kind of least-squares (minimum norm) solution, by (7-42).

