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(longitude). With respect to 8 and A, the base functions are the surface spherical 
harmonics, which are known to form a complete basis for functions defined on the 
sphere. For describing the dependence on the radius vector r, we take a polynomial 
representation. The powers r n form a complete though not orthogonal basis in the 
space of continuous functions I(r), in view oft he famous theorem 01 Weier~tra~~ : the 
polynomials are den se in the space of continuous functions, or in less abstract terms, 
any continuous function can be uniformly approximated by polynomials to any degree 
of accuracy. The coefficients of these polynomials form a finite-dimensional space. Our 
method thus is entirely elementary, avoiding Hilbert spaces considered in (Ballani and 
Stromeyer,1983). As we have already mentioned, there is a certain similarity to the 
elegant approach of Dufour (1977) who uses orthogonalized (J acobi) polynomials, but 
the present method is somewhat more general, admitting all even and odd powers of 
the radius vector r. We shall follow (Moritz, 1989). 

7.6.1 Use of Spherical Harmonics 

So let us use spherical coordinates r, 8 and A. For an internal sphere r = const. = ro 
the density p will be a function of 8 and A: 

p = 10(8, A) = p(8, Aj ro) (7-22) 

where ro enters as a parameter labeling the set of concentric spheres . This function 
may be expanded into aseries of spherical surface harmonics (1-45): 

00 " 

10(8, A) = 2:= 2:= (anm cosmA + b"m sin mA)Pnm cos 8) (7-23) 
n=Om=O 

where P"m are the standard Legendre functions and the coefficients anm and bnm 
depend on ro . Using the notation 

Y"m(8, A) 
Y"._m(8, A) 

Pnm(cos 8) cosmA, m = 0,1, . .. , n , 
Pnm(cos8) sinmA, m = 1, .. . , n , 

we may write (7-23) in a more compact way: 

n 

10(8, A) = 2:= 2:= Inm(ro)Ynm(8, A) = 2:= InmYnm 
n=Om=-n ",m 

Since I"m (= anm or bnm ) depends on ro, we may generally write 

" 
p(r, 8, A) = 2:= 2:= Inm(r)Ynm(8, A) 

n = Om=-n 

(7-24) 

(7-25) 

(7- 26) 

an equation which is valid and convergent under very weak conditions on the smoo­
thness of the functions involved , which we shall always take for granted without 
explicitly mentioning it . 
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The functions fnm(r) are quite arbitrarYi they only must decrease with increasing 
n in such a way that (7-26) converges and, above all, they must be compatible with 
the given external potential. Still, there remains an infinite set of possible fnm(r), 
which expresses the non-uniqueness of the problem. 

Let us represent fnm by a polynomial 

N 

fnm(r) = L Xnmk rk (7-27) 
k=O 

or, more briefly, 
N 

f(r) = LXkrk (7-28) 
k=O 

Xk denoting constant coefficients. According to Weierstrass' theorem, we get an arbi­
trarily good approximation by choosing N sufficiently large. 

We write eq. (7-1) in the form 

V(r, B, >') = G !!! T dv (7-29) 

where V denotes the gravitational potential, G the gravitational constant, the integral 
is extended over the volume of the body bounded by the sphere r = R (~ 6371 km 
for terrestrial applications), pis the density and dv the volume element as usual. The 
symbol I denotes the distance between the point P(r, B, >') to which V refers, and 
the point Q( r', B', >.') to which p and dv refer. If P is outside the sphere, we have by 
(1-53) 

(7-30) 

where Pn denotes Legendre's polynomials and 'I/J is the angle between r and r'. 
We substitute (7-26) and (7-30) into (7-29), to get 

00 R 

V(r, B, >') = G ~ rn\l L!! Ynm(B', >")Pn,(cos'I/J)du. ! fnm(r')r,n'+2dr'. (7-31) 
n =0 ",rn q r'=O 

Here we have replaced the index n in (7-30) by n', interchanged sum and integration 
without mathematical scruples, and put for the volume element 

dv = r,2 sin B' dr' dB' d>.' = r,2 dr' du (7-32) 

du denoting the element of solid angle or the surface element of the unit sphere u. 
Now the integral over u is zero unless n' = n because of orthogonality, and there 

remains 

(7-33) 
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using (1-49) with f(O', ).1) = Ynm(O', >.'), so that 

R 

V. = 47!"G ! f (rl)rln+2dr' 
nm 2n + 1 nm 

o 

(7-34) 

The substitution of the polynomial (7-27) finally yields on integration 

(7-35) 

Now the coefficie.nts Vnm are not hing else than the spherical-harmonic coefficients of 
the external gravitational potential, which are well-known on a smoothed global scale; 
cf. (Rapp, 1986). 

Assuming them given, we thus have the system of equations 

N 

L anmkXnmk = Vnm 
10=0 

for the unknown coefficients :l:nmlo' 

7.6.2 A Very General Solution 

(7-36) 

The system (7-36) is much less formidable than it looks. First of all, all degrees n and 
orders m are separated! Thü mean~ that we ean treat eaeh term (m, n) individually. 
(This seems to be an essential advantage as compared to the approach of Dufour to 
be treated in sec. 7.6.7.) We thus omit the symbols n, m as we already did in (7-28) 
to get, instead of (7-36), a linear equation of form 

(7-37) 

where, of course, b represents Vnm . 
Given b and the coefficients alo (by (7-35)), we can satisfy (7-37) by infinitely many 

(N + 1)-tuples :1:/0. Geometrically speaking, (7-37) is the equation of a (hyper )plane in 
(N + 1)-dimensional space, and the only condition that the vector:l: = [:1:0, :1:1, ••• , :l:N) 
must satisfy is that it must lead to a point in the plane (7-37), cf. Fig. 7.5. 

A very general solution of (7-37) is 

(7- 38) 

as one immediately sees on substituting into (7-37). The matrix [eii) ean be cho­
sen symmetrie and positive definite and is otherwise arbitrary. The set of all these 
matrices (for all n) characterizes the set of possible solutions! 
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