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7.5 Analytical Continuation 

Finally we shall try to follow up on the singular solution Vp corresponding to the 
potential of a point mass given by (7-17) right to the singularity r = 0, which is 
harmonie in aIl R3 excluding the point r = o. If one calls the support of a function 
the region in which it is different from zero, then aIl mass distributions are finite 
functions in the sense that their support is finite (one also calls them "functions 
of compact support"). In fact, for a volume distribution such as Ps, the support 
is the compact volume bounded by the surface S (including S itself); for a surface 
distribution producing the potential Vs, the support is the surface itself. The point 
potential Vp has the property that aIl mass is concentrated at the origin r = 0: its 
support consists in that point only. Thus, Vp is the potential 0/ minimal support 
corresponding to the function given by (7-17) outside S. 

Since Vp is given by the same analytical expression (7-17) also inside S, it is 
called the analytical continuation of the extern al potential V to the interior of S. The 
analytical continuation of V is harmonie together with V but has a singularity at the 
origin. 

"Being represented by the same analytical expression" is a rat her primitive def­
inition of analytical continuation. "Being harmonie and continuously differentiable 
together with V in a certain region" will be better since such harmonie functions are 
always analytic, i.e., expandable in apower series convergent in a subregion of that 
region. In fact, Laplace's equation D. V = 0 has the striking property of admitting 
only analytic solutions; cf. (Kellogg, 1929, p. 220). 

The surface potential Vs is not an analytic function in the whole R 3
: it satisfies 

Laplace's equation "almost everywhere" in R3 (except the surface S itself!); it is even 
continuous throughout R 3

; but it is not continuously differentiable on S as (7-14) 
shows. . 

Nor is Vp : it has a singularity at r = o. In fact, the only function harmonie 
throughout R 3 is the constant function, which has the same value everywhere. Any 
nonconstant harmonie function must have a singularity somewhere, be it a point, a 
line, a surface or a more complicated point set; see below. 

This is very similar to the behavior of analytic functions 0/ a complex variable, 
which are quite analogous, in the plane, to harmonie functions in R3

; cf. (Kellogg, 
1929, Chapter XII). Also the analytical continuation is a standard topic in complex 
function theory, as any textbook on the subject shows. 

Thus the external potential together with its maximal analytical continuation to 
the interior of the body, of which Vp gives a simple example, can be supposed to 
furnish a potential of minimal support. 

The problem of analytical continuation is mathematically extremely complex and 
has so far been solved for relatively simple cases only; this is also indicated by the fact 
that the booklet (Herglotz, 1914) which considers such simple cases, is considered a 
classic. The contemporary mathematical state of knowledge is found in (Schulze and 
Wildenhain, 1977, sees. 111.5.4 and 111.5.5); also the little we know is mathematically 
very deep and highly interesting. A discussion of geodetically relevant aspects is 
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found in (Moritz, 1980, sees. 6 to 8). What follows is heuristic "small talk" about a 
fascinating and both theoretically and practically important subject. 

hc The practical relevance is known from geophysical prospecting. If the analytical 
u continuation of V (or of gravity anomalies ßg) into the interior of the earth is found 

OD to have a point-like (say) singularity at some interior point, then one may look for 
it, an anomalous mass there: the point-like singularity may be due to a spherical body 
ns which may represent an ore deposit (positive density anomaly) or a salt dome (ne-
rt gative density anomaly). The relation between the inverse problem and analytical 
ce continuation was also pointed out by Marussi (1982) . 

inl Are all singularities point-like? By no means: it is even impossible to elassify 
it; an possible singularities, and they may have any degree of mathematical complexity 
rl (Schulze and Wildenhain, 1977, p. 121). Let us mention only a few of them (Fig. 7.4). 
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FIGURE 7.4: Possible types of singularities of the analytical continuation 

equal mass "infinitely elose" to each other), a quadrupole C or any higher multipole, 
a piece of line D or a "dipole line" E, a surface piece F, a piece of a "double layer 
surface" G which is some kind of "dipole surface", (cf. Heiskanen and Moritz, 1967, 
pp. 7 to 8), and so on to arbitrary complexity. 

All these singularities have one property in common: they are not only of zero 
measure but also of zero capacity. Measure is a mathematical precision of the not ion 
of volume, and capacity is not only a physical notion familiar from electrostatics but 
also a mathematical concept fundamental in modern potential theory. Also, if the 
masses are ' concentrated on sets of capacity zero, the energy becomes infinite (for Vs , 
the energy was minimum!) (cf. Schulze and Wildenhain, 1977, p. 122). On sets of 
capacity zero, V also becomes infinite. 

A closed surface S is not a set of minimal support in the present sense: the 
~otential does not become infinite on it and S, though being a set of zero measure, 
IS not a set of zero capacity. An open surface, however, is a singularity in the present 
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sense (cf. the set F in Fig. 7.4): it cannot be "compressed" to a smaller set (the sphere 
can be compressed into a point without changing the external potential!). 

The maximal analytical extension gives a uniquely defined solution. Still, it is an 
improperly p08ed problem in the sense of sec. 7.1 since the solution is not stable (cf. 
Lavrentiev, 1967, Chapter II). An arbitrarily small change in the external potential 
V can provoke a large change in the analytical continuation and may even completely 
alter the singularities: shift them, make them vanish or create new ones. This is an 
implication for the present problem of the Runge theorem (cf. Schulze and Wilden­
hain, 1977, sec. III.2.9; Moritz, 1980, sec. 8). We may also say that the analytical 
continuation into the interior of S is an initial-value (Cauchy) problem for Laplace's 
equation, which has for a long time been known to be improperly posed (Courant and 
Hilbert, 1962, pp. 227-229). In fact, S may be regarded as a "Cauchy surface", from 
which the analytical continuation into the interior starts. 

A striking and simple example is given by the spherical harmonic series of the 
external potential, which always exists and converges outside any sphere that com­
pletely encloses S. Inside S, the analytical continuation may have very complicated 
singularities. Truncating the series at an arbitrarily high degree N (e.g., equal to 106

) 

always provides a function that has a multipole singularity at the origin only. In fact, 
a spherical harmonic of degree n is equivalent to a multipole; this interpretation is 
due to Maxwell (cf. Courant and Hilbert, 1953, pp. 514-521; Hobson, 1931, secs. 79 
to 84). Thus letting N -> 00 makes the multipole singularity "explode" to form the 
arbitrarily complex original singularity structure! 

In view of the instability of analytical continuation, the precise determination of 
the singularity structure of the earth (say) is practically impossible even if it were 
theoretically feasible. Thus the attractive idea of determining all possible density 
distributions by "blowing up" the singularity structure in various ways (much in the 
same way as a point mass singularity may be blown up to spheres of various sizes) is 
likely to remain science fiction. 

7.6 Continuous Density Distributions for the 
Sphere 

We have seen that the general gravitational inverse problem is very difficult and has 
not been solved generally so far. 

However, restricting ourselves to continuous density distributions for the sphere, a 
rather general solution can be found in a simple and elementary way. A spherical earth 
is a good approximation for many geophysical purposes, especially for determining 
density anomalies from given potential anomalies. Furthermore, even "discontinui­
ties" such as the core-mantle boundary may be regarded as continuous, though rather 
abrupt, transitions. 

The approach is based on trying to find an approximate finite matrix equivalent to 
the Newtonian operator N, as we have already announced in sec. 7.1. The approach 
employs the usual spherical coordinates r (radius vector), () (polar distance), and A 
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