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A polynomial
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so that in the case of (6-60), x will have an extremum around 1/+/2 = 0.7, that is,
between 0 and 1, so that it cannot be monotonic. Even if k; deviates from k¥ only
by 1078,

k1 = 0.000 00067 ,

the function (/) is readily seen to be no longer monotonic.

In this way we see that a monotonic behavior of x is possible only for mass confi-
gurations which are extremely close to equilibrium configurations. As (6-53) shows,
this is not the case for the equipotential ellipsoid, and for the real earth the situation
is even “worse” by a factor of more than two! This serves as another confirmation of
the validity of Ledersteger’s theorem (sec. 4.2.4) for the case of the earth.

6.5 Numerical Results and Conclusions

Using the polynomial representations of sec. 6.4 we can evaluate the ellipsoidal poten-
tial anomaly Wy(8) by (6-27) and gravity g(f3) inside the ellipsoid by (2-62). Then
Bruns’ theorem (6-34) gives the separation ( = WyPy(cosf)/g between correspon-
ding surfaces of equal potential and of equal density. The result, by (Moritz, 1973,
pp. 44-45), with our present numerical values, is

W, = p*(627 — 10723 + 5854 — 140 8°) x 10m?’s~* , (6-62)
g = B(21.7-17.968%+6.08*)ms™* . (6-63)

The values of Table 6.1 have been computed from these expressions.

We see that the maximum separation between surfaces of constant potential and
corresponding surfaces of constant density is almost 60 m, occurring on a depth of
about 1400 km. This is on the order of the geoidal heights, which is not unplausible.
It is not to be expected that a more realistic earth model and an expression for s that
is more sophisticated than (6-49) will give significantly different values. The values
of ¢ for the real earth are even larger by a factor of more than 2, as (6-53) shows!

By methods described in (Jeffreys, 1976, Chapter VI) or (Moritz, 1973, pp. 35-40)
we may also compute corresponding stress differences. They are on the order of
2.107 dyn/cm?, which is considerably less than the stress differences that may occur
in the actual earth (Jeffreys, 1976, p. 270; we are using the old cgs unit here in order
to facilitate the comparison).

Summarizing we may say (Marussi et al.,, 1974): To find an earth model consi-
stent with an equipotential ellipsoid such as represented by the Geodetic Reference
System 1980, the following procedure may be used. From the given value of the
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TABLE 6.1: Potential anomaly W, and separation ( of surfaces W = const. and
p = const. for the equipotential ellipsoid

B | Wy[10m?s2] | {[m] / Py(cos 8)
0.0 0.0 0.0
0.1 0.1 0.3
0.2 0.9 2
0.3 4 7
0.4 12 16
0.5 25 28
0.6 40 42
0.7 54 54
0.8 59 58
0.9 45 45
1.0 0 0

spherical-harmonic coefficient J;, the flattening follows from the theory of the exter-
nal ellipsoidal field, without needing information on the internal structure, obtaining
f =1/298.257 ... (cf. Moritz, 1984).

Starting from this surface value of f one may, on the basis of an appropriate earth
model such as PREM (sec. 1.5), compute the functions: ellipticity e(3) and deviation
k(B) using the theory of equilibrium figures to second (Chapter 4) or higher order.
This gives an earth model in hydrostatic equilibrium.

To obtain an earth model whose boundary surface is strictly an equipotential
ellipsoid of revolution, the function e(8) can be left the same as for the hydrostatic
model, whereas () will be different since it must be zero at the surface and satisfy
the condition (6-35), with Jy given by (6-37). In this way one gets an ellipsoidal
density model that is very close to an equilibrium configuration, the deviations from
hydrostatic equilibrium being only of second order in f.

The coefficient J4 for the ellipsoid (—237 x 1078) lies about halfway between the
hydrostatic value (—299 x 10~%) and the actual value for the earth as obtained from
satellites (—162 x 1078). Therefore it appears possible, by an appropriate choice of
the function k(f), to incorporate part of the stress differences inside the earth into
the ellipsoidal model. Thus such a model may perhaps be suited as a reference for
deviatoric stresses in the earth’s interior. Thus it appears conceivable that such a
model might be used even for special geophysical purposes, in much the same way as
a spherical-harmonic expansion of finite degree may serve, for certain purposes such

as collocation (Moritz, 1980, pp. 312-313), as a reference for the gravity field.

Nevertheless, the standard reference model for geodynamical purposes will be
an equilibrium configuration, in the same way as the level ellipsoid is the standard
reference for the purposes of geometric and physical geodesy.
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