A further simplification of W_{4} is obtained by subtracting the hydrostatic value

$$
\begin{equation*}
W_{4}^{H}(\beta)=\frac{G M}{R} \beta^{2} \cdot \frac{8}{35}\left[\left(\frac{3}{2} e^{2}-4 \kappa_{H}\right) D-3 e S+\frac{3}{2} P_{H}+\frac{4}{3} Q_{H}\right] \equiv 0, \tag{6-26}
\end{equation*}
$$

noting that D and S are equal in both cases. Thus we get

$$
\begin{equation*}
W_{4}(\beta)=\frac{G M}{R} \beta^{2} \cdot \frac{32}{105}\left[-3\left(\kappa-\kappa_{H}\right) D+\frac{9}{8}\left(P-P_{H}\right)+\left(Q-Q_{H}\right)\right], \tag{6-27}
\end{equation*}
$$

where, by (4-56),

$$
\begin{align*}
\frac{9}{8}\left(P-P_{H}\right) & =\beta^{-7} \int_{0}^{\beta} \delta \frac{d}{d \beta}\left[\left(\kappa-\kappa_{H}\right) \beta^{7}\right] d \beta \tag{6-28}\\
Q-Q_{H} & =\beta^{2} \int_{\beta}^{1} \delta \frac{d}{d \beta}\left[\left(\kappa-\kappa_{H}\right) \beta^{-2}\right] d \beta \tag{6-29}
\end{align*}
$$

6.3 Equipotential Surfaces and Surfaces of Constant Density

Denote a surface of constant density, $\rho=\rho_{1}$, by S_{1} and a corresponding surface of constant potential, $W=W_{1}$, by S_{2}. Let the surface S_{1} be characterized by a value β_{1} such that

$$
\begin{equation*}
\rho\left(\beta_{1}\right)=\rho_{1} ; \tag{6-30}
\end{equation*}
$$

then the constant W_{1} will be determined by

$$
\begin{equation*}
W_{0}\left(\beta_{1}\right)=W_{1}, \tag{6-31}
\end{equation*}
$$

the function $W_{0}(\beta)$ being expressed by $(6-24)$. Thus a surface S_{2} is made to correspond to each surface S_{1} (Fig. 6.1).

FIGURE 6.1: A surface of constant density, S_{1}, and the corresponding surface of constant potential, S_{2}

For equilibrium figures, the surfaces S_{1} and S_{2} are identical. In the case of ellipsoidal mass distributions, they will be slightly different, and we shall now determine their deviation ζ. The idea is the same as that used in determining the height N of the geoid above the reference ellipsoid (cf. Heiskanen and Moritz, 1967, p. 84).

At P we have $W_{P}=W_{1}$, so that at Q

$$
\begin{equation*}
W_{Q}=W_{1}-\frac{\partial W}{\partial n} \zeta=W_{1}+g \zeta . \tag{6-32}
\end{equation*}
$$

Here $\partial / \partial n$ denotes the derivative along the normal n to the equidensity surface S_{1} (Fig. 6.1), which can practically be identified with the plumb line; hence $-\partial W / \partial n=g$ is gravity inside the earth, for which the spherical approximation (2-62) is sufficient. On the other hand, since Q lies on the surface $\rho=\rho_{1}$, we can apply (6-23) to get

$$
\begin{align*}
W_{Q} & =W_{0}\left(\beta_{1}\right)+W_{4}\left(\beta_{1}\right) P_{4}(\cos \theta) \\
& =W_{1}+W_{4}\left(\beta_{1}\right) P_{4}(\cos \theta) \tag{6-33}
\end{align*}
$$

in view of $(6-31)$. By comparing the right-hand sides of $(6-32)$ and $(6-33)$ we see that

$$
\begin{equation*}
\zeta=\frac{1}{g} W_{4}(\beta) P_{4}(\cos \theta) \tag{6-34}
\end{equation*}
$$

(since β_{1} may be replaced by a general β) is the desired result for the height of S_{2} above S_{1}. The reader will recognize the analogy of this result with the standard Bruns formula (1-25).

6.4 The Deviation κ

The deviation $\kappa=\kappa(\beta)$ for any second-order spheroid must satisfy the integral condition ($6-15$), where P_{1} is given by ($4-56$) with $\beta=1$:

$$
\begin{equation*}
\int_{0}^{1} \delta \frac{d}{d \beta}\left(f^{2} \beta^{7}\right) d \beta+\frac{8}{9} \int_{0}^{1} \delta \frac{d}{d \beta}\left(\kappa \beta^{7}\right) d \beta=-\frac{35}{12} J_{4} \tag{6-35}
\end{equation*}
$$

For the value $\kappa_{1}=\kappa(1)$ be have the boundary condition ($6-16$):

$$
\begin{equation*}
-\frac{4}{5} f^{2}+\frac{4}{7} f m-\frac{32}{35} \kappa_{1}=J_{4} \tag{6-36}
\end{equation*}
$$

For the level ellipsoid there is $\kappa_{1}=0$, whence

$$
\begin{equation*}
-\frac{4}{5} f^{2}+\frac{4}{7} f m=J_{4}^{E} \tag{6-37}
\end{equation*}
$$

The difference of the last two equations gives

$$
\begin{equation*}
J_{4}=J_{4}^{E}-\frac{32}{35} \kappa_{1} . \tag{6-38}
\end{equation*}
$$

