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as we have seen in the preceding chapters. The invaluable advantage of ellipsoidal 
coordinates is that they permit closed formulas. Therefore it is worthwhile to still 
use them to investigate problems in which closed formulas are important. This will 
be done in the last two sections of the present chapter. 

5.11 Potential and Gravity Inside the Ellipsoid 

Eq. (5-77) holds for the potential inside as weil as outside the ellipsoid E, but the 
series for 1/1, eq. (5-32), requires 11. > 11.'. If 11. < 11.', then in this series we must 
interchange 11. and 11.'. This is completely analogous to the corresponding series for 
spherical harmonies, cf. (4-8) and (4-27). If the computation point P(u, 8, >.) lies 
inside the ellipsoid, we have to pass the coordinate ellipsoid S p through it and use 
(5-32) directly for its interior I p and, with 11. and 11.' interchanged, for the "sheil" 
Ep between Sp and E; cf. Fig. 4.2 with the ellipsoid E instead of the spheroid S as 
boundary. 

In agreement with eq. (4-6) we thus split up V as 

V(u, 8) = V;(u, 8) + V.(u, 0) (5-281 ) 

with 

211" 11" U 

V;(u,8) G J J J y p(u', O')dv (5-282) 
).'=06'=Ou'=O 

21f 7r b 

V.(u,O) = G J J J y p(u', O')dv (5-283) 
).'=08'=0 u'=u 

Now we proceed exactly as we did in sec. 5.3. For V; we get the same expressions as 
(5-84), but with the upper limit of integration b replaced by u. Nonzonal terms are 
removed by orthogonality and there remains 

(5-284) 

with 

G 2.. .. U ( ') 

An(u)=i"E(2n+1) J J J p(u',O')Pn i~ Pn(cosO')dv , 
).'=06'=0 u'=O 

(5-285) 

in complete analogy to (5-74) and (5-85); of course, An is now a function of u. 
Lookihg at (5-32), we immediately recognize that the interchange of 11. and 11.' is 

equivalent to the interchange of Pnm and Qnm for 11., with perfect symmetry. Applying 
these considerations to (5-284) and (5-285), we directly find 

V.(u, 0) = ~Bn(u)Pn (iiJ Pn(cosO) (5-286) 
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with 

(5-287) 

It is instructive to compare these expressions for the internal potential to (5-74) 
and (5-85) for the external potential. For the internal potential, An and Bn are 
functions of u, whereas for the external potential, the An are constants and the Bn 

are zero. This is immediately confirmed by putting u = b in (5-285) and (5-287). 
We continue to proceed in exact1y the same manner as we did in sec. 5.3. Again 

we represent the density by (5-86), which we substitute in (5-285) and (5-287), after 
replacing u and 8 by u' and 8'. The integration with respect to 8' is straightforward 
because of the orthogonality of the Legendre polynomials Pn ( cos 8'). The result is 

An(u) = i~ J Qn(u')Pn (i~) du' , 
o 

Bn(u) = i~ j Qn(u')Qn (i~) du' 
u 

(5-288) 

These equations, together with (5-281), (5-284), and (5-286), determine the internal 
potential for any given density function of the form (5-86). 

We have found it convenient to replace the functions Qo(u) and Q2(U) by functions 
G(u) and H(u), or g(u) and heu), which are equivalent according to (5-112) and 
(5-113). Hence, we consider the density law (5-114): 

p(u, 8) 

(5-289) 

Thus we have substituted (5-104) and (5-105) into (5-97) with (5-98). Since 

Po (i~) 

Qo (i~) 
Q2 (i~) 

1 , P2 ~- = -- u +-(.u') 3 ('2 1 E 2 ) 
E 2E2 3 

E 
-i arctan­

u' 

~ - u + - E arctan - - -. [3 ('2 1 2) E 3U' ] 
2E2 3 ~ 2E 

by (5-20), (5-21), and (5-191), we obtain from (5-288) 

1, 

'cf. 
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471'i~ j [G(u') + H(u')] du' 
o 

-471'i~ j G(u')du' 
o 

Bo(u) 
b 

471'~ f [G( u') + H( u')] aretan ~ du' 
E u' 

(5-290) 

b b 

B2(u) = -471'~ f G(u') arctan ~ du' + 471'G f u'g(u')du' 
E u' 

The funetions G( u), H( u) and an ( u), n 2: 4, must, of course, satisfy the bound­
ary conditions (5-109) through (5-111), which ensure that the given ellipsoid is an 
equipotential surface. Evidently these boundary conditions could also be obtained by 
specializing (5-288) and (5-290) for u = b. Thus, in principle, the theory of sec. 5.3 
is not hing but a special case of the results of the present seetion. 

After the gravitational potential V has been found, the gravity potential U is 
obtained by adding the potential of centrifugal force: 

cL (5-40). 

U = V + ~ w 2
( u 2 + E 2

) sin2 e 
2 

Finally the components of the gravity veetor are found to be given by 

u 2 + E2 au 
lu u 2 + E2 cos2 e au 

1 au 
18 ";u2 + E2 cos2 e ae 
1>- 0 

(5-291 ) 

(5-292) 

(cf. Heiskanen and Moritz, 1967, p. 68), and gravity inside the ellipsoid has the value 

(5-293) 

Repre3entation 0/ the den3ity by polynomial3. In this chapter we have represented 
the funetions g(u), heu) and an(u) in various ways by polynomials . In all these cases 
the integration of (5-288) and (5-290) is possible in closed form in terms of elementary 
functions. Since 

. E 71' U 
arctan - = - - arctan - (5-294) 

u 2 E 
the occurring integrals are not more difficult than 

! k U uk+
1 

U E f U
k +1 

U arctan - du = -- arctan - - -- --- du 
E k + 1 E k + 1 u 2 + E2 

(5-295) 
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where the last integral is solvable by recursion: 

I xm X
m

-
1 I X

m
-

2 

--dx = -- - --dx 
X 2 + 1 m - 1 x 2 + 1 

(5-296) 

5.12 Potential Energy 

The condition that the potential energy of gravity, Eu, is made stationary, has been 
applied to the theory of equilibrium figures in sec. 3.3. 

As we have seen repeatedly, an equipotential ellipsoid, other than the homogeneous 
Maelaurin ellipsoid, cannot be a figure of hydrostatic equilibrium. The condition of 
minimum (or maximum, depending on the sign) potential energy, 

Eu = minimum (5-297) 

which characterizes equilibrium figures, might, however, still be applied to the equi­
potential ellipsoid. The corresponding mass distribution, if it exists, will be charac­
terized by least potential energy and will, so to speak, co me as elose to hydrostatic 
equilibrium as possible. If a solution exists under certain conditions, it will also be 
unique. 

As we have seen, the advantage of applying ellipsoidal coordinates to the theory 
of the level ellipsoid consists in the fact that the limits of integration are constant and 
that advantage may be taken of orthogonality relations, so that the integrals can be 
evaluated in elosed form. This applies also to the potential energy. 

By eq. (3-99), the potential energy of gravity is 

Eu = Ev + E~ = III G V + q, ) pdv (5-298) 

~ 

For the gravitational potential V we have (5-281) with (5-284) through (5-287), and 
the centrifugal potential q, is expressed by (5-39). If this is substituted into (5-298) 
we obtain 

where 

+ ~ w 2 III p( u, 0)( u
2 + E 2

) sin
2 

Odv 
E 

dv = (u 2 + E 2 cos2 0) sin OdudOd>.. 

(5-299) 

(It is somewhat unfortunate that the letter E is used to denote energy, ellipsoid, and 
excentricity in this formula, but the reader, unlike a computer, will certainly not be 
confused.) 

If it is permissible to represent the density by the series (5-86) and to interchange 
integration and summation in (5-299), we can considerably simplify this expression. 

d, 
le 
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