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On adding these three equations we see that 

(5-195) 

Because of this linear relation, the three conditions (5-192) to (5-194) are in 
fact not independent. Therefore, one of these three conditions is superfluous and 
can be omitted. We omit the condition corresponding to n = 2 and retain those 
corresponding to n = 0 and n = 4. Substituting 

that is 

Ro(u)Po (i~) = Ro(u) 

E 2 R4(u)P4 (i~) 

We are thus finally left with the two conditions 

(5-196) 

(5-197) 

(5-198) 

The functions A( u) and B( u) and the constant PI must satisfy these two equationsj 
otherwise they are arbitrary. 

5.8 Representation by Polynomials 

First we set 

B(u) = F(u)A(u) 

and specify the function F( u) to be a polynomial 

N 

F(u) = Laiui == Laiui 
;=0 

(briefty). Then the functions GI and G2 of (5-196) and (5-197) become 

(5-199) 

(5-200) 
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(5-201) 

(5-202) , 

Secondly, we represent also the function A( u) by a polynomial: 

(5-203) 

To simplify our computations, we set 

b=1 (5-204) 

thus everything is expressed in terms of the semiminor axis as the unit of length (we 
did the same in sec. 3.2.1!); of course, b has nothing to do with bo or b2 • 

On substituting (5-203), the equations (5-201) and (5-202) must be integrated 
according to (5-198). This involves the definite integrals 

1 

J (boui + b2ui+2
) du 

o 
bo b2 

i+1+i+3 
(5-205) 

It is convenient to denote the value of this definite integral by bi+1, that is, we define 

(5-206) 

(for even integers i). 

le: 
be 
E 
of 
UI 

it] 
the 

Or 

Now the integration of (5-201) and (5-202) is straightforward and gives the result On I 

~ (b 6 12b 3 14 ) L.. ai i+7 + -;; e i+6 + 35 e biN 

To simplify this system, we modify the second equation by subtracting from it the 
first equation multiplied by 3et2 /7; the first equation itself is modified by multiplying 
it by 3. We thus obtain 

Putt 
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where 

L: (b'+6 + ~ e/2 
bi+3) a. 

L: (b'+7 + ~ e/2
b.+6) a. 

(1 + e12
)Pl + h1 

-~ e/2 (1 + e/2
)Pl + h2 

12 12 2 14 - 2b5 - - e b3 - - e b1 5 5 

b IS 12b 9 14b 1 16b 7+T e 5+ 7e 3+ 7e 1 
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(5-208) 

(5-209) 

This is the final form of the conditions (5-198) for our present case. An explanatory 
remark will now be in order. We have put b = 1, which means that alliengths are to 
be measured with b as unit or, in other words, alliengths must be divided by b. Thus 
Eis to be replaced by the second excentricity e' = E /b, which explains the occurrence 
of e' in the above equations. Similarly, in polynomials such as (5-200) and (5-203), 
u must be replaced by u/b if lengths are measured in metric units. 

What is the meaning of the polynomials themselves? The function A( u) represents 
the change of density with depth; it is taken as a prescribed function representing a 
given density law. We cannot, however, likewise prescribe the function B(u) without 
violating the conditions (5-198). At any case, B(u) should be almost equal to A(u) 
to ensure spheroidal (that is, nearly spherical) stratification of density; therefore the 
function F( u) in (5-199) must be elose to unity. In order to fulfil the conditions 
(5-198), we have tried to represent it as a polynomial, whose coefficients satisfy the 
conditions (5-208) equivalent to (5-198). 

If we wish the density to be constant at the surface of the ellipsoid, we must add 
a third condition. The density p( u, 9) will be constant at the ellipsoid if and only if 
the coefficient of P2 (cos9) in (5-185) vanishes for u = b. This means 

or 

B(b) = (1 + e12 )A(b) (5-210) 

On substituting B from (5-199) and dividing by A(b) we thus have 

F(b) = 1 + e'2 (5-211) 

Putting u = b = 1 in (5-200) we get 

I: a. = 1 + e/2 (5-212) 

This is the condition which the coefficients a. must satisfy if the density is to be 
constant on the surface of the ellipsoid. 

We shall now show that the coefficient ao is related to the limit of the fiattening 
or excentricity of the surfaces of constant density as we approach the center of the 
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ellipsoid. We assume that the polynomial (5-200) contains only even powers of u, 
that is, gl 

(5-213) 

By (5-203) and (5-199) we shall then have in the neighborhood of the center 

A(u) bo +O(u2 )=bo +O(r2
), 

B(u) = aobo + O(u2
) = aobo + O(r2

) 
(5-214) 

where O(r2 ) denotes terms of the order of r 2 = x 2 + y2 + z2 as usual. Then (5-184) 
becomes 

15( u, 8) = PI - bO(x 2 + y2) - aoboz 2 + O(r4
) 

The surface of constant density 15 = c thus is expressed by 

(5-215) 

The equation of an ellipsoid of second excentricity e6 and semimajor axis A is given 
by 

x 2 + y2 + (1 + e~2)z2 = A 2 

The comparison of these two expressions as r --+ 0 shows that 

(5-216) 

is the desired relation between the coefficient ao and the excentricity of the surfaces 

/1 
C( 

at 
Tl 

10 

I~ 

5. 

of constant density at the center of the ellipsoid. Th 
We shall finally put together the three conditions (5-208) and (5-212). They may 

be written as 

Lai 

L biGai + CIPI 

L bi7 Q.; + C2PI 

where we have used the abbreviations 

and 

Cl = -(1 + e'2 ) , C2 = ~ e'2 (1 + e'2 ) , (5-219) 

h1 and h 2 being given by (5-209) and bi+3 , etc., being defined by (5-206). 
The three conditions (5-217) are necessary and sufficient in order that a mass The 

distribution ofthe form (5-184), with A and B being given by the polynomials (5-203) 
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and (5-199) with (5-200), and with the density constant at the surface ofthe ellipsoid, 
generates a zero external potential. 

These conditions may be used in many different ways. At any case, three param
eters cau be determined !rom them. Since A(u) represents the given density law, the 
coefficients bo and b2 are prescribed. 

We may, for instance, specialize the polynomial (5-200) as 

(5-220) 

and determine the coefficients ao and a2 and the density constant PI' 
Or we may wish to prescribe the excentricity e~ of the surfaces of constant density 

at the center of the ellipsoids (considered known !rom hydrostatic theory, see below). 
Then ao, being determined by (5-216), is to be considered as given, and we may take 

(5-221) 

so that the constants a2, a., and PI are to be determiued !rom (5-217) . This possibility 
seems to be the best. 

5.8.1 A Fourth-Degree Polynomial 

We shall thus investigate polynomials of the form (5-221), so that 

Then the system (5-217) may be written 

a2 + a. 

b25a2 + b.5a. + CIPI 

b27a2 + b.7a. + C2PI 

1 + e/2 
- ao 

hl - b05ao 

h2 - b07a o 

(5-222) 

(5-223) 

These are three equations for the three unkowns a2, a., and PI' The coefficient ao, 
which is related to the flattening at the center of the ellipsoid by (5-216), is assumed 
to be known. It will, however, be desirable to vary it, corresponding to different 
assumptions as to the central flattening, so that we shall substitute 

ao = 1 + e~ 
into the above system, whence 

a2 + a. 

b25a2 + b.5a. + CIPI 

b27a2 + b.7a4 + C2PI 

The elimination of a. by 

e/2 _ e~2 

h1 - b05 - b05e~2 

h2 - b07 - b07e~2 

(5-224) 

(5-225) 

(5-226) 
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reduces this system to 

(b 26 - b46 )a2 + ClPl 

(b 27 - b47 )a2 + C2Pl 

hl - b06 - e/2 b46 + (b46 - b06)e~2 

h2 - b07 - e/2 b47 + (b47 - b07 )e~2 
(5-227) 

Further investigations require numerical studies. We shall use Bullard's density 
law (1-109) (with R as unit): 

P = 12.19 - 16.71 r 2 + 7.82 r4 (5-228) 

To identify coefficients, we note that with B(u) ='= A(u) eq. (5-184) becomes approx
imately 

p ='= Pl - r 2 A(u) 

so that, with (5-203) and u ='= r, 

and, by (5-183), 
P ='= Po + Pl - bor 2 - b2r4 

This expression is direct1y comparable to (5-228). 
the values 

bo 16.71 
b2 -7.82 

assumed as exact. 

(5-229) 

(5-230) 

(5-231) 

We shall thus throughout use 

(5-232) 

All ellipsoidal constants will be taken from sec. 1.5 (Geodetic Reference System 
1980). 

We find 
b06 2.2411 , b07 1.5290 , 
b26 1.5273 , b27 1.1531 , (5-233) 
b46 1.1519 , b47 0.9231 

and 
Cl = -1.0067 , hl -4.5148, (5-234) 
C2 = +0.0010, h2 +1.5506. 

The system (5-227) may now be solved for a2 and Pl' Then (5-226) gives a4, and 
(5-224) expresses ao. The result is 

ao 1 + e~2 , 
a2 0.0387 - 2.63 e~2 (5-235) 
a4 -0.0320 + 1.63 e~2 

Pl 6.7328 + 0.10 e~2 

Thus the result depends on the central excentricity. E.g., assume an e~ that 
corresponds to Bullen's (1975, p. 58, correcting an obvious printing error) central 
flattening 

10=0.00242 (='=1/413) , (5-236) 

ti, 
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wruch is in agreement with (Denis and Ibrahim, 1981, p. 189) . Then 

For trus we find 

e~ = 0.00486 

PI 6.7332 

1.0049 

0.0259 

-0.0241 
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(5-237) 

(5-238) 

Other values of 10 such as 1/469 (Bullard, 1954, p. 96) will slightly change these 
values. 

At any rate, the values (5-238) show that F(u) as given by (5- 221) is indeed elose 
to unity. 

5.9 Combined Density Models 

According to the discussions of sees. 5.5 and 5.6, the density p( u, fJ) of a mass distri
bution for the equipotential ellipsoid has been represented as follows 

p(u, fJ) = Po + p(u, fJ) + ßp(u, fJ) (5-239) 

The constant Po is the constant density of the homogeneous Maelaurin ellipsoid that 
corresponds to the given equipotential ellipsoid, the function p( u, fJ) is the "zero
potential density" that introduces the desired heterogeneity without changing the 
external gravity field of the Maelaurin ellipsoid, and ßp(u, fJ) is the "deviatoric den
sity" that changes the extern al field of the Maelaurin ellipsoid to the prescribed field 
of the original equipotential ellipsoid without changing appreciably (that is, by more 
than ab out 0.028g/cm3

) the density distribution. 
To present an example of a density distribution that arises in this way, we use a 

function ßp(u, fJ) according to (5-156) and (5-165), and a function p(u, fJ) according 
to (5-184), the functions A(u) and B(u) being given by (5-203) and (5-222). We 
thus have 

p(u, fJ) Po + PI - [bo + b2 Gr] (:1: 2 + y2)_ 

[bo + b2 (~r1 (ao + a2 Gr + a4 Gf1 Z2 + 

+ CGf(1-Gf1 (-1+u2:2;2~:s2fJ) (5-240) 

The replacement of u by u / b in the polynomials representing A( u) and B (u) expresses 
the fact that we are no longer using b as a unit, but have returned to metric units. 
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