On adding these three equations we see that

$$
\begin{equation*}
R_{0}(u) P_{0}\left(i \frac{u}{E}\right)+R_{2}(u) P_{2}\left(i \frac{u}{E}\right)+R_{4}(u) P_{4}\left(i \frac{u}{E}\right)=0 . \tag{5-195}
\end{equation*}
$$

Because of this linear relation, the three conditions (5-192) to (5-194) are in fact not independent. Therefore, one of these three conditions is superfluous and can be omitted. We omit the condition corresponding to $n=2$ and retain those corresponding to $n=0$ and $n=4$. Substituting

$$
\begin{aligned}
& G_{1}(u)=R_{0}(u) P_{0}\left(i \frac{u}{E}\right)=R_{0}(u), \\
& G_{2}(u)=E^{2} R_{4}(u) P_{4}\left(i \frac{u}{E}\right),
\end{aligned}
$$

that is

$$
\begin{align*}
G_{1}(u) & =\left(u^{2}+\frac{1}{3} E^{2}\right) \rho_{1}+\left(-\frac{2}{3} u^{4}-\frac{4}{5} E^{2} u^{2}-\frac{2}{15} E^{4}\right) A(u)+ \\
& +\left(-\frac{1}{3} u^{4}-\frac{1}{5} E^{2} u^{2}\right) B(u) \tag{5-196}\\
G_{2}(u) & =\left(u^{6}+\frac{13}{7} E^{2} u^{4}+\frac{33}{35} E^{4} u^{2}+\frac{3}{35} E^{6}\right) A(u)+ \\
& +\left(-u^{6}-\frac{6}{7} E^{2} u^{4}-\frac{3}{35} E^{4} u^{2}\right) B(u) \tag{5-197}
\end{align*}
$$

we are thus finally left with the two conditions

$$
\begin{equation*}
\int_{0}^{b} G_{1}(u) d u=0, \quad \int_{0}^{b} G_{2}(u) d u=0 \tag{5-198}
\end{equation*}
$$

The functions $A(u)$ and $B(u)$ and the constant ρ_{1} must satisfy these two equations; otherwise they are arbitrary.

5.8 Representation by Polynomials

First we set

$$
\begin{equation*}
B(u)=F(u) A(u) \tag{5-199}
\end{equation*}
$$

and specify the function $F(u)$ to be a polynomial

$$
\begin{equation*}
F(u)=\sum_{i=0}^{N} a_{i} u^{i} \equiv \sum a_{i} u^{i} \tag{5-200}
\end{equation*}
$$

(briefly). Then the functions G_{1} and G_{2} of (5-196) and (5-197) become

$$
\begin{align*}
G_{1}(u) & =\left(u^{2}+\frac{1}{3} E^{2}\right) \rho_{1}+A(u)\left[-\frac{2}{3} u^{4}-\frac{4}{5} E^{2} u^{2}-\frac{2}{15} E^{4}-\right. \\
& \left.-\sum a_{i}\left(\frac{1}{3} u^{i+4}+\frac{1}{5} E^{2} u^{i+2}\right)\right], \tag{5-201}\\
G_{2}(u) & =A(u)\left[u^{6}+\frac{13}{7} E^{2} u^{4}+\frac{33}{35} E^{4} u^{2}+\frac{3}{35} E^{6}-\right. \\
& \left.-\sum a_{i}\left(u^{i+6}+\frac{6}{7} E^{2} u^{i+4}+\frac{3}{35} E^{4} u^{i+2}\right)\right] . \tag{5-202}
\end{align*}
$$

Secondly, we represent also the function $A(u)$ by a polynomial:

$$
\begin{equation*}
A(u)=b_{0}+b_{2} u^{2} \tag{5-203}
\end{equation*}
$$

To simplify our computations, we set

$$
\begin{equation*}
b=1 \tag{5-204}
\end{equation*}
$$

thus everything is expressed in terms of the semiminor axis as the unit of length (we did the same in sec. 3.2.1!); of course, b has nothing to do with b_{0} or b_{2}.

On substituting (5-203), the equations (5-201) and (5-202) must be integrated according to (5-198). This involves the definite integrals

$$
\begin{align*}
\int_{0}^{b} A(u) u^{i} d u & =\int_{0}^{1}\left(b_{0} u^{i}+b_{2} u^{i+2}\right) d u \\
& =\frac{b_{0}}{i+1}+\frac{b_{2}}{i+3} \tag{5-205}
\end{align*}
$$

It is convenient to denote the value of this definite integral by b_{i+1}, that is, we define

$$
\begin{equation*}
b_{i+1}=\frac{b_{0}}{i+1}+\frac{b_{2}}{i+3} \tag{5-206}
\end{equation*}
$$

(for even integers i).
Now the integration of (5-201) and (5-202) is straightforward and gives the result

$$
\begin{align*}
& \sum a_{i}\left(\frac{1}{3} b_{i+5}+\frac{1}{5} e^{\prime 2} b_{i+3}\right) \\
& =\frac{1}{3}\left(1+e^{\prime 2}\right) \rho_{1}-\frac{2}{3} b_{5}-\frac{4}{5} e^{\prime 2} b_{3}-\frac{2}{15} e^{14} b_{1}, \tag{5-207}\\
& \sum a_{i}\left(b_{i+7}+\frac{6}{7} e^{\prime 2} b_{i+5}+\frac{3}{35} e^{\prime 4} b_{i+3}\right)=b_{7}+\frac{13}{7} e^{\prime 2} b_{5}+\frac{33}{35} e^{\prime 4} b_{3}+\frac{3}{35} e^{\prime 6} b_{1}
\end{align*}
$$

To simplify this system, we modify the second equation by subtracting from it the first equation multiplied by $3 e^{\prime 2} / 7$; the first equation itself is modified by multiplying it by 3. We thus obtain

$$
\begin{align*}
& \sum\left(b_{i+5}+\frac{3}{5} e^{\prime 2} b_{i+3}\right) a_{i}=\left(1+e^{\prime 2}\right) \rho_{1}+h_{1} \\
& \sum\left(b_{i+7}+\frac{5}{7} e^{\prime 2} b_{i+5}\right) a_{i}=-\frac{1}{7} e^{\prime 2}\left(1+e^{\prime 2}\right) \rho_{1}+h_{2} \tag{5-208}
\end{align*}
$$

where

$$
\begin{align*}
& h_{1}=-2 b_{5}-\frac{12}{5} e^{12} b_{3}-\frac{2}{5} e^{14} b_{1} \\
& h_{2}=b_{7}+\frac{15}{7} e^{12} b_{5}+\frac{9}{7} e^{14} b_{3}+\frac{1}{7} e^{18} b_{1} \tag{5-209}
\end{align*}
$$

This is the final form of the conditions (5-198) for our present case. An explanatory remark will now be in order. We have put $b=1$, which means that all lengths are to be measured with b as unit or, in other words, all lengths must be divided by b. Thus E is to be replaced by the second excentricity $e^{\prime}=E / b$, which explains the occurrence of e^{\prime} in the above equations. Similarly, in polynomials such as (5-200) and (5-203), u must be replaced by u / b if lengths are measured in metric units.

What is the meaning of the polynomials themselves? The function $A(u)$ represents the change of density with depth; it is taken as a prescribed function representing a given density law. We cannot, however, likewise prescribe the function $B(u)$ without violating the conditions (5-198). At any case, $B(u)$ should be almost equal to $A(u)$ to ensure spheroidal (that is, nearly spherical) stratification of density; therefore the function $F(u)$ in (5-199) must be close to unity. In order to fulfil the conditions (5-198), we have tried to represent it as a polynomial, whose coefficients satisfy the conditions (5-208) equivalent to (5-198).

If we wish the density to be constant at the surface of the ellipsoid, we must add a third condition. The density $\bar{\rho}(u, \theta)$ will be constant at the ellipsoid if and only if the coefficient of $P_{2}(\cos \theta)$ in (5-185) vanishes for $u=b$. This means

$$
\frac{2}{3}\left(b^{2}+E^{2}\right) A(b)-\frac{2}{3} b^{2} B(b)=0
$$

or

$$
\begin{equation*}
B(b)=\left(1+e^{\prime 2}\right) A(b) \tag{5-210}
\end{equation*}
$$

On substituting B from (5-199) and dividing by $A(b)$ we thus have

$$
\begin{equation*}
F(b)=1+e^{\prime 2} \tag{5-211}
\end{equation*}
$$

Putting $u=b=1$ in (5-200) we get

$$
\begin{equation*}
\sum a_{i}=1+e^{\prime 2} \tag{5-212}
\end{equation*}
$$

This is the condition which the coefficients a_{i} must satisfy if the density is to be constant on the surface of the ellipsoid.

We shall now show that the coefficient a_{0} is related to the limit of the flattening or excentricity of the surfaces of constant density as we approach the center of the
ellipsoid. We assume that the polynomial (5-200) contains only even powers of u, that is,

$$
\begin{equation*}
F(u)=a_{0}+a_{2} u^{2}+a_{4} u^{4}+\cdots+a_{2 n} u^{2 n} \tag{5-213}
\end{equation*}
$$

By (5-203) and (5-199) we shall then have in the neighborhood of the center

$$
\begin{align*}
& A(u)=b_{0}+O\left(u^{2}\right)=b_{0}+O\left(r^{2}\right) \tag{5-214}\\
& B(u)=a_{0} b_{0}+O\left(u^{2}\right)=a_{0} b_{0}+O\left(r^{2}\right)
\end{align*}
$$

where $O\left(r^{2}\right)$ denotes terms of the order of $r^{2}=x^{2}+y^{2}+z^{2}$ as usual. Then (5-184) becomes

$$
\begin{equation*}
\bar{\rho}(u, \theta)=\rho_{1}-b_{0}\left(x^{2}+y^{2}\right)-a_{0} b_{0} z^{2}+O\left(r^{4}\right) \tag{5-215}
\end{equation*}
$$

The surface of constant density $\bar{\rho}=c$ thus is expressed by

$$
x^{2}+y^{2}+a_{0} z^{2}=\frac{\rho_{1}-c}{b_{0}}+O\left(r^{4}\right)=\text { const. }+O\left(r^{4}\right)
$$

The equation of an ellipsoid of second excentricity e_{0}^{\prime} and semimajor axis A is given by

$$
x^{2}+y^{2}+\left(1+e_{0}^{\prime 2}\right) z^{2}=A^{2}
$$

The comparison of these two expressions as $r \rightarrow 0$ shows that

$$
\begin{equation*}
a_{0}=1+e_{0}^{\prime 2} \tag{5-216}
\end{equation*}
$$

is the desired relation between the coefficient a_{0} and the excentricity of the surfaces of constant density at the center of the ellipsoid.

We shall finally put together the three conditions $(5-208)$ and (5-212). They may be written as

$$
\begin{align*}
\sum a_{i} & =1+e^{\prime 2} \\
\sum b_{i 5} a_{i}+c_{1} \rho_{1} & =h_{1} \tag{5-217}\\
\sum b_{i 7} a_{i}+c_{2} \rho_{1} & =h_{2}
\end{align*}
$$

where we have used the abbreviations

$$
\begin{align*}
& b_{i 5}=b_{i+5}+\frac{3}{5} e^{\prime 2} b_{i+3} \\
& b_{i 7}=b_{i+7}+\frac{5}{7} e^{\prime 2} b_{i+5} \tag{5-218}
\end{align*}
$$

and

$$
\begin{equation*}
c_{1}=-\left(1+e^{\prime 2}\right), \quad c_{2}=\frac{1}{7} e^{\prime 2}\left(1+e^{\prime 2}\right) \tag{5-219}
\end{equation*}
$$

h_{1} and h_{2} being given by (5-209) and b_{i+3}, etc., being defined by (5-206).
The three conditions (5-217) are necessary and sufficient in order that a mass distribution of the form (5-184), with A and B being given by the polynomials (5-203)
and (5-199) with (5-200), and with the density constant at the surface of the ellipsoid, generates a zero external potential.

These conditions may be used in many different ways. At any case, three parameters can be determined from them. Since $A(u)$ represents the given density law, the coefficients b_{0} and b_{2} are prescribed.

We may, for instance, specialize the polynomial (5-200) as

$$
\begin{equation*}
F(u)=a_{0}+a_{2} u^{2} \tag{5-220}
\end{equation*}
$$

and determine the coefficients a_{0} and a_{2} and the density constant ρ_{1}.
Or we may wish to prescribe the excentricity e_{0}^{\prime} of the surfaces of constant density at the center of the ellipsoids (considered known from hydrostatic theory, see below). Then a_{0}, being determined by ($5-216$), is to be considered as given, and we may take

$$
\begin{equation*}
F(u)=a_{0}+a_{2} u^{2}+a_{4} u^{4}, \tag{5-221}
\end{equation*}
$$

so that the constants a_{2}, a_{4}, and ρ_{1} are to be determined from (5-217). This possibility seems to be the best.

5.8.1 A Fourth-Degree Polynomial

We shall thus investigate polynomials of the form (5-221), so that

$$
\begin{equation*}
B(u)=\left(a_{0}+a_{2} u^{2}+a_{4} u^{4}\right) A(u) . \tag{5-222}
\end{equation*}
$$

Then the system ($5-217$) may be written

$$
\begin{align*}
a_{2}+a_{4} & =1+e^{\prime 2}-a_{0}, \\
b_{25} a_{2}+b_{45} a_{4}+c_{1} \rho_{1} & =h_{1}-b_{05} a_{0}, \tag{5-223}\\
b_{27} a_{2}+b_{47} a_{4}+c_{2} \rho_{1} & =h_{2}-b_{07} a_{0}
\end{align*}
$$

These are three equations for the three unkowns a_{2}, a_{4}, and ρ_{1}. The coefficient a_{0}, which is related to the flattening at the center of the ellipsoid by ($5-216$), is assumed to be known. It will, however, be desirable to vary it, corresponding to different assumptions as to the central flattening, so that we shall substitute

$$
\begin{equation*}
a_{0}=1+e_{0}^{\prime 2} \tag{5-224}
\end{equation*}
$$

into the above system, whence

$$
\begin{align*}
a_{2}+a_{4} & =e^{\prime 2}-e_{0}^{\prime 2} \\
b_{25} a_{2}+b_{45} a_{4}+c_{1} \rho_{1} & =h_{1}-b_{05}-b_{05} e_{0}^{\prime 2} \tag{5-225}\\
b_{27} a_{2}+b_{47} a_{4}+c_{2} \rho_{1} & =h_{2}-b_{07}-b_{07} e_{0}^{\prime 2}
\end{align*},
$$

The elimination of a_{4} by

$$
\begin{equation*}
a_{4}=-a_{2}+e^{\prime 2}-e_{0}^{\prime 2} \tag{5-226}
\end{equation*}
$$

reduces this system to

$$
\begin{align*}
& \left(b_{25}-b_{45}\right) a_{2}+c_{1} \rho_{1}=h_{1}-b_{05}-e^{\prime 2} b_{45}+\left(b_{45}-b_{05}\right) e_{0}^{\prime 2} \\
& \left(b_{27}-b_{47}\right) a_{2}+c_{2} \rho_{1}=h_{2}-b_{07}-e^{\prime 2} b_{47}+\left(b_{47}-b_{07}\right) e_{0}^{\prime 2} \tag{5-227}
\end{align*}
$$

Further investigations require numerical studies. We shall use Bullard's density law (1-109) (with R as unit):

$$
\begin{equation*}
\rho=12.19-16.71 r^{2}+7.82 r^{4} \tag{5-228}
\end{equation*}
$$

To identify coefficients, we note that with $B(u) \doteq A(u)$ eq. (5-184) becomes approximately

$$
\begin{equation*}
\bar{\rho} \doteq \rho_{1}-r^{2} A(u) \quad\left(r^{2}=x^{2}+y^{2}+z^{2}\right) \tag{5-229}
\end{equation*}
$$

so that, with (5-203) and $u \doteq r$,

$$
\begin{equation*}
\bar{\rho} \doteq \rho_{1}-b_{0} r^{2}-b_{2} r^{4} \tag{5-230}
\end{equation*}
$$

and, by (5-183),

$$
\begin{equation*}
\rho \doteq \rho_{0}+\rho_{1}-b_{0} r^{2}-b_{2} r^{4} \tag{5-231}
\end{equation*}
$$

This expression is directly comparable to (5-228). We shall thus throughout use the values

$$
\begin{align*}
& b_{0}=16.71 \tag{5-232}\\
& b_{2}=-7.82
\end{align*}
$$

assumed as exact.
All ellipsoidal constants will be taken from sec. 1.5 (Geodetic Reference System 1980).

We find

$$
\begin{array}{ll}
b_{05}=2.2411, & b_{07}=1.5290 \\
b_{25}=1.5273, & b_{27}=1.1531 \tag{5-233}\\
b_{45}=1.1519, & b_{47}=0.9231
\end{array}
$$

and

$$
\begin{array}{ll}
c_{1}=-1.0067, & h_{1}=-4.5148 \tag{5-234}\\
c_{2}=+0.0010, & h_{2}=+1.5506
\end{array}
$$

The system (5-227) may now be solved for a_{2} and ρ_{1}. Then ($5-226$) gives a_{4}, and (5-224) expresses a_{0}. The result is

$$
\begin{align*}
& a_{0}=1+e_{0}^{\prime 2} \\
& a_{2}=0.0387-2.63 e_{0}^{\prime 2} \tag{5-235}\\
& a_{4}=-0.0320+1.63 e_{0}^{\prime 2} \\
& \rho_{1}=6.7328+0.10 e_{0}^{\prime 2}
\end{align*}
$$

Thus the result depends on the central excentricity. E.g., assume an $e_{0}^{\prime 2}$ that corresponds to Bullen's (1975, p. 58 , correcting an obvious printing error) central flattening

$$
\begin{equation*}
f_{0}=0.00242 \quad(\doteq 1 / 413) \tag{5-236}
\end{equation*}
$$

which is in agreement with (Denis and Ibrahim, 1981, p. 189). Then

$$
\begin{equation*}
e_{0}^{\prime 2}=0.00486 \tag{5-237}
\end{equation*}
$$

For this we find

$$
\begin{align*}
& \rho_{1}=6.7332 \\
& a_{0}=1.0049, \tag{5-238}\\
& a_{2}=0.0259, \\
& a_{4}=-0.0241,
\end{align*}
$$

Other values of f_{0} such as $1 / 469$ (Bullard, 1954, p. 96) will slightly change these values.

At any rate, the values (5-238) show that $F(u)$ as given by $(5-221)$ is indeed close to unity.

5.9 Combined Density Models

According to the discussions of secs. 5.5 and 5.6 , the density $\rho(u, \theta)$ of a mass distribution for the equipotential ellipsoid has been represented as follows

$$
\begin{equation*}
\rho(u, \theta)=\rho_{0}+\bar{\rho}(u, \theta)+\Delta \rho(u, \theta) . \tag{5-239}
\end{equation*}
$$

The constant ρ_{0} is the constant density of the homogeneous Maclaurin ellipsoid that corresponds to the given equipotential ellipsoid, the function $\bar{\rho}(u, \theta)$ is the "zeropotential density" that introduces the desired heterogeneity without changing the external gravity field of the Maclaurin ellipsoid, and $\Delta \rho(u, \theta)$ is the "deviatoric density" that changes the external field of the Maclaurin ellipsoid to the prescribed field of the original equipotential ellipsoid without changing appreciably (that is, by more than about $0.028 \mathrm{~g} / \mathrm{cm}^{3}$) the density distribution.

To present an example of a density distribution that arises in this way, we use a function $\Delta \rho(u, \theta)$ according to (5-156) and (5-165), and a function $\bar{\rho}(u, \theta)$ according to (5-184), the functions $A(u)$ and $B(u)$ being given by (5-203) and (5-222). We thus have

$$
\begin{align*}
\rho(u, \theta) & =\rho_{0}+\rho_{1}-\left[b_{0}+b_{2}\left(\frac{u}{b}\right)^{2}\right]\left(x^{2}+y^{2}\right)- \\
& -\left[b_{0}+b_{2}\left(\frac{u}{b}\right)^{2}\right]\left[a_{0}+a_{2}\left(\frac{u}{b}\right)^{2}+a_{4}\left(\frac{u}{b}\right)^{4}\right] z^{2}+ \\
& +C\left(\frac{u}{b}\right)^{4}\left[1-\left(\frac{u}{b}\right)^{2}\right]\left(-1+\frac{u^{2}+E^{2}}{u^{2}+E^{2} \cos ^{2} \theta}\right) \tag{5-240}
\end{align*}
$$

The replacement of u by u / b in the polynomials representing $A(u)$ and $B(u)$ expresses the fact that we are no longer using b as a unit, but have returned to metric units.

