One condition to be satisfied by the coefficients of the polynomial (5-181) is obtained by substituting this polynomial into (5-109) after multiplication by ($u^{2}+E^{2} / 3$) according to (5-112), and performing the integration:

$$
\begin{equation*}
\left(\frac{1}{3}+\frac{1}{3} e^{\prime 2}\right) A+\left(\frac{1}{5}+\frac{1}{9} e^{\prime 2}\right) B+\left(\frac{1}{7}+\frac{1}{15} e^{\prime 2}\right) C=\left(\frac{1}{3}+\frac{1}{3} e^{\prime 2}\right) \rho_{0} \tag{5-182}
\end{equation*}
$$

where ρ_{0} is the Maclaurin density (5-169). It is readily verified that the coefficients of (5-180) satisfy this condition to two-place accuracy.

The disadvantage of a density law such as $(5-178)$ is that the surfaces of constant density are confocal ellipsoids, whose flattening becomes infinite as $u \rightarrow 0$. To be sure, the practical effect of this fact can be made small by selecting a suitable function $g(u)$. If we select $g(u)=$ const. for $0 \leq u \leq u_{0}$ and decreasing for $u>u_{0}$, we shall not even have any singularity at all as $u \rightarrow 0$. Still the flattening of the surfaces of constant density increases with depth, which is not desirable.

More "natural" distributions will obviously have to be somewhat more complicated than (5-178). To keep the matter relatively simple and transparent, it will be convenient to consider any heterogeneous mass distribution of the Maclaurin ellipsoid as the superposition of

1. a homogeneous distribution of the usual Maclaurin density ρ_{0}, which generates the required external potential, and
2. a heterogeneous distribution $\bar{\rho}(u, \theta)$ whose external potential is zero.

The purpose of such a "zero-potential distribution" of density $\bar{\rho}(u, \theta)$ is thus to provide the desired heterogeneity without changing the external potential or the coefficients $A_{0}^{M L}$ and $A_{2}^{M L}$ defined by the Maclaurin density ρ_{0}. In other words, a heterogeneous distribution for the Maclaurin ellipsoid will be given by

$$
\begin{equation*}
\rho_{M L}(u, \theta)=\rho_{0}+\bar{\rho}(u, \theta) \tag{5-183}
\end{equation*}
$$

as the sum of the (homogeneous) Maclaurin density ρ_{0} and a zero-potential density $\bar{\rho}(u, \theta)$.

The constant ρ_{0} being uniquely defined by (5-164), the following section will study zero-potential density distributions.

5.7 Zero-Potential Densities

We shall thus determine density distributions inside the given ellipsoid that generate a potential which is everywhere zero outside the ellipsoid. To obtain spheroidal (nearly ellipsoidal) surfaces of equal density, we consider functions of the form

$$
\begin{equation*}
\bar{\rho}(u, \theta)=\rho_{1}-\left(x^{2}+y^{2}\right) A(u)-z^{2} B(u), \tag{5-184}
\end{equation*}
$$

where ρ_{1} is a constant and A and B are functions of u to be determined.

With

$$
\begin{aligned}
x^{2}+y^{2} & =\left(u^{2}+E^{2}\right) \sin ^{2} \theta \\
z^{2} & =u^{2} \cos ^{2} \theta
\end{aligned}
$$

by (5-1) and

$$
\begin{aligned}
\cos ^{2} \theta & =\frac{2}{3} P_{2}(\cos \theta)+\frac{1}{3} \\
\sin ^{2} \theta & =-\frac{2}{3} P_{2}(\cos \theta)+\frac{2}{3}
\end{aligned}
$$

this becomes

$$
\begin{equation*}
\bar{\rho}(u, \theta)=\rho_{1}-\left[\frac{2}{3}\left(u^{2}+E^{2}\right) A+\frac{1}{3} u^{2} B\right]+\left[\frac{2}{3}\left(u^{2}+E^{2}\right) A-\frac{2}{3} u^{2} B\right] P_{2}(\cos \theta) \tag{5-185}
\end{equation*}
$$

Multiplying by

$$
u^{2}+E^{2} \cos ^{2} \theta=\left(u^{2}+\frac{1}{3} E^{2}\right)+\frac{2}{3} E^{2} P_{2}(\cos \theta)
$$

gives

$$
\bar{\rho}(u, \theta)\left(u^{2}+E^{2} \cos ^{2} \theta\right)=S_{0}(u)+S_{2}(u) P_{2}(\cos \theta)+S_{4}(u)\left[P_{2}(\cos \theta)\right]^{2}
$$

where

$$
\begin{aligned}
S_{0}(u) & =\left(u^{2}+\frac{1}{3} E^{2}\right) \rho_{1}-\left(u^{2}+\frac{1}{3} E^{2}\right)\left[\frac{2}{3}\left(u^{2}+E^{2}\right) A+\frac{1}{3} u^{2} B\right], \\
S_{2}(u) & =\frac{2}{3} E^{2} \rho_{1}-\frac{4}{9} E^{2}\left(u^{2}+E^{2}\right) A-\frac{2}{9} E^{2} u^{2} B+\frac{2}{3}\left(u^{2}+\frac{1}{3} E^{2}\right)\left(u^{2}+E^{2}\right) A- \\
& -\frac{2}{3} u^{2}\left(u^{2}+\frac{1}{3} E^{2}\right) B, \\
S_{4}(u) & =\frac{4}{9} E^{2}\left(u^{2}+E^{2}\right) A-\frac{4}{9} E^{2} u^{2} B
\end{aligned}
$$

Finally we use the formula (4-37),

$$
\left[P_{2}(\cos \theta)\right]^{2}=\frac{1}{5}+\frac{2}{7} P_{2}(\cos \theta)+\frac{18}{35} P_{4}(\cos \theta)
$$

to obtain the expression

$$
\begin{equation*}
\bar{\rho}(u, \theta)\left(u^{2}+E^{2} \cos ^{2} \theta\right)=R_{0}(u)+R_{2}(u) P_{2}(\cos \theta)+R_{4}(u) P_{4}(\cos \theta) \tag{5-186}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{0}(u) & =S_{0}(u)+\frac{1}{5} S_{4}(u) \\
R_{2}(u) & =S_{2}(u)+\frac{2}{7} S_{4}(u) \\
R_{4}(u) & =\frac{18}{35} S_{4}(u)
\end{aligned}
$$

that is,

$$
\begin{align*}
R_{0}(u) & =\left(u^{2}+\frac{1}{3} E^{2}\right) \rho_{1}+\left(-\frac{2}{3} u^{4}-\frac{4}{5} E^{2} u^{2}-\frac{2}{15} E^{4}\right) A(u)+ \\
& +\left(-\frac{1}{3} u^{4}-\frac{1}{5} E^{2} u^{2}\right) B(u) \tag{5-187}\\
R_{2}(u) & =\frac{2}{3} E^{2} \rho_{1}+\left(\frac{2}{3} u^{4}+\frac{4}{7} E^{2} u^{2}-\frac{2}{21} E^{4}\right) A(u)+ \\
& +\left(-\frac{2}{3} u^{4}-\frac{4}{7} E^{2} u^{2}\right) B(u) \tag{5-188}\\
R_{4}(u) & =\frac{8}{35}\left[\left(E^{2} u^{2}+E^{4}\right) A(u)-E^{2} u^{2} B(u)\right] \tag{5-189}
\end{align*}
$$

Comparing (5-186) with $(5-86)$ we see that for the present case

$$
\begin{array}{ll}
\bar{\alpha}_{n}(u)=4 \pi R_{n}(u) & \text { if } n=0,2,4 \\
\bar{\alpha}_{n}(u)=0 & \text { if } n>4
\end{array}
$$

Since for zero external potential all coefficients of the ellipsoidal harmonics must vanish, equation ($5-87$) gives the conditions

$$
\begin{equation*}
\int_{0}^{b} R_{n}(u) P_{n}\left(i \frac{u}{E}\right) d u=0 \quad \text { if } \quad n=0,2,4 \tag{5-190}
\end{equation*}
$$

The three conditions $(5-190)$ are, however, not independent. This is seen as follows. With

$$
\begin{align*}
& P_{0}\left(i \frac{u}{E}\right)=1 \\
& P_{2}\left(i \frac{u}{E}\right)=-\frac{3}{2 E^{2}}\left(u^{2}+\frac{1}{3} E^{2}\right), \tag{5-191}\\
& P_{4}\left(i \frac{u}{E}\right)=\frac{35}{8 E^{4}}\left(u^{4}+\frac{6}{7} E^{2} u^{2}+\frac{3}{35} E^{4}\right)
\end{align*}
$$

we compute

$$
\begin{align*}
R_{0} P_{0} & =\left(u^{2}+\frac{1}{3} E^{2}\right) \rho_{1}+\left(-\frac{2}{3} u^{4}-\frac{4}{5} E^{2} u^{2}-\frac{2}{15} E^{4}\right) A+ \\
& +\left(-\frac{1}{3} u^{4}-\frac{1}{5} E^{2} u^{2}\right) B \tag{5-192}\\
R_{2} P_{2} & =-\left(u^{2}+\frac{1}{3} E^{2}\right) \rho_{1}+\left(-\frac{u^{6}}{E^{2}}-\frac{25}{21} u^{4}-\frac{1}{7} E^{2} u^{2}+\frac{1}{21} E^{4}\right) A+ \\
& +\left(\frac{u^{6}}{E^{2}}+\frac{25}{21} u^{4}+\frac{2}{7} E^{2} u^{2}\right) B \tag{5-193}\\
R_{4} P_{4} & =\left(\frac{u^{6}}{E^{2}}+\frac{13}{7} u^{4}+\frac{33}{35} E^{2} u^{2}+\frac{3}{35} E^{4}\right) A+ \\
& +\left(-\frac{u^{6}}{E^{2}}-\frac{6}{7} u^{4}-\frac{3}{35} E^{2} u^{2}\right) B \tag{5-194}
\end{align*}
$$

On adding these three equations we see that

$$
\begin{equation*}
R_{0}(u) P_{0}\left(i \frac{u}{E}\right)+R_{2}(u) P_{2}\left(i \frac{u}{E}\right)+R_{4}(u) P_{4}\left(i \frac{u}{E}\right)=0 . \tag{5-195}
\end{equation*}
$$

Because of this linear relation, the three conditions (5-192) to (5-194) are in fact not independent. Therefore, one of these three conditions is superfluous and can be omitted. We omit the condition corresponding to $n=2$ and retain those corresponding to $n=0$ and $n=4$. Substituting

$$
\begin{aligned}
& G_{1}(u)=R_{0}(u) P_{0}\left(i \frac{u}{E}\right)=R_{0}(u), \\
& G_{2}(u)=E^{2} R_{4}(u) P_{4}\left(i \frac{u}{E}\right),
\end{aligned}
$$

that is

$$
\begin{align*}
G_{1}(u) & =\left(u^{2}+\frac{1}{3} E^{2}\right) \rho_{1}+\left(-\frac{2}{3} u^{4}-\frac{4}{5} E^{2} u^{2}-\frac{2}{15} E^{4}\right) A(u)+ \\
& +\left(-\frac{1}{3} u^{4}-\frac{1}{5} E^{2} u^{2}\right) B(u) \tag{5-196}\\
G_{2}(u) & =\left(u^{6}+\frac{13}{7} E^{2} u^{4}+\frac{33}{35} E^{4} u^{2}+\frac{3}{35} E^{6}\right) A(u)+ \\
& +\left(-u^{6}-\frac{6}{7} E^{2} u^{4}-\frac{3}{35} E^{4} u^{2}\right) B(u) \tag{5-197}
\end{align*}
$$

we are thus finally left with the two conditions

$$
\begin{equation*}
\int_{0}^{b} G_{1}(u) d u=0, \quad \int_{0}^{b} G_{2}(u) d u=0 \tag{5-198}
\end{equation*}
$$

The functions $A(u)$ and $B(u)$ and the constant ρ_{1} must satisfy these two equations; otherwise they are arbitrary.

5.8 Representation by Polynomials

First we set

$$
\begin{equation*}
B(u)=F(u) A(u) \tag{5-199}
\end{equation*}
$$

and specify the function $F(u)$ to be a polynomial

$$
\begin{equation*}
F(u)=\sum_{i=0}^{N} a_{i} u^{i} \equiv \sum a_{i} u^{i} \tag{5-200}
\end{equation*}
$$

(briefly). Then the functions G_{1} and G_{2} of (5-196) and (5-197) become

