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5.4 The Maclaurin Ellipsoid 

Assume a homogeneous equipotential ellipsoid of constant density p. Then in (5-114) 
we have 
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and all other CX2" = O. By (5-112) and (5-113) this implies 

G(u) 
H(u) 

so that (5-107) and (5-95) give 

GM 47r a2 b 
Ao = -A2 = i-- = i · - Gp-

E 3 E 

slnce 
47r 2 

M=pv=p·-ab, 
3 

v denoting the volume of the ellipsoid as usual. 
Now we take (5-89) and (5-92) into consideration: 

w 2a2 

A 2 = -i--
3qo 

by (5-92). Combining (5-136) and (5-138) we find 
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FinallY qo is expressed by (5-48) with e l = Ejb alld we get 
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the well-known Maclaurin condition. 
For our earth, with the actual values of w from (1-77) and 

el = 0.082 094 439 

from (5-115), this would give 

p = 7.10 gjcm3 
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which clearly is much larger than the actual mean density (5-118) (the numerical 
equality with (5-126) is no coincidence; why?). This, of course, shows that the earth 
cannot be a homogeneous equilibrium figure. 

In fact, the Maclaurin ellipsoid is a homogeneous figure of equilibrium. Its surface 
is a surface of constant density and, by the very definition of the level ellipsoid, also of 
constant gravity potential. Thus the fundamental condition ofhydrostatic equilibrium 
(sec. 2.5) is satisfied for the surface. It is also satisfied in the interior: whatever be 
the shape of the internallevel surfaces, they are also surfaces of constant density since 
p = const. throughout. 

The internallevel surfaces must be ellipsoids that are geometrically similar to the 
outer surface (sec. 3.2.4). The gravitational potential V in the interior of the ellipsoid 
must have the form 

(5-144) 

with certain constants A, B, C (which have nothing to do with moments of inertia!), 
so that the gravity potential W becomes 
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In fact, 

fj. V = Vzz + VI/li + V .. = - 47rGp(2A + B) (5-146) 

is then constant and the equipotential surfaces (including the boundary) 

(A w
2

) (2 2) 2 U 
- 47rGp x + Y + Bz = C - 27rGp = const . (5-147) 

are similar ellipsoids; cf. sec. 3.2.4 (A and B have different meanings there). 
Comparing (5-146) with (1-12) we get the condition 

2A + B = 1 (5-148) 

!he condition that the extern al surface as given by (5-147) with U = Uo must be 
ldentical to the ellipsoid 
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provides two furt her equations 
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Eqs. (5-148) and (5-150) can be solved for A and B, and then (5-151) gives C. The 
result, also using (5-60) and (5-141) , is 
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(5-152) 

More ab out homogeneous ellipsoidal equilibrium figures can be found in the mo
nograph (Chandrasekhar, 1969). For us the MacIaurin ellipsoid will play only an 
auxiliary role. 

5.5 Reduction to a Maclaurin Ellipsoid 

For an equipotential ellipsoid it is possible to find a density distribution which is 
almost homogeneous: the density deviates onlY very little from the constant density 
of a MacIaurin ellipsoid. This fact will be an essential step towards finding more 
realistic heterogeneous density models. 

We again consider a density model of the form (5-121): 
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in which the functions g( u) and h( u) are to a large extent arbitrary. For the present 
purpose we take a g( u) of the form 

g(u) = Po - h(u) (Po = const.) (5-154) 

so that (5-153) becomes 

p(u, 8) = Po + 6.p (5-155) 

where 
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(5-156) 

This may be interpreted as folIows. The constant density Po corresponds to a 
Maclaurin ellipsoid. To get our original density distribution, we must, according to 
(5-155), superpose to the Maclaurin density Po a density difference 6.p. The latter 
can obviously be made very small since the second term within parentheses in (5-156) 
is, in general, very nearly 1. By (5-112) and (5-113) we have 

G(u) = (u2+~E2)g(U)= (u2+~E2)pO- (u2+~E2)h(u) 
H(u) = (u 2 + E 2 )h(u) 

Inserting this into (5-107) we obtain 

Ao = A~L + 6.Ao 

(5-157) 
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