
Chapter 5 

The Equipotential Ellipsoid and Its 
Density Distributions 

The equipotential ellip~oid, or level ellip~oid, is an ellipsoid of revolution which, by 
definition, is an equipotential surface of its gravity potential. It is being used as a 
standard reference surface for both the geometry and the external gravitational field 
of the earth: for the geometry from the very beginning (e.g., Bessel and Clarke around 
1850) and for the gravity field since 1930 (International Gravity Formula). Both the 
Geodetic Reference System 1967 and the Geodetic Reference System 1980 (cf. lAG, 
1980; Moritz, 1984) are based on it. 

Although the gravity field outside the ellipsoid and at its surface can be fully 
deterrnined without the knowledge of its internal mass distribution, Heiskanen and 
Moritz (1967, p. 64) were still obliged to write: "In fact, we do not know of any 
"reasonable" mass distribution for the level ellipsoid." However, physically possible 
continuous density distributions were described one year later in (Moritz, 1968a, b). 

From sec. 3.2.4 we know that, except in the (for the earth) unrealistic case of a 
homogeneous mass distribution there cannot be a figure of equilibrium with ellipsoidal 
equisurfaces. However, heterogeneous non-equilibrium mass distributions for the level 
ellipsoid do exist and will be considered in this chapter. 

5.1 Ellipsoidal Coordinates and Ellipsoidal Har­
rnonics 

Ellipsoidal coordinates u, Ö, >. and ellipsoidal harmonies are natural generalizations 
of spherical coordinates T, 8, >. and spherical harmonies. They permit a treatment of 
the theorY 'of the level ellipsoid by closed formulas. 

Since ellipsoidal coordinates and harmonies are standard (Robson, 1931 , sees. 249 
to 252; Heiskanen and Moritz, 1967, sees. 1-19 and 1-20; Sigl, 1985, sec. 111.5), abrief 
review will be sufficient. 

In a rectangular system a point P has the coordinates xyz (Fig. 5.1). Now we 
pass through P the surface of an ellipsoid of revolution whose center is the origin 0, 
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FIGURE 5.1: Ellipsoidal coordinates. Top: View from the front. 
Bottom: View from above. 

whose axis coincides with the z-axis, and whose linear excentricity has the constant 
value E. The co ordinate 11, is the semiminor axis of this "coonlinate ellipsoid", 8 is 
the complement of the "reduced latitude" ß of P with respect to this ellipsoid (for its 
definition cf. sec. 1.4), and >. is the geocentric longitude in the usual sense. 

The ellipsoidal coordinates 11" 8, >. are related to x, y, z by the equations 

x ../11,2+E2sinOcos>. 

y ../11,2 + E2 sin 0 sin >. (5-1) 

z 11, cosO 

which can be read from the figure, considering that ../11,2 + E2 is the semimajor axis 
of the ellipsoid whose surface passes through P. 
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If we take u = const. we find 

(5-2) 

which represents an ellipsoid of revolution. For Ö = const. we obtain 

x2 + y2 Z2 

-=E:"72-S1:-' n':;'2"""'O - E2 cos2 0 = 1 (5-3) 

which represents a hyperboloid of one sheet, and for >. = const. we get the meridian 
plane 

y = x tan >. (5-4) 

Ö=const. 

FIGURE 5.2: The confocal co ordinate ellipsoids u = const. and hyperboloids 
8 = const., together with the reference ellipsoid u = b 

The constant focallcngth (linear ezcentricity) E = F10 = OF2 which is the same 
far al/ ellipsoids u = const., characterizes the co ordinate system. For E = 0 we 
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have the usual spherical coordinates r, e, >. as a limiting case. Fig. 5.2 shows the 
set of co ordinate surfaces u = const. and Ö = const., which intersect each other 
orthogonally. One of the set of co ordinate ellipsoids u = const. is singled out as the 
reference ellip8oid, the constant u being its semiminor axis b. 

Ellip80idal harmonic8. We proceed in the same way as with spherical harmonies 
(sec. 1.3) . We express Laplace's equation D. V = 0 in ellipsoidal coordinates and try 
to solve it by a product of three functions, each of which depends on one co ordinate 
only: 

V(u, Ö, >') = f(u)g(Ö)h(>') (5-5) 

For h( >') we get the ordinary differential equation 

(5-6) 

whose solutions are 

h(>') = {c~sm>. , 
smm>. . 

(5-7) 

For g(Ö) we obtain 

sin Ög"(Ö) + cos Ög'(Ö) + [n(n + 1) sin Ö - S:2
Ö

] g(Ö) = 0 (5-8) 

whose solutions are the Legendre functions (1-28b): 

(5-9) 

This is the same as in the spherical case. The difference occurs with the co ordinate 
u. For f(u) we get the differential equation 

Now there comes something remarkable: the substitutions 

r = i ~ (i =.J=I) anel: t = cos Ö 
E 

transform eqs. (5-10) and (5- 8) into 

(1 - r 2 )I"(r) - 2rl'(r) + [n(n + 1) - 1 ::2] /(r) 0 

(1 - e)g"(t) - 2tg'(t) + [n(n + 1) - 1 :2t2 ] g(t) = 0 

(5-10) 

(5-11) 

(5-12) 

(5-13) 

where the overbar indicates that the functions fand 9 are expressed in terms of the 
new arguments rand t . Both equations are essentially identical! 
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ht Thus f(r) satisfies formally the same differential equation as g(t), which is called 
!r Legendre's equation. A solution, by (5-9) and (5-11), is 

(5-14) 

Any second-order differential equation, however, admits two essentially different solu­
tions, a simple example being cos mA and sin mA for (5-6). Thus we have two different 
solutions of (5-12): 

(5-15) 

and 
(5-16) 

The first, Legendre'8 function8, Pnm (r), corresponds to (5-14); the second solution, 
(5-16) is new. The Qnm( r) are called Legendre '8 function of the 8econd kind. They 
are essentially different from the Pnm ; they have singularities which rule out their use 
as candidates for g(t) if t = cose. For f(u), however, both solutions are meaningful 
as we shall see: both Pnm(i~) and Qnm(i~) (by (5-11)) make sense. 

We shall primarily need the "zonal" functions (for m = 0): 

1 z+1 n 1 
Qn(z) = QnO(z) = - Pn(z) In - - 2: -k Pk-1(Z)Pn-k(z) 

2 z - 1 k=l 
(5-17) 

This formula holds for a complex argument z and expresses Qn in terms of the Legen­
dre polynomial Pn and of the logarithmic function. More ab out Legendre's functions 
of the second kind can be found in (Courant and Rilbert, 1953) and in other treatises 
on special functions, in particular (Robson, 1931) . 

Explicitly we even need only Qo and Q2 . Noting that 

~Inz+1=coth-lz 
2 z-1 

(the inverse hyperbolic cotangent) and that (verify!) 

we have 

Qo (ii) 
Q2 (ii) 

h 1 · . 1 cot - t:z: = -t arctan -
:z: 

. E 
-t arctan-

u 

- 1 + 3- arctan - - 3-i[( u
2

) EU] 
2 E2 U E 

(cf. Reiskanen and Moritz, 1967, p . 66). 
The "tesseral" Qnm for a complex argument are defined by 

Q () _ ( 2 _1)md"'Qn(Z) 
nm Z - Z 1 dzm 

(5-18) 

(5-19) 

(5-20) 

(5-21) 

(5- 22) 
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Trus is rat her similar to the equation Pnm(t) = (1 - t2)~ d:"' Pn(t)/ dtm following from 
(1-30) and (1-32). 

Thus we may summarize the possible solutions: 

g(Ö) 

h(A) 
Pnm(cos Ö) 

cos mA or sin mA 

(5-23) 

Here n and m ~ n are integers 0, I, 2, ... , as before. (Note the analogy to (1-28)!) 
Hence the functions 

V(u, Ö, A) 

V(u, Ö, A) 

Pnm (i~) Pnm(cosÖ) { :::; } 

Qnm(i~)Pnm(cosÖ){ :::;} 

are solutions of Laplace's equation ß V = 0, that is, harmonic functions. 
From these functions we may by linear combination form the series 

V.(u, Ö, A) 

(5-24) 

(5-25) 

(5-26) 

Here b is the semiminor axis of our given reference ellipsoidj cL Fig. 5.2. The division 
by Pnm (ib/ E) or Qnm( ib/ E) is possible betause they are constantsj its purpose is to 
simplify the expressions and to make the coefficients anm and bnm real. In fact, at the 
surface of the reference ellipsoid, both series (5-25) and (5-26) reduce to 

V;(b, Ö, A) V.(b, Ö, A) 
00 n 

L: L: [anmPnm(cosÖ) cosmA + bnmPnm(COSÖ) sinmA] . (5-27) 
n=Om=O 

Trus is formally the same as for the sphere, with Ö = 90° - ß instead of the polar 
distance Oj cf. (1-37) for r = 1 or (1-48). 

Thus we already understand the surface expansion (5-27). In order to better un­
derstand the spatial expansions (5-25) and (5-26), we consider the limit E -4 o. Then 
the ellipsoidal coordinates u, Ö, A become spherical coordinates r, 0, Aj the ellipsoid 
u = b becomes the sphere r = R (because then the semiaxes a and bare equal to the 
radius R)j and we find 

!im Pnm (i]j) = (~)n = (!:...)n 
E~O P (i!.) b R nm E 

(5-28) 
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m Thus we see that the function Pnm(iu/E) corresponds to rn and Qnm(iu/E) corre­
sponds to r-(n+l) in spherical harmonies. 

Rence the series (5-25) is harmonie in the interior of the ellipsoid u = b, and the 
series (5-26) is harmonie in its exterior; this case is relevant to geodesy. 

In fact, given V = V(b, 8, >.) at the wrface of the reference ellipsoid, the external 
potential V.(u, 8, >.) is fully determined by (5-26). In this way it is possible to deter­
mine the external potential without knowledge of the interna I mass distribution that 
produces it, from the knowledge of its surface values as given by (5-27). This fact will 
be of basic importance in the next section. By the way, the (unique) determination 
of (5-25) or (5-26) from (5-27) is called the solution of Dirichlet's problem for the 
ellipsoid. 

Reciprocal distance. We shall also need the expansion of the reciprocal distance, 
1/1, in ellipsoidal harmonies, corresponding to the spherical-harmonic expansion 
(1-53). We use the well-known addition theorem for spherical harmonies 

(5-29) 

the notation follows sec. 1.3. Thus (1-53) becomes in spherical harmonies 

1 00 n r,n 
1= L L Cnmrn+l Pnm(cos 8)Pnm(cos 8') cosm(>.' - >.) 

n::::Om=O 

(5-30) 

with 

Cno = 1, 
(n - m)! 

Cnm = 2(n+m)! (5-31) 

Using the correspondence (5-28) we expect that in ellipsoidal harmonics we shall 
have 

T = f t CnmQnm (i-EU) Pnm (i~) Pnm(cosÖ)Pnm(cosÖ')cosm(>.' - >.) . (5-32) 
n=Om=O E 

The coefficients 

t 
CnO = E (2n + 1), i m [(n _ m)!]2 

Cnm = E 2(-1) (2n+1) (n+m)! (5-·33) 

can be found, e.g., in (Robson, 1931, p. 430; note that Robson has omitted the 
factor i which is necessary to make I real) or (Reine, 1961, vol. 11, p . 106); cf. also 
(Rotine, 1969, p. 193). It is an interesting, though nontrivial, exercise to show that 
for E -+ 0, (5-32) with (5-33) reduces to (5-30) with (5- 31) ; hint : use eq. (22.49) 
of (Hotine, 1969) together with eq. (1- 62) of (Heiskanen and Moritz, 1967), in both 
cases replacing (1 - t2)m/2 by (t 2 _1)m/2 for complex t. 
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