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Since K, is small of second order, we may again replace the polar radius t by the mean 
radius ß without 1055 of accuracy: 

(4-204) 

This is Darwin's equation which we already know (eq. (4-123)), but which appears in 
a new light by the present derivation; clearly f can be replaced by e in the second
order terms on the right-hand side. To repeat: the differential equations (4-204) 
and (4-201) are equivalent, but (4-204) is practically more useful, whereas (4-201) is 
theoretically particularly interesting. 

4.3.5 Clairaut's Equation 

The derivation of Clairaut's equation accurate to OCr) starts from (4-193). Using 
(4-167) and (4-184), taking into account (4-187) and (4-188), we thus can write 

3a - 1 tla" + 2a2 + 2taal - 8E tW( t) = _~2 __ --:---:--:-__ 

a + tal - 2a2 

From (2-104) we take, to first order, 
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where, as usual, 

Pm 

(4-205) 

( 4-206) 

( 4-207) 

denotes the dimensionless "normalized density" and ß the (normalized) mean radius 
of the equisurface passing through the point P at which W is considered (the fact 
that it is also used as an integration variable in our customary way will cause no 
confusion) . 

Differentiation gives 
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(4-208) 

or, by (4-56), 

(4-209) 

By definition, 

ß = \!t(l + f) . tel + f) . t ( 4-210) 
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FIGURE 4.10: Polar radius t and mean radius ß 

is the geometrie mean of all three axes (Fig. 4.10). (In a more familiar notation trus 
is R = M, the sphere being defined as having the same volume as the ellipsoid.) 
In view of the smallness of I, (4-210) reduees in the linear approximation to 

Henee, 

ß t(1+~I) 
ß(1-~I) 

W'(t) = dW = dW dß = dW (1 + ~ 1 + ~ tf') 
dt dß dt dß 3 3 

Using (4-209) with (4-211), trus gives 

'( ) 47rG ( 2) ( 2 2 ,) 2 2 W t =--3- Dt 1+ 3 1 1+31+3tl +3wt 

(4-211) 

( 4-212) 

( 4-213) 

( 4-214) 

(sinee w 2 = OU), we have been able simply to replaee ß by t in the last term). 
Introdueing the dimensionless quantity (4-66), in the present units 

3 w2 

J.L = 47rG D ' ( 4-215) 

whieh is Oe!), we thus have to OU) 

'() 47rG ( 4 2 1 2) gp = -W t = - Dt 1 + - 1 + - tl - - J.L 
3 3 3 3 

(4-216) 

Now 
47rGp - 2w 2 3 0 2 

1f GtD = t D - t J.L 
( 4-217) 
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(we have P = 6 if we use the earth's mean density Pm as a unit), so that by (4-142) 
and (4-216) 

t'l1(t) = 3~ - 4~ f - 2~ tf' - 2 (1 - ~) J.L 
D D D D 

Then (4-205) gives 

3a - ~ t 2a" + 2a2 + 2taa' - 8c - t'l1(t)(a + ta' - 2(2) = 0 
2 

( 4-218) 

( 4-219) 

with t'l1(t) expressed by (4-218) which, being multiplied by O(a), is indeed seen to 
be needed to first order only, so that we can put f = a in (4-218). 

For simplicity we abbreviate 

A = ~ (4-220) 
D 

Substituting (4-218) into (4-219) we get after some simple algebra 

t2a" + 6Ata' + (-6 + 6A)a = (4 + 20A)f2 + (4 + 12A)tff' + üt2r 
- 16c + 4(1 - A)(f + tf')J.L (4-221) 

where, on the right-hand side, we have put f = a because it contains quadratic terms 
only. 

The left-hand side represents the linear Clairaut equation for a, and the right-hand 
side, rather than being zero, is now O(P). Thus (4-221) may already be regarded 
as some second-order generalization of Clairaut's equation, but it is better to change 
from a, t to the flattening fand the mean radius ß by means of (4-198), (4-199), 
and (4-212). 

The final result becomes still simpler if we use, instead of the flattening f, the 
"ellipticity" 

5 2 4 
e = f - 42 f + 7K 

(with e2 ~ P), already introduced in eq. (4-48). 
By (4-198), (4-199), and (4-222) we have 
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This is inserted into (4-221). Furthermore we substitute, from (4-212), 

(4-222) 

( 4-223) 

(4-224) 

( 4-225) 

Finally we replace all derivatives with respect to t by derivatives with respect to ß, 
denoted by a dot as before, cf. eq. (4-78): 

f' df df dß . ( 2 2.) 
dt = dß dt = f 1 + "?J + "3 ß f ( 4-226) 

f" 
.. 4 ·· . .. 4 · 
f + "3 f f + 2ß f f + "3 f2 ( 4-227) 
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This is straightforward though somewhat laborious algebra; the result is 

ß2 e + 6>'ße - 6(1- >.)e = 4(1 - >')(f + ßj)J.L -

_ 1~6 (1 _ >')f2 + (4 + 1~6 >.) ßf j - ~ ß2 P + ~~ ß2 f j - 2ß3 jj + 

+ 3; [ß2 ~ + 6>'ßk + (-20 + 6>')11:] (4-228) 

which does not look very encouraging. Note, however, that the term between paren
theses [1 is not hing else than the left-hand side of Darwin's equation (4-204). Re
placing it by the right-hand side of this equation removes 11: . If we do this and finally 
eliminate j, where multiplied by f or j, by the linear Clairaut equation: 

( 4-229) 

which has the same accuracy as (4-202), we get a surprisingly simple resu1t: 

4 . . -"7 (1- >')(7f2 + 6ßff + 3ß2 f2) + 

+ 4(1 - >')(f + ßj)J.L (4-230) 

which is not hing else than our old friend, the second-order Clairaut equation (4-91) 
with (4-92) or (4-90); note that e = f in second-order terms as usual. 

We thus have derived this equation and also Darwin's equation in an alternative 
geometrie way. This method, proceeding from Wavre's theory, is simple and trans
parent in principle, though the detailed calculations may be laborious . In principle, 
it is nothing else than an extension of the method of sec. 3.2.5 to second order. It is 
completely different and independent of the method of sec. 4.2; in particular, it does 
not use spherical harmonie series with a somewhat difficult convergence behavior. 

Generally, the present method may be considered more elementary and direct, 
avoiding tricky manipulations with spherical harmonies and equally tricky differen
tiation of integrals. On the other hand it should be noted that we only get the 
differential equations for fand 11:, but not the boundary conditions. For those people 
who do not appreciate the esthetic appeal of this Wavre-type approach, it will at least 
serve as a very useful independent check. 
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