same accuracy, we may in (4-178) replace r by t, obtaining

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=-2 t^{-1} f \cos \theta \sin \theta+O\left(f^{2}\right) \tag{4-179}
\end{equation*}
$$

Comparing (4-175) with (4-163), we see that in our case

$$
\begin{equation*}
F=\ln N \tag{4-180}
\end{equation*}
$$

so that C represents the θ-correction for B; cf. $(4-161)$ and (4-163). Thus

$$
\begin{equation*}
C=\frac{\partial \ln N}{\partial \theta} \frac{\partial \theta}{\partial t}=\frac{1}{2} \frac{\partial \ln N^{2}}{\partial \theta} \frac{\partial \theta}{\partial t}=\frac{1}{2 N^{2}} \frac{\partial N^{2}}{\partial \theta} \frac{\partial \theta}{\partial t} \tag{4-181}
\end{equation*}
$$

and finally, by (4-144),

$$
\begin{equation*}
C=\frac{1}{2 X} \frac{\partial X}{\partial \theta} \frac{\partial \theta}{\partial t} \tag{4-182}
\end{equation*}
$$

By (4-167), $\partial X / \partial \theta$ will be of order $\alpha \doteq f$, and so is (4-179). So, C will be of order f^{2}, so that we may put $f=\alpha$ and $X=1$ without loss of accuracy, obtaining simply

$$
\begin{equation*}
C=-\left(4 t^{-1} \alpha^{2}+4 \alpha \alpha^{\prime}\right)\left(\sin ^{2} \theta-\sin ^{4} \theta\right) \tag{4-183}
\end{equation*}
$$

Combining (4-168), (4-169) and (4-183) according to (4-161), we finally get

$$
\begin{align*}
Y & =\frac{2}{t}\left[1-2 \alpha+\left(3 \alpha+2 \alpha^{2}+2 t \alpha \alpha^{\prime}-\frac{1}{2} t^{2} \alpha^{\prime \prime}-8 \epsilon\right) \sin ^{2} \theta+\right. \\
& +\left(-3 \alpha^{2}-t \alpha \alpha^{\prime}+t^{2} \alpha^{\prime 2}+\frac{1}{2} t^{2} \alpha \alpha^{\prime \prime}+\frac{1}{2} t^{3} \alpha^{\prime} \alpha^{\prime \prime}+\right. \\
& \left.\left.+10 \epsilon-\frac{1}{2} t^{2} \epsilon^{\prime \prime}\right) \sin ^{4} \theta\right] \tag{4-184}
\end{align*}
$$

4.3.3 Basic Equations

From ($4-173$) we find

$$
\begin{equation*}
\frac{\partial F}{\partial \Theta}=\frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial \Theta} \tag{4-185}
\end{equation*}
$$

For $t=$ const., the factor $\partial \theta / \partial \Theta$ cancels in the numerator and the denominator on the right-hand side of $(4-141)$, so that we also have

$$
\begin{equation*}
\Psi(t)=\frac{\partial Y / \partial \theta}{\partial X / \partial \theta} . \tag{4-186}
\end{equation*}
$$

The functions X and Y are given by (4-167) and (4-184), which we write in the form

$$
\begin{align*}
& X=1+X_{1} \sin ^{2} \theta+X_{2} \sin ^{4} \theta \tag{4-187}\\
& Y=\frac{2}{t}\left(Y_{0}+Y_{1} \sin ^{2} \theta+Y_{2} \sin ^{4} \theta\right) \tag{4-188}
\end{align*}
$$

where the functions X_{i} and Y_{i} are series depending on t only. Thus

$$
\begin{align*}
& \frac{\partial X}{\partial \theta}=2 \sin \theta \cos \theta\left(X_{1}+2 X_{2} \sin ^{2} \theta\right) \\
& \frac{\partial Y}{\partial \theta}=\frac{2}{t} 2 \sin \theta \cos \theta\left(Y_{1}+2 Y_{2} \sin ^{2} \theta\right) \tag{4-189}
\end{align*}
$$

and (4-186) becomes

$$
\begin{equation*}
\frac{1}{2} t \Psi(t)=\frac{Y_{1}+2 Y_{2} \sin ^{2} \theta}{X_{1}+2 X_{2} \sin ^{2} \theta} \tag{4-190}
\end{equation*}
$$

Since $X_{2}, Y_{2} \ll X_{1}, Y_{1}$, we may again expand:

$$
\begin{align*}
\frac{1}{2} t \Psi(t) & =\frac{Y_{1}}{X_{1}}\left(1+2 \frac{Y_{2}}{Y_{1}} \sin ^{2} \theta\right)\left(1+2 \frac{X_{2}}{X_{1}} \sin ^{2} \theta\right)^{-1}= \\
& =\frac{Y_{1}}{X_{1}}\left[1+2\left(\frac{Y_{2}}{Y_{1}}-\frac{X_{2}}{X_{1}}\right) \sin ^{2} \theta+(\ldots) \sin ^{4} \theta+\cdots\right] \tag{4-191}
\end{align*}
$$

Now comes the essential reasoning: since this equation is an identity in θ and since the left-hand side is independent of θ, the right-hand side must also be independent of θ. This requires

$$
\begin{equation*}
\frac{Y_{2}}{Y_{1}}-\frac{X_{2}}{X_{1}}=0 \tag{4-192}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\frac{1}{2} t \Psi(t)=\frac{Y_{1}}{X_{1}} \tag{4-193}
\end{equation*}
$$

These are the basic equations for our problem: (4-192) will lead to Darwin's equation, whereas (4-193) will give Clairaut's equation accurate to second order in f. We immediately note that $(4-192)$ corresponds to the condition (3-46) which is "weaker" than $(3-45)$ as we have remarked at the end of sec. 3.2.1. Thus $(3-46)$ is sufficient to derive Darwin's but not Clairaut's equation.

4.3.4 Darwin's Equation

Eq. (4-192) is equivalent to

$$
\begin{equation*}
X_{1} Y_{2}-X_{2} Y_{1}=0 \tag{4-194}
\end{equation*}
$$

X_{1} and X_{2} are the terms (truncated series) on the right-hand side of (4-167) multiplied by $\sin ^{2} \theta$ and $\sin ^{4} \theta$, respectively, and similarly for Y_{1} and Y_{2} with (4-184); cf. (4-187) and (4-188).

We substitute these series into (4-194), keeping terms of order α^{3} but neglecting $O\left(\alpha^{4}\right)$. The result is

$$
\begin{align*}
& \left(t^{2} \alpha+t^{3} \alpha^{\prime}\right) \epsilon^{\prime \prime}+\left(6 t \alpha-t^{3} \alpha^{\prime \prime}\right) \epsilon^{\prime}-\left(14 \alpha+20 t \alpha^{\prime}+t^{2} \alpha^{\prime \prime}\right) \epsilon= \\
& \quad=-21 \alpha^{3}-14 t \alpha^{2} \alpha^{\prime}-3 t^{2} \alpha \alpha^{\prime 2}+2 t^{3} \alpha^{\prime 3}+ \\
& \quad+\frac{7}{2} t^{2} \alpha^{2} \alpha^{\prime \prime}+3 t^{3} \alpha \alpha^{\prime} \alpha^{\prime \prime}+\frac{3}{2} t^{4} \alpha^{\prime 2} \alpha^{\prime \prime} \tag{4-195}
\end{align*}
$$

