whence

$$
N=\frac{d n}{d t}=r_{t} \cos \delta
$$

On the other hand the enlarged figure shows that

$$
\cos \delta=\frac{r d \theta}{d s}=\frac{r}{\sqrt{r^{2}+r_{\theta}^{2}}}
$$

by ($4-156$). Thus we find

$$
\begin{equation*}
N=\frac{r r_{t}}{\sqrt{r^{2}+r_{\theta}^{2}}} \tag{4-159}
\end{equation*}
$$

Eqs. (4-158) and (4-159) are basic. Their substitution into (4-144) and (4-146) finally gives

$$
\begin{align*}
X & =N^{2}=\frac{r^{2} r_{t}^{2}}{r^{2}+r_{\theta}^{2}} \tag{4-160}\\
Y & =A-B-C \tag{4-161}\\
A & =2 J N=\frac{r r_{t}}{r^{2}+r_{\theta}^{2}}\left(2-\frac{r_{\theta}}{r} \cot \theta+\frac{r_{\theta}^{2}-r r_{\theta \theta}}{r^{2}+r_{\theta}^{2}}\right) \tag{4-162}\\
B & =\frac{\partial \ln N}{\partial t}=\frac{r_{t}}{r}+\frac{r_{t t}}{r_{t}}-\frac{r r_{t}+r_{\theta} r_{\theta t}}{r^{2}+r_{\theta}^{2}} \tag{4-163}
\end{align*}
$$

So far, everything has been quite straightforward. A fine point must be made, however. In $(4-146), \partial / \partial t$ means the derivative with respect to t for constant Θ, i.e., along the plumb line, whereas in (4-163), $\partial / \partial t$ denotes the derivative also with respect to t but for constant θ, i.e., along the radius vector. This fact must be taken into account by adding in (4-161) a correction C. This " θ-correction" will be considered in the next section.

4.3.2 Series Expansions

Let us now represent the equation of the set of equisurfaces in the form

$$
\begin{equation*}
r=r(t, \theta)=t\left(1+\alpha \sin ^{2} \theta+\epsilon \sin ^{4} \theta\right) \tag{4-164}
\end{equation*}
$$

$\alpha=\alpha(t)$ being a first-order term approximately equal to the flattening f $\left(\alpha=f+O\left(f^{2}\right)\right)$, and $\epsilon=\epsilon(t)$ being a second-order term of order $f^{2} \doteq \alpha^{2}$. Terms of order higher than two will consistently be neglected. If $t=$ const., then we get the equation of an equisurface, which plainly is of form (4-147).

The above representation is equivalent to a spherical-harmonic expansion to $n=4$, containing P_{2} and P_{4} such as (4-11), but it is easier to manipulate for our present purpose. For later reference we form the partial derivatives:

$$
\begin{align*}
r_{t} & =1+\left(\alpha+t \alpha^{\prime}\right) \sin ^{2} \theta+\left(\epsilon+t \epsilon^{\prime}\right) \sin ^{4} \theta \\
r_{\theta} & =t \cos \theta \sin \theta\left(2 \alpha+4 \epsilon \sin ^{2} \theta\right), \\
r_{t t} & =\left(2 \alpha^{\prime}+t \alpha^{\prime \prime}\right) \sin ^{2} \theta+\left(2 \epsilon^{\prime}+t \epsilon^{\prime \prime}\right) \sin ^{4} \theta, \tag{4-165}\\
r_{t \theta} & =2\left(\alpha+t \alpha^{\prime}\right) \cos \theta \sin \theta+4\left(\epsilon+t \epsilon^{\prime}\right) \cos \theta \sin ^{3} \theta, \\
r_{\theta \theta} & =2 t \alpha+(-4 t \alpha+12 t \epsilon) \sin ^{2} \theta-16 t \epsilon \sin ^{4} \theta .
\end{align*}
$$

The prime denotes differentiation with respect to t :

$$
\begin{equation*}
\alpha^{\prime}=\frac{d \alpha}{d t}, \quad \alpha^{\prime \prime}=\frac{d^{2} \alpha}{d t^{2}}, \quad \text { etc. } \tag{4-166}
\end{equation*}
$$

Now it is straightforward though somewhat laborious to substitute the series (4-165) into (4-160), (4-162), and (4-163), consistently neglecting terms of order higher than two. The result is

$$
\begin{align*}
X & =1+\left(2 \alpha+2 t \alpha^{\prime}-4 \alpha^{2}\right) \sin ^{2} \theta+ \\
& +\left(5 \alpha^{2}+2 t \alpha \alpha^{\prime}+t^{2} \alpha^{\prime 2}+2 \epsilon+2 t \epsilon^{\prime}\right) \sin ^{4} \theta \tag{4-167}\\
A & =\frac{2}{t}\left[1-2 \alpha+\left(3 \alpha+t \alpha^{\prime}-2 t \alpha \alpha^{\prime}-8 \epsilon\right) \sin ^{2} \theta+\right. \\
& \left.+\left(-\alpha^{2}+2 t \alpha \alpha^{\prime}+10 \epsilon+t \epsilon^{\prime}\right) \sin ^{4} \theta\right] \tag{4-168}\\
B & =\frac{2}{t}\left[\left(t \alpha^{\prime}+\frac{1}{2} t^{2} \alpha^{\prime \prime}-2 t \alpha \alpha^{\prime}\right) \sin ^{2} \theta+\right. \\
& \left.+\left(t \alpha \alpha^{\prime}-t^{2} \alpha^{\prime 2}-\frac{1}{2} t^{2} \alpha \alpha^{\prime \prime}-\frac{1}{2} t^{3} \alpha^{\prime} \alpha^{\prime \prime}+t \epsilon^{\prime}+\frac{1}{2} t^{2} \epsilon^{\prime \prime}\right) \sin ^{4} \theta\right] . \tag{4-169}
\end{align*}
$$

The θ-correction. There remains the term C in (4-161), which arises from the difference between Wavre's parameter Θ, which is constant along any specific plumb line, and the spherical polar distance θ which slightly varies along the plumb line.

Consider an arbitrary smooth function

$$
\begin{equation*}
F=F^{*}(t, \Theta) \tag{4-170}
\end{equation*}
$$

expressed in terms of Wavre's parameters t, Θ. On the other hand, our functions have the form

$$
\begin{equation*}
F=F(t, \theta), \tag{4-171}
\end{equation*}
$$

expressed in terms of the polar distance (note that the parameters t, Θ form an orthogonal system whereas t, θ don't). Regarding the system (t, θ) as functions of (t, Θ) :

$$
\begin{align*}
& t=t \tag{4-172}\\
& \theta=\theta(\Theta, t),
\end{align*}
$$

we have

$$
\begin{equation*}
F=F(t, \theta)=F(t, \theta(\Theta, t))=F^{*}(t, \Theta), \tag{4-173}
\end{equation*}
$$

and hence

$$
\begin{align*}
\frac{\partial F^{*}}{\partial t} & =\frac{\partial F}{\partial t}+\frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial t} \tag{4-174}\\
\left.\frac{\partial F}{\partial t}\right)_{\Theta=\text { const. }} & \left.=\frac{\partial F}{\partial t}\right)_{\theta=\text { const. }}+F_{\theta} \frac{\partial \theta}{\partial t} \tag{4-175}
\end{align*}
$$

in an obvious notation. Thus, in order to get $\partial F / \partial t$ in Wavre's sense, we have to add to $\partial F / \partial t$ in our present sense a " θ-correction".

The factor $\partial \theta / \partial t$ is the change of θ along the normal to the equisurface passing through the point (t, θ) under consideration. It is easily found as follows (Fig. 4.9). The infinitesimal distance $P F$ can be expressed in two ways:

$$
\begin{equation*}
-r d \theta=\delta d r \tag{4-176}
\end{equation*}
$$

(we have put the minus sign since in Fig. 4.8 we had taken $r=O P_{1}$, whereas now

FIGURE 4.9: The θ-correction
$r=O P$; so to speak, in Fig. 4.8 we went from P^{\prime} to P, whereas in Fig. 4.9 we go from P to P^{\prime}). Thus

$$
\begin{equation*}
\frac{\partial \theta}{\partial r}=-\frac{\delta}{r} \tag{4-177}
\end{equation*}
$$

where the very small angle δ is nothing else than the difference between the geographic latitude ϕ and the geocentric latitude ψ (Fig. 4.9), which is given by (1-76):

$$
\begin{equation*}
\delta=\phi-\psi=2 f \cos \theta \sin \theta \tag{4-178}
\end{equation*}
$$

neglecting higher-order terms. (This is a standard formula from ellipsoidal geometry: to this accuracy, the level surfaces can be considered ellipsoids of revolution.) To the
same accuracy, we may in (4-178) replace r by t, obtaining

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=-2 t^{-1} f \cos \theta \sin \theta+O\left(f^{2}\right) \tag{4-179}
\end{equation*}
$$

Comparing (4-175) with (4-163), we see that in our case

$$
\begin{equation*}
F=\ln N \tag{4-180}
\end{equation*}
$$

so that C represents the θ-correction for B; cf. $(4-161)$ and (4-163). Thus

$$
\begin{equation*}
C=\frac{\partial \ln N}{\partial \theta} \frac{\partial \theta}{\partial t}=\frac{1}{2} \frac{\partial \ln N^{2}}{\partial \theta} \frac{\partial \theta}{\partial t}=\frac{1}{2 N^{2}} \frac{\partial N^{2}}{\partial \theta} \frac{\partial \theta}{\partial t} \tag{4-181}
\end{equation*}
$$

and finally, by (4-144),

$$
\begin{equation*}
C=\frac{1}{2 X} \frac{\partial X}{\partial \theta} \frac{\partial \theta}{\partial t} \tag{4-182}
\end{equation*}
$$

By (4-167), $\partial X / \partial \theta$ will be of order $\alpha \doteq f$, and so is (4-179). So, C will be of order f^{2}, so that we may put $f=\alpha$ and $X=1$ without loss of accuracy, obtaining simply

$$
\begin{equation*}
C=-\left(4 t^{-1} \alpha^{2}+4 \alpha \alpha^{\prime}\right)\left(\sin ^{2} \theta-\sin ^{4} \theta\right) \tag{4-183}
\end{equation*}
$$

Combining (4-168), (4-169) and (4-183) according to (4-161), we finally get

$$
\begin{align*}
Y & =\frac{2}{t}\left[1-2 \alpha+\left(3 \alpha+2 \alpha^{2}+2 t \alpha \alpha^{\prime}-\frac{1}{2} t^{2} \alpha^{\prime \prime}-8 \epsilon\right) \sin ^{2} \theta+\right. \\
& +\left(-3 \alpha^{2}-t \alpha \alpha^{\prime}+t^{2} \alpha^{\prime 2}+\frac{1}{2} t^{2} \alpha \alpha^{\prime \prime}+\frac{1}{2} t^{3} \alpha^{\prime} \alpha^{\prime \prime}+\right. \\
& \left.\left.+10 \epsilon-\frac{1}{2} t^{2} \epsilon^{\prime \prime}\right) \sin ^{4} \theta\right] \tag{4-184}
\end{align*}
$$

4.3.3 Basic Equations

From ($4-173$) we find

$$
\begin{equation*}
\frac{\partial F}{\partial \Theta}=\frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial \Theta} \tag{4-185}
\end{equation*}
$$

For $t=$ const., the factor $\partial \theta / \partial \Theta$ cancels in the numerator and the denominator on the right-hand side of $(4-141)$, so that we also have

$$
\begin{equation*}
\Psi(t)=\frac{\partial Y / \partial \theta}{\partial X / \partial \theta} . \tag{4-186}
\end{equation*}
$$

The functions X and Y are given by (4-167) and (4-184), which we write in the form

$$
\begin{align*}
& X=1+X_{1} \sin ^{2} \theta+X_{2} \sin ^{4} \theta \tag{4-187}\\
& Y=\frac{2}{t}\left(Y_{0}+Y_{1} \sin ^{2} \theta+Y_{2} \sin ^{4} \theta\right) \tag{4-188}
\end{align*}
$$

where the functions X_{i} and Y_{i} are series depending on t only. Thus

